security.c 29 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186
  1. /*
  2. * Security plug functions
  3. *
  4. * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com>
  5. * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com>
  6. * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com>
  7. *
  8. * This program is free software; you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation; either version 2 of the License, or
  11. * (at your option) any later version.
  12. */
  13. #include <linux/capability.h>
  14. #include <linux/module.h>
  15. #include <linux/init.h>
  16. #include <linux/kernel.h>
  17. #include <linux/security.h>
  18. /* Boot-time LSM user choice */
  19. static __initdata char chosen_lsm[SECURITY_NAME_MAX + 1];
  20. /* things that live in capability.c */
  21. extern struct security_operations default_security_ops;
  22. extern void security_fixup_ops(struct security_operations *ops);
  23. struct security_operations *security_ops; /* Initialized to NULL */
  24. /* amount of vm to protect from userspace access */
  25. unsigned long mmap_min_addr = CONFIG_SECURITY_DEFAULT_MMAP_MIN_ADDR;
  26. static inline int verify(struct security_operations *ops)
  27. {
  28. /* verify the security_operations structure exists */
  29. if (!ops)
  30. return -EINVAL;
  31. security_fixup_ops(ops);
  32. return 0;
  33. }
  34. static void __init do_security_initcalls(void)
  35. {
  36. initcall_t *call;
  37. call = __security_initcall_start;
  38. while (call < __security_initcall_end) {
  39. (*call) ();
  40. call++;
  41. }
  42. }
  43. /**
  44. * security_init - initializes the security framework
  45. *
  46. * This should be called early in the kernel initialization sequence.
  47. */
  48. int __init security_init(void)
  49. {
  50. printk(KERN_INFO "Security Framework initialized\n");
  51. security_fixup_ops(&default_security_ops);
  52. security_ops = &default_security_ops;
  53. do_security_initcalls();
  54. return 0;
  55. }
  56. /* Save user chosen LSM */
  57. static int __init choose_lsm(char *str)
  58. {
  59. strncpy(chosen_lsm, str, SECURITY_NAME_MAX);
  60. return 1;
  61. }
  62. __setup("security=", choose_lsm);
  63. /**
  64. * security_module_enable - Load given security module on boot ?
  65. * @ops: a pointer to the struct security_operations that is to be checked.
  66. *
  67. * Each LSM must pass this method before registering its own operations
  68. * to avoid security registration races. This method may also be used
  69. * to check if your LSM is currently loaded during kernel initialization.
  70. *
  71. * Return true if:
  72. * -The passed LSM is the one chosen by user at boot time,
  73. * -or user didn't specify a specific LSM and we're the first to ask
  74. * for registration permission,
  75. * -or the passed LSM is currently loaded.
  76. * Otherwise, return false.
  77. */
  78. int __init security_module_enable(struct security_operations *ops)
  79. {
  80. if (!*chosen_lsm)
  81. strncpy(chosen_lsm, ops->name, SECURITY_NAME_MAX);
  82. else if (strncmp(ops->name, chosen_lsm, SECURITY_NAME_MAX))
  83. return 0;
  84. return 1;
  85. }
  86. /**
  87. * register_security - registers a security framework with the kernel
  88. * @ops: a pointer to the struct security_options that is to be registered
  89. *
  90. * This function allows a security module to register itself with the
  91. * kernel security subsystem. Some rudimentary checking is done on the @ops
  92. * value passed to this function. You'll need to check first if your LSM
  93. * is allowed to register its @ops by calling security_module_enable(@ops).
  94. *
  95. * If there is already a security module registered with the kernel,
  96. * an error will be returned. Otherwise %0 is returned on success.
  97. */
  98. int register_security(struct security_operations *ops)
  99. {
  100. if (verify(ops)) {
  101. printk(KERN_DEBUG "%s could not verify "
  102. "security_operations structure.\n", __func__);
  103. return -EINVAL;
  104. }
  105. if (security_ops != &default_security_ops)
  106. return -EAGAIN;
  107. security_ops = ops;
  108. return 0;
  109. }
  110. /* Security operations */
  111. int security_ptrace_may_access(struct task_struct *child, unsigned int mode)
  112. {
  113. return security_ops->ptrace_may_access(child, mode);
  114. }
  115. int security_ptrace_traceme(struct task_struct *parent)
  116. {
  117. return security_ops->ptrace_traceme(parent);
  118. }
  119. int security_capget(struct task_struct *target,
  120. kernel_cap_t *effective,
  121. kernel_cap_t *inheritable,
  122. kernel_cap_t *permitted)
  123. {
  124. return security_ops->capget(target, effective, inheritable, permitted);
  125. }
  126. int security_capset(struct cred *new, const struct cred *old,
  127. const kernel_cap_t *effective,
  128. const kernel_cap_t *inheritable,
  129. const kernel_cap_t *permitted)
  130. {
  131. return security_ops->capset(new, old,
  132. effective, inheritable, permitted);
  133. }
  134. int security_capable(int cap)
  135. {
  136. return security_ops->capable(current, current_cred(), cap,
  137. SECURITY_CAP_AUDIT);
  138. }
  139. int security_real_capable(struct task_struct *tsk, int cap)
  140. {
  141. const struct cred *cred;
  142. int ret;
  143. cred = get_task_cred(tsk);
  144. ret = security_ops->capable(tsk, cred, cap, SECURITY_CAP_AUDIT);
  145. put_cred(cred);
  146. return ret;
  147. }
  148. int security_real_capable_noaudit(struct task_struct *tsk, int cap)
  149. {
  150. const struct cred *cred;
  151. int ret;
  152. cred = get_task_cred(tsk);
  153. ret = security_ops->capable(tsk, cred, cap, SECURITY_CAP_NOAUDIT);
  154. put_cred(cred);
  155. return ret;
  156. }
  157. int security_acct(struct file *file)
  158. {
  159. return security_ops->acct(file);
  160. }
  161. int security_sysctl(struct ctl_table *table, int op)
  162. {
  163. return security_ops->sysctl(table, op);
  164. }
  165. int security_quotactl(int cmds, int type, int id, struct super_block *sb)
  166. {
  167. return security_ops->quotactl(cmds, type, id, sb);
  168. }
  169. int security_quota_on(struct dentry *dentry)
  170. {
  171. return security_ops->quota_on(dentry);
  172. }
  173. int security_syslog(int type)
  174. {
  175. return security_ops->syslog(type);
  176. }
  177. int security_settime(struct timespec *ts, struct timezone *tz)
  178. {
  179. return security_ops->settime(ts, tz);
  180. }
  181. int security_vm_enough_memory(long pages)
  182. {
  183. WARN_ON(current->mm == NULL);
  184. return security_ops->vm_enough_memory(current->mm, pages);
  185. }
  186. int security_vm_enough_memory_mm(struct mm_struct *mm, long pages)
  187. {
  188. WARN_ON(mm == NULL);
  189. return security_ops->vm_enough_memory(mm, pages);
  190. }
  191. int security_vm_enough_memory_kern(long pages)
  192. {
  193. /* If current->mm is a kernel thread then we will pass NULL,
  194. for this specific case that is fine */
  195. return security_ops->vm_enough_memory(current->mm, pages);
  196. }
  197. int security_bprm_set_creds(struct linux_binprm *bprm)
  198. {
  199. return security_ops->bprm_set_creds(bprm);
  200. }
  201. int security_bprm_check(struct linux_binprm *bprm)
  202. {
  203. return security_ops->bprm_check_security(bprm);
  204. }
  205. void security_bprm_committing_creds(struct linux_binprm *bprm)
  206. {
  207. security_ops->bprm_committing_creds(bprm);
  208. }
  209. void security_bprm_committed_creds(struct linux_binprm *bprm)
  210. {
  211. security_ops->bprm_committed_creds(bprm);
  212. }
  213. int security_bprm_secureexec(struct linux_binprm *bprm)
  214. {
  215. return security_ops->bprm_secureexec(bprm);
  216. }
  217. int security_sb_alloc(struct super_block *sb)
  218. {
  219. return security_ops->sb_alloc_security(sb);
  220. }
  221. void security_sb_free(struct super_block *sb)
  222. {
  223. security_ops->sb_free_security(sb);
  224. }
  225. int security_sb_copy_data(char *orig, char *copy)
  226. {
  227. return security_ops->sb_copy_data(orig, copy);
  228. }
  229. EXPORT_SYMBOL(security_sb_copy_data);
  230. int security_sb_kern_mount(struct super_block *sb, int flags, void *data)
  231. {
  232. return security_ops->sb_kern_mount(sb, flags, data);
  233. }
  234. int security_sb_show_options(struct seq_file *m, struct super_block *sb)
  235. {
  236. return security_ops->sb_show_options(m, sb);
  237. }
  238. int security_sb_statfs(struct dentry *dentry)
  239. {
  240. return security_ops->sb_statfs(dentry);
  241. }
  242. int security_sb_mount(char *dev_name, struct path *path,
  243. char *type, unsigned long flags, void *data)
  244. {
  245. return security_ops->sb_mount(dev_name, path, type, flags, data);
  246. }
  247. int security_sb_check_sb(struct vfsmount *mnt, struct path *path)
  248. {
  249. return security_ops->sb_check_sb(mnt, path);
  250. }
  251. int security_sb_umount(struct vfsmount *mnt, int flags)
  252. {
  253. return security_ops->sb_umount(mnt, flags);
  254. }
  255. void security_sb_umount_close(struct vfsmount *mnt)
  256. {
  257. security_ops->sb_umount_close(mnt);
  258. }
  259. void security_sb_umount_busy(struct vfsmount *mnt)
  260. {
  261. security_ops->sb_umount_busy(mnt);
  262. }
  263. void security_sb_post_remount(struct vfsmount *mnt, unsigned long flags, void *data)
  264. {
  265. security_ops->sb_post_remount(mnt, flags, data);
  266. }
  267. void security_sb_post_addmount(struct vfsmount *mnt, struct path *mountpoint)
  268. {
  269. security_ops->sb_post_addmount(mnt, mountpoint);
  270. }
  271. int security_sb_pivotroot(struct path *old_path, struct path *new_path)
  272. {
  273. return security_ops->sb_pivotroot(old_path, new_path);
  274. }
  275. void security_sb_post_pivotroot(struct path *old_path, struct path *new_path)
  276. {
  277. security_ops->sb_post_pivotroot(old_path, new_path);
  278. }
  279. int security_sb_set_mnt_opts(struct super_block *sb,
  280. struct security_mnt_opts *opts)
  281. {
  282. return security_ops->sb_set_mnt_opts(sb, opts);
  283. }
  284. EXPORT_SYMBOL(security_sb_set_mnt_opts);
  285. void security_sb_clone_mnt_opts(const struct super_block *oldsb,
  286. struct super_block *newsb)
  287. {
  288. security_ops->sb_clone_mnt_opts(oldsb, newsb);
  289. }
  290. EXPORT_SYMBOL(security_sb_clone_mnt_opts);
  291. int security_sb_parse_opts_str(char *options, struct security_mnt_opts *opts)
  292. {
  293. return security_ops->sb_parse_opts_str(options, opts);
  294. }
  295. EXPORT_SYMBOL(security_sb_parse_opts_str);
  296. int security_inode_alloc(struct inode *inode)
  297. {
  298. inode->i_security = NULL;
  299. return security_ops->inode_alloc_security(inode);
  300. }
  301. void security_inode_free(struct inode *inode)
  302. {
  303. security_ops->inode_free_security(inode);
  304. }
  305. int security_inode_init_security(struct inode *inode, struct inode *dir,
  306. char **name, void **value, size_t *len)
  307. {
  308. if (unlikely(IS_PRIVATE(inode)))
  309. return -EOPNOTSUPP;
  310. return security_ops->inode_init_security(inode, dir, name, value, len);
  311. }
  312. EXPORT_SYMBOL(security_inode_init_security);
  313. int security_inode_create(struct inode *dir, struct dentry *dentry, int mode)
  314. {
  315. if (unlikely(IS_PRIVATE(dir)))
  316. return 0;
  317. return security_ops->inode_create(dir, dentry, mode);
  318. }
  319. int security_inode_link(struct dentry *old_dentry, struct inode *dir,
  320. struct dentry *new_dentry)
  321. {
  322. if (unlikely(IS_PRIVATE(old_dentry->d_inode)))
  323. return 0;
  324. return security_ops->inode_link(old_dentry, dir, new_dentry);
  325. }
  326. int security_inode_unlink(struct inode *dir, struct dentry *dentry)
  327. {
  328. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  329. return 0;
  330. return security_ops->inode_unlink(dir, dentry);
  331. }
  332. int security_inode_symlink(struct inode *dir, struct dentry *dentry,
  333. const char *old_name)
  334. {
  335. if (unlikely(IS_PRIVATE(dir)))
  336. return 0;
  337. return security_ops->inode_symlink(dir, dentry, old_name);
  338. }
  339. int security_inode_mkdir(struct inode *dir, struct dentry *dentry, int mode)
  340. {
  341. if (unlikely(IS_PRIVATE(dir)))
  342. return 0;
  343. return security_ops->inode_mkdir(dir, dentry, mode);
  344. }
  345. int security_inode_rmdir(struct inode *dir, struct dentry *dentry)
  346. {
  347. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  348. return 0;
  349. return security_ops->inode_rmdir(dir, dentry);
  350. }
  351. int security_inode_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
  352. {
  353. if (unlikely(IS_PRIVATE(dir)))
  354. return 0;
  355. return security_ops->inode_mknod(dir, dentry, mode, dev);
  356. }
  357. int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry,
  358. struct inode *new_dir, struct dentry *new_dentry)
  359. {
  360. if (unlikely(IS_PRIVATE(old_dentry->d_inode) ||
  361. (new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode))))
  362. return 0;
  363. return security_ops->inode_rename(old_dir, old_dentry,
  364. new_dir, new_dentry);
  365. }
  366. int security_inode_readlink(struct dentry *dentry)
  367. {
  368. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  369. return 0;
  370. return security_ops->inode_readlink(dentry);
  371. }
  372. int security_inode_follow_link(struct dentry *dentry, struct nameidata *nd)
  373. {
  374. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  375. return 0;
  376. return security_ops->inode_follow_link(dentry, nd);
  377. }
  378. int security_inode_permission(struct inode *inode, int mask)
  379. {
  380. if (unlikely(IS_PRIVATE(inode)))
  381. return 0;
  382. return security_ops->inode_permission(inode, mask);
  383. }
  384. int security_inode_setattr(struct dentry *dentry, struct iattr *attr)
  385. {
  386. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  387. return 0;
  388. return security_ops->inode_setattr(dentry, attr);
  389. }
  390. EXPORT_SYMBOL_GPL(security_inode_setattr);
  391. int security_inode_getattr(struct vfsmount *mnt, struct dentry *dentry)
  392. {
  393. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  394. return 0;
  395. return security_ops->inode_getattr(mnt, dentry);
  396. }
  397. void security_inode_delete(struct inode *inode)
  398. {
  399. if (unlikely(IS_PRIVATE(inode)))
  400. return;
  401. security_ops->inode_delete(inode);
  402. }
  403. int security_inode_setxattr(struct dentry *dentry, const char *name,
  404. const void *value, size_t size, int flags)
  405. {
  406. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  407. return 0;
  408. return security_ops->inode_setxattr(dentry, name, value, size, flags);
  409. }
  410. void security_inode_post_setxattr(struct dentry *dentry, const char *name,
  411. const void *value, size_t size, int flags)
  412. {
  413. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  414. return;
  415. security_ops->inode_post_setxattr(dentry, name, value, size, flags);
  416. }
  417. int security_inode_getxattr(struct dentry *dentry, const char *name)
  418. {
  419. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  420. return 0;
  421. return security_ops->inode_getxattr(dentry, name);
  422. }
  423. int security_inode_listxattr(struct dentry *dentry)
  424. {
  425. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  426. return 0;
  427. return security_ops->inode_listxattr(dentry);
  428. }
  429. int security_inode_removexattr(struct dentry *dentry, const char *name)
  430. {
  431. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  432. return 0;
  433. return security_ops->inode_removexattr(dentry, name);
  434. }
  435. int security_inode_need_killpriv(struct dentry *dentry)
  436. {
  437. return security_ops->inode_need_killpriv(dentry);
  438. }
  439. int security_inode_killpriv(struct dentry *dentry)
  440. {
  441. return security_ops->inode_killpriv(dentry);
  442. }
  443. int security_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc)
  444. {
  445. if (unlikely(IS_PRIVATE(inode)))
  446. return 0;
  447. return security_ops->inode_getsecurity(inode, name, buffer, alloc);
  448. }
  449. int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags)
  450. {
  451. if (unlikely(IS_PRIVATE(inode)))
  452. return 0;
  453. return security_ops->inode_setsecurity(inode, name, value, size, flags);
  454. }
  455. int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
  456. {
  457. if (unlikely(IS_PRIVATE(inode)))
  458. return 0;
  459. return security_ops->inode_listsecurity(inode, buffer, buffer_size);
  460. }
  461. void security_inode_getsecid(const struct inode *inode, u32 *secid)
  462. {
  463. security_ops->inode_getsecid(inode, secid);
  464. }
  465. int security_file_permission(struct file *file, int mask)
  466. {
  467. return security_ops->file_permission(file, mask);
  468. }
  469. int security_file_alloc(struct file *file)
  470. {
  471. return security_ops->file_alloc_security(file);
  472. }
  473. void security_file_free(struct file *file)
  474. {
  475. security_ops->file_free_security(file);
  476. }
  477. int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
  478. {
  479. return security_ops->file_ioctl(file, cmd, arg);
  480. }
  481. int security_file_mmap(struct file *file, unsigned long reqprot,
  482. unsigned long prot, unsigned long flags,
  483. unsigned long addr, unsigned long addr_only)
  484. {
  485. return security_ops->file_mmap(file, reqprot, prot, flags, addr, addr_only);
  486. }
  487. int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot,
  488. unsigned long prot)
  489. {
  490. return security_ops->file_mprotect(vma, reqprot, prot);
  491. }
  492. int security_file_lock(struct file *file, unsigned int cmd)
  493. {
  494. return security_ops->file_lock(file, cmd);
  495. }
  496. int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
  497. {
  498. return security_ops->file_fcntl(file, cmd, arg);
  499. }
  500. int security_file_set_fowner(struct file *file)
  501. {
  502. return security_ops->file_set_fowner(file);
  503. }
  504. int security_file_send_sigiotask(struct task_struct *tsk,
  505. struct fown_struct *fown, int sig)
  506. {
  507. return security_ops->file_send_sigiotask(tsk, fown, sig);
  508. }
  509. int security_file_receive(struct file *file)
  510. {
  511. return security_ops->file_receive(file);
  512. }
  513. int security_dentry_open(struct file *file, const struct cred *cred)
  514. {
  515. return security_ops->dentry_open(file, cred);
  516. }
  517. int security_task_create(unsigned long clone_flags)
  518. {
  519. return security_ops->task_create(clone_flags);
  520. }
  521. void security_cred_free(struct cred *cred)
  522. {
  523. security_ops->cred_free(cred);
  524. }
  525. int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp)
  526. {
  527. return security_ops->cred_prepare(new, old, gfp);
  528. }
  529. void security_commit_creds(struct cred *new, const struct cred *old)
  530. {
  531. security_ops->cred_commit(new, old);
  532. }
  533. int security_kernel_act_as(struct cred *new, u32 secid)
  534. {
  535. return security_ops->kernel_act_as(new, secid);
  536. }
  537. int security_kernel_create_files_as(struct cred *new, struct inode *inode)
  538. {
  539. return security_ops->kernel_create_files_as(new, inode);
  540. }
  541. int security_task_setuid(uid_t id0, uid_t id1, uid_t id2, int flags)
  542. {
  543. return security_ops->task_setuid(id0, id1, id2, flags);
  544. }
  545. int security_task_fix_setuid(struct cred *new, const struct cred *old,
  546. int flags)
  547. {
  548. return security_ops->task_fix_setuid(new, old, flags);
  549. }
  550. int security_task_setgid(gid_t id0, gid_t id1, gid_t id2, int flags)
  551. {
  552. return security_ops->task_setgid(id0, id1, id2, flags);
  553. }
  554. int security_task_setpgid(struct task_struct *p, pid_t pgid)
  555. {
  556. return security_ops->task_setpgid(p, pgid);
  557. }
  558. int security_task_getpgid(struct task_struct *p)
  559. {
  560. return security_ops->task_getpgid(p);
  561. }
  562. int security_task_getsid(struct task_struct *p)
  563. {
  564. return security_ops->task_getsid(p);
  565. }
  566. void security_task_getsecid(struct task_struct *p, u32 *secid)
  567. {
  568. security_ops->task_getsecid(p, secid);
  569. }
  570. EXPORT_SYMBOL(security_task_getsecid);
  571. int security_task_setgroups(struct group_info *group_info)
  572. {
  573. return security_ops->task_setgroups(group_info);
  574. }
  575. int security_task_setnice(struct task_struct *p, int nice)
  576. {
  577. return security_ops->task_setnice(p, nice);
  578. }
  579. int security_task_setioprio(struct task_struct *p, int ioprio)
  580. {
  581. return security_ops->task_setioprio(p, ioprio);
  582. }
  583. int security_task_getioprio(struct task_struct *p)
  584. {
  585. return security_ops->task_getioprio(p);
  586. }
  587. int security_task_setrlimit(unsigned int resource, struct rlimit *new_rlim)
  588. {
  589. return security_ops->task_setrlimit(resource, new_rlim);
  590. }
  591. int security_task_setscheduler(struct task_struct *p,
  592. int policy, struct sched_param *lp)
  593. {
  594. return security_ops->task_setscheduler(p, policy, lp);
  595. }
  596. int security_task_getscheduler(struct task_struct *p)
  597. {
  598. return security_ops->task_getscheduler(p);
  599. }
  600. int security_task_movememory(struct task_struct *p)
  601. {
  602. return security_ops->task_movememory(p);
  603. }
  604. int security_task_kill(struct task_struct *p, struct siginfo *info,
  605. int sig, u32 secid)
  606. {
  607. return security_ops->task_kill(p, info, sig, secid);
  608. }
  609. int security_task_wait(struct task_struct *p)
  610. {
  611. return security_ops->task_wait(p);
  612. }
  613. int security_task_prctl(int option, unsigned long arg2, unsigned long arg3,
  614. unsigned long arg4, unsigned long arg5)
  615. {
  616. return security_ops->task_prctl(option, arg2, arg3, arg4, arg5);
  617. }
  618. void security_task_to_inode(struct task_struct *p, struct inode *inode)
  619. {
  620. security_ops->task_to_inode(p, inode);
  621. }
  622. int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
  623. {
  624. return security_ops->ipc_permission(ipcp, flag);
  625. }
  626. void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
  627. {
  628. security_ops->ipc_getsecid(ipcp, secid);
  629. }
  630. int security_msg_msg_alloc(struct msg_msg *msg)
  631. {
  632. return security_ops->msg_msg_alloc_security(msg);
  633. }
  634. void security_msg_msg_free(struct msg_msg *msg)
  635. {
  636. security_ops->msg_msg_free_security(msg);
  637. }
  638. int security_msg_queue_alloc(struct msg_queue *msq)
  639. {
  640. return security_ops->msg_queue_alloc_security(msq);
  641. }
  642. void security_msg_queue_free(struct msg_queue *msq)
  643. {
  644. security_ops->msg_queue_free_security(msq);
  645. }
  646. int security_msg_queue_associate(struct msg_queue *msq, int msqflg)
  647. {
  648. return security_ops->msg_queue_associate(msq, msqflg);
  649. }
  650. int security_msg_queue_msgctl(struct msg_queue *msq, int cmd)
  651. {
  652. return security_ops->msg_queue_msgctl(msq, cmd);
  653. }
  654. int security_msg_queue_msgsnd(struct msg_queue *msq,
  655. struct msg_msg *msg, int msqflg)
  656. {
  657. return security_ops->msg_queue_msgsnd(msq, msg, msqflg);
  658. }
  659. int security_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
  660. struct task_struct *target, long type, int mode)
  661. {
  662. return security_ops->msg_queue_msgrcv(msq, msg, target, type, mode);
  663. }
  664. int security_shm_alloc(struct shmid_kernel *shp)
  665. {
  666. return security_ops->shm_alloc_security(shp);
  667. }
  668. void security_shm_free(struct shmid_kernel *shp)
  669. {
  670. security_ops->shm_free_security(shp);
  671. }
  672. int security_shm_associate(struct shmid_kernel *shp, int shmflg)
  673. {
  674. return security_ops->shm_associate(shp, shmflg);
  675. }
  676. int security_shm_shmctl(struct shmid_kernel *shp, int cmd)
  677. {
  678. return security_ops->shm_shmctl(shp, cmd);
  679. }
  680. int security_shm_shmat(struct shmid_kernel *shp, char __user *shmaddr, int shmflg)
  681. {
  682. return security_ops->shm_shmat(shp, shmaddr, shmflg);
  683. }
  684. int security_sem_alloc(struct sem_array *sma)
  685. {
  686. return security_ops->sem_alloc_security(sma);
  687. }
  688. void security_sem_free(struct sem_array *sma)
  689. {
  690. security_ops->sem_free_security(sma);
  691. }
  692. int security_sem_associate(struct sem_array *sma, int semflg)
  693. {
  694. return security_ops->sem_associate(sma, semflg);
  695. }
  696. int security_sem_semctl(struct sem_array *sma, int cmd)
  697. {
  698. return security_ops->sem_semctl(sma, cmd);
  699. }
  700. int security_sem_semop(struct sem_array *sma, struct sembuf *sops,
  701. unsigned nsops, int alter)
  702. {
  703. return security_ops->sem_semop(sma, sops, nsops, alter);
  704. }
  705. void security_d_instantiate(struct dentry *dentry, struct inode *inode)
  706. {
  707. if (unlikely(inode && IS_PRIVATE(inode)))
  708. return;
  709. security_ops->d_instantiate(dentry, inode);
  710. }
  711. EXPORT_SYMBOL(security_d_instantiate);
  712. int security_getprocattr(struct task_struct *p, char *name, char **value)
  713. {
  714. return security_ops->getprocattr(p, name, value);
  715. }
  716. int security_setprocattr(struct task_struct *p, char *name, void *value, size_t size)
  717. {
  718. return security_ops->setprocattr(p, name, value, size);
  719. }
  720. int security_netlink_send(struct sock *sk, struct sk_buff *skb)
  721. {
  722. return security_ops->netlink_send(sk, skb);
  723. }
  724. int security_netlink_recv(struct sk_buff *skb, int cap)
  725. {
  726. return security_ops->netlink_recv(skb, cap);
  727. }
  728. EXPORT_SYMBOL(security_netlink_recv);
  729. int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
  730. {
  731. return security_ops->secid_to_secctx(secid, secdata, seclen);
  732. }
  733. EXPORT_SYMBOL(security_secid_to_secctx);
  734. int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
  735. {
  736. return security_ops->secctx_to_secid(secdata, seclen, secid);
  737. }
  738. EXPORT_SYMBOL(security_secctx_to_secid);
  739. void security_release_secctx(char *secdata, u32 seclen)
  740. {
  741. security_ops->release_secctx(secdata, seclen);
  742. }
  743. EXPORT_SYMBOL(security_release_secctx);
  744. #ifdef CONFIG_SECURITY_NETWORK
  745. int security_unix_stream_connect(struct socket *sock, struct socket *other,
  746. struct sock *newsk)
  747. {
  748. return security_ops->unix_stream_connect(sock, other, newsk);
  749. }
  750. EXPORT_SYMBOL(security_unix_stream_connect);
  751. int security_unix_may_send(struct socket *sock, struct socket *other)
  752. {
  753. return security_ops->unix_may_send(sock, other);
  754. }
  755. EXPORT_SYMBOL(security_unix_may_send);
  756. int security_socket_create(int family, int type, int protocol, int kern)
  757. {
  758. return security_ops->socket_create(family, type, protocol, kern);
  759. }
  760. int security_socket_post_create(struct socket *sock, int family,
  761. int type, int protocol, int kern)
  762. {
  763. return security_ops->socket_post_create(sock, family, type,
  764. protocol, kern);
  765. }
  766. int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
  767. {
  768. return security_ops->socket_bind(sock, address, addrlen);
  769. }
  770. int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
  771. {
  772. return security_ops->socket_connect(sock, address, addrlen);
  773. }
  774. int security_socket_listen(struct socket *sock, int backlog)
  775. {
  776. return security_ops->socket_listen(sock, backlog);
  777. }
  778. int security_socket_accept(struct socket *sock, struct socket *newsock)
  779. {
  780. return security_ops->socket_accept(sock, newsock);
  781. }
  782. void security_socket_post_accept(struct socket *sock, struct socket *newsock)
  783. {
  784. security_ops->socket_post_accept(sock, newsock);
  785. }
  786. int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size)
  787. {
  788. return security_ops->socket_sendmsg(sock, msg, size);
  789. }
  790. int security_socket_recvmsg(struct socket *sock, struct msghdr *msg,
  791. int size, int flags)
  792. {
  793. return security_ops->socket_recvmsg(sock, msg, size, flags);
  794. }
  795. int security_socket_getsockname(struct socket *sock)
  796. {
  797. return security_ops->socket_getsockname(sock);
  798. }
  799. int security_socket_getpeername(struct socket *sock)
  800. {
  801. return security_ops->socket_getpeername(sock);
  802. }
  803. int security_socket_getsockopt(struct socket *sock, int level, int optname)
  804. {
  805. return security_ops->socket_getsockopt(sock, level, optname);
  806. }
  807. int security_socket_setsockopt(struct socket *sock, int level, int optname)
  808. {
  809. return security_ops->socket_setsockopt(sock, level, optname);
  810. }
  811. int security_socket_shutdown(struct socket *sock, int how)
  812. {
  813. return security_ops->socket_shutdown(sock, how);
  814. }
  815. int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
  816. {
  817. return security_ops->socket_sock_rcv_skb(sk, skb);
  818. }
  819. EXPORT_SYMBOL(security_sock_rcv_skb);
  820. int security_socket_getpeersec_stream(struct socket *sock, char __user *optval,
  821. int __user *optlen, unsigned len)
  822. {
  823. return security_ops->socket_getpeersec_stream(sock, optval, optlen, len);
  824. }
  825. int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
  826. {
  827. return security_ops->socket_getpeersec_dgram(sock, skb, secid);
  828. }
  829. EXPORT_SYMBOL(security_socket_getpeersec_dgram);
  830. int security_sk_alloc(struct sock *sk, int family, gfp_t priority)
  831. {
  832. return security_ops->sk_alloc_security(sk, family, priority);
  833. }
  834. void security_sk_free(struct sock *sk)
  835. {
  836. security_ops->sk_free_security(sk);
  837. }
  838. void security_sk_clone(const struct sock *sk, struct sock *newsk)
  839. {
  840. security_ops->sk_clone_security(sk, newsk);
  841. }
  842. void security_sk_classify_flow(struct sock *sk, struct flowi *fl)
  843. {
  844. security_ops->sk_getsecid(sk, &fl->secid);
  845. }
  846. EXPORT_SYMBOL(security_sk_classify_flow);
  847. void security_req_classify_flow(const struct request_sock *req, struct flowi *fl)
  848. {
  849. security_ops->req_classify_flow(req, fl);
  850. }
  851. EXPORT_SYMBOL(security_req_classify_flow);
  852. void security_sock_graft(struct sock *sk, struct socket *parent)
  853. {
  854. security_ops->sock_graft(sk, parent);
  855. }
  856. EXPORT_SYMBOL(security_sock_graft);
  857. int security_inet_conn_request(struct sock *sk,
  858. struct sk_buff *skb, struct request_sock *req)
  859. {
  860. return security_ops->inet_conn_request(sk, skb, req);
  861. }
  862. EXPORT_SYMBOL(security_inet_conn_request);
  863. void security_inet_csk_clone(struct sock *newsk,
  864. const struct request_sock *req)
  865. {
  866. security_ops->inet_csk_clone(newsk, req);
  867. }
  868. void security_inet_conn_established(struct sock *sk,
  869. struct sk_buff *skb)
  870. {
  871. security_ops->inet_conn_established(sk, skb);
  872. }
  873. #endif /* CONFIG_SECURITY_NETWORK */
  874. #ifdef CONFIG_SECURITY_NETWORK_XFRM
  875. int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp, struct xfrm_user_sec_ctx *sec_ctx)
  876. {
  877. return security_ops->xfrm_policy_alloc_security(ctxp, sec_ctx);
  878. }
  879. EXPORT_SYMBOL(security_xfrm_policy_alloc);
  880. int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx,
  881. struct xfrm_sec_ctx **new_ctxp)
  882. {
  883. return security_ops->xfrm_policy_clone_security(old_ctx, new_ctxp);
  884. }
  885. void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx)
  886. {
  887. security_ops->xfrm_policy_free_security(ctx);
  888. }
  889. EXPORT_SYMBOL(security_xfrm_policy_free);
  890. int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx)
  891. {
  892. return security_ops->xfrm_policy_delete_security(ctx);
  893. }
  894. int security_xfrm_state_alloc(struct xfrm_state *x, struct xfrm_user_sec_ctx *sec_ctx)
  895. {
  896. return security_ops->xfrm_state_alloc_security(x, sec_ctx, 0);
  897. }
  898. EXPORT_SYMBOL(security_xfrm_state_alloc);
  899. int security_xfrm_state_alloc_acquire(struct xfrm_state *x,
  900. struct xfrm_sec_ctx *polsec, u32 secid)
  901. {
  902. if (!polsec)
  903. return 0;
  904. /*
  905. * We want the context to be taken from secid which is usually
  906. * from the sock.
  907. */
  908. return security_ops->xfrm_state_alloc_security(x, NULL, secid);
  909. }
  910. int security_xfrm_state_delete(struct xfrm_state *x)
  911. {
  912. return security_ops->xfrm_state_delete_security(x);
  913. }
  914. EXPORT_SYMBOL(security_xfrm_state_delete);
  915. void security_xfrm_state_free(struct xfrm_state *x)
  916. {
  917. security_ops->xfrm_state_free_security(x);
  918. }
  919. int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid, u8 dir)
  920. {
  921. return security_ops->xfrm_policy_lookup(ctx, fl_secid, dir);
  922. }
  923. int security_xfrm_state_pol_flow_match(struct xfrm_state *x,
  924. struct xfrm_policy *xp, struct flowi *fl)
  925. {
  926. return security_ops->xfrm_state_pol_flow_match(x, xp, fl);
  927. }
  928. int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid)
  929. {
  930. return security_ops->xfrm_decode_session(skb, secid, 1);
  931. }
  932. void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl)
  933. {
  934. int rc = security_ops->xfrm_decode_session(skb, &fl->secid, 0);
  935. BUG_ON(rc);
  936. }
  937. EXPORT_SYMBOL(security_skb_classify_flow);
  938. #endif /* CONFIG_SECURITY_NETWORK_XFRM */
  939. #ifdef CONFIG_KEYS
  940. int security_key_alloc(struct key *key, const struct cred *cred,
  941. unsigned long flags)
  942. {
  943. return security_ops->key_alloc(key, cred, flags);
  944. }
  945. void security_key_free(struct key *key)
  946. {
  947. security_ops->key_free(key);
  948. }
  949. int security_key_permission(key_ref_t key_ref,
  950. const struct cred *cred, key_perm_t perm)
  951. {
  952. return security_ops->key_permission(key_ref, cred, perm);
  953. }
  954. int security_key_getsecurity(struct key *key, char **_buffer)
  955. {
  956. return security_ops->key_getsecurity(key, _buffer);
  957. }
  958. #endif /* CONFIG_KEYS */
  959. #ifdef CONFIG_AUDIT
  960. int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule)
  961. {
  962. return security_ops->audit_rule_init(field, op, rulestr, lsmrule);
  963. }
  964. int security_audit_rule_known(struct audit_krule *krule)
  965. {
  966. return security_ops->audit_rule_known(krule);
  967. }
  968. void security_audit_rule_free(void *lsmrule)
  969. {
  970. security_ops->audit_rule_free(lsmrule);
  971. }
  972. int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule,
  973. struct audit_context *actx)
  974. {
  975. return security_ops->audit_rule_match(secid, field, op, lsmrule, actx);
  976. }
  977. #endif /* CONFIG_AUDIT */