md.c 169 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645
  1. /*
  2. md.c : Multiple Devices driver for Linux
  3. Copyright (C) 1998, 1999, 2000 Ingo Molnar
  4. completely rewritten, based on the MD driver code from Marc Zyngier
  5. Changes:
  6. - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
  7. - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
  8. - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
  9. - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
  10. - kmod support by: Cyrus Durgin
  11. - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
  12. - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
  13. - lots of fixes and improvements to the RAID1/RAID5 and generic
  14. RAID code (such as request based resynchronization):
  15. Neil Brown <neilb@cse.unsw.edu.au>.
  16. - persistent bitmap code
  17. Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
  18. This program is free software; you can redistribute it and/or modify
  19. it under the terms of the GNU General Public License as published by
  20. the Free Software Foundation; either version 2, or (at your option)
  21. any later version.
  22. You should have received a copy of the GNU General Public License
  23. (for example /usr/src/linux/COPYING); if not, write to the Free
  24. Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  25. */
  26. #include <linux/kthread.h>
  27. #include <linux/raid/md.h>
  28. #include <linux/sysctl.h>
  29. #include <linux/buffer_head.h> /* for invalidate_bdev */
  30. #include <linux/poll.h>
  31. #include <linux/ctype.h>
  32. #include <linux/hdreg.h>
  33. #include <linux/proc_fs.h>
  34. #include <linux/random.h>
  35. #include <linux/reboot.h>
  36. #include <linux/file.h>
  37. #include <linux/delay.h>
  38. #include "bitmap.h"
  39. /* 63 partitions with the alternate major number (mdp) */
  40. #define MdpMinorShift 6
  41. #define DEBUG 0
  42. #define dprintk(x...) ((void)(DEBUG && printk(x)))
  43. #ifndef MODULE
  44. static void autostart_arrays(int part);
  45. #endif
  46. static LIST_HEAD(pers_list);
  47. static DEFINE_SPINLOCK(pers_lock);
  48. static void md_print_devices(void);
  49. static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
  50. #define MD_BUG(x...) { printk("md: bug in file %s, line %d\n", __FILE__, __LINE__); md_print_devices(); }
  51. /*
  52. * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
  53. * is 1000 KB/sec, so the extra system load does not show up that much.
  54. * Increase it if you want to have more _guaranteed_ speed. Note that
  55. * the RAID driver will use the maximum available bandwidth if the IO
  56. * subsystem is idle. There is also an 'absolute maximum' reconstruction
  57. * speed limit - in case reconstruction slows down your system despite
  58. * idle IO detection.
  59. *
  60. * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
  61. * or /sys/block/mdX/md/sync_speed_{min,max}
  62. */
  63. static int sysctl_speed_limit_min = 1000;
  64. static int sysctl_speed_limit_max = 200000;
  65. static inline int speed_min(mddev_t *mddev)
  66. {
  67. return mddev->sync_speed_min ?
  68. mddev->sync_speed_min : sysctl_speed_limit_min;
  69. }
  70. static inline int speed_max(mddev_t *mddev)
  71. {
  72. return mddev->sync_speed_max ?
  73. mddev->sync_speed_max : sysctl_speed_limit_max;
  74. }
  75. static struct ctl_table_header *raid_table_header;
  76. static ctl_table raid_table[] = {
  77. {
  78. .ctl_name = DEV_RAID_SPEED_LIMIT_MIN,
  79. .procname = "speed_limit_min",
  80. .data = &sysctl_speed_limit_min,
  81. .maxlen = sizeof(int),
  82. .mode = S_IRUGO|S_IWUSR,
  83. .proc_handler = &proc_dointvec,
  84. },
  85. {
  86. .ctl_name = DEV_RAID_SPEED_LIMIT_MAX,
  87. .procname = "speed_limit_max",
  88. .data = &sysctl_speed_limit_max,
  89. .maxlen = sizeof(int),
  90. .mode = S_IRUGO|S_IWUSR,
  91. .proc_handler = &proc_dointvec,
  92. },
  93. { .ctl_name = 0 }
  94. };
  95. static ctl_table raid_dir_table[] = {
  96. {
  97. .ctl_name = DEV_RAID,
  98. .procname = "raid",
  99. .maxlen = 0,
  100. .mode = S_IRUGO|S_IXUGO,
  101. .child = raid_table,
  102. },
  103. { .ctl_name = 0 }
  104. };
  105. static ctl_table raid_root_table[] = {
  106. {
  107. .ctl_name = CTL_DEV,
  108. .procname = "dev",
  109. .maxlen = 0,
  110. .mode = 0555,
  111. .child = raid_dir_table,
  112. },
  113. { .ctl_name = 0 }
  114. };
  115. static struct block_device_operations md_fops;
  116. static int start_readonly;
  117. /*
  118. * We have a system wide 'event count' that is incremented
  119. * on any 'interesting' event, and readers of /proc/mdstat
  120. * can use 'poll' or 'select' to find out when the event
  121. * count increases.
  122. *
  123. * Events are:
  124. * start array, stop array, error, add device, remove device,
  125. * start build, activate spare
  126. */
  127. static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
  128. static atomic_t md_event_count;
  129. void md_new_event(mddev_t *mddev)
  130. {
  131. atomic_inc(&md_event_count);
  132. wake_up(&md_event_waiters);
  133. }
  134. EXPORT_SYMBOL_GPL(md_new_event);
  135. /* Alternate version that can be called from interrupts
  136. * when calling sysfs_notify isn't needed.
  137. */
  138. static void md_new_event_inintr(mddev_t *mddev)
  139. {
  140. atomic_inc(&md_event_count);
  141. wake_up(&md_event_waiters);
  142. }
  143. /*
  144. * Enables to iterate over all existing md arrays
  145. * all_mddevs_lock protects this list.
  146. */
  147. static LIST_HEAD(all_mddevs);
  148. static DEFINE_SPINLOCK(all_mddevs_lock);
  149. /*
  150. * iterates through all used mddevs in the system.
  151. * We take care to grab the all_mddevs_lock whenever navigating
  152. * the list, and to always hold a refcount when unlocked.
  153. * Any code which breaks out of this loop while own
  154. * a reference to the current mddev and must mddev_put it.
  155. */
  156. #define for_each_mddev(mddev,tmp) \
  157. \
  158. for (({ spin_lock(&all_mddevs_lock); \
  159. tmp = all_mddevs.next; \
  160. mddev = NULL;}); \
  161. ({ if (tmp != &all_mddevs) \
  162. mddev_get(list_entry(tmp, mddev_t, all_mddevs));\
  163. spin_unlock(&all_mddevs_lock); \
  164. if (mddev) mddev_put(mddev); \
  165. mddev = list_entry(tmp, mddev_t, all_mddevs); \
  166. tmp != &all_mddevs;}); \
  167. ({ spin_lock(&all_mddevs_lock); \
  168. tmp = tmp->next;}) \
  169. )
  170. static int md_fail_request(struct request_queue *q, struct bio *bio)
  171. {
  172. bio_io_error(bio);
  173. return 0;
  174. }
  175. static inline mddev_t *mddev_get(mddev_t *mddev)
  176. {
  177. atomic_inc(&mddev->active);
  178. return mddev;
  179. }
  180. static void mddev_delayed_delete(struct work_struct *ws)
  181. {
  182. mddev_t *mddev = container_of(ws, mddev_t, del_work);
  183. kobject_del(&mddev->kobj);
  184. kobject_put(&mddev->kobj);
  185. }
  186. static void mddev_put(mddev_t *mddev)
  187. {
  188. if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
  189. return;
  190. if (!mddev->raid_disks && list_empty(&mddev->disks) &&
  191. !mddev->hold_active) {
  192. list_del(&mddev->all_mddevs);
  193. if (mddev->gendisk) {
  194. /* we did a probe so need to clean up.
  195. * Call schedule_work inside the spinlock
  196. * so that flush_scheduled_work() after
  197. * mddev_find will succeed in waiting for the
  198. * work to be done.
  199. */
  200. INIT_WORK(&mddev->del_work, mddev_delayed_delete);
  201. schedule_work(&mddev->del_work);
  202. } else
  203. kfree(mddev);
  204. }
  205. spin_unlock(&all_mddevs_lock);
  206. }
  207. static mddev_t * mddev_find(dev_t unit)
  208. {
  209. mddev_t *mddev, *new = NULL;
  210. retry:
  211. spin_lock(&all_mddevs_lock);
  212. if (unit) {
  213. list_for_each_entry(mddev, &all_mddevs, all_mddevs)
  214. if (mddev->unit == unit) {
  215. mddev_get(mddev);
  216. spin_unlock(&all_mddevs_lock);
  217. kfree(new);
  218. return mddev;
  219. }
  220. if (new) {
  221. list_add(&new->all_mddevs, &all_mddevs);
  222. spin_unlock(&all_mddevs_lock);
  223. new->hold_active = UNTIL_IOCTL;
  224. return new;
  225. }
  226. } else if (new) {
  227. /* find an unused unit number */
  228. static int next_minor = 512;
  229. int start = next_minor;
  230. int is_free = 0;
  231. int dev = 0;
  232. while (!is_free) {
  233. dev = MKDEV(MD_MAJOR, next_minor);
  234. next_minor++;
  235. if (next_minor > MINORMASK)
  236. next_minor = 0;
  237. if (next_minor == start) {
  238. /* Oh dear, all in use. */
  239. spin_unlock(&all_mddevs_lock);
  240. kfree(new);
  241. return NULL;
  242. }
  243. is_free = 1;
  244. list_for_each_entry(mddev, &all_mddevs, all_mddevs)
  245. if (mddev->unit == dev) {
  246. is_free = 0;
  247. break;
  248. }
  249. }
  250. new->unit = dev;
  251. new->md_minor = MINOR(dev);
  252. new->hold_active = UNTIL_STOP;
  253. list_add(&new->all_mddevs, &all_mddevs);
  254. spin_unlock(&all_mddevs_lock);
  255. return new;
  256. }
  257. spin_unlock(&all_mddevs_lock);
  258. new = kzalloc(sizeof(*new), GFP_KERNEL);
  259. if (!new)
  260. return NULL;
  261. new->unit = unit;
  262. if (MAJOR(unit) == MD_MAJOR)
  263. new->md_minor = MINOR(unit);
  264. else
  265. new->md_minor = MINOR(unit) >> MdpMinorShift;
  266. mutex_init(&new->reconfig_mutex);
  267. INIT_LIST_HEAD(&new->disks);
  268. INIT_LIST_HEAD(&new->all_mddevs);
  269. init_timer(&new->safemode_timer);
  270. atomic_set(&new->active, 1);
  271. atomic_set(&new->openers, 0);
  272. spin_lock_init(&new->write_lock);
  273. init_waitqueue_head(&new->sb_wait);
  274. init_waitqueue_head(&new->recovery_wait);
  275. new->reshape_position = MaxSector;
  276. new->resync_min = 0;
  277. new->resync_max = MaxSector;
  278. new->level = LEVEL_NONE;
  279. goto retry;
  280. }
  281. static inline int mddev_lock(mddev_t * mddev)
  282. {
  283. return mutex_lock_interruptible(&mddev->reconfig_mutex);
  284. }
  285. static inline int mddev_trylock(mddev_t * mddev)
  286. {
  287. return mutex_trylock(&mddev->reconfig_mutex);
  288. }
  289. static inline void mddev_unlock(mddev_t * mddev)
  290. {
  291. mutex_unlock(&mddev->reconfig_mutex);
  292. md_wakeup_thread(mddev->thread);
  293. }
  294. static mdk_rdev_t * find_rdev_nr(mddev_t *mddev, int nr)
  295. {
  296. mdk_rdev_t *rdev;
  297. list_for_each_entry(rdev, &mddev->disks, same_set)
  298. if (rdev->desc_nr == nr)
  299. return rdev;
  300. return NULL;
  301. }
  302. static mdk_rdev_t * find_rdev(mddev_t * mddev, dev_t dev)
  303. {
  304. mdk_rdev_t *rdev;
  305. list_for_each_entry(rdev, &mddev->disks, same_set)
  306. if (rdev->bdev->bd_dev == dev)
  307. return rdev;
  308. return NULL;
  309. }
  310. static struct mdk_personality *find_pers(int level, char *clevel)
  311. {
  312. struct mdk_personality *pers;
  313. list_for_each_entry(pers, &pers_list, list) {
  314. if (level != LEVEL_NONE && pers->level == level)
  315. return pers;
  316. if (strcmp(pers->name, clevel)==0)
  317. return pers;
  318. }
  319. return NULL;
  320. }
  321. /* return the offset of the super block in 512byte sectors */
  322. static inline sector_t calc_dev_sboffset(struct block_device *bdev)
  323. {
  324. sector_t num_sectors = bdev->bd_inode->i_size / 512;
  325. return MD_NEW_SIZE_SECTORS(num_sectors);
  326. }
  327. static sector_t calc_num_sectors(mdk_rdev_t *rdev, unsigned chunk_size)
  328. {
  329. sector_t num_sectors = rdev->sb_start;
  330. if (chunk_size)
  331. num_sectors &= ~((sector_t)chunk_size/512 - 1);
  332. return num_sectors;
  333. }
  334. static int alloc_disk_sb(mdk_rdev_t * rdev)
  335. {
  336. if (rdev->sb_page)
  337. MD_BUG();
  338. rdev->sb_page = alloc_page(GFP_KERNEL);
  339. if (!rdev->sb_page) {
  340. printk(KERN_ALERT "md: out of memory.\n");
  341. return -ENOMEM;
  342. }
  343. return 0;
  344. }
  345. static void free_disk_sb(mdk_rdev_t * rdev)
  346. {
  347. if (rdev->sb_page) {
  348. put_page(rdev->sb_page);
  349. rdev->sb_loaded = 0;
  350. rdev->sb_page = NULL;
  351. rdev->sb_start = 0;
  352. rdev->size = 0;
  353. }
  354. }
  355. static void super_written(struct bio *bio, int error)
  356. {
  357. mdk_rdev_t *rdev = bio->bi_private;
  358. mddev_t *mddev = rdev->mddev;
  359. if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
  360. printk("md: super_written gets error=%d, uptodate=%d\n",
  361. error, test_bit(BIO_UPTODATE, &bio->bi_flags));
  362. WARN_ON(test_bit(BIO_UPTODATE, &bio->bi_flags));
  363. md_error(mddev, rdev);
  364. }
  365. if (atomic_dec_and_test(&mddev->pending_writes))
  366. wake_up(&mddev->sb_wait);
  367. bio_put(bio);
  368. }
  369. static void super_written_barrier(struct bio *bio, int error)
  370. {
  371. struct bio *bio2 = bio->bi_private;
  372. mdk_rdev_t *rdev = bio2->bi_private;
  373. mddev_t *mddev = rdev->mddev;
  374. if (!test_bit(BIO_UPTODATE, &bio->bi_flags) &&
  375. error == -EOPNOTSUPP) {
  376. unsigned long flags;
  377. /* barriers don't appear to be supported :-( */
  378. set_bit(BarriersNotsupp, &rdev->flags);
  379. mddev->barriers_work = 0;
  380. spin_lock_irqsave(&mddev->write_lock, flags);
  381. bio2->bi_next = mddev->biolist;
  382. mddev->biolist = bio2;
  383. spin_unlock_irqrestore(&mddev->write_lock, flags);
  384. wake_up(&mddev->sb_wait);
  385. bio_put(bio);
  386. } else {
  387. bio_put(bio2);
  388. bio->bi_private = rdev;
  389. super_written(bio, error);
  390. }
  391. }
  392. void md_super_write(mddev_t *mddev, mdk_rdev_t *rdev,
  393. sector_t sector, int size, struct page *page)
  394. {
  395. /* write first size bytes of page to sector of rdev
  396. * Increment mddev->pending_writes before returning
  397. * and decrement it on completion, waking up sb_wait
  398. * if zero is reached.
  399. * If an error occurred, call md_error
  400. *
  401. * As we might need to resubmit the request if BIO_RW_BARRIER
  402. * causes ENOTSUPP, we allocate a spare bio...
  403. */
  404. struct bio *bio = bio_alloc(GFP_NOIO, 1);
  405. int rw = (1<<BIO_RW) | (1<<BIO_RW_SYNCIO) | (1<<BIO_RW_UNPLUG);
  406. bio->bi_bdev = rdev->bdev;
  407. bio->bi_sector = sector;
  408. bio_add_page(bio, page, size, 0);
  409. bio->bi_private = rdev;
  410. bio->bi_end_io = super_written;
  411. bio->bi_rw = rw;
  412. atomic_inc(&mddev->pending_writes);
  413. if (!test_bit(BarriersNotsupp, &rdev->flags)) {
  414. struct bio *rbio;
  415. rw |= (1<<BIO_RW_BARRIER);
  416. rbio = bio_clone(bio, GFP_NOIO);
  417. rbio->bi_private = bio;
  418. rbio->bi_end_io = super_written_barrier;
  419. submit_bio(rw, rbio);
  420. } else
  421. submit_bio(rw, bio);
  422. }
  423. void md_super_wait(mddev_t *mddev)
  424. {
  425. /* wait for all superblock writes that were scheduled to complete.
  426. * if any had to be retried (due to BARRIER problems), retry them
  427. */
  428. DEFINE_WAIT(wq);
  429. for(;;) {
  430. prepare_to_wait(&mddev->sb_wait, &wq, TASK_UNINTERRUPTIBLE);
  431. if (atomic_read(&mddev->pending_writes)==0)
  432. break;
  433. while (mddev->biolist) {
  434. struct bio *bio;
  435. spin_lock_irq(&mddev->write_lock);
  436. bio = mddev->biolist;
  437. mddev->biolist = bio->bi_next ;
  438. bio->bi_next = NULL;
  439. spin_unlock_irq(&mddev->write_lock);
  440. submit_bio(bio->bi_rw, bio);
  441. }
  442. schedule();
  443. }
  444. finish_wait(&mddev->sb_wait, &wq);
  445. }
  446. static void bi_complete(struct bio *bio, int error)
  447. {
  448. complete((struct completion*)bio->bi_private);
  449. }
  450. int sync_page_io(struct block_device *bdev, sector_t sector, int size,
  451. struct page *page, int rw)
  452. {
  453. struct bio *bio = bio_alloc(GFP_NOIO, 1);
  454. struct completion event;
  455. int ret;
  456. rw |= (1 << BIO_RW_SYNCIO) | (1 << BIO_RW_UNPLUG);
  457. bio->bi_bdev = bdev;
  458. bio->bi_sector = sector;
  459. bio_add_page(bio, page, size, 0);
  460. init_completion(&event);
  461. bio->bi_private = &event;
  462. bio->bi_end_io = bi_complete;
  463. submit_bio(rw, bio);
  464. wait_for_completion(&event);
  465. ret = test_bit(BIO_UPTODATE, &bio->bi_flags);
  466. bio_put(bio);
  467. return ret;
  468. }
  469. EXPORT_SYMBOL_GPL(sync_page_io);
  470. static int read_disk_sb(mdk_rdev_t * rdev, int size)
  471. {
  472. char b[BDEVNAME_SIZE];
  473. if (!rdev->sb_page) {
  474. MD_BUG();
  475. return -EINVAL;
  476. }
  477. if (rdev->sb_loaded)
  478. return 0;
  479. if (!sync_page_io(rdev->bdev, rdev->sb_start, size, rdev->sb_page, READ))
  480. goto fail;
  481. rdev->sb_loaded = 1;
  482. return 0;
  483. fail:
  484. printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
  485. bdevname(rdev->bdev,b));
  486. return -EINVAL;
  487. }
  488. static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
  489. {
  490. return sb1->set_uuid0 == sb2->set_uuid0 &&
  491. sb1->set_uuid1 == sb2->set_uuid1 &&
  492. sb1->set_uuid2 == sb2->set_uuid2 &&
  493. sb1->set_uuid3 == sb2->set_uuid3;
  494. }
  495. static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
  496. {
  497. int ret;
  498. mdp_super_t *tmp1, *tmp2;
  499. tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
  500. tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
  501. if (!tmp1 || !tmp2) {
  502. ret = 0;
  503. printk(KERN_INFO "md.c sb_equal(): failed to allocate memory!\n");
  504. goto abort;
  505. }
  506. *tmp1 = *sb1;
  507. *tmp2 = *sb2;
  508. /*
  509. * nr_disks is not constant
  510. */
  511. tmp1->nr_disks = 0;
  512. tmp2->nr_disks = 0;
  513. ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0);
  514. abort:
  515. kfree(tmp1);
  516. kfree(tmp2);
  517. return ret;
  518. }
  519. static u32 md_csum_fold(u32 csum)
  520. {
  521. csum = (csum & 0xffff) + (csum >> 16);
  522. return (csum & 0xffff) + (csum >> 16);
  523. }
  524. static unsigned int calc_sb_csum(mdp_super_t * sb)
  525. {
  526. u64 newcsum = 0;
  527. u32 *sb32 = (u32*)sb;
  528. int i;
  529. unsigned int disk_csum, csum;
  530. disk_csum = sb->sb_csum;
  531. sb->sb_csum = 0;
  532. for (i = 0; i < MD_SB_BYTES/4 ; i++)
  533. newcsum += sb32[i];
  534. csum = (newcsum & 0xffffffff) + (newcsum>>32);
  535. #ifdef CONFIG_ALPHA
  536. /* This used to use csum_partial, which was wrong for several
  537. * reasons including that different results are returned on
  538. * different architectures. It isn't critical that we get exactly
  539. * the same return value as before (we always csum_fold before
  540. * testing, and that removes any differences). However as we
  541. * know that csum_partial always returned a 16bit value on
  542. * alphas, do a fold to maximise conformity to previous behaviour.
  543. */
  544. sb->sb_csum = md_csum_fold(disk_csum);
  545. #else
  546. sb->sb_csum = disk_csum;
  547. #endif
  548. return csum;
  549. }
  550. /*
  551. * Handle superblock details.
  552. * We want to be able to handle multiple superblock formats
  553. * so we have a common interface to them all, and an array of
  554. * different handlers.
  555. * We rely on user-space to write the initial superblock, and support
  556. * reading and updating of superblocks.
  557. * Interface methods are:
  558. * int load_super(mdk_rdev_t *dev, mdk_rdev_t *refdev, int minor_version)
  559. * loads and validates a superblock on dev.
  560. * if refdev != NULL, compare superblocks on both devices
  561. * Return:
  562. * 0 - dev has a superblock that is compatible with refdev
  563. * 1 - dev has a superblock that is compatible and newer than refdev
  564. * so dev should be used as the refdev in future
  565. * -EINVAL superblock incompatible or invalid
  566. * -othererror e.g. -EIO
  567. *
  568. * int validate_super(mddev_t *mddev, mdk_rdev_t *dev)
  569. * Verify that dev is acceptable into mddev.
  570. * The first time, mddev->raid_disks will be 0, and data from
  571. * dev should be merged in. Subsequent calls check that dev
  572. * is new enough. Return 0 or -EINVAL
  573. *
  574. * void sync_super(mddev_t *mddev, mdk_rdev_t *dev)
  575. * Update the superblock for rdev with data in mddev
  576. * This does not write to disc.
  577. *
  578. */
  579. struct super_type {
  580. char *name;
  581. struct module *owner;
  582. int (*load_super)(mdk_rdev_t *rdev, mdk_rdev_t *refdev,
  583. int minor_version);
  584. int (*validate_super)(mddev_t *mddev, mdk_rdev_t *rdev);
  585. void (*sync_super)(mddev_t *mddev, mdk_rdev_t *rdev);
  586. unsigned long long (*rdev_size_change)(mdk_rdev_t *rdev,
  587. sector_t num_sectors);
  588. };
  589. /*
  590. * load_super for 0.90.0
  591. */
  592. static int super_90_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
  593. {
  594. char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
  595. mdp_super_t *sb;
  596. int ret;
  597. /*
  598. * Calculate the position of the superblock (512byte sectors),
  599. * it's at the end of the disk.
  600. *
  601. * It also happens to be a multiple of 4Kb.
  602. */
  603. rdev->sb_start = calc_dev_sboffset(rdev->bdev);
  604. ret = read_disk_sb(rdev, MD_SB_BYTES);
  605. if (ret) return ret;
  606. ret = -EINVAL;
  607. bdevname(rdev->bdev, b);
  608. sb = (mdp_super_t*)page_address(rdev->sb_page);
  609. if (sb->md_magic != MD_SB_MAGIC) {
  610. printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
  611. b);
  612. goto abort;
  613. }
  614. if (sb->major_version != 0 ||
  615. sb->minor_version < 90 ||
  616. sb->minor_version > 91) {
  617. printk(KERN_WARNING "Bad version number %d.%d on %s\n",
  618. sb->major_version, sb->minor_version,
  619. b);
  620. goto abort;
  621. }
  622. if (sb->raid_disks <= 0)
  623. goto abort;
  624. if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) {
  625. printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
  626. b);
  627. goto abort;
  628. }
  629. rdev->preferred_minor = sb->md_minor;
  630. rdev->data_offset = 0;
  631. rdev->sb_size = MD_SB_BYTES;
  632. if (sb->state & (1<<MD_SB_BITMAP_PRESENT)) {
  633. if (sb->level != 1 && sb->level != 4
  634. && sb->level != 5 && sb->level != 6
  635. && sb->level != 10) {
  636. /* FIXME use a better test */
  637. printk(KERN_WARNING
  638. "md: bitmaps not supported for this level.\n");
  639. goto abort;
  640. }
  641. }
  642. if (sb->level == LEVEL_MULTIPATH)
  643. rdev->desc_nr = -1;
  644. else
  645. rdev->desc_nr = sb->this_disk.number;
  646. if (!refdev) {
  647. ret = 1;
  648. } else {
  649. __u64 ev1, ev2;
  650. mdp_super_t *refsb = (mdp_super_t*)page_address(refdev->sb_page);
  651. if (!uuid_equal(refsb, sb)) {
  652. printk(KERN_WARNING "md: %s has different UUID to %s\n",
  653. b, bdevname(refdev->bdev,b2));
  654. goto abort;
  655. }
  656. if (!sb_equal(refsb, sb)) {
  657. printk(KERN_WARNING "md: %s has same UUID"
  658. " but different superblock to %s\n",
  659. b, bdevname(refdev->bdev, b2));
  660. goto abort;
  661. }
  662. ev1 = md_event(sb);
  663. ev2 = md_event(refsb);
  664. if (ev1 > ev2)
  665. ret = 1;
  666. else
  667. ret = 0;
  668. }
  669. rdev->size = calc_num_sectors(rdev, sb->chunk_size) / 2;
  670. if (rdev->size < sb->size && sb->level > 1)
  671. /* "this cannot possibly happen" ... */
  672. ret = -EINVAL;
  673. abort:
  674. return ret;
  675. }
  676. /*
  677. * validate_super for 0.90.0
  678. */
  679. static int super_90_validate(mddev_t *mddev, mdk_rdev_t *rdev)
  680. {
  681. mdp_disk_t *desc;
  682. mdp_super_t *sb = (mdp_super_t *)page_address(rdev->sb_page);
  683. __u64 ev1 = md_event(sb);
  684. rdev->raid_disk = -1;
  685. clear_bit(Faulty, &rdev->flags);
  686. clear_bit(In_sync, &rdev->flags);
  687. clear_bit(WriteMostly, &rdev->flags);
  688. clear_bit(BarriersNotsupp, &rdev->flags);
  689. if (mddev->raid_disks == 0) {
  690. mddev->major_version = 0;
  691. mddev->minor_version = sb->minor_version;
  692. mddev->patch_version = sb->patch_version;
  693. mddev->external = 0;
  694. mddev->chunk_size = sb->chunk_size;
  695. mddev->ctime = sb->ctime;
  696. mddev->utime = sb->utime;
  697. mddev->level = sb->level;
  698. mddev->clevel[0] = 0;
  699. mddev->layout = sb->layout;
  700. mddev->raid_disks = sb->raid_disks;
  701. mddev->size = sb->size;
  702. mddev->events = ev1;
  703. mddev->bitmap_offset = 0;
  704. mddev->default_bitmap_offset = MD_SB_BYTES >> 9;
  705. if (mddev->minor_version >= 91) {
  706. mddev->reshape_position = sb->reshape_position;
  707. mddev->delta_disks = sb->delta_disks;
  708. mddev->new_level = sb->new_level;
  709. mddev->new_layout = sb->new_layout;
  710. mddev->new_chunk = sb->new_chunk;
  711. } else {
  712. mddev->reshape_position = MaxSector;
  713. mddev->delta_disks = 0;
  714. mddev->new_level = mddev->level;
  715. mddev->new_layout = mddev->layout;
  716. mddev->new_chunk = mddev->chunk_size;
  717. }
  718. if (sb->state & (1<<MD_SB_CLEAN))
  719. mddev->recovery_cp = MaxSector;
  720. else {
  721. if (sb->events_hi == sb->cp_events_hi &&
  722. sb->events_lo == sb->cp_events_lo) {
  723. mddev->recovery_cp = sb->recovery_cp;
  724. } else
  725. mddev->recovery_cp = 0;
  726. }
  727. memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
  728. memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
  729. memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
  730. memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
  731. mddev->max_disks = MD_SB_DISKS;
  732. if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
  733. mddev->bitmap_file == NULL)
  734. mddev->bitmap_offset = mddev->default_bitmap_offset;
  735. } else if (mddev->pers == NULL) {
  736. /* Insist on good event counter while assembling */
  737. ++ev1;
  738. if (ev1 < mddev->events)
  739. return -EINVAL;
  740. } else if (mddev->bitmap) {
  741. /* if adding to array with a bitmap, then we can accept an
  742. * older device ... but not too old.
  743. */
  744. if (ev1 < mddev->bitmap->events_cleared)
  745. return 0;
  746. } else {
  747. if (ev1 < mddev->events)
  748. /* just a hot-add of a new device, leave raid_disk at -1 */
  749. return 0;
  750. }
  751. if (mddev->level != LEVEL_MULTIPATH) {
  752. desc = sb->disks + rdev->desc_nr;
  753. if (desc->state & (1<<MD_DISK_FAULTY))
  754. set_bit(Faulty, &rdev->flags);
  755. else if (desc->state & (1<<MD_DISK_SYNC) /* &&
  756. desc->raid_disk < mddev->raid_disks */) {
  757. set_bit(In_sync, &rdev->flags);
  758. rdev->raid_disk = desc->raid_disk;
  759. }
  760. if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
  761. set_bit(WriteMostly, &rdev->flags);
  762. } else /* MULTIPATH are always insync */
  763. set_bit(In_sync, &rdev->flags);
  764. return 0;
  765. }
  766. /*
  767. * sync_super for 0.90.0
  768. */
  769. static void super_90_sync(mddev_t *mddev, mdk_rdev_t *rdev)
  770. {
  771. mdp_super_t *sb;
  772. mdk_rdev_t *rdev2;
  773. int next_spare = mddev->raid_disks;
  774. /* make rdev->sb match mddev data..
  775. *
  776. * 1/ zero out disks
  777. * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
  778. * 3/ any empty disks < next_spare become removed
  779. *
  780. * disks[0] gets initialised to REMOVED because
  781. * we cannot be sure from other fields if it has
  782. * been initialised or not.
  783. */
  784. int i;
  785. int active=0, working=0,failed=0,spare=0,nr_disks=0;
  786. rdev->sb_size = MD_SB_BYTES;
  787. sb = (mdp_super_t*)page_address(rdev->sb_page);
  788. memset(sb, 0, sizeof(*sb));
  789. sb->md_magic = MD_SB_MAGIC;
  790. sb->major_version = mddev->major_version;
  791. sb->patch_version = mddev->patch_version;
  792. sb->gvalid_words = 0; /* ignored */
  793. memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
  794. memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
  795. memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
  796. memcpy(&sb->set_uuid3, mddev->uuid+12,4);
  797. sb->ctime = mddev->ctime;
  798. sb->level = mddev->level;
  799. sb->size = mddev->size;
  800. sb->raid_disks = mddev->raid_disks;
  801. sb->md_minor = mddev->md_minor;
  802. sb->not_persistent = 0;
  803. sb->utime = mddev->utime;
  804. sb->state = 0;
  805. sb->events_hi = (mddev->events>>32);
  806. sb->events_lo = (u32)mddev->events;
  807. if (mddev->reshape_position == MaxSector)
  808. sb->minor_version = 90;
  809. else {
  810. sb->minor_version = 91;
  811. sb->reshape_position = mddev->reshape_position;
  812. sb->new_level = mddev->new_level;
  813. sb->delta_disks = mddev->delta_disks;
  814. sb->new_layout = mddev->new_layout;
  815. sb->new_chunk = mddev->new_chunk;
  816. }
  817. mddev->minor_version = sb->minor_version;
  818. if (mddev->in_sync)
  819. {
  820. sb->recovery_cp = mddev->recovery_cp;
  821. sb->cp_events_hi = (mddev->events>>32);
  822. sb->cp_events_lo = (u32)mddev->events;
  823. if (mddev->recovery_cp == MaxSector)
  824. sb->state = (1<< MD_SB_CLEAN);
  825. } else
  826. sb->recovery_cp = 0;
  827. sb->layout = mddev->layout;
  828. sb->chunk_size = mddev->chunk_size;
  829. if (mddev->bitmap && mddev->bitmap_file == NULL)
  830. sb->state |= (1<<MD_SB_BITMAP_PRESENT);
  831. sb->disks[0].state = (1<<MD_DISK_REMOVED);
  832. list_for_each_entry(rdev2, &mddev->disks, same_set) {
  833. mdp_disk_t *d;
  834. int desc_nr;
  835. if (rdev2->raid_disk >= 0 && test_bit(In_sync, &rdev2->flags)
  836. && !test_bit(Faulty, &rdev2->flags))
  837. desc_nr = rdev2->raid_disk;
  838. else
  839. desc_nr = next_spare++;
  840. rdev2->desc_nr = desc_nr;
  841. d = &sb->disks[rdev2->desc_nr];
  842. nr_disks++;
  843. d->number = rdev2->desc_nr;
  844. d->major = MAJOR(rdev2->bdev->bd_dev);
  845. d->minor = MINOR(rdev2->bdev->bd_dev);
  846. if (rdev2->raid_disk >= 0 && test_bit(In_sync, &rdev2->flags)
  847. && !test_bit(Faulty, &rdev2->flags))
  848. d->raid_disk = rdev2->raid_disk;
  849. else
  850. d->raid_disk = rdev2->desc_nr; /* compatibility */
  851. if (test_bit(Faulty, &rdev2->flags))
  852. d->state = (1<<MD_DISK_FAULTY);
  853. else if (test_bit(In_sync, &rdev2->flags)) {
  854. d->state = (1<<MD_DISK_ACTIVE);
  855. d->state |= (1<<MD_DISK_SYNC);
  856. active++;
  857. working++;
  858. } else {
  859. d->state = 0;
  860. spare++;
  861. working++;
  862. }
  863. if (test_bit(WriteMostly, &rdev2->flags))
  864. d->state |= (1<<MD_DISK_WRITEMOSTLY);
  865. }
  866. /* now set the "removed" and "faulty" bits on any missing devices */
  867. for (i=0 ; i < mddev->raid_disks ; i++) {
  868. mdp_disk_t *d = &sb->disks[i];
  869. if (d->state == 0 && d->number == 0) {
  870. d->number = i;
  871. d->raid_disk = i;
  872. d->state = (1<<MD_DISK_REMOVED);
  873. d->state |= (1<<MD_DISK_FAULTY);
  874. failed++;
  875. }
  876. }
  877. sb->nr_disks = nr_disks;
  878. sb->active_disks = active;
  879. sb->working_disks = working;
  880. sb->failed_disks = failed;
  881. sb->spare_disks = spare;
  882. sb->this_disk = sb->disks[rdev->desc_nr];
  883. sb->sb_csum = calc_sb_csum(sb);
  884. }
  885. /*
  886. * rdev_size_change for 0.90.0
  887. */
  888. static unsigned long long
  889. super_90_rdev_size_change(mdk_rdev_t *rdev, sector_t num_sectors)
  890. {
  891. if (num_sectors && num_sectors < rdev->mddev->size * 2)
  892. return 0; /* component must fit device */
  893. if (rdev->mddev->bitmap_offset)
  894. return 0; /* can't move bitmap */
  895. rdev->sb_start = calc_dev_sboffset(rdev->bdev);
  896. if (!num_sectors || num_sectors > rdev->sb_start)
  897. num_sectors = rdev->sb_start;
  898. md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
  899. rdev->sb_page);
  900. md_super_wait(rdev->mddev);
  901. return num_sectors / 2; /* kB for sysfs */
  902. }
  903. /*
  904. * version 1 superblock
  905. */
  906. static __le32 calc_sb_1_csum(struct mdp_superblock_1 * sb)
  907. {
  908. __le32 disk_csum;
  909. u32 csum;
  910. unsigned long long newcsum;
  911. int size = 256 + le32_to_cpu(sb->max_dev)*2;
  912. __le32 *isuper = (__le32*)sb;
  913. int i;
  914. disk_csum = sb->sb_csum;
  915. sb->sb_csum = 0;
  916. newcsum = 0;
  917. for (i=0; size>=4; size -= 4 )
  918. newcsum += le32_to_cpu(*isuper++);
  919. if (size == 2)
  920. newcsum += le16_to_cpu(*(__le16*) isuper);
  921. csum = (newcsum & 0xffffffff) + (newcsum >> 32);
  922. sb->sb_csum = disk_csum;
  923. return cpu_to_le32(csum);
  924. }
  925. static int super_1_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
  926. {
  927. struct mdp_superblock_1 *sb;
  928. int ret;
  929. sector_t sb_start;
  930. char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
  931. int bmask;
  932. /*
  933. * Calculate the position of the superblock in 512byte sectors.
  934. * It is always aligned to a 4K boundary and
  935. * depeding on minor_version, it can be:
  936. * 0: At least 8K, but less than 12K, from end of device
  937. * 1: At start of device
  938. * 2: 4K from start of device.
  939. */
  940. switch(minor_version) {
  941. case 0:
  942. sb_start = rdev->bdev->bd_inode->i_size >> 9;
  943. sb_start -= 8*2;
  944. sb_start &= ~(sector_t)(4*2-1);
  945. break;
  946. case 1:
  947. sb_start = 0;
  948. break;
  949. case 2:
  950. sb_start = 8;
  951. break;
  952. default:
  953. return -EINVAL;
  954. }
  955. rdev->sb_start = sb_start;
  956. /* superblock is rarely larger than 1K, but it can be larger,
  957. * and it is safe to read 4k, so we do that
  958. */
  959. ret = read_disk_sb(rdev, 4096);
  960. if (ret) return ret;
  961. sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
  962. if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
  963. sb->major_version != cpu_to_le32(1) ||
  964. le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
  965. le64_to_cpu(sb->super_offset) != rdev->sb_start ||
  966. (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
  967. return -EINVAL;
  968. if (calc_sb_1_csum(sb) != sb->sb_csum) {
  969. printk("md: invalid superblock checksum on %s\n",
  970. bdevname(rdev->bdev,b));
  971. return -EINVAL;
  972. }
  973. if (le64_to_cpu(sb->data_size) < 10) {
  974. printk("md: data_size too small on %s\n",
  975. bdevname(rdev->bdev,b));
  976. return -EINVAL;
  977. }
  978. if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET)) {
  979. if (sb->level != cpu_to_le32(1) &&
  980. sb->level != cpu_to_le32(4) &&
  981. sb->level != cpu_to_le32(5) &&
  982. sb->level != cpu_to_le32(6) &&
  983. sb->level != cpu_to_le32(10)) {
  984. printk(KERN_WARNING
  985. "md: bitmaps not supported for this level.\n");
  986. return -EINVAL;
  987. }
  988. }
  989. rdev->preferred_minor = 0xffff;
  990. rdev->data_offset = le64_to_cpu(sb->data_offset);
  991. atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
  992. rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
  993. bmask = queue_hardsect_size(rdev->bdev->bd_disk->queue)-1;
  994. if (rdev->sb_size & bmask)
  995. rdev->sb_size = (rdev->sb_size | bmask) + 1;
  996. if (minor_version
  997. && rdev->data_offset < sb_start + (rdev->sb_size/512))
  998. return -EINVAL;
  999. if (sb->level == cpu_to_le32(LEVEL_MULTIPATH))
  1000. rdev->desc_nr = -1;
  1001. else
  1002. rdev->desc_nr = le32_to_cpu(sb->dev_number);
  1003. if (!refdev) {
  1004. ret = 1;
  1005. } else {
  1006. __u64 ev1, ev2;
  1007. struct mdp_superblock_1 *refsb =
  1008. (struct mdp_superblock_1*)page_address(refdev->sb_page);
  1009. if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
  1010. sb->level != refsb->level ||
  1011. sb->layout != refsb->layout ||
  1012. sb->chunksize != refsb->chunksize) {
  1013. printk(KERN_WARNING "md: %s has strangely different"
  1014. " superblock to %s\n",
  1015. bdevname(rdev->bdev,b),
  1016. bdevname(refdev->bdev,b2));
  1017. return -EINVAL;
  1018. }
  1019. ev1 = le64_to_cpu(sb->events);
  1020. ev2 = le64_to_cpu(refsb->events);
  1021. if (ev1 > ev2)
  1022. ret = 1;
  1023. else
  1024. ret = 0;
  1025. }
  1026. if (minor_version)
  1027. rdev->size = ((rdev->bdev->bd_inode->i_size>>9) - le64_to_cpu(sb->data_offset)) / 2;
  1028. else
  1029. rdev->size = rdev->sb_start / 2;
  1030. if (rdev->size < le64_to_cpu(sb->data_size)/2)
  1031. return -EINVAL;
  1032. rdev->size = le64_to_cpu(sb->data_size)/2;
  1033. if (le32_to_cpu(sb->chunksize))
  1034. rdev->size &= ~((sector_t)le32_to_cpu(sb->chunksize)/2 - 1);
  1035. if (le64_to_cpu(sb->size) > rdev->size*2)
  1036. return -EINVAL;
  1037. return ret;
  1038. }
  1039. static int super_1_validate(mddev_t *mddev, mdk_rdev_t *rdev)
  1040. {
  1041. struct mdp_superblock_1 *sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
  1042. __u64 ev1 = le64_to_cpu(sb->events);
  1043. rdev->raid_disk = -1;
  1044. clear_bit(Faulty, &rdev->flags);
  1045. clear_bit(In_sync, &rdev->flags);
  1046. clear_bit(WriteMostly, &rdev->flags);
  1047. clear_bit(BarriersNotsupp, &rdev->flags);
  1048. if (mddev->raid_disks == 0) {
  1049. mddev->major_version = 1;
  1050. mddev->patch_version = 0;
  1051. mddev->external = 0;
  1052. mddev->chunk_size = le32_to_cpu(sb->chunksize) << 9;
  1053. mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
  1054. mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
  1055. mddev->level = le32_to_cpu(sb->level);
  1056. mddev->clevel[0] = 0;
  1057. mddev->layout = le32_to_cpu(sb->layout);
  1058. mddev->raid_disks = le32_to_cpu(sb->raid_disks);
  1059. mddev->size = le64_to_cpu(sb->size)/2;
  1060. mddev->events = ev1;
  1061. mddev->bitmap_offset = 0;
  1062. mddev->default_bitmap_offset = 1024 >> 9;
  1063. mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
  1064. memcpy(mddev->uuid, sb->set_uuid, 16);
  1065. mddev->max_disks = (4096-256)/2;
  1066. if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
  1067. mddev->bitmap_file == NULL )
  1068. mddev->bitmap_offset = (__s32)le32_to_cpu(sb->bitmap_offset);
  1069. if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
  1070. mddev->reshape_position = le64_to_cpu(sb->reshape_position);
  1071. mddev->delta_disks = le32_to_cpu(sb->delta_disks);
  1072. mddev->new_level = le32_to_cpu(sb->new_level);
  1073. mddev->new_layout = le32_to_cpu(sb->new_layout);
  1074. mddev->new_chunk = le32_to_cpu(sb->new_chunk)<<9;
  1075. } else {
  1076. mddev->reshape_position = MaxSector;
  1077. mddev->delta_disks = 0;
  1078. mddev->new_level = mddev->level;
  1079. mddev->new_layout = mddev->layout;
  1080. mddev->new_chunk = mddev->chunk_size;
  1081. }
  1082. } else if (mddev->pers == NULL) {
  1083. /* Insist of good event counter while assembling */
  1084. ++ev1;
  1085. if (ev1 < mddev->events)
  1086. return -EINVAL;
  1087. } else if (mddev->bitmap) {
  1088. /* If adding to array with a bitmap, then we can accept an
  1089. * older device, but not too old.
  1090. */
  1091. if (ev1 < mddev->bitmap->events_cleared)
  1092. return 0;
  1093. } else {
  1094. if (ev1 < mddev->events)
  1095. /* just a hot-add of a new device, leave raid_disk at -1 */
  1096. return 0;
  1097. }
  1098. if (mddev->level != LEVEL_MULTIPATH) {
  1099. int role;
  1100. role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
  1101. switch(role) {
  1102. case 0xffff: /* spare */
  1103. break;
  1104. case 0xfffe: /* faulty */
  1105. set_bit(Faulty, &rdev->flags);
  1106. break;
  1107. default:
  1108. if ((le32_to_cpu(sb->feature_map) &
  1109. MD_FEATURE_RECOVERY_OFFSET))
  1110. rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
  1111. else
  1112. set_bit(In_sync, &rdev->flags);
  1113. rdev->raid_disk = role;
  1114. break;
  1115. }
  1116. if (sb->devflags & WriteMostly1)
  1117. set_bit(WriteMostly, &rdev->flags);
  1118. } else /* MULTIPATH are always insync */
  1119. set_bit(In_sync, &rdev->flags);
  1120. return 0;
  1121. }
  1122. static void super_1_sync(mddev_t *mddev, mdk_rdev_t *rdev)
  1123. {
  1124. struct mdp_superblock_1 *sb;
  1125. mdk_rdev_t *rdev2;
  1126. int max_dev, i;
  1127. /* make rdev->sb match mddev and rdev data. */
  1128. sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
  1129. sb->feature_map = 0;
  1130. sb->pad0 = 0;
  1131. sb->recovery_offset = cpu_to_le64(0);
  1132. memset(sb->pad1, 0, sizeof(sb->pad1));
  1133. memset(sb->pad2, 0, sizeof(sb->pad2));
  1134. memset(sb->pad3, 0, sizeof(sb->pad3));
  1135. sb->utime = cpu_to_le64((__u64)mddev->utime);
  1136. sb->events = cpu_to_le64(mddev->events);
  1137. if (mddev->in_sync)
  1138. sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
  1139. else
  1140. sb->resync_offset = cpu_to_le64(0);
  1141. sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors));
  1142. sb->raid_disks = cpu_to_le32(mddev->raid_disks);
  1143. sb->size = cpu_to_le64(mddev->size<<1);
  1144. if (mddev->bitmap && mddev->bitmap_file == NULL) {
  1145. sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_offset);
  1146. sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
  1147. }
  1148. if (rdev->raid_disk >= 0 &&
  1149. !test_bit(In_sync, &rdev->flags) &&
  1150. rdev->recovery_offset > 0) {
  1151. sb->feature_map |= cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
  1152. sb->recovery_offset = cpu_to_le64(rdev->recovery_offset);
  1153. }
  1154. if (mddev->reshape_position != MaxSector) {
  1155. sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
  1156. sb->reshape_position = cpu_to_le64(mddev->reshape_position);
  1157. sb->new_layout = cpu_to_le32(mddev->new_layout);
  1158. sb->delta_disks = cpu_to_le32(mddev->delta_disks);
  1159. sb->new_level = cpu_to_le32(mddev->new_level);
  1160. sb->new_chunk = cpu_to_le32(mddev->new_chunk>>9);
  1161. }
  1162. max_dev = 0;
  1163. list_for_each_entry(rdev2, &mddev->disks, same_set)
  1164. if (rdev2->desc_nr+1 > max_dev)
  1165. max_dev = rdev2->desc_nr+1;
  1166. if (max_dev > le32_to_cpu(sb->max_dev))
  1167. sb->max_dev = cpu_to_le32(max_dev);
  1168. for (i=0; i<max_dev;i++)
  1169. sb->dev_roles[i] = cpu_to_le16(0xfffe);
  1170. list_for_each_entry(rdev2, &mddev->disks, same_set) {
  1171. i = rdev2->desc_nr;
  1172. if (test_bit(Faulty, &rdev2->flags))
  1173. sb->dev_roles[i] = cpu_to_le16(0xfffe);
  1174. else if (test_bit(In_sync, &rdev2->flags))
  1175. sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
  1176. else if (rdev2->raid_disk >= 0 && rdev2->recovery_offset > 0)
  1177. sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
  1178. else
  1179. sb->dev_roles[i] = cpu_to_le16(0xffff);
  1180. }
  1181. sb->sb_csum = calc_sb_1_csum(sb);
  1182. }
  1183. static unsigned long long
  1184. super_1_rdev_size_change(mdk_rdev_t *rdev, sector_t num_sectors)
  1185. {
  1186. struct mdp_superblock_1 *sb;
  1187. sector_t max_sectors;
  1188. if (num_sectors && num_sectors < rdev->mddev->size * 2)
  1189. return 0; /* component must fit device */
  1190. if (rdev->sb_start < rdev->data_offset) {
  1191. /* minor versions 1 and 2; superblock before data */
  1192. max_sectors = rdev->bdev->bd_inode->i_size >> 9;
  1193. max_sectors -= rdev->data_offset;
  1194. if (!num_sectors || num_sectors > max_sectors)
  1195. num_sectors = max_sectors;
  1196. } else if (rdev->mddev->bitmap_offset) {
  1197. /* minor version 0 with bitmap we can't move */
  1198. return 0;
  1199. } else {
  1200. /* minor version 0; superblock after data */
  1201. sector_t sb_start;
  1202. sb_start = (rdev->bdev->bd_inode->i_size >> 9) - 8*2;
  1203. sb_start &= ~(sector_t)(4*2 - 1);
  1204. max_sectors = rdev->size * 2 + sb_start - rdev->sb_start;
  1205. if (!num_sectors || num_sectors > max_sectors)
  1206. num_sectors = max_sectors;
  1207. rdev->sb_start = sb_start;
  1208. }
  1209. sb = (struct mdp_superblock_1 *) page_address(rdev->sb_page);
  1210. sb->data_size = cpu_to_le64(num_sectors);
  1211. sb->super_offset = rdev->sb_start;
  1212. sb->sb_csum = calc_sb_1_csum(sb);
  1213. md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
  1214. rdev->sb_page);
  1215. md_super_wait(rdev->mddev);
  1216. return num_sectors / 2; /* kB for sysfs */
  1217. }
  1218. static struct super_type super_types[] = {
  1219. [0] = {
  1220. .name = "0.90.0",
  1221. .owner = THIS_MODULE,
  1222. .load_super = super_90_load,
  1223. .validate_super = super_90_validate,
  1224. .sync_super = super_90_sync,
  1225. .rdev_size_change = super_90_rdev_size_change,
  1226. },
  1227. [1] = {
  1228. .name = "md-1",
  1229. .owner = THIS_MODULE,
  1230. .load_super = super_1_load,
  1231. .validate_super = super_1_validate,
  1232. .sync_super = super_1_sync,
  1233. .rdev_size_change = super_1_rdev_size_change,
  1234. },
  1235. };
  1236. static int match_mddev_units(mddev_t *mddev1, mddev_t *mddev2)
  1237. {
  1238. mdk_rdev_t *rdev, *rdev2;
  1239. rcu_read_lock();
  1240. rdev_for_each_rcu(rdev, mddev1)
  1241. rdev_for_each_rcu(rdev2, mddev2)
  1242. if (rdev->bdev->bd_contains ==
  1243. rdev2->bdev->bd_contains) {
  1244. rcu_read_unlock();
  1245. return 1;
  1246. }
  1247. rcu_read_unlock();
  1248. return 0;
  1249. }
  1250. static LIST_HEAD(pending_raid_disks);
  1251. static void md_integrity_check(mdk_rdev_t *rdev, mddev_t *mddev)
  1252. {
  1253. struct mdk_personality *pers = mddev->pers;
  1254. struct gendisk *disk = mddev->gendisk;
  1255. struct blk_integrity *bi_rdev = bdev_get_integrity(rdev->bdev);
  1256. struct blk_integrity *bi_mddev = blk_get_integrity(disk);
  1257. /* Data integrity passthrough not supported on RAID 4, 5 and 6 */
  1258. if (pers && pers->level >= 4 && pers->level <= 6)
  1259. return;
  1260. /* If rdev is integrity capable, register profile for mddev */
  1261. if (!bi_mddev && bi_rdev) {
  1262. if (blk_integrity_register(disk, bi_rdev))
  1263. printk(KERN_ERR "%s: %s Could not register integrity!\n",
  1264. __func__, disk->disk_name);
  1265. else
  1266. printk(KERN_NOTICE "Enabling data integrity on %s\n",
  1267. disk->disk_name);
  1268. return;
  1269. }
  1270. /* Check that mddev and rdev have matching profiles */
  1271. if (blk_integrity_compare(disk, rdev->bdev->bd_disk) < 0) {
  1272. printk(KERN_ERR "%s: %s/%s integrity mismatch!\n", __func__,
  1273. disk->disk_name, rdev->bdev->bd_disk->disk_name);
  1274. printk(KERN_NOTICE "Disabling data integrity on %s\n",
  1275. disk->disk_name);
  1276. blk_integrity_unregister(disk);
  1277. }
  1278. }
  1279. static int bind_rdev_to_array(mdk_rdev_t * rdev, mddev_t * mddev)
  1280. {
  1281. char b[BDEVNAME_SIZE];
  1282. struct kobject *ko;
  1283. char *s;
  1284. int err;
  1285. if (rdev->mddev) {
  1286. MD_BUG();
  1287. return -EINVAL;
  1288. }
  1289. /* prevent duplicates */
  1290. if (find_rdev(mddev, rdev->bdev->bd_dev))
  1291. return -EEXIST;
  1292. /* make sure rdev->size exceeds mddev->size */
  1293. if (rdev->size && (mddev->size == 0 || rdev->size < mddev->size)) {
  1294. if (mddev->pers) {
  1295. /* Cannot change size, so fail
  1296. * If mddev->level <= 0, then we don't care
  1297. * about aligning sizes (e.g. linear)
  1298. */
  1299. if (mddev->level > 0)
  1300. return -ENOSPC;
  1301. } else
  1302. mddev->size = rdev->size;
  1303. }
  1304. /* Verify rdev->desc_nr is unique.
  1305. * If it is -1, assign a free number, else
  1306. * check number is not in use
  1307. */
  1308. if (rdev->desc_nr < 0) {
  1309. int choice = 0;
  1310. if (mddev->pers) choice = mddev->raid_disks;
  1311. while (find_rdev_nr(mddev, choice))
  1312. choice++;
  1313. rdev->desc_nr = choice;
  1314. } else {
  1315. if (find_rdev_nr(mddev, rdev->desc_nr))
  1316. return -EBUSY;
  1317. }
  1318. if (mddev->max_disks && rdev->desc_nr >= mddev->max_disks) {
  1319. printk(KERN_WARNING "md: %s: array is limited to %d devices\n",
  1320. mdname(mddev), mddev->max_disks);
  1321. return -EBUSY;
  1322. }
  1323. bdevname(rdev->bdev,b);
  1324. while ( (s=strchr(b, '/')) != NULL)
  1325. *s = '!';
  1326. rdev->mddev = mddev;
  1327. printk(KERN_INFO "md: bind<%s>\n", b);
  1328. if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b)))
  1329. goto fail;
  1330. ko = &part_to_dev(rdev->bdev->bd_part)->kobj;
  1331. if ((err = sysfs_create_link(&rdev->kobj, ko, "block"))) {
  1332. kobject_del(&rdev->kobj);
  1333. goto fail;
  1334. }
  1335. rdev->sysfs_state = sysfs_get_dirent(rdev->kobj.sd, "state");
  1336. list_add_rcu(&rdev->same_set, &mddev->disks);
  1337. bd_claim_by_disk(rdev->bdev, rdev->bdev->bd_holder, mddev->gendisk);
  1338. /* May as well allow recovery to be retried once */
  1339. mddev->recovery_disabled = 0;
  1340. md_integrity_check(rdev, mddev);
  1341. return 0;
  1342. fail:
  1343. printk(KERN_WARNING "md: failed to register dev-%s for %s\n",
  1344. b, mdname(mddev));
  1345. return err;
  1346. }
  1347. static void md_delayed_delete(struct work_struct *ws)
  1348. {
  1349. mdk_rdev_t *rdev = container_of(ws, mdk_rdev_t, del_work);
  1350. kobject_del(&rdev->kobj);
  1351. kobject_put(&rdev->kobj);
  1352. }
  1353. static void unbind_rdev_from_array(mdk_rdev_t * rdev)
  1354. {
  1355. char b[BDEVNAME_SIZE];
  1356. if (!rdev->mddev) {
  1357. MD_BUG();
  1358. return;
  1359. }
  1360. bd_release_from_disk(rdev->bdev, rdev->mddev->gendisk);
  1361. list_del_rcu(&rdev->same_set);
  1362. printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
  1363. rdev->mddev = NULL;
  1364. sysfs_remove_link(&rdev->kobj, "block");
  1365. sysfs_put(rdev->sysfs_state);
  1366. rdev->sysfs_state = NULL;
  1367. /* We need to delay this, otherwise we can deadlock when
  1368. * writing to 'remove' to "dev/state". We also need
  1369. * to delay it due to rcu usage.
  1370. */
  1371. synchronize_rcu();
  1372. INIT_WORK(&rdev->del_work, md_delayed_delete);
  1373. kobject_get(&rdev->kobj);
  1374. schedule_work(&rdev->del_work);
  1375. }
  1376. /*
  1377. * prevent the device from being mounted, repartitioned or
  1378. * otherwise reused by a RAID array (or any other kernel
  1379. * subsystem), by bd_claiming the device.
  1380. */
  1381. static int lock_rdev(mdk_rdev_t *rdev, dev_t dev, int shared)
  1382. {
  1383. int err = 0;
  1384. struct block_device *bdev;
  1385. char b[BDEVNAME_SIZE];
  1386. bdev = open_by_devnum(dev, FMODE_READ|FMODE_WRITE);
  1387. if (IS_ERR(bdev)) {
  1388. printk(KERN_ERR "md: could not open %s.\n",
  1389. __bdevname(dev, b));
  1390. return PTR_ERR(bdev);
  1391. }
  1392. err = bd_claim(bdev, shared ? (mdk_rdev_t *)lock_rdev : rdev);
  1393. if (err) {
  1394. printk(KERN_ERR "md: could not bd_claim %s.\n",
  1395. bdevname(bdev, b));
  1396. blkdev_put(bdev, FMODE_READ|FMODE_WRITE);
  1397. return err;
  1398. }
  1399. if (!shared)
  1400. set_bit(AllReserved, &rdev->flags);
  1401. rdev->bdev = bdev;
  1402. return err;
  1403. }
  1404. static void unlock_rdev(mdk_rdev_t *rdev)
  1405. {
  1406. struct block_device *bdev = rdev->bdev;
  1407. rdev->bdev = NULL;
  1408. if (!bdev)
  1409. MD_BUG();
  1410. bd_release(bdev);
  1411. blkdev_put(bdev, FMODE_READ|FMODE_WRITE);
  1412. }
  1413. void md_autodetect_dev(dev_t dev);
  1414. static void export_rdev(mdk_rdev_t * rdev)
  1415. {
  1416. char b[BDEVNAME_SIZE];
  1417. printk(KERN_INFO "md: export_rdev(%s)\n",
  1418. bdevname(rdev->bdev,b));
  1419. if (rdev->mddev)
  1420. MD_BUG();
  1421. free_disk_sb(rdev);
  1422. #ifndef MODULE
  1423. if (test_bit(AutoDetected, &rdev->flags))
  1424. md_autodetect_dev(rdev->bdev->bd_dev);
  1425. #endif
  1426. unlock_rdev(rdev);
  1427. kobject_put(&rdev->kobj);
  1428. }
  1429. static void kick_rdev_from_array(mdk_rdev_t * rdev)
  1430. {
  1431. unbind_rdev_from_array(rdev);
  1432. export_rdev(rdev);
  1433. }
  1434. static void export_array(mddev_t *mddev)
  1435. {
  1436. mdk_rdev_t *rdev, *tmp;
  1437. rdev_for_each(rdev, tmp, mddev) {
  1438. if (!rdev->mddev) {
  1439. MD_BUG();
  1440. continue;
  1441. }
  1442. kick_rdev_from_array(rdev);
  1443. }
  1444. if (!list_empty(&mddev->disks))
  1445. MD_BUG();
  1446. mddev->raid_disks = 0;
  1447. mddev->major_version = 0;
  1448. }
  1449. static void print_desc(mdp_disk_t *desc)
  1450. {
  1451. printk(" DISK<N:%d,(%d,%d),R:%d,S:%d>\n", desc->number,
  1452. desc->major,desc->minor,desc->raid_disk,desc->state);
  1453. }
  1454. static void print_sb_90(mdp_super_t *sb)
  1455. {
  1456. int i;
  1457. printk(KERN_INFO
  1458. "md: SB: (V:%d.%d.%d) ID:<%08x.%08x.%08x.%08x> CT:%08x\n",
  1459. sb->major_version, sb->minor_version, sb->patch_version,
  1460. sb->set_uuid0, sb->set_uuid1, sb->set_uuid2, sb->set_uuid3,
  1461. sb->ctime);
  1462. printk(KERN_INFO "md: L%d S%08d ND:%d RD:%d md%d LO:%d CS:%d\n",
  1463. sb->level, sb->size, sb->nr_disks, sb->raid_disks,
  1464. sb->md_minor, sb->layout, sb->chunk_size);
  1465. printk(KERN_INFO "md: UT:%08x ST:%d AD:%d WD:%d"
  1466. " FD:%d SD:%d CSUM:%08x E:%08lx\n",
  1467. sb->utime, sb->state, sb->active_disks, sb->working_disks,
  1468. sb->failed_disks, sb->spare_disks,
  1469. sb->sb_csum, (unsigned long)sb->events_lo);
  1470. printk(KERN_INFO);
  1471. for (i = 0; i < MD_SB_DISKS; i++) {
  1472. mdp_disk_t *desc;
  1473. desc = sb->disks + i;
  1474. if (desc->number || desc->major || desc->minor ||
  1475. desc->raid_disk || (desc->state && (desc->state != 4))) {
  1476. printk(" D %2d: ", i);
  1477. print_desc(desc);
  1478. }
  1479. }
  1480. printk(KERN_INFO "md: THIS: ");
  1481. print_desc(&sb->this_disk);
  1482. }
  1483. static void print_sb_1(struct mdp_superblock_1 *sb)
  1484. {
  1485. __u8 *uuid;
  1486. uuid = sb->set_uuid;
  1487. printk(KERN_INFO "md: SB: (V:%u) (F:0x%08x) Array-ID:<%02x%02x%02x%02x"
  1488. ":%02x%02x:%02x%02x:%02x%02x:%02x%02x%02x%02x%02x%02x>\n"
  1489. KERN_INFO "md: Name: \"%s\" CT:%llu\n",
  1490. le32_to_cpu(sb->major_version),
  1491. le32_to_cpu(sb->feature_map),
  1492. uuid[0], uuid[1], uuid[2], uuid[3],
  1493. uuid[4], uuid[5], uuid[6], uuid[7],
  1494. uuid[8], uuid[9], uuid[10], uuid[11],
  1495. uuid[12], uuid[13], uuid[14], uuid[15],
  1496. sb->set_name,
  1497. (unsigned long long)le64_to_cpu(sb->ctime)
  1498. & MD_SUPERBLOCK_1_TIME_SEC_MASK);
  1499. uuid = sb->device_uuid;
  1500. printk(KERN_INFO "md: L%u SZ%llu RD:%u LO:%u CS:%u DO:%llu DS:%llu SO:%llu"
  1501. " RO:%llu\n"
  1502. KERN_INFO "md: Dev:%08x UUID: %02x%02x%02x%02x:%02x%02x:%02x%02x:%02x%02x"
  1503. ":%02x%02x%02x%02x%02x%02x\n"
  1504. KERN_INFO "md: (F:0x%08x) UT:%llu Events:%llu ResyncOffset:%llu CSUM:0x%08x\n"
  1505. KERN_INFO "md: (MaxDev:%u) \n",
  1506. le32_to_cpu(sb->level),
  1507. (unsigned long long)le64_to_cpu(sb->size),
  1508. le32_to_cpu(sb->raid_disks),
  1509. le32_to_cpu(sb->layout),
  1510. le32_to_cpu(sb->chunksize),
  1511. (unsigned long long)le64_to_cpu(sb->data_offset),
  1512. (unsigned long long)le64_to_cpu(sb->data_size),
  1513. (unsigned long long)le64_to_cpu(sb->super_offset),
  1514. (unsigned long long)le64_to_cpu(sb->recovery_offset),
  1515. le32_to_cpu(sb->dev_number),
  1516. uuid[0], uuid[1], uuid[2], uuid[3],
  1517. uuid[4], uuid[5], uuid[6], uuid[7],
  1518. uuid[8], uuid[9], uuid[10], uuid[11],
  1519. uuid[12], uuid[13], uuid[14], uuid[15],
  1520. sb->devflags,
  1521. (unsigned long long)le64_to_cpu(sb->utime) & MD_SUPERBLOCK_1_TIME_SEC_MASK,
  1522. (unsigned long long)le64_to_cpu(sb->events),
  1523. (unsigned long long)le64_to_cpu(sb->resync_offset),
  1524. le32_to_cpu(sb->sb_csum),
  1525. le32_to_cpu(sb->max_dev)
  1526. );
  1527. }
  1528. static void print_rdev(mdk_rdev_t *rdev, int major_version)
  1529. {
  1530. char b[BDEVNAME_SIZE];
  1531. printk(KERN_INFO "md: rdev %s, SZ:%08llu F:%d S:%d DN:%u\n",
  1532. bdevname(rdev->bdev,b), (unsigned long long)rdev->size,
  1533. test_bit(Faulty, &rdev->flags), test_bit(In_sync, &rdev->flags),
  1534. rdev->desc_nr);
  1535. if (rdev->sb_loaded) {
  1536. printk(KERN_INFO "md: rdev superblock (MJ:%d):\n", major_version);
  1537. switch (major_version) {
  1538. case 0:
  1539. print_sb_90((mdp_super_t*)page_address(rdev->sb_page));
  1540. break;
  1541. case 1:
  1542. print_sb_1((struct mdp_superblock_1 *)page_address(rdev->sb_page));
  1543. break;
  1544. }
  1545. } else
  1546. printk(KERN_INFO "md: no rdev superblock!\n");
  1547. }
  1548. static void md_print_devices(void)
  1549. {
  1550. struct list_head *tmp;
  1551. mdk_rdev_t *rdev;
  1552. mddev_t *mddev;
  1553. char b[BDEVNAME_SIZE];
  1554. printk("\n");
  1555. printk("md: **********************************\n");
  1556. printk("md: * <COMPLETE RAID STATE PRINTOUT> *\n");
  1557. printk("md: **********************************\n");
  1558. for_each_mddev(mddev, tmp) {
  1559. if (mddev->bitmap)
  1560. bitmap_print_sb(mddev->bitmap);
  1561. else
  1562. printk("%s: ", mdname(mddev));
  1563. list_for_each_entry(rdev, &mddev->disks, same_set)
  1564. printk("<%s>", bdevname(rdev->bdev,b));
  1565. printk("\n");
  1566. list_for_each_entry(rdev, &mddev->disks, same_set)
  1567. print_rdev(rdev, mddev->major_version);
  1568. }
  1569. printk("md: **********************************\n");
  1570. printk("\n");
  1571. }
  1572. static void sync_sbs(mddev_t * mddev, int nospares)
  1573. {
  1574. /* Update each superblock (in-memory image), but
  1575. * if we are allowed to, skip spares which already
  1576. * have the right event counter, or have one earlier
  1577. * (which would mean they aren't being marked as dirty
  1578. * with the rest of the array)
  1579. */
  1580. mdk_rdev_t *rdev;
  1581. list_for_each_entry(rdev, &mddev->disks, same_set) {
  1582. if (rdev->sb_events == mddev->events ||
  1583. (nospares &&
  1584. rdev->raid_disk < 0 &&
  1585. (rdev->sb_events&1)==0 &&
  1586. rdev->sb_events+1 == mddev->events)) {
  1587. /* Don't update this superblock */
  1588. rdev->sb_loaded = 2;
  1589. } else {
  1590. super_types[mddev->major_version].
  1591. sync_super(mddev, rdev);
  1592. rdev->sb_loaded = 1;
  1593. }
  1594. }
  1595. }
  1596. static void md_update_sb(mddev_t * mddev, int force_change)
  1597. {
  1598. mdk_rdev_t *rdev;
  1599. int sync_req;
  1600. int nospares = 0;
  1601. if (mddev->external)
  1602. return;
  1603. repeat:
  1604. spin_lock_irq(&mddev->write_lock);
  1605. set_bit(MD_CHANGE_PENDING, &mddev->flags);
  1606. if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags))
  1607. force_change = 1;
  1608. if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags))
  1609. /* just a clean<-> dirty transition, possibly leave spares alone,
  1610. * though if events isn't the right even/odd, we will have to do
  1611. * spares after all
  1612. */
  1613. nospares = 1;
  1614. if (force_change)
  1615. nospares = 0;
  1616. if (mddev->degraded)
  1617. /* If the array is degraded, then skipping spares is both
  1618. * dangerous and fairly pointless.
  1619. * Dangerous because a device that was removed from the array
  1620. * might have a event_count that still looks up-to-date,
  1621. * so it can be re-added without a resync.
  1622. * Pointless because if there are any spares to skip,
  1623. * then a recovery will happen and soon that array won't
  1624. * be degraded any more and the spare can go back to sleep then.
  1625. */
  1626. nospares = 0;
  1627. sync_req = mddev->in_sync;
  1628. mddev->utime = get_seconds();
  1629. /* If this is just a dirty<->clean transition, and the array is clean
  1630. * and 'events' is odd, we can roll back to the previous clean state */
  1631. if (nospares
  1632. && (mddev->in_sync && mddev->recovery_cp == MaxSector)
  1633. && (mddev->events & 1)
  1634. && mddev->events != 1)
  1635. mddev->events--;
  1636. else {
  1637. /* otherwise we have to go forward and ... */
  1638. mddev->events ++;
  1639. if (!mddev->in_sync || mddev->recovery_cp != MaxSector) { /* not clean */
  1640. /* .. if the array isn't clean, insist on an odd 'events' */
  1641. if ((mddev->events&1)==0) {
  1642. mddev->events++;
  1643. nospares = 0;
  1644. }
  1645. } else {
  1646. /* otherwise insist on an even 'events' (for clean states) */
  1647. if ((mddev->events&1)) {
  1648. mddev->events++;
  1649. nospares = 0;
  1650. }
  1651. }
  1652. }
  1653. if (!mddev->events) {
  1654. /*
  1655. * oops, this 64-bit counter should never wrap.
  1656. * Either we are in around ~1 trillion A.C., assuming
  1657. * 1 reboot per second, or we have a bug:
  1658. */
  1659. MD_BUG();
  1660. mddev->events --;
  1661. }
  1662. /*
  1663. * do not write anything to disk if using
  1664. * nonpersistent superblocks
  1665. */
  1666. if (!mddev->persistent) {
  1667. if (!mddev->external)
  1668. clear_bit(MD_CHANGE_PENDING, &mddev->flags);
  1669. spin_unlock_irq(&mddev->write_lock);
  1670. wake_up(&mddev->sb_wait);
  1671. return;
  1672. }
  1673. sync_sbs(mddev, nospares);
  1674. spin_unlock_irq(&mddev->write_lock);
  1675. dprintk(KERN_INFO
  1676. "md: updating %s RAID superblock on device (in sync %d)\n",
  1677. mdname(mddev),mddev->in_sync);
  1678. bitmap_update_sb(mddev->bitmap);
  1679. list_for_each_entry(rdev, &mddev->disks, same_set) {
  1680. char b[BDEVNAME_SIZE];
  1681. dprintk(KERN_INFO "md: ");
  1682. if (rdev->sb_loaded != 1)
  1683. continue; /* no noise on spare devices */
  1684. if (test_bit(Faulty, &rdev->flags))
  1685. dprintk("(skipping faulty ");
  1686. dprintk("%s ", bdevname(rdev->bdev,b));
  1687. if (!test_bit(Faulty, &rdev->flags)) {
  1688. md_super_write(mddev,rdev,
  1689. rdev->sb_start, rdev->sb_size,
  1690. rdev->sb_page);
  1691. dprintk(KERN_INFO "(write) %s's sb offset: %llu\n",
  1692. bdevname(rdev->bdev,b),
  1693. (unsigned long long)rdev->sb_start);
  1694. rdev->sb_events = mddev->events;
  1695. } else
  1696. dprintk(")\n");
  1697. if (mddev->level == LEVEL_MULTIPATH)
  1698. /* only need to write one superblock... */
  1699. break;
  1700. }
  1701. md_super_wait(mddev);
  1702. /* if there was a failure, MD_CHANGE_DEVS was set, and we re-write super */
  1703. spin_lock_irq(&mddev->write_lock);
  1704. if (mddev->in_sync != sync_req ||
  1705. test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
  1706. /* have to write it out again */
  1707. spin_unlock_irq(&mddev->write_lock);
  1708. goto repeat;
  1709. }
  1710. clear_bit(MD_CHANGE_PENDING, &mddev->flags);
  1711. spin_unlock_irq(&mddev->write_lock);
  1712. wake_up(&mddev->sb_wait);
  1713. }
  1714. /* words written to sysfs files may, or may not, be \n terminated.
  1715. * We want to accept with case. For this we use cmd_match.
  1716. */
  1717. static int cmd_match(const char *cmd, const char *str)
  1718. {
  1719. /* See if cmd, written into a sysfs file, matches
  1720. * str. They must either be the same, or cmd can
  1721. * have a trailing newline
  1722. */
  1723. while (*cmd && *str && *cmd == *str) {
  1724. cmd++;
  1725. str++;
  1726. }
  1727. if (*cmd == '\n')
  1728. cmd++;
  1729. if (*str || *cmd)
  1730. return 0;
  1731. return 1;
  1732. }
  1733. struct rdev_sysfs_entry {
  1734. struct attribute attr;
  1735. ssize_t (*show)(mdk_rdev_t *, char *);
  1736. ssize_t (*store)(mdk_rdev_t *, const char *, size_t);
  1737. };
  1738. static ssize_t
  1739. state_show(mdk_rdev_t *rdev, char *page)
  1740. {
  1741. char *sep = "";
  1742. size_t len = 0;
  1743. if (test_bit(Faulty, &rdev->flags)) {
  1744. len+= sprintf(page+len, "%sfaulty",sep);
  1745. sep = ",";
  1746. }
  1747. if (test_bit(In_sync, &rdev->flags)) {
  1748. len += sprintf(page+len, "%sin_sync",sep);
  1749. sep = ",";
  1750. }
  1751. if (test_bit(WriteMostly, &rdev->flags)) {
  1752. len += sprintf(page+len, "%swrite_mostly",sep);
  1753. sep = ",";
  1754. }
  1755. if (test_bit(Blocked, &rdev->flags)) {
  1756. len += sprintf(page+len, "%sblocked", sep);
  1757. sep = ",";
  1758. }
  1759. if (!test_bit(Faulty, &rdev->flags) &&
  1760. !test_bit(In_sync, &rdev->flags)) {
  1761. len += sprintf(page+len, "%sspare", sep);
  1762. sep = ",";
  1763. }
  1764. return len+sprintf(page+len, "\n");
  1765. }
  1766. static ssize_t
  1767. state_store(mdk_rdev_t *rdev, const char *buf, size_t len)
  1768. {
  1769. /* can write
  1770. * faulty - simulates and error
  1771. * remove - disconnects the device
  1772. * writemostly - sets write_mostly
  1773. * -writemostly - clears write_mostly
  1774. * blocked - sets the Blocked flag
  1775. * -blocked - clears the Blocked flag
  1776. */
  1777. int err = -EINVAL;
  1778. if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
  1779. md_error(rdev->mddev, rdev);
  1780. err = 0;
  1781. } else if (cmd_match(buf, "remove")) {
  1782. if (rdev->raid_disk >= 0)
  1783. err = -EBUSY;
  1784. else {
  1785. mddev_t *mddev = rdev->mddev;
  1786. kick_rdev_from_array(rdev);
  1787. if (mddev->pers)
  1788. md_update_sb(mddev, 1);
  1789. md_new_event(mddev);
  1790. err = 0;
  1791. }
  1792. } else if (cmd_match(buf, "writemostly")) {
  1793. set_bit(WriteMostly, &rdev->flags);
  1794. err = 0;
  1795. } else if (cmd_match(buf, "-writemostly")) {
  1796. clear_bit(WriteMostly, &rdev->flags);
  1797. err = 0;
  1798. } else if (cmd_match(buf, "blocked")) {
  1799. set_bit(Blocked, &rdev->flags);
  1800. err = 0;
  1801. } else if (cmd_match(buf, "-blocked")) {
  1802. clear_bit(Blocked, &rdev->flags);
  1803. wake_up(&rdev->blocked_wait);
  1804. set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
  1805. md_wakeup_thread(rdev->mddev->thread);
  1806. err = 0;
  1807. }
  1808. if (!err && rdev->sysfs_state)
  1809. sysfs_notify_dirent(rdev->sysfs_state);
  1810. return err ? err : len;
  1811. }
  1812. static struct rdev_sysfs_entry rdev_state =
  1813. __ATTR(state, S_IRUGO|S_IWUSR, state_show, state_store);
  1814. static ssize_t
  1815. errors_show(mdk_rdev_t *rdev, char *page)
  1816. {
  1817. return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
  1818. }
  1819. static ssize_t
  1820. errors_store(mdk_rdev_t *rdev, const char *buf, size_t len)
  1821. {
  1822. char *e;
  1823. unsigned long n = simple_strtoul(buf, &e, 10);
  1824. if (*buf && (*e == 0 || *e == '\n')) {
  1825. atomic_set(&rdev->corrected_errors, n);
  1826. return len;
  1827. }
  1828. return -EINVAL;
  1829. }
  1830. static struct rdev_sysfs_entry rdev_errors =
  1831. __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store);
  1832. static ssize_t
  1833. slot_show(mdk_rdev_t *rdev, char *page)
  1834. {
  1835. if (rdev->raid_disk < 0)
  1836. return sprintf(page, "none\n");
  1837. else
  1838. return sprintf(page, "%d\n", rdev->raid_disk);
  1839. }
  1840. static ssize_t
  1841. slot_store(mdk_rdev_t *rdev, const char *buf, size_t len)
  1842. {
  1843. char *e;
  1844. int err;
  1845. char nm[20];
  1846. int slot = simple_strtoul(buf, &e, 10);
  1847. if (strncmp(buf, "none", 4)==0)
  1848. slot = -1;
  1849. else if (e==buf || (*e && *e!= '\n'))
  1850. return -EINVAL;
  1851. if (rdev->mddev->pers && slot == -1) {
  1852. /* Setting 'slot' on an active array requires also
  1853. * updating the 'rd%d' link, and communicating
  1854. * with the personality with ->hot_*_disk.
  1855. * For now we only support removing
  1856. * failed/spare devices. This normally happens automatically,
  1857. * but not when the metadata is externally managed.
  1858. */
  1859. if (rdev->raid_disk == -1)
  1860. return -EEXIST;
  1861. /* personality does all needed checks */
  1862. if (rdev->mddev->pers->hot_add_disk == NULL)
  1863. return -EINVAL;
  1864. err = rdev->mddev->pers->
  1865. hot_remove_disk(rdev->mddev, rdev->raid_disk);
  1866. if (err)
  1867. return err;
  1868. sprintf(nm, "rd%d", rdev->raid_disk);
  1869. sysfs_remove_link(&rdev->mddev->kobj, nm);
  1870. set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
  1871. md_wakeup_thread(rdev->mddev->thread);
  1872. } else if (rdev->mddev->pers) {
  1873. mdk_rdev_t *rdev2;
  1874. /* Activating a spare .. or possibly reactivating
  1875. * if we every get bitmaps working here.
  1876. */
  1877. if (rdev->raid_disk != -1)
  1878. return -EBUSY;
  1879. if (rdev->mddev->pers->hot_add_disk == NULL)
  1880. return -EINVAL;
  1881. list_for_each_entry(rdev2, &rdev->mddev->disks, same_set)
  1882. if (rdev2->raid_disk == slot)
  1883. return -EEXIST;
  1884. rdev->raid_disk = slot;
  1885. if (test_bit(In_sync, &rdev->flags))
  1886. rdev->saved_raid_disk = slot;
  1887. else
  1888. rdev->saved_raid_disk = -1;
  1889. err = rdev->mddev->pers->
  1890. hot_add_disk(rdev->mddev, rdev);
  1891. if (err) {
  1892. rdev->raid_disk = -1;
  1893. return err;
  1894. } else
  1895. sysfs_notify_dirent(rdev->sysfs_state);
  1896. sprintf(nm, "rd%d", rdev->raid_disk);
  1897. if (sysfs_create_link(&rdev->mddev->kobj, &rdev->kobj, nm))
  1898. printk(KERN_WARNING
  1899. "md: cannot register "
  1900. "%s for %s\n",
  1901. nm, mdname(rdev->mddev));
  1902. /* don't wakeup anyone, leave that to userspace. */
  1903. } else {
  1904. if (slot >= rdev->mddev->raid_disks)
  1905. return -ENOSPC;
  1906. rdev->raid_disk = slot;
  1907. /* assume it is working */
  1908. clear_bit(Faulty, &rdev->flags);
  1909. clear_bit(WriteMostly, &rdev->flags);
  1910. set_bit(In_sync, &rdev->flags);
  1911. sysfs_notify_dirent(rdev->sysfs_state);
  1912. }
  1913. return len;
  1914. }
  1915. static struct rdev_sysfs_entry rdev_slot =
  1916. __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store);
  1917. static ssize_t
  1918. offset_show(mdk_rdev_t *rdev, char *page)
  1919. {
  1920. return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
  1921. }
  1922. static ssize_t
  1923. offset_store(mdk_rdev_t *rdev, const char *buf, size_t len)
  1924. {
  1925. char *e;
  1926. unsigned long long offset = simple_strtoull(buf, &e, 10);
  1927. if (e==buf || (*e && *e != '\n'))
  1928. return -EINVAL;
  1929. if (rdev->mddev->pers && rdev->raid_disk >= 0)
  1930. return -EBUSY;
  1931. if (rdev->size && rdev->mddev->external)
  1932. /* Must set offset before size, so overlap checks
  1933. * can be sane */
  1934. return -EBUSY;
  1935. rdev->data_offset = offset;
  1936. return len;
  1937. }
  1938. static struct rdev_sysfs_entry rdev_offset =
  1939. __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store);
  1940. static ssize_t
  1941. rdev_size_show(mdk_rdev_t *rdev, char *page)
  1942. {
  1943. return sprintf(page, "%llu\n", (unsigned long long)rdev->size);
  1944. }
  1945. static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2)
  1946. {
  1947. /* check if two start/length pairs overlap */
  1948. if (s1+l1 <= s2)
  1949. return 0;
  1950. if (s2+l2 <= s1)
  1951. return 0;
  1952. return 1;
  1953. }
  1954. static ssize_t
  1955. rdev_size_store(mdk_rdev_t *rdev, const char *buf, size_t len)
  1956. {
  1957. unsigned long long size;
  1958. unsigned long long oldsize = rdev->size;
  1959. mddev_t *my_mddev = rdev->mddev;
  1960. if (strict_strtoull(buf, 10, &size) < 0)
  1961. return -EINVAL;
  1962. if (my_mddev->pers && rdev->raid_disk >= 0) {
  1963. if (my_mddev->persistent) {
  1964. size = super_types[my_mddev->major_version].
  1965. rdev_size_change(rdev, size * 2);
  1966. if (!size)
  1967. return -EBUSY;
  1968. } else if (!size) {
  1969. size = (rdev->bdev->bd_inode->i_size >> 10);
  1970. size -= rdev->data_offset/2;
  1971. }
  1972. }
  1973. if (size < my_mddev->size)
  1974. return -EINVAL; /* component must fit device */
  1975. rdev->size = size;
  1976. if (size > oldsize && my_mddev->external) {
  1977. /* need to check that all other rdevs with the same ->bdev
  1978. * do not overlap. We need to unlock the mddev to avoid
  1979. * a deadlock. We have already changed rdev->size, and if
  1980. * we have to change it back, we will have the lock again.
  1981. */
  1982. mddev_t *mddev;
  1983. int overlap = 0;
  1984. struct list_head *tmp;
  1985. mddev_unlock(my_mddev);
  1986. for_each_mddev(mddev, tmp) {
  1987. mdk_rdev_t *rdev2;
  1988. mddev_lock(mddev);
  1989. list_for_each_entry(rdev2, &mddev->disks, same_set)
  1990. if (test_bit(AllReserved, &rdev2->flags) ||
  1991. (rdev->bdev == rdev2->bdev &&
  1992. rdev != rdev2 &&
  1993. overlaps(rdev->data_offset, rdev->size * 2,
  1994. rdev2->data_offset,
  1995. rdev2->size * 2))) {
  1996. overlap = 1;
  1997. break;
  1998. }
  1999. mddev_unlock(mddev);
  2000. if (overlap) {
  2001. mddev_put(mddev);
  2002. break;
  2003. }
  2004. }
  2005. mddev_lock(my_mddev);
  2006. if (overlap) {
  2007. /* Someone else could have slipped in a size
  2008. * change here, but doing so is just silly.
  2009. * We put oldsize back because we *know* it is
  2010. * safe, and trust userspace not to race with
  2011. * itself
  2012. */
  2013. rdev->size = oldsize;
  2014. return -EBUSY;
  2015. }
  2016. }
  2017. return len;
  2018. }
  2019. static struct rdev_sysfs_entry rdev_size =
  2020. __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store);
  2021. static struct attribute *rdev_default_attrs[] = {
  2022. &rdev_state.attr,
  2023. &rdev_errors.attr,
  2024. &rdev_slot.attr,
  2025. &rdev_offset.attr,
  2026. &rdev_size.attr,
  2027. NULL,
  2028. };
  2029. static ssize_t
  2030. rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
  2031. {
  2032. struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
  2033. mdk_rdev_t *rdev = container_of(kobj, mdk_rdev_t, kobj);
  2034. mddev_t *mddev = rdev->mddev;
  2035. ssize_t rv;
  2036. if (!entry->show)
  2037. return -EIO;
  2038. rv = mddev ? mddev_lock(mddev) : -EBUSY;
  2039. if (!rv) {
  2040. if (rdev->mddev == NULL)
  2041. rv = -EBUSY;
  2042. else
  2043. rv = entry->show(rdev, page);
  2044. mddev_unlock(mddev);
  2045. }
  2046. return rv;
  2047. }
  2048. static ssize_t
  2049. rdev_attr_store(struct kobject *kobj, struct attribute *attr,
  2050. const char *page, size_t length)
  2051. {
  2052. struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
  2053. mdk_rdev_t *rdev = container_of(kobj, mdk_rdev_t, kobj);
  2054. ssize_t rv;
  2055. mddev_t *mddev = rdev->mddev;
  2056. if (!entry->store)
  2057. return -EIO;
  2058. if (!capable(CAP_SYS_ADMIN))
  2059. return -EACCES;
  2060. rv = mddev ? mddev_lock(mddev): -EBUSY;
  2061. if (!rv) {
  2062. if (rdev->mddev == NULL)
  2063. rv = -EBUSY;
  2064. else
  2065. rv = entry->store(rdev, page, length);
  2066. mddev_unlock(mddev);
  2067. }
  2068. return rv;
  2069. }
  2070. static void rdev_free(struct kobject *ko)
  2071. {
  2072. mdk_rdev_t *rdev = container_of(ko, mdk_rdev_t, kobj);
  2073. kfree(rdev);
  2074. }
  2075. static struct sysfs_ops rdev_sysfs_ops = {
  2076. .show = rdev_attr_show,
  2077. .store = rdev_attr_store,
  2078. };
  2079. static struct kobj_type rdev_ktype = {
  2080. .release = rdev_free,
  2081. .sysfs_ops = &rdev_sysfs_ops,
  2082. .default_attrs = rdev_default_attrs,
  2083. };
  2084. /*
  2085. * Import a device. If 'super_format' >= 0, then sanity check the superblock
  2086. *
  2087. * mark the device faulty if:
  2088. *
  2089. * - the device is nonexistent (zero size)
  2090. * - the device has no valid superblock
  2091. *
  2092. * a faulty rdev _never_ has rdev->sb set.
  2093. */
  2094. static mdk_rdev_t *md_import_device(dev_t newdev, int super_format, int super_minor)
  2095. {
  2096. char b[BDEVNAME_SIZE];
  2097. int err;
  2098. mdk_rdev_t *rdev;
  2099. sector_t size;
  2100. rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
  2101. if (!rdev) {
  2102. printk(KERN_ERR "md: could not alloc mem for new device!\n");
  2103. return ERR_PTR(-ENOMEM);
  2104. }
  2105. if ((err = alloc_disk_sb(rdev)))
  2106. goto abort_free;
  2107. err = lock_rdev(rdev, newdev, super_format == -2);
  2108. if (err)
  2109. goto abort_free;
  2110. kobject_init(&rdev->kobj, &rdev_ktype);
  2111. rdev->desc_nr = -1;
  2112. rdev->saved_raid_disk = -1;
  2113. rdev->raid_disk = -1;
  2114. rdev->flags = 0;
  2115. rdev->data_offset = 0;
  2116. rdev->sb_events = 0;
  2117. atomic_set(&rdev->nr_pending, 0);
  2118. atomic_set(&rdev->read_errors, 0);
  2119. atomic_set(&rdev->corrected_errors, 0);
  2120. size = rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
  2121. if (!size) {
  2122. printk(KERN_WARNING
  2123. "md: %s has zero or unknown size, marking faulty!\n",
  2124. bdevname(rdev->bdev,b));
  2125. err = -EINVAL;
  2126. goto abort_free;
  2127. }
  2128. if (super_format >= 0) {
  2129. err = super_types[super_format].
  2130. load_super(rdev, NULL, super_minor);
  2131. if (err == -EINVAL) {
  2132. printk(KERN_WARNING
  2133. "md: %s does not have a valid v%d.%d "
  2134. "superblock, not importing!\n",
  2135. bdevname(rdev->bdev,b),
  2136. super_format, super_minor);
  2137. goto abort_free;
  2138. }
  2139. if (err < 0) {
  2140. printk(KERN_WARNING
  2141. "md: could not read %s's sb, not importing!\n",
  2142. bdevname(rdev->bdev,b));
  2143. goto abort_free;
  2144. }
  2145. }
  2146. INIT_LIST_HEAD(&rdev->same_set);
  2147. init_waitqueue_head(&rdev->blocked_wait);
  2148. return rdev;
  2149. abort_free:
  2150. if (rdev->sb_page) {
  2151. if (rdev->bdev)
  2152. unlock_rdev(rdev);
  2153. free_disk_sb(rdev);
  2154. }
  2155. kfree(rdev);
  2156. return ERR_PTR(err);
  2157. }
  2158. /*
  2159. * Check a full RAID array for plausibility
  2160. */
  2161. static void analyze_sbs(mddev_t * mddev)
  2162. {
  2163. int i;
  2164. mdk_rdev_t *rdev, *freshest, *tmp;
  2165. char b[BDEVNAME_SIZE];
  2166. freshest = NULL;
  2167. rdev_for_each(rdev, tmp, mddev)
  2168. switch (super_types[mddev->major_version].
  2169. load_super(rdev, freshest, mddev->minor_version)) {
  2170. case 1:
  2171. freshest = rdev;
  2172. break;
  2173. case 0:
  2174. break;
  2175. default:
  2176. printk( KERN_ERR \
  2177. "md: fatal superblock inconsistency in %s"
  2178. " -- removing from array\n",
  2179. bdevname(rdev->bdev,b));
  2180. kick_rdev_from_array(rdev);
  2181. }
  2182. super_types[mddev->major_version].
  2183. validate_super(mddev, freshest);
  2184. i = 0;
  2185. rdev_for_each(rdev, tmp, mddev) {
  2186. if (rdev->desc_nr >= mddev->max_disks ||
  2187. i > mddev->max_disks) {
  2188. printk(KERN_WARNING
  2189. "md: %s: %s: only %d devices permitted\n",
  2190. mdname(mddev), bdevname(rdev->bdev, b),
  2191. mddev->max_disks);
  2192. kick_rdev_from_array(rdev);
  2193. continue;
  2194. }
  2195. if (rdev != freshest)
  2196. if (super_types[mddev->major_version].
  2197. validate_super(mddev, rdev)) {
  2198. printk(KERN_WARNING "md: kicking non-fresh %s"
  2199. " from array!\n",
  2200. bdevname(rdev->bdev,b));
  2201. kick_rdev_from_array(rdev);
  2202. continue;
  2203. }
  2204. if (mddev->level == LEVEL_MULTIPATH) {
  2205. rdev->desc_nr = i++;
  2206. rdev->raid_disk = rdev->desc_nr;
  2207. set_bit(In_sync, &rdev->flags);
  2208. } else if (rdev->raid_disk >= mddev->raid_disks) {
  2209. rdev->raid_disk = -1;
  2210. clear_bit(In_sync, &rdev->flags);
  2211. }
  2212. }
  2213. if (mddev->recovery_cp != MaxSector &&
  2214. mddev->level >= 1)
  2215. printk(KERN_ERR "md: %s: raid array is not clean"
  2216. " -- starting background reconstruction\n",
  2217. mdname(mddev));
  2218. }
  2219. static void md_safemode_timeout(unsigned long data);
  2220. static ssize_t
  2221. safe_delay_show(mddev_t *mddev, char *page)
  2222. {
  2223. int msec = (mddev->safemode_delay*1000)/HZ;
  2224. return sprintf(page, "%d.%03d\n", msec/1000, msec%1000);
  2225. }
  2226. static ssize_t
  2227. safe_delay_store(mddev_t *mddev, const char *cbuf, size_t len)
  2228. {
  2229. int scale=1;
  2230. int dot=0;
  2231. int i;
  2232. unsigned long msec;
  2233. char buf[30];
  2234. /* remove a period, and count digits after it */
  2235. if (len >= sizeof(buf))
  2236. return -EINVAL;
  2237. strlcpy(buf, cbuf, sizeof(buf));
  2238. for (i=0; i<len; i++) {
  2239. if (dot) {
  2240. if (isdigit(buf[i])) {
  2241. buf[i-1] = buf[i];
  2242. scale *= 10;
  2243. }
  2244. buf[i] = 0;
  2245. } else if (buf[i] == '.') {
  2246. dot=1;
  2247. buf[i] = 0;
  2248. }
  2249. }
  2250. if (strict_strtoul(buf, 10, &msec) < 0)
  2251. return -EINVAL;
  2252. msec = (msec * 1000) / scale;
  2253. if (msec == 0)
  2254. mddev->safemode_delay = 0;
  2255. else {
  2256. unsigned long old_delay = mddev->safemode_delay;
  2257. mddev->safemode_delay = (msec*HZ)/1000;
  2258. if (mddev->safemode_delay == 0)
  2259. mddev->safemode_delay = 1;
  2260. if (mddev->safemode_delay < old_delay)
  2261. md_safemode_timeout((unsigned long)mddev);
  2262. }
  2263. return len;
  2264. }
  2265. static struct md_sysfs_entry md_safe_delay =
  2266. __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store);
  2267. static ssize_t
  2268. level_show(mddev_t *mddev, char *page)
  2269. {
  2270. struct mdk_personality *p = mddev->pers;
  2271. if (p)
  2272. return sprintf(page, "%s\n", p->name);
  2273. else if (mddev->clevel[0])
  2274. return sprintf(page, "%s\n", mddev->clevel);
  2275. else if (mddev->level != LEVEL_NONE)
  2276. return sprintf(page, "%d\n", mddev->level);
  2277. else
  2278. return 0;
  2279. }
  2280. static ssize_t
  2281. level_store(mddev_t *mddev, const char *buf, size_t len)
  2282. {
  2283. ssize_t rv = len;
  2284. if (mddev->pers)
  2285. return -EBUSY;
  2286. if (len == 0)
  2287. return 0;
  2288. if (len >= sizeof(mddev->clevel))
  2289. return -ENOSPC;
  2290. strncpy(mddev->clevel, buf, len);
  2291. if (mddev->clevel[len-1] == '\n')
  2292. len--;
  2293. mddev->clevel[len] = 0;
  2294. mddev->level = LEVEL_NONE;
  2295. return rv;
  2296. }
  2297. static struct md_sysfs_entry md_level =
  2298. __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store);
  2299. static ssize_t
  2300. layout_show(mddev_t *mddev, char *page)
  2301. {
  2302. /* just a number, not meaningful for all levels */
  2303. if (mddev->reshape_position != MaxSector &&
  2304. mddev->layout != mddev->new_layout)
  2305. return sprintf(page, "%d (%d)\n",
  2306. mddev->new_layout, mddev->layout);
  2307. return sprintf(page, "%d\n", mddev->layout);
  2308. }
  2309. static ssize_t
  2310. layout_store(mddev_t *mddev, const char *buf, size_t len)
  2311. {
  2312. char *e;
  2313. unsigned long n = simple_strtoul(buf, &e, 10);
  2314. if (!*buf || (*e && *e != '\n'))
  2315. return -EINVAL;
  2316. if (mddev->pers)
  2317. return -EBUSY;
  2318. if (mddev->reshape_position != MaxSector)
  2319. mddev->new_layout = n;
  2320. else
  2321. mddev->layout = n;
  2322. return len;
  2323. }
  2324. static struct md_sysfs_entry md_layout =
  2325. __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store);
  2326. static ssize_t
  2327. raid_disks_show(mddev_t *mddev, char *page)
  2328. {
  2329. if (mddev->raid_disks == 0)
  2330. return 0;
  2331. if (mddev->reshape_position != MaxSector &&
  2332. mddev->delta_disks != 0)
  2333. return sprintf(page, "%d (%d)\n", mddev->raid_disks,
  2334. mddev->raid_disks - mddev->delta_disks);
  2335. return sprintf(page, "%d\n", mddev->raid_disks);
  2336. }
  2337. static int update_raid_disks(mddev_t *mddev, int raid_disks);
  2338. static ssize_t
  2339. raid_disks_store(mddev_t *mddev, const char *buf, size_t len)
  2340. {
  2341. char *e;
  2342. int rv = 0;
  2343. unsigned long n = simple_strtoul(buf, &e, 10);
  2344. if (!*buf || (*e && *e != '\n'))
  2345. return -EINVAL;
  2346. if (mddev->pers)
  2347. rv = update_raid_disks(mddev, n);
  2348. else if (mddev->reshape_position != MaxSector) {
  2349. int olddisks = mddev->raid_disks - mddev->delta_disks;
  2350. mddev->delta_disks = n - olddisks;
  2351. mddev->raid_disks = n;
  2352. } else
  2353. mddev->raid_disks = n;
  2354. return rv ? rv : len;
  2355. }
  2356. static struct md_sysfs_entry md_raid_disks =
  2357. __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store);
  2358. static ssize_t
  2359. chunk_size_show(mddev_t *mddev, char *page)
  2360. {
  2361. if (mddev->reshape_position != MaxSector &&
  2362. mddev->chunk_size != mddev->new_chunk)
  2363. return sprintf(page, "%d (%d)\n", mddev->new_chunk,
  2364. mddev->chunk_size);
  2365. return sprintf(page, "%d\n", mddev->chunk_size);
  2366. }
  2367. static ssize_t
  2368. chunk_size_store(mddev_t *mddev, const char *buf, size_t len)
  2369. {
  2370. /* can only set chunk_size if array is not yet active */
  2371. char *e;
  2372. unsigned long n = simple_strtoul(buf, &e, 10);
  2373. if (!*buf || (*e && *e != '\n'))
  2374. return -EINVAL;
  2375. if (mddev->pers)
  2376. return -EBUSY;
  2377. else if (mddev->reshape_position != MaxSector)
  2378. mddev->new_chunk = n;
  2379. else
  2380. mddev->chunk_size = n;
  2381. return len;
  2382. }
  2383. static struct md_sysfs_entry md_chunk_size =
  2384. __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store);
  2385. static ssize_t
  2386. resync_start_show(mddev_t *mddev, char *page)
  2387. {
  2388. return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp);
  2389. }
  2390. static ssize_t
  2391. resync_start_store(mddev_t *mddev, const char *buf, size_t len)
  2392. {
  2393. char *e;
  2394. unsigned long long n = simple_strtoull(buf, &e, 10);
  2395. if (mddev->pers)
  2396. return -EBUSY;
  2397. if (!*buf || (*e && *e != '\n'))
  2398. return -EINVAL;
  2399. mddev->recovery_cp = n;
  2400. return len;
  2401. }
  2402. static struct md_sysfs_entry md_resync_start =
  2403. __ATTR(resync_start, S_IRUGO|S_IWUSR, resync_start_show, resync_start_store);
  2404. /*
  2405. * The array state can be:
  2406. *
  2407. * clear
  2408. * No devices, no size, no level
  2409. * Equivalent to STOP_ARRAY ioctl
  2410. * inactive
  2411. * May have some settings, but array is not active
  2412. * all IO results in error
  2413. * When written, doesn't tear down array, but just stops it
  2414. * suspended (not supported yet)
  2415. * All IO requests will block. The array can be reconfigured.
  2416. * Writing this, if accepted, will block until array is quiescent
  2417. * readonly
  2418. * no resync can happen. no superblocks get written.
  2419. * write requests fail
  2420. * read-auto
  2421. * like readonly, but behaves like 'clean' on a write request.
  2422. *
  2423. * clean - no pending writes, but otherwise active.
  2424. * When written to inactive array, starts without resync
  2425. * If a write request arrives then
  2426. * if metadata is known, mark 'dirty' and switch to 'active'.
  2427. * if not known, block and switch to write-pending
  2428. * If written to an active array that has pending writes, then fails.
  2429. * active
  2430. * fully active: IO and resync can be happening.
  2431. * When written to inactive array, starts with resync
  2432. *
  2433. * write-pending
  2434. * clean, but writes are blocked waiting for 'active' to be written.
  2435. *
  2436. * active-idle
  2437. * like active, but no writes have been seen for a while (100msec).
  2438. *
  2439. */
  2440. enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active,
  2441. write_pending, active_idle, bad_word};
  2442. static char *array_states[] = {
  2443. "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
  2444. "write-pending", "active-idle", NULL };
  2445. static int match_word(const char *word, char **list)
  2446. {
  2447. int n;
  2448. for (n=0; list[n]; n++)
  2449. if (cmd_match(word, list[n]))
  2450. break;
  2451. return n;
  2452. }
  2453. static ssize_t
  2454. array_state_show(mddev_t *mddev, char *page)
  2455. {
  2456. enum array_state st = inactive;
  2457. if (mddev->pers)
  2458. switch(mddev->ro) {
  2459. case 1:
  2460. st = readonly;
  2461. break;
  2462. case 2:
  2463. st = read_auto;
  2464. break;
  2465. case 0:
  2466. if (mddev->in_sync)
  2467. st = clean;
  2468. else if (test_bit(MD_CHANGE_CLEAN, &mddev->flags))
  2469. st = write_pending;
  2470. else if (mddev->safemode)
  2471. st = active_idle;
  2472. else
  2473. st = active;
  2474. }
  2475. else {
  2476. if (list_empty(&mddev->disks) &&
  2477. mddev->raid_disks == 0 &&
  2478. mddev->size == 0)
  2479. st = clear;
  2480. else
  2481. st = inactive;
  2482. }
  2483. return sprintf(page, "%s\n", array_states[st]);
  2484. }
  2485. static int do_md_stop(mddev_t * mddev, int ro, int is_open);
  2486. static int do_md_run(mddev_t * mddev);
  2487. static int restart_array(mddev_t *mddev);
  2488. static ssize_t
  2489. array_state_store(mddev_t *mddev, const char *buf, size_t len)
  2490. {
  2491. int err = -EINVAL;
  2492. enum array_state st = match_word(buf, array_states);
  2493. switch(st) {
  2494. case bad_word:
  2495. break;
  2496. case clear:
  2497. /* stopping an active array */
  2498. if (atomic_read(&mddev->openers) > 0)
  2499. return -EBUSY;
  2500. err = do_md_stop(mddev, 0, 0);
  2501. break;
  2502. case inactive:
  2503. /* stopping an active array */
  2504. if (mddev->pers) {
  2505. if (atomic_read(&mddev->openers) > 0)
  2506. return -EBUSY;
  2507. err = do_md_stop(mddev, 2, 0);
  2508. } else
  2509. err = 0; /* already inactive */
  2510. break;
  2511. case suspended:
  2512. break; /* not supported yet */
  2513. case readonly:
  2514. if (mddev->pers)
  2515. err = do_md_stop(mddev, 1, 0);
  2516. else {
  2517. mddev->ro = 1;
  2518. set_disk_ro(mddev->gendisk, 1);
  2519. err = do_md_run(mddev);
  2520. }
  2521. break;
  2522. case read_auto:
  2523. if (mddev->pers) {
  2524. if (mddev->ro == 0)
  2525. err = do_md_stop(mddev, 1, 0);
  2526. else if (mddev->ro == 1)
  2527. err = restart_array(mddev);
  2528. if (err == 0) {
  2529. mddev->ro = 2;
  2530. set_disk_ro(mddev->gendisk, 0);
  2531. }
  2532. } else {
  2533. mddev->ro = 2;
  2534. err = do_md_run(mddev);
  2535. }
  2536. break;
  2537. case clean:
  2538. if (mddev->pers) {
  2539. restart_array(mddev);
  2540. spin_lock_irq(&mddev->write_lock);
  2541. if (atomic_read(&mddev->writes_pending) == 0) {
  2542. if (mddev->in_sync == 0) {
  2543. mddev->in_sync = 1;
  2544. if (mddev->safemode == 1)
  2545. mddev->safemode = 0;
  2546. if (mddev->persistent)
  2547. set_bit(MD_CHANGE_CLEAN,
  2548. &mddev->flags);
  2549. }
  2550. err = 0;
  2551. } else
  2552. err = -EBUSY;
  2553. spin_unlock_irq(&mddev->write_lock);
  2554. } else {
  2555. mddev->ro = 0;
  2556. mddev->recovery_cp = MaxSector;
  2557. err = do_md_run(mddev);
  2558. }
  2559. break;
  2560. case active:
  2561. if (mddev->pers) {
  2562. restart_array(mddev);
  2563. if (mddev->external)
  2564. clear_bit(MD_CHANGE_CLEAN, &mddev->flags);
  2565. wake_up(&mddev->sb_wait);
  2566. err = 0;
  2567. } else {
  2568. mddev->ro = 0;
  2569. set_disk_ro(mddev->gendisk, 0);
  2570. err = do_md_run(mddev);
  2571. }
  2572. break;
  2573. case write_pending:
  2574. case active_idle:
  2575. /* these cannot be set */
  2576. break;
  2577. }
  2578. if (err)
  2579. return err;
  2580. else {
  2581. sysfs_notify_dirent(mddev->sysfs_state);
  2582. return len;
  2583. }
  2584. }
  2585. static struct md_sysfs_entry md_array_state =
  2586. __ATTR(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store);
  2587. static ssize_t
  2588. null_show(mddev_t *mddev, char *page)
  2589. {
  2590. return -EINVAL;
  2591. }
  2592. static ssize_t
  2593. new_dev_store(mddev_t *mddev, const char *buf, size_t len)
  2594. {
  2595. /* buf must be %d:%d\n? giving major and minor numbers */
  2596. /* The new device is added to the array.
  2597. * If the array has a persistent superblock, we read the
  2598. * superblock to initialise info and check validity.
  2599. * Otherwise, only checking done is that in bind_rdev_to_array,
  2600. * which mainly checks size.
  2601. */
  2602. char *e;
  2603. int major = simple_strtoul(buf, &e, 10);
  2604. int minor;
  2605. dev_t dev;
  2606. mdk_rdev_t *rdev;
  2607. int err;
  2608. if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
  2609. return -EINVAL;
  2610. minor = simple_strtoul(e+1, &e, 10);
  2611. if (*e && *e != '\n')
  2612. return -EINVAL;
  2613. dev = MKDEV(major, minor);
  2614. if (major != MAJOR(dev) ||
  2615. minor != MINOR(dev))
  2616. return -EOVERFLOW;
  2617. if (mddev->persistent) {
  2618. rdev = md_import_device(dev, mddev->major_version,
  2619. mddev->minor_version);
  2620. if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
  2621. mdk_rdev_t *rdev0 = list_entry(mddev->disks.next,
  2622. mdk_rdev_t, same_set);
  2623. err = super_types[mddev->major_version]
  2624. .load_super(rdev, rdev0, mddev->minor_version);
  2625. if (err < 0)
  2626. goto out;
  2627. }
  2628. } else if (mddev->external)
  2629. rdev = md_import_device(dev, -2, -1);
  2630. else
  2631. rdev = md_import_device(dev, -1, -1);
  2632. if (IS_ERR(rdev))
  2633. return PTR_ERR(rdev);
  2634. err = bind_rdev_to_array(rdev, mddev);
  2635. out:
  2636. if (err)
  2637. export_rdev(rdev);
  2638. return err ? err : len;
  2639. }
  2640. static struct md_sysfs_entry md_new_device =
  2641. __ATTR(new_dev, S_IWUSR, null_show, new_dev_store);
  2642. static ssize_t
  2643. bitmap_store(mddev_t *mddev, const char *buf, size_t len)
  2644. {
  2645. char *end;
  2646. unsigned long chunk, end_chunk;
  2647. if (!mddev->bitmap)
  2648. goto out;
  2649. /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */
  2650. while (*buf) {
  2651. chunk = end_chunk = simple_strtoul(buf, &end, 0);
  2652. if (buf == end) break;
  2653. if (*end == '-') { /* range */
  2654. buf = end + 1;
  2655. end_chunk = simple_strtoul(buf, &end, 0);
  2656. if (buf == end) break;
  2657. }
  2658. if (*end && !isspace(*end)) break;
  2659. bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk);
  2660. buf = end;
  2661. while (isspace(*buf)) buf++;
  2662. }
  2663. bitmap_unplug(mddev->bitmap); /* flush the bits to disk */
  2664. out:
  2665. return len;
  2666. }
  2667. static struct md_sysfs_entry md_bitmap =
  2668. __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store);
  2669. static ssize_t
  2670. size_show(mddev_t *mddev, char *page)
  2671. {
  2672. return sprintf(page, "%llu\n", (unsigned long long)mddev->size);
  2673. }
  2674. static int update_size(mddev_t *mddev, sector_t num_sectors);
  2675. static ssize_t
  2676. size_store(mddev_t *mddev, const char *buf, size_t len)
  2677. {
  2678. /* If array is inactive, we can reduce the component size, but
  2679. * not increase it (except from 0).
  2680. * If array is active, we can try an on-line resize
  2681. */
  2682. char *e;
  2683. int err = 0;
  2684. unsigned long long size = simple_strtoull(buf, &e, 10);
  2685. if (!*buf || *buf == '\n' ||
  2686. (*e && *e != '\n'))
  2687. return -EINVAL;
  2688. if (mddev->pers) {
  2689. err = update_size(mddev, size * 2);
  2690. md_update_sb(mddev, 1);
  2691. } else {
  2692. if (mddev->size == 0 ||
  2693. mddev->size > size)
  2694. mddev->size = size;
  2695. else
  2696. err = -ENOSPC;
  2697. }
  2698. return err ? err : len;
  2699. }
  2700. static struct md_sysfs_entry md_size =
  2701. __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store);
  2702. /* Metdata version.
  2703. * This is one of
  2704. * 'none' for arrays with no metadata (good luck...)
  2705. * 'external' for arrays with externally managed metadata,
  2706. * or N.M for internally known formats
  2707. */
  2708. static ssize_t
  2709. metadata_show(mddev_t *mddev, char *page)
  2710. {
  2711. if (mddev->persistent)
  2712. return sprintf(page, "%d.%d\n",
  2713. mddev->major_version, mddev->minor_version);
  2714. else if (mddev->external)
  2715. return sprintf(page, "external:%s\n", mddev->metadata_type);
  2716. else
  2717. return sprintf(page, "none\n");
  2718. }
  2719. static ssize_t
  2720. metadata_store(mddev_t *mddev, const char *buf, size_t len)
  2721. {
  2722. int major, minor;
  2723. char *e;
  2724. /* Changing the details of 'external' metadata is
  2725. * always permitted. Otherwise there must be
  2726. * no devices attached to the array.
  2727. */
  2728. if (mddev->external && strncmp(buf, "external:", 9) == 0)
  2729. ;
  2730. else if (!list_empty(&mddev->disks))
  2731. return -EBUSY;
  2732. if (cmd_match(buf, "none")) {
  2733. mddev->persistent = 0;
  2734. mddev->external = 0;
  2735. mddev->major_version = 0;
  2736. mddev->minor_version = 90;
  2737. return len;
  2738. }
  2739. if (strncmp(buf, "external:", 9) == 0) {
  2740. size_t namelen = len-9;
  2741. if (namelen >= sizeof(mddev->metadata_type))
  2742. namelen = sizeof(mddev->metadata_type)-1;
  2743. strncpy(mddev->metadata_type, buf+9, namelen);
  2744. mddev->metadata_type[namelen] = 0;
  2745. if (namelen && mddev->metadata_type[namelen-1] == '\n')
  2746. mddev->metadata_type[--namelen] = 0;
  2747. mddev->persistent = 0;
  2748. mddev->external = 1;
  2749. mddev->major_version = 0;
  2750. mddev->minor_version = 90;
  2751. return len;
  2752. }
  2753. major = simple_strtoul(buf, &e, 10);
  2754. if (e==buf || *e != '.')
  2755. return -EINVAL;
  2756. buf = e+1;
  2757. minor = simple_strtoul(buf, &e, 10);
  2758. if (e==buf || (*e && *e != '\n') )
  2759. return -EINVAL;
  2760. if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL)
  2761. return -ENOENT;
  2762. mddev->major_version = major;
  2763. mddev->minor_version = minor;
  2764. mddev->persistent = 1;
  2765. mddev->external = 0;
  2766. return len;
  2767. }
  2768. static struct md_sysfs_entry md_metadata =
  2769. __ATTR(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store);
  2770. static ssize_t
  2771. action_show(mddev_t *mddev, char *page)
  2772. {
  2773. char *type = "idle";
  2774. if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
  2775. (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))) {
  2776. if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
  2777. type = "reshape";
  2778. else if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
  2779. if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
  2780. type = "resync";
  2781. else if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
  2782. type = "check";
  2783. else
  2784. type = "repair";
  2785. } else if (test_bit(MD_RECOVERY_RECOVER, &mddev->recovery))
  2786. type = "recover";
  2787. }
  2788. return sprintf(page, "%s\n", type);
  2789. }
  2790. static ssize_t
  2791. action_store(mddev_t *mddev, const char *page, size_t len)
  2792. {
  2793. if (!mddev->pers || !mddev->pers->sync_request)
  2794. return -EINVAL;
  2795. if (cmd_match(page, "idle")) {
  2796. if (mddev->sync_thread) {
  2797. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  2798. md_unregister_thread(mddev->sync_thread);
  2799. mddev->sync_thread = NULL;
  2800. mddev->recovery = 0;
  2801. }
  2802. } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
  2803. test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
  2804. return -EBUSY;
  2805. else if (cmd_match(page, "resync"))
  2806. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  2807. else if (cmd_match(page, "recover")) {
  2808. set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
  2809. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  2810. } else if (cmd_match(page, "reshape")) {
  2811. int err;
  2812. if (mddev->pers->start_reshape == NULL)
  2813. return -EINVAL;
  2814. err = mddev->pers->start_reshape(mddev);
  2815. if (err)
  2816. return err;
  2817. sysfs_notify(&mddev->kobj, NULL, "degraded");
  2818. } else {
  2819. if (cmd_match(page, "check"))
  2820. set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
  2821. else if (!cmd_match(page, "repair"))
  2822. return -EINVAL;
  2823. set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
  2824. set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
  2825. }
  2826. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  2827. md_wakeup_thread(mddev->thread);
  2828. sysfs_notify_dirent(mddev->sysfs_action);
  2829. return len;
  2830. }
  2831. static ssize_t
  2832. mismatch_cnt_show(mddev_t *mddev, char *page)
  2833. {
  2834. return sprintf(page, "%llu\n",
  2835. (unsigned long long) mddev->resync_mismatches);
  2836. }
  2837. static struct md_sysfs_entry md_scan_mode =
  2838. __ATTR(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
  2839. static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt);
  2840. static ssize_t
  2841. sync_min_show(mddev_t *mddev, char *page)
  2842. {
  2843. return sprintf(page, "%d (%s)\n", speed_min(mddev),
  2844. mddev->sync_speed_min ? "local": "system");
  2845. }
  2846. static ssize_t
  2847. sync_min_store(mddev_t *mddev, const char *buf, size_t len)
  2848. {
  2849. int min;
  2850. char *e;
  2851. if (strncmp(buf, "system", 6)==0) {
  2852. mddev->sync_speed_min = 0;
  2853. return len;
  2854. }
  2855. min = simple_strtoul(buf, &e, 10);
  2856. if (buf == e || (*e && *e != '\n') || min <= 0)
  2857. return -EINVAL;
  2858. mddev->sync_speed_min = min;
  2859. return len;
  2860. }
  2861. static struct md_sysfs_entry md_sync_min =
  2862. __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
  2863. static ssize_t
  2864. sync_max_show(mddev_t *mddev, char *page)
  2865. {
  2866. return sprintf(page, "%d (%s)\n", speed_max(mddev),
  2867. mddev->sync_speed_max ? "local": "system");
  2868. }
  2869. static ssize_t
  2870. sync_max_store(mddev_t *mddev, const char *buf, size_t len)
  2871. {
  2872. int max;
  2873. char *e;
  2874. if (strncmp(buf, "system", 6)==0) {
  2875. mddev->sync_speed_max = 0;
  2876. return len;
  2877. }
  2878. max = simple_strtoul(buf, &e, 10);
  2879. if (buf == e || (*e && *e != '\n') || max <= 0)
  2880. return -EINVAL;
  2881. mddev->sync_speed_max = max;
  2882. return len;
  2883. }
  2884. static struct md_sysfs_entry md_sync_max =
  2885. __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
  2886. static ssize_t
  2887. degraded_show(mddev_t *mddev, char *page)
  2888. {
  2889. return sprintf(page, "%d\n", mddev->degraded);
  2890. }
  2891. static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded);
  2892. static ssize_t
  2893. sync_force_parallel_show(mddev_t *mddev, char *page)
  2894. {
  2895. return sprintf(page, "%d\n", mddev->parallel_resync);
  2896. }
  2897. static ssize_t
  2898. sync_force_parallel_store(mddev_t *mddev, const char *buf, size_t len)
  2899. {
  2900. long n;
  2901. if (strict_strtol(buf, 10, &n))
  2902. return -EINVAL;
  2903. if (n != 0 && n != 1)
  2904. return -EINVAL;
  2905. mddev->parallel_resync = n;
  2906. if (mddev->sync_thread)
  2907. wake_up(&resync_wait);
  2908. return len;
  2909. }
  2910. /* force parallel resync, even with shared block devices */
  2911. static struct md_sysfs_entry md_sync_force_parallel =
  2912. __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR,
  2913. sync_force_parallel_show, sync_force_parallel_store);
  2914. static ssize_t
  2915. sync_speed_show(mddev_t *mddev, char *page)
  2916. {
  2917. unsigned long resync, dt, db;
  2918. resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active);
  2919. dt = (jiffies - mddev->resync_mark) / HZ;
  2920. if (!dt) dt++;
  2921. db = resync - mddev->resync_mark_cnt;
  2922. return sprintf(page, "%lu\n", db/dt/2); /* K/sec */
  2923. }
  2924. static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed);
  2925. static ssize_t
  2926. sync_completed_show(mddev_t *mddev, char *page)
  2927. {
  2928. unsigned long max_blocks, resync;
  2929. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
  2930. max_blocks = mddev->resync_max_sectors;
  2931. else
  2932. max_blocks = mddev->size << 1;
  2933. resync = (mddev->curr_resync - atomic_read(&mddev->recovery_active));
  2934. return sprintf(page, "%lu / %lu\n", resync, max_blocks);
  2935. }
  2936. static struct md_sysfs_entry md_sync_completed = __ATTR_RO(sync_completed);
  2937. static ssize_t
  2938. min_sync_show(mddev_t *mddev, char *page)
  2939. {
  2940. return sprintf(page, "%llu\n",
  2941. (unsigned long long)mddev->resync_min);
  2942. }
  2943. static ssize_t
  2944. min_sync_store(mddev_t *mddev, const char *buf, size_t len)
  2945. {
  2946. unsigned long long min;
  2947. if (strict_strtoull(buf, 10, &min))
  2948. return -EINVAL;
  2949. if (min > mddev->resync_max)
  2950. return -EINVAL;
  2951. if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
  2952. return -EBUSY;
  2953. /* Must be a multiple of chunk_size */
  2954. if (mddev->chunk_size) {
  2955. if (min & (sector_t)((mddev->chunk_size>>9)-1))
  2956. return -EINVAL;
  2957. }
  2958. mddev->resync_min = min;
  2959. return len;
  2960. }
  2961. static struct md_sysfs_entry md_min_sync =
  2962. __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store);
  2963. static ssize_t
  2964. max_sync_show(mddev_t *mddev, char *page)
  2965. {
  2966. if (mddev->resync_max == MaxSector)
  2967. return sprintf(page, "max\n");
  2968. else
  2969. return sprintf(page, "%llu\n",
  2970. (unsigned long long)mddev->resync_max);
  2971. }
  2972. static ssize_t
  2973. max_sync_store(mddev_t *mddev, const char *buf, size_t len)
  2974. {
  2975. if (strncmp(buf, "max", 3) == 0)
  2976. mddev->resync_max = MaxSector;
  2977. else {
  2978. unsigned long long max;
  2979. if (strict_strtoull(buf, 10, &max))
  2980. return -EINVAL;
  2981. if (max < mddev->resync_min)
  2982. return -EINVAL;
  2983. if (max < mddev->resync_max &&
  2984. test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
  2985. return -EBUSY;
  2986. /* Must be a multiple of chunk_size */
  2987. if (mddev->chunk_size) {
  2988. if (max & (sector_t)((mddev->chunk_size>>9)-1))
  2989. return -EINVAL;
  2990. }
  2991. mddev->resync_max = max;
  2992. }
  2993. wake_up(&mddev->recovery_wait);
  2994. return len;
  2995. }
  2996. static struct md_sysfs_entry md_max_sync =
  2997. __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store);
  2998. static ssize_t
  2999. suspend_lo_show(mddev_t *mddev, char *page)
  3000. {
  3001. return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
  3002. }
  3003. static ssize_t
  3004. suspend_lo_store(mddev_t *mddev, const char *buf, size_t len)
  3005. {
  3006. char *e;
  3007. unsigned long long new = simple_strtoull(buf, &e, 10);
  3008. if (mddev->pers->quiesce == NULL)
  3009. return -EINVAL;
  3010. if (buf == e || (*e && *e != '\n'))
  3011. return -EINVAL;
  3012. if (new >= mddev->suspend_hi ||
  3013. (new > mddev->suspend_lo && new < mddev->suspend_hi)) {
  3014. mddev->suspend_lo = new;
  3015. mddev->pers->quiesce(mddev, 2);
  3016. return len;
  3017. } else
  3018. return -EINVAL;
  3019. }
  3020. static struct md_sysfs_entry md_suspend_lo =
  3021. __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
  3022. static ssize_t
  3023. suspend_hi_show(mddev_t *mddev, char *page)
  3024. {
  3025. return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
  3026. }
  3027. static ssize_t
  3028. suspend_hi_store(mddev_t *mddev, const char *buf, size_t len)
  3029. {
  3030. char *e;
  3031. unsigned long long new = simple_strtoull(buf, &e, 10);
  3032. if (mddev->pers->quiesce == NULL)
  3033. return -EINVAL;
  3034. if (buf == e || (*e && *e != '\n'))
  3035. return -EINVAL;
  3036. if ((new <= mddev->suspend_lo && mddev->suspend_lo >= mddev->suspend_hi) ||
  3037. (new > mddev->suspend_lo && new > mddev->suspend_hi)) {
  3038. mddev->suspend_hi = new;
  3039. mddev->pers->quiesce(mddev, 1);
  3040. mddev->pers->quiesce(mddev, 0);
  3041. return len;
  3042. } else
  3043. return -EINVAL;
  3044. }
  3045. static struct md_sysfs_entry md_suspend_hi =
  3046. __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
  3047. static ssize_t
  3048. reshape_position_show(mddev_t *mddev, char *page)
  3049. {
  3050. if (mddev->reshape_position != MaxSector)
  3051. return sprintf(page, "%llu\n",
  3052. (unsigned long long)mddev->reshape_position);
  3053. strcpy(page, "none\n");
  3054. return 5;
  3055. }
  3056. static ssize_t
  3057. reshape_position_store(mddev_t *mddev, const char *buf, size_t len)
  3058. {
  3059. char *e;
  3060. unsigned long long new = simple_strtoull(buf, &e, 10);
  3061. if (mddev->pers)
  3062. return -EBUSY;
  3063. if (buf == e || (*e && *e != '\n'))
  3064. return -EINVAL;
  3065. mddev->reshape_position = new;
  3066. mddev->delta_disks = 0;
  3067. mddev->new_level = mddev->level;
  3068. mddev->new_layout = mddev->layout;
  3069. mddev->new_chunk = mddev->chunk_size;
  3070. return len;
  3071. }
  3072. static struct md_sysfs_entry md_reshape_position =
  3073. __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show,
  3074. reshape_position_store);
  3075. static struct attribute *md_default_attrs[] = {
  3076. &md_level.attr,
  3077. &md_layout.attr,
  3078. &md_raid_disks.attr,
  3079. &md_chunk_size.attr,
  3080. &md_size.attr,
  3081. &md_resync_start.attr,
  3082. &md_metadata.attr,
  3083. &md_new_device.attr,
  3084. &md_safe_delay.attr,
  3085. &md_array_state.attr,
  3086. &md_reshape_position.attr,
  3087. NULL,
  3088. };
  3089. static struct attribute *md_redundancy_attrs[] = {
  3090. &md_scan_mode.attr,
  3091. &md_mismatches.attr,
  3092. &md_sync_min.attr,
  3093. &md_sync_max.attr,
  3094. &md_sync_speed.attr,
  3095. &md_sync_force_parallel.attr,
  3096. &md_sync_completed.attr,
  3097. &md_min_sync.attr,
  3098. &md_max_sync.attr,
  3099. &md_suspend_lo.attr,
  3100. &md_suspend_hi.attr,
  3101. &md_bitmap.attr,
  3102. &md_degraded.attr,
  3103. NULL,
  3104. };
  3105. static struct attribute_group md_redundancy_group = {
  3106. .name = NULL,
  3107. .attrs = md_redundancy_attrs,
  3108. };
  3109. static ssize_t
  3110. md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
  3111. {
  3112. struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
  3113. mddev_t *mddev = container_of(kobj, struct mddev_s, kobj);
  3114. ssize_t rv;
  3115. if (!entry->show)
  3116. return -EIO;
  3117. rv = mddev_lock(mddev);
  3118. if (!rv) {
  3119. rv = entry->show(mddev, page);
  3120. mddev_unlock(mddev);
  3121. }
  3122. return rv;
  3123. }
  3124. static ssize_t
  3125. md_attr_store(struct kobject *kobj, struct attribute *attr,
  3126. const char *page, size_t length)
  3127. {
  3128. struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
  3129. mddev_t *mddev = container_of(kobj, struct mddev_s, kobj);
  3130. ssize_t rv;
  3131. if (!entry->store)
  3132. return -EIO;
  3133. if (!capable(CAP_SYS_ADMIN))
  3134. return -EACCES;
  3135. rv = mddev_lock(mddev);
  3136. if (mddev->hold_active == UNTIL_IOCTL)
  3137. mddev->hold_active = 0;
  3138. if (!rv) {
  3139. rv = entry->store(mddev, page, length);
  3140. mddev_unlock(mddev);
  3141. }
  3142. return rv;
  3143. }
  3144. static void md_free(struct kobject *ko)
  3145. {
  3146. mddev_t *mddev = container_of(ko, mddev_t, kobj);
  3147. if (mddev->sysfs_state)
  3148. sysfs_put(mddev->sysfs_state);
  3149. if (mddev->gendisk) {
  3150. del_gendisk(mddev->gendisk);
  3151. put_disk(mddev->gendisk);
  3152. }
  3153. if (mddev->queue)
  3154. blk_cleanup_queue(mddev->queue);
  3155. kfree(mddev);
  3156. }
  3157. static struct sysfs_ops md_sysfs_ops = {
  3158. .show = md_attr_show,
  3159. .store = md_attr_store,
  3160. };
  3161. static struct kobj_type md_ktype = {
  3162. .release = md_free,
  3163. .sysfs_ops = &md_sysfs_ops,
  3164. .default_attrs = md_default_attrs,
  3165. };
  3166. int mdp_major = 0;
  3167. static int md_alloc(dev_t dev, char *name)
  3168. {
  3169. static DEFINE_MUTEX(disks_mutex);
  3170. mddev_t *mddev = mddev_find(dev);
  3171. struct gendisk *disk;
  3172. int partitioned;
  3173. int shift;
  3174. int unit;
  3175. int error;
  3176. if (!mddev)
  3177. return -ENODEV;
  3178. partitioned = (MAJOR(mddev->unit) != MD_MAJOR);
  3179. shift = partitioned ? MdpMinorShift : 0;
  3180. unit = MINOR(mddev->unit) >> shift;
  3181. /* wait for any previous instance if this device
  3182. * to be completed removed (mddev_delayed_delete).
  3183. */
  3184. flush_scheduled_work();
  3185. mutex_lock(&disks_mutex);
  3186. if (mddev->gendisk) {
  3187. mutex_unlock(&disks_mutex);
  3188. mddev_put(mddev);
  3189. return -EEXIST;
  3190. }
  3191. if (name) {
  3192. /* Need to ensure that 'name' is not a duplicate.
  3193. */
  3194. mddev_t *mddev2;
  3195. spin_lock(&all_mddevs_lock);
  3196. list_for_each_entry(mddev2, &all_mddevs, all_mddevs)
  3197. if (mddev2->gendisk &&
  3198. strcmp(mddev2->gendisk->disk_name, name) == 0) {
  3199. spin_unlock(&all_mddevs_lock);
  3200. return -EEXIST;
  3201. }
  3202. spin_unlock(&all_mddevs_lock);
  3203. }
  3204. mddev->queue = blk_alloc_queue(GFP_KERNEL);
  3205. if (!mddev->queue) {
  3206. mutex_unlock(&disks_mutex);
  3207. mddev_put(mddev);
  3208. return -ENOMEM;
  3209. }
  3210. /* Can be unlocked because the queue is new: no concurrency */
  3211. queue_flag_set_unlocked(QUEUE_FLAG_CLUSTER, mddev->queue);
  3212. blk_queue_make_request(mddev->queue, md_fail_request);
  3213. disk = alloc_disk(1 << shift);
  3214. if (!disk) {
  3215. mutex_unlock(&disks_mutex);
  3216. blk_cleanup_queue(mddev->queue);
  3217. mddev->queue = NULL;
  3218. mddev_put(mddev);
  3219. return -ENOMEM;
  3220. }
  3221. disk->major = MAJOR(mddev->unit);
  3222. disk->first_minor = unit << shift;
  3223. if (name)
  3224. strcpy(disk->disk_name, name);
  3225. else if (partitioned)
  3226. sprintf(disk->disk_name, "md_d%d", unit);
  3227. else
  3228. sprintf(disk->disk_name, "md%d", unit);
  3229. disk->fops = &md_fops;
  3230. disk->private_data = mddev;
  3231. disk->queue = mddev->queue;
  3232. /* Allow extended partitions. This makes the
  3233. * 'mdp' device redundant, but we can't really
  3234. * remove it now.
  3235. */
  3236. disk->flags |= GENHD_FL_EXT_DEVT;
  3237. add_disk(disk);
  3238. mddev->gendisk = disk;
  3239. error = kobject_init_and_add(&mddev->kobj, &md_ktype,
  3240. &disk_to_dev(disk)->kobj, "%s", "md");
  3241. mutex_unlock(&disks_mutex);
  3242. if (error)
  3243. printk(KERN_WARNING "md: cannot register %s/md - name in use\n",
  3244. disk->disk_name);
  3245. else {
  3246. kobject_uevent(&mddev->kobj, KOBJ_ADD);
  3247. mddev->sysfs_state = sysfs_get_dirent(mddev->kobj.sd, "array_state");
  3248. }
  3249. mddev_put(mddev);
  3250. return 0;
  3251. }
  3252. static struct kobject *md_probe(dev_t dev, int *part, void *data)
  3253. {
  3254. md_alloc(dev, NULL);
  3255. return NULL;
  3256. }
  3257. static int add_named_array(const char *val, struct kernel_param *kp)
  3258. {
  3259. /* val must be "md_*" where * is not all digits.
  3260. * We allocate an array with a large free minor number, and
  3261. * set the name to val. val must not already be an active name.
  3262. */
  3263. int len = strlen(val);
  3264. char buf[DISK_NAME_LEN];
  3265. while (len && val[len-1] == '\n')
  3266. len--;
  3267. if (len >= DISK_NAME_LEN)
  3268. return -E2BIG;
  3269. strlcpy(buf, val, len+1);
  3270. if (strncmp(buf, "md_", 3) != 0)
  3271. return -EINVAL;
  3272. return md_alloc(0, buf);
  3273. }
  3274. static void md_safemode_timeout(unsigned long data)
  3275. {
  3276. mddev_t *mddev = (mddev_t *) data;
  3277. if (!atomic_read(&mddev->writes_pending)) {
  3278. mddev->safemode = 1;
  3279. if (mddev->external)
  3280. sysfs_notify_dirent(mddev->sysfs_state);
  3281. }
  3282. md_wakeup_thread(mddev->thread);
  3283. }
  3284. static int start_dirty_degraded;
  3285. static int do_md_run(mddev_t * mddev)
  3286. {
  3287. int err;
  3288. int chunk_size;
  3289. mdk_rdev_t *rdev;
  3290. struct gendisk *disk;
  3291. struct mdk_personality *pers;
  3292. char b[BDEVNAME_SIZE];
  3293. if (list_empty(&mddev->disks))
  3294. /* cannot run an array with no devices.. */
  3295. return -EINVAL;
  3296. if (mddev->pers)
  3297. return -EBUSY;
  3298. /*
  3299. * Analyze all RAID superblock(s)
  3300. */
  3301. if (!mddev->raid_disks) {
  3302. if (!mddev->persistent)
  3303. return -EINVAL;
  3304. analyze_sbs(mddev);
  3305. }
  3306. chunk_size = mddev->chunk_size;
  3307. if (chunk_size) {
  3308. if (chunk_size > MAX_CHUNK_SIZE) {
  3309. printk(KERN_ERR "too big chunk_size: %d > %d\n",
  3310. chunk_size, MAX_CHUNK_SIZE);
  3311. return -EINVAL;
  3312. }
  3313. /*
  3314. * chunk-size has to be a power of 2
  3315. */
  3316. if ( (1 << ffz(~chunk_size)) != chunk_size) {
  3317. printk(KERN_ERR "chunk_size of %d not valid\n", chunk_size);
  3318. return -EINVAL;
  3319. }
  3320. /* devices must have minimum size of one chunk */
  3321. list_for_each_entry(rdev, &mddev->disks, same_set) {
  3322. if (test_bit(Faulty, &rdev->flags))
  3323. continue;
  3324. if (rdev->size < chunk_size / 1024) {
  3325. printk(KERN_WARNING
  3326. "md: Dev %s smaller than chunk_size:"
  3327. " %lluk < %dk\n",
  3328. bdevname(rdev->bdev,b),
  3329. (unsigned long long)rdev->size,
  3330. chunk_size / 1024);
  3331. return -EINVAL;
  3332. }
  3333. }
  3334. }
  3335. if (mddev->level != LEVEL_NONE)
  3336. request_module("md-level-%d", mddev->level);
  3337. else if (mddev->clevel[0])
  3338. request_module("md-%s", mddev->clevel);
  3339. /*
  3340. * Drop all container device buffers, from now on
  3341. * the only valid external interface is through the md
  3342. * device.
  3343. */
  3344. list_for_each_entry(rdev, &mddev->disks, same_set) {
  3345. if (test_bit(Faulty, &rdev->flags))
  3346. continue;
  3347. sync_blockdev(rdev->bdev);
  3348. invalidate_bdev(rdev->bdev);
  3349. /* perform some consistency tests on the device.
  3350. * We don't want the data to overlap the metadata,
  3351. * Internal Bitmap issues has handled elsewhere.
  3352. */
  3353. if (rdev->data_offset < rdev->sb_start) {
  3354. if (mddev->size &&
  3355. rdev->data_offset + mddev->size*2
  3356. > rdev->sb_start) {
  3357. printk("md: %s: data overlaps metadata\n",
  3358. mdname(mddev));
  3359. return -EINVAL;
  3360. }
  3361. } else {
  3362. if (rdev->sb_start + rdev->sb_size/512
  3363. > rdev->data_offset) {
  3364. printk("md: %s: metadata overlaps data\n",
  3365. mdname(mddev));
  3366. return -EINVAL;
  3367. }
  3368. }
  3369. sysfs_notify_dirent(rdev->sysfs_state);
  3370. }
  3371. md_probe(mddev->unit, NULL, NULL);
  3372. disk = mddev->gendisk;
  3373. if (!disk)
  3374. return -ENOMEM;
  3375. spin_lock(&pers_lock);
  3376. pers = find_pers(mddev->level, mddev->clevel);
  3377. if (!pers || !try_module_get(pers->owner)) {
  3378. spin_unlock(&pers_lock);
  3379. if (mddev->level != LEVEL_NONE)
  3380. printk(KERN_WARNING "md: personality for level %d is not loaded!\n",
  3381. mddev->level);
  3382. else
  3383. printk(KERN_WARNING "md: personality for level %s is not loaded!\n",
  3384. mddev->clevel);
  3385. return -EINVAL;
  3386. }
  3387. mddev->pers = pers;
  3388. spin_unlock(&pers_lock);
  3389. mddev->level = pers->level;
  3390. strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
  3391. if (pers->level >= 4 && pers->level <= 6)
  3392. /* Cannot support integrity (yet) */
  3393. blk_integrity_unregister(mddev->gendisk);
  3394. if (mddev->reshape_position != MaxSector &&
  3395. pers->start_reshape == NULL) {
  3396. /* This personality cannot handle reshaping... */
  3397. mddev->pers = NULL;
  3398. module_put(pers->owner);
  3399. return -EINVAL;
  3400. }
  3401. if (pers->sync_request) {
  3402. /* Warn if this is a potentially silly
  3403. * configuration.
  3404. */
  3405. char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
  3406. mdk_rdev_t *rdev2;
  3407. int warned = 0;
  3408. list_for_each_entry(rdev, &mddev->disks, same_set)
  3409. list_for_each_entry(rdev2, &mddev->disks, same_set) {
  3410. if (rdev < rdev2 &&
  3411. rdev->bdev->bd_contains ==
  3412. rdev2->bdev->bd_contains) {
  3413. printk(KERN_WARNING
  3414. "%s: WARNING: %s appears to be"
  3415. " on the same physical disk as"
  3416. " %s.\n",
  3417. mdname(mddev),
  3418. bdevname(rdev->bdev,b),
  3419. bdevname(rdev2->bdev,b2));
  3420. warned = 1;
  3421. }
  3422. }
  3423. if (warned)
  3424. printk(KERN_WARNING
  3425. "True protection against single-disk"
  3426. " failure might be compromised.\n");
  3427. }
  3428. mddev->recovery = 0;
  3429. mddev->resync_max_sectors = mddev->size << 1; /* may be over-ridden by personality */
  3430. mddev->barriers_work = 1;
  3431. mddev->ok_start_degraded = start_dirty_degraded;
  3432. if (start_readonly)
  3433. mddev->ro = 2; /* read-only, but switch on first write */
  3434. err = mddev->pers->run(mddev);
  3435. if (err)
  3436. printk(KERN_ERR "md: pers->run() failed ...\n");
  3437. else if (mddev->pers->sync_request) {
  3438. err = bitmap_create(mddev);
  3439. if (err) {
  3440. printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
  3441. mdname(mddev), err);
  3442. mddev->pers->stop(mddev);
  3443. }
  3444. }
  3445. if (err) {
  3446. module_put(mddev->pers->owner);
  3447. mddev->pers = NULL;
  3448. bitmap_destroy(mddev);
  3449. return err;
  3450. }
  3451. if (mddev->pers->sync_request) {
  3452. if (sysfs_create_group(&mddev->kobj, &md_redundancy_group))
  3453. printk(KERN_WARNING
  3454. "md: cannot register extra attributes for %s\n",
  3455. mdname(mddev));
  3456. mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, "sync_action");
  3457. } else if (mddev->ro == 2) /* auto-readonly not meaningful */
  3458. mddev->ro = 0;
  3459. atomic_set(&mddev->writes_pending,0);
  3460. mddev->safemode = 0;
  3461. mddev->safemode_timer.function = md_safemode_timeout;
  3462. mddev->safemode_timer.data = (unsigned long) mddev;
  3463. mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */
  3464. mddev->in_sync = 1;
  3465. list_for_each_entry(rdev, &mddev->disks, same_set)
  3466. if (rdev->raid_disk >= 0) {
  3467. char nm[20];
  3468. sprintf(nm, "rd%d", rdev->raid_disk);
  3469. if (sysfs_create_link(&mddev->kobj, &rdev->kobj, nm))
  3470. printk("md: cannot register %s for %s\n",
  3471. nm, mdname(mddev));
  3472. }
  3473. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  3474. if (mddev->flags)
  3475. md_update_sb(mddev, 0);
  3476. set_capacity(disk, mddev->array_sectors);
  3477. /* If we call blk_queue_make_request here, it will
  3478. * re-initialise max_sectors etc which may have been
  3479. * refined inside -> run. So just set the bits we need to set.
  3480. * Most initialisation happended when we called
  3481. * blk_queue_make_request(..., md_fail_request)
  3482. * earlier.
  3483. */
  3484. mddev->queue->queuedata = mddev;
  3485. mddev->queue->make_request_fn = mddev->pers->make_request;
  3486. /* If there is a partially-recovered drive we need to
  3487. * start recovery here. If we leave it to md_check_recovery,
  3488. * it will remove the drives and not do the right thing
  3489. */
  3490. if (mddev->degraded && !mddev->sync_thread) {
  3491. int spares = 0;
  3492. list_for_each_entry(rdev, &mddev->disks, same_set)
  3493. if (rdev->raid_disk >= 0 &&
  3494. !test_bit(In_sync, &rdev->flags) &&
  3495. !test_bit(Faulty, &rdev->flags))
  3496. /* complete an interrupted recovery */
  3497. spares++;
  3498. if (spares && mddev->pers->sync_request) {
  3499. mddev->recovery = 0;
  3500. set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
  3501. mddev->sync_thread = md_register_thread(md_do_sync,
  3502. mddev,
  3503. "%s_resync");
  3504. if (!mddev->sync_thread) {
  3505. printk(KERN_ERR "%s: could not start resync"
  3506. " thread...\n",
  3507. mdname(mddev));
  3508. /* leave the spares where they are, it shouldn't hurt */
  3509. mddev->recovery = 0;
  3510. }
  3511. }
  3512. }
  3513. md_wakeup_thread(mddev->thread);
  3514. md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
  3515. mddev->changed = 1;
  3516. md_new_event(mddev);
  3517. sysfs_notify_dirent(mddev->sysfs_state);
  3518. if (mddev->sysfs_action)
  3519. sysfs_notify_dirent(mddev->sysfs_action);
  3520. sysfs_notify(&mddev->kobj, NULL, "degraded");
  3521. kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
  3522. return 0;
  3523. }
  3524. static int restart_array(mddev_t *mddev)
  3525. {
  3526. struct gendisk *disk = mddev->gendisk;
  3527. /* Complain if it has no devices */
  3528. if (list_empty(&mddev->disks))
  3529. return -ENXIO;
  3530. if (!mddev->pers)
  3531. return -EINVAL;
  3532. if (!mddev->ro)
  3533. return -EBUSY;
  3534. mddev->safemode = 0;
  3535. mddev->ro = 0;
  3536. set_disk_ro(disk, 0);
  3537. printk(KERN_INFO "md: %s switched to read-write mode.\n",
  3538. mdname(mddev));
  3539. /* Kick recovery or resync if necessary */
  3540. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  3541. md_wakeup_thread(mddev->thread);
  3542. md_wakeup_thread(mddev->sync_thread);
  3543. sysfs_notify_dirent(mddev->sysfs_state);
  3544. return 0;
  3545. }
  3546. /* similar to deny_write_access, but accounts for our holding a reference
  3547. * to the file ourselves */
  3548. static int deny_bitmap_write_access(struct file * file)
  3549. {
  3550. struct inode *inode = file->f_mapping->host;
  3551. spin_lock(&inode->i_lock);
  3552. if (atomic_read(&inode->i_writecount) > 1) {
  3553. spin_unlock(&inode->i_lock);
  3554. return -ETXTBSY;
  3555. }
  3556. atomic_set(&inode->i_writecount, -1);
  3557. spin_unlock(&inode->i_lock);
  3558. return 0;
  3559. }
  3560. static void restore_bitmap_write_access(struct file *file)
  3561. {
  3562. struct inode *inode = file->f_mapping->host;
  3563. spin_lock(&inode->i_lock);
  3564. atomic_set(&inode->i_writecount, 1);
  3565. spin_unlock(&inode->i_lock);
  3566. }
  3567. /* mode:
  3568. * 0 - completely stop and dis-assemble array
  3569. * 1 - switch to readonly
  3570. * 2 - stop but do not disassemble array
  3571. */
  3572. static int do_md_stop(mddev_t * mddev, int mode, int is_open)
  3573. {
  3574. int err = 0;
  3575. struct gendisk *disk = mddev->gendisk;
  3576. if (atomic_read(&mddev->openers) > is_open) {
  3577. printk("md: %s still in use.\n",mdname(mddev));
  3578. return -EBUSY;
  3579. }
  3580. if (mddev->pers) {
  3581. if (mddev->sync_thread) {
  3582. set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
  3583. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  3584. md_unregister_thread(mddev->sync_thread);
  3585. mddev->sync_thread = NULL;
  3586. }
  3587. del_timer_sync(&mddev->safemode_timer);
  3588. switch(mode) {
  3589. case 1: /* readonly */
  3590. err = -ENXIO;
  3591. if (mddev->ro==1)
  3592. goto out;
  3593. mddev->ro = 1;
  3594. break;
  3595. case 0: /* disassemble */
  3596. case 2: /* stop */
  3597. bitmap_flush(mddev);
  3598. md_super_wait(mddev);
  3599. if (mddev->ro)
  3600. set_disk_ro(disk, 0);
  3601. blk_queue_make_request(mddev->queue, md_fail_request);
  3602. mddev->pers->stop(mddev);
  3603. mddev->queue->merge_bvec_fn = NULL;
  3604. mddev->queue->unplug_fn = NULL;
  3605. mddev->queue->backing_dev_info.congested_fn = NULL;
  3606. if (mddev->pers->sync_request) {
  3607. sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
  3608. if (mddev->sysfs_action)
  3609. sysfs_put(mddev->sysfs_action);
  3610. mddev->sysfs_action = NULL;
  3611. }
  3612. module_put(mddev->pers->owner);
  3613. mddev->pers = NULL;
  3614. /* tell userspace to handle 'inactive' */
  3615. sysfs_notify_dirent(mddev->sysfs_state);
  3616. set_capacity(disk, 0);
  3617. mddev->changed = 1;
  3618. if (mddev->ro)
  3619. mddev->ro = 0;
  3620. }
  3621. if (!mddev->in_sync || mddev->flags) {
  3622. /* mark array as shutdown cleanly */
  3623. mddev->in_sync = 1;
  3624. md_update_sb(mddev, 1);
  3625. }
  3626. if (mode == 1)
  3627. set_disk_ro(disk, 1);
  3628. clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
  3629. }
  3630. /*
  3631. * Free resources if final stop
  3632. */
  3633. if (mode == 0) {
  3634. mdk_rdev_t *rdev;
  3635. printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
  3636. bitmap_destroy(mddev);
  3637. if (mddev->bitmap_file) {
  3638. restore_bitmap_write_access(mddev->bitmap_file);
  3639. fput(mddev->bitmap_file);
  3640. mddev->bitmap_file = NULL;
  3641. }
  3642. mddev->bitmap_offset = 0;
  3643. list_for_each_entry(rdev, &mddev->disks, same_set)
  3644. if (rdev->raid_disk >= 0) {
  3645. char nm[20];
  3646. sprintf(nm, "rd%d", rdev->raid_disk);
  3647. sysfs_remove_link(&mddev->kobj, nm);
  3648. }
  3649. /* make sure all md_delayed_delete calls have finished */
  3650. flush_scheduled_work();
  3651. export_array(mddev);
  3652. mddev->array_sectors = 0;
  3653. mddev->size = 0;
  3654. mddev->raid_disks = 0;
  3655. mddev->recovery_cp = 0;
  3656. mddev->resync_min = 0;
  3657. mddev->resync_max = MaxSector;
  3658. mddev->reshape_position = MaxSector;
  3659. mddev->external = 0;
  3660. mddev->persistent = 0;
  3661. mddev->level = LEVEL_NONE;
  3662. mddev->clevel[0] = 0;
  3663. mddev->flags = 0;
  3664. mddev->ro = 0;
  3665. mddev->metadata_type[0] = 0;
  3666. mddev->chunk_size = 0;
  3667. mddev->ctime = mddev->utime = 0;
  3668. mddev->layout = 0;
  3669. mddev->max_disks = 0;
  3670. mddev->events = 0;
  3671. mddev->delta_disks = 0;
  3672. mddev->new_level = LEVEL_NONE;
  3673. mddev->new_layout = 0;
  3674. mddev->new_chunk = 0;
  3675. mddev->curr_resync = 0;
  3676. mddev->resync_mismatches = 0;
  3677. mddev->suspend_lo = mddev->suspend_hi = 0;
  3678. mddev->sync_speed_min = mddev->sync_speed_max = 0;
  3679. mddev->recovery = 0;
  3680. mddev->in_sync = 0;
  3681. mddev->changed = 0;
  3682. mddev->degraded = 0;
  3683. mddev->barriers_work = 0;
  3684. mddev->safemode = 0;
  3685. kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
  3686. if (mddev->hold_active == UNTIL_STOP)
  3687. mddev->hold_active = 0;
  3688. } else if (mddev->pers)
  3689. printk(KERN_INFO "md: %s switched to read-only mode.\n",
  3690. mdname(mddev));
  3691. err = 0;
  3692. blk_integrity_unregister(disk);
  3693. md_new_event(mddev);
  3694. sysfs_notify_dirent(mddev->sysfs_state);
  3695. out:
  3696. return err;
  3697. }
  3698. #ifndef MODULE
  3699. static void autorun_array(mddev_t *mddev)
  3700. {
  3701. mdk_rdev_t *rdev;
  3702. int err;
  3703. if (list_empty(&mddev->disks))
  3704. return;
  3705. printk(KERN_INFO "md: running: ");
  3706. list_for_each_entry(rdev, &mddev->disks, same_set) {
  3707. char b[BDEVNAME_SIZE];
  3708. printk("<%s>", bdevname(rdev->bdev,b));
  3709. }
  3710. printk("\n");
  3711. err = do_md_run(mddev);
  3712. if (err) {
  3713. printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
  3714. do_md_stop(mddev, 0, 0);
  3715. }
  3716. }
  3717. /*
  3718. * lets try to run arrays based on all disks that have arrived
  3719. * until now. (those are in pending_raid_disks)
  3720. *
  3721. * the method: pick the first pending disk, collect all disks with
  3722. * the same UUID, remove all from the pending list and put them into
  3723. * the 'same_array' list. Then order this list based on superblock
  3724. * update time (freshest comes first), kick out 'old' disks and
  3725. * compare superblocks. If everything's fine then run it.
  3726. *
  3727. * If "unit" is allocated, then bump its reference count
  3728. */
  3729. static void autorun_devices(int part)
  3730. {
  3731. mdk_rdev_t *rdev0, *rdev, *tmp;
  3732. mddev_t *mddev;
  3733. char b[BDEVNAME_SIZE];
  3734. printk(KERN_INFO "md: autorun ...\n");
  3735. while (!list_empty(&pending_raid_disks)) {
  3736. int unit;
  3737. dev_t dev;
  3738. LIST_HEAD(candidates);
  3739. rdev0 = list_entry(pending_raid_disks.next,
  3740. mdk_rdev_t, same_set);
  3741. printk(KERN_INFO "md: considering %s ...\n",
  3742. bdevname(rdev0->bdev,b));
  3743. INIT_LIST_HEAD(&candidates);
  3744. rdev_for_each_list(rdev, tmp, &pending_raid_disks)
  3745. if (super_90_load(rdev, rdev0, 0) >= 0) {
  3746. printk(KERN_INFO "md: adding %s ...\n",
  3747. bdevname(rdev->bdev,b));
  3748. list_move(&rdev->same_set, &candidates);
  3749. }
  3750. /*
  3751. * now we have a set of devices, with all of them having
  3752. * mostly sane superblocks. It's time to allocate the
  3753. * mddev.
  3754. */
  3755. if (part) {
  3756. dev = MKDEV(mdp_major,
  3757. rdev0->preferred_minor << MdpMinorShift);
  3758. unit = MINOR(dev) >> MdpMinorShift;
  3759. } else {
  3760. dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
  3761. unit = MINOR(dev);
  3762. }
  3763. if (rdev0->preferred_minor != unit) {
  3764. printk(KERN_INFO "md: unit number in %s is bad: %d\n",
  3765. bdevname(rdev0->bdev, b), rdev0->preferred_minor);
  3766. break;
  3767. }
  3768. md_probe(dev, NULL, NULL);
  3769. mddev = mddev_find(dev);
  3770. if (!mddev || !mddev->gendisk) {
  3771. if (mddev)
  3772. mddev_put(mddev);
  3773. printk(KERN_ERR
  3774. "md: cannot allocate memory for md drive.\n");
  3775. break;
  3776. }
  3777. if (mddev_lock(mddev))
  3778. printk(KERN_WARNING "md: %s locked, cannot run\n",
  3779. mdname(mddev));
  3780. else if (mddev->raid_disks || mddev->major_version
  3781. || !list_empty(&mddev->disks)) {
  3782. printk(KERN_WARNING
  3783. "md: %s already running, cannot run %s\n",
  3784. mdname(mddev), bdevname(rdev0->bdev,b));
  3785. mddev_unlock(mddev);
  3786. } else {
  3787. printk(KERN_INFO "md: created %s\n", mdname(mddev));
  3788. mddev->persistent = 1;
  3789. rdev_for_each_list(rdev, tmp, &candidates) {
  3790. list_del_init(&rdev->same_set);
  3791. if (bind_rdev_to_array(rdev, mddev))
  3792. export_rdev(rdev);
  3793. }
  3794. autorun_array(mddev);
  3795. mddev_unlock(mddev);
  3796. }
  3797. /* on success, candidates will be empty, on error
  3798. * it won't...
  3799. */
  3800. rdev_for_each_list(rdev, tmp, &candidates) {
  3801. list_del_init(&rdev->same_set);
  3802. export_rdev(rdev);
  3803. }
  3804. mddev_put(mddev);
  3805. }
  3806. printk(KERN_INFO "md: ... autorun DONE.\n");
  3807. }
  3808. #endif /* !MODULE */
  3809. static int get_version(void __user * arg)
  3810. {
  3811. mdu_version_t ver;
  3812. ver.major = MD_MAJOR_VERSION;
  3813. ver.minor = MD_MINOR_VERSION;
  3814. ver.patchlevel = MD_PATCHLEVEL_VERSION;
  3815. if (copy_to_user(arg, &ver, sizeof(ver)))
  3816. return -EFAULT;
  3817. return 0;
  3818. }
  3819. static int get_array_info(mddev_t * mddev, void __user * arg)
  3820. {
  3821. mdu_array_info_t info;
  3822. int nr,working,active,failed,spare;
  3823. mdk_rdev_t *rdev;
  3824. nr=working=active=failed=spare=0;
  3825. list_for_each_entry(rdev, &mddev->disks, same_set) {
  3826. nr++;
  3827. if (test_bit(Faulty, &rdev->flags))
  3828. failed++;
  3829. else {
  3830. working++;
  3831. if (test_bit(In_sync, &rdev->flags))
  3832. active++;
  3833. else
  3834. spare++;
  3835. }
  3836. }
  3837. info.major_version = mddev->major_version;
  3838. info.minor_version = mddev->minor_version;
  3839. info.patch_version = MD_PATCHLEVEL_VERSION;
  3840. info.ctime = mddev->ctime;
  3841. info.level = mddev->level;
  3842. info.size = mddev->size;
  3843. if (info.size != mddev->size) /* overflow */
  3844. info.size = -1;
  3845. info.nr_disks = nr;
  3846. info.raid_disks = mddev->raid_disks;
  3847. info.md_minor = mddev->md_minor;
  3848. info.not_persistent= !mddev->persistent;
  3849. info.utime = mddev->utime;
  3850. info.state = 0;
  3851. if (mddev->in_sync)
  3852. info.state = (1<<MD_SB_CLEAN);
  3853. if (mddev->bitmap && mddev->bitmap_offset)
  3854. info.state = (1<<MD_SB_BITMAP_PRESENT);
  3855. info.active_disks = active;
  3856. info.working_disks = working;
  3857. info.failed_disks = failed;
  3858. info.spare_disks = spare;
  3859. info.layout = mddev->layout;
  3860. info.chunk_size = mddev->chunk_size;
  3861. if (copy_to_user(arg, &info, sizeof(info)))
  3862. return -EFAULT;
  3863. return 0;
  3864. }
  3865. static int get_bitmap_file(mddev_t * mddev, void __user * arg)
  3866. {
  3867. mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
  3868. char *ptr, *buf = NULL;
  3869. int err = -ENOMEM;
  3870. if (md_allow_write(mddev))
  3871. file = kmalloc(sizeof(*file), GFP_NOIO);
  3872. else
  3873. file = kmalloc(sizeof(*file), GFP_KERNEL);
  3874. if (!file)
  3875. goto out;
  3876. /* bitmap disabled, zero the first byte and copy out */
  3877. if (!mddev->bitmap || !mddev->bitmap->file) {
  3878. file->pathname[0] = '\0';
  3879. goto copy_out;
  3880. }
  3881. buf = kmalloc(sizeof(file->pathname), GFP_KERNEL);
  3882. if (!buf)
  3883. goto out;
  3884. ptr = d_path(&mddev->bitmap->file->f_path, buf, sizeof(file->pathname));
  3885. if (IS_ERR(ptr))
  3886. goto out;
  3887. strcpy(file->pathname, ptr);
  3888. copy_out:
  3889. err = 0;
  3890. if (copy_to_user(arg, file, sizeof(*file)))
  3891. err = -EFAULT;
  3892. out:
  3893. kfree(buf);
  3894. kfree(file);
  3895. return err;
  3896. }
  3897. static int get_disk_info(mddev_t * mddev, void __user * arg)
  3898. {
  3899. mdu_disk_info_t info;
  3900. mdk_rdev_t *rdev;
  3901. if (copy_from_user(&info, arg, sizeof(info)))
  3902. return -EFAULT;
  3903. rdev = find_rdev_nr(mddev, info.number);
  3904. if (rdev) {
  3905. info.major = MAJOR(rdev->bdev->bd_dev);
  3906. info.minor = MINOR(rdev->bdev->bd_dev);
  3907. info.raid_disk = rdev->raid_disk;
  3908. info.state = 0;
  3909. if (test_bit(Faulty, &rdev->flags))
  3910. info.state |= (1<<MD_DISK_FAULTY);
  3911. else if (test_bit(In_sync, &rdev->flags)) {
  3912. info.state |= (1<<MD_DISK_ACTIVE);
  3913. info.state |= (1<<MD_DISK_SYNC);
  3914. }
  3915. if (test_bit(WriteMostly, &rdev->flags))
  3916. info.state |= (1<<MD_DISK_WRITEMOSTLY);
  3917. } else {
  3918. info.major = info.minor = 0;
  3919. info.raid_disk = -1;
  3920. info.state = (1<<MD_DISK_REMOVED);
  3921. }
  3922. if (copy_to_user(arg, &info, sizeof(info)))
  3923. return -EFAULT;
  3924. return 0;
  3925. }
  3926. static int add_new_disk(mddev_t * mddev, mdu_disk_info_t *info)
  3927. {
  3928. char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
  3929. mdk_rdev_t *rdev;
  3930. dev_t dev = MKDEV(info->major,info->minor);
  3931. if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
  3932. return -EOVERFLOW;
  3933. if (!mddev->raid_disks) {
  3934. int err;
  3935. /* expecting a device which has a superblock */
  3936. rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
  3937. if (IS_ERR(rdev)) {
  3938. printk(KERN_WARNING
  3939. "md: md_import_device returned %ld\n",
  3940. PTR_ERR(rdev));
  3941. return PTR_ERR(rdev);
  3942. }
  3943. if (!list_empty(&mddev->disks)) {
  3944. mdk_rdev_t *rdev0 = list_entry(mddev->disks.next,
  3945. mdk_rdev_t, same_set);
  3946. int err = super_types[mddev->major_version]
  3947. .load_super(rdev, rdev0, mddev->minor_version);
  3948. if (err < 0) {
  3949. printk(KERN_WARNING
  3950. "md: %s has different UUID to %s\n",
  3951. bdevname(rdev->bdev,b),
  3952. bdevname(rdev0->bdev,b2));
  3953. export_rdev(rdev);
  3954. return -EINVAL;
  3955. }
  3956. }
  3957. err = bind_rdev_to_array(rdev, mddev);
  3958. if (err)
  3959. export_rdev(rdev);
  3960. return err;
  3961. }
  3962. /*
  3963. * add_new_disk can be used once the array is assembled
  3964. * to add "hot spares". They must already have a superblock
  3965. * written
  3966. */
  3967. if (mddev->pers) {
  3968. int err;
  3969. if (!mddev->pers->hot_add_disk) {
  3970. printk(KERN_WARNING
  3971. "%s: personality does not support diskops!\n",
  3972. mdname(mddev));
  3973. return -EINVAL;
  3974. }
  3975. if (mddev->persistent)
  3976. rdev = md_import_device(dev, mddev->major_version,
  3977. mddev->minor_version);
  3978. else
  3979. rdev = md_import_device(dev, -1, -1);
  3980. if (IS_ERR(rdev)) {
  3981. printk(KERN_WARNING
  3982. "md: md_import_device returned %ld\n",
  3983. PTR_ERR(rdev));
  3984. return PTR_ERR(rdev);
  3985. }
  3986. /* set save_raid_disk if appropriate */
  3987. if (!mddev->persistent) {
  3988. if (info->state & (1<<MD_DISK_SYNC) &&
  3989. info->raid_disk < mddev->raid_disks)
  3990. rdev->raid_disk = info->raid_disk;
  3991. else
  3992. rdev->raid_disk = -1;
  3993. } else
  3994. super_types[mddev->major_version].
  3995. validate_super(mddev, rdev);
  3996. rdev->saved_raid_disk = rdev->raid_disk;
  3997. clear_bit(In_sync, &rdev->flags); /* just to be sure */
  3998. if (info->state & (1<<MD_DISK_WRITEMOSTLY))
  3999. set_bit(WriteMostly, &rdev->flags);
  4000. rdev->raid_disk = -1;
  4001. err = bind_rdev_to_array(rdev, mddev);
  4002. if (!err && !mddev->pers->hot_remove_disk) {
  4003. /* If there is hot_add_disk but no hot_remove_disk
  4004. * then added disks for geometry changes,
  4005. * and should be added immediately.
  4006. */
  4007. super_types[mddev->major_version].
  4008. validate_super(mddev, rdev);
  4009. err = mddev->pers->hot_add_disk(mddev, rdev);
  4010. if (err)
  4011. unbind_rdev_from_array(rdev);
  4012. }
  4013. if (err)
  4014. export_rdev(rdev);
  4015. else
  4016. sysfs_notify_dirent(rdev->sysfs_state);
  4017. md_update_sb(mddev, 1);
  4018. if (mddev->degraded)
  4019. set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
  4020. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  4021. md_wakeup_thread(mddev->thread);
  4022. return err;
  4023. }
  4024. /* otherwise, add_new_disk is only allowed
  4025. * for major_version==0 superblocks
  4026. */
  4027. if (mddev->major_version != 0) {
  4028. printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
  4029. mdname(mddev));
  4030. return -EINVAL;
  4031. }
  4032. if (!(info->state & (1<<MD_DISK_FAULTY))) {
  4033. int err;
  4034. rdev = md_import_device(dev, -1, 0);
  4035. if (IS_ERR(rdev)) {
  4036. printk(KERN_WARNING
  4037. "md: error, md_import_device() returned %ld\n",
  4038. PTR_ERR(rdev));
  4039. return PTR_ERR(rdev);
  4040. }
  4041. rdev->desc_nr = info->number;
  4042. if (info->raid_disk < mddev->raid_disks)
  4043. rdev->raid_disk = info->raid_disk;
  4044. else
  4045. rdev->raid_disk = -1;
  4046. if (rdev->raid_disk < mddev->raid_disks)
  4047. if (info->state & (1<<MD_DISK_SYNC))
  4048. set_bit(In_sync, &rdev->flags);
  4049. if (info->state & (1<<MD_DISK_WRITEMOSTLY))
  4050. set_bit(WriteMostly, &rdev->flags);
  4051. if (!mddev->persistent) {
  4052. printk(KERN_INFO "md: nonpersistent superblock ...\n");
  4053. rdev->sb_start = rdev->bdev->bd_inode->i_size / 512;
  4054. } else
  4055. rdev->sb_start = calc_dev_sboffset(rdev->bdev);
  4056. rdev->size = calc_num_sectors(rdev, mddev->chunk_size) / 2;
  4057. err = bind_rdev_to_array(rdev, mddev);
  4058. if (err) {
  4059. export_rdev(rdev);
  4060. return err;
  4061. }
  4062. }
  4063. return 0;
  4064. }
  4065. static int hot_remove_disk(mddev_t * mddev, dev_t dev)
  4066. {
  4067. char b[BDEVNAME_SIZE];
  4068. mdk_rdev_t *rdev;
  4069. rdev = find_rdev(mddev, dev);
  4070. if (!rdev)
  4071. return -ENXIO;
  4072. if (rdev->raid_disk >= 0)
  4073. goto busy;
  4074. kick_rdev_from_array(rdev);
  4075. md_update_sb(mddev, 1);
  4076. md_new_event(mddev);
  4077. return 0;
  4078. busy:
  4079. printk(KERN_WARNING "md: cannot remove active disk %s from %s ...\n",
  4080. bdevname(rdev->bdev,b), mdname(mddev));
  4081. return -EBUSY;
  4082. }
  4083. static int hot_add_disk(mddev_t * mddev, dev_t dev)
  4084. {
  4085. char b[BDEVNAME_SIZE];
  4086. int err;
  4087. mdk_rdev_t *rdev;
  4088. if (!mddev->pers)
  4089. return -ENODEV;
  4090. if (mddev->major_version != 0) {
  4091. printk(KERN_WARNING "%s: HOT_ADD may only be used with"
  4092. " version-0 superblocks.\n",
  4093. mdname(mddev));
  4094. return -EINVAL;
  4095. }
  4096. if (!mddev->pers->hot_add_disk) {
  4097. printk(KERN_WARNING
  4098. "%s: personality does not support diskops!\n",
  4099. mdname(mddev));
  4100. return -EINVAL;
  4101. }
  4102. rdev = md_import_device(dev, -1, 0);
  4103. if (IS_ERR(rdev)) {
  4104. printk(KERN_WARNING
  4105. "md: error, md_import_device() returned %ld\n",
  4106. PTR_ERR(rdev));
  4107. return -EINVAL;
  4108. }
  4109. if (mddev->persistent)
  4110. rdev->sb_start = calc_dev_sboffset(rdev->bdev);
  4111. else
  4112. rdev->sb_start = rdev->bdev->bd_inode->i_size / 512;
  4113. rdev->size = calc_num_sectors(rdev, mddev->chunk_size) / 2;
  4114. if (test_bit(Faulty, &rdev->flags)) {
  4115. printk(KERN_WARNING
  4116. "md: can not hot-add faulty %s disk to %s!\n",
  4117. bdevname(rdev->bdev,b), mdname(mddev));
  4118. err = -EINVAL;
  4119. goto abort_export;
  4120. }
  4121. clear_bit(In_sync, &rdev->flags);
  4122. rdev->desc_nr = -1;
  4123. rdev->saved_raid_disk = -1;
  4124. err = bind_rdev_to_array(rdev, mddev);
  4125. if (err)
  4126. goto abort_export;
  4127. /*
  4128. * The rest should better be atomic, we can have disk failures
  4129. * noticed in interrupt contexts ...
  4130. */
  4131. rdev->raid_disk = -1;
  4132. md_update_sb(mddev, 1);
  4133. /*
  4134. * Kick recovery, maybe this spare has to be added to the
  4135. * array immediately.
  4136. */
  4137. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  4138. md_wakeup_thread(mddev->thread);
  4139. md_new_event(mddev);
  4140. return 0;
  4141. abort_export:
  4142. export_rdev(rdev);
  4143. return err;
  4144. }
  4145. static int set_bitmap_file(mddev_t *mddev, int fd)
  4146. {
  4147. int err;
  4148. if (mddev->pers) {
  4149. if (!mddev->pers->quiesce)
  4150. return -EBUSY;
  4151. if (mddev->recovery || mddev->sync_thread)
  4152. return -EBUSY;
  4153. /* we should be able to change the bitmap.. */
  4154. }
  4155. if (fd >= 0) {
  4156. if (mddev->bitmap)
  4157. return -EEXIST; /* cannot add when bitmap is present */
  4158. mddev->bitmap_file = fget(fd);
  4159. if (mddev->bitmap_file == NULL) {
  4160. printk(KERN_ERR "%s: error: failed to get bitmap file\n",
  4161. mdname(mddev));
  4162. return -EBADF;
  4163. }
  4164. err = deny_bitmap_write_access(mddev->bitmap_file);
  4165. if (err) {
  4166. printk(KERN_ERR "%s: error: bitmap file is already in use\n",
  4167. mdname(mddev));
  4168. fput(mddev->bitmap_file);
  4169. mddev->bitmap_file = NULL;
  4170. return err;
  4171. }
  4172. mddev->bitmap_offset = 0; /* file overrides offset */
  4173. } else if (mddev->bitmap == NULL)
  4174. return -ENOENT; /* cannot remove what isn't there */
  4175. err = 0;
  4176. if (mddev->pers) {
  4177. mddev->pers->quiesce(mddev, 1);
  4178. if (fd >= 0)
  4179. err = bitmap_create(mddev);
  4180. if (fd < 0 || err) {
  4181. bitmap_destroy(mddev);
  4182. fd = -1; /* make sure to put the file */
  4183. }
  4184. mddev->pers->quiesce(mddev, 0);
  4185. }
  4186. if (fd < 0) {
  4187. if (mddev->bitmap_file) {
  4188. restore_bitmap_write_access(mddev->bitmap_file);
  4189. fput(mddev->bitmap_file);
  4190. }
  4191. mddev->bitmap_file = NULL;
  4192. }
  4193. return err;
  4194. }
  4195. /*
  4196. * set_array_info is used two different ways
  4197. * The original usage is when creating a new array.
  4198. * In this usage, raid_disks is > 0 and it together with
  4199. * level, size, not_persistent,layout,chunksize determine the
  4200. * shape of the array.
  4201. * This will always create an array with a type-0.90.0 superblock.
  4202. * The newer usage is when assembling an array.
  4203. * In this case raid_disks will be 0, and the major_version field is
  4204. * use to determine which style super-blocks are to be found on the devices.
  4205. * The minor and patch _version numbers are also kept incase the
  4206. * super_block handler wishes to interpret them.
  4207. */
  4208. static int set_array_info(mddev_t * mddev, mdu_array_info_t *info)
  4209. {
  4210. if (info->raid_disks == 0) {
  4211. /* just setting version number for superblock loading */
  4212. if (info->major_version < 0 ||
  4213. info->major_version >= ARRAY_SIZE(super_types) ||
  4214. super_types[info->major_version].name == NULL) {
  4215. /* maybe try to auto-load a module? */
  4216. printk(KERN_INFO
  4217. "md: superblock version %d not known\n",
  4218. info->major_version);
  4219. return -EINVAL;
  4220. }
  4221. mddev->major_version = info->major_version;
  4222. mddev->minor_version = info->minor_version;
  4223. mddev->patch_version = info->patch_version;
  4224. mddev->persistent = !info->not_persistent;
  4225. return 0;
  4226. }
  4227. mddev->major_version = MD_MAJOR_VERSION;
  4228. mddev->minor_version = MD_MINOR_VERSION;
  4229. mddev->patch_version = MD_PATCHLEVEL_VERSION;
  4230. mddev->ctime = get_seconds();
  4231. mddev->level = info->level;
  4232. mddev->clevel[0] = 0;
  4233. mddev->size = info->size;
  4234. mddev->raid_disks = info->raid_disks;
  4235. /* don't set md_minor, it is determined by which /dev/md* was
  4236. * openned
  4237. */
  4238. if (info->state & (1<<MD_SB_CLEAN))
  4239. mddev->recovery_cp = MaxSector;
  4240. else
  4241. mddev->recovery_cp = 0;
  4242. mddev->persistent = ! info->not_persistent;
  4243. mddev->external = 0;
  4244. mddev->layout = info->layout;
  4245. mddev->chunk_size = info->chunk_size;
  4246. mddev->max_disks = MD_SB_DISKS;
  4247. if (mddev->persistent)
  4248. mddev->flags = 0;
  4249. set_bit(MD_CHANGE_DEVS, &mddev->flags);
  4250. mddev->default_bitmap_offset = MD_SB_BYTES >> 9;
  4251. mddev->bitmap_offset = 0;
  4252. mddev->reshape_position = MaxSector;
  4253. /*
  4254. * Generate a 128 bit UUID
  4255. */
  4256. get_random_bytes(mddev->uuid, 16);
  4257. mddev->new_level = mddev->level;
  4258. mddev->new_chunk = mddev->chunk_size;
  4259. mddev->new_layout = mddev->layout;
  4260. mddev->delta_disks = 0;
  4261. return 0;
  4262. }
  4263. static int update_size(mddev_t *mddev, sector_t num_sectors)
  4264. {
  4265. mdk_rdev_t *rdev;
  4266. int rv;
  4267. int fit = (num_sectors == 0);
  4268. if (mddev->pers->resize == NULL)
  4269. return -EINVAL;
  4270. /* The "num_sectors" is the number of sectors of each device that
  4271. * is used. This can only make sense for arrays with redundancy.
  4272. * linear and raid0 always use whatever space is available. We can only
  4273. * consider changing this number if no resync or reconstruction is
  4274. * happening, and if the new size is acceptable. It must fit before the
  4275. * sb_start or, if that is <data_offset, it must fit before the size
  4276. * of each device. If num_sectors is zero, we find the largest size
  4277. * that fits.
  4278. */
  4279. if (mddev->sync_thread)
  4280. return -EBUSY;
  4281. if (mddev->bitmap)
  4282. /* Sorry, cannot grow a bitmap yet, just remove it,
  4283. * grow, and re-add.
  4284. */
  4285. return -EBUSY;
  4286. list_for_each_entry(rdev, &mddev->disks, same_set) {
  4287. sector_t avail;
  4288. avail = rdev->size * 2;
  4289. if (fit && (num_sectors == 0 || num_sectors > avail))
  4290. num_sectors = avail;
  4291. if (avail < num_sectors)
  4292. return -ENOSPC;
  4293. }
  4294. rv = mddev->pers->resize(mddev, num_sectors);
  4295. if (!rv) {
  4296. struct block_device *bdev;
  4297. bdev = bdget_disk(mddev->gendisk, 0);
  4298. if (bdev) {
  4299. mutex_lock(&bdev->bd_inode->i_mutex);
  4300. i_size_write(bdev->bd_inode,
  4301. (loff_t)mddev->array_sectors << 9);
  4302. mutex_unlock(&bdev->bd_inode->i_mutex);
  4303. bdput(bdev);
  4304. }
  4305. }
  4306. return rv;
  4307. }
  4308. static int update_raid_disks(mddev_t *mddev, int raid_disks)
  4309. {
  4310. int rv;
  4311. /* change the number of raid disks */
  4312. if (mddev->pers->check_reshape == NULL)
  4313. return -EINVAL;
  4314. if (raid_disks <= 0 ||
  4315. raid_disks >= mddev->max_disks)
  4316. return -EINVAL;
  4317. if (mddev->sync_thread || mddev->reshape_position != MaxSector)
  4318. return -EBUSY;
  4319. mddev->delta_disks = raid_disks - mddev->raid_disks;
  4320. rv = mddev->pers->check_reshape(mddev);
  4321. return rv;
  4322. }
  4323. /*
  4324. * update_array_info is used to change the configuration of an
  4325. * on-line array.
  4326. * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
  4327. * fields in the info are checked against the array.
  4328. * Any differences that cannot be handled will cause an error.
  4329. * Normally, only one change can be managed at a time.
  4330. */
  4331. static int update_array_info(mddev_t *mddev, mdu_array_info_t *info)
  4332. {
  4333. int rv = 0;
  4334. int cnt = 0;
  4335. int state = 0;
  4336. /* calculate expected state,ignoring low bits */
  4337. if (mddev->bitmap && mddev->bitmap_offset)
  4338. state |= (1 << MD_SB_BITMAP_PRESENT);
  4339. if (mddev->major_version != info->major_version ||
  4340. mddev->minor_version != info->minor_version ||
  4341. /* mddev->patch_version != info->patch_version || */
  4342. mddev->ctime != info->ctime ||
  4343. mddev->level != info->level ||
  4344. /* mddev->layout != info->layout || */
  4345. !mddev->persistent != info->not_persistent||
  4346. mddev->chunk_size != info->chunk_size ||
  4347. /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
  4348. ((state^info->state) & 0xfffffe00)
  4349. )
  4350. return -EINVAL;
  4351. /* Check there is only one change */
  4352. if (info->size >= 0 && mddev->size != info->size) cnt++;
  4353. if (mddev->raid_disks != info->raid_disks) cnt++;
  4354. if (mddev->layout != info->layout) cnt++;
  4355. if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) cnt++;
  4356. if (cnt == 0) return 0;
  4357. if (cnt > 1) return -EINVAL;
  4358. if (mddev->layout != info->layout) {
  4359. /* Change layout
  4360. * we don't need to do anything at the md level, the
  4361. * personality will take care of it all.
  4362. */
  4363. if (mddev->pers->reconfig == NULL)
  4364. return -EINVAL;
  4365. else
  4366. return mddev->pers->reconfig(mddev, info->layout, -1);
  4367. }
  4368. if (info->size >= 0 && mddev->size != info->size)
  4369. rv = update_size(mddev, (sector_t)info->size * 2);
  4370. if (mddev->raid_disks != info->raid_disks)
  4371. rv = update_raid_disks(mddev, info->raid_disks);
  4372. if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
  4373. if (mddev->pers->quiesce == NULL)
  4374. return -EINVAL;
  4375. if (mddev->recovery || mddev->sync_thread)
  4376. return -EBUSY;
  4377. if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
  4378. /* add the bitmap */
  4379. if (mddev->bitmap)
  4380. return -EEXIST;
  4381. if (mddev->default_bitmap_offset == 0)
  4382. return -EINVAL;
  4383. mddev->bitmap_offset = mddev->default_bitmap_offset;
  4384. mddev->pers->quiesce(mddev, 1);
  4385. rv = bitmap_create(mddev);
  4386. if (rv)
  4387. bitmap_destroy(mddev);
  4388. mddev->pers->quiesce(mddev, 0);
  4389. } else {
  4390. /* remove the bitmap */
  4391. if (!mddev->bitmap)
  4392. return -ENOENT;
  4393. if (mddev->bitmap->file)
  4394. return -EINVAL;
  4395. mddev->pers->quiesce(mddev, 1);
  4396. bitmap_destroy(mddev);
  4397. mddev->pers->quiesce(mddev, 0);
  4398. mddev->bitmap_offset = 0;
  4399. }
  4400. }
  4401. md_update_sb(mddev, 1);
  4402. return rv;
  4403. }
  4404. static int set_disk_faulty(mddev_t *mddev, dev_t dev)
  4405. {
  4406. mdk_rdev_t *rdev;
  4407. if (mddev->pers == NULL)
  4408. return -ENODEV;
  4409. rdev = find_rdev(mddev, dev);
  4410. if (!rdev)
  4411. return -ENODEV;
  4412. md_error(mddev, rdev);
  4413. return 0;
  4414. }
  4415. /*
  4416. * We have a problem here : there is no easy way to give a CHS
  4417. * virtual geometry. We currently pretend that we have a 2 heads
  4418. * 4 sectors (with a BIG number of cylinders...). This drives
  4419. * dosfs just mad... ;-)
  4420. */
  4421. static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
  4422. {
  4423. mddev_t *mddev = bdev->bd_disk->private_data;
  4424. geo->heads = 2;
  4425. geo->sectors = 4;
  4426. geo->cylinders = get_capacity(mddev->gendisk) / 8;
  4427. return 0;
  4428. }
  4429. static int md_ioctl(struct block_device *bdev, fmode_t mode,
  4430. unsigned int cmd, unsigned long arg)
  4431. {
  4432. int err = 0;
  4433. void __user *argp = (void __user *)arg;
  4434. mddev_t *mddev = NULL;
  4435. if (!capable(CAP_SYS_ADMIN))
  4436. return -EACCES;
  4437. /*
  4438. * Commands dealing with the RAID driver but not any
  4439. * particular array:
  4440. */
  4441. switch (cmd)
  4442. {
  4443. case RAID_VERSION:
  4444. err = get_version(argp);
  4445. goto done;
  4446. case PRINT_RAID_DEBUG:
  4447. err = 0;
  4448. md_print_devices();
  4449. goto done;
  4450. #ifndef MODULE
  4451. case RAID_AUTORUN:
  4452. err = 0;
  4453. autostart_arrays(arg);
  4454. goto done;
  4455. #endif
  4456. default:;
  4457. }
  4458. /*
  4459. * Commands creating/starting a new array:
  4460. */
  4461. mddev = bdev->bd_disk->private_data;
  4462. if (!mddev) {
  4463. BUG();
  4464. goto abort;
  4465. }
  4466. err = mddev_lock(mddev);
  4467. if (err) {
  4468. printk(KERN_INFO
  4469. "md: ioctl lock interrupted, reason %d, cmd %d\n",
  4470. err, cmd);
  4471. goto abort;
  4472. }
  4473. switch (cmd)
  4474. {
  4475. case SET_ARRAY_INFO:
  4476. {
  4477. mdu_array_info_t info;
  4478. if (!arg)
  4479. memset(&info, 0, sizeof(info));
  4480. else if (copy_from_user(&info, argp, sizeof(info))) {
  4481. err = -EFAULT;
  4482. goto abort_unlock;
  4483. }
  4484. if (mddev->pers) {
  4485. err = update_array_info(mddev, &info);
  4486. if (err) {
  4487. printk(KERN_WARNING "md: couldn't update"
  4488. " array info. %d\n", err);
  4489. goto abort_unlock;
  4490. }
  4491. goto done_unlock;
  4492. }
  4493. if (!list_empty(&mddev->disks)) {
  4494. printk(KERN_WARNING
  4495. "md: array %s already has disks!\n",
  4496. mdname(mddev));
  4497. err = -EBUSY;
  4498. goto abort_unlock;
  4499. }
  4500. if (mddev->raid_disks) {
  4501. printk(KERN_WARNING
  4502. "md: array %s already initialised!\n",
  4503. mdname(mddev));
  4504. err = -EBUSY;
  4505. goto abort_unlock;
  4506. }
  4507. err = set_array_info(mddev, &info);
  4508. if (err) {
  4509. printk(KERN_WARNING "md: couldn't set"
  4510. " array info. %d\n", err);
  4511. goto abort_unlock;
  4512. }
  4513. }
  4514. goto done_unlock;
  4515. default:;
  4516. }
  4517. /*
  4518. * Commands querying/configuring an existing array:
  4519. */
  4520. /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
  4521. * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */
  4522. if ((!mddev->raid_disks && !mddev->external)
  4523. && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
  4524. && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE
  4525. && cmd != GET_BITMAP_FILE) {
  4526. err = -ENODEV;
  4527. goto abort_unlock;
  4528. }
  4529. /*
  4530. * Commands even a read-only array can execute:
  4531. */
  4532. switch (cmd)
  4533. {
  4534. case GET_ARRAY_INFO:
  4535. err = get_array_info(mddev, argp);
  4536. goto done_unlock;
  4537. case GET_BITMAP_FILE:
  4538. err = get_bitmap_file(mddev, argp);
  4539. goto done_unlock;
  4540. case GET_DISK_INFO:
  4541. err = get_disk_info(mddev, argp);
  4542. goto done_unlock;
  4543. case RESTART_ARRAY_RW:
  4544. err = restart_array(mddev);
  4545. goto done_unlock;
  4546. case STOP_ARRAY:
  4547. err = do_md_stop(mddev, 0, 1);
  4548. goto done_unlock;
  4549. case STOP_ARRAY_RO:
  4550. err = do_md_stop(mddev, 1, 1);
  4551. goto done_unlock;
  4552. }
  4553. /*
  4554. * The remaining ioctls are changing the state of the
  4555. * superblock, so we do not allow them on read-only arrays.
  4556. * However non-MD ioctls (e.g. get-size) will still come through
  4557. * here and hit the 'default' below, so only disallow
  4558. * 'md' ioctls, and switch to rw mode if started auto-readonly.
  4559. */
  4560. if (_IOC_TYPE(cmd) == MD_MAJOR && mddev->ro && mddev->pers) {
  4561. if (mddev->ro == 2) {
  4562. mddev->ro = 0;
  4563. sysfs_notify_dirent(mddev->sysfs_state);
  4564. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  4565. md_wakeup_thread(mddev->thread);
  4566. } else {
  4567. err = -EROFS;
  4568. goto abort_unlock;
  4569. }
  4570. }
  4571. switch (cmd)
  4572. {
  4573. case ADD_NEW_DISK:
  4574. {
  4575. mdu_disk_info_t info;
  4576. if (copy_from_user(&info, argp, sizeof(info)))
  4577. err = -EFAULT;
  4578. else
  4579. err = add_new_disk(mddev, &info);
  4580. goto done_unlock;
  4581. }
  4582. case HOT_REMOVE_DISK:
  4583. err = hot_remove_disk(mddev, new_decode_dev(arg));
  4584. goto done_unlock;
  4585. case HOT_ADD_DISK:
  4586. err = hot_add_disk(mddev, new_decode_dev(arg));
  4587. goto done_unlock;
  4588. case SET_DISK_FAULTY:
  4589. err = set_disk_faulty(mddev, new_decode_dev(arg));
  4590. goto done_unlock;
  4591. case RUN_ARRAY:
  4592. err = do_md_run(mddev);
  4593. goto done_unlock;
  4594. case SET_BITMAP_FILE:
  4595. err = set_bitmap_file(mddev, (int)arg);
  4596. goto done_unlock;
  4597. default:
  4598. err = -EINVAL;
  4599. goto abort_unlock;
  4600. }
  4601. done_unlock:
  4602. abort_unlock:
  4603. if (mddev->hold_active == UNTIL_IOCTL &&
  4604. err != -EINVAL)
  4605. mddev->hold_active = 0;
  4606. mddev_unlock(mddev);
  4607. return err;
  4608. done:
  4609. if (err)
  4610. MD_BUG();
  4611. abort:
  4612. return err;
  4613. }
  4614. static int md_open(struct block_device *bdev, fmode_t mode)
  4615. {
  4616. /*
  4617. * Succeed if we can lock the mddev, which confirms that
  4618. * it isn't being stopped right now.
  4619. */
  4620. mddev_t *mddev = mddev_find(bdev->bd_dev);
  4621. int err;
  4622. if (mddev->gendisk != bdev->bd_disk) {
  4623. /* we are racing with mddev_put which is discarding this
  4624. * bd_disk.
  4625. */
  4626. mddev_put(mddev);
  4627. /* Wait until bdev->bd_disk is definitely gone */
  4628. flush_scheduled_work();
  4629. /* Then retry the open from the top */
  4630. return -ERESTARTSYS;
  4631. }
  4632. BUG_ON(mddev != bdev->bd_disk->private_data);
  4633. if ((err = mutex_lock_interruptible_nested(&mddev->reconfig_mutex, 1)))
  4634. goto out;
  4635. err = 0;
  4636. atomic_inc(&mddev->openers);
  4637. mddev_unlock(mddev);
  4638. check_disk_change(bdev);
  4639. out:
  4640. return err;
  4641. }
  4642. static int md_release(struct gendisk *disk, fmode_t mode)
  4643. {
  4644. mddev_t *mddev = disk->private_data;
  4645. BUG_ON(!mddev);
  4646. atomic_dec(&mddev->openers);
  4647. mddev_put(mddev);
  4648. return 0;
  4649. }
  4650. static int md_media_changed(struct gendisk *disk)
  4651. {
  4652. mddev_t *mddev = disk->private_data;
  4653. return mddev->changed;
  4654. }
  4655. static int md_revalidate(struct gendisk *disk)
  4656. {
  4657. mddev_t *mddev = disk->private_data;
  4658. mddev->changed = 0;
  4659. return 0;
  4660. }
  4661. static struct block_device_operations md_fops =
  4662. {
  4663. .owner = THIS_MODULE,
  4664. .open = md_open,
  4665. .release = md_release,
  4666. .locked_ioctl = md_ioctl,
  4667. .getgeo = md_getgeo,
  4668. .media_changed = md_media_changed,
  4669. .revalidate_disk= md_revalidate,
  4670. };
  4671. static int md_thread(void * arg)
  4672. {
  4673. mdk_thread_t *thread = arg;
  4674. /*
  4675. * md_thread is a 'system-thread', it's priority should be very
  4676. * high. We avoid resource deadlocks individually in each
  4677. * raid personality. (RAID5 does preallocation) We also use RR and
  4678. * the very same RT priority as kswapd, thus we will never get
  4679. * into a priority inversion deadlock.
  4680. *
  4681. * we definitely have to have equal or higher priority than
  4682. * bdflush, otherwise bdflush will deadlock if there are too
  4683. * many dirty RAID5 blocks.
  4684. */
  4685. allow_signal(SIGKILL);
  4686. while (!kthread_should_stop()) {
  4687. /* We need to wait INTERRUPTIBLE so that
  4688. * we don't add to the load-average.
  4689. * That means we need to be sure no signals are
  4690. * pending
  4691. */
  4692. if (signal_pending(current))
  4693. flush_signals(current);
  4694. wait_event_interruptible_timeout
  4695. (thread->wqueue,
  4696. test_bit(THREAD_WAKEUP, &thread->flags)
  4697. || kthread_should_stop(),
  4698. thread->timeout);
  4699. clear_bit(THREAD_WAKEUP, &thread->flags);
  4700. thread->run(thread->mddev);
  4701. }
  4702. return 0;
  4703. }
  4704. void md_wakeup_thread(mdk_thread_t *thread)
  4705. {
  4706. if (thread) {
  4707. dprintk("md: waking up MD thread %s.\n", thread->tsk->comm);
  4708. set_bit(THREAD_WAKEUP, &thread->flags);
  4709. wake_up(&thread->wqueue);
  4710. }
  4711. }
  4712. mdk_thread_t *md_register_thread(void (*run) (mddev_t *), mddev_t *mddev,
  4713. const char *name)
  4714. {
  4715. mdk_thread_t *thread;
  4716. thread = kzalloc(sizeof(mdk_thread_t), GFP_KERNEL);
  4717. if (!thread)
  4718. return NULL;
  4719. init_waitqueue_head(&thread->wqueue);
  4720. thread->run = run;
  4721. thread->mddev = mddev;
  4722. thread->timeout = MAX_SCHEDULE_TIMEOUT;
  4723. thread->tsk = kthread_run(md_thread, thread, name, mdname(thread->mddev));
  4724. if (IS_ERR(thread->tsk)) {
  4725. kfree(thread);
  4726. return NULL;
  4727. }
  4728. return thread;
  4729. }
  4730. void md_unregister_thread(mdk_thread_t *thread)
  4731. {
  4732. dprintk("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk));
  4733. kthread_stop(thread->tsk);
  4734. kfree(thread);
  4735. }
  4736. void md_error(mddev_t *mddev, mdk_rdev_t *rdev)
  4737. {
  4738. if (!mddev) {
  4739. MD_BUG();
  4740. return;
  4741. }
  4742. if (!rdev || test_bit(Faulty, &rdev->flags))
  4743. return;
  4744. if (mddev->external)
  4745. set_bit(Blocked, &rdev->flags);
  4746. /*
  4747. dprintk("md_error dev:%s, rdev:(%d:%d), (caller: %p,%p,%p,%p).\n",
  4748. mdname(mddev),
  4749. MAJOR(rdev->bdev->bd_dev), MINOR(rdev->bdev->bd_dev),
  4750. __builtin_return_address(0),__builtin_return_address(1),
  4751. __builtin_return_address(2),__builtin_return_address(3));
  4752. */
  4753. if (!mddev->pers)
  4754. return;
  4755. if (!mddev->pers->error_handler)
  4756. return;
  4757. mddev->pers->error_handler(mddev,rdev);
  4758. if (mddev->degraded)
  4759. set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
  4760. set_bit(StateChanged, &rdev->flags);
  4761. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  4762. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  4763. md_wakeup_thread(mddev->thread);
  4764. md_new_event_inintr(mddev);
  4765. }
  4766. /* seq_file implementation /proc/mdstat */
  4767. static void status_unused(struct seq_file *seq)
  4768. {
  4769. int i = 0;
  4770. mdk_rdev_t *rdev;
  4771. seq_printf(seq, "unused devices: ");
  4772. list_for_each_entry(rdev, &pending_raid_disks, same_set) {
  4773. char b[BDEVNAME_SIZE];
  4774. i++;
  4775. seq_printf(seq, "%s ",
  4776. bdevname(rdev->bdev,b));
  4777. }
  4778. if (!i)
  4779. seq_printf(seq, "<none>");
  4780. seq_printf(seq, "\n");
  4781. }
  4782. static void status_resync(struct seq_file *seq, mddev_t * mddev)
  4783. {
  4784. sector_t max_blocks, resync, res;
  4785. unsigned long dt, db, rt;
  4786. int scale;
  4787. unsigned int per_milli;
  4788. resync = (mddev->curr_resync - atomic_read(&mddev->recovery_active))/2;
  4789. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
  4790. max_blocks = mddev->resync_max_sectors >> 1;
  4791. else
  4792. max_blocks = mddev->size;
  4793. /*
  4794. * Should not happen.
  4795. */
  4796. if (!max_blocks) {
  4797. MD_BUG();
  4798. return;
  4799. }
  4800. /* Pick 'scale' such that (resync>>scale)*1000 will fit
  4801. * in a sector_t, and (max_blocks>>scale) will fit in a
  4802. * u32, as those are the requirements for sector_div.
  4803. * Thus 'scale' must be at least 10
  4804. */
  4805. scale = 10;
  4806. if (sizeof(sector_t) > sizeof(unsigned long)) {
  4807. while ( max_blocks/2 > (1ULL<<(scale+32)))
  4808. scale++;
  4809. }
  4810. res = (resync>>scale)*1000;
  4811. sector_div(res, (u32)((max_blocks>>scale)+1));
  4812. per_milli = res;
  4813. {
  4814. int i, x = per_milli/50, y = 20-x;
  4815. seq_printf(seq, "[");
  4816. for (i = 0; i < x; i++)
  4817. seq_printf(seq, "=");
  4818. seq_printf(seq, ">");
  4819. for (i = 0; i < y; i++)
  4820. seq_printf(seq, ".");
  4821. seq_printf(seq, "] ");
  4822. }
  4823. seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
  4824. (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
  4825. "reshape" :
  4826. (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)?
  4827. "check" :
  4828. (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
  4829. "resync" : "recovery"))),
  4830. per_milli/10, per_milli % 10,
  4831. (unsigned long long) resync,
  4832. (unsigned long long) max_blocks);
  4833. /*
  4834. * We do not want to overflow, so the order of operands and
  4835. * the * 100 / 100 trick are important. We do a +1 to be
  4836. * safe against division by zero. We only estimate anyway.
  4837. *
  4838. * dt: time from mark until now
  4839. * db: blocks written from mark until now
  4840. * rt: remaining time
  4841. */
  4842. dt = ((jiffies - mddev->resync_mark) / HZ);
  4843. if (!dt) dt++;
  4844. db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active))
  4845. - mddev->resync_mark_cnt;
  4846. rt = (dt * ((unsigned long)(max_blocks-resync) / (db/2/100+1)))/100;
  4847. seq_printf(seq, " finish=%lu.%lumin", rt / 60, (rt % 60)/6);
  4848. seq_printf(seq, " speed=%ldK/sec", db/2/dt);
  4849. }
  4850. static void *md_seq_start(struct seq_file *seq, loff_t *pos)
  4851. {
  4852. struct list_head *tmp;
  4853. loff_t l = *pos;
  4854. mddev_t *mddev;
  4855. if (l >= 0x10000)
  4856. return NULL;
  4857. if (!l--)
  4858. /* header */
  4859. return (void*)1;
  4860. spin_lock(&all_mddevs_lock);
  4861. list_for_each(tmp,&all_mddevs)
  4862. if (!l--) {
  4863. mddev = list_entry(tmp, mddev_t, all_mddevs);
  4864. mddev_get(mddev);
  4865. spin_unlock(&all_mddevs_lock);
  4866. return mddev;
  4867. }
  4868. spin_unlock(&all_mddevs_lock);
  4869. if (!l--)
  4870. return (void*)2;/* tail */
  4871. return NULL;
  4872. }
  4873. static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
  4874. {
  4875. struct list_head *tmp;
  4876. mddev_t *next_mddev, *mddev = v;
  4877. ++*pos;
  4878. if (v == (void*)2)
  4879. return NULL;
  4880. spin_lock(&all_mddevs_lock);
  4881. if (v == (void*)1)
  4882. tmp = all_mddevs.next;
  4883. else
  4884. tmp = mddev->all_mddevs.next;
  4885. if (tmp != &all_mddevs)
  4886. next_mddev = mddev_get(list_entry(tmp,mddev_t,all_mddevs));
  4887. else {
  4888. next_mddev = (void*)2;
  4889. *pos = 0x10000;
  4890. }
  4891. spin_unlock(&all_mddevs_lock);
  4892. if (v != (void*)1)
  4893. mddev_put(mddev);
  4894. return next_mddev;
  4895. }
  4896. static void md_seq_stop(struct seq_file *seq, void *v)
  4897. {
  4898. mddev_t *mddev = v;
  4899. if (mddev && v != (void*)1 && v != (void*)2)
  4900. mddev_put(mddev);
  4901. }
  4902. struct mdstat_info {
  4903. int event;
  4904. };
  4905. static int md_seq_show(struct seq_file *seq, void *v)
  4906. {
  4907. mddev_t *mddev = v;
  4908. sector_t size;
  4909. mdk_rdev_t *rdev;
  4910. struct mdstat_info *mi = seq->private;
  4911. struct bitmap *bitmap;
  4912. if (v == (void*)1) {
  4913. struct mdk_personality *pers;
  4914. seq_printf(seq, "Personalities : ");
  4915. spin_lock(&pers_lock);
  4916. list_for_each_entry(pers, &pers_list, list)
  4917. seq_printf(seq, "[%s] ", pers->name);
  4918. spin_unlock(&pers_lock);
  4919. seq_printf(seq, "\n");
  4920. mi->event = atomic_read(&md_event_count);
  4921. return 0;
  4922. }
  4923. if (v == (void*)2) {
  4924. status_unused(seq);
  4925. return 0;
  4926. }
  4927. if (mddev_lock(mddev) < 0)
  4928. return -EINTR;
  4929. if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
  4930. seq_printf(seq, "%s : %sactive", mdname(mddev),
  4931. mddev->pers ? "" : "in");
  4932. if (mddev->pers) {
  4933. if (mddev->ro==1)
  4934. seq_printf(seq, " (read-only)");
  4935. if (mddev->ro==2)
  4936. seq_printf(seq, " (auto-read-only)");
  4937. seq_printf(seq, " %s", mddev->pers->name);
  4938. }
  4939. size = 0;
  4940. list_for_each_entry(rdev, &mddev->disks, same_set) {
  4941. char b[BDEVNAME_SIZE];
  4942. seq_printf(seq, " %s[%d]",
  4943. bdevname(rdev->bdev,b), rdev->desc_nr);
  4944. if (test_bit(WriteMostly, &rdev->flags))
  4945. seq_printf(seq, "(W)");
  4946. if (test_bit(Faulty, &rdev->flags)) {
  4947. seq_printf(seq, "(F)");
  4948. continue;
  4949. } else if (rdev->raid_disk < 0)
  4950. seq_printf(seq, "(S)"); /* spare */
  4951. size += rdev->size;
  4952. }
  4953. if (!list_empty(&mddev->disks)) {
  4954. if (mddev->pers)
  4955. seq_printf(seq, "\n %llu blocks",
  4956. (unsigned long long)
  4957. mddev->array_sectors / 2);
  4958. else
  4959. seq_printf(seq, "\n %llu blocks",
  4960. (unsigned long long)size);
  4961. }
  4962. if (mddev->persistent) {
  4963. if (mddev->major_version != 0 ||
  4964. mddev->minor_version != 90) {
  4965. seq_printf(seq," super %d.%d",
  4966. mddev->major_version,
  4967. mddev->minor_version);
  4968. }
  4969. } else if (mddev->external)
  4970. seq_printf(seq, " super external:%s",
  4971. mddev->metadata_type);
  4972. else
  4973. seq_printf(seq, " super non-persistent");
  4974. if (mddev->pers) {
  4975. mddev->pers->status(seq, mddev);
  4976. seq_printf(seq, "\n ");
  4977. if (mddev->pers->sync_request) {
  4978. if (mddev->curr_resync > 2) {
  4979. status_resync(seq, mddev);
  4980. seq_printf(seq, "\n ");
  4981. } else if (mddev->curr_resync == 1 || mddev->curr_resync == 2)
  4982. seq_printf(seq, "\tresync=DELAYED\n ");
  4983. else if (mddev->recovery_cp < MaxSector)
  4984. seq_printf(seq, "\tresync=PENDING\n ");
  4985. }
  4986. } else
  4987. seq_printf(seq, "\n ");
  4988. if ((bitmap = mddev->bitmap)) {
  4989. unsigned long chunk_kb;
  4990. unsigned long flags;
  4991. spin_lock_irqsave(&bitmap->lock, flags);
  4992. chunk_kb = bitmap->chunksize >> 10;
  4993. seq_printf(seq, "bitmap: %lu/%lu pages [%luKB], "
  4994. "%lu%s chunk",
  4995. bitmap->pages - bitmap->missing_pages,
  4996. bitmap->pages,
  4997. (bitmap->pages - bitmap->missing_pages)
  4998. << (PAGE_SHIFT - 10),
  4999. chunk_kb ? chunk_kb : bitmap->chunksize,
  5000. chunk_kb ? "KB" : "B");
  5001. if (bitmap->file) {
  5002. seq_printf(seq, ", file: ");
  5003. seq_path(seq, &bitmap->file->f_path, " \t\n");
  5004. }
  5005. seq_printf(seq, "\n");
  5006. spin_unlock_irqrestore(&bitmap->lock, flags);
  5007. }
  5008. seq_printf(seq, "\n");
  5009. }
  5010. mddev_unlock(mddev);
  5011. return 0;
  5012. }
  5013. static struct seq_operations md_seq_ops = {
  5014. .start = md_seq_start,
  5015. .next = md_seq_next,
  5016. .stop = md_seq_stop,
  5017. .show = md_seq_show,
  5018. };
  5019. static int md_seq_open(struct inode *inode, struct file *file)
  5020. {
  5021. int error;
  5022. struct mdstat_info *mi = kmalloc(sizeof(*mi), GFP_KERNEL);
  5023. if (mi == NULL)
  5024. return -ENOMEM;
  5025. error = seq_open(file, &md_seq_ops);
  5026. if (error)
  5027. kfree(mi);
  5028. else {
  5029. struct seq_file *p = file->private_data;
  5030. p->private = mi;
  5031. mi->event = atomic_read(&md_event_count);
  5032. }
  5033. return error;
  5034. }
  5035. static unsigned int mdstat_poll(struct file *filp, poll_table *wait)
  5036. {
  5037. struct seq_file *m = filp->private_data;
  5038. struct mdstat_info *mi = m->private;
  5039. int mask;
  5040. poll_wait(filp, &md_event_waiters, wait);
  5041. /* always allow read */
  5042. mask = POLLIN | POLLRDNORM;
  5043. if (mi->event != atomic_read(&md_event_count))
  5044. mask |= POLLERR | POLLPRI;
  5045. return mask;
  5046. }
  5047. static const struct file_operations md_seq_fops = {
  5048. .owner = THIS_MODULE,
  5049. .open = md_seq_open,
  5050. .read = seq_read,
  5051. .llseek = seq_lseek,
  5052. .release = seq_release_private,
  5053. .poll = mdstat_poll,
  5054. };
  5055. int register_md_personality(struct mdk_personality *p)
  5056. {
  5057. spin_lock(&pers_lock);
  5058. list_add_tail(&p->list, &pers_list);
  5059. printk(KERN_INFO "md: %s personality registered for level %d\n", p->name, p->level);
  5060. spin_unlock(&pers_lock);
  5061. return 0;
  5062. }
  5063. int unregister_md_personality(struct mdk_personality *p)
  5064. {
  5065. printk(KERN_INFO "md: %s personality unregistered\n", p->name);
  5066. spin_lock(&pers_lock);
  5067. list_del_init(&p->list);
  5068. spin_unlock(&pers_lock);
  5069. return 0;
  5070. }
  5071. static int is_mddev_idle(mddev_t *mddev, int init)
  5072. {
  5073. mdk_rdev_t * rdev;
  5074. int idle;
  5075. int curr_events;
  5076. idle = 1;
  5077. rcu_read_lock();
  5078. rdev_for_each_rcu(rdev, mddev) {
  5079. struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
  5080. curr_events = (int)part_stat_read(&disk->part0, sectors[0]) +
  5081. (int)part_stat_read(&disk->part0, sectors[1]) -
  5082. atomic_read(&disk->sync_io);
  5083. /* sync IO will cause sync_io to increase before the disk_stats
  5084. * as sync_io is counted when a request starts, and
  5085. * disk_stats is counted when it completes.
  5086. * So resync activity will cause curr_events to be smaller than
  5087. * when there was no such activity.
  5088. * non-sync IO will cause disk_stat to increase without
  5089. * increasing sync_io so curr_events will (eventually)
  5090. * be larger than it was before. Once it becomes
  5091. * substantially larger, the test below will cause
  5092. * the array to appear non-idle, and resync will slow
  5093. * down.
  5094. * If there is a lot of outstanding resync activity when
  5095. * we set last_event to curr_events, then all that activity
  5096. * completing might cause the array to appear non-idle
  5097. * and resync will be slowed down even though there might
  5098. * not have been non-resync activity. This will only
  5099. * happen once though. 'last_events' will soon reflect
  5100. * the state where there is little or no outstanding
  5101. * resync requests, and further resync activity will
  5102. * always make curr_events less than last_events.
  5103. *
  5104. */
  5105. if (init || curr_events - rdev->last_events > 64) {
  5106. rdev->last_events = curr_events;
  5107. idle = 0;
  5108. }
  5109. }
  5110. rcu_read_unlock();
  5111. return idle;
  5112. }
  5113. void md_done_sync(mddev_t *mddev, int blocks, int ok)
  5114. {
  5115. /* another "blocks" (512byte) blocks have been synced */
  5116. atomic_sub(blocks, &mddev->recovery_active);
  5117. wake_up(&mddev->recovery_wait);
  5118. if (!ok) {
  5119. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  5120. md_wakeup_thread(mddev->thread);
  5121. // stop recovery, signal do_sync ....
  5122. }
  5123. }
  5124. /* md_write_start(mddev, bi)
  5125. * If we need to update some array metadata (e.g. 'active' flag
  5126. * in superblock) before writing, schedule a superblock update
  5127. * and wait for it to complete.
  5128. */
  5129. void md_write_start(mddev_t *mddev, struct bio *bi)
  5130. {
  5131. int did_change = 0;
  5132. if (bio_data_dir(bi) != WRITE)
  5133. return;
  5134. BUG_ON(mddev->ro == 1);
  5135. if (mddev->ro == 2) {
  5136. /* need to switch to read/write */
  5137. mddev->ro = 0;
  5138. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  5139. md_wakeup_thread(mddev->thread);
  5140. md_wakeup_thread(mddev->sync_thread);
  5141. did_change = 1;
  5142. }
  5143. atomic_inc(&mddev->writes_pending);
  5144. if (mddev->safemode == 1)
  5145. mddev->safemode = 0;
  5146. if (mddev->in_sync) {
  5147. spin_lock_irq(&mddev->write_lock);
  5148. if (mddev->in_sync) {
  5149. mddev->in_sync = 0;
  5150. set_bit(MD_CHANGE_CLEAN, &mddev->flags);
  5151. md_wakeup_thread(mddev->thread);
  5152. did_change = 1;
  5153. }
  5154. spin_unlock_irq(&mddev->write_lock);
  5155. }
  5156. if (did_change)
  5157. sysfs_notify_dirent(mddev->sysfs_state);
  5158. wait_event(mddev->sb_wait,
  5159. !test_bit(MD_CHANGE_CLEAN, &mddev->flags) &&
  5160. !test_bit(MD_CHANGE_PENDING, &mddev->flags));
  5161. }
  5162. void md_write_end(mddev_t *mddev)
  5163. {
  5164. if (atomic_dec_and_test(&mddev->writes_pending)) {
  5165. if (mddev->safemode == 2)
  5166. md_wakeup_thread(mddev->thread);
  5167. else if (mddev->safemode_delay)
  5168. mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
  5169. }
  5170. }
  5171. /* md_allow_write(mddev)
  5172. * Calling this ensures that the array is marked 'active' so that writes
  5173. * may proceed without blocking. It is important to call this before
  5174. * attempting a GFP_KERNEL allocation while holding the mddev lock.
  5175. * Must be called with mddev_lock held.
  5176. *
  5177. * In the ->external case MD_CHANGE_CLEAN can not be cleared until mddev->lock
  5178. * is dropped, so return -EAGAIN after notifying userspace.
  5179. */
  5180. int md_allow_write(mddev_t *mddev)
  5181. {
  5182. if (!mddev->pers)
  5183. return 0;
  5184. if (mddev->ro)
  5185. return 0;
  5186. if (!mddev->pers->sync_request)
  5187. return 0;
  5188. spin_lock_irq(&mddev->write_lock);
  5189. if (mddev->in_sync) {
  5190. mddev->in_sync = 0;
  5191. set_bit(MD_CHANGE_CLEAN, &mddev->flags);
  5192. if (mddev->safemode_delay &&
  5193. mddev->safemode == 0)
  5194. mddev->safemode = 1;
  5195. spin_unlock_irq(&mddev->write_lock);
  5196. md_update_sb(mddev, 0);
  5197. sysfs_notify_dirent(mddev->sysfs_state);
  5198. } else
  5199. spin_unlock_irq(&mddev->write_lock);
  5200. if (test_bit(MD_CHANGE_CLEAN, &mddev->flags))
  5201. return -EAGAIN;
  5202. else
  5203. return 0;
  5204. }
  5205. EXPORT_SYMBOL_GPL(md_allow_write);
  5206. #define SYNC_MARKS 10
  5207. #define SYNC_MARK_STEP (3*HZ)
  5208. void md_do_sync(mddev_t *mddev)
  5209. {
  5210. mddev_t *mddev2;
  5211. unsigned int currspeed = 0,
  5212. window;
  5213. sector_t max_sectors,j, io_sectors;
  5214. unsigned long mark[SYNC_MARKS];
  5215. sector_t mark_cnt[SYNC_MARKS];
  5216. int last_mark,m;
  5217. struct list_head *tmp;
  5218. sector_t last_check;
  5219. int skipped = 0;
  5220. mdk_rdev_t *rdev;
  5221. char *desc;
  5222. /* just incase thread restarts... */
  5223. if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
  5224. return;
  5225. if (mddev->ro) /* never try to sync a read-only array */
  5226. return;
  5227. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
  5228. if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
  5229. desc = "data-check";
  5230. else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
  5231. desc = "requested-resync";
  5232. else
  5233. desc = "resync";
  5234. } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
  5235. desc = "reshape";
  5236. else
  5237. desc = "recovery";
  5238. /* we overload curr_resync somewhat here.
  5239. * 0 == not engaged in resync at all
  5240. * 2 == checking that there is no conflict with another sync
  5241. * 1 == like 2, but have yielded to allow conflicting resync to
  5242. * commense
  5243. * other == active in resync - this many blocks
  5244. *
  5245. * Before starting a resync we must have set curr_resync to
  5246. * 2, and then checked that every "conflicting" array has curr_resync
  5247. * less than ours. When we find one that is the same or higher
  5248. * we wait on resync_wait. To avoid deadlock, we reduce curr_resync
  5249. * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
  5250. * This will mean we have to start checking from the beginning again.
  5251. *
  5252. */
  5253. do {
  5254. mddev->curr_resync = 2;
  5255. try_again:
  5256. if (kthread_should_stop()) {
  5257. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  5258. goto skip;
  5259. }
  5260. for_each_mddev(mddev2, tmp) {
  5261. if (mddev2 == mddev)
  5262. continue;
  5263. if (!mddev->parallel_resync
  5264. && mddev2->curr_resync
  5265. && match_mddev_units(mddev, mddev2)) {
  5266. DEFINE_WAIT(wq);
  5267. if (mddev < mddev2 && mddev->curr_resync == 2) {
  5268. /* arbitrarily yield */
  5269. mddev->curr_resync = 1;
  5270. wake_up(&resync_wait);
  5271. }
  5272. if (mddev > mddev2 && mddev->curr_resync == 1)
  5273. /* no need to wait here, we can wait the next
  5274. * time 'round when curr_resync == 2
  5275. */
  5276. continue;
  5277. /* We need to wait 'interruptible' so as not to
  5278. * contribute to the load average, and not to
  5279. * be caught by 'softlockup'
  5280. */
  5281. prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE);
  5282. if (!kthread_should_stop() &&
  5283. mddev2->curr_resync >= mddev->curr_resync) {
  5284. printk(KERN_INFO "md: delaying %s of %s"
  5285. " until %s has finished (they"
  5286. " share one or more physical units)\n",
  5287. desc, mdname(mddev), mdname(mddev2));
  5288. mddev_put(mddev2);
  5289. if (signal_pending(current))
  5290. flush_signals(current);
  5291. schedule();
  5292. finish_wait(&resync_wait, &wq);
  5293. goto try_again;
  5294. }
  5295. finish_wait(&resync_wait, &wq);
  5296. }
  5297. }
  5298. } while (mddev->curr_resync < 2);
  5299. j = 0;
  5300. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
  5301. /* resync follows the size requested by the personality,
  5302. * which defaults to physical size, but can be virtual size
  5303. */
  5304. max_sectors = mddev->resync_max_sectors;
  5305. mddev->resync_mismatches = 0;
  5306. /* we don't use the checkpoint if there's a bitmap */
  5307. if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
  5308. j = mddev->resync_min;
  5309. else if (!mddev->bitmap)
  5310. j = mddev->recovery_cp;
  5311. } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
  5312. max_sectors = mddev->size << 1;
  5313. else {
  5314. /* recovery follows the physical size of devices */
  5315. max_sectors = mddev->size << 1;
  5316. j = MaxSector;
  5317. list_for_each_entry(rdev, &mddev->disks, same_set)
  5318. if (rdev->raid_disk >= 0 &&
  5319. !test_bit(Faulty, &rdev->flags) &&
  5320. !test_bit(In_sync, &rdev->flags) &&
  5321. rdev->recovery_offset < j)
  5322. j = rdev->recovery_offset;
  5323. }
  5324. printk(KERN_INFO "md: %s of RAID array %s\n", desc, mdname(mddev));
  5325. printk(KERN_INFO "md: minimum _guaranteed_ speed:"
  5326. " %d KB/sec/disk.\n", speed_min(mddev));
  5327. printk(KERN_INFO "md: using maximum available idle IO bandwidth "
  5328. "(but not more than %d KB/sec) for %s.\n",
  5329. speed_max(mddev), desc);
  5330. is_mddev_idle(mddev, 1); /* this initializes IO event counters */
  5331. io_sectors = 0;
  5332. for (m = 0; m < SYNC_MARKS; m++) {
  5333. mark[m] = jiffies;
  5334. mark_cnt[m] = io_sectors;
  5335. }
  5336. last_mark = 0;
  5337. mddev->resync_mark = mark[last_mark];
  5338. mddev->resync_mark_cnt = mark_cnt[last_mark];
  5339. /*
  5340. * Tune reconstruction:
  5341. */
  5342. window = 32*(PAGE_SIZE/512);
  5343. printk(KERN_INFO "md: using %dk window, over a total of %llu blocks.\n",
  5344. window/2,(unsigned long long) max_sectors/2);
  5345. atomic_set(&mddev->recovery_active, 0);
  5346. last_check = 0;
  5347. if (j>2) {
  5348. printk(KERN_INFO
  5349. "md: resuming %s of %s from checkpoint.\n",
  5350. desc, mdname(mddev));
  5351. mddev->curr_resync = j;
  5352. }
  5353. while (j < max_sectors) {
  5354. sector_t sectors;
  5355. skipped = 0;
  5356. if (j >= mddev->resync_max) {
  5357. sysfs_notify(&mddev->kobj, NULL, "sync_completed");
  5358. wait_event(mddev->recovery_wait,
  5359. mddev->resync_max > j
  5360. || kthread_should_stop());
  5361. }
  5362. if (kthread_should_stop())
  5363. goto interrupted;
  5364. sectors = mddev->pers->sync_request(mddev, j, &skipped,
  5365. currspeed < speed_min(mddev));
  5366. if (sectors == 0) {
  5367. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  5368. goto out;
  5369. }
  5370. if (!skipped) { /* actual IO requested */
  5371. io_sectors += sectors;
  5372. atomic_add(sectors, &mddev->recovery_active);
  5373. }
  5374. j += sectors;
  5375. if (j>1) mddev->curr_resync = j;
  5376. mddev->curr_mark_cnt = io_sectors;
  5377. if (last_check == 0)
  5378. /* this is the earliers that rebuilt will be
  5379. * visible in /proc/mdstat
  5380. */
  5381. md_new_event(mddev);
  5382. if (last_check + window > io_sectors || j == max_sectors)
  5383. continue;
  5384. last_check = io_sectors;
  5385. if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
  5386. break;
  5387. repeat:
  5388. if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
  5389. /* step marks */
  5390. int next = (last_mark+1) % SYNC_MARKS;
  5391. mddev->resync_mark = mark[next];
  5392. mddev->resync_mark_cnt = mark_cnt[next];
  5393. mark[next] = jiffies;
  5394. mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
  5395. last_mark = next;
  5396. }
  5397. if (kthread_should_stop())
  5398. goto interrupted;
  5399. /*
  5400. * this loop exits only if either when we are slower than
  5401. * the 'hard' speed limit, or the system was IO-idle for
  5402. * a jiffy.
  5403. * the system might be non-idle CPU-wise, but we only care
  5404. * about not overloading the IO subsystem. (things like an
  5405. * e2fsck being done on the RAID array should execute fast)
  5406. */
  5407. blk_unplug(mddev->queue);
  5408. cond_resched();
  5409. currspeed = ((unsigned long)(io_sectors-mddev->resync_mark_cnt))/2
  5410. /((jiffies-mddev->resync_mark)/HZ +1) +1;
  5411. if (currspeed > speed_min(mddev)) {
  5412. if ((currspeed > speed_max(mddev)) ||
  5413. !is_mddev_idle(mddev, 0)) {
  5414. msleep(500);
  5415. goto repeat;
  5416. }
  5417. }
  5418. }
  5419. printk(KERN_INFO "md: %s: %s done.\n",mdname(mddev), desc);
  5420. /*
  5421. * this also signals 'finished resyncing' to md_stop
  5422. */
  5423. out:
  5424. blk_unplug(mddev->queue);
  5425. wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
  5426. /* tell personality that we are finished */
  5427. mddev->pers->sync_request(mddev, max_sectors, &skipped, 1);
  5428. if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
  5429. mddev->curr_resync > 2) {
  5430. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
  5431. if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
  5432. if (mddev->curr_resync >= mddev->recovery_cp) {
  5433. printk(KERN_INFO
  5434. "md: checkpointing %s of %s.\n",
  5435. desc, mdname(mddev));
  5436. mddev->recovery_cp = mddev->curr_resync;
  5437. }
  5438. } else
  5439. mddev->recovery_cp = MaxSector;
  5440. } else {
  5441. if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
  5442. mddev->curr_resync = MaxSector;
  5443. list_for_each_entry(rdev, &mddev->disks, same_set)
  5444. if (rdev->raid_disk >= 0 &&
  5445. !test_bit(Faulty, &rdev->flags) &&
  5446. !test_bit(In_sync, &rdev->flags) &&
  5447. rdev->recovery_offset < mddev->curr_resync)
  5448. rdev->recovery_offset = mddev->curr_resync;
  5449. }
  5450. }
  5451. set_bit(MD_CHANGE_DEVS, &mddev->flags);
  5452. skip:
  5453. mddev->curr_resync = 0;
  5454. mddev->resync_min = 0;
  5455. mddev->resync_max = MaxSector;
  5456. sysfs_notify(&mddev->kobj, NULL, "sync_completed");
  5457. wake_up(&resync_wait);
  5458. set_bit(MD_RECOVERY_DONE, &mddev->recovery);
  5459. md_wakeup_thread(mddev->thread);
  5460. return;
  5461. interrupted:
  5462. /*
  5463. * got a signal, exit.
  5464. */
  5465. printk(KERN_INFO
  5466. "md: md_do_sync() got signal ... exiting\n");
  5467. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  5468. goto out;
  5469. }
  5470. EXPORT_SYMBOL_GPL(md_do_sync);
  5471. static int remove_and_add_spares(mddev_t *mddev)
  5472. {
  5473. mdk_rdev_t *rdev;
  5474. int spares = 0;
  5475. list_for_each_entry(rdev, &mddev->disks, same_set)
  5476. if (rdev->raid_disk >= 0 &&
  5477. !test_bit(Blocked, &rdev->flags) &&
  5478. (test_bit(Faulty, &rdev->flags) ||
  5479. ! test_bit(In_sync, &rdev->flags)) &&
  5480. atomic_read(&rdev->nr_pending)==0) {
  5481. if (mddev->pers->hot_remove_disk(
  5482. mddev, rdev->raid_disk)==0) {
  5483. char nm[20];
  5484. sprintf(nm,"rd%d", rdev->raid_disk);
  5485. sysfs_remove_link(&mddev->kobj, nm);
  5486. rdev->raid_disk = -1;
  5487. }
  5488. }
  5489. if (mddev->degraded && ! mddev->ro && !mddev->recovery_disabled) {
  5490. list_for_each_entry(rdev, &mddev->disks, same_set) {
  5491. if (rdev->raid_disk >= 0 &&
  5492. !test_bit(In_sync, &rdev->flags) &&
  5493. !test_bit(Blocked, &rdev->flags))
  5494. spares++;
  5495. if (rdev->raid_disk < 0
  5496. && !test_bit(Faulty, &rdev->flags)) {
  5497. rdev->recovery_offset = 0;
  5498. if (mddev->pers->
  5499. hot_add_disk(mddev, rdev) == 0) {
  5500. char nm[20];
  5501. sprintf(nm, "rd%d", rdev->raid_disk);
  5502. if (sysfs_create_link(&mddev->kobj,
  5503. &rdev->kobj, nm))
  5504. printk(KERN_WARNING
  5505. "md: cannot register "
  5506. "%s for %s\n",
  5507. nm, mdname(mddev));
  5508. spares++;
  5509. md_new_event(mddev);
  5510. } else
  5511. break;
  5512. }
  5513. }
  5514. }
  5515. return spares;
  5516. }
  5517. /*
  5518. * This routine is regularly called by all per-raid-array threads to
  5519. * deal with generic issues like resync and super-block update.
  5520. * Raid personalities that don't have a thread (linear/raid0) do not
  5521. * need this as they never do any recovery or update the superblock.
  5522. *
  5523. * It does not do any resync itself, but rather "forks" off other threads
  5524. * to do that as needed.
  5525. * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
  5526. * "->recovery" and create a thread at ->sync_thread.
  5527. * When the thread finishes it sets MD_RECOVERY_DONE
  5528. * and wakeups up this thread which will reap the thread and finish up.
  5529. * This thread also removes any faulty devices (with nr_pending == 0).
  5530. *
  5531. * The overall approach is:
  5532. * 1/ if the superblock needs updating, update it.
  5533. * 2/ If a recovery thread is running, don't do anything else.
  5534. * 3/ If recovery has finished, clean up, possibly marking spares active.
  5535. * 4/ If there are any faulty devices, remove them.
  5536. * 5/ If array is degraded, try to add spares devices
  5537. * 6/ If array has spares or is not in-sync, start a resync thread.
  5538. */
  5539. void md_check_recovery(mddev_t *mddev)
  5540. {
  5541. mdk_rdev_t *rdev;
  5542. if (mddev->bitmap)
  5543. bitmap_daemon_work(mddev->bitmap);
  5544. if (mddev->ro)
  5545. return;
  5546. if (signal_pending(current)) {
  5547. if (mddev->pers->sync_request && !mddev->external) {
  5548. printk(KERN_INFO "md: %s in immediate safe mode\n",
  5549. mdname(mddev));
  5550. mddev->safemode = 2;
  5551. }
  5552. flush_signals(current);
  5553. }
  5554. if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
  5555. return;
  5556. if ( ! (
  5557. (mddev->flags && !mddev->external) ||
  5558. test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
  5559. test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
  5560. (mddev->external == 0 && mddev->safemode == 1) ||
  5561. (mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
  5562. && !mddev->in_sync && mddev->recovery_cp == MaxSector)
  5563. ))
  5564. return;
  5565. if (mddev_trylock(mddev)) {
  5566. int spares = 0;
  5567. if (mddev->ro) {
  5568. /* Only thing we do on a ro array is remove
  5569. * failed devices.
  5570. */
  5571. remove_and_add_spares(mddev);
  5572. clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  5573. goto unlock;
  5574. }
  5575. if (!mddev->external) {
  5576. int did_change = 0;
  5577. spin_lock_irq(&mddev->write_lock);
  5578. if (mddev->safemode &&
  5579. !atomic_read(&mddev->writes_pending) &&
  5580. !mddev->in_sync &&
  5581. mddev->recovery_cp == MaxSector) {
  5582. mddev->in_sync = 1;
  5583. did_change = 1;
  5584. if (mddev->persistent)
  5585. set_bit(MD_CHANGE_CLEAN, &mddev->flags);
  5586. }
  5587. if (mddev->safemode == 1)
  5588. mddev->safemode = 0;
  5589. spin_unlock_irq(&mddev->write_lock);
  5590. if (did_change)
  5591. sysfs_notify_dirent(mddev->sysfs_state);
  5592. }
  5593. if (mddev->flags)
  5594. md_update_sb(mddev, 0);
  5595. list_for_each_entry(rdev, &mddev->disks, same_set)
  5596. if (test_and_clear_bit(StateChanged, &rdev->flags))
  5597. sysfs_notify_dirent(rdev->sysfs_state);
  5598. if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
  5599. !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
  5600. /* resync/recovery still happening */
  5601. clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  5602. goto unlock;
  5603. }
  5604. if (mddev->sync_thread) {
  5605. /* resync has finished, collect result */
  5606. md_unregister_thread(mddev->sync_thread);
  5607. mddev->sync_thread = NULL;
  5608. if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
  5609. !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
  5610. /* success...*/
  5611. /* activate any spares */
  5612. if (mddev->pers->spare_active(mddev))
  5613. sysfs_notify(&mddev->kobj, NULL,
  5614. "degraded");
  5615. }
  5616. md_update_sb(mddev, 1);
  5617. /* if array is no-longer degraded, then any saved_raid_disk
  5618. * information must be scrapped
  5619. */
  5620. if (!mddev->degraded)
  5621. list_for_each_entry(rdev, &mddev->disks, same_set)
  5622. rdev->saved_raid_disk = -1;
  5623. mddev->recovery = 0;
  5624. /* flag recovery needed just to double check */
  5625. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  5626. sysfs_notify_dirent(mddev->sysfs_action);
  5627. md_new_event(mddev);
  5628. goto unlock;
  5629. }
  5630. /* Set RUNNING before clearing NEEDED to avoid
  5631. * any transients in the value of "sync_action".
  5632. */
  5633. set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
  5634. clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  5635. /* Clear some bits that don't mean anything, but
  5636. * might be left set
  5637. */
  5638. clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
  5639. clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
  5640. if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
  5641. goto unlock;
  5642. /* no recovery is running.
  5643. * remove any failed drives, then
  5644. * add spares if possible.
  5645. * Spare are also removed and re-added, to allow
  5646. * the personality to fail the re-add.
  5647. */
  5648. if (mddev->reshape_position != MaxSector) {
  5649. if (mddev->pers->check_reshape(mddev) != 0)
  5650. /* Cannot proceed */
  5651. goto unlock;
  5652. set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
  5653. clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
  5654. } else if ((spares = remove_and_add_spares(mddev))) {
  5655. clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
  5656. clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
  5657. clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
  5658. set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
  5659. } else if (mddev->recovery_cp < MaxSector) {
  5660. set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
  5661. clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
  5662. } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
  5663. /* nothing to be done ... */
  5664. goto unlock;
  5665. if (mddev->pers->sync_request) {
  5666. if (spares && mddev->bitmap && ! mddev->bitmap->file) {
  5667. /* We are adding a device or devices to an array
  5668. * which has the bitmap stored on all devices.
  5669. * So make sure all bitmap pages get written
  5670. */
  5671. bitmap_write_all(mddev->bitmap);
  5672. }
  5673. mddev->sync_thread = md_register_thread(md_do_sync,
  5674. mddev,
  5675. "%s_resync");
  5676. if (!mddev->sync_thread) {
  5677. printk(KERN_ERR "%s: could not start resync"
  5678. " thread...\n",
  5679. mdname(mddev));
  5680. /* leave the spares where they are, it shouldn't hurt */
  5681. mddev->recovery = 0;
  5682. } else
  5683. md_wakeup_thread(mddev->sync_thread);
  5684. sysfs_notify_dirent(mddev->sysfs_action);
  5685. md_new_event(mddev);
  5686. }
  5687. unlock:
  5688. if (!mddev->sync_thread) {
  5689. clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
  5690. if (test_and_clear_bit(MD_RECOVERY_RECOVER,
  5691. &mddev->recovery))
  5692. if (mddev->sysfs_action)
  5693. sysfs_notify_dirent(mddev->sysfs_action);
  5694. }
  5695. mddev_unlock(mddev);
  5696. }
  5697. }
  5698. void md_wait_for_blocked_rdev(mdk_rdev_t *rdev, mddev_t *mddev)
  5699. {
  5700. sysfs_notify_dirent(rdev->sysfs_state);
  5701. wait_event_timeout(rdev->blocked_wait,
  5702. !test_bit(Blocked, &rdev->flags),
  5703. msecs_to_jiffies(5000));
  5704. rdev_dec_pending(rdev, mddev);
  5705. }
  5706. EXPORT_SYMBOL(md_wait_for_blocked_rdev);
  5707. static int md_notify_reboot(struct notifier_block *this,
  5708. unsigned long code, void *x)
  5709. {
  5710. struct list_head *tmp;
  5711. mddev_t *mddev;
  5712. if ((code == SYS_DOWN) || (code == SYS_HALT) || (code == SYS_POWER_OFF)) {
  5713. printk(KERN_INFO "md: stopping all md devices.\n");
  5714. for_each_mddev(mddev, tmp)
  5715. if (mddev_trylock(mddev)) {
  5716. /* Force a switch to readonly even array
  5717. * appears to still be in use. Hence
  5718. * the '100'.
  5719. */
  5720. do_md_stop(mddev, 1, 100);
  5721. mddev_unlock(mddev);
  5722. }
  5723. /*
  5724. * certain more exotic SCSI devices are known to be
  5725. * volatile wrt too early system reboots. While the
  5726. * right place to handle this issue is the given
  5727. * driver, we do want to have a safe RAID driver ...
  5728. */
  5729. mdelay(1000*1);
  5730. }
  5731. return NOTIFY_DONE;
  5732. }
  5733. static struct notifier_block md_notifier = {
  5734. .notifier_call = md_notify_reboot,
  5735. .next = NULL,
  5736. .priority = INT_MAX, /* before any real devices */
  5737. };
  5738. static void md_geninit(void)
  5739. {
  5740. dprintk("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
  5741. proc_create("mdstat", S_IRUGO, NULL, &md_seq_fops);
  5742. }
  5743. static int __init md_init(void)
  5744. {
  5745. if (register_blkdev(MD_MAJOR, "md"))
  5746. return -1;
  5747. if ((mdp_major=register_blkdev(0, "mdp"))<=0) {
  5748. unregister_blkdev(MD_MAJOR, "md");
  5749. return -1;
  5750. }
  5751. blk_register_region(MKDEV(MD_MAJOR, 0), 1UL<<MINORBITS, THIS_MODULE,
  5752. md_probe, NULL, NULL);
  5753. blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE,
  5754. md_probe, NULL, NULL);
  5755. register_reboot_notifier(&md_notifier);
  5756. raid_table_header = register_sysctl_table(raid_root_table);
  5757. md_geninit();
  5758. return 0;
  5759. }
  5760. #ifndef MODULE
  5761. /*
  5762. * Searches all registered partitions for autorun RAID arrays
  5763. * at boot time.
  5764. */
  5765. static LIST_HEAD(all_detected_devices);
  5766. struct detected_devices_node {
  5767. struct list_head list;
  5768. dev_t dev;
  5769. };
  5770. void md_autodetect_dev(dev_t dev)
  5771. {
  5772. struct detected_devices_node *node_detected_dev;
  5773. node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL);
  5774. if (node_detected_dev) {
  5775. node_detected_dev->dev = dev;
  5776. list_add_tail(&node_detected_dev->list, &all_detected_devices);
  5777. } else {
  5778. printk(KERN_CRIT "md: md_autodetect_dev: kzalloc failed"
  5779. ", skipping dev(%d,%d)\n", MAJOR(dev), MINOR(dev));
  5780. }
  5781. }
  5782. static void autostart_arrays(int part)
  5783. {
  5784. mdk_rdev_t *rdev;
  5785. struct detected_devices_node *node_detected_dev;
  5786. dev_t dev;
  5787. int i_scanned, i_passed;
  5788. i_scanned = 0;
  5789. i_passed = 0;
  5790. printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
  5791. while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) {
  5792. i_scanned++;
  5793. node_detected_dev = list_entry(all_detected_devices.next,
  5794. struct detected_devices_node, list);
  5795. list_del(&node_detected_dev->list);
  5796. dev = node_detected_dev->dev;
  5797. kfree(node_detected_dev);
  5798. rdev = md_import_device(dev,0, 90);
  5799. if (IS_ERR(rdev))
  5800. continue;
  5801. if (test_bit(Faulty, &rdev->flags)) {
  5802. MD_BUG();
  5803. continue;
  5804. }
  5805. set_bit(AutoDetected, &rdev->flags);
  5806. list_add(&rdev->same_set, &pending_raid_disks);
  5807. i_passed++;
  5808. }
  5809. printk(KERN_INFO "md: Scanned %d and added %d devices.\n",
  5810. i_scanned, i_passed);
  5811. autorun_devices(part);
  5812. }
  5813. #endif /* !MODULE */
  5814. static __exit void md_exit(void)
  5815. {
  5816. mddev_t *mddev;
  5817. struct list_head *tmp;
  5818. blk_unregister_region(MKDEV(MD_MAJOR,0), 1U << MINORBITS);
  5819. blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS);
  5820. unregister_blkdev(MD_MAJOR,"md");
  5821. unregister_blkdev(mdp_major, "mdp");
  5822. unregister_reboot_notifier(&md_notifier);
  5823. unregister_sysctl_table(raid_table_header);
  5824. remove_proc_entry("mdstat", NULL);
  5825. for_each_mddev(mddev, tmp) {
  5826. export_array(mddev);
  5827. mddev->hold_active = 0;
  5828. }
  5829. }
  5830. subsys_initcall(md_init);
  5831. module_exit(md_exit)
  5832. static int get_ro(char *buffer, struct kernel_param *kp)
  5833. {
  5834. return sprintf(buffer, "%d", start_readonly);
  5835. }
  5836. static int set_ro(const char *val, struct kernel_param *kp)
  5837. {
  5838. char *e;
  5839. int num = simple_strtoul(val, &e, 10);
  5840. if (*val && (*e == '\0' || *e == '\n')) {
  5841. start_readonly = num;
  5842. return 0;
  5843. }
  5844. return -EINVAL;
  5845. }
  5846. module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR);
  5847. module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR);
  5848. module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR);
  5849. EXPORT_SYMBOL(register_md_personality);
  5850. EXPORT_SYMBOL(unregister_md_personality);
  5851. EXPORT_SYMBOL(md_error);
  5852. EXPORT_SYMBOL(md_done_sync);
  5853. EXPORT_SYMBOL(md_write_start);
  5854. EXPORT_SYMBOL(md_write_end);
  5855. EXPORT_SYMBOL(md_register_thread);
  5856. EXPORT_SYMBOL(md_unregister_thread);
  5857. EXPORT_SYMBOL(md_wakeup_thread);
  5858. EXPORT_SYMBOL(md_check_recovery);
  5859. MODULE_LICENSE("GPL");
  5860. MODULE_ALIAS("md");
  5861. MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);