cfq-iosched.c 104 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162
  1. /*
  2. * CFQ, or complete fairness queueing, disk scheduler.
  3. *
  4. * Based on ideas from a previously unfinished io
  5. * scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
  6. *
  7. * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
  8. */
  9. #include <linux/module.h>
  10. #include <linux/slab.h>
  11. #include <linux/blkdev.h>
  12. #include <linux/elevator.h>
  13. #include <linux/jiffies.h>
  14. #include <linux/rbtree.h>
  15. #include <linux/ioprio.h>
  16. #include <linux/blktrace_api.h>
  17. #include "cfq.h"
  18. /*
  19. * tunables
  20. */
  21. /* max queue in one round of service */
  22. static const int cfq_quantum = 8;
  23. static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
  24. /* maximum backwards seek, in KiB */
  25. static const int cfq_back_max = 16 * 1024;
  26. /* penalty of a backwards seek */
  27. static const int cfq_back_penalty = 2;
  28. static const int cfq_slice_sync = HZ / 10;
  29. static int cfq_slice_async = HZ / 25;
  30. static const int cfq_slice_async_rq = 2;
  31. static int cfq_slice_idle = HZ / 125;
  32. static int cfq_group_idle = HZ / 125;
  33. static const int cfq_target_latency = HZ * 3/10; /* 300 ms */
  34. static const int cfq_hist_divisor = 4;
  35. /*
  36. * offset from end of service tree
  37. */
  38. #define CFQ_IDLE_DELAY (HZ / 5)
  39. /*
  40. * below this threshold, we consider thinktime immediate
  41. */
  42. #define CFQ_MIN_TT (2)
  43. #define CFQ_SLICE_SCALE (5)
  44. #define CFQ_HW_QUEUE_MIN (5)
  45. #define CFQ_SERVICE_SHIFT 12
  46. #define CFQQ_SEEK_THR (sector_t)(8 * 100)
  47. #define CFQQ_CLOSE_THR (sector_t)(8 * 1024)
  48. #define CFQQ_SECT_THR_NONROT (sector_t)(2 * 32)
  49. #define CFQQ_SEEKY(cfqq) (hweight32(cfqq->seek_history) > 32/8)
  50. #define RQ_CIC(rq) \
  51. ((struct cfq_io_context *) (rq)->elevator_private[0])
  52. #define RQ_CFQQ(rq) (struct cfq_queue *) ((rq)->elevator_private[1])
  53. #define RQ_CFQG(rq) (struct cfq_group *) ((rq)->elevator_private[2])
  54. static struct kmem_cache *cfq_pool;
  55. static struct kmem_cache *cfq_ioc_pool;
  56. static DEFINE_PER_CPU(unsigned long, cfq_ioc_count);
  57. static struct completion *ioc_gone;
  58. static DEFINE_SPINLOCK(ioc_gone_lock);
  59. static DEFINE_SPINLOCK(cic_index_lock);
  60. static DEFINE_IDA(cic_index_ida);
  61. #define CFQ_PRIO_LISTS IOPRIO_BE_NR
  62. #define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
  63. #define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
  64. #define sample_valid(samples) ((samples) > 80)
  65. #define rb_entry_cfqg(node) rb_entry((node), struct cfq_group, rb_node)
  66. /*
  67. * Most of our rbtree usage is for sorting with min extraction, so
  68. * if we cache the leftmost node we don't have to walk down the tree
  69. * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
  70. * move this into the elevator for the rq sorting as well.
  71. */
  72. struct cfq_rb_root {
  73. struct rb_root rb;
  74. struct rb_node *left;
  75. unsigned count;
  76. unsigned total_weight;
  77. u64 min_vdisktime;
  78. };
  79. #define CFQ_RB_ROOT (struct cfq_rb_root) { .rb = RB_ROOT, .left = NULL, \
  80. .count = 0, .min_vdisktime = 0, }
  81. /*
  82. * Per process-grouping structure
  83. */
  84. struct cfq_queue {
  85. /* reference count */
  86. int ref;
  87. /* various state flags, see below */
  88. unsigned int flags;
  89. /* parent cfq_data */
  90. struct cfq_data *cfqd;
  91. /* service_tree member */
  92. struct rb_node rb_node;
  93. /* service_tree key */
  94. unsigned long rb_key;
  95. /* prio tree member */
  96. struct rb_node p_node;
  97. /* prio tree root we belong to, if any */
  98. struct rb_root *p_root;
  99. /* sorted list of pending requests */
  100. struct rb_root sort_list;
  101. /* if fifo isn't expired, next request to serve */
  102. struct request *next_rq;
  103. /* requests queued in sort_list */
  104. int queued[2];
  105. /* currently allocated requests */
  106. int allocated[2];
  107. /* fifo list of requests in sort_list */
  108. struct list_head fifo;
  109. /* time when queue got scheduled in to dispatch first request. */
  110. unsigned long dispatch_start;
  111. unsigned int allocated_slice;
  112. unsigned int slice_dispatch;
  113. /* time when first request from queue completed and slice started. */
  114. unsigned long slice_start;
  115. unsigned long slice_end;
  116. long slice_resid;
  117. /* pending metadata requests */
  118. int meta_pending;
  119. /* number of requests that are on the dispatch list or inside driver */
  120. int dispatched;
  121. /* io prio of this group */
  122. unsigned short ioprio, org_ioprio;
  123. unsigned short ioprio_class, org_ioprio_class;
  124. pid_t pid;
  125. u32 seek_history;
  126. sector_t last_request_pos;
  127. struct cfq_rb_root *service_tree;
  128. struct cfq_queue *new_cfqq;
  129. struct cfq_group *cfqg;
  130. /* Number of sectors dispatched from queue in single dispatch round */
  131. unsigned long nr_sectors;
  132. };
  133. /*
  134. * First index in the service_trees.
  135. * IDLE is handled separately, so it has negative index
  136. */
  137. enum wl_prio_t {
  138. BE_WORKLOAD = 0,
  139. RT_WORKLOAD = 1,
  140. IDLE_WORKLOAD = 2,
  141. CFQ_PRIO_NR,
  142. };
  143. /*
  144. * Second index in the service_trees.
  145. */
  146. enum wl_type_t {
  147. ASYNC_WORKLOAD = 0,
  148. SYNC_NOIDLE_WORKLOAD = 1,
  149. SYNC_WORKLOAD = 2
  150. };
  151. /* This is per cgroup per device grouping structure */
  152. struct cfq_group {
  153. /* group service_tree member */
  154. struct rb_node rb_node;
  155. /* group service_tree key */
  156. u64 vdisktime;
  157. unsigned int weight;
  158. /* number of cfqq currently on this group */
  159. int nr_cfqq;
  160. /*
  161. * Per group busy queus average. Useful for workload slice calc. We
  162. * create the array for each prio class but at run time it is used
  163. * only for RT and BE class and slot for IDLE class remains unused.
  164. * This is primarily done to avoid confusion and a gcc warning.
  165. */
  166. unsigned int busy_queues_avg[CFQ_PRIO_NR];
  167. /*
  168. * rr lists of queues with requests. We maintain service trees for
  169. * RT and BE classes. These trees are subdivided in subclasses
  170. * of SYNC, SYNC_NOIDLE and ASYNC based on workload type. For IDLE
  171. * class there is no subclassification and all the cfq queues go on
  172. * a single tree service_tree_idle.
  173. * Counts are embedded in the cfq_rb_root
  174. */
  175. struct cfq_rb_root service_trees[2][3];
  176. struct cfq_rb_root service_tree_idle;
  177. unsigned long saved_workload_slice;
  178. enum wl_type_t saved_workload;
  179. enum wl_prio_t saved_serving_prio;
  180. struct blkio_group blkg;
  181. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  182. struct hlist_node cfqd_node;
  183. int ref;
  184. #endif
  185. /* number of requests that are on the dispatch list or inside driver */
  186. int dispatched;
  187. };
  188. /*
  189. * Per block device queue structure
  190. */
  191. struct cfq_data {
  192. struct request_queue *queue;
  193. /* Root service tree for cfq_groups */
  194. struct cfq_rb_root grp_service_tree;
  195. struct cfq_group root_group;
  196. /*
  197. * The priority currently being served
  198. */
  199. enum wl_prio_t serving_prio;
  200. enum wl_type_t serving_type;
  201. unsigned long workload_expires;
  202. struct cfq_group *serving_group;
  203. /*
  204. * Each priority tree is sorted by next_request position. These
  205. * trees are used when determining if two or more queues are
  206. * interleaving requests (see cfq_close_cooperator).
  207. */
  208. struct rb_root prio_trees[CFQ_PRIO_LISTS];
  209. unsigned int busy_queues;
  210. unsigned int busy_sync_queues;
  211. int rq_in_driver;
  212. int rq_in_flight[2];
  213. /*
  214. * queue-depth detection
  215. */
  216. int rq_queued;
  217. int hw_tag;
  218. /*
  219. * hw_tag can be
  220. * -1 => indeterminate, (cfq will behave as if NCQ is present, to allow better detection)
  221. * 1 => NCQ is present (hw_tag_est_depth is the estimated max depth)
  222. * 0 => no NCQ
  223. */
  224. int hw_tag_est_depth;
  225. unsigned int hw_tag_samples;
  226. /*
  227. * idle window management
  228. */
  229. struct timer_list idle_slice_timer;
  230. struct work_struct unplug_work;
  231. struct cfq_queue *active_queue;
  232. struct cfq_io_context *active_cic;
  233. /*
  234. * async queue for each priority case
  235. */
  236. struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
  237. struct cfq_queue *async_idle_cfqq;
  238. sector_t last_position;
  239. /*
  240. * tunables, see top of file
  241. */
  242. unsigned int cfq_quantum;
  243. unsigned int cfq_fifo_expire[2];
  244. unsigned int cfq_back_penalty;
  245. unsigned int cfq_back_max;
  246. unsigned int cfq_slice[2];
  247. unsigned int cfq_slice_async_rq;
  248. unsigned int cfq_slice_idle;
  249. unsigned int cfq_group_idle;
  250. unsigned int cfq_latency;
  251. unsigned int cic_index;
  252. struct list_head cic_list;
  253. /*
  254. * Fallback dummy cfqq for extreme OOM conditions
  255. */
  256. struct cfq_queue oom_cfqq;
  257. unsigned long last_delayed_sync;
  258. /* List of cfq groups being managed on this device*/
  259. struct hlist_head cfqg_list;
  260. struct rcu_head rcu;
  261. };
  262. static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd);
  263. static struct cfq_rb_root *service_tree_for(struct cfq_group *cfqg,
  264. enum wl_prio_t prio,
  265. enum wl_type_t type)
  266. {
  267. if (!cfqg)
  268. return NULL;
  269. if (prio == IDLE_WORKLOAD)
  270. return &cfqg->service_tree_idle;
  271. return &cfqg->service_trees[prio][type];
  272. }
  273. enum cfqq_state_flags {
  274. CFQ_CFQQ_FLAG_on_rr = 0, /* on round-robin busy list */
  275. CFQ_CFQQ_FLAG_wait_request, /* waiting for a request */
  276. CFQ_CFQQ_FLAG_must_dispatch, /* must be allowed a dispatch */
  277. CFQ_CFQQ_FLAG_must_alloc_slice, /* per-slice must_alloc flag */
  278. CFQ_CFQQ_FLAG_fifo_expire, /* FIFO checked in this slice */
  279. CFQ_CFQQ_FLAG_idle_window, /* slice idling enabled */
  280. CFQ_CFQQ_FLAG_prio_changed, /* task priority has changed */
  281. CFQ_CFQQ_FLAG_slice_new, /* no requests dispatched in slice */
  282. CFQ_CFQQ_FLAG_sync, /* synchronous queue */
  283. CFQ_CFQQ_FLAG_coop, /* cfqq is shared */
  284. CFQ_CFQQ_FLAG_split_coop, /* shared cfqq will be splitted */
  285. CFQ_CFQQ_FLAG_deep, /* sync cfqq experienced large depth */
  286. CFQ_CFQQ_FLAG_wait_busy, /* Waiting for next request */
  287. };
  288. #define CFQ_CFQQ_FNS(name) \
  289. static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq) \
  290. { \
  291. (cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name); \
  292. } \
  293. static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq) \
  294. { \
  295. (cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name); \
  296. } \
  297. static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq) \
  298. { \
  299. return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0; \
  300. }
  301. CFQ_CFQQ_FNS(on_rr);
  302. CFQ_CFQQ_FNS(wait_request);
  303. CFQ_CFQQ_FNS(must_dispatch);
  304. CFQ_CFQQ_FNS(must_alloc_slice);
  305. CFQ_CFQQ_FNS(fifo_expire);
  306. CFQ_CFQQ_FNS(idle_window);
  307. CFQ_CFQQ_FNS(prio_changed);
  308. CFQ_CFQQ_FNS(slice_new);
  309. CFQ_CFQQ_FNS(sync);
  310. CFQ_CFQQ_FNS(coop);
  311. CFQ_CFQQ_FNS(split_coop);
  312. CFQ_CFQQ_FNS(deep);
  313. CFQ_CFQQ_FNS(wait_busy);
  314. #undef CFQ_CFQQ_FNS
  315. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  316. #define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
  317. blk_add_trace_msg((cfqd)->queue, "cfq%d%c %s " fmt, (cfqq)->pid, \
  318. cfq_cfqq_sync((cfqq)) ? 'S' : 'A', \
  319. blkg_path(&(cfqq)->cfqg->blkg), ##args);
  320. #define cfq_log_cfqg(cfqd, cfqg, fmt, args...) \
  321. blk_add_trace_msg((cfqd)->queue, "%s " fmt, \
  322. blkg_path(&(cfqg)->blkg), ##args); \
  323. #else
  324. #define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
  325. blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)
  326. #define cfq_log_cfqg(cfqd, cfqg, fmt, args...) do {} while (0);
  327. #endif
  328. #define cfq_log(cfqd, fmt, args...) \
  329. blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
  330. /* Traverses through cfq group service trees */
  331. #define for_each_cfqg_st(cfqg, i, j, st) \
  332. for (i = 0; i <= IDLE_WORKLOAD; i++) \
  333. for (j = 0, st = i < IDLE_WORKLOAD ? &cfqg->service_trees[i][j]\
  334. : &cfqg->service_tree_idle; \
  335. (i < IDLE_WORKLOAD && j <= SYNC_WORKLOAD) || \
  336. (i == IDLE_WORKLOAD && j == 0); \
  337. j++, st = i < IDLE_WORKLOAD ? \
  338. &cfqg->service_trees[i][j]: NULL) \
  339. static inline bool iops_mode(struct cfq_data *cfqd)
  340. {
  341. /*
  342. * If we are not idling on queues and it is a NCQ drive, parallel
  343. * execution of requests is on and measuring time is not possible
  344. * in most of the cases until and unless we drive shallower queue
  345. * depths and that becomes a performance bottleneck. In such cases
  346. * switch to start providing fairness in terms of number of IOs.
  347. */
  348. if (!cfqd->cfq_slice_idle && cfqd->hw_tag)
  349. return true;
  350. else
  351. return false;
  352. }
  353. static inline enum wl_prio_t cfqq_prio(struct cfq_queue *cfqq)
  354. {
  355. if (cfq_class_idle(cfqq))
  356. return IDLE_WORKLOAD;
  357. if (cfq_class_rt(cfqq))
  358. return RT_WORKLOAD;
  359. return BE_WORKLOAD;
  360. }
  361. static enum wl_type_t cfqq_type(struct cfq_queue *cfqq)
  362. {
  363. if (!cfq_cfqq_sync(cfqq))
  364. return ASYNC_WORKLOAD;
  365. if (!cfq_cfqq_idle_window(cfqq))
  366. return SYNC_NOIDLE_WORKLOAD;
  367. return SYNC_WORKLOAD;
  368. }
  369. static inline int cfq_group_busy_queues_wl(enum wl_prio_t wl,
  370. struct cfq_data *cfqd,
  371. struct cfq_group *cfqg)
  372. {
  373. if (wl == IDLE_WORKLOAD)
  374. return cfqg->service_tree_idle.count;
  375. return cfqg->service_trees[wl][ASYNC_WORKLOAD].count
  376. + cfqg->service_trees[wl][SYNC_NOIDLE_WORKLOAD].count
  377. + cfqg->service_trees[wl][SYNC_WORKLOAD].count;
  378. }
  379. static inline int cfqg_busy_async_queues(struct cfq_data *cfqd,
  380. struct cfq_group *cfqg)
  381. {
  382. return cfqg->service_trees[RT_WORKLOAD][ASYNC_WORKLOAD].count
  383. + cfqg->service_trees[BE_WORKLOAD][ASYNC_WORKLOAD].count;
  384. }
  385. static void cfq_dispatch_insert(struct request_queue *, struct request *);
  386. static struct cfq_queue *cfq_get_queue(struct cfq_data *, bool,
  387. struct io_context *, gfp_t);
  388. static struct cfq_io_context *cfq_cic_lookup(struct cfq_data *,
  389. struct io_context *);
  390. static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_context *cic,
  391. bool is_sync)
  392. {
  393. return cic->cfqq[is_sync];
  394. }
  395. static inline void cic_set_cfqq(struct cfq_io_context *cic,
  396. struct cfq_queue *cfqq, bool is_sync)
  397. {
  398. cic->cfqq[is_sync] = cfqq;
  399. }
  400. #define CIC_DEAD_KEY 1ul
  401. #define CIC_DEAD_INDEX_SHIFT 1
  402. static inline void *cfqd_dead_key(struct cfq_data *cfqd)
  403. {
  404. return (void *)(cfqd->cic_index << CIC_DEAD_INDEX_SHIFT | CIC_DEAD_KEY);
  405. }
  406. static inline struct cfq_data *cic_to_cfqd(struct cfq_io_context *cic)
  407. {
  408. struct cfq_data *cfqd = cic->key;
  409. if (unlikely((unsigned long) cfqd & CIC_DEAD_KEY))
  410. return NULL;
  411. return cfqd;
  412. }
  413. /*
  414. * We regard a request as SYNC, if it's either a read or has the SYNC bit
  415. * set (in which case it could also be direct WRITE).
  416. */
  417. static inline bool cfq_bio_sync(struct bio *bio)
  418. {
  419. return bio_data_dir(bio) == READ || (bio->bi_rw & REQ_SYNC);
  420. }
  421. /*
  422. * scheduler run of queue, if there are requests pending and no one in the
  423. * driver that will restart queueing
  424. */
  425. static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
  426. {
  427. if (cfqd->busy_queues) {
  428. cfq_log(cfqd, "schedule dispatch");
  429. kblockd_schedule_work(cfqd->queue, &cfqd->unplug_work);
  430. }
  431. }
  432. static int cfq_queue_empty(struct request_queue *q)
  433. {
  434. struct cfq_data *cfqd = q->elevator->elevator_data;
  435. return !cfqd->rq_queued;
  436. }
  437. /*
  438. * Scale schedule slice based on io priority. Use the sync time slice only
  439. * if a queue is marked sync and has sync io queued. A sync queue with async
  440. * io only, should not get full sync slice length.
  441. */
  442. static inline int cfq_prio_slice(struct cfq_data *cfqd, bool sync,
  443. unsigned short prio)
  444. {
  445. const int base_slice = cfqd->cfq_slice[sync];
  446. WARN_ON(prio >= IOPRIO_BE_NR);
  447. return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
  448. }
  449. static inline int
  450. cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  451. {
  452. return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
  453. }
  454. static inline u64 cfq_scale_slice(unsigned long delta, struct cfq_group *cfqg)
  455. {
  456. u64 d = delta << CFQ_SERVICE_SHIFT;
  457. d = d * BLKIO_WEIGHT_DEFAULT;
  458. do_div(d, cfqg->weight);
  459. return d;
  460. }
  461. static inline u64 max_vdisktime(u64 min_vdisktime, u64 vdisktime)
  462. {
  463. s64 delta = (s64)(vdisktime - min_vdisktime);
  464. if (delta > 0)
  465. min_vdisktime = vdisktime;
  466. return min_vdisktime;
  467. }
  468. static inline u64 min_vdisktime(u64 min_vdisktime, u64 vdisktime)
  469. {
  470. s64 delta = (s64)(vdisktime - min_vdisktime);
  471. if (delta < 0)
  472. min_vdisktime = vdisktime;
  473. return min_vdisktime;
  474. }
  475. static void update_min_vdisktime(struct cfq_rb_root *st)
  476. {
  477. u64 vdisktime = st->min_vdisktime;
  478. struct cfq_group *cfqg;
  479. if (st->left) {
  480. cfqg = rb_entry_cfqg(st->left);
  481. vdisktime = min_vdisktime(vdisktime, cfqg->vdisktime);
  482. }
  483. st->min_vdisktime = max_vdisktime(st->min_vdisktime, vdisktime);
  484. }
  485. /*
  486. * get averaged number of queues of RT/BE priority.
  487. * average is updated, with a formula that gives more weight to higher numbers,
  488. * to quickly follows sudden increases and decrease slowly
  489. */
  490. static inline unsigned cfq_group_get_avg_queues(struct cfq_data *cfqd,
  491. struct cfq_group *cfqg, bool rt)
  492. {
  493. unsigned min_q, max_q;
  494. unsigned mult = cfq_hist_divisor - 1;
  495. unsigned round = cfq_hist_divisor / 2;
  496. unsigned busy = cfq_group_busy_queues_wl(rt, cfqd, cfqg);
  497. min_q = min(cfqg->busy_queues_avg[rt], busy);
  498. max_q = max(cfqg->busy_queues_avg[rt], busy);
  499. cfqg->busy_queues_avg[rt] = (mult * max_q + min_q + round) /
  500. cfq_hist_divisor;
  501. return cfqg->busy_queues_avg[rt];
  502. }
  503. static inline unsigned
  504. cfq_group_slice(struct cfq_data *cfqd, struct cfq_group *cfqg)
  505. {
  506. struct cfq_rb_root *st = &cfqd->grp_service_tree;
  507. return cfq_target_latency * cfqg->weight / st->total_weight;
  508. }
  509. static inline unsigned
  510. cfq_scaled_cfqq_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  511. {
  512. unsigned slice = cfq_prio_to_slice(cfqd, cfqq);
  513. if (cfqd->cfq_latency) {
  514. /*
  515. * interested queues (we consider only the ones with the same
  516. * priority class in the cfq group)
  517. */
  518. unsigned iq = cfq_group_get_avg_queues(cfqd, cfqq->cfqg,
  519. cfq_class_rt(cfqq));
  520. unsigned sync_slice = cfqd->cfq_slice[1];
  521. unsigned expect_latency = sync_slice * iq;
  522. unsigned group_slice = cfq_group_slice(cfqd, cfqq->cfqg);
  523. if (expect_latency > group_slice) {
  524. unsigned base_low_slice = 2 * cfqd->cfq_slice_idle;
  525. /* scale low_slice according to IO priority
  526. * and sync vs async */
  527. unsigned low_slice =
  528. min(slice, base_low_slice * slice / sync_slice);
  529. /* the adapted slice value is scaled to fit all iqs
  530. * into the target latency */
  531. slice = max(slice * group_slice / expect_latency,
  532. low_slice);
  533. }
  534. }
  535. return slice;
  536. }
  537. static inline void
  538. cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  539. {
  540. unsigned slice = cfq_scaled_cfqq_slice(cfqd, cfqq);
  541. cfqq->slice_start = jiffies;
  542. cfqq->slice_end = jiffies + slice;
  543. cfqq->allocated_slice = slice;
  544. cfq_log_cfqq(cfqd, cfqq, "set_slice=%lu", cfqq->slice_end - jiffies);
  545. }
  546. /*
  547. * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
  548. * isn't valid until the first request from the dispatch is activated
  549. * and the slice time set.
  550. */
  551. static inline bool cfq_slice_used(struct cfq_queue *cfqq)
  552. {
  553. if (cfq_cfqq_slice_new(cfqq))
  554. return false;
  555. if (time_before(jiffies, cfqq->slice_end))
  556. return false;
  557. return true;
  558. }
  559. /*
  560. * Lifted from AS - choose which of rq1 and rq2 that is best served now.
  561. * We choose the request that is closest to the head right now. Distance
  562. * behind the head is penalized and only allowed to a certain extent.
  563. */
  564. static struct request *
  565. cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2, sector_t last)
  566. {
  567. sector_t s1, s2, d1 = 0, d2 = 0;
  568. unsigned long back_max;
  569. #define CFQ_RQ1_WRAP 0x01 /* request 1 wraps */
  570. #define CFQ_RQ2_WRAP 0x02 /* request 2 wraps */
  571. unsigned wrap = 0; /* bit mask: requests behind the disk head? */
  572. if (rq1 == NULL || rq1 == rq2)
  573. return rq2;
  574. if (rq2 == NULL)
  575. return rq1;
  576. if (rq_is_sync(rq1) && !rq_is_sync(rq2))
  577. return rq1;
  578. else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
  579. return rq2;
  580. if ((rq1->cmd_flags & REQ_META) && !(rq2->cmd_flags & REQ_META))
  581. return rq1;
  582. else if ((rq2->cmd_flags & REQ_META) &&
  583. !(rq1->cmd_flags & REQ_META))
  584. return rq2;
  585. s1 = blk_rq_pos(rq1);
  586. s2 = blk_rq_pos(rq2);
  587. /*
  588. * by definition, 1KiB is 2 sectors
  589. */
  590. back_max = cfqd->cfq_back_max * 2;
  591. /*
  592. * Strict one way elevator _except_ in the case where we allow
  593. * short backward seeks which are biased as twice the cost of a
  594. * similar forward seek.
  595. */
  596. if (s1 >= last)
  597. d1 = s1 - last;
  598. else if (s1 + back_max >= last)
  599. d1 = (last - s1) * cfqd->cfq_back_penalty;
  600. else
  601. wrap |= CFQ_RQ1_WRAP;
  602. if (s2 >= last)
  603. d2 = s2 - last;
  604. else if (s2 + back_max >= last)
  605. d2 = (last - s2) * cfqd->cfq_back_penalty;
  606. else
  607. wrap |= CFQ_RQ2_WRAP;
  608. /* Found required data */
  609. /*
  610. * By doing switch() on the bit mask "wrap" we avoid having to
  611. * check two variables for all permutations: --> faster!
  612. */
  613. switch (wrap) {
  614. case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
  615. if (d1 < d2)
  616. return rq1;
  617. else if (d2 < d1)
  618. return rq2;
  619. else {
  620. if (s1 >= s2)
  621. return rq1;
  622. else
  623. return rq2;
  624. }
  625. case CFQ_RQ2_WRAP:
  626. return rq1;
  627. case CFQ_RQ1_WRAP:
  628. return rq2;
  629. case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
  630. default:
  631. /*
  632. * Since both rqs are wrapped,
  633. * start with the one that's further behind head
  634. * (--> only *one* back seek required),
  635. * since back seek takes more time than forward.
  636. */
  637. if (s1 <= s2)
  638. return rq1;
  639. else
  640. return rq2;
  641. }
  642. }
  643. /*
  644. * The below is leftmost cache rbtree addon
  645. */
  646. static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
  647. {
  648. /* Service tree is empty */
  649. if (!root->count)
  650. return NULL;
  651. if (!root->left)
  652. root->left = rb_first(&root->rb);
  653. if (root->left)
  654. return rb_entry(root->left, struct cfq_queue, rb_node);
  655. return NULL;
  656. }
  657. static struct cfq_group *cfq_rb_first_group(struct cfq_rb_root *root)
  658. {
  659. if (!root->left)
  660. root->left = rb_first(&root->rb);
  661. if (root->left)
  662. return rb_entry_cfqg(root->left);
  663. return NULL;
  664. }
  665. static void rb_erase_init(struct rb_node *n, struct rb_root *root)
  666. {
  667. rb_erase(n, root);
  668. RB_CLEAR_NODE(n);
  669. }
  670. static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
  671. {
  672. if (root->left == n)
  673. root->left = NULL;
  674. rb_erase_init(n, &root->rb);
  675. --root->count;
  676. }
  677. /*
  678. * would be nice to take fifo expire time into account as well
  679. */
  680. static struct request *
  681. cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  682. struct request *last)
  683. {
  684. struct rb_node *rbnext = rb_next(&last->rb_node);
  685. struct rb_node *rbprev = rb_prev(&last->rb_node);
  686. struct request *next = NULL, *prev = NULL;
  687. BUG_ON(RB_EMPTY_NODE(&last->rb_node));
  688. if (rbprev)
  689. prev = rb_entry_rq(rbprev);
  690. if (rbnext)
  691. next = rb_entry_rq(rbnext);
  692. else {
  693. rbnext = rb_first(&cfqq->sort_list);
  694. if (rbnext && rbnext != &last->rb_node)
  695. next = rb_entry_rq(rbnext);
  696. }
  697. return cfq_choose_req(cfqd, next, prev, blk_rq_pos(last));
  698. }
  699. static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
  700. struct cfq_queue *cfqq)
  701. {
  702. /*
  703. * just an approximation, should be ok.
  704. */
  705. return (cfqq->cfqg->nr_cfqq - 1) * (cfq_prio_slice(cfqd, 1, 0) -
  706. cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
  707. }
  708. static inline s64
  709. cfqg_key(struct cfq_rb_root *st, struct cfq_group *cfqg)
  710. {
  711. return cfqg->vdisktime - st->min_vdisktime;
  712. }
  713. static void
  714. __cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
  715. {
  716. struct rb_node **node = &st->rb.rb_node;
  717. struct rb_node *parent = NULL;
  718. struct cfq_group *__cfqg;
  719. s64 key = cfqg_key(st, cfqg);
  720. int left = 1;
  721. while (*node != NULL) {
  722. parent = *node;
  723. __cfqg = rb_entry_cfqg(parent);
  724. if (key < cfqg_key(st, __cfqg))
  725. node = &parent->rb_left;
  726. else {
  727. node = &parent->rb_right;
  728. left = 0;
  729. }
  730. }
  731. if (left)
  732. st->left = &cfqg->rb_node;
  733. rb_link_node(&cfqg->rb_node, parent, node);
  734. rb_insert_color(&cfqg->rb_node, &st->rb);
  735. }
  736. static void
  737. cfq_group_service_tree_add(struct cfq_data *cfqd, struct cfq_group *cfqg)
  738. {
  739. struct cfq_rb_root *st = &cfqd->grp_service_tree;
  740. struct cfq_group *__cfqg;
  741. struct rb_node *n;
  742. cfqg->nr_cfqq++;
  743. if (!RB_EMPTY_NODE(&cfqg->rb_node))
  744. return;
  745. /*
  746. * Currently put the group at the end. Later implement something
  747. * so that groups get lesser vtime based on their weights, so that
  748. * if group does not loose all if it was not continously backlogged.
  749. */
  750. n = rb_last(&st->rb);
  751. if (n) {
  752. __cfqg = rb_entry_cfqg(n);
  753. cfqg->vdisktime = __cfqg->vdisktime + CFQ_IDLE_DELAY;
  754. } else
  755. cfqg->vdisktime = st->min_vdisktime;
  756. __cfq_group_service_tree_add(st, cfqg);
  757. st->total_weight += cfqg->weight;
  758. }
  759. static void
  760. cfq_group_service_tree_del(struct cfq_data *cfqd, struct cfq_group *cfqg)
  761. {
  762. struct cfq_rb_root *st = &cfqd->grp_service_tree;
  763. BUG_ON(cfqg->nr_cfqq < 1);
  764. cfqg->nr_cfqq--;
  765. /* If there are other cfq queues under this group, don't delete it */
  766. if (cfqg->nr_cfqq)
  767. return;
  768. cfq_log_cfqg(cfqd, cfqg, "del_from_rr group");
  769. st->total_weight -= cfqg->weight;
  770. if (!RB_EMPTY_NODE(&cfqg->rb_node))
  771. cfq_rb_erase(&cfqg->rb_node, st);
  772. cfqg->saved_workload_slice = 0;
  773. cfq_blkiocg_update_dequeue_stats(&cfqg->blkg, 1);
  774. }
  775. static inline unsigned int cfq_cfqq_slice_usage(struct cfq_queue *cfqq)
  776. {
  777. unsigned int slice_used;
  778. /*
  779. * Queue got expired before even a single request completed or
  780. * got expired immediately after first request completion.
  781. */
  782. if (!cfqq->slice_start || cfqq->slice_start == jiffies) {
  783. /*
  784. * Also charge the seek time incurred to the group, otherwise
  785. * if there are mutiple queues in the group, each can dispatch
  786. * a single request on seeky media and cause lots of seek time
  787. * and group will never know it.
  788. */
  789. slice_used = max_t(unsigned, (jiffies - cfqq->dispatch_start),
  790. 1);
  791. } else {
  792. slice_used = jiffies - cfqq->slice_start;
  793. if (slice_used > cfqq->allocated_slice)
  794. slice_used = cfqq->allocated_slice;
  795. }
  796. return slice_used;
  797. }
  798. static void cfq_group_served(struct cfq_data *cfqd, struct cfq_group *cfqg,
  799. struct cfq_queue *cfqq)
  800. {
  801. struct cfq_rb_root *st = &cfqd->grp_service_tree;
  802. unsigned int used_sl, charge;
  803. int nr_sync = cfqg->nr_cfqq - cfqg_busy_async_queues(cfqd, cfqg)
  804. - cfqg->service_tree_idle.count;
  805. BUG_ON(nr_sync < 0);
  806. used_sl = charge = cfq_cfqq_slice_usage(cfqq);
  807. if (iops_mode(cfqd))
  808. charge = cfqq->slice_dispatch;
  809. else if (!cfq_cfqq_sync(cfqq) && !nr_sync)
  810. charge = cfqq->allocated_slice;
  811. /* Can't update vdisktime while group is on service tree */
  812. cfq_rb_erase(&cfqg->rb_node, st);
  813. cfqg->vdisktime += cfq_scale_slice(charge, cfqg);
  814. __cfq_group_service_tree_add(st, cfqg);
  815. /* This group is being expired. Save the context */
  816. if (time_after(cfqd->workload_expires, jiffies)) {
  817. cfqg->saved_workload_slice = cfqd->workload_expires
  818. - jiffies;
  819. cfqg->saved_workload = cfqd->serving_type;
  820. cfqg->saved_serving_prio = cfqd->serving_prio;
  821. } else
  822. cfqg->saved_workload_slice = 0;
  823. cfq_log_cfqg(cfqd, cfqg, "served: vt=%llu min_vt=%llu", cfqg->vdisktime,
  824. st->min_vdisktime);
  825. cfq_log_cfqq(cfqq->cfqd, cfqq, "sl_used=%u disp=%u charge=%u iops=%u"
  826. " sect=%u", used_sl, cfqq->slice_dispatch, charge,
  827. iops_mode(cfqd), cfqq->nr_sectors);
  828. cfq_blkiocg_update_timeslice_used(&cfqg->blkg, used_sl);
  829. cfq_blkiocg_set_start_empty_time(&cfqg->blkg);
  830. }
  831. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  832. static inline struct cfq_group *cfqg_of_blkg(struct blkio_group *blkg)
  833. {
  834. if (blkg)
  835. return container_of(blkg, struct cfq_group, blkg);
  836. return NULL;
  837. }
  838. void cfq_update_blkio_group_weight(void *key, struct blkio_group *blkg,
  839. unsigned int weight)
  840. {
  841. cfqg_of_blkg(blkg)->weight = weight;
  842. }
  843. static struct cfq_group *
  844. cfq_find_alloc_cfqg(struct cfq_data *cfqd, struct cgroup *cgroup, int create)
  845. {
  846. struct blkio_cgroup *blkcg = cgroup_to_blkio_cgroup(cgroup);
  847. struct cfq_group *cfqg = NULL;
  848. void *key = cfqd;
  849. int i, j;
  850. struct cfq_rb_root *st;
  851. struct backing_dev_info *bdi = &cfqd->queue->backing_dev_info;
  852. unsigned int major, minor;
  853. cfqg = cfqg_of_blkg(blkiocg_lookup_group(blkcg, key));
  854. if (cfqg && !cfqg->blkg.dev && bdi->dev && dev_name(bdi->dev)) {
  855. sscanf(dev_name(bdi->dev), "%u:%u", &major, &minor);
  856. cfqg->blkg.dev = MKDEV(major, minor);
  857. goto done;
  858. }
  859. if (cfqg || !create)
  860. goto done;
  861. cfqg = kzalloc_node(sizeof(*cfqg), GFP_ATOMIC, cfqd->queue->node);
  862. if (!cfqg)
  863. goto done;
  864. for_each_cfqg_st(cfqg, i, j, st)
  865. *st = CFQ_RB_ROOT;
  866. RB_CLEAR_NODE(&cfqg->rb_node);
  867. /*
  868. * Take the initial reference that will be released on destroy
  869. * This can be thought of a joint reference by cgroup and
  870. * elevator which will be dropped by either elevator exit
  871. * or cgroup deletion path depending on who is exiting first.
  872. */
  873. cfqg->ref = 1;
  874. /*
  875. * Add group onto cgroup list. It might happen that bdi->dev is
  876. * not initialized yet. Initialize this new group without major
  877. * and minor info and this info will be filled in once a new thread
  878. * comes for IO. See code above.
  879. */
  880. if (bdi->dev) {
  881. sscanf(dev_name(bdi->dev), "%u:%u", &major, &minor);
  882. cfq_blkiocg_add_blkio_group(blkcg, &cfqg->blkg, (void *)cfqd,
  883. MKDEV(major, minor));
  884. } else
  885. cfq_blkiocg_add_blkio_group(blkcg, &cfqg->blkg, (void *)cfqd,
  886. 0);
  887. cfqg->weight = blkcg_get_weight(blkcg, cfqg->blkg.dev);
  888. /* Add group on cfqd list */
  889. hlist_add_head(&cfqg->cfqd_node, &cfqd->cfqg_list);
  890. done:
  891. return cfqg;
  892. }
  893. /*
  894. * Search for the cfq group current task belongs to. If create = 1, then also
  895. * create the cfq group if it does not exist. request_queue lock must be held.
  896. */
  897. static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd, int create)
  898. {
  899. struct cgroup *cgroup;
  900. struct cfq_group *cfqg = NULL;
  901. rcu_read_lock();
  902. cgroup = task_cgroup(current, blkio_subsys_id);
  903. cfqg = cfq_find_alloc_cfqg(cfqd, cgroup, create);
  904. if (!cfqg && create)
  905. cfqg = &cfqd->root_group;
  906. rcu_read_unlock();
  907. return cfqg;
  908. }
  909. static inline struct cfq_group *cfq_ref_get_cfqg(struct cfq_group *cfqg)
  910. {
  911. cfqg->ref++;
  912. return cfqg;
  913. }
  914. static void cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg)
  915. {
  916. /* Currently, all async queues are mapped to root group */
  917. if (!cfq_cfqq_sync(cfqq))
  918. cfqg = &cfqq->cfqd->root_group;
  919. cfqq->cfqg = cfqg;
  920. /* cfqq reference on cfqg */
  921. cfqq->cfqg->ref++;
  922. }
  923. static void cfq_put_cfqg(struct cfq_group *cfqg)
  924. {
  925. struct cfq_rb_root *st;
  926. int i, j;
  927. BUG_ON(cfqg->ref <= 0);
  928. cfqg->ref--;
  929. if (cfqg->ref)
  930. return;
  931. for_each_cfqg_st(cfqg, i, j, st)
  932. BUG_ON(!RB_EMPTY_ROOT(&st->rb));
  933. kfree(cfqg);
  934. }
  935. static void cfq_destroy_cfqg(struct cfq_data *cfqd, struct cfq_group *cfqg)
  936. {
  937. /* Something wrong if we are trying to remove same group twice */
  938. BUG_ON(hlist_unhashed(&cfqg->cfqd_node));
  939. hlist_del_init(&cfqg->cfqd_node);
  940. /*
  941. * Put the reference taken at the time of creation so that when all
  942. * queues are gone, group can be destroyed.
  943. */
  944. cfq_put_cfqg(cfqg);
  945. }
  946. static void cfq_release_cfq_groups(struct cfq_data *cfqd)
  947. {
  948. struct hlist_node *pos, *n;
  949. struct cfq_group *cfqg;
  950. hlist_for_each_entry_safe(cfqg, pos, n, &cfqd->cfqg_list, cfqd_node) {
  951. /*
  952. * If cgroup removal path got to blk_group first and removed
  953. * it from cgroup list, then it will take care of destroying
  954. * cfqg also.
  955. */
  956. if (!cfq_blkiocg_del_blkio_group(&cfqg->blkg))
  957. cfq_destroy_cfqg(cfqd, cfqg);
  958. }
  959. }
  960. /*
  961. * Blk cgroup controller notification saying that blkio_group object is being
  962. * delinked as associated cgroup object is going away. That also means that
  963. * no new IO will come in this group. So get rid of this group as soon as
  964. * any pending IO in the group is finished.
  965. *
  966. * This function is called under rcu_read_lock(). key is the rcu protected
  967. * pointer. That means "key" is a valid cfq_data pointer as long as we are rcu
  968. * read lock.
  969. *
  970. * "key" was fetched from blkio_group under blkio_cgroup->lock. That means
  971. * it should not be NULL as even if elevator was exiting, cgroup deltion
  972. * path got to it first.
  973. */
  974. void cfq_unlink_blkio_group(void *key, struct blkio_group *blkg)
  975. {
  976. unsigned long flags;
  977. struct cfq_data *cfqd = key;
  978. spin_lock_irqsave(cfqd->queue->queue_lock, flags);
  979. cfq_destroy_cfqg(cfqd, cfqg_of_blkg(blkg));
  980. spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
  981. }
  982. #else /* GROUP_IOSCHED */
  983. static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd, int create)
  984. {
  985. return &cfqd->root_group;
  986. }
  987. static inline struct cfq_group *cfq_ref_get_cfqg(struct cfq_group *cfqg)
  988. {
  989. return cfqg;
  990. }
  991. static inline void
  992. cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg) {
  993. cfqq->cfqg = cfqg;
  994. }
  995. static void cfq_release_cfq_groups(struct cfq_data *cfqd) {}
  996. static inline void cfq_put_cfqg(struct cfq_group *cfqg) {}
  997. #endif /* GROUP_IOSCHED */
  998. /*
  999. * The cfqd->service_trees holds all pending cfq_queue's that have
  1000. * requests waiting to be processed. It is sorted in the order that
  1001. * we will service the queues.
  1002. */
  1003. static void cfq_service_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  1004. bool add_front)
  1005. {
  1006. struct rb_node **p, *parent;
  1007. struct cfq_queue *__cfqq;
  1008. unsigned long rb_key;
  1009. struct cfq_rb_root *service_tree;
  1010. int left;
  1011. int new_cfqq = 1;
  1012. int group_changed = 0;
  1013. service_tree = service_tree_for(cfqq->cfqg, cfqq_prio(cfqq),
  1014. cfqq_type(cfqq));
  1015. if (cfq_class_idle(cfqq)) {
  1016. rb_key = CFQ_IDLE_DELAY;
  1017. parent = rb_last(&service_tree->rb);
  1018. if (parent && parent != &cfqq->rb_node) {
  1019. __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
  1020. rb_key += __cfqq->rb_key;
  1021. } else
  1022. rb_key += jiffies;
  1023. } else if (!add_front) {
  1024. /*
  1025. * Get our rb key offset. Subtract any residual slice
  1026. * value carried from last service. A negative resid
  1027. * count indicates slice overrun, and this should position
  1028. * the next service time further away in the tree.
  1029. */
  1030. rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
  1031. rb_key -= cfqq->slice_resid;
  1032. cfqq->slice_resid = 0;
  1033. } else {
  1034. rb_key = -HZ;
  1035. __cfqq = cfq_rb_first(service_tree);
  1036. rb_key += __cfqq ? __cfqq->rb_key : jiffies;
  1037. }
  1038. if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
  1039. new_cfqq = 0;
  1040. /*
  1041. * same position, nothing more to do
  1042. */
  1043. if (rb_key == cfqq->rb_key &&
  1044. cfqq->service_tree == service_tree)
  1045. return;
  1046. cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
  1047. cfqq->service_tree = NULL;
  1048. }
  1049. left = 1;
  1050. parent = NULL;
  1051. cfqq->service_tree = service_tree;
  1052. p = &service_tree->rb.rb_node;
  1053. while (*p) {
  1054. struct rb_node **n;
  1055. parent = *p;
  1056. __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
  1057. /*
  1058. * sort by key, that represents service time.
  1059. */
  1060. if (time_before(rb_key, __cfqq->rb_key))
  1061. n = &(*p)->rb_left;
  1062. else {
  1063. n = &(*p)->rb_right;
  1064. left = 0;
  1065. }
  1066. p = n;
  1067. }
  1068. if (left)
  1069. service_tree->left = &cfqq->rb_node;
  1070. cfqq->rb_key = rb_key;
  1071. rb_link_node(&cfqq->rb_node, parent, p);
  1072. rb_insert_color(&cfqq->rb_node, &service_tree->rb);
  1073. service_tree->count++;
  1074. if ((add_front || !new_cfqq) && !group_changed)
  1075. return;
  1076. cfq_group_service_tree_add(cfqd, cfqq->cfqg);
  1077. }
  1078. static struct cfq_queue *
  1079. cfq_prio_tree_lookup(struct cfq_data *cfqd, struct rb_root *root,
  1080. sector_t sector, struct rb_node **ret_parent,
  1081. struct rb_node ***rb_link)
  1082. {
  1083. struct rb_node **p, *parent;
  1084. struct cfq_queue *cfqq = NULL;
  1085. parent = NULL;
  1086. p = &root->rb_node;
  1087. while (*p) {
  1088. struct rb_node **n;
  1089. parent = *p;
  1090. cfqq = rb_entry(parent, struct cfq_queue, p_node);
  1091. /*
  1092. * Sort strictly based on sector. Smallest to the left,
  1093. * largest to the right.
  1094. */
  1095. if (sector > blk_rq_pos(cfqq->next_rq))
  1096. n = &(*p)->rb_right;
  1097. else if (sector < blk_rq_pos(cfqq->next_rq))
  1098. n = &(*p)->rb_left;
  1099. else
  1100. break;
  1101. p = n;
  1102. cfqq = NULL;
  1103. }
  1104. *ret_parent = parent;
  1105. if (rb_link)
  1106. *rb_link = p;
  1107. return cfqq;
  1108. }
  1109. static void cfq_prio_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  1110. {
  1111. struct rb_node **p, *parent;
  1112. struct cfq_queue *__cfqq;
  1113. if (cfqq->p_root) {
  1114. rb_erase(&cfqq->p_node, cfqq->p_root);
  1115. cfqq->p_root = NULL;
  1116. }
  1117. if (cfq_class_idle(cfqq))
  1118. return;
  1119. if (!cfqq->next_rq)
  1120. return;
  1121. cfqq->p_root = &cfqd->prio_trees[cfqq->org_ioprio];
  1122. __cfqq = cfq_prio_tree_lookup(cfqd, cfqq->p_root,
  1123. blk_rq_pos(cfqq->next_rq), &parent, &p);
  1124. if (!__cfqq) {
  1125. rb_link_node(&cfqq->p_node, parent, p);
  1126. rb_insert_color(&cfqq->p_node, cfqq->p_root);
  1127. } else
  1128. cfqq->p_root = NULL;
  1129. }
  1130. /*
  1131. * Update cfqq's position in the service tree.
  1132. */
  1133. static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  1134. {
  1135. /*
  1136. * Resorting requires the cfqq to be on the RR list already.
  1137. */
  1138. if (cfq_cfqq_on_rr(cfqq)) {
  1139. cfq_service_tree_add(cfqd, cfqq, 0);
  1140. cfq_prio_tree_add(cfqd, cfqq);
  1141. }
  1142. }
  1143. /*
  1144. * add to busy list of queues for service, trying to be fair in ordering
  1145. * the pending list according to last request service
  1146. */
  1147. static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  1148. {
  1149. cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
  1150. BUG_ON(cfq_cfqq_on_rr(cfqq));
  1151. cfq_mark_cfqq_on_rr(cfqq);
  1152. cfqd->busy_queues++;
  1153. if (cfq_cfqq_sync(cfqq))
  1154. cfqd->busy_sync_queues++;
  1155. cfq_resort_rr_list(cfqd, cfqq);
  1156. }
  1157. /*
  1158. * Called when the cfqq no longer has requests pending, remove it from
  1159. * the service tree.
  1160. */
  1161. static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  1162. {
  1163. cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
  1164. BUG_ON(!cfq_cfqq_on_rr(cfqq));
  1165. cfq_clear_cfqq_on_rr(cfqq);
  1166. if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
  1167. cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
  1168. cfqq->service_tree = NULL;
  1169. }
  1170. if (cfqq->p_root) {
  1171. rb_erase(&cfqq->p_node, cfqq->p_root);
  1172. cfqq->p_root = NULL;
  1173. }
  1174. cfq_group_service_tree_del(cfqd, cfqq->cfqg);
  1175. BUG_ON(!cfqd->busy_queues);
  1176. cfqd->busy_queues--;
  1177. if (cfq_cfqq_sync(cfqq))
  1178. cfqd->busy_sync_queues--;
  1179. }
  1180. /*
  1181. * rb tree support functions
  1182. */
  1183. static void cfq_del_rq_rb(struct request *rq)
  1184. {
  1185. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  1186. const int sync = rq_is_sync(rq);
  1187. BUG_ON(!cfqq->queued[sync]);
  1188. cfqq->queued[sync]--;
  1189. elv_rb_del(&cfqq->sort_list, rq);
  1190. if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list)) {
  1191. /*
  1192. * Queue will be deleted from service tree when we actually
  1193. * expire it later. Right now just remove it from prio tree
  1194. * as it is empty.
  1195. */
  1196. if (cfqq->p_root) {
  1197. rb_erase(&cfqq->p_node, cfqq->p_root);
  1198. cfqq->p_root = NULL;
  1199. }
  1200. }
  1201. }
  1202. static void cfq_add_rq_rb(struct request *rq)
  1203. {
  1204. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  1205. struct cfq_data *cfqd = cfqq->cfqd;
  1206. struct request *__alias, *prev;
  1207. cfqq->queued[rq_is_sync(rq)]++;
  1208. /*
  1209. * looks a little odd, but the first insert might return an alias.
  1210. * if that happens, put the alias on the dispatch list
  1211. */
  1212. while ((__alias = elv_rb_add(&cfqq->sort_list, rq)) != NULL)
  1213. cfq_dispatch_insert(cfqd->queue, __alias);
  1214. if (!cfq_cfqq_on_rr(cfqq))
  1215. cfq_add_cfqq_rr(cfqd, cfqq);
  1216. /*
  1217. * check if this request is a better next-serve candidate
  1218. */
  1219. prev = cfqq->next_rq;
  1220. cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq, cfqd->last_position);
  1221. /*
  1222. * adjust priority tree position, if ->next_rq changes
  1223. */
  1224. if (prev != cfqq->next_rq)
  1225. cfq_prio_tree_add(cfqd, cfqq);
  1226. BUG_ON(!cfqq->next_rq);
  1227. }
  1228. static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
  1229. {
  1230. elv_rb_del(&cfqq->sort_list, rq);
  1231. cfqq->queued[rq_is_sync(rq)]--;
  1232. cfq_blkiocg_update_io_remove_stats(&(RQ_CFQG(rq))->blkg,
  1233. rq_data_dir(rq), rq_is_sync(rq));
  1234. cfq_add_rq_rb(rq);
  1235. cfq_blkiocg_update_io_add_stats(&(RQ_CFQG(rq))->blkg,
  1236. &cfqq->cfqd->serving_group->blkg, rq_data_dir(rq),
  1237. rq_is_sync(rq));
  1238. }
  1239. static struct request *
  1240. cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
  1241. {
  1242. struct task_struct *tsk = current;
  1243. struct cfq_io_context *cic;
  1244. struct cfq_queue *cfqq;
  1245. cic = cfq_cic_lookup(cfqd, tsk->io_context);
  1246. if (!cic)
  1247. return NULL;
  1248. cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
  1249. if (cfqq) {
  1250. sector_t sector = bio->bi_sector + bio_sectors(bio);
  1251. return elv_rb_find(&cfqq->sort_list, sector);
  1252. }
  1253. return NULL;
  1254. }
  1255. static void cfq_activate_request(struct request_queue *q, struct request *rq)
  1256. {
  1257. struct cfq_data *cfqd = q->elevator->elevator_data;
  1258. cfqd->rq_in_driver++;
  1259. cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
  1260. cfqd->rq_in_driver);
  1261. cfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
  1262. }
  1263. static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
  1264. {
  1265. struct cfq_data *cfqd = q->elevator->elevator_data;
  1266. WARN_ON(!cfqd->rq_in_driver);
  1267. cfqd->rq_in_driver--;
  1268. cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
  1269. cfqd->rq_in_driver);
  1270. }
  1271. static void cfq_remove_request(struct request *rq)
  1272. {
  1273. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  1274. if (cfqq->next_rq == rq)
  1275. cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
  1276. list_del_init(&rq->queuelist);
  1277. cfq_del_rq_rb(rq);
  1278. cfqq->cfqd->rq_queued--;
  1279. cfq_blkiocg_update_io_remove_stats(&(RQ_CFQG(rq))->blkg,
  1280. rq_data_dir(rq), rq_is_sync(rq));
  1281. if (rq->cmd_flags & REQ_META) {
  1282. WARN_ON(!cfqq->meta_pending);
  1283. cfqq->meta_pending--;
  1284. }
  1285. }
  1286. static int cfq_merge(struct request_queue *q, struct request **req,
  1287. struct bio *bio)
  1288. {
  1289. struct cfq_data *cfqd = q->elevator->elevator_data;
  1290. struct request *__rq;
  1291. __rq = cfq_find_rq_fmerge(cfqd, bio);
  1292. if (__rq && elv_rq_merge_ok(__rq, bio)) {
  1293. *req = __rq;
  1294. return ELEVATOR_FRONT_MERGE;
  1295. }
  1296. return ELEVATOR_NO_MERGE;
  1297. }
  1298. static void cfq_merged_request(struct request_queue *q, struct request *req,
  1299. int type)
  1300. {
  1301. if (type == ELEVATOR_FRONT_MERGE) {
  1302. struct cfq_queue *cfqq = RQ_CFQQ(req);
  1303. cfq_reposition_rq_rb(cfqq, req);
  1304. }
  1305. }
  1306. static void cfq_bio_merged(struct request_queue *q, struct request *req,
  1307. struct bio *bio)
  1308. {
  1309. cfq_blkiocg_update_io_merged_stats(&(RQ_CFQG(req))->blkg,
  1310. bio_data_dir(bio), cfq_bio_sync(bio));
  1311. }
  1312. static void
  1313. cfq_merged_requests(struct request_queue *q, struct request *rq,
  1314. struct request *next)
  1315. {
  1316. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  1317. /*
  1318. * reposition in fifo if next is older than rq
  1319. */
  1320. if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
  1321. time_before(rq_fifo_time(next), rq_fifo_time(rq))) {
  1322. list_move(&rq->queuelist, &next->queuelist);
  1323. rq_set_fifo_time(rq, rq_fifo_time(next));
  1324. }
  1325. if (cfqq->next_rq == next)
  1326. cfqq->next_rq = rq;
  1327. cfq_remove_request(next);
  1328. cfq_blkiocg_update_io_merged_stats(&(RQ_CFQG(rq))->blkg,
  1329. rq_data_dir(next), rq_is_sync(next));
  1330. }
  1331. static int cfq_allow_merge(struct request_queue *q, struct request *rq,
  1332. struct bio *bio)
  1333. {
  1334. struct cfq_data *cfqd = q->elevator->elevator_data;
  1335. struct cfq_io_context *cic;
  1336. struct cfq_queue *cfqq;
  1337. /*
  1338. * Disallow merge of a sync bio into an async request.
  1339. */
  1340. if (cfq_bio_sync(bio) && !rq_is_sync(rq))
  1341. return false;
  1342. /*
  1343. * Lookup the cfqq that this bio will be queued with. Allow
  1344. * merge only if rq is queued there.
  1345. */
  1346. cic = cfq_cic_lookup(cfqd, current->io_context);
  1347. if (!cic)
  1348. return false;
  1349. cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
  1350. return cfqq == RQ_CFQQ(rq);
  1351. }
  1352. static inline void cfq_del_timer(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  1353. {
  1354. del_timer(&cfqd->idle_slice_timer);
  1355. cfq_blkiocg_update_idle_time_stats(&cfqq->cfqg->blkg);
  1356. }
  1357. static void __cfq_set_active_queue(struct cfq_data *cfqd,
  1358. struct cfq_queue *cfqq)
  1359. {
  1360. if (cfqq) {
  1361. cfq_log_cfqq(cfqd, cfqq, "set_active wl_prio:%d wl_type:%d",
  1362. cfqd->serving_prio, cfqd->serving_type);
  1363. cfq_blkiocg_update_avg_queue_size_stats(&cfqq->cfqg->blkg);
  1364. cfqq->slice_start = 0;
  1365. cfqq->dispatch_start = jiffies;
  1366. cfqq->allocated_slice = 0;
  1367. cfqq->slice_end = 0;
  1368. cfqq->slice_dispatch = 0;
  1369. cfqq->nr_sectors = 0;
  1370. cfq_clear_cfqq_wait_request(cfqq);
  1371. cfq_clear_cfqq_must_dispatch(cfqq);
  1372. cfq_clear_cfqq_must_alloc_slice(cfqq);
  1373. cfq_clear_cfqq_fifo_expire(cfqq);
  1374. cfq_mark_cfqq_slice_new(cfqq);
  1375. cfq_del_timer(cfqd, cfqq);
  1376. }
  1377. cfqd->active_queue = cfqq;
  1378. }
  1379. /*
  1380. * current cfqq expired its slice (or was too idle), select new one
  1381. */
  1382. static void
  1383. __cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  1384. bool timed_out)
  1385. {
  1386. cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);
  1387. if (cfq_cfqq_wait_request(cfqq))
  1388. cfq_del_timer(cfqd, cfqq);
  1389. cfq_clear_cfqq_wait_request(cfqq);
  1390. cfq_clear_cfqq_wait_busy(cfqq);
  1391. /*
  1392. * If this cfqq is shared between multiple processes, check to
  1393. * make sure that those processes are still issuing I/Os within
  1394. * the mean seek distance. If not, it may be time to break the
  1395. * queues apart again.
  1396. */
  1397. if (cfq_cfqq_coop(cfqq) && CFQQ_SEEKY(cfqq))
  1398. cfq_mark_cfqq_split_coop(cfqq);
  1399. /*
  1400. * store what was left of this slice, if the queue idled/timed out
  1401. */
  1402. if (timed_out) {
  1403. if (cfq_cfqq_slice_new(cfqq))
  1404. cfqq->slice_resid = cfq_scaled_cfqq_slice(cfqd, cfqq);
  1405. else
  1406. cfqq->slice_resid = cfqq->slice_end - jiffies;
  1407. cfq_log_cfqq(cfqd, cfqq, "resid=%ld", cfqq->slice_resid);
  1408. }
  1409. cfq_group_served(cfqd, cfqq->cfqg, cfqq);
  1410. if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
  1411. cfq_del_cfqq_rr(cfqd, cfqq);
  1412. cfq_resort_rr_list(cfqd, cfqq);
  1413. if (cfqq == cfqd->active_queue)
  1414. cfqd->active_queue = NULL;
  1415. if (cfqd->active_cic) {
  1416. put_io_context(cfqd->active_cic->ioc);
  1417. cfqd->active_cic = NULL;
  1418. }
  1419. }
  1420. static inline void cfq_slice_expired(struct cfq_data *cfqd, bool timed_out)
  1421. {
  1422. struct cfq_queue *cfqq = cfqd->active_queue;
  1423. if (cfqq)
  1424. __cfq_slice_expired(cfqd, cfqq, timed_out);
  1425. }
  1426. /*
  1427. * Get next queue for service. Unless we have a queue preemption,
  1428. * we'll simply select the first cfqq in the service tree.
  1429. */
  1430. static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
  1431. {
  1432. struct cfq_rb_root *service_tree =
  1433. service_tree_for(cfqd->serving_group, cfqd->serving_prio,
  1434. cfqd->serving_type);
  1435. if (!cfqd->rq_queued)
  1436. return NULL;
  1437. /* There is nothing to dispatch */
  1438. if (!service_tree)
  1439. return NULL;
  1440. if (RB_EMPTY_ROOT(&service_tree->rb))
  1441. return NULL;
  1442. return cfq_rb_first(service_tree);
  1443. }
  1444. static struct cfq_queue *cfq_get_next_queue_forced(struct cfq_data *cfqd)
  1445. {
  1446. struct cfq_group *cfqg;
  1447. struct cfq_queue *cfqq;
  1448. int i, j;
  1449. struct cfq_rb_root *st;
  1450. if (!cfqd->rq_queued)
  1451. return NULL;
  1452. cfqg = cfq_get_next_cfqg(cfqd);
  1453. if (!cfqg)
  1454. return NULL;
  1455. for_each_cfqg_st(cfqg, i, j, st)
  1456. if ((cfqq = cfq_rb_first(st)) != NULL)
  1457. return cfqq;
  1458. return NULL;
  1459. }
  1460. /*
  1461. * Get and set a new active queue for service.
  1462. */
  1463. static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd,
  1464. struct cfq_queue *cfqq)
  1465. {
  1466. if (!cfqq)
  1467. cfqq = cfq_get_next_queue(cfqd);
  1468. __cfq_set_active_queue(cfqd, cfqq);
  1469. return cfqq;
  1470. }
  1471. static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
  1472. struct request *rq)
  1473. {
  1474. if (blk_rq_pos(rq) >= cfqd->last_position)
  1475. return blk_rq_pos(rq) - cfqd->last_position;
  1476. else
  1477. return cfqd->last_position - blk_rq_pos(rq);
  1478. }
  1479. static inline int cfq_rq_close(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  1480. struct request *rq)
  1481. {
  1482. return cfq_dist_from_last(cfqd, rq) <= CFQQ_CLOSE_THR;
  1483. }
  1484. static struct cfq_queue *cfqq_close(struct cfq_data *cfqd,
  1485. struct cfq_queue *cur_cfqq)
  1486. {
  1487. struct rb_root *root = &cfqd->prio_trees[cur_cfqq->org_ioprio];
  1488. struct rb_node *parent, *node;
  1489. struct cfq_queue *__cfqq;
  1490. sector_t sector = cfqd->last_position;
  1491. if (RB_EMPTY_ROOT(root))
  1492. return NULL;
  1493. /*
  1494. * First, if we find a request starting at the end of the last
  1495. * request, choose it.
  1496. */
  1497. __cfqq = cfq_prio_tree_lookup(cfqd, root, sector, &parent, NULL);
  1498. if (__cfqq)
  1499. return __cfqq;
  1500. /*
  1501. * If the exact sector wasn't found, the parent of the NULL leaf
  1502. * will contain the closest sector.
  1503. */
  1504. __cfqq = rb_entry(parent, struct cfq_queue, p_node);
  1505. if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
  1506. return __cfqq;
  1507. if (blk_rq_pos(__cfqq->next_rq) < sector)
  1508. node = rb_next(&__cfqq->p_node);
  1509. else
  1510. node = rb_prev(&__cfqq->p_node);
  1511. if (!node)
  1512. return NULL;
  1513. __cfqq = rb_entry(node, struct cfq_queue, p_node);
  1514. if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
  1515. return __cfqq;
  1516. return NULL;
  1517. }
  1518. /*
  1519. * cfqd - obvious
  1520. * cur_cfqq - passed in so that we don't decide that the current queue is
  1521. * closely cooperating with itself.
  1522. *
  1523. * So, basically we're assuming that that cur_cfqq has dispatched at least
  1524. * one request, and that cfqd->last_position reflects a position on the disk
  1525. * associated with the I/O issued by cur_cfqq. I'm not sure this is a valid
  1526. * assumption.
  1527. */
  1528. static struct cfq_queue *cfq_close_cooperator(struct cfq_data *cfqd,
  1529. struct cfq_queue *cur_cfqq)
  1530. {
  1531. struct cfq_queue *cfqq;
  1532. if (cfq_class_idle(cur_cfqq))
  1533. return NULL;
  1534. if (!cfq_cfqq_sync(cur_cfqq))
  1535. return NULL;
  1536. if (CFQQ_SEEKY(cur_cfqq))
  1537. return NULL;
  1538. /*
  1539. * Don't search priority tree if it's the only queue in the group.
  1540. */
  1541. if (cur_cfqq->cfqg->nr_cfqq == 1)
  1542. return NULL;
  1543. /*
  1544. * We should notice if some of the queues are cooperating, eg
  1545. * working closely on the same area of the disk. In that case,
  1546. * we can group them together and don't waste time idling.
  1547. */
  1548. cfqq = cfqq_close(cfqd, cur_cfqq);
  1549. if (!cfqq)
  1550. return NULL;
  1551. /* If new queue belongs to different cfq_group, don't choose it */
  1552. if (cur_cfqq->cfqg != cfqq->cfqg)
  1553. return NULL;
  1554. /*
  1555. * It only makes sense to merge sync queues.
  1556. */
  1557. if (!cfq_cfqq_sync(cfqq))
  1558. return NULL;
  1559. if (CFQQ_SEEKY(cfqq))
  1560. return NULL;
  1561. /*
  1562. * Do not merge queues of different priority classes
  1563. */
  1564. if (cfq_class_rt(cfqq) != cfq_class_rt(cur_cfqq))
  1565. return NULL;
  1566. return cfqq;
  1567. }
  1568. /*
  1569. * Determine whether we should enforce idle window for this queue.
  1570. */
  1571. static bool cfq_should_idle(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  1572. {
  1573. enum wl_prio_t prio = cfqq_prio(cfqq);
  1574. struct cfq_rb_root *service_tree = cfqq->service_tree;
  1575. BUG_ON(!service_tree);
  1576. BUG_ON(!service_tree->count);
  1577. if (!cfqd->cfq_slice_idle)
  1578. return false;
  1579. /* We never do for idle class queues. */
  1580. if (prio == IDLE_WORKLOAD)
  1581. return false;
  1582. /* We do for queues that were marked with idle window flag. */
  1583. if (cfq_cfqq_idle_window(cfqq) &&
  1584. !(blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag))
  1585. return true;
  1586. /*
  1587. * Otherwise, we do only if they are the last ones
  1588. * in their service tree.
  1589. */
  1590. if (service_tree->count == 1 && cfq_cfqq_sync(cfqq))
  1591. return true;
  1592. cfq_log_cfqq(cfqd, cfqq, "Not idling. st->count:%d",
  1593. service_tree->count);
  1594. return false;
  1595. }
  1596. static void cfq_arm_slice_timer(struct cfq_data *cfqd)
  1597. {
  1598. struct cfq_queue *cfqq = cfqd->active_queue;
  1599. struct cfq_io_context *cic;
  1600. unsigned long sl, group_idle = 0;
  1601. /*
  1602. * SSD device without seek penalty, disable idling. But only do so
  1603. * for devices that support queuing, otherwise we still have a problem
  1604. * with sync vs async workloads.
  1605. */
  1606. if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag)
  1607. return;
  1608. WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
  1609. WARN_ON(cfq_cfqq_slice_new(cfqq));
  1610. /*
  1611. * idle is disabled, either manually or by past process history
  1612. */
  1613. if (!cfq_should_idle(cfqd, cfqq)) {
  1614. /* no queue idling. Check for group idling */
  1615. if (cfqd->cfq_group_idle)
  1616. group_idle = cfqd->cfq_group_idle;
  1617. else
  1618. return;
  1619. }
  1620. /*
  1621. * still active requests from this queue, don't idle
  1622. */
  1623. if (cfqq->dispatched)
  1624. return;
  1625. /*
  1626. * task has exited, don't wait
  1627. */
  1628. cic = cfqd->active_cic;
  1629. if (!cic || !atomic_read(&cic->ioc->nr_tasks))
  1630. return;
  1631. /*
  1632. * If our average think time is larger than the remaining time
  1633. * slice, then don't idle. This avoids overrunning the allotted
  1634. * time slice.
  1635. */
  1636. if (sample_valid(cic->ttime_samples) &&
  1637. (cfqq->slice_end - jiffies < cic->ttime_mean)) {
  1638. cfq_log_cfqq(cfqd, cfqq, "Not idling. think_time:%d",
  1639. cic->ttime_mean);
  1640. return;
  1641. }
  1642. /* There are other queues in the group, don't do group idle */
  1643. if (group_idle && cfqq->cfqg->nr_cfqq > 1)
  1644. return;
  1645. cfq_mark_cfqq_wait_request(cfqq);
  1646. if (group_idle)
  1647. sl = cfqd->cfq_group_idle;
  1648. else
  1649. sl = cfqd->cfq_slice_idle;
  1650. mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
  1651. cfq_blkiocg_update_set_idle_time_stats(&cfqq->cfqg->blkg);
  1652. cfq_log_cfqq(cfqd, cfqq, "arm_idle: %lu group_idle: %d", sl,
  1653. group_idle ? 1 : 0);
  1654. }
  1655. /*
  1656. * Move request from internal lists to the request queue dispatch list.
  1657. */
  1658. static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
  1659. {
  1660. struct cfq_data *cfqd = q->elevator->elevator_data;
  1661. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  1662. cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");
  1663. cfqq->next_rq = cfq_find_next_rq(cfqd, cfqq, rq);
  1664. cfq_remove_request(rq);
  1665. cfqq->dispatched++;
  1666. (RQ_CFQG(rq))->dispatched++;
  1667. elv_dispatch_sort(q, rq);
  1668. cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]++;
  1669. cfqq->nr_sectors += blk_rq_sectors(rq);
  1670. cfq_blkiocg_update_dispatch_stats(&cfqq->cfqg->blkg, blk_rq_bytes(rq),
  1671. rq_data_dir(rq), rq_is_sync(rq));
  1672. }
  1673. /*
  1674. * return expired entry, or NULL to just start from scratch in rbtree
  1675. */
  1676. static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
  1677. {
  1678. struct request *rq = NULL;
  1679. if (cfq_cfqq_fifo_expire(cfqq))
  1680. return NULL;
  1681. cfq_mark_cfqq_fifo_expire(cfqq);
  1682. if (list_empty(&cfqq->fifo))
  1683. return NULL;
  1684. rq = rq_entry_fifo(cfqq->fifo.next);
  1685. if (time_before(jiffies, rq_fifo_time(rq)))
  1686. rq = NULL;
  1687. cfq_log_cfqq(cfqq->cfqd, cfqq, "fifo=%p", rq);
  1688. return rq;
  1689. }
  1690. static inline int
  1691. cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  1692. {
  1693. const int base_rq = cfqd->cfq_slice_async_rq;
  1694. WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
  1695. return 2 * (base_rq + base_rq * (CFQ_PRIO_LISTS - 1 - cfqq->ioprio));
  1696. }
  1697. /*
  1698. * Must be called with the queue_lock held.
  1699. */
  1700. static int cfqq_process_refs(struct cfq_queue *cfqq)
  1701. {
  1702. int process_refs, io_refs;
  1703. io_refs = cfqq->allocated[READ] + cfqq->allocated[WRITE];
  1704. process_refs = cfqq->ref - io_refs;
  1705. BUG_ON(process_refs < 0);
  1706. return process_refs;
  1707. }
  1708. static void cfq_setup_merge(struct cfq_queue *cfqq, struct cfq_queue *new_cfqq)
  1709. {
  1710. int process_refs, new_process_refs;
  1711. struct cfq_queue *__cfqq;
  1712. /*
  1713. * If there are no process references on the new_cfqq, then it is
  1714. * unsafe to follow the ->new_cfqq chain as other cfqq's in the
  1715. * chain may have dropped their last reference (not just their
  1716. * last process reference).
  1717. */
  1718. if (!cfqq_process_refs(new_cfqq))
  1719. return;
  1720. /* Avoid a circular list and skip interim queue merges */
  1721. while ((__cfqq = new_cfqq->new_cfqq)) {
  1722. if (__cfqq == cfqq)
  1723. return;
  1724. new_cfqq = __cfqq;
  1725. }
  1726. process_refs = cfqq_process_refs(cfqq);
  1727. new_process_refs = cfqq_process_refs(new_cfqq);
  1728. /*
  1729. * If the process for the cfqq has gone away, there is no
  1730. * sense in merging the queues.
  1731. */
  1732. if (process_refs == 0 || new_process_refs == 0)
  1733. return;
  1734. /*
  1735. * Merge in the direction of the lesser amount of work.
  1736. */
  1737. if (new_process_refs >= process_refs) {
  1738. cfqq->new_cfqq = new_cfqq;
  1739. new_cfqq->ref += process_refs;
  1740. } else {
  1741. new_cfqq->new_cfqq = cfqq;
  1742. cfqq->ref += new_process_refs;
  1743. }
  1744. }
  1745. static enum wl_type_t cfq_choose_wl(struct cfq_data *cfqd,
  1746. struct cfq_group *cfqg, enum wl_prio_t prio)
  1747. {
  1748. struct cfq_queue *queue;
  1749. int i;
  1750. bool key_valid = false;
  1751. unsigned long lowest_key = 0;
  1752. enum wl_type_t cur_best = SYNC_NOIDLE_WORKLOAD;
  1753. for (i = 0; i <= SYNC_WORKLOAD; ++i) {
  1754. /* select the one with lowest rb_key */
  1755. queue = cfq_rb_first(service_tree_for(cfqg, prio, i));
  1756. if (queue &&
  1757. (!key_valid || time_before(queue->rb_key, lowest_key))) {
  1758. lowest_key = queue->rb_key;
  1759. cur_best = i;
  1760. key_valid = true;
  1761. }
  1762. }
  1763. return cur_best;
  1764. }
  1765. static void choose_service_tree(struct cfq_data *cfqd, struct cfq_group *cfqg)
  1766. {
  1767. unsigned slice;
  1768. unsigned count;
  1769. struct cfq_rb_root *st;
  1770. unsigned group_slice;
  1771. enum wl_prio_t original_prio = cfqd->serving_prio;
  1772. /* Choose next priority. RT > BE > IDLE */
  1773. if (cfq_group_busy_queues_wl(RT_WORKLOAD, cfqd, cfqg))
  1774. cfqd->serving_prio = RT_WORKLOAD;
  1775. else if (cfq_group_busy_queues_wl(BE_WORKLOAD, cfqd, cfqg))
  1776. cfqd->serving_prio = BE_WORKLOAD;
  1777. else {
  1778. cfqd->serving_prio = IDLE_WORKLOAD;
  1779. cfqd->workload_expires = jiffies + 1;
  1780. return;
  1781. }
  1782. if (original_prio != cfqd->serving_prio)
  1783. goto new_workload;
  1784. /*
  1785. * For RT and BE, we have to choose also the type
  1786. * (SYNC, SYNC_NOIDLE, ASYNC), and to compute a workload
  1787. * expiration time
  1788. */
  1789. st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type);
  1790. count = st->count;
  1791. /*
  1792. * check workload expiration, and that we still have other queues ready
  1793. */
  1794. if (count && !time_after(jiffies, cfqd->workload_expires))
  1795. return;
  1796. new_workload:
  1797. /* otherwise select new workload type */
  1798. cfqd->serving_type =
  1799. cfq_choose_wl(cfqd, cfqg, cfqd->serving_prio);
  1800. st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type);
  1801. count = st->count;
  1802. /*
  1803. * the workload slice is computed as a fraction of target latency
  1804. * proportional to the number of queues in that workload, over
  1805. * all the queues in the same priority class
  1806. */
  1807. group_slice = cfq_group_slice(cfqd, cfqg);
  1808. slice = group_slice * count /
  1809. max_t(unsigned, cfqg->busy_queues_avg[cfqd->serving_prio],
  1810. cfq_group_busy_queues_wl(cfqd->serving_prio, cfqd, cfqg));
  1811. if (cfqd->serving_type == ASYNC_WORKLOAD) {
  1812. unsigned int tmp;
  1813. /*
  1814. * Async queues are currently system wide. Just taking
  1815. * proportion of queues with-in same group will lead to higher
  1816. * async ratio system wide as generally root group is going
  1817. * to have higher weight. A more accurate thing would be to
  1818. * calculate system wide asnc/sync ratio.
  1819. */
  1820. tmp = cfq_target_latency * cfqg_busy_async_queues(cfqd, cfqg);
  1821. tmp = tmp/cfqd->busy_queues;
  1822. slice = min_t(unsigned, slice, tmp);
  1823. /* async workload slice is scaled down according to
  1824. * the sync/async slice ratio. */
  1825. slice = slice * cfqd->cfq_slice[0] / cfqd->cfq_slice[1];
  1826. } else
  1827. /* sync workload slice is at least 2 * cfq_slice_idle */
  1828. slice = max(slice, 2 * cfqd->cfq_slice_idle);
  1829. slice = max_t(unsigned, slice, CFQ_MIN_TT);
  1830. cfq_log(cfqd, "workload slice:%d", slice);
  1831. cfqd->workload_expires = jiffies + slice;
  1832. }
  1833. static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd)
  1834. {
  1835. struct cfq_rb_root *st = &cfqd->grp_service_tree;
  1836. struct cfq_group *cfqg;
  1837. if (RB_EMPTY_ROOT(&st->rb))
  1838. return NULL;
  1839. cfqg = cfq_rb_first_group(st);
  1840. update_min_vdisktime(st);
  1841. return cfqg;
  1842. }
  1843. static void cfq_choose_cfqg(struct cfq_data *cfqd)
  1844. {
  1845. struct cfq_group *cfqg = cfq_get_next_cfqg(cfqd);
  1846. cfqd->serving_group = cfqg;
  1847. /* Restore the workload type data */
  1848. if (cfqg->saved_workload_slice) {
  1849. cfqd->workload_expires = jiffies + cfqg->saved_workload_slice;
  1850. cfqd->serving_type = cfqg->saved_workload;
  1851. cfqd->serving_prio = cfqg->saved_serving_prio;
  1852. } else
  1853. cfqd->workload_expires = jiffies - 1;
  1854. choose_service_tree(cfqd, cfqg);
  1855. }
  1856. /*
  1857. * Select a queue for service. If we have a current active queue,
  1858. * check whether to continue servicing it, or retrieve and set a new one.
  1859. */
  1860. static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
  1861. {
  1862. struct cfq_queue *cfqq, *new_cfqq = NULL;
  1863. cfqq = cfqd->active_queue;
  1864. if (!cfqq)
  1865. goto new_queue;
  1866. if (!cfqd->rq_queued)
  1867. return NULL;
  1868. /*
  1869. * We were waiting for group to get backlogged. Expire the queue
  1870. */
  1871. if (cfq_cfqq_wait_busy(cfqq) && !RB_EMPTY_ROOT(&cfqq->sort_list))
  1872. goto expire;
  1873. /*
  1874. * The active queue has run out of time, expire it and select new.
  1875. */
  1876. if (cfq_slice_used(cfqq) && !cfq_cfqq_must_dispatch(cfqq)) {
  1877. /*
  1878. * If slice had not expired at the completion of last request
  1879. * we might not have turned on wait_busy flag. Don't expire
  1880. * the queue yet. Allow the group to get backlogged.
  1881. *
  1882. * The very fact that we have used the slice, that means we
  1883. * have been idling all along on this queue and it should be
  1884. * ok to wait for this request to complete.
  1885. */
  1886. if (cfqq->cfqg->nr_cfqq == 1 && RB_EMPTY_ROOT(&cfqq->sort_list)
  1887. && cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
  1888. cfqq = NULL;
  1889. goto keep_queue;
  1890. } else
  1891. goto check_group_idle;
  1892. }
  1893. /*
  1894. * The active queue has requests and isn't expired, allow it to
  1895. * dispatch.
  1896. */
  1897. if (!RB_EMPTY_ROOT(&cfqq->sort_list))
  1898. goto keep_queue;
  1899. /*
  1900. * If another queue has a request waiting within our mean seek
  1901. * distance, let it run. The expire code will check for close
  1902. * cooperators and put the close queue at the front of the service
  1903. * tree. If possible, merge the expiring queue with the new cfqq.
  1904. */
  1905. new_cfqq = cfq_close_cooperator(cfqd, cfqq);
  1906. if (new_cfqq) {
  1907. if (!cfqq->new_cfqq)
  1908. cfq_setup_merge(cfqq, new_cfqq);
  1909. goto expire;
  1910. }
  1911. /*
  1912. * No requests pending. If the active queue still has requests in
  1913. * flight or is idling for a new request, allow either of these
  1914. * conditions to happen (or time out) before selecting a new queue.
  1915. */
  1916. if (timer_pending(&cfqd->idle_slice_timer)) {
  1917. cfqq = NULL;
  1918. goto keep_queue;
  1919. }
  1920. /*
  1921. * This is a deep seek queue, but the device is much faster than
  1922. * the queue can deliver, don't idle
  1923. **/
  1924. if (CFQQ_SEEKY(cfqq) && cfq_cfqq_idle_window(cfqq) &&
  1925. (cfq_cfqq_slice_new(cfqq) ||
  1926. (cfqq->slice_end - jiffies > jiffies - cfqq->slice_start))) {
  1927. cfq_clear_cfqq_deep(cfqq);
  1928. cfq_clear_cfqq_idle_window(cfqq);
  1929. }
  1930. if (cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
  1931. cfqq = NULL;
  1932. goto keep_queue;
  1933. }
  1934. /*
  1935. * If group idle is enabled and there are requests dispatched from
  1936. * this group, wait for requests to complete.
  1937. */
  1938. check_group_idle:
  1939. if (cfqd->cfq_group_idle && cfqq->cfqg->nr_cfqq == 1
  1940. && cfqq->cfqg->dispatched) {
  1941. cfqq = NULL;
  1942. goto keep_queue;
  1943. }
  1944. expire:
  1945. cfq_slice_expired(cfqd, 0);
  1946. new_queue:
  1947. /*
  1948. * Current queue expired. Check if we have to switch to a new
  1949. * service tree
  1950. */
  1951. if (!new_cfqq)
  1952. cfq_choose_cfqg(cfqd);
  1953. cfqq = cfq_set_active_queue(cfqd, new_cfqq);
  1954. keep_queue:
  1955. return cfqq;
  1956. }
  1957. static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
  1958. {
  1959. int dispatched = 0;
  1960. while (cfqq->next_rq) {
  1961. cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
  1962. dispatched++;
  1963. }
  1964. BUG_ON(!list_empty(&cfqq->fifo));
  1965. /* By default cfqq is not expired if it is empty. Do it explicitly */
  1966. __cfq_slice_expired(cfqq->cfqd, cfqq, 0);
  1967. return dispatched;
  1968. }
  1969. /*
  1970. * Drain our current requests. Used for barriers and when switching
  1971. * io schedulers on-the-fly.
  1972. */
  1973. static int cfq_forced_dispatch(struct cfq_data *cfqd)
  1974. {
  1975. struct cfq_queue *cfqq;
  1976. int dispatched = 0;
  1977. /* Expire the timeslice of the current active queue first */
  1978. cfq_slice_expired(cfqd, 0);
  1979. while ((cfqq = cfq_get_next_queue_forced(cfqd)) != NULL) {
  1980. __cfq_set_active_queue(cfqd, cfqq);
  1981. dispatched += __cfq_forced_dispatch_cfqq(cfqq);
  1982. }
  1983. BUG_ON(cfqd->busy_queues);
  1984. cfq_log(cfqd, "forced_dispatch=%d", dispatched);
  1985. return dispatched;
  1986. }
  1987. static inline bool cfq_slice_used_soon(struct cfq_data *cfqd,
  1988. struct cfq_queue *cfqq)
  1989. {
  1990. /* the queue hasn't finished any request, can't estimate */
  1991. if (cfq_cfqq_slice_new(cfqq))
  1992. return true;
  1993. if (time_after(jiffies + cfqd->cfq_slice_idle * cfqq->dispatched,
  1994. cfqq->slice_end))
  1995. return true;
  1996. return false;
  1997. }
  1998. static bool cfq_may_dispatch(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  1999. {
  2000. unsigned int max_dispatch;
  2001. /*
  2002. * Drain async requests before we start sync IO
  2003. */
  2004. if (cfq_should_idle(cfqd, cfqq) && cfqd->rq_in_flight[BLK_RW_ASYNC])
  2005. return false;
  2006. /*
  2007. * If this is an async queue and we have sync IO in flight, let it wait
  2008. */
  2009. if (cfqd->rq_in_flight[BLK_RW_SYNC] && !cfq_cfqq_sync(cfqq))
  2010. return false;
  2011. max_dispatch = max_t(unsigned int, cfqd->cfq_quantum / 2, 1);
  2012. if (cfq_class_idle(cfqq))
  2013. max_dispatch = 1;
  2014. /*
  2015. * Does this cfqq already have too much IO in flight?
  2016. */
  2017. if (cfqq->dispatched >= max_dispatch) {
  2018. bool promote_sync = false;
  2019. /*
  2020. * idle queue must always only have a single IO in flight
  2021. */
  2022. if (cfq_class_idle(cfqq))
  2023. return false;
  2024. /*
  2025. * If there is only one sync queue, and its think time is
  2026. * small, we can ignore async queue here and give the sync
  2027. * queue no dispatch limit. The reason is a sync queue can
  2028. * preempt async queue, limiting the sync queue doesn't make
  2029. * sense. This is useful for aiostress test.
  2030. */
  2031. if (cfq_cfqq_sync(cfqq) && cfqd->busy_sync_queues == 1) {
  2032. struct cfq_io_context *cic = RQ_CIC(cfqq->next_rq);
  2033. if (sample_valid(cic->ttime_samples) &&
  2034. cic->ttime_mean < cfqd->cfq_slice_idle)
  2035. promote_sync = true;
  2036. }
  2037. /*
  2038. * We have other queues, don't allow more IO from this one
  2039. */
  2040. if (cfqd->busy_queues > 1 && cfq_slice_used_soon(cfqd, cfqq) &&
  2041. !promote_sync)
  2042. return false;
  2043. /*
  2044. * Sole queue user, no limit
  2045. */
  2046. if (cfqd->busy_queues == 1 || promote_sync)
  2047. max_dispatch = -1;
  2048. else
  2049. /*
  2050. * Normally we start throttling cfqq when cfq_quantum/2
  2051. * requests have been dispatched. But we can drive
  2052. * deeper queue depths at the beginning of slice
  2053. * subjected to upper limit of cfq_quantum.
  2054. * */
  2055. max_dispatch = cfqd->cfq_quantum;
  2056. }
  2057. /*
  2058. * Async queues must wait a bit before being allowed dispatch.
  2059. * We also ramp up the dispatch depth gradually for async IO,
  2060. * based on the last sync IO we serviced
  2061. */
  2062. if (!cfq_cfqq_sync(cfqq) && cfqd->cfq_latency) {
  2063. unsigned long last_sync = jiffies - cfqd->last_delayed_sync;
  2064. unsigned int depth;
  2065. depth = last_sync / cfqd->cfq_slice[1];
  2066. if (!depth && !cfqq->dispatched)
  2067. depth = 1;
  2068. if (depth < max_dispatch)
  2069. max_dispatch = depth;
  2070. }
  2071. /*
  2072. * If we're below the current max, allow a dispatch
  2073. */
  2074. return cfqq->dispatched < max_dispatch;
  2075. }
  2076. /*
  2077. * Dispatch a request from cfqq, moving them to the request queue
  2078. * dispatch list.
  2079. */
  2080. static bool cfq_dispatch_request(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  2081. {
  2082. struct request *rq;
  2083. BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
  2084. if (!cfq_may_dispatch(cfqd, cfqq))
  2085. return false;
  2086. /*
  2087. * follow expired path, else get first next available
  2088. */
  2089. rq = cfq_check_fifo(cfqq);
  2090. if (!rq)
  2091. rq = cfqq->next_rq;
  2092. /*
  2093. * insert request into driver dispatch list
  2094. */
  2095. cfq_dispatch_insert(cfqd->queue, rq);
  2096. if (!cfqd->active_cic) {
  2097. struct cfq_io_context *cic = RQ_CIC(rq);
  2098. atomic_long_inc(&cic->ioc->refcount);
  2099. cfqd->active_cic = cic;
  2100. }
  2101. return true;
  2102. }
  2103. /*
  2104. * Find the cfqq that we need to service and move a request from that to the
  2105. * dispatch list
  2106. */
  2107. static int cfq_dispatch_requests(struct request_queue *q, int force)
  2108. {
  2109. struct cfq_data *cfqd = q->elevator->elevator_data;
  2110. struct cfq_queue *cfqq;
  2111. if (!cfqd->busy_queues)
  2112. return 0;
  2113. if (unlikely(force))
  2114. return cfq_forced_dispatch(cfqd);
  2115. cfqq = cfq_select_queue(cfqd);
  2116. if (!cfqq)
  2117. return 0;
  2118. /*
  2119. * Dispatch a request from this cfqq, if it is allowed
  2120. */
  2121. if (!cfq_dispatch_request(cfqd, cfqq))
  2122. return 0;
  2123. cfqq->slice_dispatch++;
  2124. cfq_clear_cfqq_must_dispatch(cfqq);
  2125. /*
  2126. * expire an async queue immediately if it has used up its slice. idle
  2127. * queue always expire after 1 dispatch round.
  2128. */
  2129. if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
  2130. cfqq->slice_dispatch >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
  2131. cfq_class_idle(cfqq))) {
  2132. cfqq->slice_end = jiffies + 1;
  2133. cfq_slice_expired(cfqd, 0);
  2134. }
  2135. cfq_log_cfqq(cfqd, cfqq, "dispatched a request");
  2136. return 1;
  2137. }
  2138. /*
  2139. * task holds one reference to the queue, dropped when task exits. each rq
  2140. * in-flight on this queue also holds a reference, dropped when rq is freed.
  2141. *
  2142. * Each cfq queue took a reference on the parent group. Drop it now.
  2143. * queue lock must be held here.
  2144. */
  2145. static void cfq_put_queue(struct cfq_queue *cfqq)
  2146. {
  2147. struct cfq_data *cfqd = cfqq->cfqd;
  2148. struct cfq_group *cfqg;
  2149. BUG_ON(cfqq->ref <= 0);
  2150. cfqq->ref--;
  2151. if (cfqq->ref)
  2152. return;
  2153. cfq_log_cfqq(cfqd, cfqq, "put_queue");
  2154. BUG_ON(rb_first(&cfqq->sort_list));
  2155. BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
  2156. cfqg = cfqq->cfqg;
  2157. if (unlikely(cfqd->active_queue == cfqq)) {
  2158. __cfq_slice_expired(cfqd, cfqq, 0);
  2159. cfq_schedule_dispatch(cfqd);
  2160. }
  2161. BUG_ON(cfq_cfqq_on_rr(cfqq));
  2162. kmem_cache_free(cfq_pool, cfqq);
  2163. cfq_put_cfqg(cfqg);
  2164. }
  2165. /*
  2166. * Must always be called with the rcu_read_lock() held
  2167. */
  2168. static void
  2169. __call_for_each_cic(struct io_context *ioc,
  2170. void (*func)(struct io_context *, struct cfq_io_context *))
  2171. {
  2172. struct cfq_io_context *cic;
  2173. struct hlist_node *n;
  2174. hlist_for_each_entry_rcu(cic, n, &ioc->cic_list, cic_list)
  2175. func(ioc, cic);
  2176. }
  2177. /*
  2178. * Call func for each cic attached to this ioc.
  2179. */
  2180. static void
  2181. call_for_each_cic(struct io_context *ioc,
  2182. void (*func)(struct io_context *, struct cfq_io_context *))
  2183. {
  2184. rcu_read_lock();
  2185. __call_for_each_cic(ioc, func);
  2186. rcu_read_unlock();
  2187. }
  2188. static void cfq_cic_free_rcu(struct rcu_head *head)
  2189. {
  2190. struct cfq_io_context *cic;
  2191. cic = container_of(head, struct cfq_io_context, rcu_head);
  2192. kmem_cache_free(cfq_ioc_pool, cic);
  2193. elv_ioc_count_dec(cfq_ioc_count);
  2194. if (ioc_gone) {
  2195. /*
  2196. * CFQ scheduler is exiting, grab exit lock and check
  2197. * the pending io context count. If it hits zero,
  2198. * complete ioc_gone and set it back to NULL
  2199. */
  2200. spin_lock(&ioc_gone_lock);
  2201. if (ioc_gone && !elv_ioc_count_read(cfq_ioc_count)) {
  2202. complete(ioc_gone);
  2203. ioc_gone = NULL;
  2204. }
  2205. spin_unlock(&ioc_gone_lock);
  2206. }
  2207. }
  2208. static void cfq_cic_free(struct cfq_io_context *cic)
  2209. {
  2210. call_rcu(&cic->rcu_head, cfq_cic_free_rcu);
  2211. }
  2212. static void cic_free_func(struct io_context *ioc, struct cfq_io_context *cic)
  2213. {
  2214. unsigned long flags;
  2215. unsigned long dead_key = (unsigned long) cic->key;
  2216. BUG_ON(!(dead_key & CIC_DEAD_KEY));
  2217. spin_lock_irqsave(&ioc->lock, flags);
  2218. radix_tree_delete(&ioc->radix_root, dead_key >> CIC_DEAD_INDEX_SHIFT);
  2219. hlist_del_rcu(&cic->cic_list);
  2220. spin_unlock_irqrestore(&ioc->lock, flags);
  2221. cfq_cic_free(cic);
  2222. }
  2223. /*
  2224. * Must be called with rcu_read_lock() held or preemption otherwise disabled.
  2225. * Only two callers of this - ->dtor() which is called with the rcu_read_lock(),
  2226. * and ->trim() which is called with the task lock held
  2227. */
  2228. static void cfq_free_io_context(struct io_context *ioc)
  2229. {
  2230. /*
  2231. * ioc->refcount is zero here, or we are called from elv_unregister(),
  2232. * so no more cic's are allowed to be linked into this ioc. So it
  2233. * should be ok to iterate over the known list, we will see all cic's
  2234. * since no new ones are added.
  2235. */
  2236. __call_for_each_cic(ioc, cic_free_func);
  2237. }
  2238. static void cfq_put_cooperator(struct cfq_queue *cfqq)
  2239. {
  2240. struct cfq_queue *__cfqq, *next;
  2241. /*
  2242. * If this queue was scheduled to merge with another queue, be
  2243. * sure to drop the reference taken on that queue (and others in
  2244. * the merge chain). See cfq_setup_merge and cfq_merge_cfqqs.
  2245. */
  2246. __cfqq = cfqq->new_cfqq;
  2247. while (__cfqq) {
  2248. if (__cfqq == cfqq) {
  2249. WARN(1, "cfqq->new_cfqq loop detected\n");
  2250. break;
  2251. }
  2252. next = __cfqq->new_cfqq;
  2253. cfq_put_queue(__cfqq);
  2254. __cfqq = next;
  2255. }
  2256. }
  2257. static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  2258. {
  2259. if (unlikely(cfqq == cfqd->active_queue)) {
  2260. __cfq_slice_expired(cfqd, cfqq, 0);
  2261. cfq_schedule_dispatch(cfqd);
  2262. }
  2263. cfq_put_cooperator(cfqq);
  2264. cfq_put_queue(cfqq);
  2265. }
  2266. static void __cfq_exit_single_io_context(struct cfq_data *cfqd,
  2267. struct cfq_io_context *cic)
  2268. {
  2269. struct io_context *ioc = cic->ioc;
  2270. list_del_init(&cic->queue_list);
  2271. /*
  2272. * Make sure dead mark is seen for dead queues
  2273. */
  2274. smp_wmb();
  2275. cic->key = cfqd_dead_key(cfqd);
  2276. if (ioc->ioc_data == cic)
  2277. rcu_assign_pointer(ioc->ioc_data, NULL);
  2278. if (cic->cfqq[BLK_RW_ASYNC]) {
  2279. cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_ASYNC]);
  2280. cic->cfqq[BLK_RW_ASYNC] = NULL;
  2281. }
  2282. if (cic->cfqq[BLK_RW_SYNC]) {
  2283. cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_SYNC]);
  2284. cic->cfqq[BLK_RW_SYNC] = NULL;
  2285. }
  2286. }
  2287. static void cfq_exit_single_io_context(struct io_context *ioc,
  2288. struct cfq_io_context *cic)
  2289. {
  2290. struct cfq_data *cfqd = cic_to_cfqd(cic);
  2291. if (cfqd) {
  2292. struct request_queue *q = cfqd->queue;
  2293. unsigned long flags;
  2294. spin_lock_irqsave(q->queue_lock, flags);
  2295. /*
  2296. * Ensure we get a fresh copy of the ->key to prevent
  2297. * race between exiting task and queue
  2298. */
  2299. smp_read_barrier_depends();
  2300. if (cic->key == cfqd)
  2301. __cfq_exit_single_io_context(cfqd, cic);
  2302. spin_unlock_irqrestore(q->queue_lock, flags);
  2303. }
  2304. }
  2305. /*
  2306. * The process that ioc belongs to has exited, we need to clean up
  2307. * and put the internal structures we have that belongs to that process.
  2308. */
  2309. static void cfq_exit_io_context(struct io_context *ioc)
  2310. {
  2311. call_for_each_cic(ioc, cfq_exit_single_io_context);
  2312. }
  2313. static struct cfq_io_context *
  2314. cfq_alloc_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
  2315. {
  2316. struct cfq_io_context *cic;
  2317. cic = kmem_cache_alloc_node(cfq_ioc_pool, gfp_mask | __GFP_ZERO,
  2318. cfqd->queue->node);
  2319. if (cic) {
  2320. cic->last_end_request = jiffies;
  2321. INIT_LIST_HEAD(&cic->queue_list);
  2322. INIT_HLIST_NODE(&cic->cic_list);
  2323. cic->dtor = cfq_free_io_context;
  2324. cic->exit = cfq_exit_io_context;
  2325. elv_ioc_count_inc(cfq_ioc_count);
  2326. }
  2327. return cic;
  2328. }
  2329. static void cfq_init_prio_data(struct cfq_queue *cfqq, struct io_context *ioc)
  2330. {
  2331. struct task_struct *tsk = current;
  2332. int ioprio_class;
  2333. if (!cfq_cfqq_prio_changed(cfqq))
  2334. return;
  2335. ioprio_class = IOPRIO_PRIO_CLASS(ioc->ioprio);
  2336. switch (ioprio_class) {
  2337. default:
  2338. printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
  2339. case IOPRIO_CLASS_NONE:
  2340. /*
  2341. * no prio set, inherit CPU scheduling settings
  2342. */
  2343. cfqq->ioprio = task_nice_ioprio(tsk);
  2344. cfqq->ioprio_class = task_nice_ioclass(tsk);
  2345. break;
  2346. case IOPRIO_CLASS_RT:
  2347. cfqq->ioprio = task_ioprio(ioc);
  2348. cfqq->ioprio_class = IOPRIO_CLASS_RT;
  2349. break;
  2350. case IOPRIO_CLASS_BE:
  2351. cfqq->ioprio = task_ioprio(ioc);
  2352. cfqq->ioprio_class = IOPRIO_CLASS_BE;
  2353. break;
  2354. case IOPRIO_CLASS_IDLE:
  2355. cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
  2356. cfqq->ioprio = 7;
  2357. cfq_clear_cfqq_idle_window(cfqq);
  2358. break;
  2359. }
  2360. /*
  2361. * keep track of original prio settings in case we have to temporarily
  2362. * elevate the priority of this queue
  2363. */
  2364. cfqq->org_ioprio = cfqq->ioprio;
  2365. cfqq->org_ioprio_class = cfqq->ioprio_class;
  2366. cfq_clear_cfqq_prio_changed(cfqq);
  2367. }
  2368. static void changed_ioprio(struct io_context *ioc, struct cfq_io_context *cic)
  2369. {
  2370. struct cfq_data *cfqd = cic_to_cfqd(cic);
  2371. struct cfq_queue *cfqq;
  2372. unsigned long flags;
  2373. if (unlikely(!cfqd))
  2374. return;
  2375. spin_lock_irqsave(cfqd->queue->queue_lock, flags);
  2376. cfqq = cic->cfqq[BLK_RW_ASYNC];
  2377. if (cfqq) {
  2378. struct cfq_queue *new_cfqq;
  2379. new_cfqq = cfq_get_queue(cfqd, BLK_RW_ASYNC, cic->ioc,
  2380. GFP_ATOMIC);
  2381. if (new_cfqq) {
  2382. cic->cfqq[BLK_RW_ASYNC] = new_cfqq;
  2383. cfq_put_queue(cfqq);
  2384. }
  2385. }
  2386. cfqq = cic->cfqq[BLK_RW_SYNC];
  2387. if (cfqq)
  2388. cfq_mark_cfqq_prio_changed(cfqq);
  2389. spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
  2390. }
  2391. static void cfq_ioc_set_ioprio(struct io_context *ioc)
  2392. {
  2393. call_for_each_cic(ioc, changed_ioprio);
  2394. ioc->ioprio_changed = 0;
  2395. }
  2396. static void cfq_init_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  2397. pid_t pid, bool is_sync)
  2398. {
  2399. RB_CLEAR_NODE(&cfqq->rb_node);
  2400. RB_CLEAR_NODE(&cfqq->p_node);
  2401. INIT_LIST_HEAD(&cfqq->fifo);
  2402. cfqq->ref = 0;
  2403. cfqq->cfqd = cfqd;
  2404. cfq_mark_cfqq_prio_changed(cfqq);
  2405. if (is_sync) {
  2406. if (!cfq_class_idle(cfqq))
  2407. cfq_mark_cfqq_idle_window(cfqq);
  2408. cfq_mark_cfqq_sync(cfqq);
  2409. }
  2410. cfqq->pid = pid;
  2411. }
  2412. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  2413. static void changed_cgroup(struct io_context *ioc, struct cfq_io_context *cic)
  2414. {
  2415. struct cfq_queue *sync_cfqq = cic_to_cfqq(cic, 1);
  2416. struct cfq_data *cfqd = cic_to_cfqd(cic);
  2417. unsigned long flags;
  2418. struct request_queue *q;
  2419. if (unlikely(!cfqd))
  2420. return;
  2421. q = cfqd->queue;
  2422. spin_lock_irqsave(q->queue_lock, flags);
  2423. if (sync_cfqq) {
  2424. /*
  2425. * Drop reference to sync queue. A new sync queue will be
  2426. * assigned in new group upon arrival of a fresh request.
  2427. */
  2428. cfq_log_cfqq(cfqd, sync_cfqq, "changed cgroup");
  2429. cic_set_cfqq(cic, NULL, 1);
  2430. cfq_put_queue(sync_cfqq);
  2431. }
  2432. spin_unlock_irqrestore(q->queue_lock, flags);
  2433. }
  2434. static void cfq_ioc_set_cgroup(struct io_context *ioc)
  2435. {
  2436. call_for_each_cic(ioc, changed_cgroup);
  2437. ioc->cgroup_changed = 0;
  2438. }
  2439. #endif /* CONFIG_CFQ_GROUP_IOSCHED */
  2440. static struct cfq_queue *
  2441. cfq_find_alloc_queue(struct cfq_data *cfqd, bool is_sync,
  2442. struct io_context *ioc, gfp_t gfp_mask)
  2443. {
  2444. struct cfq_queue *cfqq, *new_cfqq = NULL;
  2445. struct cfq_io_context *cic;
  2446. struct cfq_group *cfqg;
  2447. retry:
  2448. cfqg = cfq_get_cfqg(cfqd, 1);
  2449. cic = cfq_cic_lookup(cfqd, ioc);
  2450. /* cic always exists here */
  2451. cfqq = cic_to_cfqq(cic, is_sync);
  2452. /*
  2453. * Always try a new alloc if we fell back to the OOM cfqq
  2454. * originally, since it should just be a temporary situation.
  2455. */
  2456. if (!cfqq || cfqq == &cfqd->oom_cfqq) {
  2457. cfqq = NULL;
  2458. if (new_cfqq) {
  2459. cfqq = new_cfqq;
  2460. new_cfqq = NULL;
  2461. } else if (gfp_mask & __GFP_WAIT) {
  2462. spin_unlock_irq(cfqd->queue->queue_lock);
  2463. new_cfqq = kmem_cache_alloc_node(cfq_pool,
  2464. gfp_mask | __GFP_ZERO,
  2465. cfqd->queue->node);
  2466. spin_lock_irq(cfqd->queue->queue_lock);
  2467. if (new_cfqq)
  2468. goto retry;
  2469. } else {
  2470. cfqq = kmem_cache_alloc_node(cfq_pool,
  2471. gfp_mask | __GFP_ZERO,
  2472. cfqd->queue->node);
  2473. }
  2474. if (cfqq) {
  2475. cfq_init_cfqq(cfqd, cfqq, current->pid, is_sync);
  2476. cfq_init_prio_data(cfqq, ioc);
  2477. cfq_link_cfqq_cfqg(cfqq, cfqg);
  2478. cfq_log_cfqq(cfqd, cfqq, "alloced");
  2479. } else
  2480. cfqq = &cfqd->oom_cfqq;
  2481. }
  2482. if (new_cfqq)
  2483. kmem_cache_free(cfq_pool, new_cfqq);
  2484. return cfqq;
  2485. }
  2486. static struct cfq_queue **
  2487. cfq_async_queue_prio(struct cfq_data *cfqd, int ioprio_class, int ioprio)
  2488. {
  2489. switch (ioprio_class) {
  2490. case IOPRIO_CLASS_RT:
  2491. return &cfqd->async_cfqq[0][ioprio];
  2492. case IOPRIO_CLASS_BE:
  2493. return &cfqd->async_cfqq[1][ioprio];
  2494. case IOPRIO_CLASS_IDLE:
  2495. return &cfqd->async_idle_cfqq;
  2496. default:
  2497. BUG();
  2498. }
  2499. }
  2500. static struct cfq_queue *
  2501. cfq_get_queue(struct cfq_data *cfqd, bool is_sync, struct io_context *ioc,
  2502. gfp_t gfp_mask)
  2503. {
  2504. const int ioprio = task_ioprio(ioc);
  2505. const int ioprio_class = task_ioprio_class(ioc);
  2506. struct cfq_queue **async_cfqq = NULL;
  2507. struct cfq_queue *cfqq = NULL;
  2508. if (!is_sync) {
  2509. async_cfqq = cfq_async_queue_prio(cfqd, ioprio_class, ioprio);
  2510. cfqq = *async_cfqq;
  2511. }
  2512. if (!cfqq)
  2513. cfqq = cfq_find_alloc_queue(cfqd, is_sync, ioc, gfp_mask);
  2514. /*
  2515. * pin the queue now that it's allocated, scheduler exit will prune it
  2516. */
  2517. if (!is_sync && !(*async_cfqq)) {
  2518. cfqq->ref++;
  2519. *async_cfqq = cfqq;
  2520. }
  2521. cfqq->ref++;
  2522. return cfqq;
  2523. }
  2524. /*
  2525. * We drop cfq io contexts lazily, so we may find a dead one.
  2526. */
  2527. static void
  2528. cfq_drop_dead_cic(struct cfq_data *cfqd, struct io_context *ioc,
  2529. struct cfq_io_context *cic)
  2530. {
  2531. unsigned long flags;
  2532. WARN_ON(!list_empty(&cic->queue_list));
  2533. BUG_ON(cic->key != cfqd_dead_key(cfqd));
  2534. spin_lock_irqsave(&ioc->lock, flags);
  2535. BUG_ON(ioc->ioc_data == cic);
  2536. radix_tree_delete(&ioc->radix_root, cfqd->cic_index);
  2537. hlist_del_rcu(&cic->cic_list);
  2538. spin_unlock_irqrestore(&ioc->lock, flags);
  2539. cfq_cic_free(cic);
  2540. }
  2541. static struct cfq_io_context *
  2542. cfq_cic_lookup(struct cfq_data *cfqd, struct io_context *ioc)
  2543. {
  2544. struct cfq_io_context *cic;
  2545. unsigned long flags;
  2546. if (unlikely(!ioc))
  2547. return NULL;
  2548. rcu_read_lock();
  2549. /*
  2550. * we maintain a last-hit cache, to avoid browsing over the tree
  2551. */
  2552. cic = rcu_dereference(ioc->ioc_data);
  2553. if (cic && cic->key == cfqd) {
  2554. rcu_read_unlock();
  2555. return cic;
  2556. }
  2557. do {
  2558. cic = radix_tree_lookup(&ioc->radix_root, cfqd->cic_index);
  2559. rcu_read_unlock();
  2560. if (!cic)
  2561. break;
  2562. if (unlikely(cic->key != cfqd)) {
  2563. cfq_drop_dead_cic(cfqd, ioc, cic);
  2564. rcu_read_lock();
  2565. continue;
  2566. }
  2567. spin_lock_irqsave(&ioc->lock, flags);
  2568. rcu_assign_pointer(ioc->ioc_data, cic);
  2569. spin_unlock_irqrestore(&ioc->lock, flags);
  2570. break;
  2571. } while (1);
  2572. return cic;
  2573. }
  2574. /*
  2575. * Add cic into ioc, using cfqd as the search key. This enables us to lookup
  2576. * the process specific cfq io context when entered from the block layer.
  2577. * Also adds the cic to a per-cfqd list, used when this queue is removed.
  2578. */
  2579. static int cfq_cic_link(struct cfq_data *cfqd, struct io_context *ioc,
  2580. struct cfq_io_context *cic, gfp_t gfp_mask)
  2581. {
  2582. unsigned long flags;
  2583. int ret;
  2584. ret = radix_tree_preload(gfp_mask);
  2585. if (!ret) {
  2586. cic->ioc = ioc;
  2587. cic->key = cfqd;
  2588. spin_lock_irqsave(&ioc->lock, flags);
  2589. ret = radix_tree_insert(&ioc->radix_root,
  2590. cfqd->cic_index, cic);
  2591. if (!ret)
  2592. hlist_add_head_rcu(&cic->cic_list, &ioc->cic_list);
  2593. spin_unlock_irqrestore(&ioc->lock, flags);
  2594. radix_tree_preload_end();
  2595. if (!ret) {
  2596. spin_lock_irqsave(cfqd->queue->queue_lock, flags);
  2597. list_add(&cic->queue_list, &cfqd->cic_list);
  2598. spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
  2599. }
  2600. }
  2601. if (ret)
  2602. printk(KERN_ERR "cfq: cic link failed!\n");
  2603. return ret;
  2604. }
  2605. /*
  2606. * Setup general io context and cfq io context. There can be several cfq
  2607. * io contexts per general io context, if this process is doing io to more
  2608. * than one device managed by cfq.
  2609. */
  2610. static struct cfq_io_context *
  2611. cfq_get_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
  2612. {
  2613. struct io_context *ioc = NULL;
  2614. struct cfq_io_context *cic;
  2615. might_sleep_if(gfp_mask & __GFP_WAIT);
  2616. ioc = get_io_context(gfp_mask, cfqd->queue->node);
  2617. if (!ioc)
  2618. return NULL;
  2619. cic = cfq_cic_lookup(cfqd, ioc);
  2620. if (cic)
  2621. goto out;
  2622. cic = cfq_alloc_io_context(cfqd, gfp_mask);
  2623. if (cic == NULL)
  2624. goto err;
  2625. if (cfq_cic_link(cfqd, ioc, cic, gfp_mask))
  2626. goto err_free;
  2627. out:
  2628. smp_read_barrier_depends();
  2629. if (unlikely(ioc->ioprio_changed))
  2630. cfq_ioc_set_ioprio(ioc);
  2631. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  2632. if (unlikely(ioc->cgroup_changed))
  2633. cfq_ioc_set_cgroup(ioc);
  2634. #endif
  2635. return cic;
  2636. err_free:
  2637. cfq_cic_free(cic);
  2638. err:
  2639. put_io_context(ioc);
  2640. return NULL;
  2641. }
  2642. static void
  2643. cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_io_context *cic)
  2644. {
  2645. unsigned long elapsed = jiffies - cic->last_end_request;
  2646. unsigned long ttime = min(elapsed, 2UL * cfqd->cfq_slice_idle);
  2647. cic->ttime_samples = (7*cic->ttime_samples + 256) / 8;
  2648. cic->ttime_total = (7*cic->ttime_total + 256*ttime) / 8;
  2649. cic->ttime_mean = (cic->ttime_total + 128) / cic->ttime_samples;
  2650. }
  2651. static void
  2652. cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  2653. struct request *rq)
  2654. {
  2655. sector_t sdist = 0;
  2656. sector_t n_sec = blk_rq_sectors(rq);
  2657. if (cfqq->last_request_pos) {
  2658. if (cfqq->last_request_pos < blk_rq_pos(rq))
  2659. sdist = blk_rq_pos(rq) - cfqq->last_request_pos;
  2660. else
  2661. sdist = cfqq->last_request_pos - blk_rq_pos(rq);
  2662. }
  2663. cfqq->seek_history <<= 1;
  2664. if (blk_queue_nonrot(cfqd->queue))
  2665. cfqq->seek_history |= (n_sec < CFQQ_SECT_THR_NONROT);
  2666. else
  2667. cfqq->seek_history |= (sdist > CFQQ_SEEK_THR);
  2668. }
  2669. /*
  2670. * Disable idle window if the process thinks too long or seeks so much that
  2671. * it doesn't matter
  2672. */
  2673. static void
  2674. cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  2675. struct cfq_io_context *cic)
  2676. {
  2677. int old_idle, enable_idle;
  2678. /*
  2679. * Don't idle for async or idle io prio class
  2680. */
  2681. if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
  2682. return;
  2683. enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
  2684. if (cfqq->queued[0] + cfqq->queued[1] >= 4)
  2685. cfq_mark_cfqq_deep(cfqq);
  2686. if (cfqq->next_rq && (cfqq->next_rq->cmd_flags & REQ_NOIDLE))
  2687. enable_idle = 0;
  2688. else if (!atomic_read(&cic->ioc->nr_tasks) || !cfqd->cfq_slice_idle ||
  2689. (!cfq_cfqq_deep(cfqq) && CFQQ_SEEKY(cfqq)))
  2690. enable_idle = 0;
  2691. else if (sample_valid(cic->ttime_samples)) {
  2692. if (cic->ttime_mean > cfqd->cfq_slice_idle)
  2693. enable_idle = 0;
  2694. else
  2695. enable_idle = 1;
  2696. }
  2697. if (old_idle != enable_idle) {
  2698. cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
  2699. if (enable_idle)
  2700. cfq_mark_cfqq_idle_window(cfqq);
  2701. else
  2702. cfq_clear_cfqq_idle_window(cfqq);
  2703. }
  2704. }
  2705. /*
  2706. * Check if new_cfqq should preempt the currently active queue. Return 0 for
  2707. * no or if we aren't sure, a 1 will cause a preempt.
  2708. */
  2709. static bool
  2710. cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
  2711. struct request *rq)
  2712. {
  2713. struct cfq_queue *cfqq;
  2714. cfqq = cfqd->active_queue;
  2715. if (!cfqq)
  2716. return false;
  2717. if (cfq_class_idle(new_cfqq))
  2718. return false;
  2719. if (cfq_class_idle(cfqq))
  2720. return true;
  2721. /*
  2722. * Don't allow a non-RT request to preempt an ongoing RT cfqq timeslice.
  2723. */
  2724. if (cfq_class_rt(cfqq) && !cfq_class_rt(new_cfqq))
  2725. return false;
  2726. /*
  2727. * if the new request is sync, but the currently running queue is
  2728. * not, let the sync request have priority.
  2729. */
  2730. if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
  2731. return true;
  2732. if (new_cfqq->cfqg != cfqq->cfqg)
  2733. return false;
  2734. if (cfq_slice_used(cfqq))
  2735. return true;
  2736. /* Allow preemption only if we are idling on sync-noidle tree */
  2737. if (cfqd->serving_type == SYNC_NOIDLE_WORKLOAD &&
  2738. cfqq_type(new_cfqq) == SYNC_NOIDLE_WORKLOAD &&
  2739. new_cfqq->service_tree->count == 2 &&
  2740. RB_EMPTY_ROOT(&cfqq->sort_list))
  2741. return true;
  2742. /*
  2743. * So both queues are sync. Let the new request get disk time if
  2744. * it's a metadata request and the current queue is doing regular IO.
  2745. */
  2746. if ((rq->cmd_flags & REQ_META) && !cfqq->meta_pending)
  2747. return true;
  2748. /*
  2749. * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
  2750. */
  2751. if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq))
  2752. return true;
  2753. /* An idle queue should not be idle now for some reason */
  2754. if (RB_EMPTY_ROOT(&cfqq->sort_list) && !cfq_should_idle(cfqd, cfqq))
  2755. return true;
  2756. if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
  2757. return false;
  2758. /*
  2759. * if this request is as-good as one we would expect from the
  2760. * current cfqq, let it preempt
  2761. */
  2762. if (cfq_rq_close(cfqd, cfqq, rq))
  2763. return true;
  2764. return false;
  2765. }
  2766. /*
  2767. * cfqq preempts the active queue. if we allowed preempt with no slice left,
  2768. * let it have half of its nominal slice.
  2769. */
  2770. static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  2771. {
  2772. struct cfq_queue *old_cfqq = cfqd->active_queue;
  2773. cfq_log_cfqq(cfqd, cfqq, "preempt");
  2774. cfq_slice_expired(cfqd, 1);
  2775. /*
  2776. * workload type is changed, don't save slice, otherwise preempt
  2777. * doesn't happen
  2778. */
  2779. if (cfqq_type(old_cfqq) != cfqq_type(cfqq))
  2780. cfqq->cfqg->saved_workload_slice = 0;
  2781. /*
  2782. * Put the new queue at the front of the of the current list,
  2783. * so we know that it will be selected next.
  2784. */
  2785. BUG_ON(!cfq_cfqq_on_rr(cfqq));
  2786. cfq_service_tree_add(cfqd, cfqq, 1);
  2787. cfqq->slice_end = 0;
  2788. cfq_mark_cfqq_slice_new(cfqq);
  2789. }
  2790. /*
  2791. * Called when a new fs request (rq) is added (to cfqq). Check if there's
  2792. * something we should do about it
  2793. */
  2794. static void
  2795. cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  2796. struct request *rq)
  2797. {
  2798. struct cfq_io_context *cic = RQ_CIC(rq);
  2799. cfqd->rq_queued++;
  2800. if (rq->cmd_flags & REQ_META)
  2801. cfqq->meta_pending++;
  2802. cfq_update_io_thinktime(cfqd, cic);
  2803. cfq_update_io_seektime(cfqd, cfqq, rq);
  2804. cfq_update_idle_window(cfqd, cfqq, cic);
  2805. cfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
  2806. if (cfqq == cfqd->active_queue) {
  2807. /*
  2808. * Remember that we saw a request from this process, but
  2809. * don't start queuing just yet. Otherwise we risk seeing lots
  2810. * of tiny requests, because we disrupt the normal plugging
  2811. * and merging. If the request is already larger than a single
  2812. * page, let it rip immediately. For that case we assume that
  2813. * merging is already done. Ditto for a busy system that
  2814. * has other work pending, don't risk delaying until the
  2815. * idle timer unplug to continue working.
  2816. */
  2817. if (cfq_cfqq_wait_request(cfqq)) {
  2818. if (blk_rq_bytes(rq) > PAGE_CACHE_SIZE ||
  2819. cfqd->busy_queues > 1) {
  2820. cfq_del_timer(cfqd, cfqq);
  2821. cfq_clear_cfqq_wait_request(cfqq);
  2822. __blk_run_queue(cfqd->queue);
  2823. } else {
  2824. cfq_blkiocg_update_idle_time_stats(
  2825. &cfqq->cfqg->blkg);
  2826. cfq_mark_cfqq_must_dispatch(cfqq);
  2827. }
  2828. }
  2829. } else if (cfq_should_preempt(cfqd, cfqq, rq)) {
  2830. /*
  2831. * not the active queue - expire current slice if it is
  2832. * idle and has expired it's mean thinktime or this new queue
  2833. * has some old slice time left and is of higher priority or
  2834. * this new queue is RT and the current one is BE
  2835. */
  2836. cfq_preempt_queue(cfqd, cfqq);
  2837. __blk_run_queue(cfqd->queue);
  2838. }
  2839. }
  2840. static void cfq_insert_request(struct request_queue *q, struct request *rq)
  2841. {
  2842. struct cfq_data *cfqd = q->elevator->elevator_data;
  2843. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  2844. cfq_log_cfqq(cfqd, cfqq, "insert_request");
  2845. cfq_init_prio_data(cfqq, RQ_CIC(rq)->ioc);
  2846. rq_set_fifo_time(rq, jiffies + cfqd->cfq_fifo_expire[rq_is_sync(rq)]);
  2847. list_add_tail(&rq->queuelist, &cfqq->fifo);
  2848. cfq_add_rq_rb(rq);
  2849. cfq_blkiocg_update_io_add_stats(&(RQ_CFQG(rq))->blkg,
  2850. &cfqd->serving_group->blkg, rq_data_dir(rq),
  2851. rq_is_sync(rq));
  2852. cfq_rq_enqueued(cfqd, cfqq, rq);
  2853. }
  2854. /*
  2855. * Update hw_tag based on peak queue depth over 50 samples under
  2856. * sufficient load.
  2857. */
  2858. static void cfq_update_hw_tag(struct cfq_data *cfqd)
  2859. {
  2860. struct cfq_queue *cfqq = cfqd->active_queue;
  2861. if (cfqd->rq_in_driver > cfqd->hw_tag_est_depth)
  2862. cfqd->hw_tag_est_depth = cfqd->rq_in_driver;
  2863. if (cfqd->hw_tag == 1)
  2864. return;
  2865. if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN &&
  2866. cfqd->rq_in_driver <= CFQ_HW_QUEUE_MIN)
  2867. return;
  2868. /*
  2869. * If active queue hasn't enough requests and can idle, cfq might not
  2870. * dispatch sufficient requests to hardware. Don't zero hw_tag in this
  2871. * case
  2872. */
  2873. if (cfqq && cfq_cfqq_idle_window(cfqq) &&
  2874. cfqq->dispatched + cfqq->queued[0] + cfqq->queued[1] <
  2875. CFQ_HW_QUEUE_MIN && cfqd->rq_in_driver < CFQ_HW_QUEUE_MIN)
  2876. return;
  2877. if (cfqd->hw_tag_samples++ < 50)
  2878. return;
  2879. if (cfqd->hw_tag_est_depth >= CFQ_HW_QUEUE_MIN)
  2880. cfqd->hw_tag = 1;
  2881. else
  2882. cfqd->hw_tag = 0;
  2883. }
  2884. static bool cfq_should_wait_busy(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  2885. {
  2886. struct cfq_io_context *cic = cfqd->active_cic;
  2887. /* If the queue already has requests, don't wait */
  2888. if (!RB_EMPTY_ROOT(&cfqq->sort_list))
  2889. return false;
  2890. /* If there are other queues in the group, don't wait */
  2891. if (cfqq->cfqg->nr_cfqq > 1)
  2892. return false;
  2893. if (cfq_slice_used(cfqq))
  2894. return true;
  2895. /* if slice left is less than think time, wait busy */
  2896. if (cic && sample_valid(cic->ttime_samples)
  2897. && (cfqq->slice_end - jiffies < cic->ttime_mean))
  2898. return true;
  2899. /*
  2900. * If think times is less than a jiffy than ttime_mean=0 and above
  2901. * will not be true. It might happen that slice has not expired yet
  2902. * but will expire soon (4-5 ns) during select_queue(). To cover the
  2903. * case where think time is less than a jiffy, mark the queue wait
  2904. * busy if only 1 jiffy is left in the slice.
  2905. */
  2906. if (cfqq->slice_end - jiffies == 1)
  2907. return true;
  2908. return false;
  2909. }
  2910. static void cfq_completed_request(struct request_queue *q, struct request *rq)
  2911. {
  2912. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  2913. struct cfq_data *cfqd = cfqq->cfqd;
  2914. const int sync = rq_is_sync(rq);
  2915. unsigned long now;
  2916. now = jiffies;
  2917. cfq_log_cfqq(cfqd, cfqq, "complete rqnoidle %d",
  2918. !!(rq->cmd_flags & REQ_NOIDLE));
  2919. cfq_update_hw_tag(cfqd);
  2920. WARN_ON(!cfqd->rq_in_driver);
  2921. WARN_ON(!cfqq->dispatched);
  2922. cfqd->rq_in_driver--;
  2923. cfqq->dispatched--;
  2924. (RQ_CFQG(rq))->dispatched--;
  2925. cfq_blkiocg_update_completion_stats(&cfqq->cfqg->blkg,
  2926. rq_start_time_ns(rq), rq_io_start_time_ns(rq),
  2927. rq_data_dir(rq), rq_is_sync(rq));
  2928. cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]--;
  2929. if (sync) {
  2930. RQ_CIC(rq)->last_end_request = now;
  2931. if (!time_after(rq->start_time + cfqd->cfq_fifo_expire[1], now))
  2932. cfqd->last_delayed_sync = now;
  2933. }
  2934. /*
  2935. * If this is the active queue, check if it needs to be expired,
  2936. * or if we want to idle in case it has no pending requests.
  2937. */
  2938. if (cfqd->active_queue == cfqq) {
  2939. const bool cfqq_empty = RB_EMPTY_ROOT(&cfqq->sort_list);
  2940. if (cfq_cfqq_slice_new(cfqq)) {
  2941. cfq_set_prio_slice(cfqd, cfqq);
  2942. cfq_clear_cfqq_slice_new(cfqq);
  2943. }
  2944. /*
  2945. * Should we wait for next request to come in before we expire
  2946. * the queue.
  2947. */
  2948. if (cfq_should_wait_busy(cfqd, cfqq)) {
  2949. unsigned long extend_sl = cfqd->cfq_slice_idle;
  2950. if (!cfqd->cfq_slice_idle)
  2951. extend_sl = cfqd->cfq_group_idle;
  2952. cfqq->slice_end = jiffies + extend_sl;
  2953. cfq_mark_cfqq_wait_busy(cfqq);
  2954. cfq_log_cfqq(cfqd, cfqq, "will busy wait");
  2955. }
  2956. /*
  2957. * Idling is not enabled on:
  2958. * - expired queues
  2959. * - idle-priority queues
  2960. * - async queues
  2961. * - queues with still some requests queued
  2962. * - when there is a close cooperator
  2963. */
  2964. if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
  2965. cfq_slice_expired(cfqd, 1);
  2966. else if (sync && cfqq_empty &&
  2967. !cfq_close_cooperator(cfqd, cfqq)) {
  2968. cfq_arm_slice_timer(cfqd);
  2969. }
  2970. }
  2971. if (!cfqd->rq_in_driver)
  2972. cfq_schedule_dispatch(cfqd);
  2973. }
  2974. /*
  2975. * we temporarily boost lower priority queues if they are holding fs exclusive
  2976. * resources. they are boosted to normal prio (CLASS_BE/4)
  2977. */
  2978. static void cfq_prio_boost(struct cfq_queue *cfqq)
  2979. {
  2980. if (has_fs_excl()) {
  2981. /*
  2982. * boost idle prio on transactions that would lock out other
  2983. * users of the filesystem
  2984. */
  2985. if (cfq_class_idle(cfqq))
  2986. cfqq->ioprio_class = IOPRIO_CLASS_BE;
  2987. if (cfqq->ioprio > IOPRIO_NORM)
  2988. cfqq->ioprio = IOPRIO_NORM;
  2989. } else {
  2990. /*
  2991. * unboost the queue (if needed)
  2992. */
  2993. cfqq->ioprio_class = cfqq->org_ioprio_class;
  2994. cfqq->ioprio = cfqq->org_ioprio;
  2995. }
  2996. }
  2997. static inline int __cfq_may_queue(struct cfq_queue *cfqq)
  2998. {
  2999. if (cfq_cfqq_wait_request(cfqq) && !cfq_cfqq_must_alloc_slice(cfqq)) {
  3000. cfq_mark_cfqq_must_alloc_slice(cfqq);
  3001. return ELV_MQUEUE_MUST;
  3002. }
  3003. return ELV_MQUEUE_MAY;
  3004. }
  3005. static int cfq_may_queue(struct request_queue *q, int rw)
  3006. {
  3007. struct cfq_data *cfqd = q->elevator->elevator_data;
  3008. struct task_struct *tsk = current;
  3009. struct cfq_io_context *cic;
  3010. struct cfq_queue *cfqq;
  3011. /*
  3012. * don't force setup of a queue from here, as a call to may_queue
  3013. * does not necessarily imply that a request actually will be queued.
  3014. * so just lookup a possibly existing queue, or return 'may queue'
  3015. * if that fails
  3016. */
  3017. cic = cfq_cic_lookup(cfqd, tsk->io_context);
  3018. if (!cic)
  3019. return ELV_MQUEUE_MAY;
  3020. cfqq = cic_to_cfqq(cic, rw_is_sync(rw));
  3021. if (cfqq) {
  3022. cfq_init_prio_data(cfqq, cic->ioc);
  3023. cfq_prio_boost(cfqq);
  3024. return __cfq_may_queue(cfqq);
  3025. }
  3026. return ELV_MQUEUE_MAY;
  3027. }
  3028. /*
  3029. * queue lock held here
  3030. */
  3031. static void cfq_put_request(struct request *rq)
  3032. {
  3033. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  3034. if (cfqq) {
  3035. const int rw = rq_data_dir(rq);
  3036. BUG_ON(!cfqq->allocated[rw]);
  3037. cfqq->allocated[rw]--;
  3038. put_io_context(RQ_CIC(rq)->ioc);
  3039. rq->elevator_private[0] = NULL;
  3040. rq->elevator_private[1] = NULL;
  3041. /* Put down rq reference on cfqg */
  3042. cfq_put_cfqg(RQ_CFQG(rq));
  3043. rq->elevator_private[2] = NULL;
  3044. cfq_put_queue(cfqq);
  3045. }
  3046. }
  3047. static struct cfq_queue *
  3048. cfq_merge_cfqqs(struct cfq_data *cfqd, struct cfq_io_context *cic,
  3049. struct cfq_queue *cfqq)
  3050. {
  3051. cfq_log_cfqq(cfqd, cfqq, "merging with queue %p", cfqq->new_cfqq);
  3052. cic_set_cfqq(cic, cfqq->new_cfqq, 1);
  3053. cfq_mark_cfqq_coop(cfqq->new_cfqq);
  3054. cfq_put_queue(cfqq);
  3055. return cic_to_cfqq(cic, 1);
  3056. }
  3057. /*
  3058. * Returns NULL if a new cfqq should be allocated, or the old cfqq if this
  3059. * was the last process referring to said cfqq.
  3060. */
  3061. static struct cfq_queue *
  3062. split_cfqq(struct cfq_io_context *cic, struct cfq_queue *cfqq)
  3063. {
  3064. if (cfqq_process_refs(cfqq) == 1) {
  3065. cfqq->pid = current->pid;
  3066. cfq_clear_cfqq_coop(cfqq);
  3067. cfq_clear_cfqq_split_coop(cfqq);
  3068. return cfqq;
  3069. }
  3070. cic_set_cfqq(cic, NULL, 1);
  3071. cfq_put_cooperator(cfqq);
  3072. cfq_put_queue(cfqq);
  3073. return NULL;
  3074. }
  3075. /*
  3076. * Allocate cfq data structures associated with this request.
  3077. */
  3078. static int
  3079. cfq_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
  3080. {
  3081. struct cfq_data *cfqd = q->elevator->elevator_data;
  3082. struct cfq_io_context *cic;
  3083. const int rw = rq_data_dir(rq);
  3084. const bool is_sync = rq_is_sync(rq);
  3085. struct cfq_queue *cfqq;
  3086. unsigned long flags;
  3087. might_sleep_if(gfp_mask & __GFP_WAIT);
  3088. cic = cfq_get_io_context(cfqd, gfp_mask);
  3089. spin_lock_irqsave(q->queue_lock, flags);
  3090. if (!cic)
  3091. goto queue_fail;
  3092. new_queue:
  3093. cfqq = cic_to_cfqq(cic, is_sync);
  3094. if (!cfqq || cfqq == &cfqd->oom_cfqq) {
  3095. cfqq = cfq_get_queue(cfqd, is_sync, cic->ioc, gfp_mask);
  3096. cic_set_cfqq(cic, cfqq, is_sync);
  3097. } else {
  3098. /*
  3099. * If the queue was seeky for too long, break it apart.
  3100. */
  3101. if (cfq_cfqq_coop(cfqq) && cfq_cfqq_split_coop(cfqq)) {
  3102. cfq_log_cfqq(cfqd, cfqq, "breaking apart cfqq");
  3103. cfqq = split_cfqq(cic, cfqq);
  3104. if (!cfqq)
  3105. goto new_queue;
  3106. }
  3107. /*
  3108. * Check to see if this queue is scheduled to merge with
  3109. * another, closely cooperating queue. The merging of
  3110. * queues happens here as it must be done in process context.
  3111. * The reference on new_cfqq was taken in merge_cfqqs.
  3112. */
  3113. if (cfqq->new_cfqq)
  3114. cfqq = cfq_merge_cfqqs(cfqd, cic, cfqq);
  3115. }
  3116. cfqq->allocated[rw]++;
  3117. cfqq->ref++;
  3118. rq->elevator_private[0] = cic;
  3119. rq->elevator_private[1] = cfqq;
  3120. rq->elevator_private[2] = cfq_ref_get_cfqg(cfqq->cfqg);
  3121. spin_unlock_irqrestore(q->queue_lock, flags);
  3122. return 0;
  3123. queue_fail:
  3124. if (cic)
  3125. put_io_context(cic->ioc);
  3126. cfq_schedule_dispatch(cfqd);
  3127. spin_unlock_irqrestore(q->queue_lock, flags);
  3128. cfq_log(cfqd, "set_request fail");
  3129. return 1;
  3130. }
  3131. static void cfq_kick_queue(struct work_struct *work)
  3132. {
  3133. struct cfq_data *cfqd =
  3134. container_of(work, struct cfq_data, unplug_work);
  3135. struct request_queue *q = cfqd->queue;
  3136. spin_lock_irq(q->queue_lock);
  3137. __blk_run_queue(cfqd->queue);
  3138. spin_unlock_irq(q->queue_lock);
  3139. }
  3140. /*
  3141. * Timer running if the active_queue is currently idling inside its time slice
  3142. */
  3143. static void cfq_idle_slice_timer(unsigned long data)
  3144. {
  3145. struct cfq_data *cfqd = (struct cfq_data *) data;
  3146. struct cfq_queue *cfqq;
  3147. unsigned long flags;
  3148. int timed_out = 1;
  3149. cfq_log(cfqd, "idle timer fired");
  3150. spin_lock_irqsave(cfqd->queue->queue_lock, flags);
  3151. cfqq = cfqd->active_queue;
  3152. if (cfqq) {
  3153. timed_out = 0;
  3154. /*
  3155. * We saw a request before the queue expired, let it through
  3156. */
  3157. if (cfq_cfqq_must_dispatch(cfqq))
  3158. goto out_kick;
  3159. /*
  3160. * expired
  3161. */
  3162. if (cfq_slice_used(cfqq))
  3163. goto expire;
  3164. /*
  3165. * only expire and reinvoke request handler, if there are
  3166. * other queues with pending requests
  3167. */
  3168. if (!cfqd->busy_queues)
  3169. goto out_cont;
  3170. /*
  3171. * not expired and it has a request pending, let it dispatch
  3172. */
  3173. if (!RB_EMPTY_ROOT(&cfqq->sort_list))
  3174. goto out_kick;
  3175. /*
  3176. * Queue depth flag is reset only when the idle didn't succeed
  3177. */
  3178. cfq_clear_cfqq_deep(cfqq);
  3179. }
  3180. expire:
  3181. cfq_slice_expired(cfqd, timed_out);
  3182. out_kick:
  3183. cfq_schedule_dispatch(cfqd);
  3184. out_cont:
  3185. spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
  3186. }
  3187. static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
  3188. {
  3189. del_timer_sync(&cfqd->idle_slice_timer);
  3190. cancel_work_sync(&cfqd->unplug_work);
  3191. }
  3192. static void cfq_put_async_queues(struct cfq_data *cfqd)
  3193. {
  3194. int i;
  3195. for (i = 0; i < IOPRIO_BE_NR; i++) {
  3196. if (cfqd->async_cfqq[0][i])
  3197. cfq_put_queue(cfqd->async_cfqq[0][i]);
  3198. if (cfqd->async_cfqq[1][i])
  3199. cfq_put_queue(cfqd->async_cfqq[1][i]);
  3200. }
  3201. if (cfqd->async_idle_cfqq)
  3202. cfq_put_queue(cfqd->async_idle_cfqq);
  3203. }
  3204. static void cfq_cfqd_free(struct rcu_head *head)
  3205. {
  3206. kfree(container_of(head, struct cfq_data, rcu));
  3207. }
  3208. static void cfq_exit_queue(struct elevator_queue *e)
  3209. {
  3210. struct cfq_data *cfqd = e->elevator_data;
  3211. struct request_queue *q = cfqd->queue;
  3212. cfq_shutdown_timer_wq(cfqd);
  3213. spin_lock_irq(q->queue_lock);
  3214. if (cfqd->active_queue)
  3215. __cfq_slice_expired(cfqd, cfqd->active_queue, 0);
  3216. while (!list_empty(&cfqd->cic_list)) {
  3217. struct cfq_io_context *cic = list_entry(cfqd->cic_list.next,
  3218. struct cfq_io_context,
  3219. queue_list);
  3220. __cfq_exit_single_io_context(cfqd, cic);
  3221. }
  3222. cfq_put_async_queues(cfqd);
  3223. cfq_release_cfq_groups(cfqd);
  3224. cfq_blkiocg_del_blkio_group(&cfqd->root_group.blkg);
  3225. spin_unlock_irq(q->queue_lock);
  3226. cfq_shutdown_timer_wq(cfqd);
  3227. spin_lock(&cic_index_lock);
  3228. ida_remove(&cic_index_ida, cfqd->cic_index);
  3229. spin_unlock(&cic_index_lock);
  3230. /* Wait for cfqg->blkg->key accessors to exit their grace periods. */
  3231. call_rcu(&cfqd->rcu, cfq_cfqd_free);
  3232. }
  3233. static int cfq_alloc_cic_index(void)
  3234. {
  3235. int index, error;
  3236. do {
  3237. if (!ida_pre_get(&cic_index_ida, GFP_KERNEL))
  3238. return -ENOMEM;
  3239. spin_lock(&cic_index_lock);
  3240. error = ida_get_new(&cic_index_ida, &index);
  3241. spin_unlock(&cic_index_lock);
  3242. if (error && error != -EAGAIN)
  3243. return error;
  3244. } while (error);
  3245. return index;
  3246. }
  3247. static void *cfq_init_queue(struct request_queue *q)
  3248. {
  3249. struct cfq_data *cfqd;
  3250. int i, j;
  3251. struct cfq_group *cfqg;
  3252. struct cfq_rb_root *st;
  3253. i = cfq_alloc_cic_index();
  3254. if (i < 0)
  3255. return NULL;
  3256. cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL | __GFP_ZERO, q->node);
  3257. if (!cfqd)
  3258. return NULL;
  3259. /*
  3260. * Don't need take queue_lock in the routine, since we are
  3261. * initializing the ioscheduler, and nobody is using cfqd
  3262. */
  3263. cfqd->cic_index = i;
  3264. /* Init root service tree */
  3265. cfqd->grp_service_tree = CFQ_RB_ROOT;
  3266. /* Init root group */
  3267. cfqg = &cfqd->root_group;
  3268. for_each_cfqg_st(cfqg, i, j, st)
  3269. *st = CFQ_RB_ROOT;
  3270. RB_CLEAR_NODE(&cfqg->rb_node);
  3271. /* Give preference to root group over other groups */
  3272. cfqg->weight = 2*BLKIO_WEIGHT_DEFAULT;
  3273. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  3274. /*
  3275. * Take a reference to root group which we never drop. This is just
  3276. * to make sure that cfq_put_cfqg() does not try to kfree root group
  3277. */
  3278. cfqg->ref = 1;
  3279. rcu_read_lock();
  3280. cfq_blkiocg_add_blkio_group(&blkio_root_cgroup, &cfqg->blkg,
  3281. (void *)cfqd, 0);
  3282. rcu_read_unlock();
  3283. #endif
  3284. /*
  3285. * Not strictly needed (since RB_ROOT just clears the node and we
  3286. * zeroed cfqd on alloc), but better be safe in case someone decides
  3287. * to add magic to the rb code
  3288. */
  3289. for (i = 0; i < CFQ_PRIO_LISTS; i++)
  3290. cfqd->prio_trees[i] = RB_ROOT;
  3291. /*
  3292. * Our fallback cfqq if cfq_find_alloc_queue() runs into OOM issues.
  3293. * Grab a permanent reference to it, so that the normal code flow
  3294. * will not attempt to free it.
  3295. */
  3296. cfq_init_cfqq(cfqd, &cfqd->oom_cfqq, 1, 0);
  3297. cfqd->oom_cfqq.ref++;
  3298. cfq_link_cfqq_cfqg(&cfqd->oom_cfqq, &cfqd->root_group);
  3299. INIT_LIST_HEAD(&cfqd->cic_list);
  3300. cfqd->queue = q;
  3301. init_timer(&cfqd->idle_slice_timer);
  3302. cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
  3303. cfqd->idle_slice_timer.data = (unsigned long) cfqd;
  3304. INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
  3305. cfqd->cfq_quantum = cfq_quantum;
  3306. cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
  3307. cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
  3308. cfqd->cfq_back_max = cfq_back_max;
  3309. cfqd->cfq_back_penalty = cfq_back_penalty;
  3310. cfqd->cfq_slice[0] = cfq_slice_async;
  3311. cfqd->cfq_slice[1] = cfq_slice_sync;
  3312. cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
  3313. cfqd->cfq_slice_idle = cfq_slice_idle;
  3314. cfqd->cfq_group_idle = cfq_group_idle;
  3315. cfqd->cfq_latency = 1;
  3316. cfqd->hw_tag = -1;
  3317. /*
  3318. * we optimistically start assuming sync ops weren't delayed in last
  3319. * second, in order to have larger depth for async operations.
  3320. */
  3321. cfqd->last_delayed_sync = jiffies - HZ;
  3322. return cfqd;
  3323. }
  3324. static void cfq_slab_kill(void)
  3325. {
  3326. /*
  3327. * Caller already ensured that pending RCU callbacks are completed,
  3328. * so we should have no busy allocations at this point.
  3329. */
  3330. if (cfq_pool)
  3331. kmem_cache_destroy(cfq_pool);
  3332. if (cfq_ioc_pool)
  3333. kmem_cache_destroy(cfq_ioc_pool);
  3334. }
  3335. static int __init cfq_slab_setup(void)
  3336. {
  3337. cfq_pool = KMEM_CACHE(cfq_queue, 0);
  3338. if (!cfq_pool)
  3339. goto fail;
  3340. cfq_ioc_pool = KMEM_CACHE(cfq_io_context, 0);
  3341. if (!cfq_ioc_pool)
  3342. goto fail;
  3343. return 0;
  3344. fail:
  3345. cfq_slab_kill();
  3346. return -ENOMEM;
  3347. }
  3348. /*
  3349. * sysfs parts below -->
  3350. */
  3351. static ssize_t
  3352. cfq_var_show(unsigned int var, char *page)
  3353. {
  3354. return sprintf(page, "%d\n", var);
  3355. }
  3356. static ssize_t
  3357. cfq_var_store(unsigned int *var, const char *page, size_t count)
  3358. {
  3359. char *p = (char *) page;
  3360. *var = simple_strtoul(p, &p, 10);
  3361. return count;
  3362. }
  3363. #define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
  3364. static ssize_t __FUNC(struct elevator_queue *e, char *page) \
  3365. { \
  3366. struct cfq_data *cfqd = e->elevator_data; \
  3367. unsigned int __data = __VAR; \
  3368. if (__CONV) \
  3369. __data = jiffies_to_msecs(__data); \
  3370. return cfq_var_show(__data, (page)); \
  3371. }
  3372. SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
  3373. SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
  3374. SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
  3375. SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
  3376. SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
  3377. SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
  3378. SHOW_FUNCTION(cfq_group_idle_show, cfqd->cfq_group_idle, 1);
  3379. SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
  3380. SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
  3381. SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
  3382. SHOW_FUNCTION(cfq_low_latency_show, cfqd->cfq_latency, 0);
  3383. #undef SHOW_FUNCTION
  3384. #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
  3385. static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
  3386. { \
  3387. struct cfq_data *cfqd = e->elevator_data; \
  3388. unsigned int __data; \
  3389. int ret = cfq_var_store(&__data, (page), count); \
  3390. if (__data < (MIN)) \
  3391. __data = (MIN); \
  3392. else if (__data > (MAX)) \
  3393. __data = (MAX); \
  3394. if (__CONV) \
  3395. *(__PTR) = msecs_to_jiffies(__data); \
  3396. else \
  3397. *(__PTR) = __data; \
  3398. return ret; \
  3399. }
  3400. STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
  3401. STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
  3402. UINT_MAX, 1);
  3403. STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
  3404. UINT_MAX, 1);
  3405. STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
  3406. STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
  3407. UINT_MAX, 0);
  3408. STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
  3409. STORE_FUNCTION(cfq_group_idle_store, &cfqd->cfq_group_idle, 0, UINT_MAX, 1);
  3410. STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
  3411. STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
  3412. STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
  3413. UINT_MAX, 0);
  3414. STORE_FUNCTION(cfq_low_latency_store, &cfqd->cfq_latency, 0, 1, 0);
  3415. #undef STORE_FUNCTION
  3416. #define CFQ_ATTR(name) \
  3417. __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
  3418. static struct elv_fs_entry cfq_attrs[] = {
  3419. CFQ_ATTR(quantum),
  3420. CFQ_ATTR(fifo_expire_sync),
  3421. CFQ_ATTR(fifo_expire_async),
  3422. CFQ_ATTR(back_seek_max),
  3423. CFQ_ATTR(back_seek_penalty),
  3424. CFQ_ATTR(slice_sync),
  3425. CFQ_ATTR(slice_async),
  3426. CFQ_ATTR(slice_async_rq),
  3427. CFQ_ATTR(slice_idle),
  3428. CFQ_ATTR(group_idle),
  3429. CFQ_ATTR(low_latency),
  3430. __ATTR_NULL
  3431. };
  3432. static struct elevator_type iosched_cfq = {
  3433. .ops = {
  3434. .elevator_merge_fn = cfq_merge,
  3435. .elevator_merged_fn = cfq_merged_request,
  3436. .elevator_merge_req_fn = cfq_merged_requests,
  3437. .elevator_allow_merge_fn = cfq_allow_merge,
  3438. .elevator_bio_merged_fn = cfq_bio_merged,
  3439. .elevator_dispatch_fn = cfq_dispatch_requests,
  3440. .elevator_add_req_fn = cfq_insert_request,
  3441. .elevator_activate_req_fn = cfq_activate_request,
  3442. .elevator_deactivate_req_fn = cfq_deactivate_request,
  3443. .elevator_queue_empty_fn = cfq_queue_empty,
  3444. .elevator_completed_req_fn = cfq_completed_request,
  3445. .elevator_former_req_fn = elv_rb_former_request,
  3446. .elevator_latter_req_fn = elv_rb_latter_request,
  3447. .elevator_set_req_fn = cfq_set_request,
  3448. .elevator_put_req_fn = cfq_put_request,
  3449. .elevator_may_queue_fn = cfq_may_queue,
  3450. .elevator_init_fn = cfq_init_queue,
  3451. .elevator_exit_fn = cfq_exit_queue,
  3452. .trim = cfq_free_io_context,
  3453. },
  3454. .elevator_attrs = cfq_attrs,
  3455. .elevator_name = "cfq",
  3456. .elevator_owner = THIS_MODULE,
  3457. };
  3458. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  3459. static struct blkio_policy_type blkio_policy_cfq = {
  3460. .ops = {
  3461. .blkio_unlink_group_fn = cfq_unlink_blkio_group,
  3462. .blkio_update_group_weight_fn = cfq_update_blkio_group_weight,
  3463. },
  3464. .plid = BLKIO_POLICY_PROP,
  3465. };
  3466. #else
  3467. static struct blkio_policy_type blkio_policy_cfq;
  3468. #endif
  3469. static int __init cfq_init(void)
  3470. {
  3471. /*
  3472. * could be 0 on HZ < 1000 setups
  3473. */
  3474. if (!cfq_slice_async)
  3475. cfq_slice_async = 1;
  3476. if (!cfq_slice_idle)
  3477. cfq_slice_idle = 1;
  3478. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  3479. if (!cfq_group_idle)
  3480. cfq_group_idle = 1;
  3481. #else
  3482. cfq_group_idle = 0;
  3483. #endif
  3484. if (cfq_slab_setup())
  3485. return -ENOMEM;
  3486. elv_register(&iosched_cfq);
  3487. blkio_policy_register(&blkio_policy_cfq);
  3488. return 0;
  3489. }
  3490. static void __exit cfq_exit(void)
  3491. {
  3492. DECLARE_COMPLETION_ONSTACK(all_gone);
  3493. blkio_policy_unregister(&blkio_policy_cfq);
  3494. elv_unregister(&iosched_cfq);
  3495. ioc_gone = &all_gone;
  3496. /* ioc_gone's update must be visible before reading ioc_count */
  3497. smp_wmb();
  3498. /*
  3499. * this also protects us from entering cfq_slab_kill() with
  3500. * pending RCU callbacks
  3501. */
  3502. if (elv_ioc_count_read(cfq_ioc_count))
  3503. wait_for_completion(&all_gone);
  3504. ida_destroy(&cic_index_ida);
  3505. cfq_slab_kill();
  3506. }
  3507. module_init(cfq_init);
  3508. module_exit(cfq_exit);
  3509. MODULE_AUTHOR("Jens Axboe");
  3510. MODULE_LICENSE("GPL");
  3511. MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");