cpufreq_ondemand.c 23 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849
  1. /*
  2. * drivers/cpufreq/cpufreq_ondemand.c
  3. *
  4. * Copyright (C) 2001 Russell King
  5. * (C) 2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
  6. * Jun Nakajima <jun.nakajima@intel.com>
  7. *
  8. * This program is free software; you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License version 2 as
  10. * published by the Free Software Foundation.
  11. */
  12. #include <linux/kernel.h>
  13. #include <linux/module.h>
  14. #include <linux/init.h>
  15. #include <linux/cpufreq.h>
  16. #include <linux/cpu.h>
  17. #include <linux/jiffies.h>
  18. #include <linux/kernel_stat.h>
  19. #include <linux/mutex.h>
  20. #include <linux/hrtimer.h>
  21. #include <linux/tick.h>
  22. #include <linux/ktime.h>
  23. #include <linux/sched.h>
  24. /*
  25. * dbs is used in this file as a shortform for demandbased switching
  26. * It helps to keep variable names smaller, simpler
  27. */
  28. #define DEF_FREQUENCY_DOWN_DIFFERENTIAL (10)
  29. #define DEF_FREQUENCY_UP_THRESHOLD (80)
  30. #define DEF_SAMPLING_DOWN_FACTOR (1)
  31. #define MAX_SAMPLING_DOWN_FACTOR (100000)
  32. #define MICRO_FREQUENCY_DOWN_DIFFERENTIAL (3)
  33. #define MICRO_FREQUENCY_UP_THRESHOLD (95)
  34. #define MICRO_FREQUENCY_MIN_SAMPLE_RATE (10000)
  35. #define MIN_FREQUENCY_UP_THRESHOLD (11)
  36. #define MAX_FREQUENCY_UP_THRESHOLD (100)
  37. /*
  38. * The polling frequency of this governor depends on the capability of
  39. * the processor. Default polling frequency is 1000 times the transition
  40. * latency of the processor. The governor will work on any processor with
  41. * transition latency <= 10mS, using appropriate sampling
  42. * rate.
  43. * For CPUs with transition latency > 10mS (mostly drivers with CPUFREQ_ETERNAL)
  44. * this governor will not work.
  45. * All times here are in uS.
  46. */
  47. #define MIN_SAMPLING_RATE_RATIO (2)
  48. static unsigned int min_sampling_rate;
  49. #define LATENCY_MULTIPLIER (1000)
  50. #define MIN_LATENCY_MULTIPLIER (100)
  51. #define TRANSITION_LATENCY_LIMIT (10 * 1000 * 1000)
  52. static void do_dbs_timer(struct work_struct *work);
  53. static int cpufreq_governor_dbs(struct cpufreq_policy *policy,
  54. unsigned int event);
  55. #ifndef CONFIG_CPU_FREQ_DEFAULT_GOV_ONDEMAND
  56. static
  57. #endif
  58. struct cpufreq_governor cpufreq_gov_ondemand = {
  59. .name = "ondemand",
  60. .governor = cpufreq_governor_dbs,
  61. .max_transition_latency = TRANSITION_LATENCY_LIMIT,
  62. .owner = THIS_MODULE,
  63. };
  64. /* Sampling types */
  65. enum {DBS_NORMAL_SAMPLE, DBS_SUB_SAMPLE};
  66. struct cpu_dbs_info_s {
  67. cputime64_t prev_cpu_idle;
  68. cputime64_t prev_cpu_iowait;
  69. cputime64_t prev_cpu_wall;
  70. cputime64_t prev_cpu_nice;
  71. struct cpufreq_policy *cur_policy;
  72. struct delayed_work work;
  73. struct cpufreq_frequency_table *freq_table;
  74. unsigned int freq_lo;
  75. unsigned int freq_lo_jiffies;
  76. unsigned int freq_hi_jiffies;
  77. unsigned int rate_mult;
  78. int cpu;
  79. unsigned int sample_type:1;
  80. /*
  81. * percpu mutex that serializes governor limit change with
  82. * do_dbs_timer invocation. We do not want do_dbs_timer to run
  83. * when user is changing the governor or limits.
  84. */
  85. struct mutex timer_mutex;
  86. };
  87. static DEFINE_PER_CPU(struct cpu_dbs_info_s, od_cpu_dbs_info);
  88. static unsigned int dbs_enable; /* number of CPUs using this policy */
  89. /*
  90. * dbs_mutex protects data in dbs_tuners_ins from concurrent changes on
  91. * different CPUs. It protects dbs_enable in governor start/stop.
  92. */
  93. static DEFINE_MUTEX(dbs_mutex);
  94. static struct dbs_tuners {
  95. unsigned int sampling_rate;
  96. unsigned int up_threshold;
  97. unsigned int down_differential;
  98. unsigned int ignore_nice;
  99. unsigned int sampling_down_factor;
  100. unsigned int powersave_bias;
  101. unsigned int io_is_busy;
  102. } dbs_tuners_ins = {
  103. .up_threshold = DEF_FREQUENCY_UP_THRESHOLD,
  104. .sampling_down_factor = DEF_SAMPLING_DOWN_FACTOR,
  105. .down_differential = DEF_FREQUENCY_DOWN_DIFFERENTIAL,
  106. .ignore_nice = 0,
  107. .powersave_bias = 0,
  108. };
  109. static inline cputime64_t get_cpu_idle_time_jiffy(unsigned int cpu,
  110. cputime64_t *wall)
  111. {
  112. cputime64_t idle_time;
  113. cputime64_t cur_wall_time;
  114. cputime64_t busy_time;
  115. cur_wall_time = jiffies64_to_cputime64(get_jiffies_64());
  116. busy_time = cputime64_add(kstat_cpu(cpu).cpustat.user,
  117. kstat_cpu(cpu).cpustat.system);
  118. busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.irq);
  119. busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.softirq);
  120. busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.steal);
  121. busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.nice);
  122. idle_time = cputime64_sub(cur_wall_time, busy_time);
  123. if (wall)
  124. *wall = (cputime64_t)jiffies_to_usecs(cur_wall_time);
  125. return (cputime64_t)jiffies_to_usecs(idle_time);
  126. }
  127. static inline cputime64_t get_cpu_idle_time(unsigned int cpu, cputime64_t *wall)
  128. {
  129. u64 idle_time = get_cpu_idle_time_us(cpu, wall);
  130. if (idle_time == -1ULL)
  131. return get_cpu_idle_time_jiffy(cpu, wall);
  132. return idle_time;
  133. }
  134. static inline cputime64_t get_cpu_iowait_time(unsigned int cpu, cputime64_t *wall)
  135. {
  136. u64 iowait_time = get_cpu_iowait_time_us(cpu, wall);
  137. if (iowait_time == -1ULL)
  138. return 0;
  139. return iowait_time;
  140. }
  141. /*
  142. * Find right freq to be set now with powersave_bias on.
  143. * Returns the freq_hi to be used right now and will set freq_hi_jiffies,
  144. * freq_lo, and freq_lo_jiffies in percpu area for averaging freqs.
  145. */
  146. static unsigned int powersave_bias_target(struct cpufreq_policy *policy,
  147. unsigned int freq_next,
  148. unsigned int relation)
  149. {
  150. unsigned int freq_req, freq_reduc, freq_avg;
  151. unsigned int freq_hi, freq_lo;
  152. unsigned int index = 0;
  153. unsigned int jiffies_total, jiffies_hi, jiffies_lo;
  154. struct cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info,
  155. policy->cpu);
  156. if (!dbs_info->freq_table) {
  157. dbs_info->freq_lo = 0;
  158. dbs_info->freq_lo_jiffies = 0;
  159. return freq_next;
  160. }
  161. cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_next,
  162. relation, &index);
  163. freq_req = dbs_info->freq_table[index].frequency;
  164. freq_reduc = freq_req * dbs_tuners_ins.powersave_bias / 1000;
  165. freq_avg = freq_req - freq_reduc;
  166. /* Find freq bounds for freq_avg in freq_table */
  167. index = 0;
  168. cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_avg,
  169. CPUFREQ_RELATION_H, &index);
  170. freq_lo = dbs_info->freq_table[index].frequency;
  171. index = 0;
  172. cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_avg,
  173. CPUFREQ_RELATION_L, &index);
  174. freq_hi = dbs_info->freq_table[index].frequency;
  175. /* Find out how long we have to be in hi and lo freqs */
  176. if (freq_hi == freq_lo) {
  177. dbs_info->freq_lo = 0;
  178. dbs_info->freq_lo_jiffies = 0;
  179. return freq_lo;
  180. }
  181. jiffies_total = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
  182. jiffies_hi = (freq_avg - freq_lo) * jiffies_total;
  183. jiffies_hi += ((freq_hi - freq_lo) / 2);
  184. jiffies_hi /= (freq_hi - freq_lo);
  185. jiffies_lo = jiffies_total - jiffies_hi;
  186. dbs_info->freq_lo = freq_lo;
  187. dbs_info->freq_lo_jiffies = jiffies_lo;
  188. dbs_info->freq_hi_jiffies = jiffies_hi;
  189. return freq_hi;
  190. }
  191. static void ondemand_powersave_bias_init_cpu(int cpu)
  192. {
  193. struct cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info, cpu);
  194. dbs_info->freq_table = cpufreq_frequency_get_table(cpu);
  195. dbs_info->freq_lo = 0;
  196. }
  197. static void ondemand_powersave_bias_init(void)
  198. {
  199. int i;
  200. for_each_online_cpu(i) {
  201. ondemand_powersave_bias_init_cpu(i);
  202. }
  203. }
  204. /************************** sysfs interface ************************/
  205. static ssize_t show_sampling_rate_min(struct kobject *kobj,
  206. struct attribute *attr, char *buf)
  207. {
  208. return sprintf(buf, "%u\n", min_sampling_rate);
  209. }
  210. define_one_global_ro(sampling_rate_min);
  211. /* cpufreq_ondemand Governor Tunables */
  212. #define show_one(file_name, object) \
  213. static ssize_t show_##file_name \
  214. (struct kobject *kobj, struct attribute *attr, char *buf) \
  215. { \
  216. return sprintf(buf, "%u\n", dbs_tuners_ins.object); \
  217. }
  218. show_one(sampling_rate, sampling_rate);
  219. show_one(io_is_busy, io_is_busy);
  220. show_one(up_threshold, up_threshold);
  221. show_one(sampling_down_factor, sampling_down_factor);
  222. show_one(ignore_nice_load, ignore_nice);
  223. show_one(powersave_bias, powersave_bias);
  224. /*** delete after deprecation time ***/
  225. #define DEPRECATION_MSG(file_name) \
  226. printk_once(KERN_INFO "CPUFREQ: Per core ondemand sysfs " \
  227. "interface is deprecated - " #file_name "\n");
  228. #define show_one_old(file_name) \
  229. static ssize_t show_##file_name##_old \
  230. (struct cpufreq_policy *unused, char *buf) \
  231. { \
  232. printk_once(KERN_INFO "CPUFREQ: Per core ondemand sysfs " \
  233. "interface is deprecated - " #file_name "\n"); \
  234. return show_##file_name(NULL, NULL, buf); \
  235. }
  236. show_one_old(sampling_rate);
  237. show_one_old(up_threshold);
  238. show_one_old(ignore_nice_load);
  239. show_one_old(powersave_bias);
  240. show_one_old(sampling_rate_min);
  241. cpufreq_freq_attr_ro_old(sampling_rate_min);
  242. /*** delete after deprecation time ***/
  243. static ssize_t store_sampling_rate(struct kobject *a, struct attribute *b,
  244. const char *buf, size_t count)
  245. {
  246. unsigned int input;
  247. int ret;
  248. ret = sscanf(buf, "%u", &input);
  249. if (ret != 1)
  250. return -EINVAL;
  251. mutex_lock(&dbs_mutex);
  252. dbs_tuners_ins.sampling_rate = max(input, min_sampling_rate);
  253. mutex_unlock(&dbs_mutex);
  254. return count;
  255. }
  256. static ssize_t store_io_is_busy(struct kobject *a, struct attribute *b,
  257. const char *buf, size_t count)
  258. {
  259. unsigned int input;
  260. int ret;
  261. ret = sscanf(buf, "%u", &input);
  262. if (ret != 1)
  263. return -EINVAL;
  264. mutex_lock(&dbs_mutex);
  265. dbs_tuners_ins.io_is_busy = !!input;
  266. mutex_unlock(&dbs_mutex);
  267. return count;
  268. }
  269. static ssize_t store_up_threshold(struct kobject *a, struct attribute *b,
  270. const char *buf, size_t count)
  271. {
  272. unsigned int input;
  273. int ret;
  274. ret = sscanf(buf, "%u", &input);
  275. if (ret != 1 || input > MAX_FREQUENCY_UP_THRESHOLD ||
  276. input < MIN_FREQUENCY_UP_THRESHOLD) {
  277. return -EINVAL;
  278. }
  279. mutex_lock(&dbs_mutex);
  280. dbs_tuners_ins.up_threshold = input;
  281. mutex_unlock(&dbs_mutex);
  282. return count;
  283. }
  284. static ssize_t store_sampling_down_factor(struct kobject *a,
  285. struct attribute *b, const char *buf, size_t count)
  286. {
  287. unsigned int input, j;
  288. int ret;
  289. ret = sscanf(buf, "%u", &input);
  290. if (ret != 1 || input > MAX_SAMPLING_DOWN_FACTOR || input < 1)
  291. return -EINVAL;
  292. mutex_lock(&dbs_mutex);
  293. dbs_tuners_ins.sampling_down_factor = input;
  294. /* Reset down sampling multiplier in case it was active */
  295. for_each_online_cpu(j) {
  296. struct cpu_dbs_info_s *dbs_info;
  297. dbs_info = &per_cpu(od_cpu_dbs_info, j);
  298. dbs_info->rate_mult = 1;
  299. }
  300. mutex_unlock(&dbs_mutex);
  301. return count;
  302. }
  303. static ssize_t store_ignore_nice_load(struct kobject *a, struct attribute *b,
  304. const char *buf, size_t count)
  305. {
  306. unsigned int input;
  307. int ret;
  308. unsigned int j;
  309. ret = sscanf(buf, "%u", &input);
  310. if (ret != 1)
  311. return -EINVAL;
  312. if (input > 1)
  313. input = 1;
  314. mutex_lock(&dbs_mutex);
  315. if (input == dbs_tuners_ins.ignore_nice) { /* nothing to do */
  316. mutex_unlock(&dbs_mutex);
  317. return count;
  318. }
  319. dbs_tuners_ins.ignore_nice = input;
  320. /* we need to re-evaluate prev_cpu_idle */
  321. for_each_online_cpu(j) {
  322. struct cpu_dbs_info_s *dbs_info;
  323. dbs_info = &per_cpu(od_cpu_dbs_info, j);
  324. dbs_info->prev_cpu_idle = get_cpu_idle_time(j,
  325. &dbs_info->prev_cpu_wall);
  326. if (dbs_tuners_ins.ignore_nice)
  327. dbs_info->prev_cpu_nice = kstat_cpu(j).cpustat.nice;
  328. }
  329. mutex_unlock(&dbs_mutex);
  330. return count;
  331. }
  332. static ssize_t store_powersave_bias(struct kobject *a, struct attribute *b,
  333. const char *buf, size_t count)
  334. {
  335. unsigned int input;
  336. int ret;
  337. ret = sscanf(buf, "%u", &input);
  338. if (ret != 1)
  339. return -EINVAL;
  340. if (input > 1000)
  341. input = 1000;
  342. mutex_lock(&dbs_mutex);
  343. dbs_tuners_ins.powersave_bias = input;
  344. ondemand_powersave_bias_init();
  345. mutex_unlock(&dbs_mutex);
  346. return count;
  347. }
  348. define_one_global_rw(sampling_rate);
  349. define_one_global_rw(io_is_busy);
  350. define_one_global_rw(up_threshold);
  351. define_one_global_rw(sampling_down_factor);
  352. define_one_global_rw(ignore_nice_load);
  353. define_one_global_rw(powersave_bias);
  354. static struct attribute *dbs_attributes[] = {
  355. &sampling_rate_min.attr,
  356. &sampling_rate.attr,
  357. &up_threshold.attr,
  358. &sampling_down_factor.attr,
  359. &ignore_nice_load.attr,
  360. &powersave_bias.attr,
  361. &io_is_busy.attr,
  362. NULL
  363. };
  364. static struct attribute_group dbs_attr_group = {
  365. .attrs = dbs_attributes,
  366. .name = "ondemand",
  367. };
  368. /*** delete after deprecation time ***/
  369. #define write_one_old(file_name) \
  370. static ssize_t store_##file_name##_old \
  371. (struct cpufreq_policy *unused, const char *buf, size_t count) \
  372. { \
  373. printk_once(KERN_INFO "CPUFREQ: Per core ondemand sysfs " \
  374. "interface is deprecated - " #file_name "\n"); \
  375. return store_##file_name(NULL, NULL, buf, count); \
  376. }
  377. write_one_old(sampling_rate);
  378. write_one_old(up_threshold);
  379. write_one_old(ignore_nice_load);
  380. write_one_old(powersave_bias);
  381. cpufreq_freq_attr_rw_old(sampling_rate);
  382. cpufreq_freq_attr_rw_old(up_threshold);
  383. cpufreq_freq_attr_rw_old(ignore_nice_load);
  384. cpufreq_freq_attr_rw_old(powersave_bias);
  385. static struct attribute *dbs_attributes_old[] = {
  386. &sampling_rate_min_old.attr,
  387. &sampling_rate_old.attr,
  388. &up_threshold_old.attr,
  389. &ignore_nice_load_old.attr,
  390. &powersave_bias_old.attr,
  391. NULL
  392. };
  393. static struct attribute_group dbs_attr_group_old = {
  394. .attrs = dbs_attributes_old,
  395. .name = "ondemand",
  396. };
  397. /*** delete after deprecation time ***/
  398. /************************** sysfs end ************************/
  399. static void dbs_freq_increase(struct cpufreq_policy *p, unsigned int freq)
  400. {
  401. if (dbs_tuners_ins.powersave_bias)
  402. freq = powersave_bias_target(p, freq, CPUFREQ_RELATION_H);
  403. else if (p->cur == p->max)
  404. return;
  405. __cpufreq_driver_target(p, freq, dbs_tuners_ins.powersave_bias ?
  406. CPUFREQ_RELATION_L : CPUFREQ_RELATION_H);
  407. }
  408. static void dbs_check_cpu(struct cpu_dbs_info_s *this_dbs_info)
  409. {
  410. unsigned int max_load_freq;
  411. struct cpufreq_policy *policy;
  412. unsigned int j;
  413. this_dbs_info->freq_lo = 0;
  414. policy = this_dbs_info->cur_policy;
  415. /*
  416. * Every sampling_rate, we check, if current idle time is less
  417. * than 20% (default), then we try to increase frequency
  418. * Every sampling_rate, we look for a the lowest
  419. * frequency which can sustain the load while keeping idle time over
  420. * 30%. If such a frequency exist, we try to decrease to this frequency.
  421. *
  422. * Any frequency increase takes it to the maximum frequency.
  423. * Frequency reduction happens at minimum steps of
  424. * 5% (default) of current frequency
  425. */
  426. /* Get Absolute Load - in terms of freq */
  427. max_load_freq = 0;
  428. for_each_cpu(j, policy->cpus) {
  429. struct cpu_dbs_info_s *j_dbs_info;
  430. cputime64_t cur_wall_time, cur_idle_time, cur_iowait_time;
  431. unsigned int idle_time, wall_time, iowait_time;
  432. unsigned int load, load_freq;
  433. int freq_avg;
  434. j_dbs_info = &per_cpu(od_cpu_dbs_info, j);
  435. cur_idle_time = get_cpu_idle_time(j, &cur_wall_time);
  436. cur_iowait_time = get_cpu_iowait_time(j, &cur_wall_time);
  437. wall_time = (unsigned int) cputime64_sub(cur_wall_time,
  438. j_dbs_info->prev_cpu_wall);
  439. j_dbs_info->prev_cpu_wall = cur_wall_time;
  440. idle_time = (unsigned int) cputime64_sub(cur_idle_time,
  441. j_dbs_info->prev_cpu_idle);
  442. j_dbs_info->prev_cpu_idle = cur_idle_time;
  443. iowait_time = (unsigned int) cputime64_sub(cur_iowait_time,
  444. j_dbs_info->prev_cpu_iowait);
  445. j_dbs_info->prev_cpu_iowait = cur_iowait_time;
  446. if (dbs_tuners_ins.ignore_nice) {
  447. cputime64_t cur_nice;
  448. unsigned long cur_nice_jiffies;
  449. cur_nice = cputime64_sub(kstat_cpu(j).cpustat.nice,
  450. j_dbs_info->prev_cpu_nice);
  451. /*
  452. * Assumption: nice time between sampling periods will
  453. * be less than 2^32 jiffies for 32 bit sys
  454. */
  455. cur_nice_jiffies = (unsigned long)
  456. cputime64_to_jiffies64(cur_nice);
  457. j_dbs_info->prev_cpu_nice = kstat_cpu(j).cpustat.nice;
  458. idle_time += jiffies_to_usecs(cur_nice_jiffies);
  459. }
  460. /*
  461. * For the purpose of ondemand, waiting for disk IO is an
  462. * indication that you're performance critical, and not that
  463. * the system is actually idle. So subtract the iowait time
  464. * from the cpu idle time.
  465. */
  466. if (dbs_tuners_ins.io_is_busy && idle_time >= iowait_time)
  467. idle_time -= iowait_time;
  468. if (unlikely(!wall_time || wall_time < idle_time))
  469. continue;
  470. load = 100 * (wall_time - idle_time) / wall_time;
  471. freq_avg = __cpufreq_driver_getavg(policy, j);
  472. if (freq_avg <= 0)
  473. freq_avg = policy->cur;
  474. load_freq = load * freq_avg;
  475. if (load_freq > max_load_freq)
  476. max_load_freq = load_freq;
  477. }
  478. /* Check for frequency increase */
  479. if (max_load_freq > dbs_tuners_ins.up_threshold * policy->cur) {
  480. /* If switching to max speed, apply sampling_down_factor */
  481. if (policy->cur < policy->max)
  482. this_dbs_info->rate_mult =
  483. dbs_tuners_ins.sampling_down_factor;
  484. dbs_freq_increase(policy, policy->max);
  485. return;
  486. }
  487. /* Check for frequency decrease */
  488. /* if we cannot reduce the frequency anymore, break out early */
  489. if (policy->cur == policy->min)
  490. return;
  491. /*
  492. * The optimal frequency is the frequency that is the lowest that
  493. * can support the current CPU usage without triggering the up
  494. * policy. To be safe, we focus 10 points under the threshold.
  495. */
  496. if (max_load_freq <
  497. (dbs_tuners_ins.up_threshold - dbs_tuners_ins.down_differential) *
  498. policy->cur) {
  499. unsigned int freq_next;
  500. freq_next = max_load_freq /
  501. (dbs_tuners_ins.up_threshold -
  502. dbs_tuners_ins.down_differential);
  503. /* No longer fully busy, reset rate_mult */
  504. this_dbs_info->rate_mult = 1;
  505. if (freq_next < policy->min)
  506. freq_next = policy->min;
  507. if (!dbs_tuners_ins.powersave_bias) {
  508. __cpufreq_driver_target(policy, freq_next,
  509. CPUFREQ_RELATION_L);
  510. } else {
  511. int freq = powersave_bias_target(policy, freq_next,
  512. CPUFREQ_RELATION_L);
  513. __cpufreq_driver_target(policy, freq,
  514. CPUFREQ_RELATION_L);
  515. }
  516. }
  517. }
  518. static void do_dbs_timer(struct work_struct *work)
  519. {
  520. struct cpu_dbs_info_s *dbs_info =
  521. container_of(work, struct cpu_dbs_info_s, work.work);
  522. unsigned int cpu = dbs_info->cpu;
  523. int sample_type = dbs_info->sample_type;
  524. int delay;
  525. mutex_lock(&dbs_info->timer_mutex);
  526. /* Common NORMAL_SAMPLE setup */
  527. dbs_info->sample_type = DBS_NORMAL_SAMPLE;
  528. if (!dbs_tuners_ins.powersave_bias ||
  529. sample_type == DBS_NORMAL_SAMPLE) {
  530. dbs_check_cpu(dbs_info);
  531. if (dbs_info->freq_lo) {
  532. /* Setup timer for SUB_SAMPLE */
  533. dbs_info->sample_type = DBS_SUB_SAMPLE;
  534. delay = dbs_info->freq_hi_jiffies;
  535. } else {
  536. /* We want all CPUs to do sampling nearly on
  537. * same jiffy
  538. */
  539. delay = usecs_to_jiffies(dbs_tuners_ins.sampling_rate
  540. * dbs_info->rate_mult);
  541. if (num_online_cpus() > 1)
  542. delay -= jiffies % delay;
  543. }
  544. } else {
  545. __cpufreq_driver_target(dbs_info->cur_policy,
  546. dbs_info->freq_lo, CPUFREQ_RELATION_H);
  547. delay = dbs_info->freq_lo_jiffies;
  548. }
  549. schedule_delayed_work_on(cpu, &dbs_info->work, delay);
  550. mutex_unlock(&dbs_info->timer_mutex);
  551. }
  552. static inline void dbs_timer_init(struct cpu_dbs_info_s *dbs_info)
  553. {
  554. /* We want all CPUs to do sampling nearly on same jiffy */
  555. int delay = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
  556. if (num_online_cpus() > 1)
  557. delay -= jiffies % delay;
  558. dbs_info->sample_type = DBS_NORMAL_SAMPLE;
  559. INIT_DELAYED_WORK_DEFERRABLE(&dbs_info->work, do_dbs_timer);
  560. schedule_delayed_work_on(dbs_info->cpu, &dbs_info->work, delay);
  561. }
  562. static inline void dbs_timer_exit(struct cpu_dbs_info_s *dbs_info)
  563. {
  564. cancel_delayed_work_sync(&dbs_info->work);
  565. }
  566. /*
  567. * Not all CPUs want IO time to be accounted as busy; this dependson how
  568. * efficient idling at a higher frequency/voltage is.
  569. * Pavel Machek says this is not so for various generations of AMD and old
  570. * Intel systems.
  571. * Mike Chan (androidlcom) calis this is also not true for ARM.
  572. * Because of this, whitelist specific known (series) of CPUs by default, and
  573. * leave all others up to the user.
  574. */
  575. static int should_io_be_busy(void)
  576. {
  577. #if defined(CONFIG_X86)
  578. /*
  579. * For Intel, Core 2 (model 15) andl later have an efficient idle.
  580. */
  581. if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL &&
  582. boot_cpu_data.x86 == 6 &&
  583. boot_cpu_data.x86_model >= 15)
  584. return 1;
  585. #endif
  586. return 0;
  587. }
  588. static int cpufreq_governor_dbs(struct cpufreq_policy *policy,
  589. unsigned int event)
  590. {
  591. unsigned int cpu = policy->cpu;
  592. struct cpu_dbs_info_s *this_dbs_info;
  593. unsigned int j;
  594. int rc;
  595. this_dbs_info = &per_cpu(od_cpu_dbs_info, cpu);
  596. switch (event) {
  597. case CPUFREQ_GOV_START:
  598. if ((!cpu_online(cpu)) || (!policy->cur))
  599. return -EINVAL;
  600. mutex_lock(&dbs_mutex);
  601. rc = sysfs_create_group(&policy->kobj, &dbs_attr_group_old);
  602. if (rc) {
  603. mutex_unlock(&dbs_mutex);
  604. return rc;
  605. }
  606. dbs_enable++;
  607. for_each_cpu(j, policy->cpus) {
  608. struct cpu_dbs_info_s *j_dbs_info;
  609. j_dbs_info = &per_cpu(od_cpu_dbs_info, j);
  610. j_dbs_info->cur_policy = policy;
  611. j_dbs_info->prev_cpu_idle = get_cpu_idle_time(j,
  612. &j_dbs_info->prev_cpu_wall);
  613. if (dbs_tuners_ins.ignore_nice) {
  614. j_dbs_info->prev_cpu_nice =
  615. kstat_cpu(j).cpustat.nice;
  616. }
  617. }
  618. this_dbs_info->cpu = cpu;
  619. this_dbs_info->rate_mult = 1;
  620. ondemand_powersave_bias_init_cpu(cpu);
  621. /*
  622. * Start the timerschedule work, when this governor
  623. * is used for first time
  624. */
  625. if (dbs_enable == 1) {
  626. unsigned int latency;
  627. rc = sysfs_create_group(cpufreq_global_kobject,
  628. &dbs_attr_group);
  629. if (rc) {
  630. mutex_unlock(&dbs_mutex);
  631. return rc;
  632. }
  633. /* policy latency is in nS. Convert it to uS first */
  634. latency = policy->cpuinfo.transition_latency / 1000;
  635. if (latency == 0)
  636. latency = 1;
  637. /* Bring kernel and HW constraints together */
  638. min_sampling_rate = max(min_sampling_rate,
  639. MIN_LATENCY_MULTIPLIER * latency);
  640. dbs_tuners_ins.sampling_rate =
  641. max(min_sampling_rate,
  642. latency * LATENCY_MULTIPLIER);
  643. dbs_tuners_ins.io_is_busy = should_io_be_busy();
  644. }
  645. mutex_unlock(&dbs_mutex);
  646. mutex_init(&this_dbs_info->timer_mutex);
  647. dbs_timer_init(this_dbs_info);
  648. break;
  649. case CPUFREQ_GOV_STOP:
  650. dbs_timer_exit(this_dbs_info);
  651. mutex_lock(&dbs_mutex);
  652. sysfs_remove_group(&policy->kobj, &dbs_attr_group_old);
  653. mutex_destroy(&this_dbs_info->timer_mutex);
  654. dbs_enable--;
  655. mutex_unlock(&dbs_mutex);
  656. if (!dbs_enable)
  657. sysfs_remove_group(cpufreq_global_kobject,
  658. &dbs_attr_group);
  659. break;
  660. case CPUFREQ_GOV_LIMITS:
  661. mutex_lock(&this_dbs_info->timer_mutex);
  662. if (policy->max < this_dbs_info->cur_policy->cur)
  663. __cpufreq_driver_target(this_dbs_info->cur_policy,
  664. policy->max, CPUFREQ_RELATION_H);
  665. else if (policy->min > this_dbs_info->cur_policy->cur)
  666. __cpufreq_driver_target(this_dbs_info->cur_policy,
  667. policy->min, CPUFREQ_RELATION_L);
  668. mutex_unlock(&this_dbs_info->timer_mutex);
  669. break;
  670. }
  671. return 0;
  672. }
  673. static int __init cpufreq_gov_dbs_init(void)
  674. {
  675. cputime64_t wall;
  676. u64 idle_time;
  677. int cpu = get_cpu();
  678. idle_time = get_cpu_idle_time_us(cpu, &wall);
  679. put_cpu();
  680. if (idle_time != -1ULL) {
  681. /* Idle micro accounting is supported. Use finer thresholds */
  682. dbs_tuners_ins.up_threshold = MICRO_FREQUENCY_UP_THRESHOLD;
  683. dbs_tuners_ins.down_differential =
  684. MICRO_FREQUENCY_DOWN_DIFFERENTIAL;
  685. /*
  686. * In no_hz/micro accounting case we set the minimum frequency
  687. * not depending on HZ, but fixed (very low). The deferred
  688. * timer might skip some samples if idle/sleeping as needed.
  689. */
  690. min_sampling_rate = MICRO_FREQUENCY_MIN_SAMPLE_RATE;
  691. } else {
  692. /* For correct statistics, we need 10 ticks for each measure */
  693. min_sampling_rate =
  694. MIN_SAMPLING_RATE_RATIO * jiffies_to_usecs(10);
  695. }
  696. return cpufreq_register_governor(&cpufreq_gov_ondemand);
  697. }
  698. static void __exit cpufreq_gov_dbs_exit(void)
  699. {
  700. cpufreq_unregister_governor(&cpufreq_gov_ondemand);
  701. }
  702. MODULE_AUTHOR("Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>");
  703. MODULE_AUTHOR("Alexey Starikovskiy <alexey.y.starikovskiy@intel.com>");
  704. MODULE_DESCRIPTION("'cpufreq_ondemand' - A dynamic cpufreq governor for "
  705. "Low Latency Frequency Transition capable processors");
  706. MODULE_LICENSE("GPL");
  707. #ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_ONDEMAND
  708. fs_initcall(cpufreq_gov_dbs_init);
  709. #else
  710. module_init(cpufreq_gov_dbs_init);
  711. #endif
  712. module_exit(cpufreq_gov_dbs_exit);