i915_gem.c 104 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156
  1. /*
  2. * Copyright © 2008 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eric Anholt <eric@anholt.net>
  25. *
  26. */
  27. #include "drmP.h"
  28. #include "drm.h"
  29. #include "i915_drm.h"
  30. #include "i915_drv.h"
  31. #include "i915_trace.h"
  32. #include "intel_drv.h"
  33. #include <linux/slab.h>
  34. #include <linux/swap.h>
  35. #include <linux/pci.h>
  36. static __must_check int i915_gem_object_flush_gpu_write_domain(struct drm_i915_gem_object *obj);
  37. static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
  38. static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
  39. static __must_check int i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj,
  40. bool write);
  41. static __must_check int i915_gem_object_set_cpu_read_domain_range(struct drm_i915_gem_object *obj,
  42. uint64_t offset,
  43. uint64_t size);
  44. static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_i915_gem_object *obj);
  45. static __must_check int i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
  46. unsigned alignment,
  47. bool map_and_fenceable);
  48. static void i915_gem_clear_fence_reg(struct drm_device *dev,
  49. struct drm_i915_fence_reg *reg);
  50. static int i915_gem_phys_pwrite(struct drm_device *dev,
  51. struct drm_i915_gem_object *obj,
  52. struct drm_i915_gem_pwrite *args,
  53. struct drm_file *file);
  54. static void i915_gem_free_object_tail(struct drm_i915_gem_object *obj);
  55. static int i915_gem_inactive_shrink(struct shrinker *shrinker,
  56. struct shrink_control *sc);
  57. /* some bookkeeping */
  58. static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
  59. size_t size)
  60. {
  61. dev_priv->mm.object_count++;
  62. dev_priv->mm.object_memory += size;
  63. }
  64. static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
  65. size_t size)
  66. {
  67. dev_priv->mm.object_count--;
  68. dev_priv->mm.object_memory -= size;
  69. }
  70. static int
  71. i915_gem_wait_for_error(struct drm_device *dev)
  72. {
  73. struct drm_i915_private *dev_priv = dev->dev_private;
  74. struct completion *x = &dev_priv->error_completion;
  75. unsigned long flags;
  76. int ret;
  77. if (!atomic_read(&dev_priv->mm.wedged))
  78. return 0;
  79. ret = wait_for_completion_interruptible(x);
  80. if (ret)
  81. return ret;
  82. if (atomic_read(&dev_priv->mm.wedged)) {
  83. /* GPU is hung, bump the completion count to account for
  84. * the token we just consumed so that we never hit zero and
  85. * end up waiting upon a subsequent completion event that
  86. * will never happen.
  87. */
  88. spin_lock_irqsave(&x->wait.lock, flags);
  89. x->done++;
  90. spin_unlock_irqrestore(&x->wait.lock, flags);
  91. }
  92. return 0;
  93. }
  94. int i915_mutex_lock_interruptible(struct drm_device *dev)
  95. {
  96. int ret;
  97. ret = i915_gem_wait_for_error(dev);
  98. if (ret)
  99. return ret;
  100. ret = mutex_lock_interruptible(&dev->struct_mutex);
  101. if (ret)
  102. return ret;
  103. WARN_ON(i915_verify_lists(dev));
  104. return 0;
  105. }
  106. static inline bool
  107. i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
  108. {
  109. return obj->gtt_space && !obj->active && obj->pin_count == 0;
  110. }
  111. void i915_gem_do_init(struct drm_device *dev,
  112. unsigned long start,
  113. unsigned long mappable_end,
  114. unsigned long end)
  115. {
  116. drm_i915_private_t *dev_priv = dev->dev_private;
  117. drm_mm_init(&dev_priv->mm.gtt_space, start, end - start);
  118. dev_priv->mm.gtt_start = start;
  119. dev_priv->mm.gtt_mappable_end = mappable_end;
  120. dev_priv->mm.gtt_end = end;
  121. dev_priv->mm.gtt_total = end - start;
  122. dev_priv->mm.mappable_gtt_total = min(end, mappable_end) - start;
  123. /* Take over this portion of the GTT */
  124. intel_gtt_clear_range(start / PAGE_SIZE, (end-start) / PAGE_SIZE);
  125. }
  126. int
  127. i915_gem_init_ioctl(struct drm_device *dev, void *data,
  128. struct drm_file *file)
  129. {
  130. struct drm_i915_gem_init *args = data;
  131. if (args->gtt_start >= args->gtt_end ||
  132. (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
  133. return -EINVAL;
  134. mutex_lock(&dev->struct_mutex);
  135. i915_gem_do_init(dev, args->gtt_start, args->gtt_end, args->gtt_end);
  136. mutex_unlock(&dev->struct_mutex);
  137. return 0;
  138. }
  139. int
  140. i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
  141. struct drm_file *file)
  142. {
  143. struct drm_i915_private *dev_priv = dev->dev_private;
  144. struct drm_i915_gem_get_aperture *args = data;
  145. struct drm_i915_gem_object *obj;
  146. size_t pinned;
  147. if (!(dev->driver->driver_features & DRIVER_GEM))
  148. return -ENODEV;
  149. pinned = 0;
  150. mutex_lock(&dev->struct_mutex);
  151. list_for_each_entry(obj, &dev_priv->mm.pinned_list, mm_list)
  152. pinned += obj->gtt_space->size;
  153. mutex_unlock(&dev->struct_mutex);
  154. args->aper_size = dev_priv->mm.gtt_total;
  155. args->aper_available_size = args->aper_size -pinned;
  156. return 0;
  157. }
  158. static int
  159. i915_gem_create(struct drm_file *file,
  160. struct drm_device *dev,
  161. uint64_t size,
  162. uint32_t *handle_p)
  163. {
  164. struct drm_i915_gem_object *obj;
  165. int ret;
  166. u32 handle;
  167. size = roundup(size, PAGE_SIZE);
  168. /* Allocate the new object */
  169. obj = i915_gem_alloc_object(dev, size);
  170. if (obj == NULL)
  171. return -ENOMEM;
  172. ret = drm_gem_handle_create(file, &obj->base, &handle);
  173. if (ret) {
  174. drm_gem_object_release(&obj->base);
  175. i915_gem_info_remove_obj(dev->dev_private, obj->base.size);
  176. kfree(obj);
  177. return ret;
  178. }
  179. /* drop reference from allocate - handle holds it now */
  180. drm_gem_object_unreference(&obj->base);
  181. trace_i915_gem_object_create(obj);
  182. *handle_p = handle;
  183. return 0;
  184. }
  185. int
  186. i915_gem_dumb_create(struct drm_file *file,
  187. struct drm_device *dev,
  188. struct drm_mode_create_dumb *args)
  189. {
  190. /* have to work out size/pitch and return them */
  191. args->pitch = ALIGN(args->width * ((args->bpp + 7) / 8), 64);
  192. args->size = args->pitch * args->height;
  193. return i915_gem_create(file, dev,
  194. args->size, &args->handle);
  195. }
  196. int i915_gem_dumb_destroy(struct drm_file *file,
  197. struct drm_device *dev,
  198. uint32_t handle)
  199. {
  200. return drm_gem_handle_delete(file, handle);
  201. }
  202. /**
  203. * Creates a new mm object and returns a handle to it.
  204. */
  205. int
  206. i915_gem_create_ioctl(struct drm_device *dev, void *data,
  207. struct drm_file *file)
  208. {
  209. struct drm_i915_gem_create *args = data;
  210. return i915_gem_create(file, dev,
  211. args->size, &args->handle);
  212. }
  213. static int i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj)
  214. {
  215. drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
  216. return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
  217. obj->tiling_mode != I915_TILING_NONE;
  218. }
  219. static inline void
  220. slow_shmem_copy(struct page *dst_page,
  221. int dst_offset,
  222. struct page *src_page,
  223. int src_offset,
  224. int length)
  225. {
  226. char *dst_vaddr, *src_vaddr;
  227. dst_vaddr = kmap(dst_page);
  228. src_vaddr = kmap(src_page);
  229. memcpy(dst_vaddr + dst_offset, src_vaddr + src_offset, length);
  230. kunmap(src_page);
  231. kunmap(dst_page);
  232. }
  233. static inline void
  234. slow_shmem_bit17_copy(struct page *gpu_page,
  235. int gpu_offset,
  236. struct page *cpu_page,
  237. int cpu_offset,
  238. int length,
  239. int is_read)
  240. {
  241. char *gpu_vaddr, *cpu_vaddr;
  242. /* Use the unswizzled path if this page isn't affected. */
  243. if ((page_to_phys(gpu_page) & (1 << 17)) == 0) {
  244. if (is_read)
  245. return slow_shmem_copy(cpu_page, cpu_offset,
  246. gpu_page, gpu_offset, length);
  247. else
  248. return slow_shmem_copy(gpu_page, gpu_offset,
  249. cpu_page, cpu_offset, length);
  250. }
  251. gpu_vaddr = kmap(gpu_page);
  252. cpu_vaddr = kmap(cpu_page);
  253. /* Copy the data, XORing A6 with A17 (1). The user already knows he's
  254. * XORing with the other bits (A9 for Y, A9 and A10 for X)
  255. */
  256. while (length > 0) {
  257. int cacheline_end = ALIGN(gpu_offset + 1, 64);
  258. int this_length = min(cacheline_end - gpu_offset, length);
  259. int swizzled_gpu_offset = gpu_offset ^ 64;
  260. if (is_read) {
  261. memcpy(cpu_vaddr + cpu_offset,
  262. gpu_vaddr + swizzled_gpu_offset,
  263. this_length);
  264. } else {
  265. memcpy(gpu_vaddr + swizzled_gpu_offset,
  266. cpu_vaddr + cpu_offset,
  267. this_length);
  268. }
  269. cpu_offset += this_length;
  270. gpu_offset += this_length;
  271. length -= this_length;
  272. }
  273. kunmap(cpu_page);
  274. kunmap(gpu_page);
  275. }
  276. /**
  277. * This is the fast shmem pread path, which attempts to copy_from_user directly
  278. * from the backing pages of the object to the user's address space. On a
  279. * fault, it fails so we can fall back to i915_gem_shmem_pwrite_slow().
  280. */
  281. static int
  282. i915_gem_shmem_pread_fast(struct drm_device *dev,
  283. struct drm_i915_gem_object *obj,
  284. struct drm_i915_gem_pread *args,
  285. struct drm_file *file)
  286. {
  287. struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
  288. ssize_t remain;
  289. loff_t offset;
  290. char __user *user_data;
  291. int page_offset, page_length;
  292. user_data = (char __user *) (uintptr_t) args->data_ptr;
  293. remain = args->size;
  294. offset = args->offset;
  295. while (remain > 0) {
  296. struct page *page;
  297. char *vaddr;
  298. int ret;
  299. /* Operation in this page
  300. *
  301. * page_offset = offset within page
  302. * page_length = bytes to copy for this page
  303. */
  304. page_offset = offset_in_page(offset);
  305. page_length = remain;
  306. if ((page_offset + remain) > PAGE_SIZE)
  307. page_length = PAGE_SIZE - page_offset;
  308. page = read_cache_page_gfp(mapping, offset >> PAGE_SHIFT,
  309. GFP_HIGHUSER | __GFP_RECLAIMABLE);
  310. if (IS_ERR(page))
  311. return PTR_ERR(page);
  312. vaddr = kmap_atomic(page);
  313. ret = __copy_to_user_inatomic(user_data,
  314. vaddr + page_offset,
  315. page_length);
  316. kunmap_atomic(vaddr);
  317. mark_page_accessed(page);
  318. page_cache_release(page);
  319. if (ret)
  320. return -EFAULT;
  321. remain -= page_length;
  322. user_data += page_length;
  323. offset += page_length;
  324. }
  325. return 0;
  326. }
  327. /**
  328. * This is the fallback shmem pread path, which allocates temporary storage
  329. * in kernel space to copy_to_user into outside of the struct_mutex, so we
  330. * can copy out of the object's backing pages while holding the struct mutex
  331. * and not take page faults.
  332. */
  333. static int
  334. i915_gem_shmem_pread_slow(struct drm_device *dev,
  335. struct drm_i915_gem_object *obj,
  336. struct drm_i915_gem_pread *args,
  337. struct drm_file *file)
  338. {
  339. struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
  340. struct mm_struct *mm = current->mm;
  341. struct page **user_pages;
  342. ssize_t remain;
  343. loff_t offset, pinned_pages, i;
  344. loff_t first_data_page, last_data_page, num_pages;
  345. int shmem_page_offset;
  346. int data_page_index, data_page_offset;
  347. int page_length;
  348. int ret;
  349. uint64_t data_ptr = args->data_ptr;
  350. int do_bit17_swizzling;
  351. remain = args->size;
  352. /* Pin the user pages containing the data. We can't fault while
  353. * holding the struct mutex, yet we want to hold it while
  354. * dereferencing the user data.
  355. */
  356. first_data_page = data_ptr / PAGE_SIZE;
  357. last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
  358. num_pages = last_data_page - first_data_page + 1;
  359. user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
  360. if (user_pages == NULL)
  361. return -ENOMEM;
  362. mutex_unlock(&dev->struct_mutex);
  363. down_read(&mm->mmap_sem);
  364. pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
  365. num_pages, 1, 0, user_pages, NULL);
  366. up_read(&mm->mmap_sem);
  367. mutex_lock(&dev->struct_mutex);
  368. if (pinned_pages < num_pages) {
  369. ret = -EFAULT;
  370. goto out;
  371. }
  372. ret = i915_gem_object_set_cpu_read_domain_range(obj,
  373. args->offset,
  374. args->size);
  375. if (ret)
  376. goto out;
  377. do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
  378. offset = args->offset;
  379. while (remain > 0) {
  380. struct page *page;
  381. /* Operation in this page
  382. *
  383. * shmem_page_offset = offset within page in shmem file
  384. * data_page_index = page number in get_user_pages return
  385. * data_page_offset = offset with data_page_index page.
  386. * page_length = bytes to copy for this page
  387. */
  388. shmem_page_offset = offset_in_page(offset);
  389. data_page_index = data_ptr / PAGE_SIZE - first_data_page;
  390. data_page_offset = offset_in_page(data_ptr);
  391. page_length = remain;
  392. if ((shmem_page_offset + page_length) > PAGE_SIZE)
  393. page_length = PAGE_SIZE - shmem_page_offset;
  394. if ((data_page_offset + page_length) > PAGE_SIZE)
  395. page_length = PAGE_SIZE - data_page_offset;
  396. page = read_cache_page_gfp(mapping, offset >> PAGE_SHIFT,
  397. GFP_HIGHUSER | __GFP_RECLAIMABLE);
  398. if (IS_ERR(page))
  399. return PTR_ERR(page);
  400. if (do_bit17_swizzling) {
  401. slow_shmem_bit17_copy(page,
  402. shmem_page_offset,
  403. user_pages[data_page_index],
  404. data_page_offset,
  405. page_length,
  406. 1);
  407. } else {
  408. slow_shmem_copy(user_pages[data_page_index],
  409. data_page_offset,
  410. page,
  411. shmem_page_offset,
  412. page_length);
  413. }
  414. mark_page_accessed(page);
  415. page_cache_release(page);
  416. remain -= page_length;
  417. data_ptr += page_length;
  418. offset += page_length;
  419. }
  420. out:
  421. for (i = 0; i < pinned_pages; i++) {
  422. SetPageDirty(user_pages[i]);
  423. mark_page_accessed(user_pages[i]);
  424. page_cache_release(user_pages[i]);
  425. }
  426. drm_free_large(user_pages);
  427. return ret;
  428. }
  429. /**
  430. * Reads data from the object referenced by handle.
  431. *
  432. * On error, the contents of *data are undefined.
  433. */
  434. int
  435. i915_gem_pread_ioctl(struct drm_device *dev, void *data,
  436. struct drm_file *file)
  437. {
  438. struct drm_i915_gem_pread *args = data;
  439. struct drm_i915_gem_object *obj;
  440. int ret = 0;
  441. if (args->size == 0)
  442. return 0;
  443. if (!access_ok(VERIFY_WRITE,
  444. (char __user *)(uintptr_t)args->data_ptr,
  445. args->size))
  446. return -EFAULT;
  447. ret = fault_in_pages_writeable((char __user *)(uintptr_t)args->data_ptr,
  448. args->size);
  449. if (ret)
  450. return -EFAULT;
  451. ret = i915_mutex_lock_interruptible(dev);
  452. if (ret)
  453. return ret;
  454. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  455. if (&obj->base == NULL) {
  456. ret = -ENOENT;
  457. goto unlock;
  458. }
  459. /* Bounds check source. */
  460. if (args->offset > obj->base.size ||
  461. args->size > obj->base.size - args->offset) {
  462. ret = -EINVAL;
  463. goto out;
  464. }
  465. trace_i915_gem_object_pread(obj, args->offset, args->size);
  466. ret = i915_gem_object_set_cpu_read_domain_range(obj,
  467. args->offset,
  468. args->size);
  469. if (ret)
  470. goto out;
  471. ret = -EFAULT;
  472. if (!i915_gem_object_needs_bit17_swizzle(obj))
  473. ret = i915_gem_shmem_pread_fast(dev, obj, args, file);
  474. if (ret == -EFAULT)
  475. ret = i915_gem_shmem_pread_slow(dev, obj, args, file);
  476. out:
  477. drm_gem_object_unreference(&obj->base);
  478. unlock:
  479. mutex_unlock(&dev->struct_mutex);
  480. return ret;
  481. }
  482. /* This is the fast write path which cannot handle
  483. * page faults in the source data
  484. */
  485. static inline int
  486. fast_user_write(struct io_mapping *mapping,
  487. loff_t page_base, int page_offset,
  488. char __user *user_data,
  489. int length)
  490. {
  491. char *vaddr_atomic;
  492. unsigned long unwritten;
  493. vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
  494. unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
  495. user_data, length);
  496. io_mapping_unmap_atomic(vaddr_atomic);
  497. return unwritten;
  498. }
  499. /* Here's the write path which can sleep for
  500. * page faults
  501. */
  502. static inline void
  503. slow_kernel_write(struct io_mapping *mapping,
  504. loff_t gtt_base, int gtt_offset,
  505. struct page *user_page, int user_offset,
  506. int length)
  507. {
  508. char __iomem *dst_vaddr;
  509. char *src_vaddr;
  510. dst_vaddr = io_mapping_map_wc(mapping, gtt_base);
  511. src_vaddr = kmap(user_page);
  512. memcpy_toio(dst_vaddr + gtt_offset,
  513. src_vaddr + user_offset,
  514. length);
  515. kunmap(user_page);
  516. io_mapping_unmap(dst_vaddr);
  517. }
  518. /**
  519. * This is the fast pwrite path, where we copy the data directly from the
  520. * user into the GTT, uncached.
  521. */
  522. static int
  523. i915_gem_gtt_pwrite_fast(struct drm_device *dev,
  524. struct drm_i915_gem_object *obj,
  525. struct drm_i915_gem_pwrite *args,
  526. struct drm_file *file)
  527. {
  528. drm_i915_private_t *dev_priv = dev->dev_private;
  529. ssize_t remain;
  530. loff_t offset, page_base;
  531. char __user *user_data;
  532. int page_offset, page_length;
  533. user_data = (char __user *) (uintptr_t) args->data_ptr;
  534. remain = args->size;
  535. offset = obj->gtt_offset + args->offset;
  536. while (remain > 0) {
  537. /* Operation in this page
  538. *
  539. * page_base = page offset within aperture
  540. * page_offset = offset within page
  541. * page_length = bytes to copy for this page
  542. */
  543. page_base = offset & PAGE_MASK;
  544. page_offset = offset_in_page(offset);
  545. page_length = remain;
  546. if ((page_offset + remain) > PAGE_SIZE)
  547. page_length = PAGE_SIZE - page_offset;
  548. /* If we get a fault while copying data, then (presumably) our
  549. * source page isn't available. Return the error and we'll
  550. * retry in the slow path.
  551. */
  552. if (fast_user_write(dev_priv->mm.gtt_mapping, page_base,
  553. page_offset, user_data, page_length))
  554. return -EFAULT;
  555. remain -= page_length;
  556. user_data += page_length;
  557. offset += page_length;
  558. }
  559. return 0;
  560. }
  561. /**
  562. * This is the fallback GTT pwrite path, which uses get_user_pages to pin
  563. * the memory and maps it using kmap_atomic for copying.
  564. *
  565. * This code resulted in x11perf -rgb10text consuming about 10% more CPU
  566. * than using i915_gem_gtt_pwrite_fast on a G45 (32-bit).
  567. */
  568. static int
  569. i915_gem_gtt_pwrite_slow(struct drm_device *dev,
  570. struct drm_i915_gem_object *obj,
  571. struct drm_i915_gem_pwrite *args,
  572. struct drm_file *file)
  573. {
  574. drm_i915_private_t *dev_priv = dev->dev_private;
  575. ssize_t remain;
  576. loff_t gtt_page_base, offset;
  577. loff_t first_data_page, last_data_page, num_pages;
  578. loff_t pinned_pages, i;
  579. struct page **user_pages;
  580. struct mm_struct *mm = current->mm;
  581. int gtt_page_offset, data_page_offset, data_page_index, page_length;
  582. int ret;
  583. uint64_t data_ptr = args->data_ptr;
  584. remain = args->size;
  585. /* Pin the user pages containing the data. We can't fault while
  586. * holding the struct mutex, and all of the pwrite implementations
  587. * want to hold it while dereferencing the user data.
  588. */
  589. first_data_page = data_ptr / PAGE_SIZE;
  590. last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
  591. num_pages = last_data_page - first_data_page + 1;
  592. user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
  593. if (user_pages == NULL)
  594. return -ENOMEM;
  595. mutex_unlock(&dev->struct_mutex);
  596. down_read(&mm->mmap_sem);
  597. pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
  598. num_pages, 0, 0, user_pages, NULL);
  599. up_read(&mm->mmap_sem);
  600. mutex_lock(&dev->struct_mutex);
  601. if (pinned_pages < num_pages) {
  602. ret = -EFAULT;
  603. goto out_unpin_pages;
  604. }
  605. ret = i915_gem_object_set_to_gtt_domain(obj, true);
  606. if (ret)
  607. goto out_unpin_pages;
  608. ret = i915_gem_object_put_fence(obj);
  609. if (ret)
  610. goto out_unpin_pages;
  611. offset = obj->gtt_offset + args->offset;
  612. while (remain > 0) {
  613. /* Operation in this page
  614. *
  615. * gtt_page_base = page offset within aperture
  616. * gtt_page_offset = offset within page in aperture
  617. * data_page_index = page number in get_user_pages return
  618. * data_page_offset = offset with data_page_index page.
  619. * page_length = bytes to copy for this page
  620. */
  621. gtt_page_base = offset & PAGE_MASK;
  622. gtt_page_offset = offset_in_page(offset);
  623. data_page_index = data_ptr / PAGE_SIZE - first_data_page;
  624. data_page_offset = offset_in_page(data_ptr);
  625. page_length = remain;
  626. if ((gtt_page_offset + page_length) > PAGE_SIZE)
  627. page_length = PAGE_SIZE - gtt_page_offset;
  628. if ((data_page_offset + page_length) > PAGE_SIZE)
  629. page_length = PAGE_SIZE - data_page_offset;
  630. slow_kernel_write(dev_priv->mm.gtt_mapping,
  631. gtt_page_base, gtt_page_offset,
  632. user_pages[data_page_index],
  633. data_page_offset,
  634. page_length);
  635. remain -= page_length;
  636. offset += page_length;
  637. data_ptr += page_length;
  638. }
  639. out_unpin_pages:
  640. for (i = 0; i < pinned_pages; i++)
  641. page_cache_release(user_pages[i]);
  642. drm_free_large(user_pages);
  643. return ret;
  644. }
  645. /**
  646. * This is the fast shmem pwrite path, which attempts to directly
  647. * copy_from_user into the kmapped pages backing the object.
  648. */
  649. static int
  650. i915_gem_shmem_pwrite_fast(struct drm_device *dev,
  651. struct drm_i915_gem_object *obj,
  652. struct drm_i915_gem_pwrite *args,
  653. struct drm_file *file)
  654. {
  655. struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
  656. ssize_t remain;
  657. loff_t offset;
  658. char __user *user_data;
  659. int page_offset, page_length;
  660. user_data = (char __user *) (uintptr_t) args->data_ptr;
  661. remain = args->size;
  662. offset = args->offset;
  663. obj->dirty = 1;
  664. while (remain > 0) {
  665. struct page *page;
  666. char *vaddr;
  667. int ret;
  668. /* Operation in this page
  669. *
  670. * page_offset = offset within page
  671. * page_length = bytes to copy for this page
  672. */
  673. page_offset = offset_in_page(offset);
  674. page_length = remain;
  675. if ((page_offset + remain) > PAGE_SIZE)
  676. page_length = PAGE_SIZE - page_offset;
  677. page = read_cache_page_gfp(mapping, offset >> PAGE_SHIFT,
  678. GFP_HIGHUSER | __GFP_RECLAIMABLE);
  679. if (IS_ERR(page))
  680. return PTR_ERR(page);
  681. vaddr = kmap_atomic(page, KM_USER0);
  682. ret = __copy_from_user_inatomic(vaddr + page_offset,
  683. user_data,
  684. page_length);
  685. kunmap_atomic(vaddr, KM_USER0);
  686. set_page_dirty(page);
  687. mark_page_accessed(page);
  688. page_cache_release(page);
  689. /* If we get a fault while copying data, then (presumably) our
  690. * source page isn't available. Return the error and we'll
  691. * retry in the slow path.
  692. */
  693. if (ret)
  694. return -EFAULT;
  695. remain -= page_length;
  696. user_data += page_length;
  697. offset += page_length;
  698. }
  699. return 0;
  700. }
  701. /**
  702. * This is the fallback shmem pwrite path, which uses get_user_pages to pin
  703. * the memory and maps it using kmap_atomic for copying.
  704. *
  705. * This avoids taking mmap_sem for faulting on the user's address while the
  706. * struct_mutex is held.
  707. */
  708. static int
  709. i915_gem_shmem_pwrite_slow(struct drm_device *dev,
  710. struct drm_i915_gem_object *obj,
  711. struct drm_i915_gem_pwrite *args,
  712. struct drm_file *file)
  713. {
  714. struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
  715. struct mm_struct *mm = current->mm;
  716. struct page **user_pages;
  717. ssize_t remain;
  718. loff_t offset, pinned_pages, i;
  719. loff_t first_data_page, last_data_page, num_pages;
  720. int shmem_page_offset;
  721. int data_page_index, data_page_offset;
  722. int page_length;
  723. int ret;
  724. uint64_t data_ptr = args->data_ptr;
  725. int do_bit17_swizzling;
  726. remain = args->size;
  727. /* Pin the user pages containing the data. We can't fault while
  728. * holding the struct mutex, and all of the pwrite implementations
  729. * want to hold it while dereferencing the user data.
  730. */
  731. first_data_page = data_ptr / PAGE_SIZE;
  732. last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
  733. num_pages = last_data_page - first_data_page + 1;
  734. user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
  735. if (user_pages == NULL)
  736. return -ENOMEM;
  737. mutex_unlock(&dev->struct_mutex);
  738. down_read(&mm->mmap_sem);
  739. pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
  740. num_pages, 0, 0, user_pages, NULL);
  741. up_read(&mm->mmap_sem);
  742. mutex_lock(&dev->struct_mutex);
  743. if (pinned_pages < num_pages) {
  744. ret = -EFAULT;
  745. goto out;
  746. }
  747. ret = i915_gem_object_set_to_cpu_domain(obj, 1);
  748. if (ret)
  749. goto out;
  750. do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
  751. offset = args->offset;
  752. obj->dirty = 1;
  753. while (remain > 0) {
  754. struct page *page;
  755. /* Operation in this page
  756. *
  757. * shmem_page_offset = offset within page in shmem file
  758. * data_page_index = page number in get_user_pages return
  759. * data_page_offset = offset with data_page_index page.
  760. * page_length = bytes to copy for this page
  761. */
  762. shmem_page_offset = offset_in_page(offset);
  763. data_page_index = data_ptr / PAGE_SIZE - first_data_page;
  764. data_page_offset = offset_in_page(data_ptr);
  765. page_length = remain;
  766. if ((shmem_page_offset + page_length) > PAGE_SIZE)
  767. page_length = PAGE_SIZE - shmem_page_offset;
  768. if ((data_page_offset + page_length) > PAGE_SIZE)
  769. page_length = PAGE_SIZE - data_page_offset;
  770. page = read_cache_page_gfp(mapping, offset >> PAGE_SHIFT,
  771. GFP_HIGHUSER | __GFP_RECLAIMABLE);
  772. if (IS_ERR(page)) {
  773. ret = PTR_ERR(page);
  774. goto out;
  775. }
  776. if (do_bit17_swizzling) {
  777. slow_shmem_bit17_copy(page,
  778. shmem_page_offset,
  779. user_pages[data_page_index],
  780. data_page_offset,
  781. page_length,
  782. 0);
  783. } else {
  784. slow_shmem_copy(page,
  785. shmem_page_offset,
  786. user_pages[data_page_index],
  787. data_page_offset,
  788. page_length);
  789. }
  790. set_page_dirty(page);
  791. mark_page_accessed(page);
  792. page_cache_release(page);
  793. remain -= page_length;
  794. data_ptr += page_length;
  795. offset += page_length;
  796. }
  797. out:
  798. for (i = 0; i < pinned_pages; i++)
  799. page_cache_release(user_pages[i]);
  800. drm_free_large(user_pages);
  801. return ret;
  802. }
  803. /**
  804. * Writes data to the object referenced by handle.
  805. *
  806. * On error, the contents of the buffer that were to be modified are undefined.
  807. */
  808. int
  809. i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
  810. struct drm_file *file)
  811. {
  812. struct drm_i915_gem_pwrite *args = data;
  813. struct drm_i915_gem_object *obj;
  814. int ret;
  815. if (args->size == 0)
  816. return 0;
  817. if (!access_ok(VERIFY_READ,
  818. (char __user *)(uintptr_t)args->data_ptr,
  819. args->size))
  820. return -EFAULT;
  821. ret = fault_in_pages_readable((char __user *)(uintptr_t)args->data_ptr,
  822. args->size);
  823. if (ret)
  824. return -EFAULT;
  825. ret = i915_mutex_lock_interruptible(dev);
  826. if (ret)
  827. return ret;
  828. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  829. if (&obj->base == NULL) {
  830. ret = -ENOENT;
  831. goto unlock;
  832. }
  833. /* Bounds check destination. */
  834. if (args->offset > obj->base.size ||
  835. args->size > obj->base.size - args->offset) {
  836. ret = -EINVAL;
  837. goto out;
  838. }
  839. trace_i915_gem_object_pwrite(obj, args->offset, args->size);
  840. /* We can only do the GTT pwrite on untiled buffers, as otherwise
  841. * it would end up going through the fenced access, and we'll get
  842. * different detiling behavior between reading and writing.
  843. * pread/pwrite currently are reading and writing from the CPU
  844. * perspective, requiring manual detiling by the client.
  845. */
  846. if (obj->phys_obj)
  847. ret = i915_gem_phys_pwrite(dev, obj, args, file);
  848. else if (obj->gtt_space &&
  849. obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
  850. ret = i915_gem_object_pin(obj, 0, true);
  851. if (ret)
  852. goto out;
  853. ret = i915_gem_object_set_to_gtt_domain(obj, true);
  854. if (ret)
  855. goto out_unpin;
  856. ret = i915_gem_object_put_fence(obj);
  857. if (ret)
  858. goto out_unpin;
  859. ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
  860. if (ret == -EFAULT)
  861. ret = i915_gem_gtt_pwrite_slow(dev, obj, args, file);
  862. out_unpin:
  863. i915_gem_object_unpin(obj);
  864. } else {
  865. ret = i915_gem_object_set_to_cpu_domain(obj, 1);
  866. if (ret)
  867. goto out;
  868. ret = -EFAULT;
  869. if (!i915_gem_object_needs_bit17_swizzle(obj))
  870. ret = i915_gem_shmem_pwrite_fast(dev, obj, args, file);
  871. if (ret == -EFAULT)
  872. ret = i915_gem_shmem_pwrite_slow(dev, obj, args, file);
  873. }
  874. out:
  875. drm_gem_object_unreference(&obj->base);
  876. unlock:
  877. mutex_unlock(&dev->struct_mutex);
  878. return ret;
  879. }
  880. /**
  881. * Called when user space prepares to use an object with the CPU, either
  882. * through the mmap ioctl's mapping or a GTT mapping.
  883. */
  884. int
  885. i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
  886. struct drm_file *file)
  887. {
  888. struct drm_i915_gem_set_domain *args = data;
  889. struct drm_i915_gem_object *obj;
  890. uint32_t read_domains = args->read_domains;
  891. uint32_t write_domain = args->write_domain;
  892. int ret;
  893. if (!(dev->driver->driver_features & DRIVER_GEM))
  894. return -ENODEV;
  895. /* Only handle setting domains to types used by the CPU. */
  896. if (write_domain & I915_GEM_GPU_DOMAINS)
  897. return -EINVAL;
  898. if (read_domains & I915_GEM_GPU_DOMAINS)
  899. return -EINVAL;
  900. /* Having something in the write domain implies it's in the read
  901. * domain, and only that read domain. Enforce that in the request.
  902. */
  903. if (write_domain != 0 && read_domains != write_domain)
  904. return -EINVAL;
  905. ret = i915_mutex_lock_interruptible(dev);
  906. if (ret)
  907. return ret;
  908. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  909. if (&obj->base == NULL) {
  910. ret = -ENOENT;
  911. goto unlock;
  912. }
  913. if (read_domains & I915_GEM_DOMAIN_GTT) {
  914. ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
  915. /* Silently promote "you're not bound, there was nothing to do"
  916. * to success, since the client was just asking us to
  917. * make sure everything was done.
  918. */
  919. if (ret == -EINVAL)
  920. ret = 0;
  921. } else {
  922. ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
  923. }
  924. drm_gem_object_unreference(&obj->base);
  925. unlock:
  926. mutex_unlock(&dev->struct_mutex);
  927. return ret;
  928. }
  929. /**
  930. * Called when user space has done writes to this buffer
  931. */
  932. int
  933. i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
  934. struct drm_file *file)
  935. {
  936. struct drm_i915_gem_sw_finish *args = data;
  937. struct drm_i915_gem_object *obj;
  938. int ret = 0;
  939. if (!(dev->driver->driver_features & DRIVER_GEM))
  940. return -ENODEV;
  941. ret = i915_mutex_lock_interruptible(dev);
  942. if (ret)
  943. return ret;
  944. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  945. if (&obj->base == NULL) {
  946. ret = -ENOENT;
  947. goto unlock;
  948. }
  949. /* Pinned buffers may be scanout, so flush the cache */
  950. if (obj->pin_count)
  951. i915_gem_object_flush_cpu_write_domain(obj);
  952. drm_gem_object_unreference(&obj->base);
  953. unlock:
  954. mutex_unlock(&dev->struct_mutex);
  955. return ret;
  956. }
  957. /**
  958. * Maps the contents of an object, returning the address it is mapped
  959. * into.
  960. *
  961. * While the mapping holds a reference on the contents of the object, it doesn't
  962. * imply a ref on the object itself.
  963. */
  964. int
  965. i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
  966. struct drm_file *file)
  967. {
  968. struct drm_i915_private *dev_priv = dev->dev_private;
  969. struct drm_i915_gem_mmap *args = data;
  970. struct drm_gem_object *obj;
  971. unsigned long addr;
  972. if (!(dev->driver->driver_features & DRIVER_GEM))
  973. return -ENODEV;
  974. obj = drm_gem_object_lookup(dev, file, args->handle);
  975. if (obj == NULL)
  976. return -ENOENT;
  977. if (obj->size > dev_priv->mm.gtt_mappable_end) {
  978. drm_gem_object_unreference_unlocked(obj);
  979. return -E2BIG;
  980. }
  981. down_write(&current->mm->mmap_sem);
  982. addr = do_mmap(obj->filp, 0, args->size,
  983. PROT_READ | PROT_WRITE, MAP_SHARED,
  984. args->offset);
  985. up_write(&current->mm->mmap_sem);
  986. drm_gem_object_unreference_unlocked(obj);
  987. if (IS_ERR((void *)addr))
  988. return addr;
  989. args->addr_ptr = (uint64_t) addr;
  990. return 0;
  991. }
  992. /**
  993. * i915_gem_fault - fault a page into the GTT
  994. * vma: VMA in question
  995. * vmf: fault info
  996. *
  997. * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
  998. * from userspace. The fault handler takes care of binding the object to
  999. * the GTT (if needed), allocating and programming a fence register (again,
  1000. * only if needed based on whether the old reg is still valid or the object
  1001. * is tiled) and inserting a new PTE into the faulting process.
  1002. *
  1003. * Note that the faulting process may involve evicting existing objects
  1004. * from the GTT and/or fence registers to make room. So performance may
  1005. * suffer if the GTT working set is large or there are few fence registers
  1006. * left.
  1007. */
  1008. int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
  1009. {
  1010. struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
  1011. struct drm_device *dev = obj->base.dev;
  1012. drm_i915_private_t *dev_priv = dev->dev_private;
  1013. pgoff_t page_offset;
  1014. unsigned long pfn;
  1015. int ret = 0;
  1016. bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
  1017. /* We don't use vmf->pgoff since that has the fake offset */
  1018. page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
  1019. PAGE_SHIFT;
  1020. ret = i915_mutex_lock_interruptible(dev);
  1021. if (ret)
  1022. goto out;
  1023. trace_i915_gem_object_fault(obj, page_offset, true, write);
  1024. /* Now bind it into the GTT if needed */
  1025. if (!obj->map_and_fenceable) {
  1026. ret = i915_gem_object_unbind(obj);
  1027. if (ret)
  1028. goto unlock;
  1029. }
  1030. if (!obj->gtt_space) {
  1031. ret = i915_gem_object_bind_to_gtt(obj, 0, true);
  1032. if (ret)
  1033. goto unlock;
  1034. }
  1035. ret = i915_gem_object_set_to_gtt_domain(obj, write);
  1036. if (ret)
  1037. goto unlock;
  1038. if (obj->tiling_mode == I915_TILING_NONE)
  1039. ret = i915_gem_object_put_fence(obj);
  1040. else
  1041. ret = i915_gem_object_get_fence(obj, NULL);
  1042. if (ret)
  1043. goto unlock;
  1044. if (i915_gem_object_is_inactive(obj))
  1045. list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
  1046. obj->fault_mappable = true;
  1047. pfn = ((dev->agp->base + obj->gtt_offset) >> PAGE_SHIFT) +
  1048. page_offset;
  1049. /* Finally, remap it using the new GTT offset */
  1050. ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
  1051. unlock:
  1052. mutex_unlock(&dev->struct_mutex);
  1053. out:
  1054. switch (ret) {
  1055. case -EIO:
  1056. case -EAGAIN:
  1057. /* Give the error handler a chance to run and move the
  1058. * objects off the GPU active list. Next time we service the
  1059. * fault, we should be able to transition the page into the
  1060. * GTT without touching the GPU (and so avoid further
  1061. * EIO/EGAIN). If the GPU is wedged, then there is no issue
  1062. * with coherency, just lost writes.
  1063. */
  1064. set_need_resched();
  1065. case 0:
  1066. case -ERESTARTSYS:
  1067. case -EINTR:
  1068. return VM_FAULT_NOPAGE;
  1069. case -ENOMEM:
  1070. return VM_FAULT_OOM;
  1071. default:
  1072. return VM_FAULT_SIGBUS;
  1073. }
  1074. }
  1075. /**
  1076. * i915_gem_create_mmap_offset - create a fake mmap offset for an object
  1077. * @obj: obj in question
  1078. *
  1079. * GEM memory mapping works by handing back to userspace a fake mmap offset
  1080. * it can use in a subsequent mmap(2) call. The DRM core code then looks
  1081. * up the object based on the offset and sets up the various memory mapping
  1082. * structures.
  1083. *
  1084. * This routine allocates and attaches a fake offset for @obj.
  1085. */
  1086. static int
  1087. i915_gem_create_mmap_offset(struct drm_i915_gem_object *obj)
  1088. {
  1089. struct drm_device *dev = obj->base.dev;
  1090. struct drm_gem_mm *mm = dev->mm_private;
  1091. struct drm_map_list *list;
  1092. struct drm_local_map *map;
  1093. int ret = 0;
  1094. /* Set the object up for mmap'ing */
  1095. list = &obj->base.map_list;
  1096. list->map = kzalloc(sizeof(struct drm_map_list), GFP_KERNEL);
  1097. if (!list->map)
  1098. return -ENOMEM;
  1099. map = list->map;
  1100. map->type = _DRM_GEM;
  1101. map->size = obj->base.size;
  1102. map->handle = obj;
  1103. /* Get a DRM GEM mmap offset allocated... */
  1104. list->file_offset_node = drm_mm_search_free(&mm->offset_manager,
  1105. obj->base.size / PAGE_SIZE,
  1106. 0, 0);
  1107. if (!list->file_offset_node) {
  1108. DRM_ERROR("failed to allocate offset for bo %d\n",
  1109. obj->base.name);
  1110. ret = -ENOSPC;
  1111. goto out_free_list;
  1112. }
  1113. list->file_offset_node = drm_mm_get_block(list->file_offset_node,
  1114. obj->base.size / PAGE_SIZE,
  1115. 0);
  1116. if (!list->file_offset_node) {
  1117. ret = -ENOMEM;
  1118. goto out_free_list;
  1119. }
  1120. list->hash.key = list->file_offset_node->start;
  1121. ret = drm_ht_insert_item(&mm->offset_hash, &list->hash);
  1122. if (ret) {
  1123. DRM_ERROR("failed to add to map hash\n");
  1124. goto out_free_mm;
  1125. }
  1126. return 0;
  1127. out_free_mm:
  1128. drm_mm_put_block(list->file_offset_node);
  1129. out_free_list:
  1130. kfree(list->map);
  1131. list->map = NULL;
  1132. return ret;
  1133. }
  1134. /**
  1135. * i915_gem_release_mmap - remove physical page mappings
  1136. * @obj: obj in question
  1137. *
  1138. * Preserve the reservation of the mmapping with the DRM core code, but
  1139. * relinquish ownership of the pages back to the system.
  1140. *
  1141. * It is vital that we remove the page mapping if we have mapped a tiled
  1142. * object through the GTT and then lose the fence register due to
  1143. * resource pressure. Similarly if the object has been moved out of the
  1144. * aperture, than pages mapped into userspace must be revoked. Removing the
  1145. * mapping will then trigger a page fault on the next user access, allowing
  1146. * fixup by i915_gem_fault().
  1147. */
  1148. void
  1149. i915_gem_release_mmap(struct drm_i915_gem_object *obj)
  1150. {
  1151. if (!obj->fault_mappable)
  1152. return;
  1153. if (obj->base.dev->dev_mapping)
  1154. unmap_mapping_range(obj->base.dev->dev_mapping,
  1155. (loff_t)obj->base.map_list.hash.key<<PAGE_SHIFT,
  1156. obj->base.size, 1);
  1157. obj->fault_mappable = false;
  1158. }
  1159. static void
  1160. i915_gem_free_mmap_offset(struct drm_i915_gem_object *obj)
  1161. {
  1162. struct drm_device *dev = obj->base.dev;
  1163. struct drm_gem_mm *mm = dev->mm_private;
  1164. struct drm_map_list *list = &obj->base.map_list;
  1165. drm_ht_remove_item(&mm->offset_hash, &list->hash);
  1166. drm_mm_put_block(list->file_offset_node);
  1167. kfree(list->map);
  1168. list->map = NULL;
  1169. }
  1170. static uint32_t
  1171. i915_gem_get_gtt_size(struct drm_i915_gem_object *obj)
  1172. {
  1173. struct drm_device *dev = obj->base.dev;
  1174. uint32_t size;
  1175. if (INTEL_INFO(dev)->gen >= 4 ||
  1176. obj->tiling_mode == I915_TILING_NONE)
  1177. return obj->base.size;
  1178. /* Previous chips need a power-of-two fence region when tiling */
  1179. if (INTEL_INFO(dev)->gen == 3)
  1180. size = 1024*1024;
  1181. else
  1182. size = 512*1024;
  1183. while (size < obj->base.size)
  1184. size <<= 1;
  1185. return size;
  1186. }
  1187. /**
  1188. * i915_gem_get_gtt_alignment - return required GTT alignment for an object
  1189. * @obj: object to check
  1190. *
  1191. * Return the required GTT alignment for an object, taking into account
  1192. * potential fence register mapping.
  1193. */
  1194. static uint32_t
  1195. i915_gem_get_gtt_alignment(struct drm_i915_gem_object *obj)
  1196. {
  1197. struct drm_device *dev = obj->base.dev;
  1198. /*
  1199. * Minimum alignment is 4k (GTT page size), but might be greater
  1200. * if a fence register is needed for the object.
  1201. */
  1202. if (INTEL_INFO(dev)->gen >= 4 ||
  1203. obj->tiling_mode == I915_TILING_NONE)
  1204. return 4096;
  1205. /*
  1206. * Previous chips need to be aligned to the size of the smallest
  1207. * fence register that can contain the object.
  1208. */
  1209. return i915_gem_get_gtt_size(obj);
  1210. }
  1211. /**
  1212. * i915_gem_get_unfenced_gtt_alignment - return required GTT alignment for an
  1213. * unfenced object
  1214. * @obj: object to check
  1215. *
  1216. * Return the required GTT alignment for an object, only taking into account
  1217. * unfenced tiled surface requirements.
  1218. */
  1219. uint32_t
  1220. i915_gem_get_unfenced_gtt_alignment(struct drm_i915_gem_object *obj)
  1221. {
  1222. struct drm_device *dev = obj->base.dev;
  1223. int tile_height;
  1224. /*
  1225. * Minimum alignment is 4k (GTT page size) for sane hw.
  1226. */
  1227. if (INTEL_INFO(dev)->gen >= 4 || IS_G33(dev) ||
  1228. obj->tiling_mode == I915_TILING_NONE)
  1229. return 4096;
  1230. /*
  1231. * Older chips need unfenced tiled buffers to be aligned to the left
  1232. * edge of an even tile row (where tile rows are counted as if the bo is
  1233. * placed in a fenced gtt region).
  1234. */
  1235. if (IS_GEN2(dev))
  1236. tile_height = 16;
  1237. else if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
  1238. tile_height = 32;
  1239. else
  1240. tile_height = 8;
  1241. return tile_height * obj->stride * 2;
  1242. }
  1243. int
  1244. i915_gem_mmap_gtt(struct drm_file *file,
  1245. struct drm_device *dev,
  1246. uint32_t handle,
  1247. uint64_t *offset)
  1248. {
  1249. struct drm_i915_private *dev_priv = dev->dev_private;
  1250. struct drm_i915_gem_object *obj;
  1251. int ret;
  1252. if (!(dev->driver->driver_features & DRIVER_GEM))
  1253. return -ENODEV;
  1254. ret = i915_mutex_lock_interruptible(dev);
  1255. if (ret)
  1256. return ret;
  1257. obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
  1258. if (&obj->base == NULL) {
  1259. ret = -ENOENT;
  1260. goto unlock;
  1261. }
  1262. if (obj->base.size > dev_priv->mm.gtt_mappable_end) {
  1263. ret = -E2BIG;
  1264. goto unlock;
  1265. }
  1266. if (obj->madv != I915_MADV_WILLNEED) {
  1267. DRM_ERROR("Attempting to mmap a purgeable buffer\n");
  1268. ret = -EINVAL;
  1269. goto out;
  1270. }
  1271. if (!obj->base.map_list.map) {
  1272. ret = i915_gem_create_mmap_offset(obj);
  1273. if (ret)
  1274. goto out;
  1275. }
  1276. *offset = (u64)obj->base.map_list.hash.key << PAGE_SHIFT;
  1277. out:
  1278. drm_gem_object_unreference(&obj->base);
  1279. unlock:
  1280. mutex_unlock(&dev->struct_mutex);
  1281. return ret;
  1282. }
  1283. /**
  1284. * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
  1285. * @dev: DRM device
  1286. * @data: GTT mapping ioctl data
  1287. * @file: GEM object info
  1288. *
  1289. * Simply returns the fake offset to userspace so it can mmap it.
  1290. * The mmap call will end up in drm_gem_mmap(), which will set things
  1291. * up so we can get faults in the handler above.
  1292. *
  1293. * The fault handler will take care of binding the object into the GTT
  1294. * (since it may have been evicted to make room for something), allocating
  1295. * a fence register, and mapping the appropriate aperture address into
  1296. * userspace.
  1297. */
  1298. int
  1299. i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
  1300. struct drm_file *file)
  1301. {
  1302. struct drm_i915_gem_mmap_gtt *args = data;
  1303. if (!(dev->driver->driver_features & DRIVER_GEM))
  1304. return -ENODEV;
  1305. return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
  1306. }
  1307. static int
  1308. i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj,
  1309. gfp_t gfpmask)
  1310. {
  1311. int page_count, i;
  1312. struct address_space *mapping;
  1313. struct inode *inode;
  1314. struct page *page;
  1315. /* Get the list of pages out of our struct file. They'll be pinned
  1316. * at this point until we release them.
  1317. */
  1318. page_count = obj->base.size / PAGE_SIZE;
  1319. BUG_ON(obj->pages != NULL);
  1320. obj->pages = drm_malloc_ab(page_count, sizeof(struct page *));
  1321. if (obj->pages == NULL)
  1322. return -ENOMEM;
  1323. inode = obj->base.filp->f_path.dentry->d_inode;
  1324. mapping = inode->i_mapping;
  1325. for (i = 0; i < page_count; i++) {
  1326. page = read_cache_page_gfp(mapping, i,
  1327. GFP_HIGHUSER |
  1328. __GFP_COLD |
  1329. __GFP_RECLAIMABLE |
  1330. gfpmask);
  1331. if (IS_ERR(page))
  1332. goto err_pages;
  1333. obj->pages[i] = page;
  1334. }
  1335. if (obj->tiling_mode != I915_TILING_NONE)
  1336. i915_gem_object_do_bit_17_swizzle(obj);
  1337. return 0;
  1338. err_pages:
  1339. while (i--)
  1340. page_cache_release(obj->pages[i]);
  1341. drm_free_large(obj->pages);
  1342. obj->pages = NULL;
  1343. return PTR_ERR(page);
  1344. }
  1345. static void
  1346. i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
  1347. {
  1348. int page_count = obj->base.size / PAGE_SIZE;
  1349. int i;
  1350. BUG_ON(obj->madv == __I915_MADV_PURGED);
  1351. if (obj->tiling_mode != I915_TILING_NONE)
  1352. i915_gem_object_save_bit_17_swizzle(obj);
  1353. if (obj->madv == I915_MADV_DONTNEED)
  1354. obj->dirty = 0;
  1355. for (i = 0; i < page_count; i++) {
  1356. if (obj->dirty)
  1357. set_page_dirty(obj->pages[i]);
  1358. if (obj->madv == I915_MADV_WILLNEED)
  1359. mark_page_accessed(obj->pages[i]);
  1360. page_cache_release(obj->pages[i]);
  1361. }
  1362. obj->dirty = 0;
  1363. drm_free_large(obj->pages);
  1364. obj->pages = NULL;
  1365. }
  1366. void
  1367. i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
  1368. struct intel_ring_buffer *ring,
  1369. u32 seqno)
  1370. {
  1371. struct drm_device *dev = obj->base.dev;
  1372. struct drm_i915_private *dev_priv = dev->dev_private;
  1373. BUG_ON(ring == NULL);
  1374. obj->ring = ring;
  1375. /* Add a reference if we're newly entering the active list. */
  1376. if (!obj->active) {
  1377. drm_gem_object_reference(&obj->base);
  1378. obj->active = 1;
  1379. }
  1380. /* Move from whatever list we were on to the tail of execution. */
  1381. list_move_tail(&obj->mm_list, &dev_priv->mm.active_list);
  1382. list_move_tail(&obj->ring_list, &ring->active_list);
  1383. obj->last_rendering_seqno = seqno;
  1384. if (obj->fenced_gpu_access) {
  1385. struct drm_i915_fence_reg *reg;
  1386. BUG_ON(obj->fence_reg == I915_FENCE_REG_NONE);
  1387. obj->last_fenced_seqno = seqno;
  1388. obj->last_fenced_ring = ring;
  1389. reg = &dev_priv->fence_regs[obj->fence_reg];
  1390. list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
  1391. }
  1392. }
  1393. static void
  1394. i915_gem_object_move_off_active(struct drm_i915_gem_object *obj)
  1395. {
  1396. list_del_init(&obj->ring_list);
  1397. obj->last_rendering_seqno = 0;
  1398. }
  1399. static void
  1400. i915_gem_object_move_to_flushing(struct drm_i915_gem_object *obj)
  1401. {
  1402. struct drm_device *dev = obj->base.dev;
  1403. drm_i915_private_t *dev_priv = dev->dev_private;
  1404. BUG_ON(!obj->active);
  1405. list_move_tail(&obj->mm_list, &dev_priv->mm.flushing_list);
  1406. i915_gem_object_move_off_active(obj);
  1407. }
  1408. static void
  1409. i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
  1410. {
  1411. struct drm_device *dev = obj->base.dev;
  1412. struct drm_i915_private *dev_priv = dev->dev_private;
  1413. if (obj->pin_count != 0)
  1414. list_move_tail(&obj->mm_list, &dev_priv->mm.pinned_list);
  1415. else
  1416. list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
  1417. BUG_ON(!list_empty(&obj->gpu_write_list));
  1418. BUG_ON(!obj->active);
  1419. obj->ring = NULL;
  1420. i915_gem_object_move_off_active(obj);
  1421. obj->fenced_gpu_access = false;
  1422. obj->active = 0;
  1423. obj->pending_gpu_write = false;
  1424. drm_gem_object_unreference(&obj->base);
  1425. WARN_ON(i915_verify_lists(dev));
  1426. }
  1427. /* Immediately discard the backing storage */
  1428. static void
  1429. i915_gem_object_truncate(struct drm_i915_gem_object *obj)
  1430. {
  1431. struct inode *inode;
  1432. /* Our goal here is to return as much of the memory as
  1433. * is possible back to the system as we are called from OOM.
  1434. * To do this we must instruct the shmfs to drop all of its
  1435. * backing pages, *now*. Here we mirror the actions taken
  1436. * when by shmem_delete_inode() to release the backing store.
  1437. */
  1438. inode = obj->base.filp->f_path.dentry->d_inode;
  1439. truncate_inode_pages(inode->i_mapping, 0);
  1440. if (inode->i_op->truncate_range)
  1441. inode->i_op->truncate_range(inode, 0, (loff_t)-1);
  1442. obj->madv = __I915_MADV_PURGED;
  1443. }
  1444. static inline int
  1445. i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
  1446. {
  1447. return obj->madv == I915_MADV_DONTNEED;
  1448. }
  1449. static void
  1450. i915_gem_process_flushing_list(struct intel_ring_buffer *ring,
  1451. uint32_t flush_domains)
  1452. {
  1453. struct drm_i915_gem_object *obj, *next;
  1454. list_for_each_entry_safe(obj, next,
  1455. &ring->gpu_write_list,
  1456. gpu_write_list) {
  1457. if (obj->base.write_domain & flush_domains) {
  1458. uint32_t old_write_domain = obj->base.write_domain;
  1459. obj->base.write_domain = 0;
  1460. list_del_init(&obj->gpu_write_list);
  1461. i915_gem_object_move_to_active(obj, ring,
  1462. i915_gem_next_request_seqno(ring));
  1463. trace_i915_gem_object_change_domain(obj,
  1464. obj->base.read_domains,
  1465. old_write_domain);
  1466. }
  1467. }
  1468. }
  1469. int
  1470. i915_add_request(struct intel_ring_buffer *ring,
  1471. struct drm_file *file,
  1472. struct drm_i915_gem_request *request)
  1473. {
  1474. drm_i915_private_t *dev_priv = ring->dev->dev_private;
  1475. uint32_t seqno;
  1476. int was_empty;
  1477. int ret;
  1478. BUG_ON(request == NULL);
  1479. ret = ring->add_request(ring, &seqno);
  1480. if (ret)
  1481. return ret;
  1482. trace_i915_gem_request_add(ring, seqno);
  1483. request->seqno = seqno;
  1484. request->ring = ring;
  1485. request->emitted_jiffies = jiffies;
  1486. was_empty = list_empty(&ring->request_list);
  1487. list_add_tail(&request->list, &ring->request_list);
  1488. if (file) {
  1489. struct drm_i915_file_private *file_priv = file->driver_priv;
  1490. spin_lock(&file_priv->mm.lock);
  1491. request->file_priv = file_priv;
  1492. list_add_tail(&request->client_list,
  1493. &file_priv->mm.request_list);
  1494. spin_unlock(&file_priv->mm.lock);
  1495. }
  1496. ring->outstanding_lazy_request = false;
  1497. if (!dev_priv->mm.suspended) {
  1498. mod_timer(&dev_priv->hangcheck_timer,
  1499. jiffies + msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD));
  1500. if (was_empty)
  1501. queue_delayed_work(dev_priv->wq,
  1502. &dev_priv->mm.retire_work, HZ);
  1503. }
  1504. return 0;
  1505. }
  1506. static inline void
  1507. i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
  1508. {
  1509. struct drm_i915_file_private *file_priv = request->file_priv;
  1510. if (!file_priv)
  1511. return;
  1512. spin_lock(&file_priv->mm.lock);
  1513. if (request->file_priv) {
  1514. list_del(&request->client_list);
  1515. request->file_priv = NULL;
  1516. }
  1517. spin_unlock(&file_priv->mm.lock);
  1518. }
  1519. static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
  1520. struct intel_ring_buffer *ring)
  1521. {
  1522. while (!list_empty(&ring->request_list)) {
  1523. struct drm_i915_gem_request *request;
  1524. request = list_first_entry(&ring->request_list,
  1525. struct drm_i915_gem_request,
  1526. list);
  1527. list_del(&request->list);
  1528. i915_gem_request_remove_from_client(request);
  1529. kfree(request);
  1530. }
  1531. while (!list_empty(&ring->active_list)) {
  1532. struct drm_i915_gem_object *obj;
  1533. obj = list_first_entry(&ring->active_list,
  1534. struct drm_i915_gem_object,
  1535. ring_list);
  1536. obj->base.write_domain = 0;
  1537. list_del_init(&obj->gpu_write_list);
  1538. i915_gem_object_move_to_inactive(obj);
  1539. }
  1540. }
  1541. static void i915_gem_reset_fences(struct drm_device *dev)
  1542. {
  1543. struct drm_i915_private *dev_priv = dev->dev_private;
  1544. int i;
  1545. for (i = 0; i < 16; i++) {
  1546. struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
  1547. struct drm_i915_gem_object *obj = reg->obj;
  1548. if (!obj)
  1549. continue;
  1550. if (obj->tiling_mode)
  1551. i915_gem_release_mmap(obj);
  1552. reg->obj->fence_reg = I915_FENCE_REG_NONE;
  1553. reg->obj->fenced_gpu_access = false;
  1554. reg->obj->last_fenced_seqno = 0;
  1555. reg->obj->last_fenced_ring = NULL;
  1556. i915_gem_clear_fence_reg(dev, reg);
  1557. }
  1558. }
  1559. void i915_gem_reset(struct drm_device *dev)
  1560. {
  1561. struct drm_i915_private *dev_priv = dev->dev_private;
  1562. struct drm_i915_gem_object *obj;
  1563. int i;
  1564. for (i = 0; i < I915_NUM_RINGS; i++)
  1565. i915_gem_reset_ring_lists(dev_priv, &dev_priv->ring[i]);
  1566. /* Remove anything from the flushing lists. The GPU cache is likely
  1567. * to be lost on reset along with the data, so simply move the
  1568. * lost bo to the inactive list.
  1569. */
  1570. while (!list_empty(&dev_priv->mm.flushing_list)) {
  1571. obj= list_first_entry(&dev_priv->mm.flushing_list,
  1572. struct drm_i915_gem_object,
  1573. mm_list);
  1574. obj->base.write_domain = 0;
  1575. list_del_init(&obj->gpu_write_list);
  1576. i915_gem_object_move_to_inactive(obj);
  1577. }
  1578. /* Move everything out of the GPU domains to ensure we do any
  1579. * necessary invalidation upon reuse.
  1580. */
  1581. list_for_each_entry(obj,
  1582. &dev_priv->mm.inactive_list,
  1583. mm_list)
  1584. {
  1585. obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
  1586. }
  1587. /* The fence registers are invalidated so clear them out */
  1588. i915_gem_reset_fences(dev);
  1589. }
  1590. /**
  1591. * This function clears the request list as sequence numbers are passed.
  1592. */
  1593. static void
  1594. i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
  1595. {
  1596. uint32_t seqno;
  1597. int i;
  1598. if (list_empty(&ring->request_list))
  1599. return;
  1600. WARN_ON(i915_verify_lists(ring->dev));
  1601. seqno = ring->get_seqno(ring);
  1602. for (i = 0; i < ARRAY_SIZE(ring->sync_seqno); i++)
  1603. if (seqno >= ring->sync_seqno[i])
  1604. ring->sync_seqno[i] = 0;
  1605. while (!list_empty(&ring->request_list)) {
  1606. struct drm_i915_gem_request *request;
  1607. request = list_first_entry(&ring->request_list,
  1608. struct drm_i915_gem_request,
  1609. list);
  1610. if (!i915_seqno_passed(seqno, request->seqno))
  1611. break;
  1612. trace_i915_gem_request_retire(ring, request->seqno);
  1613. list_del(&request->list);
  1614. i915_gem_request_remove_from_client(request);
  1615. kfree(request);
  1616. }
  1617. /* Move any buffers on the active list that are no longer referenced
  1618. * by the ringbuffer to the flushing/inactive lists as appropriate.
  1619. */
  1620. while (!list_empty(&ring->active_list)) {
  1621. struct drm_i915_gem_object *obj;
  1622. obj= list_first_entry(&ring->active_list,
  1623. struct drm_i915_gem_object,
  1624. ring_list);
  1625. if (!i915_seqno_passed(seqno, obj->last_rendering_seqno))
  1626. break;
  1627. if (obj->base.write_domain != 0)
  1628. i915_gem_object_move_to_flushing(obj);
  1629. else
  1630. i915_gem_object_move_to_inactive(obj);
  1631. }
  1632. if (unlikely(ring->trace_irq_seqno &&
  1633. i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
  1634. ring->irq_put(ring);
  1635. ring->trace_irq_seqno = 0;
  1636. }
  1637. WARN_ON(i915_verify_lists(ring->dev));
  1638. }
  1639. void
  1640. i915_gem_retire_requests(struct drm_device *dev)
  1641. {
  1642. drm_i915_private_t *dev_priv = dev->dev_private;
  1643. int i;
  1644. if (!list_empty(&dev_priv->mm.deferred_free_list)) {
  1645. struct drm_i915_gem_object *obj, *next;
  1646. /* We must be careful that during unbind() we do not
  1647. * accidentally infinitely recurse into retire requests.
  1648. * Currently:
  1649. * retire -> free -> unbind -> wait -> retire_ring
  1650. */
  1651. list_for_each_entry_safe(obj, next,
  1652. &dev_priv->mm.deferred_free_list,
  1653. mm_list)
  1654. i915_gem_free_object_tail(obj);
  1655. }
  1656. for (i = 0; i < I915_NUM_RINGS; i++)
  1657. i915_gem_retire_requests_ring(&dev_priv->ring[i]);
  1658. }
  1659. static void
  1660. i915_gem_retire_work_handler(struct work_struct *work)
  1661. {
  1662. drm_i915_private_t *dev_priv;
  1663. struct drm_device *dev;
  1664. bool idle;
  1665. int i;
  1666. dev_priv = container_of(work, drm_i915_private_t,
  1667. mm.retire_work.work);
  1668. dev = dev_priv->dev;
  1669. /* Come back later if the device is busy... */
  1670. if (!mutex_trylock(&dev->struct_mutex)) {
  1671. queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
  1672. return;
  1673. }
  1674. i915_gem_retire_requests(dev);
  1675. /* Send a periodic flush down the ring so we don't hold onto GEM
  1676. * objects indefinitely.
  1677. */
  1678. idle = true;
  1679. for (i = 0; i < I915_NUM_RINGS; i++) {
  1680. struct intel_ring_buffer *ring = &dev_priv->ring[i];
  1681. if (!list_empty(&ring->gpu_write_list)) {
  1682. struct drm_i915_gem_request *request;
  1683. int ret;
  1684. ret = i915_gem_flush_ring(ring,
  1685. 0, I915_GEM_GPU_DOMAINS);
  1686. request = kzalloc(sizeof(*request), GFP_KERNEL);
  1687. if (ret || request == NULL ||
  1688. i915_add_request(ring, NULL, request))
  1689. kfree(request);
  1690. }
  1691. idle &= list_empty(&ring->request_list);
  1692. }
  1693. if (!dev_priv->mm.suspended && !idle)
  1694. queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
  1695. mutex_unlock(&dev->struct_mutex);
  1696. }
  1697. /**
  1698. * Waits for a sequence number to be signaled, and cleans up the
  1699. * request and object lists appropriately for that event.
  1700. */
  1701. int
  1702. i915_wait_request(struct intel_ring_buffer *ring,
  1703. uint32_t seqno)
  1704. {
  1705. drm_i915_private_t *dev_priv = ring->dev->dev_private;
  1706. u32 ier;
  1707. int ret = 0;
  1708. BUG_ON(seqno == 0);
  1709. if (atomic_read(&dev_priv->mm.wedged)) {
  1710. struct completion *x = &dev_priv->error_completion;
  1711. bool recovery_complete;
  1712. unsigned long flags;
  1713. /* Give the error handler a chance to run. */
  1714. spin_lock_irqsave(&x->wait.lock, flags);
  1715. recovery_complete = x->done > 0;
  1716. spin_unlock_irqrestore(&x->wait.lock, flags);
  1717. return recovery_complete ? -EIO : -EAGAIN;
  1718. }
  1719. if (seqno == ring->outstanding_lazy_request) {
  1720. struct drm_i915_gem_request *request;
  1721. request = kzalloc(sizeof(*request), GFP_KERNEL);
  1722. if (request == NULL)
  1723. return -ENOMEM;
  1724. ret = i915_add_request(ring, NULL, request);
  1725. if (ret) {
  1726. kfree(request);
  1727. return ret;
  1728. }
  1729. seqno = request->seqno;
  1730. }
  1731. if (!i915_seqno_passed(ring->get_seqno(ring), seqno)) {
  1732. if (HAS_PCH_SPLIT(ring->dev))
  1733. ier = I915_READ(DEIER) | I915_READ(GTIER);
  1734. else
  1735. ier = I915_READ(IER);
  1736. if (!ier) {
  1737. DRM_ERROR("something (likely vbetool) disabled "
  1738. "interrupts, re-enabling\n");
  1739. i915_driver_irq_preinstall(ring->dev);
  1740. i915_driver_irq_postinstall(ring->dev);
  1741. }
  1742. trace_i915_gem_request_wait_begin(ring, seqno);
  1743. ring->waiting_seqno = seqno;
  1744. if (ring->irq_get(ring)) {
  1745. if (dev_priv->mm.interruptible)
  1746. ret = wait_event_interruptible(ring->irq_queue,
  1747. i915_seqno_passed(ring->get_seqno(ring), seqno)
  1748. || atomic_read(&dev_priv->mm.wedged));
  1749. else
  1750. wait_event(ring->irq_queue,
  1751. i915_seqno_passed(ring->get_seqno(ring), seqno)
  1752. || atomic_read(&dev_priv->mm.wedged));
  1753. ring->irq_put(ring);
  1754. } else if (wait_for(i915_seqno_passed(ring->get_seqno(ring),
  1755. seqno) ||
  1756. atomic_read(&dev_priv->mm.wedged), 3000))
  1757. ret = -EBUSY;
  1758. ring->waiting_seqno = 0;
  1759. trace_i915_gem_request_wait_end(ring, seqno);
  1760. }
  1761. if (atomic_read(&dev_priv->mm.wedged))
  1762. ret = -EAGAIN;
  1763. if (ret && ret != -ERESTARTSYS)
  1764. DRM_ERROR("%s returns %d (awaiting %d at %d, next %d)\n",
  1765. __func__, ret, seqno, ring->get_seqno(ring),
  1766. dev_priv->next_seqno);
  1767. /* Directly dispatch request retiring. While we have the work queue
  1768. * to handle this, the waiter on a request often wants an associated
  1769. * buffer to have made it to the inactive list, and we would need
  1770. * a separate wait queue to handle that.
  1771. */
  1772. if (ret == 0)
  1773. i915_gem_retire_requests_ring(ring);
  1774. return ret;
  1775. }
  1776. /**
  1777. * Ensures that all rendering to the object has completed and the object is
  1778. * safe to unbind from the GTT or access from the CPU.
  1779. */
  1780. int
  1781. i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj)
  1782. {
  1783. int ret;
  1784. /* This function only exists to support waiting for existing rendering,
  1785. * not for emitting required flushes.
  1786. */
  1787. BUG_ON((obj->base.write_domain & I915_GEM_GPU_DOMAINS) != 0);
  1788. /* If there is rendering queued on the buffer being evicted, wait for
  1789. * it.
  1790. */
  1791. if (obj->active) {
  1792. ret = i915_wait_request(obj->ring, obj->last_rendering_seqno);
  1793. if (ret)
  1794. return ret;
  1795. }
  1796. return 0;
  1797. }
  1798. /**
  1799. * Unbinds an object from the GTT aperture.
  1800. */
  1801. int
  1802. i915_gem_object_unbind(struct drm_i915_gem_object *obj)
  1803. {
  1804. int ret = 0;
  1805. if (obj->gtt_space == NULL)
  1806. return 0;
  1807. if (obj->pin_count != 0) {
  1808. DRM_ERROR("Attempting to unbind pinned buffer\n");
  1809. return -EINVAL;
  1810. }
  1811. /* blow away mappings if mapped through GTT */
  1812. i915_gem_release_mmap(obj);
  1813. /* Move the object to the CPU domain to ensure that
  1814. * any possible CPU writes while it's not in the GTT
  1815. * are flushed when we go to remap it. This will
  1816. * also ensure that all pending GPU writes are finished
  1817. * before we unbind.
  1818. */
  1819. ret = i915_gem_object_set_to_cpu_domain(obj, 1);
  1820. if (ret == -ERESTARTSYS)
  1821. return ret;
  1822. /* Continue on if we fail due to EIO, the GPU is hung so we
  1823. * should be safe and we need to cleanup or else we might
  1824. * cause memory corruption through use-after-free.
  1825. */
  1826. if (ret) {
  1827. i915_gem_clflush_object(obj);
  1828. obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
  1829. }
  1830. /* release the fence reg _after_ flushing */
  1831. ret = i915_gem_object_put_fence(obj);
  1832. if (ret == -ERESTARTSYS)
  1833. return ret;
  1834. trace_i915_gem_object_unbind(obj);
  1835. i915_gem_gtt_unbind_object(obj);
  1836. i915_gem_object_put_pages_gtt(obj);
  1837. list_del_init(&obj->gtt_list);
  1838. list_del_init(&obj->mm_list);
  1839. /* Avoid an unnecessary call to unbind on rebind. */
  1840. obj->map_and_fenceable = true;
  1841. drm_mm_put_block(obj->gtt_space);
  1842. obj->gtt_space = NULL;
  1843. obj->gtt_offset = 0;
  1844. if (i915_gem_object_is_purgeable(obj))
  1845. i915_gem_object_truncate(obj);
  1846. return ret;
  1847. }
  1848. int
  1849. i915_gem_flush_ring(struct intel_ring_buffer *ring,
  1850. uint32_t invalidate_domains,
  1851. uint32_t flush_domains)
  1852. {
  1853. int ret;
  1854. if (((invalidate_domains | flush_domains) & I915_GEM_GPU_DOMAINS) == 0)
  1855. return 0;
  1856. trace_i915_gem_ring_flush(ring, invalidate_domains, flush_domains);
  1857. ret = ring->flush(ring, invalidate_domains, flush_domains);
  1858. if (ret)
  1859. return ret;
  1860. if (flush_domains & I915_GEM_GPU_DOMAINS)
  1861. i915_gem_process_flushing_list(ring, flush_domains);
  1862. return 0;
  1863. }
  1864. static int i915_ring_idle(struct intel_ring_buffer *ring)
  1865. {
  1866. int ret;
  1867. if (list_empty(&ring->gpu_write_list) && list_empty(&ring->active_list))
  1868. return 0;
  1869. if (!list_empty(&ring->gpu_write_list)) {
  1870. ret = i915_gem_flush_ring(ring,
  1871. I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
  1872. if (ret)
  1873. return ret;
  1874. }
  1875. return i915_wait_request(ring, i915_gem_next_request_seqno(ring));
  1876. }
  1877. int
  1878. i915_gpu_idle(struct drm_device *dev)
  1879. {
  1880. drm_i915_private_t *dev_priv = dev->dev_private;
  1881. bool lists_empty;
  1882. int ret, i;
  1883. lists_empty = (list_empty(&dev_priv->mm.flushing_list) &&
  1884. list_empty(&dev_priv->mm.active_list));
  1885. if (lists_empty)
  1886. return 0;
  1887. /* Flush everything onto the inactive list. */
  1888. for (i = 0; i < I915_NUM_RINGS; i++) {
  1889. ret = i915_ring_idle(&dev_priv->ring[i]);
  1890. if (ret)
  1891. return ret;
  1892. }
  1893. return 0;
  1894. }
  1895. static int sandybridge_write_fence_reg(struct drm_i915_gem_object *obj,
  1896. struct intel_ring_buffer *pipelined)
  1897. {
  1898. struct drm_device *dev = obj->base.dev;
  1899. drm_i915_private_t *dev_priv = dev->dev_private;
  1900. u32 size = obj->gtt_space->size;
  1901. int regnum = obj->fence_reg;
  1902. uint64_t val;
  1903. val = (uint64_t)((obj->gtt_offset + size - 4096) &
  1904. 0xfffff000) << 32;
  1905. val |= obj->gtt_offset & 0xfffff000;
  1906. val |= (uint64_t)((obj->stride / 128) - 1) <<
  1907. SANDYBRIDGE_FENCE_PITCH_SHIFT;
  1908. if (obj->tiling_mode == I915_TILING_Y)
  1909. val |= 1 << I965_FENCE_TILING_Y_SHIFT;
  1910. val |= I965_FENCE_REG_VALID;
  1911. if (pipelined) {
  1912. int ret = intel_ring_begin(pipelined, 6);
  1913. if (ret)
  1914. return ret;
  1915. intel_ring_emit(pipelined, MI_NOOP);
  1916. intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(2));
  1917. intel_ring_emit(pipelined, FENCE_REG_SANDYBRIDGE_0 + regnum*8);
  1918. intel_ring_emit(pipelined, (u32)val);
  1919. intel_ring_emit(pipelined, FENCE_REG_SANDYBRIDGE_0 + regnum*8 + 4);
  1920. intel_ring_emit(pipelined, (u32)(val >> 32));
  1921. intel_ring_advance(pipelined);
  1922. } else
  1923. I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + regnum * 8, val);
  1924. return 0;
  1925. }
  1926. static int i965_write_fence_reg(struct drm_i915_gem_object *obj,
  1927. struct intel_ring_buffer *pipelined)
  1928. {
  1929. struct drm_device *dev = obj->base.dev;
  1930. drm_i915_private_t *dev_priv = dev->dev_private;
  1931. u32 size = obj->gtt_space->size;
  1932. int regnum = obj->fence_reg;
  1933. uint64_t val;
  1934. val = (uint64_t)((obj->gtt_offset + size - 4096) &
  1935. 0xfffff000) << 32;
  1936. val |= obj->gtt_offset & 0xfffff000;
  1937. val |= ((obj->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
  1938. if (obj->tiling_mode == I915_TILING_Y)
  1939. val |= 1 << I965_FENCE_TILING_Y_SHIFT;
  1940. val |= I965_FENCE_REG_VALID;
  1941. if (pipelined) {
  1942. int ret = intel_ring_begin(pipelined, 6);
  1943. if (ret)
  1944. return ret;
  1945. intel_ring_emit(pipelined, MI_NOOP);
  1946. intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(2));
  1947. intel_ring_emit(pipelined, FENCE_REG_965_0 + regnum*8);
  1948. intel_ring_emit(pipelined, (u32)val);
  1949. intel_ring_emit(pipelined, FENCE_REG_965_0 + regnum*8 + 4);
  1950. intel_ring_emit(pipelined, (u32)(val >> 32));
  1951. intel_ring_advance(pipelined);
  1952. } else
  1953. I915_WRITE64(FENCE_REG_965_0 + regnum * 8, val);
  1954. return 0;
  1955. }
  1956. static int i915_write_fence_reg(struct drm_i915_gem_object *obj,
  1957. struct intel_ring_buffer *pipelined)
  1958. {
  1959. struct drm_device *dev = obj->base.dev;
  1960. drm_i915_private_t *dev_priv = dev->dev_private;
  1961. u32 size = obj->gtt_space->size;
  1962. u32 fence_reg, val, pitch_val;
  1963. int tile_width;
  1964. if (WARN((obj->gtt_offset & ~I915_FENCE_START_MASK) ||
  1965. (size & -size) != size ||
  1966. (obj->gtt_offset & (size - 1)),
  1967. "object 0x%08x [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
  1968. obj->gtt_offset, obj->map_and_fenceable, size))
  1969. return -EINVAL;
  1970. if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
  1971. tile_width = 128;
  1972. else
  1973. tile_width = 512;
  1974. /* Note: pitch better be a power of two tile widths */
  1975. pitch_val = obj->stride / tile_width;
  1976. pitch_val = ffs(pitch_val) - 1;
  1977. val = obj->gtt_offset;
  1978. if (obj->tiling_mode == I915_TILING_Y)
  1979. val |= 1 << I830_FENCE_TILING_Y_SHIFT;
  1980. val |= I915_FENCE_SIZE_BITS(size);
  1981. val |= pitch_val << I830_FENCE_PITCH_SHIFT;
  1982. val |= I830_FENCE_REG_VALID;
  1983. fence_reg = obj->fence_reg;
  1984. if (fence_reg < 8)
  1985. fence_reg = FENCE_REG_830_0 + fence_reg * 4;
  1986. else
  1987. fence_reg = FENCE_REG_945_8 + (fence_reg - 8) * 4;
  1988. if (pipelined) {
  1989. int ret = intel_ring_begin(pipelined, 4);
  1990. if (ret)
  1991. return ret;
  1992. intel_ring_emit(pipelined, MI_NOOP);
  1993. intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(1));
  1994. intel_ring_emit(pipelined, fence_reg);
  1995. intel_ring_emit(pipelined, val);
  1996. intel_ring_advance(pipelined);
  1997. } else
  1998. I915_WRITE(fence_reg, val);
  1999. return 0;
  2000. }
  2001. static int i830_write_fence_reg(struct drm_i915_gem_object *obj,
  2002. struct intel_ring_buffer *pipelined)
  2003. {
  2004. struct drm_device *dev = obj->base.dev;
  2005. drm_i915_private_t *dev_priv = dev->dev_private;
  2006. u32 size = obj->gtt_space->size;
  2007. int regnum = obj->fence_reg;
  2008. uint32_t val;
  2009. uint32_t pitch_val;
  2010. if (WARN((obj->gtt_offset & ~I830_FENCE_START_MASK) ||
  2011. (size & -size) != size ||
  2012. (obj->gtt_offset & (size - 1)),
  2013. "object 0x%08x not 512K or pot-size 0x%08x aligned\n",
  2014. obj->gtt_offset, size))
  2015. return -EINVAL;
  2016. pitch_val = obj->stride / 128;
  2017. pitch_val = ffs(pitch_val) - 1;
  2018. val = obj->gtt_offset;
  2019. if (obj->tiling_mode == I915_TILING_Y)
  2020. val |= 1 << I830_FENCE_TILING_Y_SHIFT;
  2021. val |= I830_FENCE_SIZE_BITS(size);
  2022. val |= pitch_val << I830_FENCE_PITCH_SHIFT;
  2023. val |= I830_FENCE_REG_VALID;
  2024. if (pipelined) {
  2025. int ret = intel_ring_begin(pipelined, 4);
  2026. if (ret)
  2027. return ret;
  2028. intel_ring_emit(pipelined, MI_NOOP);
  2029. intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(1));
  2030. intel_ring_emit(pipelined, FENCE_REG_830_0 + regnum*4);
  2031. intel_ring_emit(pipelined, val);
  2032. intel_ring_advance(pipelined);
  2033. } else
  2034. I915_WRITE(FENCE_REG_830_0 + regnum * 4, val);
  2035. return 0;
  2036. }
  2037. static bool ring_passed_seqno(struct intel_ring_buffer *ring, u32 seqno)
  2038. {
  2039. return i915_seqno_passed(ring->get_seqno(ring), seqno);
  2040. }
  2041. static int
  2042. i915_gem_object_flush_fence(struct drm_i915_gem_object *obj,
  2043. struct intel_ring_buffer *pipelined)
  2044. {
  2045. int ret;
  2046. if (obj->fenced_gpu_access) {
  2047. if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
  2048. ret = i915_gem_flush_ring(obj->last_fenced_ring,
  2049. 0, obj->base.write_domain);
  2050. if (ret)
  2051. return ret;
  2052. }
  2053. obj->fenced_gpu_access = false;
  2054. }
  2055. if (obj->last_fenced_seqno && pipelined != obj->last_fenced_ring) {
  2056. if (!ring_passed_seqno(obj->last_fenced_ring,
  2057. obj->last_fenced_seqno)) {
  2058. ret = i915_wait_request(obj->last_fenced_ring,
  2059. obj->last_fenced_seqno);
  2060. if (ret)
  2061. return ret;
  2062. }
  2063. obj->last_fenced_seqno = 0;
  2064. obj->last_fenced_ring = NULL;
  2065. }
  2066. /* Ensure that all CPU reads are completed before installing a fence
  2067. * and all writes before removing the fence.
  2068. */
  2069. if (obj->base.read_domains & I915_GEM_DOMAIN_GTT)
  2070. mb();
  2071. return 0;
  2072. }
  2073. int
  2074. i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
  2075. {
  2076. int ret;
  2077. if (obj->tiling_mode)
  2078. i915_gem_release_mmap(obj);
  2079. ret = i915_gem_object_flush_fence(obj, NULL);
  2080. if (ret)
  2081. return ret;
  2082. if (obj->fence_reg != I915_FENCE_REG_NONE) {
  2083. struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
  2084. i915_gem_clear_fence_reg(obj->base.dev,
  2085. &dev_priv->fence_regs[obj->fence_reg]);
  2086. obj->fence_reg = I915_FENCE_REG_NONE;
  2087. }
  2088. return 0;
  2089. }
  2090. static struct drm_i915_fence_reg *
  2091. i915_find_fence_reg(struct drm_device *dev,
  2092. struct intel_ring_buffer *pipelined)
  2093. {
  2094. struct drm_i915_private *dev_priv = dev->dev_private;
  2095. struct drm_i915_fence_reg *reg, *first, *avail;
  2096. int i;
  2097. /* First try to find a free reg */
  2098. avail = NULL;
  2099. for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
  2100. reg = &dev_priv->fence_regs[i];
  2101. if (!reg->obj)
  2102. return reg;
  2103. if (!reg->obj->pin_count)
  2104. avail = reg;
  2105. }
  2106. if (avail == NULL)
  2107. return NULL;
  2108. /* None available, try to steal one or wait for a user to finish */
  2109. avail = first = NULL;
  2110. list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
  2111. if (reg->obj->pin_count)
  2112. continue;
  2113. if (first == NULL)
  2114. first = reg;
  2115. if (!pipelined ||
  2116. !reg->obj->last_fenced_ring ||
  2117. reg->obj->last_fenced_ring == pipelined) {
  2118. avail = reg;
  2119. break;
  2120. }
  2121. }
  2122. if (avail == NULL)
  2123. avail = first;
  2124. return avail;
  2125. }
  2126. /**
  2127. * i915_gem_object_get_fence - set up a fence reg for an object
  2128. * @obj: object to map through a fence reg
  2129. * @pipelined: ring on which to queue the change, or NULL for CPU access
  2130. * @interruptible: must we wait uninterruptibly for the register to retire?
  2131. *
  2132. * When mapping objects through the GTT, userspace wants to be able to write
  2133. * to them without having to worry about swizzling if the object is tiled.
  2134. *
  2135. * This function walks the fence regs looking for a free one for @obj,
  2136. * stealing one if it can't find any.
  2137. *
  2138. * It then sets up the reg based on the object's properties: address, pitch
  2139. * and tiling format.
  2140. */
  2141. int
  2142. i915_gem_object_get_fence(struct drm_i915_gem_object *obj,
  2143. struct intel_ring_buffer *pipelined)
  2144. {
  2145. struct drm_device *dev = obj->base.dev;
  2146. struct drm_i915_private *dev_priv = dev->dev_private;
  2147. struct drm_i915_fence_reg *reg;
  2148. int ret;
  2149. /* XXX disable pipelining. There are bugs. Shocking. */
  2150. pipelined = NULL;
  2151. /* Just update our place in the LRU if our fence is getting reused. */
  2152. if (obj->fence_reg != I915_FENCE_REG_NONE) {
  2153. reg = &dev_priv->fence_regs[obj->fence_reg];
  2154. list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
  2155. if (obj->tiling_changed) {
  2156. ret = i915_gem_object_flush_fence(obj, pipelined);
  2157. if (ret)
  2158. return ret;
  2159. if (!obj->fenced_gpu_access && !obj->last_fenced_seqno)
  2160. pipelined = NULL;
  2161. if (pipelined) {
  2162. reg->setup_seqno =
  2163. i915_gem_next_request_seqno(pipelined);
  2164. obj->last_fenced_seqno = reg->setup_seqno;
  2165. obj->last_fenced_ring = pipelined;
  2166. }
  2167. goto update;
  2168. }
  2169. if (!pipelined) {
  2170. if (reg->setup_seqno) {
  2171. if (!ring_passed_seqno(obj->last_fenced_ring,
  2172. reg->setup_seqno)) {
  2173. ret = i915_wait_request(obj->last_fenced_ring,
  2174. reg->setup_seqno);
  2175. if (ret)
  2176. return ret;
  2177. }
  2178. reg->setup_seqno = 0;
  2179. }
  2180. } else if (obj->last_fenced_ring &&
  2181. obj->last_fenced_ring != pipelined) {
  2182. ret = i915_gem_object_flush_fence(obj, pipelined);
  2183. if (ret)
  2184. return ret;
  2185. }
  2186. return 0;
  2187. }
  2188. reg = i915_find_fence_reg(dev, pipelined);
  2189. if (reg == NULL)
  2190. return -ENOSPC;
  2191. ret = i915_gem_object_flush_fence(obj, pipelined);
  2192. if (ret)
  2193. return ret;
  2194. if (reg->obj) {
  2195. struct drm_i915_gem_object *old = reg->obj;
  2196. drm_gem_object_reference(&old->base);
  2197. if (old->tiling_mode)
  2198. i915_gem_release_mmap(old);
  2199. ret = i915_gem_object_flush_fence(old, pipelined);
  2200. if (ret) {
  2201. drm_gem_object_unreference(&old->base);
  2202. return ret;
  2203. }
  2204. if (old->last_fenced_seqno == 0 && obj->last_fenced_seqno == 0)
  2205. pipelined = NULL;
  2206. old->fence_reg = I915_FENCE_REG_NONE;
  2207. old->last_fenced_ring = pipelined;
  2208. old->last_fenced_seqno =
  2209. pipelined ? i915_gem_next_request_seqno(pipelined) : 0;
  2210. drm_gem_object_unreference(&old->base);
  2211. } else if (obj->last_fenced_seqno == 0)
  2212. pipelined = NULL;
  2213. reg->obj = obj;
  2214. list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
  2215. obj->fence_reg = reg - dev_priv->fence_regs;
  2216. obj->last_fenced_ring = pipelined;
  2217. reg->setup_seqno =
  2218. pipelined ? i915_gem_next_request_seqno(pipelined) : 0;
  2219. obj->last_fenced_seqno = reg->setup_seqno;
  2220. update:
  2221. obj->tiling_changed = false;
  2222. switch (INTEL_INFO(dev)->gen) {
  2223. case 7:
  2224. case 6:
  2225. ret = sandybridge_write_fence_reg(obj, pipelined);
  2226. break;
  2227. case 5:
  2228. case 4:
  2229. ret = i965_write_fence_reg(obj, pipelined);
  2230. break;
  2231. case 3:
  2232. ret = i915_write_fence_reg(obj, pipelined);
  2233. break;
  2234. case 2:
  2235. ret = i830_write_fence_reg(obj, pipelined);
  2236. break;
  2237. }
  2238. return ret;
  2239. }
  2240. /**
  2241. * i915_gem_clear_fence_reg - clear out fence register info
  2242. * @obj: object to clear
  2243. *
  2244. * Zeroes out the fence register itself and clears out the associated
  2245. * data structures in dev_priv and obj.
  2246. */
  2247. static void
  2248. i915_gem_clear_fence_reg(struct drm_device *dev,
  2249. struct drm_i915_fence_reg *reg)
  2250. {
  2251. drm_i915_private_t *dev_priv = dev->dev_private;
  2252. uint32_t fence_reg = reg - dev_priv->fence_regs;
  2253. switch (INTEL_INFO(dev)->gen) {
  2254. case 7:
  2255. case 6:
  2256. I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + fence_reg*8, 0);
  2257. break;
  2258. case 5:
  2259. case 4:
  2260. I915_WRITE64(FENCE_REG_965_0 + fence_reg*8, 0);
  2261. break;
  2262. case 3:
  2263. if (fence_reg >= 8)
  2264. fence_reg = FENCE_REG_945_8 + (fence_reg - 8) * 4;
  2265. else
  2266. case 2:
  2267. fence_reg = FENCE_REG_830_0 + fence_reg * 4;
  2268. I915_WRITE(fence_reg, 0);
  2269. break;
  2270. }
  2271. list_del_init(&reg->lru_list);
  2272. reg->obj = NULL;
  2273. reg->setup_seqno = 0;
  2274. }
  2275. /**
  2276. * Finds free space in the GTT aperture and binds the object there.
  2277. */
  2278. static int
  2279. i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
  2280. unsigned alignment,
  2281. bool map_and_fenceable)
  2282. {
  2283. struct drm_device *dev = obj->base.dev;
  2284. drm_i915_private_t *dev_priv = dev->dev_private;
  2285. struct drm_mm_node *free_space;
  2286. gfp_t gfpmask = __GFP_NORETRY | __GFP_NOWARN;
  2287. u32 size, fence_size, fence_alignment, unfenced_alignment;
  2288. bool mappable, fenceable;
  2289. int ret;
  2290. if (obj->madv != I915_MADV_WILLNEED) {
  2291. DRM_ERROR("Attempting to bind a purgeable object\n");
  2292. return -EINVAL;
  2293. }
  2294. fence_size = i915_gem_get_gtt_size(obj);
  2295. fence_alignment = i915_gem_get_gtt_alignment(obj);
  2296. unfenced_alignment = i915_gem_get_unfenced_gtt_alignment(obj);
  2297. if (alignment == 0)
  2298. alignment = map_and_fenceable ? fence_alignment :
  2299. unfenced_alignment;
  2300. if (map_and_fenceable && alignment & (fence_alignment - 1)) {
  2301. DRM_ERROR("Invalid object alignment requested %u\n", alignment);
  2302. return -EINVAL;
  2303. }
  2304. size = map_and_fenceable ? fence_size : obj->base.size;
  2305. /* If the object is bigger than the entire aperture, reject it early
  2306. * before evicting everything in a vain attempt to find space.
  2307. */
  2308. if (obj->base.size >
  2309. (map_and_fenceable ? dev_priv->mm.gtt_mappable_end : dev_priv->mm.gtt_total)) {
  2310. DRM_ERROR("Attempting to bind an object larger than the aperture\n");
  2311. return -E2BIG;
  2312. }
  2313. search_free:
  2314. if (map_and_fenceable)
  2315. free_space =
  2316. drm_mm_search_free_in_range(&dev_priv->mm.gtt_space,
  2317. size, alignment, 0,
  2318. dev_priv->mm.gtt_mappable_end,
  2319. 0);
  2320. else
  2321. free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
  2322. size, alignment, 0);
  2323. if (free_space != NULL) {
  2324. if (map_and_fenceable)
  2325. obj->gtt_space =
  2326. drm_mm_get_block_range_generic(free_space,
  2327. size, alignment, 0,
  2328. dev_priv->mm.gtt_mappable_end,
  2329. 0);
  2330. else
  2331. obj->gtt_space =
  2332. drm_mm_get_block(free_space, size, alignment);
  2333. }
  2334. if (obj->gtt_space == NULL) {
  2335. /* If the gtt is empty and we're still having trouble
  2336. * fitting our object in, we're out of memory.
  2337. */
  2338. ret = i915_gem_evict_something(dev, size, alignment,
  2339. map_and_fenceable);
  2340. if (ret)
  2341. return ret;
  2342. goto search_free;
  2343. }
  2344. ret = i915_gem_object_get_pages_gtt(obj, gfpmask);
  2345. if (ret) {
  2346. drm_mm_put_block(obj->gtt_space);
  2347. obj->gtt_space = NULL;
  2348. if (ret == -ENOMEM) {
  2349. /* first try to reclaim some memory by clearing the GTT */
  2350. ret = i915_gem_evict_everything(dev, false);
  2351. if (ret) {
  2352. /* now try to shrink everyone else */
  2353. if (gfpmask) {
  2354. gfpmask = 0;
  2355. goto search_free;
  2356. }
  2357. return -ENOMEM;
  2358. }
  2359. goto search_free;
  2360. }
  2361. return ret;
  2362. }
  2363. ret = i915_gem_gtt_bind_object(obj);
  2364. if (ret) {
  2365. i915_gem_object_put_pages_gtt(obj);
  2366. drm_mm_put_block(obj->gtt_space);
  2367. obj->gtt_space = NULL;
  2368. if (i915_gem_evict_everything(dev, false))
  2369. return ret;
  2370. goto search_free;
  2371. }
  2372. list_add_tail(&obj->gtt_list, &dev_priv->mm.gtt_list);
  2373. list_add_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
  2374. /* Assert that the object is not currently in any GPU domain. As it
  2375. * wasn't in the GTT, there shouldn't be any way it could have been in
  2376. * a GPU cache
  2377. */
  2378. BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
  2379. BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
  2380. obj->gtt_offset = obj->gtt_space->start;
  2381. fenceable =
  2382. obj->gtt_space->size == fence_size &&
  2383. (obj->gtt_space->start & (fence_alignment -1)) == 0;
  2384. mappable =
  2385. obj->gtt_offset + obj->base.size <= dev_priv->mm.gtt_mappable_end;
  2386. obj->map_and_fenceable = mappable && fenceable;
  2387. trace_i915_gem_object_bind(obj, map_and_fenceable);
  2388. return 0;
  2389. }
  2390. void
  2391. i915_gem_clflush_object(struct drm_i915_gem_object *obj)
  2392. {
  2393. /* If we don't have a page list set up, then we're not pinned
  2394. * to GPU, and we can ignore the cache flush because it'll happen
  2395. * again at bind time.
  2396. */
  2397. if (obj->pages == NULL)
  2398. return;
  2399. /* If the GPU is snooping the contents of the CPU cache,
  2400. * we do not need to manually clear the CPU cache lines. However,
  2401. * the caches are only snooped when the render cache is
  2402. * flushed/invalidated. As we always have to emit invalidations
  2403. * and flushes when moving into and out of the RENDER domain, correct
  2404. * snooping behaviour occurs naturally as the result of our domain
  2405. * tracking.
  2406. */
  2407. if (obj->cache_level != I915_CACHE_NONE)
  2408. return;
  2409. trace_i915_gem_object_clflush(obj);
  2410. drm_clflush_pages(obj->pages, obj->base.size / PAGE_SIZE);
  2411. }
  2412. /** Flushes any GPU write domain for the object if it's dirty. */
  2413. static int
  2414. i915_gem_object_flush_gpu_write_domain(struct drm_i915_gem_object *obj)
  2415. {
  2416. if ((obj->base.write_domain & I915_GEM_GPU_DOMAINS) == 0)
  2417. return 0;
  2418. /* Queue the GPU write cache flushing we need. */
  2419. return i915_gem_flush_ring(obj->ring, 0, obj->base.write_domain);
  2420. }
  2421. /** Flushes the GTT write domain for the object if it's dirty. */
  2422. static void
  2423. i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
  2424. {
  2425. uint32_t old_write_domain;
  2426. if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
  2427. return;
  2428. /* No actual flushing is required for the GTT write domain. Writes
  2429. * to it immediately go to main memory as far as we know, so there's
  2430. * no chipset flush. It also doesn't land in render cache.
  2431. *
  2432. * However, we do have to enforce the order so that all writes through
  2433. * the GTT land before any writes to the device, such as updates to
  2434. * the GATT itself.
  2435. */
  2436. wmb();
  2437. i915_gem_release_mmap(obj);
  2438. old_write_domain = obj->base.write_domain;
  2439. obj->base.write_domain = 0;
  2440. trace_i915_gem_object_change_domain(obj,
  2441. obj->base.read_domains,
  2442. old_write_domain);
  2443. }
  2444. /** Flushes the CPU write domain for the object if it's dirty. */
  2445. static void
  2446. i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
  2447. {
  2448. uint32_t old_write_domain;
  2449. if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
  2450. return;
  2451. i915_gem_clflush_object(obj);
  2452. intel_gtt_chipset_flush();
  2453. old_write_domain = obj->base.write_domain;
  2454. obj->base.write_domain = 0;
  2455. trace_i915_gem_object_change_domain(obj,
  2456. obj->base.read_domains,
  2457. old_write_domain);
  2458. }
  2459. /**
  2460. * Moves a single object to the GTT read, and possibly write domain.
  2461. *
  2462. * This function returns when the move is complete, including waiting on
  2463. * flushes to occur.
  2464. */
  2465. int
  2466. i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
  2467. {
  2468. uint32_t old_write_domain, old_read_domains;
  2469. int ret;
  2470. /* Not valid to be called on unbound objects. */
  2471. if (obj->gtt_space == NULL)
  2472. return -EINVAL;
  2473. if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
  2474. return 0;
  2475. ret = i915_gem_object_flush_gpu_write_domain(obj);
  2476. if (ret)
  2477. return ret;
  2478. if (obj->pending_gpu_write || write) {
  2479. ret = i915_gem_object_wait_rendering(obj);
  2480. if (ret)
  2481. return ret;
  2482. }
  2483. i915_gem_object_flush_cpu_write_domain(obj);
  2484. old_write_domain = obj->base.write_domain;
  2485. old_read_domains = obj->base.read_domains;
  2486. /* It should now be out of any other write domains, and we can update
  2487. * the domain values for our changes.
  2488. */
  2489. BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
  2490. obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
  2491. if (write) {
  2492. obj->base.read_domains = I915_GEM_DOMAIN_GTT;
  2493. obj->base.write_domain = I915_GEM_DOMAIN_GTT;
  2494. obj->dirty = 1;
  2495. }
  2496. trace_i915_gem_object_change_domain(obj,
  2497. old_read_domains,
  2498. old_write_domain);
  2499. return 0;
  2500. }
  2501. /*
  2502. * Prepare buffer for display plane. Use uninterruptible for possible flush
  2503. * wait, as in modesetting process we're not supposed to be interrupted.
  2504. */
  2505. int
  2506. i915_gem_object_set_to_display_plane(struct drm_i915_gem_object *obj,
  2507. struct intel_ring_buffer *pipelined)
  2508. {
  2509. uint32_t old_read_domains;
  2510. int ret;
  2511. /* Not valid to be called on unbound objects. */
  2512. if (obj->gtt_space == NULL)
  2513. return -EINVAL;
  2514. ret = i915_gem_object_flush_gpu_write_domain(obj);
  2515. if (ret)
  2516. return ret;
  2517. /* Currently, we are always called from an non-interruptible context. */
  2518. if (pipelined != obj->ring) {
  2519. ret = i915_gem_object_wait_rendering(obj);
  2520. if (ret)
  2521. return ret;
  2522. }
  2523. i915_gem_object_flush_cpu_write_domain(obj);
  2524. old_read_domains = obj->base.read_domains;
  2525. obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
  2526. trace_i915_gem_object_change_domain(obj,
  2527. old_read_domains,
  2528. obj->base.write_domain);
  2529. return 0;
  2530. }
  2531. int
  2532. i915_gem_object_flush_gpu(struct drm_i915_gem_object *obj)
  2533. {
  2534. int ret;
  2535. if (!obj->active)
  2536. return 0;
  2537. if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
  2538. ret = i915_gem_flush_ring(obj->ring, 0, obj->base.write_domain);
  2539. if (ret)
  2540. return ret;
  2541. }
  2542. return i915_gem_object_wait_rendering(obj);
  2543. }
  2544. /**
  2545. * Moves a single object to the CPU read, and possibly write domain.
  2546. *
  2547. * This function returns when the move is complete, including waiting on
  2548. * flushes to occur.
  2549. */
  2550. static int
  2551. i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
  2552. {
  2553. uint32_t old_write_domain, old_read_domains;
  2554. int ret;
  2555. if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
  2556. return 0;
  2557. ret = i915_gem_object_flush_gpu_write_domain(obj);
  2558. if (ret)
  2559. return ret;
  2560. ret = i915_gem_object_wait_rendering(obj);
  2561. if (ret)
  2562. return ret;
  2563. i915_gem_object_flush_gtt_write_domain(obj);
  2564. /* If we have a partially-valid cache of the object in the CPU,
  2565. * finish invalidating it and free the per-page flags.
  2566. */
  2567. i915_gem_object_set_to_full_cpu_read_domain(obj);
  2568. old_write_domain = obj->base.write_domain;
  2569. old_read_domains = obj->base.read_domains;
  2570. /* Flush the CPU cache if it's still invalid. */
  2571. if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
  2572. i915_gem_clflush_object(obj);
  2573. obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
  2574. }
  2575. /* It should now be out of any other write domains, and we can update
  2576. * the domain values for our changes.
  2577. */
  2578. BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
  2579. /* If we're writing through the CPU, then the GPU read domains will
  2580. * need to be invalidated at next use.
  2581. */
  2582. if (write) {
  2583. obj->base.read_domains = I915_GEM_DOMAIN_CPU;
  2584. obj->base.write_domain = I915_GEM_DOMAIN_CPU;
  2585. }
  2586. trace_i915_gem_object_change_domain(obj,
  2587. old_read_domains,
  2588. old_write_domain);
  2589. return 0;
  2590. }
  2591. /**
  2592. * Moves the object from a partially CPU read to a full one.
  2593. *
  2594. * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
  2595. * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
  2596. */
  2597. static void
  2598. i915_gem_object_set_to_full_cpu_read_domain(struct drm_i915_gem_object *obj)
  2599. {
  2600. if (!obj->page_cpu_valid)
  2601. return;
  2602. /* If we're partially in the CPU read domain, finish moving it in.
  2603. */
  2604. if (obj->base.read_domains & I915_GEM_DOMAIN_CPU) {
  2605. int i;
  2606. for (i = 0; i <= (obj->base.size - 1) / PAGE_SIZE; i++) {
  2607. if (obj->page_cpu_valid[i])
  2608. continue;
  2609. drm_clflush_pages(obj->pages + i, 1);
  2610. }
  2611. }
  2612. /* Free the page_cpu_valid mappings which are now stale, whether
  2613. * or not we've got I915_GEM_DOMAIN_CPU.
  2614. */
  2615. kfree(obj->page_cpu_valid);
  2616. obj->page_cpu_valid = NULL;
  2617. }
  2618. /**
  2619. * Set the CPU read domain on a range of the object.
  2620. *
  2621. * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
  2622. * not entirely valid. The page_cpu_valid member of the object flags which
  2623. * pages have been flushed, and will be respected by
  2624. * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
  2625. * of the whole object.
  2626. *
  2627. * This function returns when the move is complete, including waiting on
  2628. * flushes to occur.
  2629. */
  2630. static int
  2631. i915_gem_object_set_cpu_read_domain_range(struct drm_i915_gem_object *obj,
  2632. uint64_t offset, uint64_t size)
  2633. {
  2634. uint32_t old_read_domains;
  2635. int i, ret;
  2636. if (offset == 0 && size == obj->base.size)
  2637. return i915_gem_object_set_to_cpu_domain(obj, 0);
  2638. ret = i915_gem_object_flush_gpu_write_domain(obj);
  2639. if (ret)
  2640. return ret;
  2641. ret = i915_gem_object_wait_rendering(obj);
  2642. if (ret)
  2643. return ret;
  2644. i915_gem_object_flush_gtt_write_domain(obj);
  2645. /* If we're already fully in the CPU read domain, we're done. */
  2646. if (obj->page_cpu_valid == NULL &&
  2647. (obj->base.read_domains & I915_GEM_DOMAIN_CPU) != 0)
  2648. return 0;
  2649. /* Otherwise, create/clear the per-page CPU read domain flag if we're
  2650. * newly adding I915_GEM_DOMAIN_CPU
  2651. */
  2652. if (obj->page_cpu_valid == NULL) {
  2653. obj->page_cpu_valid = kzalloc(obj->base.size / PAGE_SIZE,
  2654. GFP_KERNEL);
  2655. if (obj->page_cpu_valid == NULL)
  2656. return -ENOMEM;
  2657. } else if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
  2658. memset(obj->page_cpu_valid, 0, obj->base.size / PAGE_SIZE);
  2659. /* Flush the cache on any pages that are still invalid from the CPU's
  2660. * perspective.
  2661. */
  2662. for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
  2663. i++) {
  2664. if (obj->page_cpu_valid[i])
  2665. continue;
  2666. drm_clflush_pages(obj->pages + i, 1);
  2667. obj->page_cpu_valid[i] = 1;
  2668. }
  2669. /* It should now be out of any other write domains, and we can update
  2670. * the domain values for our changes.
  2671. */
  2672. BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
  2673. old_read_domains = obj->base.read_domains;
  2674. obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
  2675. trace_i915_gem_object_change_domain(obj,
  2676. old_read_domains,
  2677. obj->base.write_domain);
  2678. return 0;
  2679. }
  2680. /* Throttle our rendering by waiting until the ring has completed our requests
  2681. * emitted over 20 msec ago.
  2682. *
  2683. * Note that if we were to use the current jiffies each time around the loop,
  2684. * we wouldn't escape the function with any frames outstanding if the time to
  2685. * render a frame was over 20ms.
  2686. *
  2687. * This should get us reasonable parallelism between CPU and GPU but also
  2688. * relatively low latency when blocking on a particular request to finish.
  2689. */
  2690. static int
  2691. i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
  2692. {
  2693. struct drm_i915_private *dev_priv = dev->dev_private;
  2694. struct drm_i915_file_private *file_priv = file->driver_priv;
  2695. unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
  2696. struct drm_i915_gem_request *request;
  2697. struct intel_ring_buffer *ring = NULL;
  2698. u32 seqno = 0;
  2699. int ret;
  2700. if (atomic_read(&dev_priv->mm.wedged))
  2701. return -EIO;
  2702. spin_lock(&file_priv->mm.lock);
  2703. list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
  2704. if (time_after_eq(request->emitted_jiffies, recent_enough))
  2705. break;
  2706. ring = request->ring;
  2707. seqno = request->seqno;
  2708. }
  2709. spin_unlock(&file_priv->mm.lock);
  2710. if (seqno == 0)
  2711. return 0;
  2712. ret = 0;
  2713. if (!i915_seqno_passed(ring->get_seqno(ring), seqno)) {
  2714. /* And wait for the seqno passing without holding any locks and
  2715. * causing extra latency for others. This is safe as the irq
  2716. * generation is designed to be run atomically and so is
  2717. * lockless.
  2718. */
  2719. if (ring->irq_get(ring)) {
  2720. ret = wait_event_interruptible(ring->irq_queue,
  2721. i915_seqno_passed(ring->get_seqno(ring), seqno)
  2722. || atomic_read(&dev_priv->mm.wedged));
  2723. ring->irq_put(ring);
  2724. if (ret == 0 && atomic_read(&dev_priv->mm.wedged))
  2725. ret = -EIO;
  2726. }
  2727. }
  2728. if (ret == 0)
  2729. queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
  2730. return ret;
  2731. }
  2732. int
  2733. i915_gem_object_pin(struct drm_i915_gem_object *obj,
  2734. uint32_t alignment,
  2735. bool map_and_fenceable)
  2736. {
  2737. struct drm_device *dev = obj->base.dev;
  2738. struct drm_i915_private *dev_priv = dev->dev_private;
  2739. int ret;
  2740. BUG_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT);
  2741. WARN_ON(i915_verify_lists(dev));
  2742. if (obj->gtt_space != NULL) {
  2743. if ((alignment && obj->gtt_offset & (alignment - 1)) ||
  2744. (map_and_fenceable && !obj->map_and_fenceable)) {
  2745. WARN(obj->pin_count,
  2746. "bo is already pinned with incorrect alignment:"
  2747. " offset=%x, req.alignment=%x, req.map_and_fenceable=%d,"
  2748. " obj->map_and_fenceable=%d\n",
  2749. obj->gtt_offset, alignment,
  2750. map_and_fenceable,
  2751. obj->map_and_fenceable);
  2752. ret = i915_gem_object_unbind(obj);
  2753. if (ret)
  2754. return ret;
  2755. }
  2756. }
  2757. if (obj->gtt_space == NULL) {
  2758. ret = i915_gem_object_bind_to_gtt(obj, alignment,
  2759. map_and_fenceable);
  2760. if (ret)
  2761. return ret;
  2762. }
  2763. if (obj->pin_count++ == 0) {
  2764. if (!obj->active)
  2765. list_move_tail(&obj->mm_list,
  2766. &dev_priv->mm.pinned_list);
  2767. }
  2768. obj->pin_mappable |= map_and_fenceable;
  2769. WARN_ON(i915_verify_lists(dev));
  2770. return 0;
  2771. }
  2772. void
  2773. i915_gem_object_unpin(struct drm_i915_gem_object *obj)
  2774. {
  2775. struct drm_device *dev = obj->base.dev;
  2776. drm_i915_private_t *dev_priv = dev->dev_private;
  2777. WARN_ON(i915_verify_lists(dev));
  2778. BUG_ON(obj->pin_count == 0);
  2779. BUG_ON(obj->gtt_space == NULL);
  2780. if (--obj->pin_count == 0) {
  2781. if (!obj->active)
  2782. list_move_tail(&obj->mm_list,
  2783. &dev_priv->mm.inactive_list);
  2784. obj->pin_mappable = false;
  2785. }
  2786. WARN_ON(i915_verify_lists(dev));
  2787. }
  2788. int
  2789. i915_gem_pin_ioctl(struct drm_device *dev, void *data,
  2790. struct drm_file *file)
  2791. {
  2792. struct drm_i915_gem_pin *args = data;
  2793. struct drm_i915_gem_object *obj;
  2794. int ret;
  2795. ret = i915_mutex_lock_interruptible(dev);
  2796. if (ret)
  2797. return ret;
  2798. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  2799. if (&obj->base == NULL) {
  2800. ret = -ENOENT;
  2801. goto unlock;
  2802. }
  2803. if (obj->madv != I915_MADV_WILLNEED) {
  2804. DRM_ERROR("Attempting to pin a purgeable buffer\n");
  2805. ret = -EINVAL;
  2806. goto out;
  2807. }
  2808. if (obj->pin_filp != NULL && obj->pin_filp != file) {
  2809. DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
  2810. args->handle);
  2811. ret = -EINVAL;
  2812. goto out;
  2813. }
  2814. obj->user_pin_count++;
  2815. obj->pin_filp = file;
  2816. if (obj->user_pin_count == 1) {
  2817. ret = i915_gem_object_pin(obj, args->alignment, true);
  2818. if (ret)
  2819. goto out;
  2820. }
  2821. /* XXX - flush the CPU caches for pinned objects
  2822. * as the X server doesn't manage domains yet
  2823. */
  2824. i915_gem_object_flush_cpu_write_domain(obj);
  2825. args->offset = obj->gtt_offset;
  2826. out:
  2827. drm_gem_object_unreference(&obj->base);
  2828. unlock:
  2829. mutex_unlock(&dev->struct_mutex);
  2830. return ret;
  2831. }
  2832. int
  2833. i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
  2834. struct drm_file *file)
  2835. {
  2836. struct drm_i915_gem_pin *args = data;
  2837. struct drm_i915_gem_object *obj;
  2838. int ret;
  2839. ret = i915_mutex_lock_interruptible(dev);
  2840. if (ret)
  2841. return ret;
  2842. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  2843. if (&obj->base == NULL) {
  2844. ret = -ENOENT;
  2845. goto unlock;
  2846. }
  2847. if (obj->pin_filp != file) {
  2848. DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
  2849. args->handle);
  2850. ret = -EINVAL;
  2851. goto out;
  2852. }
  2853. obj->user_pin_count--;
  2854. if (obj->user_pin_count == 0) {
  2855. obj->pin_filp = NULL;
  2856. i915_gem_object_unpin(obj);
  2857. }
  2858. out:
  2859. drm_gem_object_unreference(&obj->base);
  2860. unlock:
  2861. mutex_unlock(&dev->struct_mutex);
  2862. return ret;
  2863. }
  2864. int
  2865. i915_gem_busy_ioctl(struct drm_device *dev, void *data,
  2866. struct drm_file *file)
  2867. {
  2868. struct drm_i915_gem_busy *args = data;
  2869. struct drm_i915_gem_object *obj;
  2870. int ret;
  2871. ret = i915_mutex_lock_interruptible(dev);
  2872. if (ret)
  2873. return ret;
  2874. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  2875. if (&obj->base == NULL) {
  2876. ret = -ENOENT;
  2877. goto unlock;
  2878. }
  2879. /* Count all active objects as busy, even if they are currently not used
  2880. * by the gpu. Users of this interface expect objects to eventually
  2881. * become non-busy without any further actions, therefore emit any
  2882. * necessary flushes here.
  2883. */
  2884. args->busy = obj->active;
  2885. if (args->busy) {
  2886. /* Unconditionally flush objects, even when the gpu still uses this
  2887. * object. Userspace calling this function indicates that it wants to
  2888. * use this buffer rather sooner than later, so issuing the required
  2889. * flush earlier is beneficial.
  2890. */
  2891. if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
  2892. ret = i915_gem_flush_ring(obj->ring,
  2893. 0, obj->base.write_domain);
  2894. } else if (obj->ring->outstanding_lazy_request ==
  2895. obj->last_rendering_seqno) {
  2896. struct drm_i915_gem_request *request;
  2897. /* This ring is not being cleared by active usage,
  2898. * so emit a request to do so.
  2899. */
  2900. request = kzalloc(sizeof(*request), GFP_KERNEL);
  2901. if (request)
  2902. ret = i915_add_request(obj->ring, NULL,request);
  2903. else
  2904. ret = -ENOMEM;
  2905. }
  2906. /* Update the active list for the hardware's current position.
  2907. * Otherwise this only updates on a delayed timer or when irqs
  2908. * are actually unmasked, and our working set ends up being
  2909. * larger than required.
  2910. */
  2911. i915_gem_retire_requests_ring(obj->ring);
  2912. args->busy = obj->active;
  2913. }
  2914. drm_gem_object_unreference(&obj->base);
  2915. unlock:
  2916. mutex_unlock(&dev->struct_mutex);
  2917. return ret;
  2918. }
  2919. int
  2920. i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
  2921. struct drm_file *file_priv)
  2922. {
  2923. return i915_gem_ring_throttle(dev, file_priv);
  2924. }
  2925. int
  2926. i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
  2927. struct drm_file *file_priv)
  2928. {
  2929. struct drm_i915_gem_madvise *args = data;
  2930. struct drm_i915_gem_object *obj;
  2931. int ret;
  2932. switch (args->madv) {
  2933. case I915_MADV_DONTNEED:
  2934. case I915_MADV_WILLNEED:
  2935. break;
  2936. default:
  2937. return -EINVAL;
  2938. }
  2939. ret = i915_mutex_lock_interruptible(dev);
  2940. if (ret)
  2941. return ret;
  2942. obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
  2943. if (&obj->base == NULL) {
  2944. ret = -ENOENT;
  2945. goto unlock;
  2946. }
  2947. if (obj->pin_count) {
  2948. ret = -EINVAL;
  2949. goto out;
  2950. }
  2951. if (obj->madv != __I915_MADV_PURGED)
  2952. obj->madv = args->madv;
  2953. /* if the object is no longer bound, discard its backing storage */
  2954. if (i915_gem_object_is_purgeable(obj) &&
  2955. obj->gtt_space == NULL)
  2956. i915_gem_object_truncate(obj);
  2957. args->retained = obj->madv != __I915_MADV_PURGED;
  2958. out:
  2959. drm_gem_object_unreference(&obj->base);
  2960. unlock:
  2961. mutex_unlock(&dev->struct_mutex);
  2962. return ret;
  2963. }
  2964. struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
  2965. size_t size)
  2966. {
  2967. struct drm_i915_private *dev_priv = dev->dev_private;
  2968. struct drm_i915_gem_object *obj;
  2969. obj = kzalloc(sizeof(*obj), GFP_KERNEL);
  2970. if (obj == NULL)
  2971. return NULL;
  2972. if (drm_gem_object_init(dev, &obj->base, size) != 0) {
  2973. kfree(obj);
  2974. return NULL;
  2975. }
  2976. i915_gem_info_add_obj(dev_priv, size);
  2977. obj->base.write_domain = I915_GEM_DOMAIN_CPU;
  2978. obj->base.read_domains = I915_GEM_DOMAIN_CPU;
  2979. obj->cache_level = I915_CACHE_NONE;
  2980. obj->base.driver_private = NULL;
  2981. obj->fence_reg = I915_FENCE_REG_NONE;
  2982. INIT_LIST_HEAD(&obj->mm_list);
  2983. INIT_LIST_HEAD(&obj->gtt_list);
  2984. INIT_LIST_HEAD(&obj->ring_list);
  2985. INIT_LIST_HEAD(&obj->exec_list);
  2986. INIT_LIST_HEAD(&obj->gpu_write_list);
  2987. obj->madv = I915_MADV_WILLNEED;
  2988. /* Avoid an unnecessary call to unbind on the first bind. */
  2989. obj->map_and_fenceable = true;
  2990. return obj;
  2991. }
  2992. int i915_gem_init_object(struct drm_gem_object *obj)
  2993. {
  2994. BUG();
  2995. return 0;
  2996. }
  2997. static void i915_gem_free_object_tail(struct drm_i915_gem_object *obj)
  2998. {
  2999. struct drm_device *dev = obj->base.dev;
  3000. drm_i915_private_t *dev_priv = dev->dev_private;
  3001. int ret;
  3002. ret = i915_gem_object_unbind(obj);
  3003. if (ret == -ERESTARTSYS) {
  3004. list_move(&obj->mm_list,
  3005. &dev_priv->mm.deferred_free_list);
  3006. return;
  3007. }
  3008. trace_i915_gem_object_destroy(obj);
  3009. if (obj->base.map_list.map)
  3010. i915_gem_free_mmap_offset(obj);
  3011. drm_gem_object_release(&obj->base);
  3012. i915_gem_info_remove_obj(dev_priv, obj->base.size);
  3013. kfree(obj->page_cpu_valid);
  3014. kfree(obj->bit_17);
  3015. kfree(obj);
  3016. }
  3017. void i915_gem_free_object(struct drm_gem_object *gem_obj)
  3018. {
  3019. struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
  3020. struct drm_device *dev = obj->base.dev;
  3021. while (obj->pin_count > 0)
  3022. i915_gem_object_unpin(obj);
  3023. if (obj->phys_obj)
  3024. i915_gem_detach_phys_object(dev, obj);
  3025. i915_gem_free_object_tail(obj);
  3026. }
  3027. int
  3028. i915_gem_idle(struct drm_device *dev)
  3029. {
  3030. drm_i915_private_t *dev_priv = dev->dev_private;
  3031. int ret;
  3032. mutex_lock(&dev->struct_mutex);
  3033. if (dev_priv->mm.suspended) {
  3034. mutex_unlock(&dev->struct_mutex);
  3035. return 0;
  3036. }
  3037. ret = i915_gpu_idle(dev);
  3038. if (ret) {
  3039. mutex_unlock(&dev->struct_mutex);
  3040. return ret;
  3041. }
  3042. /* Under UMS, be paranoid and evict. */
  3043. if (!drm_core_check_feature(dev, DRIVER_MODESET)) {
  3044. ret = i915_gem_evict_inactive(dev, false);
  3045. if (ret) {
  3046. mutex_unlock(&dev->struct_mutex);
  3047. return ret;
  3048. }
  3049. }
  3050. i915_gem_reset_fences(dev);
  3051. /* Hack! Don't let anybody do execbuf while we don't control the chip.
  3052. * We need to replace this with a semaphore, or something.
  3053. * And not confound mm.suspended!
  3054. */
  3055. dev_priv->mm.suspended = 1;
  3056. del_timer_sync(&dev_priv->hangcheck_timer);
  3057. i915_kernel_lost_context(dev);
  3058. i915_gem_cleanup_ringbuffer(dev);
  3059. mutex_unlock(&dev->struct_mutex);
  3060. /* Cancel the retire work handler, which should be idle now. */
  3061. cancel_delayed_work_sync(&dev_priv->mm.retire_work);
  3062. return 0;
  3063. }
  3064. int
  3065. i915_gem_init_ringbuffer(struct drm_device *dev)
  3066. {
  3067. drm_i915_private_t *dev_priv = dev->dev_private;
  3068. int ret;
  3069. ret = intel_init_render_ring_buffer(dev);
  3070. if (ret)
  3071. return ret;
  3072. if (HAS_BSD(dev)) {
  3073. ret = intel_init_bsd_ring_buffer(dev);
  3074. if (ret)
  3075. goto cleanup_render_ring;
  3076. }
  3077. if (HAS_BLT(dev)) {
  3078. ret = intel_init_blt_ring_buffer(dev);
  3079. if (ret)
  3080. goto cleanup_bsd_ring;
  3081. }
  3082. dev_priv->next_seqno = 1;
  3083. return 0;
  3084. cleanup_bsd_ring:
  3085. intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
  3086. cleanup_render_ring:
  3087. intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
  3088. return ret;
  3089. }
  3090. void
  3091. i915_gem_cleanup_ringbuffer(struct drm_device *dev)
  3092. {
  3093. drm_i915_private_t *dev_priv = dev->dev_private;
  3094. int i;
  3095. for (i = 0; i < I915_NUM_RINGS; i++)
  3096. intel_cleanup_ring_buffer(&dev_priv->ring[i]);
  3097. }
  3098. int
  3099. i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
  3100. struct drm_file *file_priv)
  3101. {
  3102. drm_i915_private_t *dev_priv = dev->dev_private;
  3103. int ret, i;
  3104. if (drm_core_check_feature(dev, DRIVER_MODESET))
  3105. return 0;
  3106. if (atomic_read(&dev_priv->mm.wedged)) {
  3107. DRM_ERROR("Reenabling wedged hardware, good luck\n");
  3108. atomic_set(&dev_priv->mm.wedged, 0);
  3109. }
  3110. mutex_lock(&dev->struct_mutex);
  3111. dev_priv->mm.suspended = 0;
  3112. ret = i915_gem_init_ringbuffer(dev);
  3113. if (ret != 0) {
  3114. mutex_unlock(&dev->struct_mutex);
  3115. return ret;
  3116. }
  3117. BUG_ON(!list_empty(&dev_priv->mm.active_list));
  3118. BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
  3119. BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
  3120. for (i = 0; i < I915_NUM_RINGS; i++) {
  3121. BUG_ON(!list_empty(&dev_priv->ring[i].active_list));
  3122. BUG_ON(!list_empty(&dev_priv->ring[i].request_list));
  3123. }
  3124. mutex_unlock(&dev->struct_mutex);
  3125. ret = drm_irq_install(dev);
  3126. if (ret)
  3127. goto cleanup_ringbuffer;
  3128. return 0;
  3129. cleanup_ringbuffer:
  3130. mutex_lock(&dev->struct_mutex);
  3131. i915_gem_cleanup_ringbuffer(dev);
  3132. dev_priv->mm.suspended = 1;
  3133. mutex_unlock(&dev->struct_mutex);
  3134. return ret;
  3135. }
  3136. int
  3137. i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
  3138. struct drm_file *file_priv)
  3139. {
  3140. if (drm_core_check_feature(dev, DRIVER_MODESET))
  3141. return 0;
  3142. drm_irq_uninstall(dev);
  3143. return i915_gem_idle(dev);
  3144. }
  3145. void
  3146. i915_gem_lastclose(struct drm_device *dev)
  3147. {
  3148. int ret;
  3149. if (drm_core_check_feature(dev, DRIVER_MODESET))
  3150. return;
  3151. ret = i915_gem_idle(dev);
  3152. if (ret)
  3153. DRM_ERROR("failed to idle hardware: %d\n", ret);
  3154. }
  3155. static void
  3156. init_ring_lists(struct intel_ring_buffer *ring)
  3157. {
  3158. INIT_LIST_HEAD(&ring->active_list);
  3159. INIT_LIST_HEAD(&ring->request_list);
  3160. INIT_LIST_HEAD(&ring->gpu_write_list);
  3161. }
  3162. void
  3163. i915_gem_load(struct drm_device *dev)
  3164. {
  3165. int i;
  3166. drm_i915_private_t *dev_priv = dev->dev_private;
  3167. INIT_LIST_HEAD(&dev_priv->mm.active_list);
  3168. INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
  3169. INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
  3170. INIT_LIST_HEAD(&dev_priv->mm.pinned_list);
  3171. INIT_LIST_HEAD(&dev_priv->mm.fence_list);
  3172. INIT_LIST_HEAD(&dev_priv->mm.deferred_free_list);
  3173. INIT_LIST_HEAD(&dev_priv->mm.gtt_list);
  3174. for (i = 0; i < I915_NUM_RINGS; i++)
  3175. init_ring_lists(&dev_priv->ring[i]);
  3176. for (i = 0; i < 16; i++)
  3177. INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
  3178. INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
  3179. i915_gem_retire_work_handler);
  3180. init_completion(&dev_priv->error_completion);
  3181. /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
  3182. if (IS_GEN3(dev)) {
  3183. u32 tmp = I915_READ(MI_ARB_STATE);
  3184. if (!(tmp & MI_ARB_C3_LP_WRITE_ENABLE)) {
  3185. /* arb state is a masked write, so set bit + bit in mask */
  3186. tmp = MI_ARB_C3_LP_WRITE_ENABLE | (MI_ARB_C3_LP_WRITE_ENABLE << MI_ARB_MASK_SHIFT);
  3187. I915_WRITE(MI_ARB_STATE, tmp);
  3188. }
  3189. }
  3190. dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
  3191. /* Old X drivers will take 0-2 for front, back, depth buffers */
  3192. if (!drm_core_check_feature(dev, DRIVER_MODESET))
  3193. dev_priv->fence_reg_start = 3;
  3194. if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
  3195. dev_priv->num_fence_regs = 16;
  3196. else
  3197. dev_priv->num_fence_regs = 8;
  3198. /* Initialize fence registers to zero */
  3199. for (i = 0; i < dev_priv->num_fence_regs; i++) {
  3200. i915_gem_clear_fence_reg(dev, &dev_priv->fence_regs[i]);
  3201. }
  3202. i915_gem_detect_bit_6_swizzle(dev);
  3203. init_waitqueue_head(&dev_priv->pending_flip_queue);
  3204. dev_priv->mm.interruptible = true;
  3205. dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink;
  3206. dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
  3207. register_shrinker(&dev_priv->mm.inactive_shrinker);
  3208. }
  3209. /*
  3210. * Create a physically contiguous memory object for this object
  3211. * e.g. for cursor + overlay regs
  3212. */
  3213. static int i915_gem_init_phys_object(struct drm_device *dev,
  3214. int id, int size, int align)
  3215. {
  3216. drm_i915_private_t *dev_priv = dev->dev_private;
  3217. struct drm_i915_gem_phys_object *phys_obj;
  3218. int ret;
  3219. if (dev_priv->mm.phys_objs[id - 1] || !size)
  3220. return 0;
  3221. phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
  3222. if (!phys_obj)
  3223. return -ENOMEM;
  3224. phys_obj->id = id;
  3225. phys_obj->handle = drm_pci_alloc(dev, size, align);
  3226. if (!phys_obj->handle) {
  3227. ret = -ENOMEM;
  3228. goto kfree_obj;
  3229. }
  3230. #ifdef CONFIG_X86
  3231. set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
  3232. #endif
  3233. dev_priv->mm.phys_objs[id - 1] = phys_obj;
  3234. return 0;
  3235. kfree_obj:
  3236. kfree(phys_obj);
  3237. return ret;
  3238. }
  3239. static void i915_gem_free_phys_object(struct drm_device *dev, int id)
  3240. {
  3241. drm_i915_private_t *dev_priv = dev->dev_private;
  3242. struct drm_i915_gem_phys_object *phys_obj;
  3243. if (!dev_priv->mm.phys_objs[id - 1])
  3244. return;
  3245. phys_obj = dev_priv->mm.phys_objs[id - 1];
  3246. if (phys_obj->cur_obj) {
  3247. i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
  3248. }
  3249. #ifdef CONFIG_X86
  3250. set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
  3251. #endif
  3252. drm_pci_free(dev, phys_obj->handle);
  3253. kfree(phys_obj);
  3254. dev_priv->mm.phys_objs[id - 1] = NULL;
  3255. }
  3256. void i915_gem_free_all_phys_object(struct drm_device *dev)
  3257. {
  3258. int i;
  3259. for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
  3260. i915_gem_free_phys_object(dev, i);
  3261. }
  3262. void i915_gem_detach_phys_object(struct drm_device *dev,
  3263. struct drm_i915_gem_object *obj)
  3264. {
  3265. struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
  3266. char *vaddr;
  3267. int i;
  3268. int page_count;
  3269. if (!obj->phys_obj)
  3270. return;
  3271. vaddr = obj->phys_obj->handle->vaddr;
  3272. page_count = obj->base.size / PAGE_SIZE;
  3273. for (i = 0; i < page_count; i++) {
  3274. struct page *page = read_cache_page_gfp(mapping, i,
  3275. GFP_HIGHUSER | __GFP_RECLAIMABLE);
  3276. if (!IS_ERR(page)) {
  3277. char *dst = kmap_atomic(page);
  3278. memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
  3279. kunmap_atomic(dst);
  3280. drm_clflush_pages(&page, 1);
  3281. set_page_dirty(page);
  3282. mark_page_accessed(page);
  3283. page_cache_release(page);
  3284. }
  3285. }
  3286. intel_gtt_chipset_flush();
  3287. obj->phys_obj->cur_obj = NULL;
  3288. obj->phys_obj = NULL;
  3289. }
  3290. int
  3291. i915_gem_attach_phys_object(struct drm_device *dev,
  3292. struct drm_i915_gem_object *obj,
  3293. int id,
  3294. int align)
  3295. {
  3296. struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
  3297. drm_i915_private_t *dev_priv = dev->dev_private;
  3298. int ret = 0;
  3299. int page_count;
  3300. int i;
  3301. if (id > I915_MAX_PHYS_OBJECT)
  3302. return -EINVAL;
  3303. if (obj->phys_obj) {
  3304. if (obj->phys_obj->id == id)
  3305. return 0;
  3306. i915_gem_detach_phys_object(dev, obj);
  3307. }
  3308. /* create a new object */
  3309. if (!dev_priv->mm.phys_objs[id - 1]) {
  3310. ret = i915_gem_init_phys_object(dev, id,
  3311. obj->base.size, align);
  3312. if (ret) {
  3313. DRM_ERROR("failed to init phys object %d size: %zu\n",
  3314. id, obj->base.size);
  3315. return ret;
  3316. }
  3317. }
  3318. /* bind to the object */
  3319. obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
  3320. obj->phys_obj->cur_obj = obj;
  3321. page_count = obj->base.size / PAGE_SIZE;
  3322. for (i = 0; i < page_count; i++) {
  3323. struct page *page;
  3324. char *dst, *src;
  3325. page = read_cache_page_gfp(mapping, i,
  3326. GFP_HIGHUSER | __GFP_RECLAIMABLE);
  3327. if (IS_ERR(page))
  3328. return PTR_ERR(page);
  3329. src = kmap_atomic(page);
  3330. dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
  3331. memcpy(dst, src, PAGE_SIZE);
  3332. kunmap_atomic(src);
  3333. mark_page_accessed(page);
  3334. page_cache_release(page);
  3335. }
  3336. return 0;
  3337. }
  3338. static int
  3339. i915_gem_phys_pwrite(struct drm_device *dev,
  3340. struct drm_i915_gem_object *obj,
  3341. struct drm_i915_gem_pwrite *args,
  3342. struct drm_file *file_priv)
  3343. {
  3344. void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
  3345. char __user *user_data = (char __user *) (uintptr_t) args->data_ptr;
  3346. if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
  3347. unsigned long unwritten;
  3348. /* The physical object once assigned is fixed for the lifetime
  3349. * of the obj, so we can safely drop the lock and continue
  3350. * to access vaddr.
  3351. */
  3352. mutex_unlock(&dev->struct_mutex);
  3353. unwritten = copy_from_user(vaddr, user_data, args->size);
  3354. mutex_lock(&dev->struct_mutex);
  3355. if (unwritten)
  3356. return -EFAULT;
  3357. }
  3358. intel_gtt_chipset_flush();
  3359. return 0;
  3360. }
  3361. void i915_gem_release(struct drm_device *dev, struct drm_file *file)
  3362. {
  3363. struct drm_i915_file_private *file_priv = file->driver_priv;
  3364. /* Clean up our request list when the client is going away, so that
  3365. * later retire_requests won't dereference our soon-to-be-gone
  3366. * file_priv.
  3367. */
  3368. spin_lock(&file_priv->mm.lock);
  3369. while (!list_empty(&file_priv->mm.request_list)) {
  3370. struct drm_i915_gem_request *request;
  3371. request = list_first_entry(&file_priv->mm.request_list,
  3372. struct drm_i915_gem_request,
  3373. client_list);
  3374. list_del(&request->client_list);
  3375. request->file_priv = NULL;
  3376. }
  3377. spin_unlock(&file_priv->mm.lock);
  3378. }
  3379. static int
  3380. i915_gpu_is_active(struct drm_device *dev)
  3381. {
  3382. drm_i915_private_t *dev_priv = dev->dev_private;
  3383. int lists_empty;
  3384. lists_empty = list_empty(&dev_priv->mm.flushing_list) &&
  3385. list_empty(&dev_priv->mm.active_list);
  3386. return !lists_empty;
  3387. }
  3388. static int
  3389. i915_gem_inactive_shrink(struct shrinker *shrinker, struct shrink_control *sc)
  3390. {
  3391. struct drm_i915_private *dev_priv =
  3392. container_of(shrinker,
  3393. struct drm_i915_private,
  3394. mm.inactive_shrinker);
  3395. struct drm_device *dev = dev_priv->dev;
  3396. struct drm_i915_gem_object *obj, *next;
  3397. int nr_to_scan = sc->nr_to_scan;
  3398. int cnt;
  3399. if (!mutex_trylock(&dev->struct_mutex))
  3400. return 0;
  3401. /* "fast-path" to count number of available objects */
  3402. if (nr_to_scan == 0) {
  3403. cnt = 0;
  3404. list_for_each_entry(obj,
  3405. &dev_priv->mm.inactive_list,
  3406. mm_list)
  3407. cnt++;
  3408. mutex_unlock(&dev->struct_mutex);
  3409. return cnt / 100 * sysctl_vfs_cache_pressure;
  3410. }
  3411. rescan:
  3412. /* first scan for clean buffers */
  3413. i915_gem_retire_requests(dev);
  3414. list_for_each_entry_safe(obj, next,
  3415. &dev_priv->mm.inactive_list,
  3416. mm_list) {
  3417. if (i915_gem_object_is_purgeable(obj)) {
  3418. if (i915_gem_object_unbind(obj) == 0 &&
  3419. --nr_to_scan == 0)
  3420. break;
  3421. }
  3422. }
  3423. /* second pass, evict/count anything still on the inactive list */
  3424. cnt = 0;
  3425. list_for_each_entry_safe(obj, next,
  3426. &dev_priv->mm.inactive_list,
  3427. mm_list) {
  3428. if (nr_to_scan &&
  3429. i915_gem_object_unbind(obj) == 0)
  3430. nr_to_scan--;
  3431. else
  3432. cnt++;
  3433. }
  3434. if (nr_to_scan && i915_gpu_is_active(dev)) {
  3435. /*
  3436. * We are desperate for pages, so as a last resort, wait
  3437. * for the GPU to finish and discard whatever we can.
  3438. * This has a dramatic impact to reduce the number of
  3439. * OOM-killer events whilst running the GPU aggressively.
  3440. */
  3441. if (i915_gpu_idle(dev) == 0)
  3442. goto rescan;
  3443. }
  3444. mutex_unlock(&dev->struct_mutex);
  3445. return cnt / 100 * sysctl_vfs_cache_pressure;
  3446. }