af_key.c 99 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755
  1. /*
  2. * net/key/af_key.c An implementation of PF_KEYv2 sockets.
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU General Public License
  6. * as published by the Free Software Foundation; either version
  7. * 2 of the License, or (at your option) any later version.
  8. *
  9. * Authors: Maxim Giryaev <gem@asplinux.ru>
  10. * David S. Miller <davem@redhat.com>
  11. * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
  12. * Kunihiro Ishiguro <kunihiro@ipinfusion.com>
  13. * Kazunori MIYAZAWA / USAGI Project <miyazawa@linux-ipv6.org>
  14. * Derek Atkins <derek@ihtfp.com>
  15. */
  16. #include <linux/capability.h>
  17. #include <linux/module.h>
  18. #include <linux/kernel.h>
  19. #include <linux/socket.h>
  20. #include <linux/pfkeyv2.h>
  21. #include <linux/ipsec.h>
  22. #include <linux/skbuff.h>
  23. #include <linux/rtnetlink.h>
  24. #include <linux/in.h>
  25. #include <linux/in6.h>
  26. #include <linux/proc_fs.h>
  27. #include <linux/init.h>
  28. #include <net/xfrm.h>
  29. #include <linux/audit.h>
  30. #include <net/sock.h>
  31. #define _X2KEY(x) ((x) == XFRM_INF ? 0 : (x))
  32. #define _KEY2X(x) ((x) == 0 ? XFRM_INF : (x))
  33. /* List of all pfkey sockets. */
  34. static HLIST_HEAD(pfkey_table);
  35. static DECLARE_WAIT_QUEUE_HEAD(pfkey_table_wait);
  36. static DEFINE_RWLOCK(pfkey_table_lock);
  37. static atomic_t pfkey_table_users = ATOMIC_INIT(0);
  38. static atomic_t pfkey_socks_nr = ATOMIC_INIT(0);
  39. struct pfkey_sock {
  40. /* struct sock must be the first member of struct pfkey_sock */
  41. struct sock sk;
  42. int registered;
  43. int promisc;
  44. };
  45. static inline struct pfkey_sock *pfkey_sk(struct sock *sk)
  46. {
  47. return (struct pfkey_sock *)sk;
  48. }
  49. static void pfkey_sock_destruct(struct sock *sk)
  50. {
  51. skb_queue_purge(&sk->sk_receive_queue);
  52. if (!sock_flag(sk, SOCK_DEAD)) {
  53. printk("Attempt to release alive pfkey socket: %p\n", sk);
  54. return;
  55. }
  56. BUG_TRAP(!atomic_read(&sk->sk_rmem_alloc));
  57. BUG_TRAP(!atomic_read(&sk->sk_wmem_alloc));
  58. atomic_dec(&pfkey_socks_nr);
  59. }
  60. static void pfkey_table_grab(void)
  61. {
  62. write_lock_bh(&pfkey_table_lock);
  63. if (atomic_read(&pfkey_table_users)) {
  64. DECLARE_WAITQUEUE(wait, current);
  65. add_wait_queue_exclusive(&pfkey_table_wait, &wait);
  66. for(;;) {
  67. set_current_state(TASK_UNINTERRUPTIBLE);
  68. if (atomic_read(&pfkey_table_users) == 0)
  69. break;
  70. write_unlock_bh(&pfkey_table_lock);
  71. schedule();
  72. write_lock_bh(&pfkey_table_lock);
  73. }
  74. __set_current_state(TASK_RUNNING);
  75. remove_wait_queue(&pfkey_table_wait, &wait);
  76. }
  77. }
  78. static __inline__ void pfkey_table_ungrab(void)
  79. {
  80. write_unlock_bh(&pfkey_table_lock);
  81. wake_up(&pfkey_table_wait);
  82. }
  83. static __inline__ void pfkey_lock_table(void)
  84. {
  85. /* read_lock() synchronizes us to pfkey_table_grab */
  86. read_lock(&pfkey_table_lock);
  87. atomic_inc(&pfkey_table_users);
  88. read_unlock(&pfkey_table_lock);
  89. }
  90. static __inline__ void pfkey_unlock_table(void)
  91. {
  92. if (atomic_dec_and_test(&pfkey_table_users))
  93. wake_up(&pfkey_table_wait);
  94. }
  95. static const struct proto_ops pfkey_ops;
  96. static void pfkey_insert(struct sock *sk)
  97. {
  98. pfkey_table_grab();
  99. sk_add_node(sk, &pfkey_table);
  100. pfkey_table_ungrab();
  101. }
  102. static void pfkey_remove(struct sock *sk)
  103. {
  104. pfkey_table_grab();
  105. sk_del_node_init(sk);
  106. pfkey_table_ungrab();
  107. }
  108. static struct proto key_proto = {
  109. .name = "KEY",
  110. .owner = THIS_MODULE,
  111. .obj_size = sizeof(struct pfkey_sock),
  112. };
  113. static int pfkey_create(struct socket *sock, int protocol)
  114. {
  115. struct sock *sk;
  116. int err;
  117. if (!capable(CAP_NET_ADMIN))
  118. return -EPERM;
  119. if (sock->type != SOCK_RAW)
  120. return -ESOCKTNOSUPPORT;
  121. if (protocol != PF_KEY_V2)
  122. return -EPROTONOSUPPORT;
  123. err = -ENOMEM;
  124. sk = sk_alloc(PF_KEY, GFP_KERNEL, &key_proto, 1);
  125. if (sk == NULL)
  126. goto out;
  127. sock->ops = &pfkey_ops;
  128. sock_init_data(sock, sk);
  129. sk->sk_family = PF_KEY;
  130. sk->sk_destruct = pfkey_sock_destruct;
  131. atomic_inc(&pfkey_socks_nr);
  132. pfkey_insert(sk);
  133. return 0;
  134. out:
  135. return err;
  136. }
  137. static int pfkey_release(struct socket *sock)
  138. {
  139. struct sock *sk = sock->sk;
  140. if (!sk)
  141. return 0;
  142. pfkey_remove(sk);
  143. sock_orphan(sk);
  144. sock->sk = NULL;
  145. skb_queue_purge(&sk->sk_write_queue);
  146. sock_put(sk);
  147. return 0;
  148. }
  149. static int pfkey_broadcast_one(struct sk_buff *skb, struct sk_buff **skb2,
  150. gfp_t allocation, struct sock *sk)
  151. {
  152. int err = -ENOBUFS;
  153. sock_hold(sk);
  154. if (*skb2 == NULL) {
  155. if (atomic_read(&skb->users) != 1) {
  156. *skb2 = skb_clone(skb, allocation);
  157. } else {
  158. *skb2 = skb;
  159. atomic_inc(&skb->users);
  160. }
  161. }
  162. if (*skb2 != NULL) {
  163. if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) {
  164. skb_orphan(*skb2);
  165. skb_set_owner_r(*skb2, sk);
  166. skb_queue_tail(&sk->sk_receive_queue, *skb2);
  167. sk->sk_data_ready(sk, (*skb2)->len);
  168. *skb2 = NULL;
  169. err = 0;
  170. }
  171. }
  172. sock_put(sk);
  173. return err;
  174. }
  175. /* Send SKB to all pfkey sockets matching selected criteria. */
  176. #define BROADCAST_ALL 0
  177. #define BROADCAST_ONE 1
  178. #define BROADCAST_REGISTERED 2
  179. #define BROADCAST_PROMISC_ONLY 4
  180. static int pfkey_broadcast(struct sk_buff *skb, gfp_t allocation,
  181. int broadcast_flags, struct sock *one_sk)
  182. {
  183. struct sock *sk;
  184. struct hlist_node *node;
  185. struct sk_buff *skb2 = NULL;
  186. int err = -ESRCH;
  187. /* XXX Do we need something like netlink_overrun? I think
  188. * XXX PF_KEY socket apps will not mind current behavior.
  189. */
  190. if (!skb)
  191. return -ENOMEM;
  192. pfkey_lock_table();
  193. sk_for_each(sk, node, &pfkey_table) {
  194. struct pfkey_sock *pfk = pfkey_sk(sk);
  195. int err2;
  196. /* Yes, it means that if you are meant to receive this
  197. * pfkey message you receive it twice as promiscuous
  198. * socket.
  199. */
  200. if (pfk->promisc)
  201. pfkey_broadcast_one(skb, &skb2, allocation, sk);
  202. /* the exact target will be processed later */
  203. if (sk == one_sk)
  204. continue;
  205. if (broadcast_flags != BROADCAST_ALL) {
  206. if (broadcast_flags & BROADCAST_PROMISC_ONLY)
  207. continue;
  208. if ((broadcast_flags & BROADCAST_REGISTERED) &&
  209. !pfk->registered)
  210. continue;
  211. if (broadcast_flags & BROADCAST_ONE)
  212. continue;
  213. }
  214. err2 = pfkey_broadcast_one(skb, &skb2, allocation, sk);
  215. /* Error is cleare after succecful sending to at least one
  216. * registered KM */
  217. if ((broadcast_flags & BROADCAST_REGISTERED) && err)
  218. err = err2;
  219. }
  220. pfkey_unlock_table();
  221. if (one_sk != NULL)
  222. err = pfkey_broadcast_one(skb, &skb2, allocation, one_sk);
  223. if (skb2)
  224. kfree_skb(skb2);
  225. kfree_skb(skb);
  226. return err;
  227. }
  228. static inline void pfkey_hdr_dup(struct sadb_msg *new, struct sadb_msg *orig)
  229. {
  230. *new = *orig;
  231. }
  232. static int pfkey_error(struct sadb_msg *orig, int err, struct sock *sk)
  233. {
  234. struct sk_buff *skb = alloc_skb(sizeof(struct sadb_msg) + 16, GFP_KERNEL);
  235. struct sadb_msg *hdr;
  236. if (!skb)
  237. return -ENOBUFS;
  238. /* Woe be to the platform trying to support PFKEY yet
  239. * having normal errnos outside the 1-255 range, inclusive.
  240. */
  241. err = -err;
  242. if (err == ERESTARTSYS ||
  243. err == ERESTARTNOHAND ||
  244. err == ERESTARTNOINTR)
  245. err = EINTR;
  246. if (err >= 512)
  247. err = EINVAL;
  248. BUG_ON(err <= 0 || err >= 256);
  249. hdr = (struct sadb_msg *) skb_put(skb, sizeof(struct sadb_msg));
  250. pfkey_hdr_dup(hdr, orig);
  251. hdr->sadb_msg_errno = (uint8_t) err;
  252. hdr->sadb_msg_len = (sizeof(struct sadb_msg) /
  253. sizeof(uint64_t));
  254. pfkey_broadcast(skb, GFP_KERNEL, BROADCAST_ONE, sk);
  255. return 0;
  256. }
  257. static u8 sadb_ext_min_len[] = {
  258. [SADB_EXT_RESERVED] = (u8) 0,
  259. [SADB_EXT_SA] = (u8) sizeof(struct sadb_sa),
  260. [SADB_EXT_LIFETIME_CURRENT] = (u8) sizeof(struct sadb_lifetime),
  261. [SADB_EXT_LIFETIME_HARD] = (u8) sizeof(struct sadb_lifetime),
  262. [SADB_EXT_LIFETIME_SOFT] = (u8) sizeof(struct sadb_lifetime),
  263. [SADB_EXT_ADDRESS_SRC] = (u8) sizeof(struct sadb_address),
  264. [SADB_EXT_ADDRESS_DST] = (u8) sizeof(struct sadb_address),
  265. [SADB_EXT_ADDRESS_PROXY] = (u8) sizeof(struct sadb_address),
  266. [SADB_EXT_KEY_AUTH] = (u8) sizeof(struct sadb_key),
  267. [SADB_EXT_KEY_ENCRYPT] = (u8) sizeof(struct sadb_key),
  268. [SADB_EXT_IDENTITY_SRC] = (u8) sizeof(struct sadb_ident),
  269. [SADB_EXT_IDENTITY_DST] = (u8) sizeof(struct sadb_ident),
  270. [SADB_EXT_SENSITIVITY] = (u8) sizeof(struct sadb_sens),
  271. [SADB_EXT_PROPOSAL] = (u8) sizeof(struct sadb_prop),
  272. [SADB_EXT_SUPPORTED_AUTH] = (u8) sizeof(struct sadb_supported),
  273. [SADB_EXT_SUPPORTED_ENCRYPT] = (u8) sizeof(struct sadb_supported),
  274. [SADB_EXT_SPIRANGE] = (u8) sizeof(struct sadb_spirange),
  275. [SADB_X_EXT_KMPRIVATE] = (u8) sizeof(struct sadb_x_kmprivate),
  276. [SADB_X_EXT_POLICY] = (u8) sizeof(struct sadb_x_policy),
  277. [SADB_X_EXT_SA2] = (u8) sizeof(struct sadb_x_sa2),
  278. [SADB_X_EXT_NAT_T_TYPE] = (u8) sizeof(struct sadb_x_nat_t_type),
  279. [SADB_X_EXT_NAT_T_SPORT] = (u8) sizeof(struct sadb_x_nat_t_port),
  280. [SADB_X_EXT_NAT_T_DPORT] = (u8) sizeof(struct sadb_x_nat_t_port),
  281. [SADB_X_EXT_NAT_T_OA] = (u8) sizeof(struct sadb_address),
  282. [SADB_X_EXT_SEC_CTX] = (u8) sizeof(struct sadb_x_sec_ctx),
  283. };
  284. /* Verify sadb_address_{len,prefixlen} against sa_family. */
  285. static int verify_address_len(void *p)
  286. {
  287. struct sadb_address *sp = p;
  288. struct sockaddr *addr = (struct sockaddr *)(sp + 1);
  289. struct sockaddr_in *sin;
  290. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  291. struct sockaddr_in6 *sin6;
  292. #endif
  293. int len;
  294. switch (addr->sa_family) {
  295. case AF_INET:
  296. len = sizeof(*sp) + sizeof(*sin) + (sizeof(uint64_t) - 1);
  297. len /= sizeof(uint64_t);
  298. if (sp->sadb_address_len != len ||
  299. sp->sadb_address_prefixlen > 32)
  300. return -EINVAL;
  301. break;
  302. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  303. case AF_INET6:
  304. len = sizeof(*sp) + sizeof(*sin6) + (sizeof(uint64_t) - 1);
  305. len /= sizeof(uint64_t);
  306. if (sp->sadb_address_len != len ||
  307. sp->sadb_address_prefixlen > 128)
  308. return -EINVAL;
  309. break;
  310. #endif
  311. default:
  312. /* It is user using kernel to keep track of security
  313. * associations for another protocol, such as
  314. * OSPF/RSVP/RIPV2/MIP. It is user's job to verify
  315. * lengths.
  316. *
  317. * XXX Actually, association/policy database is not yet
  318. * XXX able to cope with arbitrary sockaddr families.
  319. * XXX When it can, remove this -EINVAL. -DaveM
  320. */
  321. return -EINVAL;
  322. break;
  323. };
  324. return 0;
  325. }
  326. static inline int pfkey_sec_ctx_len(struct sadb_x_sec_ctx *sec_ctx)
  327. {
  328. int len = 0;
  329. len += sizeof(struct sadb_x_sec_ctx);
  330. len += sec_ctx->sadb_x_ctx_len;
  331. len += sizeof(uint64_t) - 1;
  332. len /= sizeof(uint64_t);
  333. return len;
  334. }
  335. static inline int verify_sec_ctx_len(void *p)
  336. {
  337. struct sadb_x_sec_ctx *sec_ctx = (struct sadb_x_sec_ctx *)p;
  338. int len;
  339. if (sec_ctx->sadb_x_ctx_len > PAGE_SIZE)
  340. return -EINVAL;
  341. len = pfkey_sec_ctx_len(sec_ctx);
  342. if (sec_ctx->sadb_x_sec_len != len)
  343. return -EINVAL;
  344. return 0;
  345. }
  346. static inline struct xfrm_user_sec_ctx *pfkey_sadb2xfrm_user_sec_ctx(struct sadb_x_sec_ctx *sec_ctx)
  347. {
  348. struct xfrm_user_sec_ctx *uctx = NULL;
  349. int ctx_size = sec_ctx->sadb_x_ctx_len;
  350. uctx = kmalloc((sizeof(*uctx)+ctx_size), GFP_KERNEL);
  351. if (!uctx)
  352. return NULL;
  353. uctx->len = pfkey_sec_ctx_len(sec_ctx);
  354. uctx->exttype = sec_ctx->sadb_x_sec_exttype;
  355. uctx->ctx_doi = sec_ctx->sadb_x_ctx_doi;
  356. uctx->ctx_alg = sec_ctx->sadb_x_ctx_alg;
  357. uctx->ctx_len = sec_ctx->sadb_x_ctx_len;
  358. memcpy(uctx + 1, sec_ctx + 1,
  359. uctx->ctx_len);
  360. return uctx;
  361. }
  362. static int present_and_same_family(struct sadb_address *src,
  363. struct sadb_address *dst)
  364. {
  365. struct sockaddr *s_addr, *d_addr;
  366. if (!src || !dst)
  367. return 0;
  368. s_addr = (struct sockaddr *)(src + 1);
  369. d_addr = (struct sockaddr *)(dst + 1);
  370. if (s_addr->sa_family != d_addr->sa_family)
  371. return 0;
  372. if (s_addr->sa_family != AF_INET
  373. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  374. && s_addr->sa_family != AF_INET6
  375. #endif
  376. )
  377. return 0;
  378. return 1;
  379. }
  380. static int parse_exthdrs(struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  381. {
  382. char *p = (char *) hdr;
  383. int len = skb->len;
  384. len -= sizeof(*hdr);
  385. p += sizeof(*hdr);
  386. while (len > 0) {
  387. struct sadb_ext *ehdr = (struct sadb_ext *) p;
  388. uint16_t ext_type;
  389. int ext_len;
  390. ext_len = ehdr->sadb_ext_len;
  391. ext_len *= sizeof(uint64_t);
  392. ext_type = ehdr->sadb_ext_type;
  393. if (ext_len < sizeof(uint64_t) ||
  394. ext_len > len ||
  395. ext_type == SADB_EXT_RESERVED)
  396. return -EINVAL;
  397. if (ext_type <= SADB_EXT_MAX) {
  398. int min = (int) sadb_ext_min_len[ext_type];
  399. if (ext_len < min)
  400. return -EINVAL;
  401. if (ext_hdrs[ext_type-1] != NULL)
  402. return -EINVAL;
  403. if (ext_type == SADB_EXT_ADDRESS_SRC ||
  404. ext_type == SADB_EXT_ADDRESS_DST ||
  405. ext_type == SADB_EXT_ADDRESS_PROXY ||
  406. ext_type == SADB_X_EXT_NAT_T_OA) {
  407. if (verify_address_len(p))
  408. return -EINVAL;
  409. }
  410. if (ext_type == SADB_X_EXT_SEC_CTX) {
  411. if (verify_sec_ctx_len(p))
  412. return -EINVAL;
  413. }
  414. ext_hdrs[ext_type-1] = p;
  415. }
  416. p += ext_len;
  417. len -= ext_len;
  418. }
  419. return 0;
  420. }
  421. static uint16_t
  422. pfkey_satype2proto(uint8_t satype)
  423. {
  424. switch (satype) {
  425. case SADB_SATYPE_UNSPEC:
  426. return IPSEC_PROTO_ANY;
  427. case SADB_SATYPE_AH:
  428. return IPPROTO_AH;
  429. case SADB_SATYPE_ESP:
  430. return IPPROTO_ESP;
  431. case SADB_X_SATYPE_IPCOMP:
  432. return IPPROTO_COMP;
  433. break;
  434. default:
  435. return 0;
  436. }
  437. /* NOTREACHED */
  438. }
  439. static uint8_t
  440. pfkey_proto2satype(uint16_t proto)
  441. {
  442. switch (proto) {
  443. case IPPROTO_AH:
  444. return SADB_SATYPE_AH;
  445. case IPPROTO_ESP:
  446. return SADB_SATYPE_ESP;
  447. case IPPROTO_COMP:
  448. return SADB_X_SATYPE_IPCOMP;
  449. break;
  450. default:
  451. return 0;
  452. }
  453. /* NOTREACHED */
  454. }
  455. /* BTW, this scheme means that there is no way with PFKEY2 sockets to
  456. * say specifically 'just raw sockets' as we encode them as 255.
  457. */
  458. static uint8_t pfkey_proto_to_xfrm(uint8_t proto)
  459. {
  460. return (proto == IPSEC_PROTO_ANY ? 0 : proto);
  461. }
  462. static uint8_t pfkey_proto_from_xfrm(uint8_t proto)
  463. {
  464. return (proto ? proto : IPSEC_PROTO_ANY);
  465. }
  466. static int pfkey_sadb_addr2xfrm_addr(struct sadb_address *addr,
  467. xfrm_address_t *xaddr)
  468. {
  469. switch (((struct sockaddr*)(addr + 1))->sa_family) {
  470. case AF_INET:
  471. xaddr->a4 =
  472. ((struct sockaddr_in *)(addr + 1))->sin_addr.s_addr;
  473. return AF_INET;
  474. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  475. case AF_INET6:
  476. memcpy(xaddr->a6,
  477. &((struct sockaddr_in6 *)(addr + 1))->sin6_addr,
  478. sizeof(struct in6_addr));
  479. return AF_INET6;
  480. #endif
  481. default:
  482. return 0;
  483. }
  484. /* NOTREACHED */
  485. }
  486. static struct xfrm_state *pfkey_xfrm_state_lookup(struct sadb_msg *hdr, void **ext_hdrs)
  487. {
  488. struct sadb_sa *sa;
  489. struct sadb_address *addr;
  490. uint16_t proto;
  491. unsigned short family;
  492. xfrm_address_t *xaddr;
  493. sa = (struct sadb_sa *) ext_hdrs[SADB_EXT_SA-1];
  494. if (sa == NULL)
  495. return NULL;
  496. proto = pfkey_satype2proto(hdr->sadb_msg_satype);
  497. if (proto == 0)
  498. return NULL;
  499. /* sadb_address_len should be checked by caller */
  500. addr = (struct sadb_address *) ext_hdrs[SADB_EXT_ADDRESS_DST-1];
  501. if (addr == NULL)
  502. return NULL;
  503. family = ((struct sockaddr *)(addr + 1))->sa_family;
  504. switch (family) {
  505. case AF_INET:
  506. xaddr = (xfrm_address_t *)&((struct sockaddr_in *)(addr + 1))->sin_addr;
  507. break;
  508. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  509. case AF_INET6:
  510. xaddr = (xfrm_address_t *)&((struct sockaddr_in6 *)(addr + 1))->sin6_addr;
  511. break;
  512. #endif
  513. default:
  514. xaddr = NULL;
  515. }
  516. if (!xaddr)
  517. return NULL;
  518. return xfrm_state_lookup(xaddr, sa->sadb_sa_spi, proto, family);
  519. }
  520. #define PFKEY_ALIGN8(a) (1 + (((a) - 1) | (8 - 1)))
  521. static int
  522. pfkey_sockaddr_size(sa_family_t family)
  523. {
  524. switch (family) {
  525. case AF_INET:
  526. return PFKEY_ALIGN8(sizeof(struct sockaddr_in));
  527. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  528. case AF_INET6:
  529. return PFKEY_ALIGN8(sizeof(struct sockaddr_in6));
  530. #endif
  531. default:
  532. return 0;
  533. }
  534. /* NOTREACHED */
  535. }
  536. static struct sk_buff * pfkey_xfrm_state2msg(struct xfrm_state *x, int add_keys, int hsc)
  537. {
  538. struct sk_buff *skb;
  539. struct sadb_msg *hdr;
  540. struct sadb_sa *sa;
  541. struct sadb_lifetime *lifetime;
  542. struct sadb_address *addr;
  543. struct sadb_key *key;
  544. struct sadb_x_sa2 *sa2;
  545. struct sockaddr_in *sin;
  546. struct sadb_x_sec_ctx *sec_ctx;
  547. struct xfrm_sec_ctx *xfrm_ctx;
  548. int ctx_size = 0;
  549. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  550. struct sockaddr_in6 *sin6;
  551. #endif
  552. int size;
  553. int auth_key_size = 0;
  554. int encrypt_key_size = 0;
  555. int sockaddr_size;
  556. struct xfrm_encap_tmpl *natt = NULL;
  557. /* address family check */
  558. sockaddr_size = pfkey_sockaddr_size(x->props.family);
  559. if (!sockaddr_size)
  560. return ERR_PTR(-EINVAL);
  561. /* base, SA, (lifetime (HSC),) address(SD), (address(P),)
  562. key(AE), (identity(SD),) (sensitivity)> */
  563. size = sizeof(struct sadb_msg) +sizeof(struct sadb_sa) +
  564. sizeof(struct sadb_lifetime) +
  565. ((hsc & 1) ? sizeof(struct sadb_lifetime) : 0) +
  566. ((hsc & 2) ? sizeof(struct sadb_lifetime) : 0) +
  567. sizeof(struct sadb_address)*2 +
  568. sockaddr_size*2 +
  569. sizeof(struct sadb_x_sa2);
  570. if ((xfrm_ctx = x->security)) {
  571. ctx_size = PFKEY_ALIGN8(xfrm_ctx->ctx_len);
  572. size += sizeof(struct sadb_x_sec_ctx) + ctx_size;
  573. }
  574. /* identity & sensitivity */
  575. if ((x->props.family == AF_INET &&
  576. x->sel.saddr.a4 != x->props.saddr.a4)
  577. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  578. || (x->props.family == AF_INET6 &&
  579. memcmp (x->sel.saddr.a6, x->props.saddr.a6, sizeof (struct in6_addr)))
  580. #endif
  581. )
  582. size += sizeof(struct sadb_address) + sockaddr_size;
  583. if (add_keys) {
  584. if (x->aalg && x->aalg->alg_key_len) {
  585. auth_key_size =
  586. PFKEY_ALIGN8((x->aalg->alg_key_len + 7) / 8);
  587. size += sizeof(struct sadb_key) + auth_key_size;
  588. }
  589. if (x->ealg && x->ealg->alg_key_len) {
  590. encrypt_key_size =
  591. PFKEY_ALIGN8((x->ealg->alg_key_len+7) / 8);
  592. size += sizeof(struct sadb_key) + encrypt_key_size;
  593. }
  594. }
  595. if (x->encap)
  596. natt = x->encap;
  597. if (natt && natt->encap_type) {
  598. size += sizeof(struct sadb_x_nat_t_type);
  599. size += sizeof(struct sadb_x_nat_t_port);
  600. size += sizeof(struct sadb_x_nat_t_port);
  601. }
  602. skb = alloc_skb(size + 16, GFP_ATOMIC);
  603. if (skb == NULL)
  604. return ERR_PTR(-ENOBUFS);
  605. /* call should fill header later */
  606. hdr = (struct sadb_msg *) skb_put(skb, sizeof(struct sadb_msg));
  607. memset(hdr, 0, size); /* XXX do we need this ? */
  608. hdr->sadb_msg_len = size / sizeof(uint64_t);
  609. /* sa */
  610. sa = (struct sadb_sa *) skb_put(skb, sizeof(struct sadb_sa));
  611. sa->sadb_sa_len = sizeof(struct sadb_sa)/sizeof(uint64_t);
  612. sa->sadb_sa_exttype = SADB_EXT_SA;
  613. sa->sadb_sa_spi = x->id.spi;
  614. sa->sadb_sa_replay = x->props.replay_window;
  615. switch (x->km.state) {
  616. case XFRM_STATE_VALID:
  617. sa->sadb_sa_state = x->km.dying ?
  618. SADB_SASTATE_DYING : SADB_SASTATE_MATURE;
  619. break;
  620. case XFRM_STATE_ACQ:
  621. sa->sadb_sa_state = SADB_SASTATE_LARVAL;
  622. break;
  623. default:
  624. sa->sadb_sa_state = SADB_SASTATE_DEAD;
  625. break;
  626. }
  627. sa->sadb_sa_auth = 0;
  628. if (x->aalg) {
  629. struct xfrm_algo_desc *a = xfrm_aalg_get_byname(x->aalg->alg_name, 0);
  630. sa->sadb_sa_auth = a ? a->desc.sadb_alg_id : 0;
  631. }
  632. sa->sadb_sa_encrypt = 0;
  633. BUG_ON(x->ealg && x->calg);
  634. if (x->ealg) {
  635. struct xfrm_algo_desc *a = xfrm_ealg_get_byname(x->ealg->alg_name, 0);
  636. sa->sadb_sa_encrypt = a ? a->desc.sadb_alg_id : 0;
  637. }
  638. /* KAME compatible: sadb_sa_encrypt is overloaded with calg id */
  639. if (x->calg) {
  640. struct xfrm_algo_desc *a = xfrm_calg_get_byname(x->calg->alg_name, 0);
  641. sa->sadb_sa_encrypt = a ? a->desc.sadb_alg_id : 0;
  642. }
  643. sa->sadb_sa_flags = 0;
  644. if (x->props.flags & XFRM_STATE_NOECN)
  645. sa->sadb_sa_flags |= SADB_SAFLAGS_NOECN;
  646. if (x->props.flags & XFRM_STATE_DECAP_DSCP)
  647. sa->sadb_sa_flags |= SADB_SAFLAGS_DECAP_DSCP;
  648. if (x->props.flags & XFRM_STATE_NOPMTUDISC)
  649. sa->sadb_sa_flags |= SADB_SAFLAGS_NOPMTUDISC;
  650. /* hard time */
  651. if (hsc & 2) {
  652. lifetime = (struct sadb_lifetime *) skb_put(skb,
  653. sizeof(struct sadb_lifetime));
  654. lifetime->sadb_lifetime_len =
  655. sizeof(struct sadb_lifetime)/sizeof(uint64_t);
  656. lifetime->sadb_lifetime_exttype = SADB_EXT_LIFETIME_HARD;
  657. lifetime->sadb_lifetime_allocations = _X2KEY(x->lft.hard_packet_limit);
  658. lifetime->sadb_lifetime_bytes = _X2KEY(x->lft.hard_byte_limit);
  659. lifetime->sadb_lifetime_addtime = x->lft.hard_add_expires_seconds;
  660. lifetime->sadb_lifetime_usetime = x->lft.hard_use_expires_seconds;
  661. }
  662. /* soft time */
  663. if (hsc & 1) {
  664. lifetime = (struct sadb_lifetime *) skb_put(skb,
  665. sizeof(struct sadb_lifetime));
  666. lifetime->sadb_lifetime_len =
  667. sizeof(struct sadb_lifetime)/sizeof(uint64_t);
  668. lifetime->sadb_lifetime_exttype = SADB_EXT_LIFETIME_SOFT;
  669. lifetime->sadb_lifetime_allocations = _X2KEY(x->lft.soft_packet_limit);
  670. lifetime->sadb_lifetime_bytes = _X2KEY(x->lft.soft_byte_limit);
  671. lifetime->sadb_lifetime_addtime = x->lft.soft_add_expires_seconds;
  672. lifetime->sadb_lifetime_usetime = x->lft.soft_use_expires_seconds;
  673. }
  674. /* current time */
  675. lifetime = (struct sadb_lifetime *) skb_put(skb,
  676. sizeof(struct sadb_lifetime));
  677. lifetime->sadb_lifetime_len =
  678. sizeof(struct sadb_lifetime)/sizeof(uint64_t);
  679. lifetime->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT;
  680. lifetime->sadb_lifetime_allocations = x->curlft.packets;
  681. lifetime->sadb_lifetime_bytes = x->curlft.bytes;
  682. lifetime->sadb_lifetime_addtime = x->curlft.add_time;
  683. lifetime->sadb_lifetime_usetime = x->curlft.use_time;
  684. /* src address */
  685. addr = (struct sadb_address*) skb_put(skb,
  686. sizeof(struct sadb_address)+sockaddr_size);
  687. addr->sadb_address_len =
  688. (sizeof(struct sadb_address)+sockaddr_size)/
  689. sizeof(uint64_t);
  690. addr->sadb_address_exttype = SADB_EXT_ADDRESS_SRC;
  691. /* "if the ports are non-zero, then the sadb_address_proto field,
  692. normally zero, MUST be filled in with the transport
  693. protocol's number." - RFC2367 */
  694. addr->sadb_address_proto = 0;
  695. addr->sadb_address_reserved = 0;
  696. if (x->props.family == AF_INET) {
  697. addr->sadb_address_prefixlen = 32;
  698. sin = (struct sockaddr_in *) (addr + 1);
  699. sin->sin_family = AF_INET;
  700. sin->sin_addr.s_addr = x->props.saddr.a4;
  701. sin->sin_port = 0;
  702. memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
  703. }
  704. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  705. else if (x->props.family == AF_INET6) {
  706. addr->sadb_address_prefixlen = 128;
  707. sin6 = (struct sockaddr_in6 *) (addr + 1);
  708. sin6->sin6_family = AF_INET6;
  709. sin6->sin6_port = 0;
  710. sin6->sin6_flowinfo = 0;
  711. memcpy(&sin6->sin6_addr, x->props.saddr.a6,
  712. sizeof(struct in6_addr));
  713. sin6->sin6_scope_id = 0;
  714. }
  715. #endif
  716. else
  717. BUG();
  718. /* dst address */
  719. addr = (struct sadb_address*) skb_put(skb,
  720. sizeof(struct sadb_address)+sockaddr_size);
  721. addr->sadb_address_len =
  722. (sizeof(struct sadb_address)+sockaddr_size)/
  723. sizeof(uint64_t);
  724. addr->sadb_address_exttype = SADB_EXT_ADDRESS_DST;
  725. addr->sadb_address_proto = 0;
  726. addr->sadb_address_prefixlen = 32; /* XXX */
  727. addr->sadb_address_reserved = 0;
  728. if (x->props.family == AF_INET) {
  729. sin = (struct sockaddr_in *) (addr + 1);
  730. sin->sin_family = AF_INET;
  731. sin->sin_addr.s_addr = x->id.daddr.a4;
  732. sin->sin_port = 0;
  733. memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
  734. if (x->sel.saddr.a4 != x->props.saddr.a4) {
  735. addr = (struct sadb_address*) skb_put(skb,
  736. sizeof(struct sadb_address)+sockaddr_size);
  737. addr->sadb_address_len =
  738. (sizeof(struct sadb_address)+sockaddr_size)/
  739. sizeof(uint64_t);
  740. addr->sadb_address_exttype = SADB_EXT_ADDRESS_PROXY;
  741. addr->sadb_address_proto =
  742. pfkey_proto_from_xfrm(x->sel.proto);
  743. addr->sadb_address_prefixlen = x->sel.prefixlen_s;
  744. addr->sadb_address_reserved = 0;
  745. sin = (struct sockaddr_in *) (addr + 1);
  746. sin->sin_family = AF_INET;
  747. sin->sin_addr.s_addr = x->sel.saddr.a4;
  748. sin->sin_port = x->sel.sport;
  749. memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
  750. }
  751. }
  752. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  753. else if (x->props.family == AF_INET6) {
  754. addr->sadb_address_prefixlen = 128;
  755. sin6 = (struct sockaddr_in6 *) (addr + 1);
  756. sin6->sin6_family = AF_INET6;
  757. sin6->sin6_port = 0;
  758. sin6->sin6_flowinfo = 0;
  759. memcpy(&sin6->sin6_addr, x->id.daddr.a6, sizeof(struct in6_addr));
  760. sin6->sin6_scope_id = 0;
  761. if (memcmp (x->sel.saddr.a6, x->props.saddr.a6,
  762. sizeof(struct in6_addr))) {
  763. addr = (struct sadb_address *) skb_put(skb,
  764. sizeof(struct sadb_address)+sockaddr_size);
  765. addr->sadb_address_len =
  766. (sizeof(struct sadb_address)+sockaddr_size)/
  767. sizeof(uint64_t);
  768. addr->sadb_address_exttype = SADB_EXT_ADDRESS_PROXY;
  769. addr->sadb_address_proto =
  770. pfkey_proto_from_xfrm(x->sel.proto);
  771. addr->sadb_address_prefixlen = x->sel.prefixlen_s;
  772. addr->sadb_address_reserved = 0;
  773. sin6 = (struct sockaddr_in6 *) (addr + 1);
  774. sin6->sin6_family = AF_INET6;
  775. sin6->sin6_port = x->sel.sport;
  776. sin6->sin6_flowinfo = 0;
  777. memcpy(&sin6->sin6_addr, x->sel.saddr.a6,
  778. sizeof(struct in6_addr));
  779. sin6->sin6_scope_id = 0;
  780. }
  781. }
  782. #endif
  783. else
  784. BUG();
  785. /* auth key */
  786. if (add_keys && auth_key_size) {
  787. key = (struct sadb_key *) skb_put(skb,
  788. sizeof(struct sadb_key)+auth_key_size);
  789. key->sadb_key_len = (sizeof(struct sadb_key) + auth_key_size) /
  790. sizeof(uint64_t);
  791. key->sadb_key_exttype = SADB_EXT_KEY_AUTH;
  792. key->sadb_key_bits = x->aalg->alg_key_len;
  793. key->sadb_key_reserved = 0;
  794. memcpy(key + 1, x->aalg->alg_key, (x->aalg->alg_key_len+7)/8);
  795. }
  796. /* encrypt key */
  797. if (add_keys && encrypt_key_size) {
  798. key = (struct sadb_key *) skb_put(skb,
  799. sizeof(struct sadb_key)+encrypt_key_size);
  800. key->sadb_key_len = (sizeof(struct sadb_key) +
  801. encrypt_key_size) / sizeof(uint64_t);
  802. key->sadb_key_exttype = SADB_EXT_KEY_ENCRYPT;
  803. key->sadb_key_bits = x->ealg->alg_key_len;
  804. key->sadb_key_reserved = 0;
  805. memcpy(key + 1, x->ealg->alg_key,
  806. (x->ealg->alg_key_len+7)/8);
  807. }
  808. /* sa */
  809. sa2 = (struct sadb_x_sa2 *) skb_put(skb, sizeof(struct sadb_x_sa2));
  810. sa2->sadb_x_sa2_len = sizeof(struct sadb_x_sa2)/sizeof(uint64_t);
  811. sa2->sadb_x_sa2_exttype = SADB_X_EXT_SA2;
  812. sa2->sadb_x_sa2_mode = x->props.mode + 1;
  813. sa2->sadb_x_sa2_reserved1 = 0;
  814. sa2->sadb_x_sa2_reserved2 = 0;
  815. sa2->sadb_x_sa2_sequence = 0;
  816. sa2->sadb_x_sa2_reqid = x->props.reqid;
  817. if (natt && natt->encap_type) {
  818. struct sadb_x_nat_t_type *n_type;
  819. struct sadb_x_nat_t_port *n_port;
  820. /* type */
  821. n_type = (struct sadb_x_nat_t_type*) skb_put(skb, sizeof(*n_type));
  822. n_type->sadb_x_nat_t_type_len = sizeof(*n_type)/sizeof(uint64_t);
  823. n_type->sadb_x_nat_t_type_exttype = SADB_X_EXT_NAT_T_TYPE;
  824. n_type->sadb_x_nat_t_type_type = natt->encap_type;
  825. n_type->sadb_x_nat_t_type_reserved[0] = 0;
  826. n_type->sadb_x_nat_t_type_reserved[1] = 0;
  827. n_type->sadb_x_nat_t_type_reserved[2] = 0;
  828. /* source port */
  829. n_port = (struct sadb_x_nat_t_port*) skb_put(skb, sizeof (*n_port));
  830. n_port->sadb_x_nat_t_port_len = sizeof(*n_port)/sizeof(uint64_t);
  831. n_port->sadb_x_nat_t_port_exttype = SADB_X_EXT_NAT_T_SPORT;
  832. n_port->sadb_x_nat_t_port_port = natt->encap_sport;
  833. n_port->sadb_x_nat_t_port_reserved = 0;
  834. /* dest port */
  835. n_port = (struct sadb_x_nat_t_port*) skb_put(skb, sizeof (*n_port));
  836. n_port->sadb_x_nat_t_port_len = sizeof(*n_port)/sizeof(uint64_t);
  837. n_port->sadb_x_nat_t_port_exttype = SADB_X_EXT_NAT_T_DPORT;
  838. n_port->sadb_x_nat_t_port_port = natt->encap_dport;
  839. n_port->sadb_x_nat_t_port_reserved = 0;
  840. }
  841. /* security context */
  842. if (xfrm_ctx) {
  843. sec_ctx = (struct sadb_x_sec_ctx *) skb_put(skb,
  844. sizeof(struct sadb_x_sec_ctx) + ctx_size);
  845. sec_ctx->sadb_x_sec_len =
  846. (sizeof(struct sadb_x_sec_ctx) + ctx_size) / sizeof(uint64_t);
  847. sec_ctx->sadb_x_sec_exttype = SADB_X_EXT_SEC_CTX;
  848. sec_ctx->sadb_x_ctx_doi = xfrm_ctx->ctx_doi;
  849. sec_ctx->sadb_x_ctx_alg = xfrm_ctx->ctx_alg;
  850. sec_ctx->sadb_x_ctx_len = xfrm_ctx->ctx_len;
  851. memcpy(sec_ctx + 1, xfrm_ctx->ctx_str,
  852. xfrm_ctx->ctx_len);
  853. }
  854. return skb;
  855. }
  856. static struct xfrm_state * pfkey_msg2xfrm_state(struct sadb_msg *hdr,
  857. void **ext_hdrs)
  858. {
  859. struct xfrm_state *x;
  860. struct sadb_lifetime *lifetime;
  861. struct sadb_sa *sa;
  862. struct sadb_key *key;
  863. struct sadb_x_sec_ctx *sec_ctx;
  864. uint16_t proto;
  865. int err;
  866. sa = (struct sadb_sa *) ext_hdrs[SADB_EXT_SA-1];
  867. if (!sa ||
  868. !present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  869. ext_hdrs[SADB_EXT_ADDRESS_DST-1]))
  870. return ERR_PTR(-EINVAL);
  871. if (hdr->sadb_msg_satype == SADB_SATYPE_ESP &&
  872. !ext_hdrs[SADB_EXT_KEY_ENCRYPT-1])
  873. return ERR_PTR(-EINVAL);
  874. if (hdr->sadb_msg_satype == SADB_SATYPE_AH &&
  875. !ext_hdrs[SADB_EXT_KEY_AUTH-1])
  876. return ERR_PTR(-EINVAL);
  877. if (!!ext_hdrs[SADB_EXT_LIFETIME_HARD-1] !=
  878. !!ext_hdrs[SADB_EXT_LIFETIME_SOFT-1])
  879. return ERR_PTR(-EINVAL);
  880. proto = pfkey_satype2proto(hdr->sadb_msg_satype);
  881. if (proto == 0)
  882. return ERR_PTR(-EINVAL);
  883. /* default error is no buffer space */
  884. err = -ENOBUFS;
  885. /* RFC2367:
  886. Only SADB_SASTATE_MATURE SAs may be submitted in an SADB_ADD message.
  887. SADB_SASTATE_LARVAL SAs are created by SADB_GETSPI and it is not
  888. sensible to add a new SA in the DYING or SADB_SASTATE_DEAD state.
  889. Therefore, the sadb_sa_state field of all submitted SAs MUST be
  890. SADB_SASTATE_MATURE and the kernel MUST return an error if this is
  891. not true.
  892. However, KAME setkey always uses SADB_SASTATE_LARVAL.
  893. Hence, we have to _ignore_ sadb_sa_state, which is also reasonable.
  894. */
  895. if (sa->sadb_sa_auth > SADB_AALG_MAX ||
  896. (hdr->sadb_msg_satype == SADB_X_SATYPE_IPCOMP &&
  897. sa->sadb_sa_encrypt > SADB_X_CALG_MAX) ||
  898. sa->sadb_sa_encrypt > SADB_EALG_MAX)
  899. return ERR_PTR(-EINVAL);
  900. key = (struct sadb_key*) ext_hdrs[SADB_EXT_KEY_AUTH-1];
  901. if (key != NULL &&
  902. sa->sadb_sa_auth != SADB_X_AALG_NULL &&
  903. ((key->sadb_key_bits+7) / 8 == 0 ||
  904. (key->sadb_key_bits+7) / 8 > key->sadb_key_len * sizeof(uint64_t)))
  905. return ERR_PTR(-EINVAL);
  906. key = ext_hdrs[SADB_EXT_KEY_ENCRYPT-1];
  907. if (key != NULL &&
  908. sa->sadb_sa_encrypt != SADB_EALG_NULL &&
  909. ((key->sadb_key_bits+7) / 8 == 0 ||
  910. (key->sadb_key_bits+7) / 8 > key->sadb_key_len * sizeof(uint64_t)))
  911. return ERR_PTR(-EINVAL);
  912. x = xfrm_state_alloc();
  913. if (x == NULL)
  914. return ERR_PTR(-ENOBUFS);
  915. x->id.proto = proto;
  916. x->id.spi = sa->sadb_sa_spi;
  917. x->props.replay_window = sa->sadb_sa_replay;
  918. if (sa->sadb_sa_flags & SADB_SAFLAGS_NOECN)
  919. x->props.flags |= XFRM_STATE_NOECN;
  920. if (sa->sadb_sa_flags & SADB_SAFLAGS_DECAP_DSCP)
  921. x->props.flags |= XFRM_STATE_DECAP_DSCP;
  922. if (sa->sadb_sa_flags & SADB_SAFLAGS_NOPMTUDISC)
  923. x->props.flags |= XFRM_STATE_NOPMTUDISC;
  924. lifetime = (struct sadb_lifetime*) ext_hdrs[SADB_EXT_LIFETIME_HARD-1];
  925. if (lifetime != NULL) {
  926. x->lft.hard_packet_limit = _KEY2X(lifetime->sadb_lifetime_allocations);
  927. x->lft.hard_byte_limit = _KEY2X(lifetime->sadb_lifetime_bytes);
  928. x->lft.hard_add_expires_seconds = lifetime->sadb_lifetime_addtime;
  929. x->lft.hard_use_expires_seconds = lifetime->sadb_lifetime_usetime;
  930. }
  931. lifetime = (struct sadb_lifetime*) ext_hdrs[SADB_EXT_LIFETIME_SOFT-1];
  932. if (lifetime != NULL) {
  933. x->lft.soft_packet_limit = _KEY2X(lifetime->sadb_lifetime_allocations);
  934. x->lft.soft_byte_limit = _KEY2X(lifetime->sadb_lifetime_bytes);
  935. x->lft.soft_add_expires_seconds = lifetime->sadb_lifetime_addtime;
  936. x->lft.soft_use_expires_seconds = lifetime->sadb_lifetime_usetime;
  937. }
  938. sec_ctx = (struct sadb_x_sec_ctx *) ext_hdrs[SADB_X_EXT_SEC_CTX-1];
  939. if (sec_ctx != NULL) {
  940. struct xfrm_user_sec_ctx *uctx = pfkey_sadb2xfrm_user_sec_ctx(sec_ctx);
  941. if (!uctx)
  942. goto out;
  943. err = security_xfrm_state_alloc(x, uctx);
  944. kfree(uctx);
  945. if (err)
  946. goto out;
  947. }
  948. key = (struct sadb_key*) ext_hdrs[SADB_EXT_KEY_AUTH-1];
  949. if (sa->sadb_sa_auth) {
  950. int keysize = 0;
  951. struct xfrm_algo_desc *a = xfrm_aalg_get_byid(sa->sadb_sa_auth);
  952. if (!a) {
  953. err = -ENOSYS;
  954. goto out;
  955. }
  956. if (key)
  957. keysize = (key->sadb_key_bits + 7) / 8;
  958. x->aalg = kmalloc(sizeof(*x->aalg) + keysize, GFP_KERNEL);
  959. if (!x->aalg)
  960. goto out;
  961. strcpy(x->aalg->alg_name, a->name);
  962. x->aalg->alg_key_len = 0;
  963. if (key) {
  964. x->aalg->alg_key_len = key->sadb_key_bits;
  965. memcpy(x->aalg->alg_key, key+1, keysize);
  966. }
  967. x->props.aalgo = sa->sadb_sa_auth;
  968. /* x->algo.flags = sa->sadb_sa_flags; */
  969. }
  970. if (sa->sadb_sa_encrypt) {
  971. if (hdr->sadb_msg_satype == SADB_X_SATYPE_IPCOMP) {
  972. struct xfrm_algo_desc *a = xfrm_calg_get_byid(sa->sadb_sa_encrypt);
  973. if (!a) {
  974. err = -ENOSYS;
  975. goto out;
  976. }
  977. x->calg = kmalloc(sizeof(*x->calg), GFP_KERNEL);
  978. if (!x->calg)
  979. goto out;
  980. strcpy(x->calg->alg_name, a->name);
  981. x->props.calgo = sa->sadb_sa_encrypt;
  982. } else {
  983. int keysize = 0;
  984. struct xfrm_algo_desc *a = xfrm_ealg_get_byid(sa->sadb_sa_encrypt);
  985. if (!a) {
  986. err = -ENOSYS;
  987. goto out;
  988. }
  989. key = (struct sadb_key*) ext_hdrs[SADB_EXT_KEY_ENCRYPT-1];
  990. if (key)
  991. keysize = (key->sadb_key_bits + 7) / 8;
  992. x->ealg = kmalloc(sizeof(*x->ealg) + keysize, GFP_KERNEL);
  993. if (!x->ealg)
  994. goto out;
  995. strcpy(x->ealg->alg_name, a->name);
  996. x->ealg->alg_key_len = 0;
  997. if (key) {
  998. x->ealg->alg_key_len = key->sadb_key_bits;
  999. memcpy(x->ealg->alg_key, key+1, keysize);
  1000. }
  1001. x->props.ealgo = sa->sadb_sa_encrypt;
  1002. }
  1003. }
  1004. /* x->algo.flags = sa->sadb_sa_flags; */
  1005. x->props.family = pfkey_sadb_addr2xfrm_addr((struct sadb_address *) ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  1006. &x->props.saddr);
  1007. if (!x->props.family) {
  1008. err = -EAFNOSUPPORT;
  1009. goto out;
  1010. }
  1011. pfkey_sadb_addr2xfrm_addr((struct sadb_address *) ext_hdrs[SADB_EXT_ADDRESS_DST-1],
  1012. &x->id.daddr);
  1013. if (ext_hdrs[SADB_X_EXT_SA2-1]) {
  1014. struct sadb_x_sa2 *sa2 = (void*)ext_hdrs[SADB_X_EXT_SA2-1];
  1015. x->props.mode = sa2->sadb_x_sa2_mode;
  1016. if (x->props.mode)
  1017. x->props.mode--;
  1018. x->props.reqid = sa2->sadb_x_sa2_reqid;
  1019. }
  1020. if (ext_hdrs[SADB_EXT_ADDRESS_PROXY-1]) {
  1021. struct sadb_address *addr = ext_hdrs[SADB_EXT_ADDRESS_PROXY-1];
  1022. /* Nobody uses this, but we try. */
  1023. x->sel.family = pfkey_sadb_addr2xfrm_addr(addr, &x->sel.saddr);
  1024. x->sel.prefixlen_s = addr->sadb_address_prefixlen;
  1025. }
  1026. if (ext_hdrs[SADB_X_EXT_NAT_T_TYPE-1]) {
  1027. struct sadb_x_nat_t_type* n_type;
  1028. struct xfrm_encap_tmpl *natt;
  1029. x->encap = kmalloc(sizeof(*x->encap), GFP_KERNEL);
  1030. if (!x->encap)
  1031. goto out;
  1032. natt = x->encap;
  1033. n_type = ext_hdrs[SADB_X_EXT_NAT_T_TYPE-1];
  1034. natt->encap_type = n_type->sadb_x_nat_t_type_type;
  1035. if (ext_hdrs[SADB_X_EXT_NAT_T_SPORT-1]) {
  1036. struct sadb_x_nat_t_port* n_port =
  1037. ext_hdrs[SADB_X_EXT_NAT_T_SPORT-1];
  1038. natt->encap_sport = n_port->sadb_x_nat_t_port_port;
  1039. }
  1040. if (ext_hdrs[SADB_X_EXT_NAT_T_DPORT-1]) {
  1041. struct sadb_x_nat_t_port* n_port =
  1042. ext_hdrs[SADB_X_EXT_NAT_T_DPORT-1];
  1043. natt->encap_dport = n_port->sadb_x_nat_t_port_port;
  1044. }
  1045. }
  1046. err = xfrm_init_state(x);
  1047. if (err)
  1048. goto out;
  1049. x->km.seq = hdr->sadb_msg_seq;
  1050. return x;
  1051. out:
  1052. x->km.state = XFRM_STATE_DEAD;
  1053. xfrm_state_put(x);
  1054. return ERR_PTR(err);
  1055. }
  1056. static int pfkey_reserved(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1057. {
  1058. return -EOPNOTSUPP;
  1059. }
  1060. static int pfkey_getspi(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1061. {
  1062. struct sk_buff *resp_skb;
  1063. struct sadb_x_sa2 *sa2;
  1064. struct sadb_address *saddr, *daddr;
  1065. struct sadb_msg *out_hdr;
  1066. struct xfrm_state *x = NULL;
  1067. u8 mode;
  1068. u32 reqid;
  1069. u8 proto;
  1070. unsigned short family;
  1071. xfrm_address_t *xsaddr = NULL, *xdaddr = NULL;
  1072. if (!present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  1073. ext_hdrs[SADB_EXT_ADDRESS_DST-1]))
  1074. return -EINVAL;
  1075. proto = pfkey_satype2proto(hdr->sadb_msg_satype);
  1076. if (proto == 0)
  1077. return -EINVAL;
  1078. if ((sa2 = ext_hdrs[SADB_X_EXT_SA2-1]) != NULL) {
  1079. mode = sa2->sadb_x_sa2_mode - 1;
  1080. reqid = sa2->sadb_x_sa2_reqid;
  1081. } else {
  1082. mode = 0;
  1083. reqid = 0;
  1084. }
  1085. saddr = ext_hdrs[SADB_EXT_ADDRESS_SRC-1];
  1086. daddr = ext_hdrs[SADB_EXT_ADDRESS_DST-1];
  1087. family = ((struct sockaddr *)(saddr + 1))->sa_family;
  1088. switch (family) {
  1089. case AF_INET:
  1090. xdaddr = (xfrm_address_t *)&((struct sockaddr_in *)(daddr + 1))->sin_addr.s_addr;
  1091. xsaddr = (xfrm_address_t *)&((struct sockaddr_in *)(saddr + 1))->sin_addr.s_addr;
  1092. break;
  1093. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  1094. case AF_INET6:
  1095. xdaddr = (xfrm_address_t *)&((struct sockaddr_in6 *)(daddr + 1))->sin6_addr;
  1096. xsaddr = (xfrm_address_t *)&((struct sockaddr_in6 *)(saddr + 1))->sin6_addr;
  1097. break;
  1098. #endif
  1099. }
  1100. if (hdr->sadb_msg_seq) {
  1101. x = xfrm_find_acq_byseq(hdr->sadb_msg_seq);
  1102. if (x && xfrm_addr_cmp(&x->id.daddr, xdaddr, family)) {
  1103. xfrm_state_put(x);
  1104. x = NULL;
  1105. }
  1106. }
  1107. if (!x)
  1108. x = xfrm_find_acq(mode, reqid, proto, xdaddr, xsaddr, 1, family);
  1109. if (x == NULL)
  1110. return -ENOENT;
  1111. resp_skb = ERR_PTR(-ENOENT);
  1112. spin_lock_bh(&x->lock);
  1113. if (x->km.state != XFRM_STATE_DEAD) {
  1114. struct sadb_spirange *range = ext_hdrs[SADB_EXT_SPIRANGE-1];
  1115. u32 min_spi, max_spi;
  1116. if (range != NULL) {
  1117. min_spi = range->sadb_spirange_min;
  1118. max_spi = range->sadb_spirange_max;
  1119. } else {
  1120. min_spi = 0x100;
  1121. max_spi = 0x0fffffff;
  1122. }
  1123. xfrm_alloc_spi(x, htonl(min_spi), htonl(max_spi));
  1124. if (x->id.spi)
  1125. resp_skb = pfkey_xfrm_state2msg(x, 0, 3);
  1126. }
  1127. spin_unlock_bh(&x->lock);
  1128. if (IS_ERR(resp_skb)) {
  1129. xfrm_state_put(x);
  1130. return PTR_ERR(resp_skb);
  1131. }
  1132. out_hdr = (struct sadb_msg *) resp_skb->data;
  1133. out_hdr->sadb_msg_version = hdr->sadb_msg_version;
  1134. out_hdr->sadb_msg_type = SADB_GETSPI;
  1135. out_hdr->sadb_msg_satype = pfkey_proto2satype(proto);
  1136. out_hdr->sadb_msg_errno = 0;
  1137. out_hdr->sadb_msg_reserved = 0;
  1138. out_hdr->sadb_msg_seq = hdr->sadb_msg_seq;
  1139. out_hdr->sadb_msg_pid = hdr->sadb_msg_pid;
  1140. xfrm_state_put(x);
  1141. pfkey_broadcast(resp_skb, GFP_KERNEL, BROADCAST_ONE, sk);
  1142. return 0;
  1143. }
  1144. static int pfkey_acquire(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1145. {
  1146. struct xfrm_state *x;
  1147. if (hdr->sadb_msg_len != sizeof(struct sadb_msg)/8)
  1148. return -EOPNOTSUPP;
  1149. if (hdr->sadb_msg_seq == 0 || hdr->sadb_msg_errno == 0)
  1150. return 0;
  1151. x = xfrm_find_acq_byseq(hdr->sadb_msg_seq);
  1152. if (x == NULL)
  1153. return 0;
  1154. spin_lock_bh(&x->lock);
  1155. if (x->km.state == XFRM_STATE_ACQ) {
  1156. x->km.state = XFRM_STATE_ERROR;
  1157. wake_up(&km_waitq);
  1158. }
  1159. spin_unlock_bh(&x->lock);
  1160. xfrm_state_put(x);
  1161. return 0;
  1162. }
  1163. static inline int event2poltype(int event)
  1164. {
  1165. switch (event) {
  1166. case XFRM_MSG_DELPOLICY:
  1167. return SADB_X_SPDDELETE;
  1168. case XFRM_MSG_NEWPOLICY:
  1169. return SADB_X_SPDADD;
  1170. case XFRM_MSG_UPDPOLICY:
  1171. return SADB_X_SPDUPDATE;
  1172. case XFRM_MSG_POLEXPIRE:
  1173. // return SADB_X_SPDEXPIRE;
  1174. default:
  1175. printk("pfkey: Unknown policy event %d\n", event);
  1176. break;
  1177. }
  1178. return 0;
  1179. }
  1180. static inline int event2keytype(int event)
  1181. {
  1182. switch (event) {
  1183. case XFRM_MSG_DELSA:
  1184. return SADB_DELETE;
  1185. case XFRM_MSG_NEWSA:
  1186. return SADB_ADD;
  1187. case XFRM_MSG_UPDSA:
  1188. return SADB_UPDATE;
  1189. case XFRM_MSG_EXPIRE:
  1190. return SADB_EXPIRE;
  1191. default:
  1192. printk("pfkey: Unknown SA event %d\n", event);
  1193. break;
  1194. }
  1195. return 0;
  1196. }
  1197. /* ADD/UPD/DEL */
  1198. static int key_notify_sa(struct xfrm_state *x, struct km_event *c)
  1199. {
  1200. struct sk_buff *skb;
  1201. struct sadb_msg *hdr;
  1202. int hsc = 3;
  1203. if (c->event == XFRM_MSG_DELSA)
  1204. hsc = 0;
  1205. skb = pfkey_xfrm_state2msg(x, 0, hsc);
  1206. if (IS_ERR(skb))
  1207. return PTR_ERR(skb);
  1208. hdr = (struct sadb_msg *) skb->data;
  1209. hdr->sadb_msg_version = PF_KEY_V2;
  1210. hdr->sadb_msg_type = event2keytype(c->event);
  1211. hdr->sadb_msg_satype = pfkey_proto2satype(x->id.proto);
  1212. hdr->sadb_msg_errno = 0;
  1213. hdr->sadb_msg_reserved = 0;
  1214. hdr->sadb_msg_seq = c->seq;
  1215. hdr->sadb_msg_pid = c->pid;
  1216. pfkey_broadcast(skb, GFP_ATOMIC, BROADCAST_ALL, NULL);
  1217. return 0;
  1218. }
  1219. static int pfkey_add(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1220. {
  1221. struct xfrm_state *x;
  1222. int err;
  1223. struct km_event c;
  1224. xfrm_probe_algs();
  1225. x = pfkey_msg2xfrm_state(hdr, ext_hdrs);
  1226. if (IS_ERR(x))
  1227. return PTR_ERR(x);
  1228. xfrm_state_hold(x);
  1229. if (hdr->sadb_msg_type == SADB_ADD)
  1230. err = xfrm_state_add(x);
  1231. else
  1232. err = xfrm_state_update(x);
  1233. xfrm_audit_log(audit_get_loginuid(current->audit_context), 0,
  1234. AUDIT_MAC_IPSEC_ADDSA, err ? 0 : 1, NULL, x);
  1235. if (err < 0) {
  1236. x->km.state = XFRM_STATE_DEAD;
  1237. __xfrm_state_put(x);
  1238. goto out;
  1239. }
  1240. if (hdr->sadb_msg_type == SADB_ADD)
  1241. c.event = XFRM_MSG_NEWSA;
  1242. else
  1243. c.event = XFRM_MSG_UPDSA;
  1244. c.seq = hdr->sadb_msg_seq;
  1245. c.pid = hdr->sadb_msg_pid;
  1246. km_state_notify(x, &c);
  1247. out:
  1248. xfrm_state_put(x);
  1249. return err;
  1250. }
  1251. static int pfkey_delete(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1252. {
  1253. struct xfrm_state *x;
  1254. struct km_event c;
  1255. int err;
  1256. if (!ext_hdrs[SADB_EXT_SA-1] ||
  1257. !present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  1258. ext_hdrs[SADB_EXT_ADDRESS_DST-1]))
  1259. return -EINVAL;
  1260. x = pfkey_xfrm_state_lookup(hdr, ext_hdrs);
  1261. if (x == NULL)
  1262. return -ESRCH;
  1263. if ((err = security_xfrm_state_delete(x)))
  1264. goto out;
  1265. if (xfrm_state_kern(x)) {
  1266. err = -EPERM;
  1267. goto out;
  1268. }
  1269. err = xfrm_state_delete(x);
  1270. xfrm_audit_log(audit_get_loginuid(current->audit_context), 0,
  1271. AUDIT_MAC_IPSEC_DELSA, err ? 0 : 1, NULL, x);
  1272. if (err < 0)
  1273. goto out;
  1274. c.seq = hdr->sadb_msg_seq;
  1275. c.pid = hdr->sadb_msg_pid;
  1276. c.event = XFRM_MSG_DELSA;
  1277. km_state_notify(x, &c);
  1278. out:
  1279. xfrm_state_put(x);
  1280. return err;
  1281. }
  1282. static int pfkey_get(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1283. {
  1284. __u8 proto;
  1285. struct sk_buff *out_skb;
  1286. struct sadb_msg *out_hdr;
  1287. struct xfrm_state *x;
  1288. if (!ext_hdrs[SADB_EXT_SA-1] ||
  1289. !present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  1290. ext_hdrs[SADB_EXT_ADDRESS_DST-1]))
  1291. return -EINVAL;
  1292. x = pfkey_xfrm_state_lookup(hdr, ext_hdrs);
  1293. if (x == NULL)
  1294. return -ESRCH;
  1295. out_skb = pfkey_xfrm_state2msg(x, 1, 3);
  1296. proto = x->id.proto;
  1297. xfrm_state_put(x);
  1298. if (IS_ERR(out_skb))
  1299. return PTR_ERR(out_skb);
  1300. out_hdr = (struct sadb_msg *) out_skb->data;
  1301. out_hdr->sadb_msg_version = hdr->sadb_msg_version;
  1302. out_hdr->sadb_msg_type = SADB_DUMP;
  1303. out_hdr->sadb_msg_satype = pfkey_proto2satype(proto);
  1304. out_hdr->sadb_msg_errno = 0;
  1305. out_hdr->sadb_msg_reserved = 0;
  1306. out_hdr->sadb_msg_seq = hdr->sadb_msg_seq;
  1307. out_hdr->sadb_msg_pid = hdr->sadb_msg_pid;
  1308. pfkey_broadcast(out_skb, GFP_ATOMIC, BROADCAST_ONE, sk);
  1309. return 0;
  1310. }
  1311. static struct sk_buff *compose_sadb_supported(struct sadb_msg *orig,
  1312. gfp_t allocation)
  1313. {
  1314. struct sk_buff *skb;
  1315. struct sadb_msg *hdr;
  1316. int len, auth_len, enc_len, i;
  1317. auth_len = xfrm_count_auth_supported();
  1318. if (auth_len) {
  1319. auth_len *= sizeof(struct sadb_alg);
  1320. auth_len += sizeof(struct sadb_supported);
  1321. }
  1322. enc_len = xfrm_count_enc_supported();
  1323. if (enc_len) {
  1324. enc_len *= sizeof(struct sadb_alg);
  1325. enc_len += sizeof(struct sadb_supported);
  1326. }
  1327. len = enc_len + auth_len + sizeof(struct sadb_msg);
  1328. skb = alloc_skb(len + 16, allocation);
  1329. if (!skb)
  1330. goto out_put_algs;
  1331. hdr = (struct sadb_msg *) skb_put(skb, sizeof(*hdr));
  1332. pfkey_hdr_dup(hdr, orig);
  1333. hdr->sadb_msg_errno = 0;
  1334. hdr->sadb_msg_len = len / sizeof(uint64_t);
  1335. if (auth_len) {
  1336. struct sadb_supported *sp;
  1337. struct sadb_alg *ap;
  1338. sp = (struct sadb_supported *) skb_put(skb, auth_len);
  1339. ap = (struct sadb_alg *) (sp + 1);
  1340. sp->sadb_supported_len = auth_len / sizeof(uint64_t);
  1341. sp->sadb_supported_exttype = SADB_EXT_SUPPORTED_AUTH;
  1342. for (i = 0; ; i++) {
  1343. struct xfrm_algo_desc *aalg = xfrm_aalg_get_byidx(i);
  1344. if (!aalg)
  1345. break;
  1346. if (aalg->available)
  1347. *ap++ = aalg->desc;
  1348. }
  1349. }
  1350. if (enc_len) {
  1351. struct sadb_supported *sp;
  1352. struct sadb_alg *ap;
  1353. sp = (struct sadb_supported *) skb_put(skb, enc_len);
  1354. ap = (struct sadb_alg *) (sp + 1);
  1355. sp->sadb_supported_len = enc_len / sizeof(uint64_t);
  1356. sp->sadb_supported_exttype = SADB_EXT_SUPPORTED_ENCRYPT;
  1357. for (i = 0; ; i++) {
  1358. struct xfrm_algo_desc *ealg = xfrm_ealg_get_byidx(i);
  1359. if (!ealg)
  1360. break;
  1361. if (ealg->available)
  1362. *ap++ = ealg->desc;
  1363. }
  1364. }
  1365. out_put_algs:
  1366. return skb;
  1367. }
  1368. static int pfkey_register(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1369. {
  1370. struct pfkey_sock *pfk = pfkey_sk(sk);
  1371. struct sk_buff *supp_skb;
  1372. if (hdr->sadb_msg_satype > SADB_SATYPE_MAX)
  1373. return -EINVAL;
  1374. if (hdr->sadb_msg_satype != SADB_SATYPE_UNSPEC) {
  1375. if (pfk->registered&(1<<hdr->sadb_msg_satype))
  1376. return -EEXIST;
  1377. pfk->registered |= (1<<hdr->sadb_msg_satype);
  1378. }
  1379. xfrm_probe_algs();
  1380. supp_skb = compose_sadb_supported(hdr, GFP_KERNEL);
  1381. if (!supp_skb) {
  1382. if (hdr->sadb_msg_satype != SADB_SATYPE_UNSPEC)
  1383. pfk->registered &= ~(1<<hdr->sadb_msg_satype);
  1384. return -ENOBUFS;
  1385. }
  1386. pfkey_broadcast(supp_skb, GFP_KERNEL, BROADCAST_REGISTERED, sk);
  1387. return 0;
  1388. }
  1389. static int key_notify_sa_flush(struct km_event *c)
  1390. {
  1391. struct sk_buff *skb;
  1392. struct sadb_msg *hdr;
  1393. skb = alloc_skb(sizeof(struct sadb_msg) + 16, GFP_ATOMIC);
  1394. if (!skb)
  1395. return -ENOBUFS;
  1396. hdr = (struct sadb_msg *) skb_put(skb, sizeof(struct sadb_msg));
  1397. hdr->sadb_msg_satype = pfkey_proto2satype(c->data.proto);
  1398. hdr->sadb_msg_type = SADB_FLUSH;
  1399. hdr->sadb_msg_seq = c->seq;
  1400. hdr->sadb_msg_pid = c->pid;
  1401. hdr->sadb_msg_version = PF_KEY_V2;
  1402. hdr->sadb_msg_errno = (uint8_t) 0;
  1403. hdr->sadb_msg_len = (sizeof(struct sadb_msg) / sizeof(uint64_t));
  1404. pfkey_broadcast(skb, GFP_ATOMIC, BROADCAST_ALL, NULL);
  1405. return 0;
  1406. }
  1407. static int pfkey_flush(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1408. {
  1409. unsigned proto;
  1410. struct km_event c;
  1411. struct xfrm_audit audit_info;
  1412. proto = pfkey_satype2proto(hdr->sadb_msg_satype);
  1413. if (proto == 0)
  1414. return -EINVAL;
  1415. audit_info.loginuid = audit_get_loginuid(current->audit_context);
  1416. audit_info.secid = 0;
  1417. xfrm_state_flush(proto, &audit_info);
  1418. c.data.proto = proto;
  1419. c.seq = hdr->sadb_msg_seq;
  1420. c.pid = hdr->sadb_msg_pid;
  1421. c.event = XFRM_MSG_FLUSHSA;
  1422. km_state_notify(NULL, &c);
  1423. return 0;
  1424. }
  1425. struct pfkey_dump_data
  1426. {
  1427. struct sk_buff *skb;
  1428. struct sadb_msg *hdr;
  1429. struct sock *sk;
  1430. };
  1431. static int dump_sa(struct xfrm_state *x, int count, void *ptr)
  1432. {
  1433. struct pfkey_dump_data *data = ptr;
  1434. struct sk_buff *out_skb;
  1435. struct sadb_msg *out_hdr;
  1436. out_skb = pfkey_xfrm_state2msg(x, 1, 3);
  1437. if (IS_ERR(out_skb))
  1438. return PTR_ERR(out_skb);
  1439. out_hdr = (struct sadb_msg *) out_skb->data;
  1440. out_hdr->sadb_msg_version = data->hdr->sadb_msg_version;
  1441. out_hdr->sadb_msg_type = SADB_DUMP;
  1442. out_hdr->sadb_msg_satype = pfkey_proto2satype(x->id.proto);
  1443. out_hdr->sadb_msg_errno = 0;
  1444. out_hdr->sadb_msg_reserved = 0;
  1445. out_hdr->sadb_msg_seq = count;
  1446. out_hdr->sadb_msg_pid = data->hdr->sadb_msg_pid;
  1447. pfkey_broadcast(out_skb, GFP_ATOMIC, BROADCAST_ONE, data->sk);
  1448. return 0;
  1449. }
  1450. static int pfkey_dump(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1451. {
  1452. u8 proto;
  1453. struct pfkey_dump_data data = { .skb = skb, .hdr = hdr, .sk = sk };
  1454. proto = pfkey_satype2proto(hdr->sadb_msg_satype);
  1455. if (proto == 0)
  1456. return -EINVAL;
  1457. return xfrm_state_walk(proto, dump_sa, &data);
  1458. }
  1459. static int pfkey_promisc(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1460. {
  1461. struct pfkey_sock *pfk = pfkey_sk(sk);
  1462. int satype = hdr->sadb_msg_satype;
  1463. if (hdr->sadb_msg_len == (sizeof(*hdr) / sizeof(uint64_t))) {
  1464. /* XXX we mangle packet... */
  1465. hdr->sadb_msg_errno = 0;
  1466. if (satype != 0 && satype != 1)
  1467. return -EINVAL;
  1468. pfk->promisc = satype;
  1469. }
  1470. pfkey_broadcast(skb_clone(skb, GFP_KERNEL), GFP_KERNEL, BROADCAST_ALL, NULL);
  1471. return 0;
  1472. }
  1473. static int check_reqid(struct xfrm_policy *xp, int dir, int count, void *ptr)
  1474. {
  1475. int i;
  1476. u32 reqid = *(u32*)ptr;
  1477. for (i=0; i<xp->xfrm_nr; i++) {
  1478. if (xp->xfrm_vec[i].reqid == reqid)
  1479. return -EEXIST;
  1480. }
  1481. return 0;
  1482. }
  1483. static u32 gen_reqid(void)
  1484. {
  1485. u32 start;
  1486. static u32 reqid = IPSEC_MANUAL_REQID_MAX;
  1487. start = reqid;
  1488. do {
  1489. ++reqid;
  1490. if (reqid == 0)
  1491. reqid = IPSEC_MANUAL_REQID_MAX+1;
  1492. if (xfrm_policy_walk(XFRM_POLICY_TYPE_MAIN, check_reqid,
  1493. (void*)&reqid) != -EEXIST)
  1494. return reqid;
  1495. } while (reqid != start);
  1496. return 0;
  1497. }
  1498. static int
  1499. parse_ipsecrequest(struct xfrm_policy *xp, struct sadb_x_ipsecrequest *rq)
  1500. {
  1501. struct xfrm_tmpl *t = xp->xfrm_vec + xp->xfrm_nr;
  1502. struct sockaddr_in *sin;
  1503. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  1504. struct sockaddr_in6 *sin6;
  1505. #endif
  1506. if (xp->xfrm_nr >= XFRM_MAX_DEPTH)
  1507. return -ELOOP;
  1508. if (rq->sadb_x_ipsecrequest_mode == 0)
  1509. return -EINVAL;
  1510. t->id.proto = rq->sadb_x_ipsecrequest_proto; /* XXX check proto */
  1511. t->mode = rq->sadb_x_ipsecrequest_mode-1;
  1512. if (rq->sadb_x_ipsecrequest_level == IPSEC_LEVEL_USE)
  1513. t->optional = 1;
  1514. else if (rq->sadb_x_ipsecrequest_level == IPSEC_LEVEL_UNIQUE) {
  1515. t->reqid = rq->sadb_x_ipsecrequest_reqid;
  1516. if (t->reqid > IPSEC_MANUAL_REQID_MAX)
  1517. t->reqid = 0;
  1518. if (!t->reqid && !(t->reqid = gen_reqid()))
  1519. return -ENOBUFS;
  1520. }
  1521. /* addresses present only in tunnel mode */
  1522. if (t->mode == XFRM_MODE_TUNNEL) {
  1523. struct sockaddr *sa;
  1524. sa = (struct sockaddr *)(rq+1);
  1525. switch(sa->sa_family) {
  1526. case AF_INET:
  1527. sin = (struct sockaddr_in*)sa;
  1528. t->saddr.a4 = sin->sin_addr.s_addr;
  1529. sin++;
  1530. if (sin->sin_family != AF_INET)
  1531. return -EINVAL;
  1532. t->id.daddr.a4 = sin->sin_addr.s_addr;
  1533. break;
  1534. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  1535. case AF_INET6:
  1536. sin6 = (struct sockaddr_in6*)sa;
  1537. memcpy(t->saddr.a6, &sin6->sin6_addr, sizeof(struct in6_addr));
  1538. sin6++;
  1539. if (sin6->sin6_family != AF_INET6)
  1540. return -EINVAL;
  1541. memcpy(t->id.daddr.a6, &sin6->sin6_addr, sizeof(struct in6_addr));
  1542. break;
  1543. #endif
  1544. default:
  1545. return -EINVAL;
  1546. }
  1547. t->encap_family = sa->sa_family;
  1548. } else
  1549. t->encap_family = xp->family;
  1550. /* No way to set this via kame pfkey */
  1551. t->aalgos = t->ealgos = t->calgos = ~0;
  1552. xp->xfrm_nr++;
  1553. return 0;
  1554. }
  1555. static int
  1556. parse_ipsecrequests(struct xfrm_policy *xp, struct sadb_x_policy *pol)
  1557. {
  1558. int err;
  1559. int len = pol->sadb_x_policy_len*8 - sizeof(struct sadb_x_policy);
  1560. struct sadb_x_ipsecrequest *rq = (void*)(pol+1);
  1561. while (len >= sizeof(struct sadb_x_ipsecrequest)) {
  1562. if ((err = parse_ipsecrequest(xp, rq)) < 0)
  1563. return err;
  1564. len -= rq->sadb_x_ipsecrequest_len;
  1565. rq = (void*)((u8*)rq + rq->sadb_x_ipsecrequest_len);
  1566. }
  1567. return 0;
  1568. }
  1569. static inline int pfkey_xfrm_policy2sec_ctx_size(struct xfrm_policy *xp)
  1570. {
  1571. struct xfrm_sec_ctx *xfrm_ctx = xp->security;
  1572. if (xfrm_ctx) {
  1573. int len = sizeof(struct sadb_x_sec_ctx);
  1574. len += xfrm_ctx->ctx_len;
  1575. return PFKEY_ALIGN8(len);
  1576. }
  1577. return 0;
  1578. }
  1579. static int pfkey_xfrm_policy2msg_size(struct xfrm_policy *xp)
  1580. {
  1581. struct xfrm_tmpl *t;
  1582. int sockaddr_size = pfkey_sockaddr_size(xp->family);
  1583. int socklen = 0;
  1584. int i;
  1585. for (i=0; i<xp->xfrm_nr; i++) {
  1586. t = xp->xfrm_vec + i;
  1587. socklen += (t->encap_family == AF_INET ?
  1588. sizeof(struct sockaddr_in) :
  1589. sizeof(struct sockaddr_in6));
  1590. }
  1591. return sizeof(struct sadb_msg) +
  1592. (sizeof(struct sadb_lifetime) * 3) +
  1593. (sizeof(struct sadb_address) * 2) +
  1594. (sockaddr_size * 2) +
  1595. sizeof(struct sadb_x_policy) +
  1596. (xp->xfrm_nr * sizeof(struct sadb_x_ipsecrequest)) +
  1597. (socklen * 2) +
  1598. pfkey_xfrm_policy2sec_ctx_size(xp);
  1599. }
  1600. static struct sk_buff * pfkey_xfrm_policy2msg_prep(struct xfrm_policy *xp)
  1601. {
  1602. struct sk_buff *skb;
  1603. int size;
  1604. size = pfkey_xfrm_policy2msg_size(xp);
  1605. skb = alloc_skb(size + 16, GFP_ATOMIC);
  1606. if (skb == NULL)
  1607. return ERR_PTR(-ENOBUFS);
  1608. return skb;
  1609. }
  1610. static void pfkey_xfrm_policy2msg(struct sk_buff *skb, struct xfrm_policy *xp, int dir)
  1611. {
  1612. struct sadb_msg *hdr;
  1613. struct sadb_address *addr;
  1614. struct sadb_lifetime *lifetime;
  1615. struct sadb_x_policy *pol;
  1616. struct sockaddr_in *sin;
  1617. struct sadb_x_sec_ctx *sec_ctx;
  1618. struct xfrm_sec_ctx *xfrm_ctx;
  1619. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  1620. struct sockaddr_in6 *sin6;
  1621. #endif
  1622. int i;
  1623. int size;
  1624. int sockaddr_size = pfkey_sockaddr_size(xp->family);
  1625. int socklen = (xp->family == AF_INET ?
  1626. sizeof(struct sockaddr_in) :
  1627. sizeof(struct sockaddr_in6));
  1628. size = pfkey_xfrm_policy2msg_size(xp);
  1629. /* call should fill header later */
  1630. hdr = (struct sadb_msg *) skb_put(skb, sizeof(struct sadb_msg));
  1631. memset(hdr, 0, size); /* XXX do we need this ? */
  1632. /* src address */
  1633. addr = (struct sadb_address*) skb_put(skb,
  1634. sizeof(struct sadb_address)+sockaddr_size);
  1635. addr->sadb_address_len =
  1636. (sizeof(struct sadb_address)+sockaddr_size)/
  1637. sizeof(uint64_t);
  1638. addr->sadb_address_exttype = SADB_EXT_ADDRESS_SRC;
  1639. addr->sadb_address_proto = pfkey_proto_from_xfrm(xp->selector.proto);
  1640. addr->sadb_address_prefixlen = xp->selector.prefixlen_s;
  1641. addr->sadb_address_reserved = 0;
  1642. /* src address */
  1643. if (xp->family == AF_INET) {
  1644. sin = (struct sockaddr_in *) (addr + 1);
  1645. sin->sin_family = AF_INET;
  1646. sin->sin_addr.s_addr = xp->selector.saddr.a4;
  1647. sin->sin_port = xp->selector.sport;
  1648. memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
  1649. }
  1650. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  1651. else if (xp->family == AF_INET6) {
  1652. sin6 = (struct sockaddr_in6 *) (addr + 1);
  1653. sin6->sin6_family = AF_INET6;
  1654. sin6->sin6_port = xp->selector.sport;
  1655. sin6->sin6_flowinfo = 0;
  1656. memcpy(&sin6->sin6_addr, xp->selector.saddr.a6,
  1657. sizeof(struct in6_addr));
  1658. sin6->sin6_scope_id = 0;
  1659. }
  1660. #endif
  1661. else
  1662. BUG();
  1663. /* dst address */
  1664. addr = (struct sadb_address*) skb_put(skb,
  1665. sizeof(struct sadb_address)+sockaddr_size);
  1666. addr->sadb_address_len =
  1667. (sizeof(struct sadb_address)+sockaddr_size)/
  1668. sizeof(uint64_t);
  1669. addr->sadb_address_exttype = SADB_EXT_ADDRESS_DST;
  1670. addr->sadb_address_proto = pfkey_proto_from_xfrm(xp->selector.proto);
  1671. addr->sadb_address_prefixlen = xp->selector.prefixlen_d;
  1672. addr->sadb_address_reserved = 0;
  1673. if (xp->family == AF_INET) {
  1674. sin = (struct sockaddr_in *) (addr + 1);
  1675. sin->sin_family = AF_INET;
  1676. sin->sin_addr.s_addr = xp->selector.daddr.a4;
  1677. sin->sin_port = xp->selector.dport;
  1678. memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
  1679. }
  1680. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  1681. else if (xp->family == AF_INET6) {
  1682. sin6 = (struct sockaddr_in6 *) (addr + 1);
  1683. sin6->sin6_family = AF_INET6;
  1684. sin6->sin6_port = xp->selector.dport;
  1685. sin6->sin6_flowinfo = 0;
  1686. memcpy(&sin6->sin6_addr, xp->selector.daddr.a6,
  1687. sizeof(struct in6_addr));
  1688. sin6->sin6_scope_id = 0;
  1689. }
  1690. #endif
  1691. else
  1692. BUG();
  1693. /* hard time */
  1694. lifetime = (struct sadb_lifetime *) skb_put(skb,
  1695. sizeof(struct sadb_lifetime));
  1696. lifetime->sadb_lifetime_len =
  1697. sizeof(struct sadb_lifetime)/sizeof(uint64_t);
  1698. lifetime->sadb_lifetime_exttype = SADB_EXT_LIFETIME_HARD;
  1699. lifetime->sadb_lifetime_allocations = _X2KEY(xp->lft.hard_packet_limit);
  1700. lifetime->sadb_lifetime_bytes = _X2KEY(xp->lft.hard_byte_limit);
  1701. lifetime->sadb_lifetime_addtime = xp->lft.hard_add_expires_seconds;
  1702. lifetime->sadb_lifetime_usetime = xp->lft.hard_use_expires_seconds;
  1703. /* soft time */
  1704. lifetime = (struct sadb_lifetime *) skb_put(skb,
  1705. sizeof(struct sadb_lifetime));
  1706. lifetime->sadb_lifetime_len =
  1707. sizeof(struct sadb_lifetime)/sizeof(uint64_t);
  1708. lifetime->sadb_lifetime_exttype = SADB_EXT_LIFETIME_SOFT;
  1709. lifetime->sadb_lifetime_allocations = _X2KEY(xp->lft.soft_packet_limit);
  1710. lifetime->sadb_lifetime_bytes = _X2KEY(xp->lft.soft_byte_limit);
  1711. lifetime->sadb_lifetime_addtime = xp->lft.soft_add_expires_seconds;
  1712. lifetime->sadb_lifetime_usetime = xp->lft.soft_use_expires_seconds;
  1713. /* current time */
  1714. lifetime = (struct sadb_lifetime *) skb_put(skb,
  1715. sizeof(struct sadb_lifetime));
  1716. lifetime->sadb_lifetime_len =
  1717. sizeof(struct sadb_lifetime)/sizeof(uint64_t);
  1718. lifetime->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT;
  1719. lifetime->sadb_lifetime_allocations = xp->curlft.packets;
  1720. lifetime->sadb_lifetime_bytes = xp->curlft.bytes;
  1721. lifetime->sadb_lifetime_addtime = xp->curlft.add_time;
  1722. lifetime->sadb_lifetime_usetime = xp->curlft.use_time;
  1723. pol = (struct sadb_x_policy *) skb_put(skb, sizeof(struct sadb_x_policy));
  1724. pol->sadb_x_policy_len = sizeof(struct sadb_x_policy)/sizeof(uint64_t);
  1725. pol->sadb_x_policy_exttype = SADB_X_EXT_POLICY;
  1726. pol->sadb_x_policy_type = IPSEC_POLICY_DISCARD;
  1727. if (xp->action == XFRM_POLICY_ALLOW) {
  1728. if (xp->xfrm_nr)
  1729. pol->sadb_x_policy_type = IPSEC_POLICY_IPSEC;
  1730. else
  1731. pol->sadb_x_policy_type = IPSEC_POLICY_NONE;
  1732. }
  1733. pol->sadb_x_policy_dir = dir+1;
  1734. pol->sadb_x_policy_id = xp->index;
  1735. pol->sadb_x_policy_priority = xp->priority;
  1736. for (i=0; i<xp->xfrm_nr; i++) {
  1737. struct sadb_x_ipsecrequest *rq;
  1738. struct xfrm_tmpl *t = xp->xfrm_vec + i;
  1739. int req_size;
  1740. req_size = sizeof(struct sadb_x_ipsecrequest);
  1741. if (t->mode == XFRM_MODE_TUNNEL)
  1742. req_size += ((t->encap_family == AF_INET ?
  1743. sizeof(struct sockaddr_in) :
  1744. sizeof(struct sockaddr_in6)) * 2);
  1745. else
  1746. size -= 2*socklen;
  1747. rq = (void*)skb_put(skb, req_size);
  1748. pol->sadb_x_policy_len += req_size/8;
  1749. memset(rq, 0, sizeof(*rq));
  1750. rq->sadb_x_ipsecrequest_len = req_size;
  1751. rq->sadb_x_ipsecrequest_proto = t->id.proto;
  1752. rq->sadb_x_ipsecrequest_mode = t->mode+1;
  1753. rq->sadb_x_ipsecrequest_level = IPSEC_LEVEL_REQUIRE;
  1754. if (t->reqid)
  1755. rq->sadb_x_ipsecrequest_level = IPSEC_LEVEL_UNIQUE;
  1756. if (t->optional)
  1757. rq->sadb_x_ipsecrequest_level = IPSEC_LEVEL_USE;
  1758. rq->sadb_x_ipsecrequest_reqid = t->reqid;
  1759. if (t->mode == XFRM_MODE_TUNNEL) {
  1760. switch (t->encap_family) {
  1761. case AF_INET:
  1762. sin = (void*)(rq+1);
  1763. sin->sin_family = AF_INET;
  1764. sin->sin_addr.s_addr = t->saddr.a4;
  1765. sin->sin_port = 0;
  1766. memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
  1767. sin++;
  1768. sin->sin_family = AF_INET;
  1769. sin->sin_addr.s_addr = t->id.daddr.a4;
  1770. sin->sin_port = 0;
  1771. memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
  1772. break;
  1773. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  1774. case AF_INET6:
  1775. sin6 = (void*)(rq+1);
  1776. sin6->sin6_family = AF_INET6;
  1777. sin6->sin6_port = 0;
  1778. sin6->sin6_flowinfo = 0;
  1779. memcpy(&sin6->sin6_addr, t->saddr.a6,
  1780. sizeof(struct in6_addr));
  1781. sin6->sin6_scope_id = 0;
  1782. sin6++;
  1783. sin6->sin6_family = AF_INET6;
  1784. sin6->sin6_port = 0;
  1785. sin6->sin6_flowinfo = 0;
  1786. memcpy(&sin6->sin6_addr, t->id.daddr.a6,
  1787. sizeof(struct in6_addr));
  1788. sin6->sin6_scope_id = 0;
  1789. break;
  1790. #endif
  1791. default:
  1792. break;
  1793. }
  1794. }
  1795. }
  1796. /* security context */
  1797. if ((xfrm_ctx = xp->security)) {
  1798. int ctx_size = pfkey_xfrm_policy2sec_ctx_size(xp);
  1799. sec_ctx = (struct sadb_x_sec_ctx *) skb_put(skb, ctx_size);
  1800. sec_ctx->sadb_x_sec_len = ctx_size / sizeof(uint64_t);
  1801. sec_ctx->sadb_x_sec_exttype = SADB_X_EXT_SEC_CTX;
  1802. sec_ctx->sadb_x_ctx_doi = xfrm_ctx->ctx_doi;
  1803. sec_ctx->sadb_x_ctx_alg = xfrm_ctx->ctx_alg;
  1804. sec_ctx->sadb_x_ctx_len = xfrm_ctx->ctx_len;
  1805. memcpy(sec_ctx + 1, xfrm_ctx->ctx_str,
  1806. xfrm_ctx->ctx_len);
  1807. }
  1808. hdr->sadb_msg_len = size / sizeof(uint64_t);
  1809. hdr->sadb_msg_reserved = atomic_read(&xp->refcnt);
  1810. }
  1811. static int key_notify_policy(struct xfrm_policy *xp, int dir, struct km_event *c)
  1812. {
  1813. struct sk_buff *out_skb;
  1814. struct sadb_msg *out_hdr;
  1815. int err;
  1816. out_skb = pfkey_xfrm_policy2msg_prep(xp);
  1817. if (IS_ERR(out_skb)) {
  1818. err = PTR_ERR(out_skb);
  1819. goto out;
  1820. }
  1821. pfkey_xfrm_policy2msg(out_skb, xp, dir);
  1822. out_hdr = (struct sadb_msg *) out_skb->data;
  1823. out_hdr->sadb_msg_version = PF_KEY_V2;
  1824. if (c->data.byid && c->event == XFRM_MSG_DELPOLICY)
  1825. out_hdr->sadb_msg_type = SADB_X_SPDDELETE2;
  1826. else
  1827. out_hdr->sadb_msg_type = event2poltype(c->event);
  1828. out_hdr->sadb_msg_errno = 0;
  1829. out_hdr->sadb_msg_seq = c->seq;
  1830. out_hdr->sadb_msg_pid = c->pid;
  1831. pfkey_broadcast(out_skb, GFP_ATOMIC, BROADCAST_ALL, NULL);
  1832. out:
  1833. return 0;
  1834. }
  1835. static int pfkey_spdadd(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1836. {
  1837. int err = 0;
  1838. struct sadb_lifetime *lifetime;
  1839. struct sadb_address *sa;
  1840. struct sadb_x_policy *pol;
  1841. struct xfrm_policy *xp;
  1842. struct km_event c;
  1843. struct sadb_x_sec_ctx *sec_ctx;
  1844. if (!present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  1845. ext_hdrs[SADB_EXT_ADDRESS_DST-1]) ||
  1846. !ext_hdrs[SADB_X_EXT_POLICY-1])
  1847. return -EINVAL;
  1848. pol = ext_hdrs[SADB_X_EXT_POLICY-1];
  1849. if (pol->sadb_x_policy_type > IPSEC_POLICY_IPSEC)
  1850. return -EINVAL;
  1851. if (!pol->sadb_x_policy_dir || pol->sadb_x_policy_dir >= IPSEC_DIR_MAX)
  1852. return -EINVAL;
  1853. xp = xfrm_policy_alloc(GFP_KERNEL);
  1854. if (xp == NULL)
  1855. return -ENOBUFS;
  1856. xp->action = (pol->sadb_x_policy_type == IPSEC_POLICY_DISCARD ?
  1857. XFRM_POLICY_BLOCK : XFRM_POLICY_ALLOW);
  1858. xp->priority = pol->sadb_x_policy_priority;
  1859. sa = ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  1860. xp->family = pfkey_sadb_addr2xfrm_addr(sa, &xp->selector.saddr);
  1861. if (!xp->family) {
  1862. err = -EINVAL;
  1863. goto out;
  1864. }
  1865. xp->selector.family = xp->family;
  1866. xp->selector.prefixlen_s = sa->sadb_address_prefixlen;
  1867. xp->selector.proto = pfkey_proto_to_xfrm(sa->sadb_address_proto);
  1868. xp->selector.sport = ((struct sockaddr_in *)(sa+1))->sin_port;
  1869. if (xp->selector.sport)
  1870. xp->selector.sport_mask = htons(0xffff);
  1871. sa = ext_hdrs[SADB_EXT_ADDRESS_DST-1],
  1872. pfkey_sadb_addr2xfrm_addr(sa, &xp->selector.daddr);
  1873. xp->selector.prefixlen_d = sa->sadb_address_prefixlen;
  1874. /* Amusing, we set this twice. KAME apps appear to set same value
  1875. * in both addresses.
  1876. */
  1877. xp->selector.proto = pfkey_proto_to_xfrm(sa->sadb_address_proto);
  1878. xp->selector.dport = ((struct sockaddr_in *)(sa+1))->sin_port;
  1879. if (xp->selector.dport)
  1880. xp->selector.dport_mask = htons(0xffff);
  1881. sec_ctx = (struct sadb_x_sec_ctx *) ext_hdrs[SADB_X_EXT_SEC_CTX-1];
  1882. if (sec_ctx != NULL) {
  1883. struct xfrm_user_sec_ctx *uctx = pfkey_sadb2xfrm_user_sec_ctx(sec_ctx);
  1884. if (!uctx) {
  1885. err = -ENOBUFS;
  1886. goto out;
  1887. }
  1888. err = security_xfrm_policy_alloc(xp, uctx);
  1889. kfree(uctx);
  1890. if (err)
  1891. goto out;
  1892. }
  1893. xp->lft.soft_byte_limit = XFRM_INF;
  1894. xp->lft.hard_byte_limit = XFRM_INF;
  1895. xp->lft.soft_packet_limit = XFRM_INF;
  1896. xp->lft.hard_packet_limit = XFRM_INF;
  1897. if ((lifetime = ext_hdrs[SADB_EXT_LIFETIME_HARD-1]) != NULL) {
  1898. xp->lft.hard_packet_limit = _KEY2X(lifetime->sadb_lifetime_allocations);
  1899. xp->lft.hard_byte_limit = _KEY2X(lifetime->sadb_lifetime_bytes);
  1900. xp->lft.hard_add_expires_seconds = lifetime->sadb_lifetime_addtime;
  1901. xp->lft.hard_use_expires_seconds = lifetime->sadb_lifetime_usetime;
  1902. }
  1903. if ((lifetime = ext_hdrs[SADB_EXT_LIFETIME_SOFT-1]) != NULL) {
  1904. xp->lft.soft_packet_limit = _KEY2X(lifetime->sadb_lifetime_allocations);
  1905. xp->lft.soft_byte_limit = _KEY2X(lifetime->sadb_lifetime_bytes);
  1906. xp->lft.soft_add_expires_seconds = lifetime->sadb_lifetime_addtime;
  1907. xp->lft.soft_use_expires_seconds = lifetime->sadb_lifetime_usetime;
  1908. }
  1909. xp->xfrm_nr = 0;
  1910. if (pol->sadb_x_policy_type == IPSEC_POLICY_IPSEC &&
  1911. (err = parse_ipsecrequests(xp, pol)) < 0)
  1912. goto out;
  1913. err = xfrm_policy_insert(pol->sadb_x_policy_dir-1, xp,
  1914. hdr->sadb_msg_type != SADB_X_SPDUPDATE);
  1915. xfrm_audit_log(audit_get_loginuid(current->audit_context), 0,
  1916. AUDIT_MAC_IPSEC_ADDSPD, err ? 0 : 1, xp, NULL);
  1917. if (err)
  1918. goto out;
  1919. if (hdr->sadb_msg_type == SADB_X_SPDUPDATE)
  1920. c.event = XFRM_MSG_UPDPOLICY;
  1921. else
  1922. c.event = XFRM_MSG_NEWPOLICY;
  1923. c.seq = hdr->sadb_msg_seq;
  1924. c.pid = hdr->sadb_msg_pid;
  1925. km_policy_notify(xp, pol->sadb_x_policy_dir-1, &c);
  1926. xfrm_pol_put(xp);
  1927. return 0;
  1928. out:
  1929. security_xfrm_policy_free(xp);
  1930. kfree(xp);
  1931. return err;
  1932. }
  1933. static int pfkey_spddelete(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1934. {
  1935. int err;
  1936. struct sadb_address *sa;
  1937. struct sadb_x_policy *pol;
  1938. struct xfrm_policy *xp, tmp;
  1939. struct xfrm_selector sel;
  1940. struct km_event c;
  1941. struct sadb_x_sec_ctx *sec_ctx;
  1942. if (!present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  1943. ext_hdrs[SADB_EXT_ADDRESS_DST-1]) ||
  1944. !ext_hdrs[SADB_X_EXT_POLICY-1])
  1945. return -EINVAL;
  1946. pol = ext_hdrs[SADB_X_EXT_POLICY-1];
  1947. if (!pol->sadb_x_policy_dir || pol->sadb_x_policy_dir >= IPSEC_DIR_MAX)
  1948. return -EINVAL;
  1949. memset(&sel, 0, sizeof(sel));
  1950. sa = ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  1951. sel.family = pfkey_sadb_addr2xfrm_addr(sa, &sel.saddr);
  1952. sel.prefixlen_s = sa->sadb_address_prefixlen;
  1953. sel.proto = pfkey_proto_to_xfrm(sa->sadb_address_proto);
  1954. sel.sport = ((struct sockaddr_in *)(sa+1))->sin_port;
  1955. if (sel.sport)
  1956. sel.sport_mask = htons(0xffff);
  1957. sa = ext_hdrs[SADB_EXT_ADDRESS_DST-1],
  1958. pfkey_sadb_addr2xfrm_addr(sa, &sel.daddr);
  1959. sel.prefixlen_d = sa->sadb_address_prefixlen;
  1960. sel.proto = pfkey_proto_to_xfrm(sa->sadb_address_proto);
  1961. sel.dport = ((struct sockaddr_in *)(sa+1))->sin_port;
  1962. if (sel.dport)
  1963. sel.dport_mask = htons(0xffff);
  1964. sec_ctx = (struct sadb_x_sec_ctx *) ext_hdrs[SADB_X_EXT_SEC_CTX-1];
  1965. memset(&tmp, 0, sizeof(struct xfrm_policy));
  1966. if (sec_ctx != NULL) {
  1967. struct xfrm_user_sec_ctx *uctx = pfkey_sadb2xfrm_user_sec_ctx(sec_ctx);
  1968. if (!uctx)
  1969. return -ENOMEM;
  1970. err = security_xfrm_policy_alloc(&tmp, uctx);
  1971. kfree(uctx);
  1972. if (err)
  1973. return err;
  1974. }
  1975. xp = xfrm_policy_bysel_ctx(XFRM_POLICY_TYPE_MAIN, pol->sadb_x_policy_dir-1,
  1976. &sel, tmp.security, 1, &err);
  1977. security_xfrm_policy_free(&tmp);
  1978. if (xp == NULL)
  1979. return -ENOENT;
  1980. xfrm_audit_log(audit_get_loginuid(current->audit_context), 0,
  1981. AUDIT_MAC_IPSEC_DELSPD, err ? 0 : 1, xp, NULL);
  1982. if (err)
  1983. goto out;
  1984. c.seq = hdr->sadb_msg_seq;
  1985. c.pid = hdr->sadb_msg_pid;
  1986. c.event = XFRM_MSG_DELPOLICY;
  1987. km_policy_notify(xp, pol->sadb_x_policy_dir-1, &c);
  1988. out:
  1989. xfrm_pol_put(xp);
  1990. return err;
  1991. }
  1992. static int key_pol_get_resp(struct sock *sk, struct xfrm_policy *xp, struct sadb_msg *hdr, int dir)
  1993. {
  1994. int err;
  1995. struct sk_buff *out_skb;
  1996. struct sadb_msg *out_hdr;
  1997. err = 0;
  1998. out_skb = pfkey_xfrm_policy2msg_prep(xp);
  1999. if (IS_ERR(out_skb)) {
  2000. err = PTR_ERR(out_skb);
  2001. goto out;
  2002. }
  2003. pfkey_xfrm_policy2msg(out_skb, xp, dir);
  2004. out_hdr = (struct sadb_msg *) out_skb->data;
  2005. out_hdr->sadb_msg_version = hdr->sadb_msg_version;
  2006. out_hdr->sadb_msg_type = hdr->sadb_msg_type;
  2007. out_hdr->sadb_msg_satype = 0;
  2008. out_hdr->sadb_msg_errno = 0;
  2009. out_hdr->sadb_msg_seq = hdr->sadb_msg_seq;
  2010. out_hdr->sadb_msg_pid = hdr->sadb_msg_pid;
  2011. pfkey_broadcast(out_skb, GFP_ATOMIC, BROADCAST_ONE, sk);
  2012. err = 0;
  2013. out:
  2014. return err;
  2015. }
  2016. #ifdef CONFIG_NET_KEY_MIGRATE
  2017. static int pfkey_sockaddr_pair_size(sa_family_t family)
  2018. {
  2019. switch (family) {
  2020. case AF_INET:
  2021. return PFKEY_ALIGN8(sizeof(struct sockaddr_in) * 2);
  2022. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  2023. case AF_INET6:
  2024. return PFKEY_ALIGN8(sizeof(struct sockaddr_in6) * 2);
  2025. #endif
  2026. default:
  2027. return 0;
  2028. }
  2029. /* NOTREACHED */
  2030. }
  2031. static int parse_sockaddr_pair(struct sadb_x_ipsecrequest *rq,
  2032. xfrm_address_t *saddr, xfrm_address_t *daddr,
  2033. u16 *family)
  2034. {
  2035. struct sockaddr *sa = (struct sockaddr *)(rq + 1);
  2036. if (rq->sadb_x_ipsecrequest_len <
  2037. pfkey_sockaddr_pair_size(sa->sa_family))
  2038. return -EINVAL;
  2039. switch (sa->sa_family) {
  2040. case AF_INET:
  2041. {
  2042. struct sockaddr_in *sin;
  2043. sin = (struct sockaddr_in *)sa;
  2044. if ((sin+1)->sin_family != AF_INET)
  2045. return -EINVAL;
  2046. memcpy(&saddr->a4, &sin->sin_addr, sizeof(saddr->a4));
  2047. sin++;
  2048. memcpy(&daddr->a4, &sin->sin_addr, sizeof(daddr->a4));
  2049. *family = AF_INET;
  2050. break;
  2051. }
  2052. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  2053. case AF_INET6:
  2054. {
  2055. struct sockaddr_in6 *sin6;
  2056. sin6 = (struct sockaddr_in6 *)sa;
  2057. if ((sin6+1)->sin6_family != AF_INET6)
  2058. return -EINVAL;
  2059. memcpy(&saddr->a6, &sin6->sin6_addr,
  2060. sizeof(saddr->a6));
  2061. sin6++;
  2062. memcpy(&daddr->a6, &sin6->sin6_addr,
  2063. sizeof(daddr->a6));
  2064. *family = AF_INET6;
  2065. break;
  2066. }
  2067. #endif
  2068. default:
  2069. return -EINVAL;
  2070. }
  2071. return 0;
  2072. }
  2073. static int ipsecrequests_to_migrate(struct sadb_x_ipsecrequest *rq1, int len,
  2074. struct xfrm_migrate *m)
  2075. {
  2076. int err;
  2077. struct sadb_x_ipsecrequest *rq2;
  2078. if (len <= sizeof(struct sadb_x_ipsecrequest) ||
  2079. len < rq1->sadb_x_ipsecrequest_len)
  2080. return -EINVAL;
  2081. /* old endoints */
  2082. err = parse_sockaddr_pair(rq1, &m->old_saddr, &m->old_daddr,
  2083. &m->old_family);
  2084. if (err)
  2085. return err;
  2086. rq2 = (struct sadb_x_ipsecrequest *)((u8 *)rq1 + rq1->sadb_x_ipsecrequest_len);
  2087. len -= rq1->sadb_x_ipsecrequest_len;
  2088. if (len <= sizeof(struct sadb_x_ipsecrequest) ||
  2089. len < rq2->sadb_x_ipsecrequest_len)
  2090. return -EINVAL;
  2091. /* new endpoints */
  2092. err = parse_sockaddr_pair(rq2, &m->new_saddr, &m->new_daddr,
  2093. &m->new_family);
  2094. if (err)
  2095. return err;
  2096. if (rq1->sadb_x_ipsecrequest_proto != rq2->sadb_x_ipsecrequest_proto ||
  2097. rq1->sadb_x_ipsecrequest_mode != rq2->sadb_x_ipsecrequest_mode ||
  2098. rq1->sadb_x_ipsecrequest_reqid != rq2->sadb_x_ipsecrequest_reqid)
  2099. return -EINVAL;
  2100. m->proto = rq1->sadb_x_ipsecrequest_proto;
  2101. m->mode = rq1->sadb_x_ipsecrequest_mode - 1;
  2102. m->reqid = rq1->sadb_x_ipsecrequest_reqid;
  2103. return ((int)(rq1->sadb_x_ipsecrequest_len +
  2104. rq2->sadb_x_ipsecrequest_len));
  2105. }
  2106. static int pfkey_migrate(struct sock *sk, struct sk_buff *skb,
  2107. struct sadb_msg *hdr, void **ext_hdrs)
  2108. {
  2109. int i, len, ret, err = -EINVAL;
  2110. u8 dir;
  2111. struct sadb_address *sa;
  2112. struct sadb_x_policy *pol;
  2113. struct sadb_x_ipsecrequest *rq;
  2114. struct xfrm_selector sel;
  2115. struct xfrm_migrate m[XFRM_MAX_DEPTH];
  2116. if (!present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC - 1],
  2117. ext_hdrs[SADB_EXT_ADDRESS_DST - 1]) ||
  2118. !ext_hdrs[SADB_X_EXT_POLICY - 1]) {
  2119. err = -EINVAL;
  2120. goto out;
  2121. }
  2122. pol = ext_hdrs[SADB_X_EXT_POLICY - 1];
  2123. if (!pol) {
  2124. err = -EINVAL;
  2125. goto out;
  2126. }
  2127. if (pol->sadb_x_policy_dir >= IPSEC_DIR_MAX) {
  2128. err = -EINVAL;
  2129. goto out;
  2130. }
  2131. dir = pol->sadb_x_policy_dir - 1;
  2132. memset(&sel, 0, sizeof(sel));
  2133. /* set source address info of selector */
  2134. sa = ext_hdrs[SADB_EXT_ADDRESS_SRC - 1];
  2135. sel.family = pfkey_sadb_addr2xfrm_addr(sa, &sel.saddr);
  2136. sel.prefixlen_s = sa->sadb_address_prefixlen;
  2137. sel.proto = pfkey_proto_to_xfrm(sa->sadb_address_proto);
  2138. sel.sport = ((struct sockaddr_in *)(sa + 1))->sin_port;
  2139. if (sel.sport)
  2140. sel.sport_mask = ~0;
  2141. /* set destination address info of selector */
  2142. sa = ext_hdrs[SADB_EXT_ADDRESS_DST - 1],
  2143. pfkey_sadb_addr2xfrm_addr(sa, &sel.daddr);
  2144. sel.prefixlen_d = sa->sadb_address_prefixlen;
  2145. sel.proto = pfkey_proto_to_xfrm(sa->sadb_address_proto);
  2146. sel.dport = ((struct sockaddr_in *)(sa + 1))->sin_port;
  2147. if (sel.dport)
  2148. sel.dport_mask = ~0;
  2149. rq = (struct sadb_x_ipsecrequest *)(pol + 1);
  2150. /* extract ipsecrequests */
  2151. i = 0;
  2152. len = pol->sadb_x_policy_len * 8 - sizeof(struct sadb_x_policy);
  2153. while (len > 0 && i < XFRM_MAX_DEPTH) {
  2154. ret = ipsecrequests_to_migrate(rq, len, &m[i]);
  2155. if (ret < 0) {
  2156. err = ret;
  2157. goto out;
  2158. } else {
  2159. rq = (struct sadb_x_ipsecrequest *)((u8 *)rq + ret);
  2160. len -= ret;
  2161. i++;
  2162. }
  2163. }
  2164. if (!i || len > 0) {
  2165. err = -EINVAL;
  2166. goto out;
  2167. }
  2168. return xfrm_migrate(&sel, dir, XFRM_POLICY_TYPE_MAIN, m, i);
  2169. out:
  2170. return err;
  2171. }
  2172. #else
  2173. static int pfkey_migrate(struct sock *sk, struct sk_buff *skb,
  2174. struct sadb_msg *hdr, void **ext_hdrs)
  2175. {
  2176. return -ENOPROTOOPT;
  2177. }
  2178. #endif
  2179. static int pfkey_spdget(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  2180. {
  2181. unsigned int dir;
  2182. int err;
  2183. struct sadb_x_policy *pol;
  2184. struct xfrm_policy *xp;
  2185. struct km_event c;
  2186. if ((pol = ext_hdrs[SADB_X_EXT_POLICY-1]) == NULL)
  2187. return -EINVAL;
  2188. dir = xfrm_policy_id2dir(pol->sadb_x_policy_id);
  2189. if (dir >= XFRM_POLICY_MAX)
  2190. return -EINVAL;
  2191. xp = xfrm_policy_byid(XFRM_POLICY_TYPE_MAIN, dir, pol->sadb_x_policy_id,
  2192. hdr->sadb_msg_type == SADB_X_SPDDELETE2, &err);
  2193. if (xp == NULL)
  2194. return -ENOENT;
  2195. err = 0;
  2196. c.seq = hdr->sadb_msg_seq;
  2197. c.pid = hdr->sadb_msg_pid;
  2198. if (hdr->sadb_msg_type == SADB_X_SPDDELETE2) {
  2199. c.data.byid = 1;
  2200. c.event = XFRM_MSG_DELPOLICY;
  2201. km_policy_notify(xp, dir, &c);
  2202. } else {
  2203. err = key_pol_get_resp(sk, xp, hdr, dir);
  2204. }
  2205. xfrm_pol_put(xp);
  2206. return err;
  2207. }
  2208. static int dump_sp(struct xfrm_policy *xp, int dir, int count, void *ptr)
  2209. {
  2210. struct pfkey_dump_data *data = ptr;
  2211. struct sk_buff *out_skb;
  2212. struct sadb_msg *out_hdr;
  2213. out_skb = pfkey_xfrm_policy2msg_prep(xp);
  2214. if (IS_ERR(out_skb))
  2215. return PTR_ERR(out_skb);
  2216. pfkey_xfrm_policy2msg(out_skb, xp, dir);
  2217. out_hdr = (struct sadb_msg *) out_skb->data;
  2218. out_hdr->sadb_msg_version = data->hdr->sadb_msg_version;
  2219. out_hdr->sadb_msg_type = SADB_X_SPDDUMP;
  2220. out_hdr->sadb_msg_satype = SADB_SATYPE_UNSPEC;
  2221. out_hdr->sadb_msg_errno = 0;
  2222. out_hdr->sadb_msg_seq = count;
  2223. out_hdr->sadb_msg_pid = data->hdr->sadb_msg_pid;
  2224. pfkey_broadcast(out_skb, GFP_ATOMIC, BROADCAST_ONE, data->sk);
  2225. return 0;
  2226. }
  2227. static int pfkey_spddump(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  2228. {
  2229. struct pfkey_dump_data data = { .skb = skb, .hdr = hdr, .sk = sk };
  2230. return xfrm_policy_walk(XFRM_POLICY_TYPE_MAIN, dump_sp, &data);
  2231. }
  2232. static int key_notify_policy_flush(struct km_event *c)
  2233. {
  2234. struct sk_buff *skb_out;
  2235. struct sadb_msg *hdr;
  2236. skb_out = alloc_skb(sizeof(struct sadb_msg) + 16, GFP_ATOMIC);
  2237. if (!skb_out)
  2238. return -ENOBUFS;
  2239. hdr = (struct sadb_msg *) skb_put(skb_out, sizeof(struct sadb_msg));
  2240. hdr->sadb_msg_type = SADB_X_SPDFLUSH;
  2241. hdr->sadb_msg_seq = c->seq;
  2242. hdr->sadb_msg_pid = c->pid;
  2243. hdr->sadb_msg_version = PF_KEY_V2;
  2244. hdr->sadb_msg_errno = (uint8_t) 0;
  2245. hdr->sadb_msg_len = (sizeof(struct sadb_msg) / sizeof(uint64_t));
  2246. pfkey_broadcast(skb_out, GFP_ATOMIC, BROADCAST_ALL, NULL);
  2247. return 0;
  2248. }
  2249. static int pfkey_spdflush(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  2250. {
  2251. struct km_event c;
  2252. struct xfrm_audit audit_info;
  2253. audit_info.loginuid = audit_get_loginuid(current->audit_context);
  2254. audit_info.secid = 0;
  2255. xfrm_policy_flush(XFRM_POLICY_TYPE_MAIN, &audit_info);
  2256. c.data.type = XFRM_POLICY_TYPE_MAIN;
  2257. c.event = XFRM_MSG_FLUSHPOLICY;
  2258. c.pid = hdr->sadb_msg_pid;
  2259. c.seq = hdr->sadb_msg_seq;
  2260. km_policy_notify(NULL, 0, &c);
  2261. return 0;
  2262. }
  2263. typedef int (*pfkey_handler)(struct sock *sk, struct sk_buff *skb,
  2264. struct sadb_msg *hdr, void **ext_hdrs);
  2265. static pfkey_handler pfkey_funcs[SADB_MAX + 1] = {
  2266. [SADB_RESERVED] = pfkey_reserved,
  2267. [SADB_GETSPI] = pfkey_getspi,
  2268. [SADB_UPDATE] = pfkey_add,
  2269. [SADB_ADD] = pfkey_add,
  2270. [SADB_DELETE] = pfkey_delete,
  2271. [SADB_GET] = pfkey_get,
  2272. [SADB_ACQUIRE] = pfkey_acquire,
  2273. [SADB_REGISTER] = pfkey_register,
  2274. [SADB_EXPIRE] = NULL,
  2275. [SADB_FLUSH] = pfkey_flush,
  2276. [SADB_DUMP] = pfkey_dump,
  2277. [SADB_X_PROMISC] = pfkey_promisc,
  2278. [SADB_X_PCHANGE] = NULL,
  2279. [SADB_X_SPDUPDATE] = pfkey_spdadd,
  2280. [SADB_X_SPDADD] = pfkey_spdadd,
  2281. [SADB_X_SPDDELETE] = pfkey_spddelete,
  2282. [SADB_X_SPDGET] = pfkey_spdget,
  2283. [SADB_X_SPDACQUIRE] = NULL,
  2284. [SADB_X_SPDDUMP] = pfkey_spddump,
  2285. [SADB_X_SPDFLUSH] = pfkey_spdflush,
  2286. [SADB_X_SPDSETIDX] = pfkey_spdadd,
  2287. [SADB_X_SPDDELETE2] = pfkey_spdget,
  2288. [SADB_X_MIGRATE] = pfkey_migrate,
  2289. };
  2290. static int pfkey_process(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr)
  2291. {
  2292. void *ext_hdrs[SADB_EXT_MAX];
  2293. int err;
  2294. pfkey_broadcast(skb_clone(skb, GFP_KERNEL), GFP_KERNEL,
  2295. BROADCAST_PROMISC_ONLY, NULL);
  2296. memset(ext_hdrs, 0, sizeof(ext_hdrs));
  2297. err = parse_exthdrs(skb, hdr, ext_hdrs);
  2298. if (!err) {
  2299. err = -EOPNOTSUPP;
  2300. if (pfkey_funcs[hdr->sadb_msg_type])
  2301. err = pfkey_funcs[hdr->sadb_msg_type](sk, skb, hdr, ext_hdrs);
  2302. }
  2303. return err;
  2304. }
  2305. static struct sadb_msg *pfkey_get_base_msg(struct sk_buff *skb, int *errp)
  2306. {
  2307. struct sadb_msg *hdr = NULL;
  2308. if (skb->len < sizeof(*hdr)) {
  2309. *errp = -EMSGSIZE;
  2310. } else {
  2311. hdr = (struct sadb_msg *) skb->data;
  2312. if (hdr->sadb_msg_version != PF_KEY_V2 ||
  2313. hdr->sadb_msg_reserved != 0 ||
  2314. (hdr->sadb_msg_type <= SADB_RESERVED ||
  2315. hdr->sadb_msg_type > SADB_MAX)) {
  2316. hdr = NULL;
  2317. *errp = -EINVAL;
  2318. } else if (hdr->sadb_msg_len != (skb->len /
  2319. sizeof(uint64_t)) ||
  2320. hdr->sadb_msg_len < (sizeof(struct sadb_msg) /
  2321. sizeof(uint64_t))) {
  2322. hdr = NULL;
  2323. *errp = -EMSGSIZE;
  2324. } else {
  2325. *errp = 0;
  2326. }
  2327. }
  2328. return hdr;
  2329. }
  2330. static inline int aalg_tmpl_set(struct xfrm_tmpl *t, struct xfrm_algo_desc *d)
  2331. {
  2332. return t->aalgos & (1 << d->desc.sadb_alg_id);
  2333. }
  2334. static inline int ealg_tmpl_set(struct xfrm_tmpl *t, struct xfrm_algo_desc *d)
  2335. {
  2336. return t->ealgos & (1 << d->desc.sadb_alg_id);
  2337. }
  2338. static int count_ah_combs(struct xfrm_tmpl *t)
  2339. {
  2340. int i, sz = 0;
  2341. for (i = 0; ; i++) {
  2342. struct xfrm_algo_desc *aalg = xfrm_aalg_get_byidx(i);
  2343. if (!aalg)
  2344. break;
  2345. if (aalg_tmpl_set(t, aalg) && aalg->available)
  2346. sz += sizeof(struct sadb_comb);
  2347. }
  2348. return sz + sizeof(struct sadb_prop);
  2349. }
  2350. static int count_esp_combs(struct xfrm_tmpl *t)
  2351. {
  2352. int i, k, sz = 0;
  2353. for (i = 0; ; i++) {
  2354. struct xfrm_algo_desc *ealg = xfrm_ealg_get_byidx(i);
  2355. if (!ealg)
  2356. break;
  2357. if (!(ealg_tmpl_set(t, ealg) && ealg->available))
  2358. continue;
  2359. for (k = 1; ; k++) {
  2360. struct xfrm_algo_desc *aalg = xfrm_aalg_get_byidx(k);
  2361. if (!aalg)
  2362. break;
  2363. if (aalg_tmpl_set(t, aalg) && aalg->available)
  2364. sz += sizeof(struct sadb_comb);
  2365. }
  2366. }
  2367. return sz + sizeof(struct sadb_prop);
  2368. }
  2369. static void dump_ah_combs(struct sk_buff *skb, struct xfrm_tmpl *t)
  2370. {
  2371. struct sadb_prop *p;
  2372. int i;
  2373. p = (struct sadb_prop*)skb_put(skb, sizeof(struct sadb_prop));
  2374. p->sadb_prop_len = sizeof(struct sadb_prop)/8;
  2375. p->sadb_prop_exttype = SADB_EXT_PROPOSAL;
  2376. p->sadb_prop_replay = 32;
  2377. memset(p->sadb_prop_reserved, 0, sizeof(p->sadb_prop_reserved));
  2378. for (i = 0; ; i++) {
  2379. struct xfrm_algo_desc *aalg = xfrm_aalg_get_byidx(i);
  2380. if (!aalg)
  2381. break;
  2382. if (aalg_tmpl_set(t, aalg) && aalg->available) {
  2383. struct sadb_comb *c;
  2384. c = (struct sadb_comb*)skb_put(skb, sizeof(struct sadb_comb));
  2385. memset(c, 0, sizeof(*c));
  2386. p->sadb_prop_len += sizeof(struct sadb_comb)/8;
  2387. c->sadb_comb_auth = aalg->desc.sadb_alg_id;
  2388. c->sadb_comb_auth_minbits = aalg->desc.sadb_alg_minbits;
  2389. c->sadb_comb_auth_maxbits = aalg->desc.sadb_alg_maxbits;
  2390. c->sadb_comb_hard_addtime = 24*60*60;
  2391. c->sadb_comb_soft_addtime = 20*60*60;
  2392. c->sadb_comb_hard_usetime = 8*60*60;
  2393. c->sadb_comb_soft_usetime = 7*60*60;
  2394. }
  2395. }
  2396. }
  2397. static void dump_esp_combs(struct sk_buff *skb, struct xfrm_tmpl *t)
  2398. {
  2399. struct sadb_prop *p;
  2400. int i, k;
  2401. p = (struct sadb_prop*)skb_put(skb, sizeof(struct sadb_prop));
  2402. p->sadb_prop_len = sizeof(struct sadb_prop)/8;
  2403. p->sadb_prop_exttype = SADB_EXT_PROPOSAL;
  2404. p->sadb_prop_replay = 32;
  2405. memset(p->sadb_prop_reserved, 0, sizeof(p->sadb_prop_reserved));
  2406. for (i=0; ; i++) {
  2407. struct xfrm_algo_desc *ealg = xfrm_ealg_get_byidx(i);
  2408. if (!ealg)
  2409. break;
  2410. if (!(ealg_tmpl_set(t, ealg) && ealg->available))
  2411. continue;
  2412. for (k = 1; ; k++) {
  2413. struct sadb_comb *c;
  2414. struct xfrm_algo_desc *aalg = xfrm_aalg_get_byidx(k);
  2415. if (!aalg)
  2416. break;
  2417. if (!(aalg_tmpl_set(t, aalg) && aalg->available))
  2418. continue;
  2419. c = (struct sadb_comb*)skb_put(skb, sizeof(struct sadb_comb));
  2420. memset(c, 0, sizeof(*c));
  2421. p->sadb_prop_len += sizeof(struct sadb_comb)/8;
  2422. c->sadb_comb_auth = aalg->desc.sadb_alg_id;
  2423. c->sadb_comb_auth_minbits = aalg->desc.sadb_alg_minbits;
  2424. c->sadb_comb_auth_maxbits = aalg->desc.sadb_alg_maxbits;
  2425. c->sadb_comb_encrypt = ealg->desc.sadb_alg_id;
  2426. c->sadb_comb_encrypt_minbits = ealg->desc.sadb_alg_minbits;
  2427. c->sadb_comb_encrypt_maxbits = ealg->desc.sadb_alg_maxbits;
  2428. c->sadb_comb_hard_addtime = 24*60*60;
  2429. c->sadb_comb_soft_addtime = 20*60*60;
  2430. c->sadb_comb_hard_usetime = 8*60*60;
  2431. c->sadb_comb_soft_usetime = 7*60*60;
  2432. }
  2433. }
  2434. }
  2435. static int key_notify_policy_expire(struct xfrm_policy *xp, struct km_event *c)
  2436. {
  2437. return 0;
  2438. }
  2439. static int key_notify_sa_expire(struct xfrm_state *x, struct km_event *c)
  2440. {
  2441. struct sk_buff *out_skb;
  2442. struct sadb_msg *out_hdr;
  2443. int hard;
  2444. int hsc;
  2445. hard = c->data.hard;
  2446. if (hard)
  2447. hsc = 2;
  2448. else
  2449. hsc = 1;
  2450. out_skb = pfkey_xfrm_state2msg(x, 0, hsc);
  2451. if (IS_ERR(out_skb))
  2452. return PTR_ERR(out_skb);
  2453. out_hdr = (struct sadb_msg *) out_skb->data;
  2454. out_hdr->sadb_msg_version = PF_KEY_V2;
  2455. out_hdr->sadb_msg_type = SADB_EXPIRE;
  2456. out_hdr->sadb_msg_satype = pfkey_proto2satype(x->id.proto);
  2457. out_hdr->sadb_msg_errno = 0;
  2458. out_hdr->sadb_msg_reserved = 0;
  2459. out_hdr->sadb_msg_seq = 0;
  2460. out_hdr->sadb_msg_pid = 0;
  2461. pfkey_broadcast(out_skb, GFP_ATOMIC, BROADCAST_REGISTERED, NULL);
  2462. return 0;
  2463. }
  2464. static int pfkey_send_notify(struct xfrm_state *x, struct km_event *c)
  2465. {
  2466. switch (c->event) {
  2467. case XFRM_MSG_EXPIRE:
  2468. return key_notify_sa_expire(x, c);
  2469. case XFRM_MSG_DELSA:
  2470. case XFRM_MSG_NEWSA:
  2471. case XFRM_MSG_UPDSA:
  2472. return key_notify_sa(x, c);
  2473. case XFRM_MSG_FLUSHSA:
  2474. return key_notify_sa_flush(c);
  2475. case XFRM_MSG_NEWAE: /* not yet supported */
  2476. break;
  2477. default:
  2478. printk("pfkey: Unknown SA event %d\n", c->event);
  2479. break;
  2480. }
  2481. return 0;
  2482. }
  2483. static int pfkey_send_policy_notify(struct xfrm_policy *xp, int dir, struct km_event *c)
  2484. {
  2485. if (xp && xp->type != XFRM_POLICY_TYPE_MAIN)
  2486. return 0;
  2487. switch (c->event) {
  2488. case XFRM_MSG_POLEXPIRE:
  2489. return key_notify_policy_expire(xp, c);
  2490. case XFRM_MSG_DELPOLICY:
  2491. case XFRM_MSG_NEWPOLICY:
  2492. case XFRM_MSG_UPDPOLICY:
  2493. return key_notify_policy(xp, dir, c);
  2494. case XFRM_MSG_FLUSHPOLICY:
  2495. if (c->data.type != XFRM_POLICY_TYPE_MAIN)
  2496. break;
  2497. return key_notify_policy_flush(c);
  2498. default:
  2499. printk("pfkey: Unknown policy event %d\n", c->event);
  2500. break;
  2501. }
  2502. return 0;
  2503. }
  2504. static u32 get_acqseq(void)
  2505. {
  2506. u32 res;
  2507. static u32 acqseq;
  2508. static DEFINE_SPINLOCK(acqseq_lock);
  2509. spin_lock_bh(&acqseq_lock);
  2510. res = (++acqseq ? : ++acqseq);
  2511. spin_unlock_bh(&acqseq_lock);
  2512. return res;
  2513. }
  2514. static int pfkey_send_acquire(struct xfrm_state *x, struct xfrm_tmpl *t, struct xfrm_policy *xp, int dir)
  2515. {
  2516. struct sk_buff *skb;
  2517. struct sadb_msg *hdr;
  2518. struct sadb_address *addr;
  2519. struct sadb_x_policy *pol;
  2520. struct sockaddr_in *sin;
  2521. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  2522. struct sockaddr_in6 *sin6;
  2523. #endif
  2524. int sockaddr_size;
  2525. int size;
  2526. struct sadb_x_sec_ctx *sec_ctx;
  2527. struct xfrm_sec_ctx *xfrm_ctx;
  2528. int ctx_size = 0;
  2529. sockaddr_size = pfkey_sockaddr_size(x->props.family);
  2530. if (!sockaddr_size)
  2531. return -EINVAL;
  2532. size = sizeof(struct sadb_msg) +
  2533. (sizeof(struct sadb_address) * 2) +
  2534. (sockaddr_size * 2) +
  2535. sizeof(struct sadb_x_policy);
  2536. if (x->id.proto == IPPROTO_AH)
  2537. size += count_ah_combs(t);
  2538. else if (x->id.proto == IPPROTO_ESP)
  2539. size += count_esp_combs(t);
  2540. if ((xfrm_ctx = x->security)) {
  2541. ctx_size = PFKEY_ALIGN8(xfrm_ctx->ctx_len);
  2542. size += sizeof(struct sadb_x_sec_ctx) + ctx_size;
  2543. }
  2544. skb = alloc_skb(size + 16, GFP_ATOMIC);
  2545. if (skb == NULL)
  2546. return -ENOMEM;
  2547. hdr = (struct sadb_msg *) skb_put(skb, sizeof(struct sadb_msg));
  2548. hdr->sadb_msg_version = PF_KEY_V2;
  2549. hdr->sadb_msg_type = SADB_ACQUIRE;
  2550. hdr->sadb_msg_satype = pfkey_proto2satype(x->id.proto);
  2551. hdr->sadb_msg_len = size / sizeof(uint64_t);
  2552. hdr->sadb_msg_errno = 0;
  2553. hdr->sadb_msg_reserved = 0;
  2554. hdr->sadb_msg_seq = x->km.seq = get_acqseq();
  2555. hdr->sadb_msg_pid = 0;
  2556. /* src address */
  2557. addr = (struct sadb_address*) skb_put(skb,
  2558. sizeof(struct sadb_address)+sockaddr_size);
  2559. addr->sadb_address_len =
  2560. (sizeof(struct sadb_address)+sockaddr_size)/
  2561. sizeof(uint64_t);
  2562. addr->sadb_address_exttype = SADB_EXT_ADDRESS_SRC;
  2563. addr->sadb_address_proto = 0;
  2564. addr->sadb_address_reserved = 0;
  2565. if (x->props.family == AF_INET) {
  2566. addr->sadb_address_prefixlen = 32;
  2567. sin = (struct sockaddr_in *) (addr + 1);
  2568. sin->sin_family = AF_INET;
  2569. sin->sin_addr.s_addr = x->props.saddr.a4;
  2570. sin->sin_port = 0;
  2571. memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
  2572. }
  2573. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  2574. else if (x->props.family == AF_INET6) {
  2575. addr->sadb_address_prefixlen = 128;
  2576. sin6 = (struct sockaddr_in6 *) (addr + 1);
  2577. sin6->sin6_family = AF_INET6;
  2578. sin6->sin6_port = 0;
  2579. sin6->sin6_flowinfo = 0;
  2580. memcpy(&sin6->sin6_addr,
  2581. x->props.saddr.a6, sizeof(struct in6_addr));
  2582. sin6->sin6_scope_id = 0;
  2583. }
  2584. #endif
  2585. else
  2586. BUG();
  2587. /* dst address */
  2588. addr = (struct sadb_address*) skb_put(skb,
  2589. sizeof(struct sadb_address)+sockaddr_size);
  2590. addr->sadb_address_len =
  2591. (sizeof(struct sadb_address)+sockaddr_size)/
  2592. sizeof(uint64_t);
  2593. addr->sadb_address_exttype = SADB_EXT_ADDRESS_DST;
  2594. addr->sadb_address_proto = 0;
  2595. addr->sadb_address_reserved = 0;
  2596. if (x->props.family == AF_INET) {
  2597. addr->sadb_address_prefixlen = 32;
  2598. sin = (struct sockaddr_in *) (addr + 1);
  2599. sin->sin_family = AF_INET;
  2600. sin->sin_addr.s_addr = x->id.daddr.a4;
  2601. sin->sin_port = 0;
  2602. memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
  2603. }
  2604. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  2605. else if (x->props.family == AF_INET6) {
  2606. addr->sadb_address_prefixlen = 128;
  2607. sin6 = (struct sockaddr_in6 *) (addr + 1);
  2608. sin6->sin6_family = AF_INET6;
  2609. sin6->sin6_port = 0;
  2610. sin6->sin6_flowinfo = 0;
  2611. memcpy(&sin6->sin6_addr,
  2612. x->id.daddr.a6, sizeof(struct in6_addr));
  2613. sin6->sin6_scope_id = 0;
  2614. }
  2615. #endif
  2616. else
  2617. BUG();
  2618. pol = (struct sadb_x_policy *) skb_put(skb, sizeof(struct sadb_x_policy));
  2619. pol->sadb_x_policy_len = sizeof(struct sadb_x_policy)/sizeof(uint64_t);
  2620. pol->sadb_x_policy_exttype = SADB_X_EXT_POLICY;
  2621. pol->sadb_x_policy_type = IPSEC_POLICY_IPSEC;
  2622. pol->sadb_x_policy_dir = dir+1;
  2623. pol->sadb_x_policy_id = xp->index;
  2624. /* Set sadb_comb's. */
  2625. if (x->id.proto == IPPROTO_AH)
  2626. dump_ah_combs(skb, t);
  2627. else if (x->id.proto == IPPROTO_ESP)
  2628. dump_esp_combs(skb, t);
  2629. /* security context */
  2630. if (xfrm_ctx) {
  2631. sec_ctx = (struct sadb_x_sec_ctx *) skb_put(skb,
  2632. sizeof(struct sadb_x_sec_ctx) + ctx_size);
  2633. sec_ctx->sadb_x_sec_len =
  2634. (sizeof(struct sadb_x_sec_ctx) + ctx_size) / sizeof(uint64_t);
  2635. sec_ctx->sadb_x_sec_exttype = SADB_X_EXT_SEC_CTX;
  2636. sec_ctx->sadb_x_ctx_doi = xfrm_ctx->ctx_doi;
  2637. sec_ctx->sadb_x_ctx_alg = xfrm_ctx->ctx_alg;
  2638. sec_ctx->sadb_x_ctx_len = xfrm_ctx->ctx_len;
  2639. memcpy(sec_ctx + 1, xfrm_ctx->ctx_str,
  2640. xfrm_ctx->ctx_len);
  2641. }
  2642. return pfkey_broadcast(skb, GFP_ATOMIC, BROADCAST_REGISTERED, NULL);
  2643. }
  2644. static struct xfrm_policy *pfkey_compile_policy(struct sock *sk, int opt,
  2645. u8 *data, int len, int *dir)
  2646. {
  2647. struct xfrm_policy *xp;
  2648. struct sadb_x_policy *pol = (struct sadb_x_policy*)data;
  2649. struct sadb_x_sec_ctx *sec_ctx;
  2650. switch (sk->sk_family) {
  2651. case AF_INET:
  2652. if (opt != IP_IPSEC_POLICY) {
  2653. *dir = -EOPNOTSUPP;
  2654. return NULL;
  2655. }
  2656. break;
  2657. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  2658. case AF_INET6:
  2659. if (opt != IPV6_IPSEC_POLICY) {
  2660. *dir = -EOPNOTSUPP;
  2661. return NULL;
  2662. }
  2663. break;
  2664. #endif
  2665. default:
  2666. *dir = -EINVAL;
  2667. return NULL;
  2668. }
  2669. *dir = -EINVAL;
  2670. if (len < sizeof(struct sadb_x_policy) ||
  2671. pol->sadb_x_policy_len*8 > len ||
  2672. pol->sadb_x_policy_type > IPSEC_POLICY_BYPASS ||
  2673. (!pol->sadb_x_policy_dir || pol->sadb_x_policy_dir > IPSEC_DIR_OUTBOUND))
  2674. return NULL;
  2675. xp = xfrm_policy_alloc(GFP_ATOMIC);
  2676. if (xp == NULL) {
  2677. *dir = -ENOBUFS;
  2678. return NULL;
  2679. }
  2680. xp->action = (pol->sadb_x_policy_type == IPSEC_POLICY_DISCARD ?
  2681. XFRM_POLICY_BLOCK : XFRM_POLICY_ALLOW);
  2682. xp->lft.soft_byte_limit = XFRM_INF;
  2683. xp->lft.hard_byte_limit = XFRM_INF;
  2684. xp->lft.soft_packet_limit = XFRM_INF;
  2685. xp->lft.hard_packet_limit = XFRM_INF;
  2686. xp->family = sk->sk_family;
  2687. xp->xfrm_nr = 0;
  2688. if (pol->sadb_x_policy_type == IPSEC_POLICY_IPSEC &&
  2689. (*dir = parse_ipsecrequests(xp, pol)) < 0)
  2690. goto out;
  2691. /* security context too */
  2692. if (len >= (pol->sadb_x_policy_len*8 +
  2693. sizeof(struct sadb_x_sec_ctx))) {
  2694. char *p = (char *)pol;
  2695. struct xfrm_user_sec_ctx *uctx;
  2696. p += pol->sadb_x_policy_len*8;
  2697. sec_ctx = (struct sadb_x_sec_ctx *)p;
  2698. if (len < pol->sadb_x_policy_len*8 +
  2699. sec_ctx->sadb_x_sec_len) {
  2700. *dir = -EINVAL;
  2701. goto out;
  2702. }
  2703. if ((*dir = verify_sec_ctx_len(p)))
  2704. goto out;
  2705. uctx = pfkey_sadb2xfrm_user_sec_ctx(sec_ctx);
  2706. *dir = security_xfrm_policy_alloc(xp, uctx);
  2707. kfree(uctx);
  2708. if (*dir)
  2709. goto out;
  2710. }
  2711. *dir = pol->sadb_x_policy_dir-1;
  2712. return xp;
  2713. out:
  2714. security_xfrm_policy_free(xp);
  2715. kfree(xp);
  2716. return NULL;
  2717. }
  2718. static int pfkey_send_new_mapping(struct xfrm_state *x, xfrm_address_t *ipaddr, __be16 sport)
  2719. {
  2720. struct sk_buff *skb;
  2721. struct sadb_msg *hdr;
  2722. struct sadb_sa *sa;
  2723. struct sadb_address *addr;
  2724. struct sadb_x_nat_t_port *n_port;
  2725. struct sockaddr_in *sin;
  2726. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  2727. struct sockaddr_in6 *sin6;
  2728. #endif
  2729. int sockaddr_size;
  2730. int size;
  2731. __u8 satype = (x->id.proto == IPPROTO_ESP ? SADB_SATYPE_ESP : 0);
  2732. struct xfrm_encap_tmpl *natt = NULL;
  2733. sockaddr_size = pfkey_sockaddr_size(x->props.family);
  2734. if (!sockaddr_size)
  2735. return -EINVAL;
  2736. if (!satype)
  2737. return -EINVAL;
  2738. if (!x->encap)
  2739. return -EINVAL;
  2740. natt = x->encap;
  2741. /* Build an SADB_X_NAT_T_NEW_MAPPING message:
  2742. *
  2743. * HDR | SA | ADDRESS_SRC (old addr) | NAT_T_SPORT (old port) |
  2744. * ADDRESS_DST (new addr) | NAT_T_DPORT (new port)
  2745. */
  2746. size = sizeof(struct sadb_msg) +
  2747. sizeof(struct sadb_sa) +
  2748. (sizeof(struct sadb_address) * 2) +
  2749. (sockaddr_size * 2) +
  2750. (sizeof(struct sadb_x_nat_t_port) * 2);
  2751. skb = alloc_skb(size + 16, GFP_ATOMIC);
  2752. if (skb == NULL)
  2753. return -ENOMEM;
  2754. hdr = (struct sadb_msg *) skb_put(skb, sizeof(struct sadb_msg));
  2755. hdr->sadb_msg_version = PF_KEY_V2;
  2756. hdr->sadb_msg_type = SADB_X_NAT_T_NEW_MAPPING;
  2757. hdr->sadb_msg_satype = satype;
  2758. hdr->sadb_msg_len = size / sizeof(uint64_t);
  2759. hdr->sadb_msg_errno = 0;
  2760. hdr->sadb_msg_reserved = 0;
  2761. hdr->sadb_msg_seq = x->km.seq = get_acqseq();
  2762. hdr->sadb_msg_pid = 0;
  2763. /* SA */
  2764. sa = (struct sadb_sa *) skb_put(skb, sizeof(struct sadb_sa));
  2765. sa->sadb_sa_len = sizeof(struct sadb_sa)/sizeof(uint64_t);
  2766. sa->sadb_sa_exttype = SADB_EXT_SA;
  2767. sa->sadb_sa_spi = x->id.spi;
  2768. sa->sadb_sa_replay = 0;
  2769. sa->sadb_sa_state = 0;
  2770. sa->sadb_sa_auth = 0;
  2771. sa->sadb_sa_encrypt = 0;
  2772. sa->sadb_sa_flags = 0;
  2773. /* ADDRESS_SRC (old addr) */
  2774. addr = (struct sadb_address*)
  2775. skb_put(skb, sizeof(struct sadb_address)+sockaddr_size);
  2776. addr->sadb_address_len =
  2777. (sizeof(struct sadb_address)+sockaddr_size)/
  2778. sizeof(uint64_t);
  2779. addr->sadb_address_exttype = SADB_EXT_ADDRESS_SRC;
  2780. addr->sadb_address_proto = 0;
  2781. addr->sadb_address_reserved = 0;
  2782. if (x->props.family == AF_INET) {
  2783. addr->sadb_address_prefixlen = 32;
  2784. sin = (struct sockaddr_in *) (addr + 1);
  2785. sin->sin_family = AF_INET;
  2786. sin->sin_addr.s_addr = x->props.saddr.a4;
  2787. sin->sin_port = 0;
  2788. memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
  2789. }
  2790. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  2791. else if (x->props.family == AF_INET6) {
  2792. addr->sadb_address_prefixlen = 128;
  2793. sin6 = (struct sockaddr_in6 *) (addr + 1);
  2794. sin6->sin6_family = AF_INET6;
  2795. sin6->sin6_port = 0;
  2796. sin6->sin6_flowinfo = 0;
  2797. memcpy(&sin6->sin6_addr,
  2798. x->props.saddr.a6, sizeof(struct in6_addr));
  2799. sin6->sin6_scope_id = 0;
  2800. }
  2801. #endif
  2802. else
  2803. BUG();
  2804. /* NAT_T_SPORT (old port) */
  2805. n_port = (struct sadb_x_nat_t_port*) skb_put(skb, sizeof (*n_port));
  2806. n_port->sadb_x_nat_t_port_len = sizeof(*n_port)/sizeof(uint64_t);
  2807. n_port->sadb_x_nat_t_port_exttype = SADB_X_EXT_NAT_T_SPORT;
  2808. n_port->sadb_x_nat_t_port_port = natt->encap_sport;
  2809. n_port->sadb_x_nat_t_port_reserved = 0;
  2810. /* ADDRESS_DST (new addr) */
  2811. addr = (struct sadb_address*)
  2812. skb_put(skb, sizeof(struct sadb_address)+sockaddr_size);
  2813. addr->sadb_address_len =
  2814. (sizeof(struct sadb_address)+sockaddr_size)/
  2815. sizeof(uint64_t);
  2816. addr->sadb_address_exttype = SADB_EXT_ADDRESS_DST;
  2817. addr->sadb_address_proto = 0;
  2818. addr->sadb_address_reserved = 0;
  2819. if (x->props.family == AF_INET) {
  2820. addr->sadb_address_prefixlen = 32;
  2821. sin = (struct sockaddr_in *) (addr + 1);
  2822. sin->sin_family = AF_INET;
  2823. sin->sin_addr.s_addr = ipaddr->a4;
  2824. sin->sin_port = 0;
  2825. memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
  2826. }
  2827. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  2828. else if (x->props.family == AF_INET6) {
  2829. addr->sadb_address_prefixlen = 128;
  2830. sin6 = (struct sockaddr_in6 *) (addr + 1);
  2831. sin6->sin6_family = AF_INET6;
  2832. sin6->sin6_port = 0;
  2833. sin6->sin6_flowinfo = 0;
  2834. memcpy(&sin6->sin6_addr, &ipaddr->a6, sizeof(struct in6_addr));
  2835. sin6->sin6_scope_id = 0;
  2836. }
  2837. #endif
  2838. else
  2839. BUG();
  2840. /* NAT_T_DPORT (new port) */
  2841. n_port = (struct sadb_x_nat_t_port*) skb_put(skb, sizeof (*n_port));
  2842. n_port->sadb_x_nat_t_port_len = sizeof(*n_port)/sizeof(uint64_t);
  2843. n_port->sadb_x_nat_t_port_exttype = SADB_X_EXT_NAT_T_DPORT;
  2844. n_port->sadb_x_nat_t_port_port = sport;
  2845. n_port->sadb_x_nat_t_port_reserved = 0;
  2846. return pfkey_broadcast(skb, GFP_ATOMIC, BROADCAST_REGISTERED, NULL);
  2847. }
  2848. #ifdef CONFIG_NET_KEY_MIGRATE
  2849. static int set_sadb_address(struct sk_buff *skb, int sasize, int type,
  2850. struct xfrm_selector *sel)
  2851. {
  2852. struct sadb_address *addr;
  2853. struct sockaddr_in *sin;
  2854. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  2855. struct sockaddr_in6 *sin6;
  2856. #endif
  2857. addr = (struct sadb_address *)skb_put(skb, sizeof(struct sadb_address) + sasize);
  2858. addr->sadb_address_len = (sizeof(struct sadb_address) + sasize)/8;
  2859. addr->sadb_address_exttype = type;
  2860. addr->sadb_address_proto = sel->proto;
  2861. addr->sadb_address_reserved = 0;
  2862. switch (type) {
  2863. case SADB_EXT_ADDRESS_SRC:
  2864. if (sel->family == AF_INET) {
  2865. addr->sadb_address_prefixlen = sel->prefixlen_s;
  2866. sin = (struct sockaddr_in *)(addr + 1);
  2867. sin->sin_family = AF_INET;
  2868. memcpy(&sin->sin_addr.s_addr, &sel->saddr,
  2869. sizeof(sin->sin_addr.s_addr));
  2870. sin->sin_port = 0;
  2871. memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
  2872. }
  2873. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  2874. else if (sel->family == AF_INET6) {
  2875. addr->sadb_address_prefixlen = sel->prefixlen_s;
  2876. sin6 = (struct sockaddr_in6 *)(addr + 1);
  2877. sin6->sin6_family = AF_INET6;
  2878. sin6->sin6_port = 0;
  2879. sin6->sin6_flowinfo = 0;
  2880. sin6->sin6_scope_id = 0;
  2881. memcpy(&sin6->sin6_addr.s6_addr, &sel->saddr,
  2882. sizeof(sin6->sin6_addr.s6_addr));
  2883. }
  2884. #endif
  2885. break;
  2886. case SADB_EXT_ADDRESS_DST:
  2887. if (sel->family == AF_INET) {
  2888. addr->sadb_address_prefixlen = sel->prefixlen_d;
  2889. sin = (struct sockaddr_in *)(addr + 1);
  2890. sin->sin_family = AF_INET;
  2891. memcpy(&sin->sin_addr.s_addr, &sel->daddr,
  2892. sizeof(sin->sin_addr.s_addr));
  2893. sin->sin_port = 0;
  2894. memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
  2895. }
  2896. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  2897. else if (sel->family == AF_INET6) {
  2898. addr->sadb_address_prefixlen = sel->prefixlen_d;
  2899. sin6 = (struct sockaddr_in6 *)(addr + 1);
  2900. sin6->sin6_family = AF_INET6;
  2901. sin6->sin6_port = 0;
  2902. sin6->sin6_flowinfo = 0;
  2903. sin6->sin6_scope_id = 0;
  2904. memcpy(&sin6->sin6_addr.s6_addr, &sel->daddr,
  2905. sizeof(sin6->sin6_addr.s6_addr));
  2906. }
  2907. #endif
  2908. break;
  2909. default:
  2910. return -EINVAL;
  2911. }
  2912. return 0;
  2913. }
  2914. static int set_ipsecrequest(struct sk_buff *skb,
  2915. uint8_t proto, uint8_t mode, int level,
  2916. uint32_t reqid, uint8_t family,
  2917. xfrm_address_t *src, xfrm_address_t *dst)
  2918. {
  2919. struct sadb_x_ipsecrequest *rq;
  2920. struct sockaddr_in *sin;
  2921. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  2922. struct sockaddr_in6 *sin6;
  2923. #endif
  2924. int size_req;
  2925. size_req = sizeof(struct sadb_x_ipsecrequest) +
  2926. pfkey_sockaddr_pair_size(family);
  2927. rq = (struct sadb_x_ipsecrequest *)skb_put(skb, size_req);
  2928. memset(rq, 0, size_req);
  2929. rq->sadb_x_ipsecrequest_len = size_req;
  2930. rq->sadb_x_ipsecrequest_proto = proto;
  2931. rq->sadb_x_ipsecrequest_mode = mode;
  2932. rq->sadb_x_ipsecrequest_level = level;
  2933. rq->sadb_x_ipsecrequest_reqid = reqid;
  2934. switch (family) {
  2935. case AF_INET:
  2936. sin = (struct sockaddr_in *)(rq + 1);
  2937. sin->sin_family = AF_INET;
  2938. memcpy(&sin->sin_addr.s_addr, src,
  2939. sizeof(sin->sin_addr.s_addr));
  2940. sin++;
  2941. sin->sin_family = AF_INET;
  2942. memcpy(&sin->sin_addr.s_addr, dst,
  2943. sizeof(sin->sin_addr.s_addr));
  2944. break;
  2945. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  2946. case AF_INET6:
  2947. sin6 = (struct sockaddr_in6 *)(rq + 1);
  2948. sin6->sin6_family = AF_INET6;
  2949. sin6->sin6_port = 0;
  2950. sin6->sin6_flowinfo = 0;
  2951. sin6->sin6_scope_id = 0;
  2952. memcpy(&sin6->sin6_addr.s6_addr, src,
  2953. sizeof(sin6->sin6_addr.s6_addr));
  2954. sin6++;
  2955. sin6->sin6_family = AF_INET6;
  2956. sin6->sin6_port = 0;
  2957. sin6->sin6_flowinfo = 0;
  2958. sin6->sin6_scope_id = 0;
  2959. memcpy(&sin6->sin6_addr.s6_addr, dst,
  2960. sizeof(sin6->sin6_addr.s6_addr));
  2961. break;
  2962. #endif
  2963. default:
  2964. return -EINVAL;
  2965. }
  2966. return 0;
  2967. }
  2968. #endif
  2969. #ifdef CONFIG_NET_KEY_MIGRATE
  2970. static int pfkey_send_migrate(struct xfrm_selector *sel, u8 dir, u8 type,
  2971. struct xfrm_migrate *m, int num_bundles)
  2972. {
  2973. int i;
  2974. int sasize_sel;
  2975. int size = 0;
  2976. int size_pol = 0;
  2977. struct sk_buff *skb;
  2978. struct sadb_msg *hdr;
  2979. struct sadb_x_policy *pol;
  2980. struct xfrm_migrate *mp;
  2981. if (type != XFRM_POLICY_TYPE_MAIN)
  2982. return 0;
  2983. if (num_bundles <= 0 || num_bundles > XFRM_MAX_DEPTH)
  2984. return -EINVAL;
  2985. /* selector */
  2986. sasize_sel = pfkey_sockaddr_size(sel->family);
  2987. if (!sasize_sel)
  2988. return -EINVAL;
  2989. size += (sizeof(struct sadb_address) + sasize_sel) * 2;
  2990. /* policy info */
  2991. size_pol += sizeof(struct sadb_x_policy);
  2992. /* ipsecrequests */
  2993. for (i = 0, mp = m; i < num_bundles; i++, mp++) {
  2994. /* old locator pair */
  2995. size_pol += sizeof(struct sadb_x_ipsecrequest) +
  2996. pfkey_sockaddr_pair_size(mp->old_family);
  2997. /* new locator pair */
  2998. size_pol += sizeof(struct sadb_x_ipsecrequest) +
  2999. pfkey_sockaddr_pair_size(mp->new_family);
  3000. }
  3001. size += sizeof(struct sadb_msg) + size_pol;
  3002. /* alloc buffer */
  3003. skb = alloc_skb(size, GFP_ATOMIC);
  3004. if (skb == NULL)
  3005. return -ENOMEM;
  3006. hdr = (struct sadb_msg *)skb_put(skb, sizeof(struct sadb_msg));
  3007. hdr->sadb_msg_version = PF_KEY_V2;
  3008. hdr->sadb_msg_type = SADB_X_MIGRATE;
  3009. hdr->sadb_msg_satype = pfkey_proto2satype(m->proto);
  3010. hdr->sadb_msg_len = size / 8;
  3011. hdr->sadb_msg_errno = 0;
  3012. hdr->sadb_msg_reserved = 0;
  3013. hdr->sadb_msg_seq = 0;
  3014. hdr->sadb_msg_pid = 0;
  3015. /* selector src */
  3016. set_sadb_address(skb, sasize_sel, SADB_EXT_ADDRESS_SRC, sel);
  3017. /* selector dst */
  3018. set_sadb_address(skb, sasize_sel, SADB_EXT_ADDRESS_DST, sel);
  3019. /* policy information */
  3020. pol = (struct sadb_x_policy *)skb_put(skb, sizeof(struct sadb_x_policy));
  3021. pol->sadb_x_policy_len = size_pol / 8;
  3022. pol->sadb_x_policy_exttype = SADB_X_EXT_POLICY;
  3023. pol->sadb_x_policy_type = IPSEC_POLICY_IPSEC;
  3024. pol->sadb_x_policy_dir = dir + 1;
  3025. pol->sadb_x_policy_id = 0;
  3026. pol->sadb_x_policy_priority = 0;
  3027. for (i = 0, mp = m; i < num_bundles; i++, mp++) {
  3028. /* old ipsecrequest */
  3029. if (set_ipsecrequest(skb, mp->proto, mp->mode + 1,
  3030. (mp->reqid ? IPSEC_LEVEL_UNIQUE : IPSEC_LEVEL_REQUIRE),
  3031. mp->reqid, mp->old_family,
  3032. &mp->old_saddr, &mp->old_daddr) < 0) {
  3033. return -EINVAL;
  3034. }
  3035. /* new ipsecrequest */
  3036. if (set_ipsecrequest(skb, mp->proto, mp->mode + 1,
  3037. (mp->reqid ? IPSEC_LEVEL_UNIQUE : IPSEC_LEVEL_REQUIRE),
  3038. mp->reqid, mp->new_family,
  3039. &mp->new_saddr, &mp->new_daddr) < 0) {
  3040. return -EINVAL;
  3041. }
  3042. }
  3043. /* broadcast migrate message to sockets */
  3044. pfkey_broadcast(skb, GFP_ATOMIC, BROADCAST_ALL, NULL);
  3045. return 0;
  3046. }
  3047. #else
  3048. static int pfkey_send_migrate(struct xfrm_selector *sel, u8 dir, u8 type,
  3049. struct xfrm_migrate *m, int num_bundles)
  3050. {
  3051. return -ENOPROTOOPT;
  3052. }
  3053. #endif
  3054. static int pfkey_sendmsg(struct kiocb *kiocb,
  3055. struct socket *sock, struct msghdr *msg, size_t len)
  3056. {
  3057. struct sock *sk = sock->sk;
  3058. struct sk_buff *skb = NULL;
  3059. struct sadb_msg *hdr = NULL;
  3060. int err;
  3061. err = -EOPNOTSUPP;
  3062. if (msg->msg_flags & MSG_OOB)
  3063. goto out;
  3064. err = -EMSGSIZE;
  3065. if ((unsigned)len > sk->sk_sndbuf - 32)
  3066. goto out;
  3067. err = -ENOBUFS;
  3068. skb = alloc_skb(len, GFP_KERNEL);
  3069. if (skb == NULL)
  3070. goto out;
  3071. err = -EFAULT;
  3072. if (memcpy_fromiovec(skb_put(skb,len), msg->msg_iov, len))
  3073. goto out;
  3074. hdr = pfkey_get_base_msg(skb, &err);
  3075. if (!hdr)
  3076. goto out;
  3077. mutex_lock(&xfrm_cfg_mutex);
  3078. err = pfkey_process(sk, skb, hdr);
  3079. mutex_unlock(&xfrm_cfg_mutex);
  3080. out:
  3081. if (err && hdr && pfkey_error(hdr, err, sk) == 0)
  3082. err = 0;
  3083. if (skb)
  3084. kfree_skb(skb);
  3085. return err ? : len;
  3086. }
  3087. static int pfkey_recvmsg(struct kiocb *kiocb,
  3088. struct socket *sock, struct msghdr *msg, size_t len,
  3089. int flags)
  3090. {
  3091. struct sock *sk = sock->sk;
  3092. struct sk_buff *skb;
  3093. int copied, err;
  3094. err = -EINVAL;
  3095. if (flags & ~(MSG_PEEK|MSG_DONTWAIT|MSG_TRUNC|MSG_CMSG_COMPAT))
  3096. goto out;
  3097. msg->msg_namelen = 0;
  3098. skb = skb_recv_datagram(sk, flags, flags & MSG_DONTWAIT, &err);
  3099. if (skb == NULL)
  3100. goto out;
  3101. copied = skb->len;
  3102. if (copied > len) {
  3103. msg->msg_flags |= MSG_TRUNC;
  3104. copied = len;
  3105. }
  3106. skb->h.raw = skb->data;
  3107. err = skb_copy_datagram_iovec(skb, 0, msg->msg_iov, copied);
  3108. if (err)
  3109. goto out_free;
  3110. sock_recv_timestamp(msg, sk, skb);
  3111. err = (flags & MSG_TRUNC) ? skb->len : copied;
  3112. out_free:
  3113. skb_free_datagram(sk, skb);
  3114. out:
  3115. return err;
  3116. }
  3117. static const struct proto_ops pfkey_ops = {
  3118. .family = PF_KEY,
  3119. .owner = THIS_MODULE,
  3120. /* Operations that make no sense on pfkey sockets. */
  3121. .bind = sock_no_bind,
  3122. .connect = sock_no_connect,
  3123. .socketpair = sock_no_socketpair,
  3124. .accept = sock_no_accept,
  3125. .getname = sock_no_getname,
  3126. .ioctl = sock_no_ioctl,
  3127. .listen = sock_no_listen,
  3128. .shutdown = sock_no_shutdown,
  3129. .setsockopt = sock_no_setsockopt,
  3130. .getsockopt = sock_no_getsockopt,
  3131. .mmap = sock_no_mmap,
  3132. .sendpage = sock_no_sendpage,
  3133. /* Now the operations that really occur. */
  3134. .release = pfkey_release,
  3135. .poll = datagram_poll,
  3136. .sendmsg = pfkey_sendmsg,
  3137. .recvmsg = pfkey_recvmsg,
  3138. };
  3139. static struct net_proto_family pfkey_family_ops = {
  3140. .family = PF_KEY,
  3141. .create = pfkey_create,
  3142. .owner = THIS_MODULE,
  3143. };
  3144. #ifdef CONFIG_PROC_FS
  3145. static int pfkey_read_proc(char *buffer, char **start, off_t offset,
  3146. int length, int *eof, void *data)
  3147. {
  3148. off_t pos = 0;
  3149. off_t begin = 0;
  3150. int len = 0;
  3151. struct sock *s;
  3152. struct hlist_node *node;
  3153. len += sprintf(buffer,"sk RefCnt Rmem Wmem User Inode\n");
  3154. read_lock(&pfkey_table_lock);
  3155. sk_for_each(s, node, &pfkey_table) {
  3156. len += sprintf(buffer+len,"%p %-6d %-6u %-6u %-6u %-6lu",
  3157. s,
  3158. atomic_read(&s->sk_refcnt),
  3159. atomic_read(&s->sk_rmem_alloc),
  3160. atomic_read(&s->sk_wmem_alloc),
  3161. sock_i_uid(s),
  3162. sock_i_ino(s)
  3163. );
  3164. buffer[len++] = '\n';
  3165. pos = begin + len;
  3166. if (pos < offset) {
  3167. len = 0;
  3168. begin = pos;
  3169. }
  3170. if(pos > offset + length)
  3171. goto done;
  3172. }
  3173. *eof = 1;
  3174. done:
  3175. read_unlock(&pfkey_table_lock);
  3176. *start = buffer + (offset - begin);
  3177. len -= (offset - begin);
  3178. if (len > length)
  3179. len = length;
  3180. if (len < 0)
  3181. len = 0;
  3182. return len;
  3183. }
  3184. #endif
  3185. static struct xfrm_mgr pfkeyv2_mgr =
  3186. {
  3187. .id = "pfkeyv2",
  3188. .notify = pfkey_send_notify,
  3189. .acquire = pfkey_send_acquire,
  3190. .compile_policy = pfkey_compile_policy,
  3191. .new_mapping = pfkey_send_new_mapping,
  3192. .notify_policy = pfkey_send_policy_notify,
  3193. .migrate = pfkey_send_migrate,
  3194. };
  3195. static void __exit ipsec_pfkey_exit(void)
  3196. {
  3197. xfrm_unregister_km(&pfkeyv2_mgr);
  3198. remove_proc_entry("net/pfkey", NULL);
  3199. sock_unregister(PF_KEY);
  3200. proto_unregister(&key_proto);
  3201. }
  3202. static int __init ipsec_pfkey_init(void)
  3203. {
  3204. int err = proto_register(&key_proto, 0);
  3205. if (err != 0)
  3206. goto out;
  3207. err = sock_register(&pfkey_family_ops);
  3208. if (err != 0)
  3209. goto out_unregister_key_proto;
  3210. #ifdef CONFIG_PROC_FS
  3211. err = -ENOMEM;
  3212. if (create_proc_read_entry("net/pfkey", 0, NULL, pfkey_read_proc, NULL) == NULL)
  3213. goto out_sock_unregister;
  3214. #endif
  3215. err = xfrm_register_km(&pfkeyv2_mgr);
  3216. if (err != 0)
  3217. goto out_remove_proc_entry;
  3218. out:
  3219. return err;
  3220. out_remove_proc_entry:
  3221. #ifdef CONFIG_PROC_FS
  3222. remove_proc_entry("net/pfkey", NULL);
  3223. out_sock_unregister:
  3224. #endif
  3225. sock_unregister(PF_KEY);
  3226. out_unregister_key_proto:
  3227. proto_unregister(&key_proto);
  3228. goto out;
  3229. }
  3230. module_init(ipsec_pfkey_init);
  3231. module_exit(ipsec_pfkey_exit);
  3232. MODULE_LICENSE("GPL");
  3233. MODULE_ALIAS_NETPROTO(PF_KEY);