io.c 37 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263
  1. /*
  2. * Copyright (c) International Business Machines Corp., 2006
  3. * Copyright (c) Nokia Corporation, 2006, 2007
  4. *
  5. * This program is free software; you can redistribute it and/or modify
  6. * it under the terms of the GNU General Public License as published by
  7. * the Free Software Foundation; either version 2 of the License, or
  8. * (at your option) any later version.
  9. *
  10. * This program is distributed in the hope that it will be useful,
  11. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
  13. * the GNU General Public License for more details.
  14. *
  15. * You should have received a copy of the GNU General Public License
  16. * along with this program; if not, write to the Free Software
  17. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  18. *
  19. * Author: Artem Bityutskiy (Битюцкий Артём)
  20. */
  21. /*
  22. * UBI input/output unit.
  23. *
  24. * This unit provides a uniform way to work with all kinds of the underlying
  25. * MTD devices. It also implements handy functions for reading and writing UBI
  26. * headers.
  27. *
  28. * We are trying to have a paranoid mindset and not to trust to what we read
  29. * from the flash media in order to be more secure and robust. So this unit
  30. * validates every single header it reads from the flash media.
  31. *
  32. * Some words about how the eraseblock headers are stored.
  33. *
  34. * The erase counter header is always stored at offset zero. By default, the
  35. * VID header is stored after the EC header at the closest aligned offset
  36. * (i.e. aligned to the minimum I/O unit size). Data starts next to the VID
  37. * header at the closest aligned offset. But this default layout may be
  38. * changed. For example, for different reasons (e.g., optimization) UBI may be
  39. * asked to put the VID header at further offset, and even at an unaligned
  40. * offset. Of course, if the offset of the VID header is unaligned, UBI adds
  41. * proper padding in front of it. Data offset may also be changed but it has to
  42. * be aligned.
  43. *
  44. * About minimal I/O units. In general, UBI assumes flash device model where
  45. * there is only one minimal I/O unit size. E.g., in case of NOR flash it is 1,
  46. * in case of NAND flash it is a NAND page, etc. This is reported by MTD in the
  47. * @ubi->mtd->writesize field. But as an exception, UBI admits of using another
  48. * (smaller) minimal I/O unit size for EC and VID headers to make it possible
  49. * to do different optimizations.
  50. *
  51. * This is extremely useful in case of NAND flashes which admit of several
  52. * write operations to one NAND page. In this case UBI can fit EC and VID
  53. * headers at one NAND page. Thus, UBI may use "sub-page" size as the minimal
  54. * I/O unit for the headers (the @ubi->hdrs_min_io_size field). But it still
  55. * reports NAND page size (@ubi->min_io_size) as a minimal I/O unit for the UBI
  56. * users.
  57. *
  58. * Example: some Samsung NANDs with 2KiB pages allow 4x 512-byte writes, so
  59. * although the minimal I/O unit is 2K, UBI uses 512 bytes for EC and VID
  60. * headers.
  61. *
  62. * Q: why not just to treat sub-page as a minimal I/O unit of this flash
  63. * device, e.g., make @ubi->min_io_size = 512 in the example above?
  64. *
  65. * A: because when writing a sub-page, MTD still writes a full 2K page but the
  66. * bytes which are no relevant to the sub-page are 0xFF. So, basically, writing
  67. * 4x512 sub-pages is 4 times slower then writing one 2KiB NAND page. Thus, we
  68. * prefer to use sub-pages only for EV and VID headers.
  69. *
  70. * As it was noted above, the VID header may start at a non-aligned offset.
  71. * For example, in case of a 2KiB page NAND flash with a 512 bytes sub-page,
  72. * the VID header may reside at offset 1984 which is the last 64 bytes of the
  73. * last sub-page (EC header is always at offset zero). This causes some
  74. * difficulties when reading and writing VID headers.
  75. *
  76. * Suppose we have a 64-byte buffer and we read a VID header at it. We change
  77. * the data and want to write this VID header out. As we can only write in
  78. * 512-byte chunks, we have to allocate one more buffer and copy our VID header
  79. * to offset 448 of this buffer.
  80. *
  81. * The I/O unit does the following trick in order to avoid this extra copy.
  82. * It always allocates a @ubi->vid_hdr_alsize bytes buffer for the VID header
  83. * and returns a pointer to offset @ubi->vid_hdr_shift of this buffer. When the
  84. * VID header is being written out, it shifts the VID header pointer back and
  85. * writes the whole sub-page.
  86. */
  87. #include <linux/crc32.h>
  88. #include <linux/err.h>
  89. #include "ubi.h"
  90. #ifdef CONFIG_MTD_UBI_DEBUG_PARANOID
  91. static int paranoid_check_not_bad(const struct ubi_device *ubi, int pnum);
  92. static int paranoid_check_peb_ec_hdr(const struct ubi_device *ubi, int pnum);
  93. static int paranoid_check_ec_hdr(const struct ubi_device *ubi, int pnum,
  94. const struct ubi_ec_hdr *ec_hdr);
  95. static int paranoid_check_peb_vid_hdr(const struct ubi_device *ubi, int pnum);
  96. static int paranoid_check_vid_hdr(const struct ubi_device *ubi, int pnum,
  97. const struct ubi_vid_hdr *vid_hdr);
  98. static int paranoid_check_all_ff(const struct ubi_device *ubi, int pnum,
  99. int offset, int len);
  100. #else
  101. #define paranoid_check_not_bad(ubi, pnum) 0
  102. #define paranoid_check_peb_ec_hdr(ubi, pnum) 0
  103. #define paranoid_check_ec_hdr(ubi, pnum, ec_hdr) 0
  104. #define paranoid_check_peb_vid_hdr(ubi, pnum) 0
  105. #define paranoid_check_vid_hdr(ubi, pnum, vid_hdr) 0
  106. #define paranoid_check_all_ff(ubi, pnum, offset, len) 0
  107. #endif
  108. /**
  109. * ubi_io_read - read data from a physical eraseblock.
  110. * @ubi: UBI device description object
  111. * @buf: buffer where to store the read data
  112. * @pnum: physical eraseblock number to read from
  113. * @offset: offset within the physical eraseblock from where to read
  114. * @len: how many bytes to read
  115. *
  116. * This function reads data from offset @offset of physical eraseblock @pnum
  117. * and stores the read data in the @buf buffer. The following return codes are
  118. * possible:
  119. *
  120. * o %0 if all the requested data were successfully read;
  121. * o %UBI_IO_BITFLIPS if all the requested data were successfully read, but
  122. * correctable bit-flips were detected; this is harmless but may indicate
  123. * that this eraseblock may become bad soon (but do not have to);
  124. * o %-EBADMSG if the MTD subsystem reported about data integrity problems, for
  125. * example it can be an ECC error in case of NAND; this most probably means
  126. * that the data is corrupted;
  127. * o %-EIO if some I/O error occurred;
  128. * o other negative error codes in case of other errors.
  129. */
  130. int ubi_io_read(const struct ubi_device *ubi, void *buf, int pnum, int offset,
  131. int len)
  132. {
  133. int err, retries = 0;
  134. size_t read;
  135. loff_t addr;
  136. dbg_io("read %d bytes from PEB %d:%d", len, pnum, offset);
  137. ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
  138. ubi_assert(offset >= 0 && offset + len <= ubi->peb_size);
  139. ubi_assert(len > 0);
  140. err = paranoid_check_not_bad(ubi, pnum);
  141. if (err)
  142. return err > 0 ? -EINVAL : err;
  143. addr = (loff_t)pnum * ubi->peb_size + offset;
  144. retry:
  145. err = ubi->mtd->read(ubi->mtd, addr, len, &read, buf);
  146. if (err) {
  147. if (err == -EUCLEAN) {
  148. /*
  149. * -EUCLEAN is reported if there was a bit-flip which
  150. * was corrected, so this is harmless.
  151. */
  152. ubi_msg("fixable bit-flip detected at PEB %d", pnum);
  153. ubi_assert(len == read);
  154. return UBI_IO_BITFLIPS;
  155. }
  156. if (read != len && retries++ < UBI_IO_RETRIES) {
  157. dbg_io("error %d while reading %d bytes from PEB %d:%d, "
  158. "read only %zd bytes, retry",
  159. err, len, pnum, offset, read);
  160. yield();
  161. goto retry;
  162. }
  163. ubi_err("error %d while reading %d bytes from PEB %d:%d, "
  164. "read %zd bytes", err, len, pnum, offset, read);
  165. ubi_dbg_dump_stack();
  166. } else {
  167. ubi_assert(len == read);
  168. if (ubi_dbg_is_bitflip()) {
  169. dbg_msg("bit-flip (emulated)");
  170. err = UBI_IO_BITFLIPS;
  171. }
  172. }
  173. return err;
  174. }
  175. /**
  176. * ubi_io_write - write data to a physical eraseblock.
  177. * @ubi: UBI device description object
  178. * @buf: buffer with the data to write
  179. * @pnum: physical eraseblock number to write to
  180. * @offset: offset within the physical eraseblock where to write
  181. * @len: how many bytes to write
  182. *
  183. * This function writes @len bytes of data from buffer @buf to offset @offset
  184. * of physical eraseblock @pnum. If all the data were successfully written,
  185. * zero is returned. If an error occurred, this function returns a negative
  186. * error code. If %-EIO is returned, the physical eraseblock most probably went
  187. * bad.
  188. *
  189. * Note, in case of an error, it is possible that something was still written
  190. * to the flash media, but may be some garbage.
  191. */
  192. int ubi_io_write(const struct ubi_device *ubi, const void *buf, int pnum,
  193. int offset, int len)
  194. {
  195. int err;
  196. size_t written;
  197. loff_t addr;
  198. dbg_io("write %d bytes to PEB %d:%d", len, pnum, offset);
  199. ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
  200. ubi_assert(offset >= 0 && offset + len <= ubi->peb_size);
  201. ubi_assert(offset % ubi->hdrs_min_io_size == 0);
  202. ubi_assert(len > 0 && len % ubi->hdrs_min_io_size == 0);
  203. if (ubi->ro_mode) {
  204. ubi_err("read-only mode");
  205. return -EROFS;
  206. }
  207. /* The below has to be compiled out if paranoid checks are disabled */
  208. err = paranoid_check_not_bad(ubi, pnum);
  209. if (err)
  210. return err > 0 ? -EINVAL : err;
  211. /* The area we are writing to has to contain all 0xFF bytes */
  212. err = paranoid_check_all_ff(ubi, pnum, offset, len);
  213. if (err)
  214. return err > 0 ? -EINVAL : err;
  215. if (offset >= ubi->leb_start) {
  216. /*
  217. * We write to the data area of the physical eraseblock. Make
  218. * sure it has valid EC and VID headers.
  219. */
  220. err = paranoid_check_peb_ec_hdr(ubi, pnum);
  221. if (err)
  222. return err > 0 ? -EINVAL : err;
  223. err = paranoid_check_peb_vid_hdr(ubi, pnum);
  224. if (err)
  225. return err > 0 ? -EINVAL : err;
  226. }
  227. if (ubi_dbg_is_write_failure()) {
  228. dbg_err("cannot write %d bytes to PEB %d:%d "
  229. "(emulated)", len, pnum, offset);
  230. ubi_dbg_dump_stack();
  231. return -EIO;
  232. }
  233. addr = (loff_t)pnum * ubi->peb_size + offset;
  234. err = ubi->mtd->write(ubi->mtd, addr, len, &written, buf);
  235. if (err) {
  236. ubi_err("error %d while writing %d bytes to PEB %d:%d, written"
  237. " %zd bytes", err, len, pnum, offset, written);
  238. ubi_dbg_dump_stack();
  239. } else
  240. ubi_assert(written == len);
  241. return err;
  242. }
  243. /**
  244. * erase_callback - MTD erasure call-back.
  245. * @ei: MTD erase information object.
  246. *
  247. * Note, even though MTD erase interface is asynchronous, all the current
  248. * implementations are synchronous anyway.
  249. */
  250. static void erase_callback(struct erase_info *ei)
  251. {
  252. wake_up_interruptible((wait_queue_head_t *)ei->priv);
  253. }
  254. /**
  255. * do_sync_erase - synchronously erase a physical eraseblock.
  256. * @ubi: UBI device description object
  257. * @pnum: the physical eraseblock number to erase
  258. *
  259. * This function synchronously erases physical eraseblock @pnum and returns
  260. * zero in case of success and a negative error code in case of failure. If
  261. * %-EIO is returned, the physical eraseblock most probably went bad.
  262. */
  263. static int do_sync_erase(const struct ubi_device *ubi, int pnum)
  264. {
  265. int err, retries = 0;
  266. struct erase_info ei;
  267. wait_queue_head_t wq;
  268. dbg_io("erase PEB %d", pnum);
  269. retry:
  270. init_waitqueue_head(&wq);
  271. memset(&ei, 0, sizeof(struct erase_info));
  272. ei.mtd = ubi->mtd;
  273. ei.addr = (loff_t)pnum * ubi->peb_size;
  274. ei.len = ubi->peb_size;
  275. ei.callback = erase_callback;
  276. ei.priv = (unsigned long)&wq;
  277. err = ubi->mtd->erase(ubi->mtd, &ei);
  278. if (err) {
  279. if (retries++ < UBI_IO_RETRIES) {
  280. dbg_io("error %d while erasing PEB %d, retry",
  281. err, pnum);
  282. yield();
  283. goto retry;
  284. }
  285. ubi_err("cannot erase PEB %d, error %d", pnum, err);
  286. ubi_dbg_dump_stack();
  287. return err;
  288. }
  289. err = wait_event_interruptible(wq, ei.state == MTD_ERASE_DONE ||
  290. ei.state == MTD_ERASE_FAILED);
  291. if (err) {
  292. ubi_err("interrupted PEB %d erasure", pnum);
  293. return -EINTR;
  294. }
  295. if (ei.state == MTD_ERASE_FAILED) {
  296. if (retries++ < UBI_IO_RETRIES) {
  297. dbg_io("error while erasing PEB %d, retry", pnum);
  298. yield();
  299. goto retry;
  300. }
  301. ubi_err("cannot erase PEB %d", pnum);
  302. ubi_dbg_dump_stack();
  303. return -EIO;
  304. }
  305. err = paranoid_check_all_ff(ubi, pnum, 0, ubi->peb_size);
  306. if (err)
  307. return err > 0 ? -EINVAL : err;
  308. if (ubi_dbg_is_erase_failure() && !err) {
  309. dbg_err("cannot erase PEB %d (emulated)", pnum);
  310. return -EIO;
  311. }
  312. return 0;
  313. }
  314. /**
  315. * check_pattern - check if buffer contains only a certain byte pattern.
  316. * @buf: buffer to check
  317. * @patt: the pattern to check
  318. * @size: buffer size in bytes
  319. *
  320. * This function returns %1 in there are only @patt bytes in @buf, and %0 if
  321. * something else was also found.
  322. */
  323. static int check_pattern(const void *buf, uint8_t patt, int size)
  324. {
  325. int i;
  326. for (i = 0; i < size; i++)
  327. if (((const uint8_t *)buf)[i] != patt)
  328. return 0;
  329. return 1;
  330. }
  331. /* Patterns to write to a physical eraseblock when torturing it */
  332. static uint8_t patterns[] = {0xa5, 0x5a, 0x0};
  333. /**
  334. * torture_peb - test a supposedly bad physical eraseblock.
  335. * @ubi: UBI device description object
  336. * @pnum: the physical eraseblock number to test
  337. *
  338. * This function returns %-EIO if the physical eraseblock did not pass the
  339. * test, a positive number of erase operations done if the test was
  340. * successfully passed, and other negative error codes in case of other errors.
  341. */
  342. static int torture_peb(const struct ubi_device *ubi, int pnum)
  343. {
  344. void *buf;
  345. int err, i, patt_count;
  346. buf = vmalloc(ubi->peb_size);
  347. if (!buf)
  348. return -ENOMEM;
  349. patt_count = ARRAY_SIZE(patterns);
  350. ubi_assert(patt_count > 0);
  351. for (i = 0; i < patt_count; i++) {
  352. err = do_sync_erase(ubi, pnum);
  353. if (err)
  354. goto out;
  355. /* Make sure the PEB contains only 0xFF bytes */
  356. err = ubi_io_read(ubi, buf, pnum, 0, ubi->peb_size);
  357. if (err)
  358. goto out;
  359. err = check_pattern(buf, 0xFF, ubi->peb_size);
  360. if (err == 0) {
  361. ubi_err("erased PEB %d, but a non-0xFF byte found",
  362. pnum);
  363. err = -EIO;
  364. goto out;
  365. }
  366. /* Write a pattern and check it */
  367. memset(buf, patterns[i], ubi->peb_size);
  368. err = ubi_io_write(ubi, buf, pnum, 0, ubi->peb_size);
  369. if (err)
  370. goto out;
  371. memset(buf, ~patterns[i], ubi->peb_size);
  372. err = ubi_io_read(ubi, buf, pnum, 0, ubi->peb_size);
  373. if (err)
  374. goto out;
  375. err = check_pattern(buf, patterns[i], ubi->peb_size);
  376. if (err == 0) {
  377. ubi_err("pattern %x checking failed for PEB %d",
  378. patterns[i], pnum);
  379. err = -EIO;
  380. goto out;
  381. }
  382. }
  383. err = patt_count;
  384. out:
  385. if (err == UBI_IO_BITFLIPS || err == -EBADMSG) {
  386. /*
  387. * If a bit-flip or data integrity error was detected, the test
  388. * has not passed because it happened on a freshly erased
  389. * physical eraseblock which means something is wrong with it.
  390. */
  391. ubi_err("read problems on freshly erased PEB %d, must be bad",
  392. pnum);
  393. err = -EIO;
  394. }
  395. vfree(buf);
  396. return err;
  397. }
  398. /**
  399. * ubi_io_sync_erase - synchronously erase a physical eraseblock.
  400. * @ubi: UBI device description object
  401. * @pnum: physical eraseblock number to erase
  402. * @torture: if this physical eraseblock has to be tortured
  403. *
  404. * This function synchronously erases physical eraseblock @pnum. If @torture
  405. * flag is not zero, the physical eraseblock is checked by means of writing
  406. * different patterns to it and reading them back. If the torturing is enabled,
  407. * the physical eraseblock is erased more then once.
  408. *
  409. * This function returns the number of erasures made in case of success, %-EIO
  410. * if the erasure failed or the torturing test failed, and other negative error
  411. * codes in case of other errors. Note, %-EIO means that the physical
  412. * eraseblock is bad.
  413. */
  414. int ubi_io_sync_erase(const struct ubi_device *ubi, int pnum, int torture)
  415. {
  416. int err, ret = 0;
  417. ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
  418. err = paranoid_check_not_bad(ubi, pnum);
  419. if (err != 0)
  420. return err > 0 ? -EINVAL : err;
  421. if (ubi->ro_mode) {
  422. ubi_err("read-only mode");
  423. return -EROFS;
  424. }
  425. if (torture) {
  426. ret = torture_peb(ubi, pnum);
  427. if (ret < 0)
  428. return ret;
  429. }
  430. err = do_sync_erase(ubi, pnum);
  431. if (err)
  432. return err;
  433. return ret + 1;
  434. }
  435. /**
  436. * ubi_io_is_bad - check if a physical eraseblock is bad.
  437. * @ubi: UBI device description object
  438. * @pnum: the physical eraseblock number to check
  439. *
  440. * This function returns a positive number if the physical eraseblock is bad,
  441. * zero if not, and a negative error code if an error occurred.
  442. */
  443. int ubi_io_is_bad(const struct ubi_device *ubi, int pnum)
  444. {
  445. struct mtd_info *mtd = ubi->mtd;
  446. ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
  447. if (ubi->bad_allowed) {
  448. int ret;
  449. ret = mtd->block_isbad(mtd, (loff_t)pnum * ubi->peb_size);
  450. if (ret < 0)
  451. ubi_err("error %d while checking if PEB %d is bad",
  452. ret, pnum);
  453. else if (ret)
  454. dbg_io("PEB %d is bad", pnum);
  455. return ret;
  456. }
  457. return 0;
  458. }
  459. /**
  460. * ubi_io_mark_bad - mark a physical eraseblock as bad.
  461. * @ubi: UBI device description object
  462. * @pnum: the physical eraseblock number to mark
  463. *
  464. * This function returns zero in case of success and a negative error code in
  465. * case of failure.
  466. */
  467. int ubi_io_mark_bad(const struct ubi_device *ubi, int pnum)
  468. {
  469. int err;
  470. struct mtd_info *mtd = ubi->mtd;
  471. ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
  472. if (ubi->ro_mode) {
  473. ubi_err("read-only mode");
  474. return -EROFS;
  475. }
  476. if (!ubi->bad_allowed)
  477. return 0;
  478. err = mtd->block_markbad(mtd, (loff_t)pnum * ubi->peb_size);
  479. if (err)
  480. ubi_err("cannot mark PEB %d bad, error %d", pnum, err);
  481. return err;
  482. }
  483. /**
  484. * validate_ec_hdr - validate an erase counter header.
  485. * @ubi: UBI device description object
  486. * @ec_hdr: the erase counter header to check
  487. *
  488. * This function returns zero if the erase counter header is OK, and %1 if
  489. * not.
  490. */
  491. static int validate_ec_hdr(const struct ubi_device *ubi,
  492. const struct ubi_ec_hdr *ec_hdr)
  493. {
  494. long long ec;
  495. int vid_hdr_offset, leb_start;
  496. ec = be64_to_cpu(ec_hdr->ec);
  497. vid_hdr_offset = be32_to_cpu(ec_hdr->vid_hdr_offset);
  498. leb_start = be32_to_cpu(ec_hdr->data_offset);
  499. if (ec_hdr->version != UBI_VERSION) {
  500. ubi_err("node with incompatible UBI version found: "
  501. "this UBI version is %d, image version is %d",
  502. UBI_VERSION, (int)ec_hdr->version);
  503. goto bad;
  504. }
  505. if (vid_hdr_offset != ubi->vid_hdr_offset) {
  506. ubi_err("bad VID header offset %d, expected %d",
  507. vid_hdr_offset, ubi->vid_hdr_offset);
  508. goto bad;
  509. }
  510. if (leb_start != ubi->leb_start) {
  511. ubi_err("bad data offset %d, expected %d",
  512. leb_start, ubi->leb_start);
  513. goto bad;
  514. }
  515. if (ec < 0 || ec > UBI_MAX_ERASECOUNTER) {
  516. ubi_err("bad erase counter %lld", ec);
  517. goto bad;
  518. }
  519. return 0;
  520. bad:
  521. ubi_err("bad EC header");
  522. ubi_dbg_dump_ec_hdr(ec_hdr);
  523. ubi_dbg_dump_stack();
  524. return 1;
  525. }
  526. /**
  527. * ubi_io_read_ec_hdr - read and check an erase counter header.
  528. * @ubi: UBI device description object
  529. * @pnum: physical eraseblock to read from
  530. * @ec_hdr: a &struct ubi_ec_hdr object where to store the read erase counter
  531. * header
  532. * @verbose: be verbose if the header is corrupted or was not found
  533. *
  534. * This function reads erase counter header from physical eraseblock @pnum and
  535. * stores it in @ec_hdr. This function also checks CRC checksum of the read
  536. * erase counter header. The following codes may be returned:
  537. *
  538. * o %0 if the CRC checksum is correct and the header was successfully read;
  539. * o %UBI_IO_BITFLIPS if the CRC is correct, but bit-flips were detected
  540. * and corrected by the flash driver; this is harmless but may indicate that
  541. * this eraseblock may become bad soon (but may be not);
  542. * o %UBI_IO_BAD_EC_HDR if the erase counter header is corrupted (a CRC error);
  543. * o %UBI_IO_PEB_EMPTY if the physical eraseblock is empty;
  544. * o a negative error code in case of failure.
  545. */
  546. int ubi_io_read_ec_hdr(const struct ubi_device *ubi, int pnum,
  547. struct ubi_ec_hdr *ec_hdr, int verbose)
  548. {
  549. int err, read_err = 0;
  550. uint32_t crc, magic, hdr_crc;
  551. dbg_io("read EC header from PEB %d", pnum);
  552. ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
  553. err = ubi_io_read(ubi, ec_hdr, pnum, 0, UBI_EC_HDR_SIZE);
  554. if (err) {
  555. if (err != UBI_IO_BITFLIPS && err != -EBADMSG)
  556. return err;
  557. /*
  558. * We read all the data, but either a correctable bit-flip
  559. * occurred, or MTD reported about some data integrity error,
  560. * like an ECC error in case of NAND. The former is harmless,
  561. * the later may mean that the read data is corrupted. But we
  562. * have a CRC check-sum and we will detect this. If the EC
  563. * header is still OK, we just report this as there was a
  564. * bit-flip.
  565. */
  566. read_err = err;
  567. }
  568. magic = be32_to_cpu(ec_hdr->magic);
  569. if (magic != UBI_EC_HDR_MAGIC) {
  570. /*
  571. * The magic field is wrong. Let's check if we have read all
  572. * 0xFF. If yes, this physical eraseblock is assumed to be
  573. * empty.
  574. *
  575. * But if there was a read error, we do not test it for all
  576. * 0xFFs. Even if it does contain all 0xFFs, this error
  577. * indicates that something is still wrong with this physical
  578. * eraseblock and we anyway cannot treat it as empty.
  579. */
  580. if (read_err != -EBADMSG &&
  581. check_pattern(ec_hdr, 0xFF, UBI_EC_HDR_SIZE)) {
  582. /* The physical eraseblock is supposedly empty */
  583. /*
  584. * The below is just a paranoid check, it has to be
  585. * compiled out if paranoid checks are disabled.
  586. */
  587. err = paranoid_check_all_ff(ubi, pnum, 0,
  588. ubi->peb_size);
  589. if (err)
  590. return err > 0 ? UBI_IO_BAD_EC_HDR : err;
  591. if (verbose)
  592. ubi_warn("no EC header found at PEB %d, "
  593. "only 0xFF bytes", pnum);
  594. return UBI_IO_PEB_EMPTY;
  595. }
  596. /*
  597. * This is not a valid erase counter header, and these are not
  598. * 0xFF bytes. Report that the header is corrupted.
  599. */
  600. if (verbose) {
  601. ubi_warn("bad magic number at PEB %d: %08x instead of "
  602. "%08x", pnum, magic, UBI_EC_HDR_MAGIC);
  603. ubi_dbg_dump_ec_hdr(ec_hdr);
  604. }
  605. return UBI_IO_BAD_EC_HDR;
  606. }
  607. crc = crc32(UBI_CRC32_INIT, ec_hdr, UBI_EC_HDR_SIZE_CRC);
  608. hdr_crc = be32_to_cpu(ec_hdr->hdr_crc);
  609. if (hdr_crc != crc) {
  610. if (verbose) {
  611. ubi_warn("bad EC header CRC at PEB %d, calculated %#08x,"
  612. " read %#08x", pnum, crc, hdr_crc);
  613. ubi_dbg_dump_ec_hdr(ec_hdr);
  614. }
  615. return UBI_IO_BAD_EC_HDR;
  616. }
  617. /* And of course validate what has just been read from the media */
  618. err = validate_ec_hdr(ubi, ec_hdr);
  619. if (err) {
  620. ubi_err("validation failed for PEB %d", pnum);
  621. return -EINVAL;
  622. }
  623. return read_err ? UBI_IO_BITFLIPS : 0;
  624. }
  625. /**
  626. * ubi_io_write_ec_hdr - write an erase counter header.
  627. * @ubi: UBI device description object
  628. * @pnum: physical eraseblock to write to
  629. * @ec_hdr: the erase counter header to write
  630. *
  631. * This function writes erase counter header described by @ec_hdr to physical
  632. * eraseblock @pnum. It also fills most fields of @ec_hdr before writing, so
  633. * the caller do not have to fill them. Callers must only fill the @ec_hdr->ec
  634. * field.
  635. *
  636. * This function returns zero in case of success and a negative error code in
  637. * case of failure. If %-EIO is returned, the physical eraseblock most probably
  638. * went bad.
  639. */
  640. int ubi_io_write_ec_hdr(const struct ubi_device *ubi, int pnum,
  641. struct ubi_ec_hdr *ec_hdr)
  642. {
  643. int err;
  644. uint32_t crc;
  645. dbg_io("write EC header to PEB %d", pnum);
  646. ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
  647. ec_hdr->magic = cpu_to_be32(UBI_EC_HDR_MAGIC);
  648. ec_hdr->version = UBI_VERSION;
  649. ec_hdr->vid_hdr_offset = cpu_to_be32(ubi->vid_hdr_offset);
  650. ec_hdr->data_offset = cpu_to_be32(ubi->leb_start);
  651. crc = crc32(UBI_CRC32_INIT, ec_hdr, UBI_EC_HDR_SIZE_CRC);
  652. ec_hdr->hdr_crc = cpu_to_be32(crc);
  653. err = paranoid_check_ec_hdr(ubi, pnum, ec_hdr);
  654. if (err)
  655. return -EINVAL;
  656. err = ubi_io_write(ubi, ec_hdr, pnum, 0, ubi->ec_hdr_alsize);
  657. return err;
  658. }
  659. /**
  660. * validate_vid_hdr - validate a volume identifier header.
  661. * @ubi: UBI device description object
  662. * @vid_hdr: the volume identifier header to check
  663. *
  664. * This function checks that data stored in the volume identifier header
  665. * @vid_hdr. Returns zero if the VID header is OK and %1 if not.
  666. */
  667. static int validate_vid_hdr(const struct ubi_device *ubi,
  668. const struct ubi_vid_hdr *vid_hdr)
  669. {
  670. int vol_type = vid_hdr->vol_type;
  671. int copy_flag = vid_hdr->copy_flag;
  672. int vol_id = be32_to_cpu(vid_hdr->vol_id);
  673. int lnum = be32_to_cpu(vid_hdr->lnum);
  674. int compat = vid_hdr->compat;
  675. int data_size = be32_to_cpu(vid_hdr->data_size);
  676. int used_ebs = be32_to_cpu(vid_hdr->used_ebs);
  677. int data_pad = be32_to_cpu(vid_hdr->data_pad);
  678. int data_crc = be32_to_cpu(vid_hdr->data_crc);
  679. int usable_leb_size = ubi->leb_size - data_pad;
  680. if (copy_flag != 0 && copy_flag != 1) {
  681. dbg_err("bad copy_flag");
  682. goto bad;
  683. }
  684. if (vol_id < 0 || lnum < 0 || data_size < 0 || used_ebs < 0 ||
  685. data_pad < 0) {
  686. dbg_err("negative values");
  687. goto bad;
  688. }
  689. if (vol_id >= UBI_MAX_VOLUMES && vol_id < UBI_INTERNAL_VOL_START) {
  690. dbg_err("bad vol_id");
  691. goto bad;
  692. }
  693. if (vol_id < UBI_INTERNAL_VOL_START && compat != 0) {
  694. dbg_err("bad compat");
  695. goto bad;
  696. }
  697. if (vol_id >= UBI_INTERNAL_VOL_START && compat != UBI_COMPAT_DELETE &&
  698. compat != UBI_COMPAT_RO && compat != UBI_COMPAT_PRESERVE &&
  699. compat != UBI_COMPAT_REJECT) {
  700. dbg_err("bad compat");
  701. goto bad;
  702. }
  703. if (vol_type != UBI_VID_DYNAMIC && vol_type != UBI_VID_STATIC) {
  704. dbg_err("bad vol_type");
  705. goto bad;
  706. }
  707. if (data_pad >= ubi->leb_size / 2) {
  708. dbg_err("bad data_pad");
  709. goto bad;
  710. }
  711. if (vol_type == UBI_VID_STATIC) {
  712. /*
  713. * Although from high-level point of view static volumes may
  714. * contain zero bytes of data, but no VID headers can contain
  715. * zero at these fields, because they empty volumes do not have
  716. * mapped logical eraseblocks.
  717. */
  718. if (used_ebs == 0) {
  719. dbg_err("zero used_ebs");
  720. goto bad;
  721. }
  722. if (data_size == 0) {
  723. dbg_err("zero data_size");
  724. goto bad;
  725. }
  726. if (lnum < used_ebs - 1) {
  727. if (data_size != usable_leb_size) {
  728. dbg_err("bad data_size");
  729. goto bad;
  730. }
  731. } else if (lnum == used_ebs - 1) {
  732. if (data_size == 0) {
  733. dbg_err("bad data_size at last LEB");
  734. goto bad;
  735. }
  736. } else {
  737. dbg_err("too high lnum");
  738. goto bad;
  739. }
  740. } else {
  741. if (copy_flag == 0) {
  742. if (data_crc != 0) {
  743. dbg_err("non-zero data CRC");
  744. goto bad;
  745. }
  746. if (data_size != 0) {
  747. dbg_err("non-zero data_size");
  748. goto bad;
  749. }
  750. } else {
  751. if (data_size == 0) {
  752. dbg_err("zero data_size of copy");
  753. goto bad;
  754. }
  755. }
  756. if (used_ebs != 0) {
  757. dbg_err("bad used_ebs");
  758. goto bad;
  759. }
  760. }
  761. return 0;
  762. bad:
  763. ubi_err("bad VID header");
  764. ubi_dbg_dump_vid_hdr(vid_hdr);
  765. ubi_dbg_dump_stack();
  766. return 1;
  767. }
  768. /**
  769. * ubi_io_read_vid_hdr - read and check a volume identifier header.
  770. * @ubi: UBI device description object
  771. * @pnum: physical eraseblock number to read from
  772. * @vid_hdr: &struct ubi_vid_hdr object where to store the read volume
  773. * identifier header
  774. * @verbose: be verbose if the header is corrupted or wasn't found
  775. *
  776. * This function reads the volume identifier header from physical eraseblock
  777. * @pnum and stores it in @vid_hdr. It also checks CRC checksum of the read
  778. * volume identifier header. The following codes may be returned:
  779. *
  780. * o %0 if the CRC checksum is correct and the header was successfully read;
  781. * o %UBI_IO_BITFLIPS if the CRC is correct, but bit-flips were detected
  782. * and corrected by the flash driver; this is harmless but may indicate that
  783. * this eraseblock may become bad soon;
  784. * o %UBI_IO_BAD_VID_HRD if the volume identifier header is corrupted (a CRC
  785. * error detected);
  786. * o %UBI_IO_PEB_FREE if the physical eraseblock is free (i.e., there is no VID
  787. * header there);
  788. * o a negative error code in case of failure.
  789. */
  790. int ubi_io_read_vid_hdr(const struct ubi_device *ubi, int pnum,
  791. struct ubi_vid_hdr *vid_hdr, int verbose)
  792. {
  793. int err, read_err = 0;
  794. uint32_t crc, magic, hdr_crc;
  795. void *p;
  796. dbg_io("read VID header from PEB %d", pnum);
  797. ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
  798. p = (char *)vid_hdr - ubi->vid_hdr_shift;
  799. err = ubi_io_read(ubi, p, pnum, ubi->vid_hdr_aloffset,
  800. ubi->vid_hdr_alsize);
  801. if (err) {
  802. if (err != UBI_IO_BITFLIPS && err != -EBADMSG)
  803. return err;
  804. /*
  805. * We read all the data, but either a correctable bit-flip
  806. * occurred, or MTD reported about some data integrity error,
  807. * like an ECC error in case of NAND. The former is harmless,
  808. * the later may mean the read data is corrupted. But we have a
  809. * CRC check-sum and we will identify this. If the VID header is
  810. * still OK, we just report this as there was a bit-flip.
  811. */
  812. read_err = err;
  813. }
  814. magic = be32_to_cpu(vid_hdr->magic);
  815. if (magic != UBI_VID_HDR_MAGIC) {
  816. /*
  817. * If we have read all 0xFF bytes, the VID header probably does
  818. * not exist and the physical eraseblock is assumed to be free.
  819. *
  820. * But if there was a read error, we do not test the data for
  821. * 0xFFs. Even if it does contain all 0xFFs, this error
  822. * indicates that something is still wrong with this physical
  823. * eraseblock and it cannot be regarded as free.
  824. */
  825. if (read_err != -EBADMSG &&
  826. check_pattern(vid_hdr, 0xFF, UBI_VID_HDR_SIZE)) {
  827. /* The physical eraseblock is supposedly free */
  828. /*
  829. * The below is just a paranoid check, it has to be
  830. * compiled out if paranoid checks are disabled.
  831. */
  832. err = paranoid_check_all_ff(ubi, pnum, ubi->leb_start,
  833. ubi->leb_size);
  834. if (err)
  835. return err > 0 ? UBI_IO_BAD_VID_HDR : err;
  836. if (verbose)
  837. ubi_warn("no VID header found at PEB %d, "
  838. "only 0xFF bytes", pnum);
  839. return UBI_IO_PEB_FREE;
  840. }
  841. /*
  842. * This is not a valid VID header, and these are not 0xFF
  843. * bytes. Report that the header is corrupted.
  844. */
  845. if (verbose) {
  846. ubi_warn("bad magic number at PEB %d: %08x instead of "
  847. "%08x", pnum, magic, UBI_VID_HDR_MAGIC);
  848. ubi_dbg_dump_vid_hdr(vid_hdr);
  849. }
  850. return UBI_IO_BAD_VID_HDR;
  851. }
  852. crc = crc32(UBI_CRC32_INIT, vid_hdr, UBI_VID_HDR_SIZE_CRC);
  853. hdr_crc = be32_to_cpu(vid_hdr->hdr_crc);
  854. if (hdr_crc != crc) {
  855. if (verbose) {
  856. ubi_warn("bad CRC at PEB %d, calculated %#08x, "
  857. "read %#08x", pnum, crc, hdr_crc);
  858. ubi_dbg_dump_vid_hdr(vid_hdr);
  859. }
  860. return UBI_IO_BAD_VID_HDR;
  861. }
  862. /* Validate the VID header that we have just read */
  863. err = validate_vid_hdr(ubi, vid_hdr);
  864. if (err) {
  865. ubi_err("validation failed for PEB %d", pnum);
  866. return -EINVAL;
  867. }
  868. return read_err ? UBI_IO_BITFLIPS : 0;
  869. }
  870. /**
  871. * ubi_io_write_vid_hdr - write a volume identifier header.
  872. * @ubi: UBI device description object
  873. * @pnum: the physical eraseblock number to write to
  874. * @vid_hdr: the volume identifier header to write
  875. *
  876. * This function writes the volume identifier header described by @vid_hdr to
  877. * physical eraseblock @pnum. This function automatically fills the
  878. * @vid_hdr->magic and the @vid_hdr->version fields, as well as calculates
  879. * header CRC checksum and stores it at vid_hdr->hdr_crc.
  880. *
  881. * This function returns zero in case of success and a negative error code in
  882. * case of failure. If %-EIO is returned, the physical eraseblock probably went
  883. * bad.
  884. */
  885. int ubi_io_write_vid_hdr(const struct ubi_device *ubi, int pnum,
  886. struct ubi_vid_hdr *vid_hdr)
  887. {
  888. int err;
  889. uint32_t crc;
  890. void *p;
  891. dbg_io("write VID header to PEB %d", pnum);
  892. ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
  893. err = paranoid_check_peb_ec_hdr(ubi, pnum);
  894. if (err)
  895. return err > 0 ? -EINVAL: err;
  896. vid_hdr->magic = cpu_to_be32(UBI_VID_HDR_MAGIC);
  897. vid_hdr->version = UBI_VERSION;
  898. crc = crc32(UBI_CRC32_INIT, vid_hdr, UBI_VID_HDR_SIZE_CRC);
  899. vid_hdr->hdr_crc = cpu_to_be32(crc);
  900. err = paranoid_check_vid_hdr(ubi, pnum, vid_hdr);
  901. if (err)
  902. return -EINVAL;
  903. p = (char *)vid_hdr - ubi->vid_hdr_shift;
  904. err = ubi_io_write(ubi, p, pnum, ubi->vid_hdr_aloffset,
  905. ubi->vid_hdr_alsize);
  906. return err;
  907. }
  908. #ifdef CONFIG_MTD_UBI_DEBUG_PARANOID
  909. /**
  910. * paranoid_check_not_bad - ensure that a physical eraseblock is not bad.
  911. * @ubi: UBI device description object
  912. * @pnum: physical eraseblock number to check
  913. *
  914. * This function returns zero if the physical eraseblock is good, a positive
  915. * number if it is bad and a negative error code if an error occurred.
  916. */
  917. static int paranoid_check_not_bad(const struct ubi_device *ubi, int pnum)
  918. {
  919. int err;
  920. err = ubi_io_is_bad(ubi, pnum);
  921. if (!err)
  922. return err;
  923. ubi_err("paranoid check failed for PEB %d", pnum);
  924. ubi_dbg_dump_stack();
  925. return err;
  926. }
  927. /**
  928. * paranoid_check_ec_hdr - check if an erase counter header is all right.
  929. * @ubi: UBI device description object
  930. * @pnum: physical eraseblock number the erase counter header belongs to
  931. * @ec_hdr: the erase counter header to check
  932. *
  933. * This function returns zero if the erase counter header contains valid
  934. * values, and %1 if not.
  935. */
  936. static int paranoid_check_ec_hdr(const struct ubi_device *ubi, int pnum,
  937. const struct ubi_ec_hdr *ec_hdr)
  938. {
  939. int err;
  940. uint32_t magic;
  941. magic = be32_to_cpu(ec_hdr->magic);
  942. if (magic != UBI_EC_HDR_MAGIC) {
  943. ubi_err("bad magic %#08x, must be %#08x",
  944. magic, UBI_EC_HDR_MAGIC);
  945. goto fail;
  946. }
  947. err = validate_ec_hdr(ubi, ec_hdr);
  948. if (err) {
  949. ubi_err("paranoid check failed for PEB %d", pnum);
  950. goto fail;
  951. }
  952. return 0;
  953. fail:
  954. ubi_dbg_dump_ec_hdr(ec_hdr);
  955. ubi_dbg_dump_stack();
  956. return 1;
  957. }
  958. /**
  959. * paranoid_check_peb_ec_hdr - check that the erase counter header of a
  960. * physical eraseblock is in-place and is all right.
  961. * @ubi: UBI device description object
  962. * @pnum: the physical eraseblock number to check
  963. *
  964. * This function returns zero if the erase counter header is all right, %1 if
  965. * not, and a negative error code if an error occurred.
  966. */
  967. static int paranoid_check_peb_ec_hdr(const struct ubi_device *ubi, int pnum)
  968. {
  969. int err;
  970. uint32_t crc, hdr_crc;
  971. struct ubi_ec_hdr *ec_hdr;
  972. ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_KERNEL);
  973. if (!ec_hdr)
  974. return -ENOMEM;
  975. err = ubi_io_read(ubi, ec_hdr, pnum, 0, UBI_EC_HDR_SIZE);
  976. if (err && err != UBI_IO_BITFLIPS && err != -EBADMSG)
  977. goto exit;
  978. crc = crc32(UBI_CRC32_INIT, ec_hdr, UBI_EC_HDR_SIZE_CRC);
  979. hdr_crc = be32_to_cpu(ec_hdr->hdr_crc);
  980. if (hdr_crc != crc) {
  981. ubi_err("bad CRC, calculated %#08x, read %#08x", crc, hdr_crc);
  982. ubi_err("paranoid check failed for PEB %d", pnum);
  983. ubi_dbg_dump_ec_hdr(ec_hdr);
  984. ubi_dbg_dump_stack();
  985. err = 1;
  986. goto exit;
  987. }
  988. err = paranoid_check_ec_hdr(ubi, pnum, ec_hdr);
  989. exit:
  990. kfree(ec_hdr);
  991. return err;
  992. }
  993. /**
  994. * paranoid_check_vid_hdr - check that a volume identifier header is all right.
  995. * @ubi: UBI device description object
  996. * @pnum: physical eraseblock number the volume identifier header belongs to
  997. * @vid_hdr: the volume identifier header to check
  998. *
  999. * This function returns zero if the volume identifier header is all right, and
  1000. * %1 if not.
  1001. */
  1002. static int paranoid_check_vid_hdr(const struct ubi_device *ubi, int pnum,
  1003. const struct ubi_vid_hdr *vid_hdr)
  1004. {
  1005. int err;
  1006. uint32_t magic;
  1007. magic = be32_to_cpu(vid_hdr->magic);
  1008. if (magic != UBI_VID_HDR_MAGIC) {
  1009. ubi_err("bad VID header magic %#08x at PEB %d, must be %#08x",
  1010. magic, pnum, UBI_VID_HDR_MAGIC);
  1011. goto fail;
  1012. }
  1013. err = validate_vid_hdr(ubi, vid_hdr);
  1014. if (err) {
  1015. ubi_err("paranoid check failed for PEB %d", pnum);
  1016. goto fail;
  1017. }
  1018. return err;
  1019. fail:
  1020. ubi_err("paranoid check failed for PEB %d", pnum);
  1021. ubi_dbg_dump_vid_hdr(vid_hdr);
  1022. ubi_dbg_dump_stack();
  1023. return 1;
  1024. }
  1025. /**
  1026. * paranoid_check_peb_vid_hdr - check that the volume identifier header of a
  1027. * physical eraseblock is in-place and is all right.
  1028. * @ubi: UBI device description object
  1029. * @pnum: the physical eraseblock number to check
  1030. *
  1031. * This function returns zero if the volume identifier header is all right,
  1032. * %1 if not, and a negative error code if an error occurred.
  1033. */
  1034. static int paranoid_check_peb_vid_hdr(const struct ubi_device *ubi, int pnum)
  1035. {
  1036. int err;
  1037. uint32_t crc, hdr_crc;
  1038. struct ubi_vid_hdr *vid_hdr;
  1039. void *p;
  1040. vid_hdr = ubi_zalloc_vid_hdr(ubi);
  1041. if (!vid_hdr)
  1042. return -ENOMEM;
  1043. p = (char *)vid_hdr - ubi->vid_hdr_shift;
  1044. err = ubi_io_read(ubi, p, pnum, ubi->vid_hdr_aloffset,
  1045. ubi->vid_hdr_alsize);
  1046. if (err && err != UBI_IO_BITFLIPS && err != -EBADMSG)
  1047. goto exit;
  1048. crc = crc32(UBI_CRC32_INIT, vid_hdr, UBI_EC_HDR_SIZE_CRC);
  1049. hdr_crc = be32_to_cpu(vid_hdr->hdr_crc);
  1050. if (hdr_crc != crc) {
  1051. ubi_err("bad VID header CRC at PEB %d, calculated %#08x, "
  1052. "read %#08x", pnum, crc, hdr_crc);
  1053. ubi_err("paranoid check failed for PEB %d", pnum);
  1054. ubi_dbg_dump_vid_hdr(vid_hdr);
  1055. ubi_dbg_dump_stack();
  1056. err = 1;
  1057. goto exit;
  1058. }
  1059. err = paranoid_check_vid_hdr(ubi, pnum, vid_hdr);
  1060. exit:
  1061. ubi_free_vid_hdr(ubi, vid_hdr);
  1062. return err;
  1063. }
  1064. /**
  1065. * paranoid_check_all_ff - check that a region of flash is empty.
  1066. * @ubi: UBI device description object
  1067. * @pnum: the physical eraseblock number to check
  1068. * @offset: the starting offset within the physical eraseblock to check
  1069. * @len: the length of the region to check
  1070. *
  1071. * This function returns zero if only 0xFF bytes are present at offset
  1072. * @offset of the physical eraseblock @pnum, %1 if not, and a negative error
  1073. * code if an error occurred.
  1074. */
  1075. static int paranoid_check_all_ff(const struct ubi_device *ubi, int pnum,
  1076. int offset, int len)
  1077. {
  1078. size_t read;
  1079. int err;
  1080. void *buf;
  1081. loff_t addr = (loff_t)pnum * ubi->peb_size + offset;
  1082. buf = vmalloc(len);
  1083. if (!buf)
  1084. return -ENOMEM;
  1085. memset(buf, 0, len);
  1086. err = ubi->mtd->read(ubi->mtd, addr, len, &read, buf);
  1087. if (err && err != -EUCLEAN) {
  1088. ubi_err("error %d while reading %d bytes from PEB %d:%d, "
  1089. "read %zd bytes", err, len, pnum, offset, read);
  1090. goto error;
  1091. }
  1092. err = check_pattern(buf, 0xFF, len);
  1093. if (err == 0) {
  1094. ubi_err("flash region at PEB %d:%d, length %d does not "
  1095. "contain all 0xFF bytes", pnum, offset, len);
  1096. goto fail;
  1097. }
  1098. vfree(buf);
  1099. return 0;
  1100. fail:
  1101. ubi_err("paranoid check failed for PEB %d", pnum);
  1102. dbg_msg("hex dump of the %d-%d region", offset, offset + len);
  1103. print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 4, buf, len, 1);
  1104. err = 1;
  1105. error:
  1106. ubi_dbg_dump_stack();
  1107. vfree(buf);
  1108. return err;
  1109. }
  1110. #endif /* CONFIG_MTD_UBI_DEBUG_PARANOID */