cpufreq_conservative.c 19 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723
  1. /*
  2. * drivers/cpufreq/cpufreq_conservative.c
  3. *
  4. * Copyright (C) 2001 Russell King
  5. * (C) 2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
  6. * Jun Nakajima <jun.nakajima@intel.com>
  7. * (C) 2009 Alexander Clouter <alex@digriz.org.uk>
  8. *
  9. * This program is free software; you can redistribute it and/or modify
  10. * it under the terms of the GNU General Public License version 2 as
  11. * published by the Free Software Foundation.
  12. */
  13. #include <linux/kernel.h>
  14. #include <linux/module.h>
  15. #include <linux/init.h>
  16. #include <linux/cpufreq.h>
  17. #include <linux/cpu.h>
  18. #include <linux/jiffies.h>
  19. #include <linux/kernel_stat.h>
  20. #include <linux/mutex.h>
  21. #include <linux/hrtimer.h>
  22. #include <linux/tick.h>
  23. #include <linux/ktime.h>
  24. #include <linux/sched.h>
  25. /*
  26. * dbs is used in this file as a shortform for demandbased switching
  27. * It helps to keep variable names smaller, simpler
  28. */
  29. #define DEF_FREQUENCY_UP_THRESHOLD (80)
  30. #define DEF_FREQUENCY_DOWN_THRESHOLD (20)
  31. /*
  32. * The polling frequency of this governor depends on the capability of
  33. * the processor. Default polling frequency is 1000 times the transition
  34. * latency of the processor. The governor will work on any processor with
  35. * transition latency <= 10mS, using appropriate sampling
  36. * rate.
  37. * For CPUs with transition latency > 10mS (mostly drivers with CPUFREQ_ETERNAL)
  38. * this governor will not work.
  39. * All times here are in uS.
  40. */
  41. #define MIN_SAMPLING_RATE_RATIO (2)
  42. static unsigned int min_sampling_rate;
  43. #define LATENCY_MULTIPLIER (1000)
  44. #define MIN_LATENCY_MULTIPLIER (100)
  45. #define DEF_SAMPLING_DOWN_FACTOR (1)
  46. #define MAX_SAMPLING_DOWN_FACTOR (10)
  47. #define TRANSITION_LATENCY_LIMIT (10 * 1000 * 1000)
  48. static void do_dbs_timer(struct work_struct *work);
  49. struct cpu_dbs_info_s {
  50. cputime64_t prev_cpu_idle;
  51. cputime64_t prev_cpu_wall;
  52. cputime64_t prev_cpu_nice;
  53. struct cpufreq_policy *cur_policy;
  54. struct delayed_work work;
  55. unsigned int down_skip;
  56. unsigned int requested_freq;
  57. int cpu;
  58. unsigned int enable:1;
  59. /*
  60. * percpu mutex that serializes governor limit change with
  61. * do_dbs_timer invocation. We do not want do_dbs_timer to run
  62. * when user is changing the governor or limits.
  63. */
  64. struct mutex timer_mutex;
  65. };
  66. static DEFINE_PER_CPU(struct cpu_dbs_info_s, cs_cpu_dbs_info);
  67. static unsigned int dbs_enable; /* number of CPUs using this policy */
  68. /*
  69. * dbs_mutex protects data in dbs_tuners_ins from concurrent changes on
  70. * different CPUs. It protects dbs_enable in governor start/stop.
  71. */
  72. static DEFINE_MUTEX(dbs_mutex);
  73. static struct dbs_tuners {
  74. unsigned int sampling_rate;
  75. unsigned int sampling_down_factor;
  76. unsigned int up_threshold;
  77. unsigned int down_threshold;
  78. unsigned int ignore_nice;
  79. unsigned int freq_step;
  80. } dbs_tuners_ins = {
  81. .up_threshold = DEF_FREQUENCY_UP_THRESHOLD,
  82. .down_threshold = DEF_FREQUENCY_DOWN_THRESHOLD,
  83. .sampling_down_factor = DEF_SAMPLING_DOWN_FACTOR,
  84. .ignore_nice = 0,
  85. .freq_step = 5,
  86. };
  87. static inline cputime64_t get_cpu_idle_time_jiffy(unsigned int cpu,
  88. cputime64_t *wall)
  89. {
  90. cputime64_t idle_time;
  91. cputime64_t cur_wall_time;
  92. cputime64_t busy_time;
  93. cur_wall_time = jiffies64_to_cputime64(get_jiffies_64());
  94. busy_time = cputime64_add(kstat_cpu(cpu).cpustat.user,
  95. kstat_cpu(cpu).cpustat.system);
  96. busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.irq);
  97. busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.softirq);
  98. busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.steal);
  99. busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.nice);
  100. idle_time = cputime64_sub(cur_wall_time, busy_time);
  101. if (wall)
  102. *wall = (cputime64_t)jiffies_to_usecs(cur_wall_time);
  103. return (cputime64_t)jiffies_to_usecs(idle_time);
  104. }
  105. static inline cputime64_t get_cpu_idle_time(unsigned int cpu, cputime64_t *wall)
  106. {
  107. u64 idle_time = get_cpu_idle_time_us(cpu, wall);
  108. if (idle_time == -1ULL)
  109. return get_cpu_idle_time_jiffy(cpu, wall);
  110. return idle_time;
  111. }
  112. /* keep track of frequency transitions */
  113. static int
  114. dbs_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
  115. void *data)
  116. {
  117. struct cpufreq_freqs *freq = data;
  118. struct cpu_dbs_info_s *this_dbs_info = &per_cpu(cs_cpu_dbs_info,
  119. freq->cpu);
  120. struct cpufreq_policy *policy;
  121. if (!this_dbs_info->enable)
  122. return 0;
  123. policy = this_dbs_info->cur_policy;
  124. /*
  125. * we only care if our internally tracked freq moves outside
  126. * the 'valid' ranges of freqency available to us otherwise
  127. * we do not change it
  128. */
  129. if (this_dbs_info->requested_freq > policy->max
  130. || this_dbs_info->requested_freq < policy->min)
  131. this_dbs_info->requested_freq = freq->new;
  132. return 0;
  133. }
  134. static struct notifier_block dbs_cpufreq_notifier_block = {
  135. .notifier_call = dbs_cpufreq_notifier
  136. };
  137. /************************** sysfs interface ************************/
  138. static ssize_t show_sampling_rate_min(struct kobject *kobj,
  139. struct attribute *attr, char *buf)
  140. {
  141. return sprintf(buf, "%u\n", min_sampling_rate);
  142. }
  143. define_one_global_ro(sampling_rate_min);
  144. /* cpufreq_conservative Governor Tunables */
  145. #define show_one(file_name, object) \
  146. static ssize_t show_##file_name \
  147. (struct kobject *kobj, struct attribute *attr, char *buf) \
  148. { \
  149. return sprintf(buf, "%u\n", dbs_tuners_ins.object); \
  150. }
  151. show_one(sampling_rate, sampling_rate);
  152. show_one(sampling_down_factor, sampling_down_factor);
  153. show_one(up_threshold, up_threshold);
  154. show_one(down_threshold, down_threshold);
  155. show_one(ignore_nice_load, ignore_nice);
  156. show_one(freq_step, freq_step);
  157. /*** delete after deprecation time ***/
  158. #define DEPRECATION_MSG(file_name) \
  159. printk_once(KERN_INFO "CPUFREQ: Per core conservative sysfs " \
  160. "interface is deprecated - " #file_name "\n");
  161. #define show_one_old(file_name) \
  162. static ssize_t show_##file_name##_old \
  163. (struct cpufreq_policy *unused, char *buf) \
  164. { \
  165. printk_once(KERN_INFO "CPUFREQ: Per core conservative sysfs " \
  166. "interface is deprecated - " #file_name "\n"); \
  167. return show_##file_name(NULL, NULL, buf); \
  168. }
  169. show_one_old(sampling_rate);
  170. show_one_old(sampling_down_factor);
  171. show_one_old(up_threshold);
  172. show_one_old(down_threshold);
  173. show_one_old(ignore_nice_load);
  174. show_one_old(freq_step);
  175. show_one_old(sampling_rate_min);
  176. cpufreq_freq_attr_ro_old(sampling_rate_min);
  177. /*** delete after deprecation time ***/
  178. static ssize_t store_sampling_down_factor(struct kobject *a,
  179. struct attribute *b,
  180. const char *buf, size_t count)
  181. {
  182. unsigned int input;
  183. int ret;
  184. ret = sscanf(buf, "%u", &input);
  185. if (ret != 1 || input > MAX_SAMPLING_DOWN_FACTOR || input < 1)
  186. return -EINVAL;
  187. mutex_lock(&dbs_mutex);
  188. dbs_tuners_ins.sampling_down_factor = input;
  189. mutex_unlock(&dbs_mutex);
  190. return count;
  191. }
  192. static ssize_t store_sampling_rate(struct kobject *a, struct attribute *b,
  193. const char *buf, size_t count)
  194. {
  195. unsigned int input;
  196. int ret;
  197. ret = sscanf(buf, "%u", &input);
  198. if (ret != 1)
  199. return -EINVAL;
  200. mutex_lock(&dbs_mutex);
  201. dbs_tuners_ins.sampling_rate = max(input, min_sampling_rate);
  202. mutex_unlock(&dbs_mutex);
  203. return count;
  204. }
  205. static ssize_t store_up_threshold(struct kobject *a, struct attribute *b,
  206. const char *buf, size_t count)
  207. {
  208. unsigned int input;
  209. int ret;
  210. ret = sscanf(buf, "%u", &input);
  211. mutex_lock(&dbs_mutex);
  212. if (ret != 1 || input > 100 ||
  213. input <= dbs_tuners_ins.down_threshold) {
  214. mutex_unlock(&dbs_mutex);
  215. return -EINVAL;
  216. }
  217. dbs_tuners_ins.up_threshold = input;
  218. mutex_unlock(&dbs_mutex);
  219. return count;
  220. }
  221. static ssize_t store_down_threshold(struct kobject *a, struct attribute *b,
  222. const char *buf, size_t count)
  223. {
  224. unsigned int input;
  225. int ret;
  226. ret = sscanf(buf, "%u", &input);
  227. mutex_lock(&dbs_mutex);
  228. /* cannot be lower than 11 otherwise freq will not fall */
  229. if (ret != 1 || input < 11 || input > 100 ||
  230. input >= dbs_tuners_ins.up_threshold) {
  231. mutex_unlock(&dbs_mutex);
  232. return -EINVAL;
  233. }
  234. dbs_tuners_ins.down_threshold = input;
  235. mutex_unlock(&dbs_mutex);
  236. return count;
  237. }
  238. static ssize_t store_ignore_nice_load(struct kobject *a, struct attribute *b,
  239. const char *buf, size_t count)
  240. {
  241. unsigned int input;
  242. int ret;
  243. unsigned int j;
  244. ret = sscanf(buf, "%u", &input);
  245. if (ret != 1)
  246. return -EINVAL;
  247. if (input > 1)
  248. input = 1;
  249. mutex_lock(&dbs_mutex);
  250. if (input == dbs_tuners_ins.ignore_nice) { /* nothing to do */
  251. mutex_unlock(&dbs_mutex);
  252. return count;
  253. }
  254. dbs_tuners_ins.ignore_nice = input;
  255. /* we need to re-evaluate prev_cpu_idle */
  256. for_each_online_cpu(j) {
  257. struct cpu_dbs_info_s *dbs_info;
  258. dbs_info = &per_cpu(cs_cpu_dbs_info, j);
  259. dbs_info->prev_cpu_idle = get_cpu_idle_time(j,
  260. &dbs_info->prev_cpu_wall);
  261. if (dbs_tuners_ins.ignore_nice)
  262. dbs_info->prev_cpu_nice = kstat_cpu(j).cpustat.nice;
  263. }
  264. mutex_unlock(&dbs_mutex);
  265. return count;
  266. }
  267. static ssize_t store_freq_step(struct kobject *a, struct attribute *b,
  268. const char *buf, size_t count)
  269. {
  270. unsigned int input;
  271. int ret;
  272. ret = sscanf(buf, "%u", &input);
  273. if (ret != 1)
  274. return -EINVAL;
  275. if (input > 100)
  276. input = 100;
  277. /* no need to test here if freq_step is zero as the user might actually
  278. * want this, they would be crazy though :) */
  279. mutex_lock(&dbs_mutex);
  280. dbs_tuners_ins.freq_step = input;
  281. mutex_unlock(&dbs_mutex);
  282. return count;
  283. }
  284. define_one_global_rw(sampling_rate);
  285. define_one_global_rw(sampling_down_factor);
  286. define_one_global_rw(up_threshold);
  287. define_one_global_rw(down_threshold);
  288. define_one_global_rw(ignore_nice_load);
  289. define_one_global_rw(freq_step);
  290. static struct attribute *dbs_attributes[] = {
  291. &sampling_rate_min.attr,
  292. &sampling_rate.attr,
  293. &sampling_down_factor.attr,
  294. &up_threshold.attr,
  295. &down_threshold.attr,
  296. &ignore_nice_load.attr,
  297. &freq_step.attr,
  298. NULL
  299. };
  300. static struct attribute_group dbs_attr_group = {
  301. .attrs = dbs_attributes,
  302. .name = "conservative",
  303. };
  304. /*** delete after deprecation time ***/
  305. #define write_one_old(file_name) \
  306. static ssize_t store_##file_name##_old \
  307. (struct cpufreq_policy *unused, const char *buf, size_t count) \
  308. { \
  309. printk_once(KERN_INFO "CPUFREQ: Per core conservative sysfs " \
  310. "interface is deprecated - " #file_name "\n"); \
  311. return store_##file_name(NULL, NULL, buf, count); \
  312. }
  313. write_one_old(sampling_rate);
  314. write_one_old(sampling_down_factor);
  315. write_one_old(up_threshold);
  316. write_one_old(down_threshold);
  317. write_one_old(ignore_nice_load);
  318. write_one_old(freq_step);
  319. cpufreq_freq_attr_rw_old(sampling_rate);
  320. cpufreq_freq_attr_rw_old(sampling_down_factor);
  321. cpufreq_freq_attr_rw_old(up_threshold);
  322. cpufreq_freq_attr_rw_old(down_threshold);
  323. cpufreq_freq_attr_rw_old(ignore_nice_load);
  324. cpufreq_freq_attr_rw_old(freq_step);
  325. static struct attribute *dbs_attributes_old[] = {
  326. &sampling_rate_min_old.attr,
  327. &sampling_rate_old.attr,
  328. &sampling_down_factor_old.attr,
  329. &up_threshold_old.attr,
  330. &down_threshold_old.attr,
  331. &ignore_nice_load_old.attr,
  332. &freq_step_old.attr,
  333. NULL
  334. };
  335. static struct attribute_group dbs_attr_group_old = {
  336. .attrs = dbs_attributes_old,
  337. .name = "conservative",
  338. };
  339. /*** delete after deprecation time ***/
  340. /************************** sysfs end ************************/
  341. static void dbs_check_cpu(struct cpu_dbs_info_s *this_dbs_info)
  342. {
  343. unsigned int load = 0;
  344. unsigned int max_load = 0;
  345. unsigned int freq_target;
  346. struct cpufreq_policy *policy;
  347. unsigned int j;
  348. policy = this_dbs_info->cur_policy;
  349. /*
  350. * Every sampling_rate, we check, if current idle time is less
  351. * than 20% (default), then we try to increase frequency
  352. * Every sampling_rate*sampling_down_factor, we check, if current
  353. * idle time is more than 80%, then we try to decrease frequency
  354. *
  355. * Any frequency increase takes it to the maximum frequency.
  356. * Frequency reduction happens at minimum steps of
  357. * 5% (default) of maximum frequency
  358. */
  359. /* Get Absolute Load */
  360. for_each_cpu(j, policy->cpus) {
  361. struct cpu_dbs_info_s *j_dbs_info;
  362. cputime64_t cur_wall_time, cur_idle_time;
  363. unsigned int idle_time, wall_time;
  364. j_dbs_info = &per_cpu(cs_cpu_dbs_info, j);
  365. cur_idle_time = get_cpu_idle_time(j, &cur_wall_time);
  366. wall_time = (unsigned int) cputime64_sub(cur_wall_time,
  367. j_dbs_info->prev_cpu_wall);
  368. j_dbs_info->prev_cpu_wall = cur_wall_time;
  369. idle_time = (unsigned int) cputime64_sub(cur_idle_time,
  370. j_dbs_info->prev_cpu_idle);
  371. j_dbs_info->prev_cpu_idle = cur_idle_time;
  372. if (dbs_tuners_ins.ignore_nice) {
  373. cputime64_t cur_nice;
  374. unsigned long cur_nice_jiffies;
  375. cur_nice = cputime64_sub(kstat_cpu(j).cpustat.nice,
  376. j_dbs_info->prev_cpu_nice);
  377. /*
  378. * Assumption: nice time between sampling periods will
  379. * be less than 2^32 jiffies for 32 bit sys
  380. */
  381. cur_nice_jiffies = (unsigned long)
  382. cputime64_to_jiffies64(cur_nice);
  383. j_dbs_info->prev_cpu_nice = kstat_cpu(j).cpustat.nice;
  384. idle_time += jiffies_to_usecs(cur_nice_jiffies);
  385. }
  386. if (unlikely(!wall_time || wall_time < idle_time))
  387. continue;
  388. load = 100 * (wall_time - idle_time) / wall_time;
  389. if (load > max_load)
  390. max_load = load;
  391. }
  392. /*
  393. * break out if we 'cannot' reduce the speed as the user might
  394. * want freq_step to be zero
  395. */
  396. if (dbs_tuners_ins.freq_step == 0)
  397. return;
  398. /* Check for frequency increase */
  399. if (max_load > dbs_tuners_ins.up_threshold) {
  400. this_dbs_info->down_skip = 0;
  401. /* if we are already at full speed then break out early */
  402. if (this_dbs_info->requested_freq == policy->max)
  403. return;
  404. freq_target = (dbs_tuners_ins.freq_step * policy->max) / 100;
  405. /* max freq cannot be less than 100. But who knows.... */
  406. if (unlikely(freq_target == 0))
  407. freq_target = 5;
  408. this_dbs_info->requested_freq += freq_target;
  409. if (this_dbs_info->requested_freq > policy->max)
  410. this_dbs_info->requested_freq = policy->max;
  411. __cpufreq_driver_target(policy, this_dbs_info->requested_freq,
  412. CPUFREQ_RELATION_H);
  413. return;
  414. }
  415. /*
  416. * The optimal frequency is the frequency that is the lowest that
  417. * can support the current CPU usage without triggering the up
  418. * policy. To be safe, we focus 10 points under the threshold.
  419. */
  420. if (max_load < (dbs_tuners_ins.down_threshold - 10)) {
  421. freq_target = (dbs_tuners_ins.freq_step * policy->max) / 100;
  422. this_dbs_info->requested_freq -= freq_target;
  423. if (this_dbs_info->requested_freq < policy->min)
  424. this_dbs_info->requested_freq = policy->min;
  425. /*
  426. * if we cannot reduce the frequency anymore, break out early
  427. */
  428. if (policy->cur == policy->min)
  429. return;
  430. __cpufreq_driver_target(policy, this_dbs_info->requested_freq,
  431. CPUFREQ_RELATION_H);
  432. return;
  433. }
  434. }
  435. static void do_dbs_timer(struct work_struct *work)
  436. {
  437. struct cpu_dbs_info_s *dbs_info =
  438. container_of(work, struct cpu_dbs_info_s, work.work);
  439. unsigned int cpu = dbs_info->cpu;
  440. /* We want all CPUs to do sampling nearly on same jiffy */
  441. int delay = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
  442. delay -= jiffies % delay;
  443. mutex_lock(&dbs_info->timer_mutex);
  444. dbs_check_cpu(dbs_info);
  445. schedule_delayed_work_on(cpu, &dbs_info->work, delay);
  446. mutex_unlock(&dbs_info->timer_mutex);
  447. }
  448. static inline void dbs_timer_init(struct cpu_dbs_info_s *dbs_info)
  449. {
  450. /* We want all CPUs to do sampling nearly on same jiffy */
  451. int delay = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
  452. delay -= jiffies % delay;
  453. dbs_info->enable = 1;
  454. INIT_DELAYED_WORK_DEFERRABLE(&dbs_info->work, do_dbs_timer);
  455. schedule_delayed_work_on(dbs_info->cpu, &dbs_info->work, delay);
  456. }
  457. static inline void dbs_timer_exit(struct cpu_dbs_info_s *dbs_info)
  458. {
  459. dbs_info->enable = 0;
  460. cancel_delayed_work_sync(&dbs_info->work);
  461. }
  462. static int cpufreq_governor_dbs(struct cpufreq_policy *policy,
  463. unsigned int event)
  464. {
  465. unsigned int cpu = policy->cpu;
  466. struct cpu_dbs_info_s *this_dbs_info;
  467. unsigned int j;
  468. int rc;
  469. this_dbs_info = &per_cpu(cs_cpu_dbs_info, cpu);
  470. switch (event) {
  471. case CPUFREQ_GOV_START:
  472. if ((!cpu_online(cpu)) || (!policy->cur))
  473. return -EINVAL;
  474. mutex_lock(&dbs_mutex);
  475. rc = sysfs_create_group(&policy->kobj, &dbs_attr_group_old);
  476. if (rc) {
  477. mutex_unlock(&dbs_mutex);
  478. return rc;
  479. }
  480. for_each_cpu(j, policy->cpus) {
  481. struct cpu_dbs_info_s *j_dbs_info;
  482. j_dbs_info = &per_cpu(cs_cpu_dbs_info, j);
  483. j_dbs_info->cur_policy = policy;
  484. j_dbs_info->prev_cpu_idle = get_cpu_idle_time(j,
  485. &j_dbs_info->prev_cpu_wall);
  486. if (dbs_tuners_ins.ignore_nice) {
  487. j_dbs_info->prev_cpu_nice =
  488. kstat_cpu(j).cpustat.nice;
  489. }
  490. }
  491. this_dbs_info->down_skip = 0;
  492. this_dbs_info->requested_freq = policy->cur;
  493. mutex_init(&this_dbs_info->timer_mutex);
  494. dbs_enable++;
  495. /*
  496. * Start the timerschedule work, when this governor
  497. * is used for first time
  498. */
  499. if (dbs_enable == 1) {
  500. unsigned int latency;
  501. /* policy latency is in nS. Convert it to uS first */
  502. latency = policy->cpuinfo.transition_latency / 1000;
  503. if (latency == 0)
  504. latency = 1;
  505. rc = sysfs_create_group(cpufreq_global_kobject,
  506. &dbs_attr_group);
  507. if (rc) {
  508. mutex_unlock(&dbs_mutex);
  509. return rc;
  510. }
  511. /*
  512. * conservative does not implement micro like ondemand
  513. * governor, thus we are bound to jiffes/HZ
  514. */
  515. min_sampling_rate =
  516. MIN_SAMPLING_RATE_RATIO * jiffies_to_usecs(10);
  517. /* Bring kernel and HW constraints together */
  518. min_sampling_rate = max(min_sampling_rate,
  519. MIN_LATENCY_MULTIPLIER * latency);
  520. dbs_tuners_ins.sampling_rate =
  521. max(min_sampling_rate,
  522. latency * LATENCY_MULTIPLIER);
  523. cpufreq_register_notifier(
  524. &dbs_cpufreq_notifier_block,
  525. CPUFREQ_TRANSITION_NOTIFIER);
  526. }
  527. mutex_unlock(&dbs_mutex);
  528. dbs_timer_init(this_dbs_info);
  529. break;
  530. case CPUFREQ_GOV_STOP:
  531. dbs_timer_exit(this_dbs_info);
  532. mutex_lock(&dbs_mutex);
  533. sysfs_remove_group(&policy->kobj, &dbs_attr_group_old);
  534. dbs_enable--;
  535. mutex_destroy(&this_dbs_info->timer_mutex);
  536. /*
  537. * Stop the timerschedule work, when this governor
  538. * is used for first time
  539. */
  540. if (dbs_enable == 0)
  541. cpufreq_unregister_notifier(
  542. &dbs_cpufreq_notifier_block,
  543. CPUFREQ_TRANSITION_NOTIFIER);
  544. mutex_unlock(&dbs_mutex);
  545. if (!dbs_enable)
  546. sysfs_remove_group(cpufreq_global_kobject,
  547. &dbs_attr_group);
  548. break;
  549. case CPUFREQ_GOV_LIMITS:
  550. mutex_lock(&this_dbs_info->timer_mutex);
  551. if (policy->max < this_dbs_info->cur_policy->cur)
  552. __cpufreq_driver_target(
  553. this_dbs_info->cur_policy,
  554. policy->max, CPUFREQ_RELATION_H);
  555. else if (policy->min > this_dbs_info->cur_policy->cur)
  556. __cpufreq_driver_target(
  557. this_dbs_info->cur_policy,
  558. policy->min, CPUFREQ_RELATION_L);
  559. mutex_unlock(&this_dbs_info->timer_mutex);
  560. break;
  561. }
  562. return 0;
  563. }
  564. #ifndef CONFIG_CPU_FREQ_DEFAULT_GOV_CONSERVATIVE
  565. static
  566. #endif
  567. struct cpufreq_governor cpufreq_gov_conservative = {
  568. .name = "conservative",
  569. .governor = cpufreq_governor_dbs,
  570. .max_transition_latency = TRANSITION_LATENCY_LIMIT,
  571. .owner = THIS_MODULE,
  572. };
  573. static int __init cpufreq_gov_dbs_init(void)
  574. {
  575. return cpufreq_register_governor(&cpufreq_gov_conservative);
  576. }
  577. static void __exit cpufreq_gov_dbs_exit(void)
  578. {
  579. cpufreq_unregister_governor(&cpufreq_gov_conservative);
  580. }
  581. MODULE_AUTHOR("Alexander Clouter <alex@digriz.org.uk>");
  582. MODULE_DESCRIPTION("'cpufreq_conservative' - A dynamic cpufreq governor for "
  583. "Low Latency Frequency Transition capable processors "
  584. "optimised for use in a battery environment");
  585. MODULE_LICENSE("GPL");
  586. #ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_CONSERVATIVE
  587. fs_initcall(cpufreq_gov_dbs_init);
  588. #else
  589. module_init(cpufreq_gov_dbs_init);
  590. #endif
  591. module_exit(cpufreq_gov_dbs_exit);