intel_dp.c 81 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939
  1. /*
  2. * Copyright © 2008 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Keith Packard <keithp@keithp.com>
  25. *
  26. */
  27. #include <linux/i2c.h>
  28. #include <linux/slab.h>
  29. #include <linux/export.h>
  30. #include <drm/drmP.h>
  31. #include <drm/drm_crtc.h>
  32. #include <drm/drm_crtc_helper.h>
  33. #include <drm/drm_edid.h>
  34. #include "intel_drv.h"
  35. #include <drm/i915_drm.h>
  36. #include "i915_drv.h"
  37. #define DP_LINK_CHECK_TIMEOUT (10 * 1000)
  38. /**
  39. * is_edp - is the given port attached to an eDP panel (either CPU or PCH)
  40. * @intel_dp: DP struct
  41. *
  42. * If a CPU or PCH DP output is attached to an eDP panel, this function
  43. * will return true, and false otherwise.
  44. */
  45. static bool is_edp(struct intel_dp *intel_dp)
  46. {
  47. struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
  48. return intel_dig_port->base.type == INTEL_OUTPUT_EDP;
  49. }
  50. /**
  51. * is_pch_edp - is the port on the PCH and attached to an eDP panel?
  52. * @intel_dp: DP struct
  53. *
  54. * Returns true if the given DP struct corresponds to a PCH DP port attached
  55. * to an eDP panel, false otherwise. Helpful for determining whether we
  56. * may need FDI resources for a given DP output or not.
  57. */
  58. static bool is_pch_edp(struct intel_dp *intel_dp)
  59. {
  60. return intel_dp->is_pch_edp;
  61. }
  62. /**
  63. * is_cpu_edp - is the port on the CPU and attached to an eDP panel?
  64. * @intel_dp: DP struct
  65. *
  66. * Returns true if the given DP struct corresponds to a CPU eDP port.
  67. */
  68. static bool is_cpu_edp(struct intel_dp *intel_dp)
  69. {
  70. return is_edp(intel_dp) && !is_pch_edp(intel_dp);
  71. }
  72. static struct drm_device *intel_dp_to_dev(struct intel_dp *intel_dp)
  73. {
  74. struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
  75. return intel_dig_port->base.base.dev;
  76. }
  77. static struct intel_dp *intel_attached_dp(struct drm_connector *connector)
  78. {
  79. return enc_to_intel_dp(&intel_attached_encoder(connector)->base);
  80. }
  81. /**
  82. * intel_encoder_is_pch_edp - is the given encoder a PCH attached eDP?
  83. * @encoder: DRM encoder
  84. *
  85. * Return true if @encoder corresponds to a PCH attached eDP panel. Needed
  86. * by intel_display.c.
  87. */
  88. bool intel_encoder_is_pch_edp(struct drm_encoder *encoder)
  89. {
  90. struct intel_dp *intel_dp;
  91. if (!encoder)
  92. return false;
  93. intel_dp = enc_to_intel_dp(encoder);
  94. return is_pch_edp(intel_dp);
  95. }
  96. static void intel_dp_link_down(struct intel_dp *intel_dp);
  97. void
  98. intel_edp_link_config(struct intel_encoder *intel_encoder,
  99. int *lane_num, int *link_bw)
  100. {
  101. struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
  102. *lane_num = intel_dp->lane_count;
  103. *link_bw = drm_dp_bw_code_to_link_rate(intel_dp->link_bw);
  104. }
  105. int
  106. intel_edp_target_clock(struct intel_encoder *intel_encoder,
  107. struct drm_display_mode *mode)
  108. {
  109. struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
  110. struct intel_connector *intel_connector = intel_dp->attached_connector;
  111. if (intel_connector->panel.fixed_mode)
  112. return intel_connector->panel.fixed_mode->clock;
  113. else
  114. return mode->clock;
  115. }
  116. static int
  117. intel_dp_max_link_bw(struct intel_dp *intel_dp)
  118. {
  119. int max_link_bw = intel_dp->dpcd[DP_MAX_LINK_RATE];
  120. switch (max_link_bw) {
  121. case DP_LINK_BW_1_62:
  122. case DP_LINK_BW_2_7:
  123. break;
  124. default:
  125. max_link_bw = DP_LINK_BW_1_62;
  126. break;
  127. }
  128. return max_link_bw;
  129. }
  130. /*
  131. * The units on the numbers in the next two are... bizarre. Examples will
  132. * make it clearer; this one parallels an example in the eDP spec.
  133. *
  134. * intel_dp_max_data_rate for one lane of 2.7GHz evaluates as:
  135. *
  136. * 270000 * 1 * 8 / 10 == 216000
  137. *
  138. * The actual data capacity of that configuration is 2.16Gbit/s, so the
  139. * units are decakilobits. ->clock in a drm_display_mode is in kilohertz -
  140. * or equivalently, kilopixels per second - so for 1680x1050R it'd be
  141. * 119000. At 18bpp that's 2142000 kilobits per second.
  142. *
  143. * Thus the strange-looking division by 10 in intel_dp_link_required, to
  144. * get the result in decakilobits instead of kilobits.
  145. */
  146. static int
  147. intel_dp_link_required(int pixel_clock, int bpp)
  148. {
  149. return (pixel_clock * bpp + 9) / 10;
  150. }
  151. static int
  152. intel_dp_max_data_rate(int max_link_clock, int max_lanes)
  153. {
  154. return (max_link_clock * max_lanes * 8) / 10;
  155. }
  156. static bool
  157. intel_dp_adjust_dithering(struct intel_dp *intel_dp,
  158. struct drm_display_mode *mode,
  159. bool adjust_mode)
  160. {
  161. int max_link_clock =
  162. drm_dp_bw_code_to_link_rate(intel_dp_max_link_bw(intel_dp));
  163. int max_lanes = drm_dp_max_lane_count(intel_dp->dpcd);
  164. int max_rate, mode_rate;
  165. mode_rate = intel_dp_link_required(mode->clock, 24);
  166. max_rate = intel_dp_max_data_rate(max_link_clock, max_lanes);
  167. if (mode_rate > max_rate) {
  168. mode_rate = intel_dp_link_required(mode->clock, 18);
  169. if (mode_rate > max_rate)
  170. return false;
  171. if (adjust_mode)
  172. mode->private_flags
  173. |= INTEL_MODE_DP_FORCE_6BPC;
  174. return true;
  175. }
  176. return true;
  177. }
  178. static int
  179. intel_dp_mode_valid(struct drm_connector *connector,
  180. struct drm_display_mode *mode)
  181. {
  182. struct intel_dp *intel_dp = intel_attached_dp(connector);
  183. struct intel_connector *intel_connector = to_intel_connector(connector);
  184. struct drm_display_mode *fixed_mode = intel_connector->panel.fixed_mode;
  185. if (is_edp(intel_dp) && fixed_mode) {
  186. if (mode->hdisplay > fixed_mode->hdisplay)
  187. return MODE_PANEL;
  188. if (mode->vdisplay > fixed_mode->vdisplay)
  189. return MODE_PANEL;
  190. }
  191. if (!intel_dp_adjust_dithering(intel_dp, mode, false))
  192. return MODE_CLOCK_HIGH;
  193. if (mode->clock < 10000)
  194. return MODE_CLOCK_LOW;
  195. if (mode->flags & DRM_MODE_FLAG_DBLCLK)
  196. return MODE_H_ILLEGAL;
  197. return MODE_OK;
  198. }
  199. static uint32_t
  200. pack_aux(uint8_t *src, int src_bytes)
  201. {
  202. int i;
  203. uint32_t v = 0;
  204. if (src_bytes > 4)
  205. src_bytes = 4;
  206. for (i = 0; i < src_bytes; i++)
  207. v |= ((uint32_t) src[i]) << ((3-i) * 8);
  208. return v;
  209. }
  210. static void
  211. unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
  212. {
  213. int i;
  214. if (dst_bytes > 4)
  215. dst_bytes = 4;
  216. for (i = 0; i < dst_bytes; i++)
  217. dst[i] = src >> ((3-i) * 8);
  218. }
  219. /* hrawclock is 1/4 the FSB frequency */
  220. static int
  221. intel_hrawclk(struct drm_device *dev)
  222. {
  223. struct drm_i915_private *dev_priv = dev->dev_private;
  224. uint32_t clkcfg;
  225. /* There is no CLKCFG reg in Valleyview. VLV hrawclk is 200 MHz */
  226. if (IS_VALLEYVIEW(dev))
  227. return 200;
  228. clkcfg = I915_READ(CLKCFG);
  229. switch (clkcfg & CLKCFG_FSB_MASK) {
  230. case CLKCFG_FSB_400:
  231. return 100;
  232. case CLKCFG_FSB_533:
  233. return 133;
  234. case CLKCFG_FSB_667:
  235. return 166;
  236. case CLKCFG_FSB_800:
  237. return 200;
  238. case CLKCFG_FSB_1067:
  239. return 266;
  240. case CLKCFG_FSB_1333:
  241. return 333;
  242. /* these two are just a guess; one of them might be right */
  243. case CLKCFG_FSB_1600:
  244. case CLKCFG_FSB_1600_ALT:
  245. return 400;
  246. default:
  247. return 133;
  248. }
  249. }
  250. static bool ironlake_edp_have_panel_power(struct intel_dp *intel_dp)
  251. {
  252. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  253. struct drm_i915_private *dev_priv = dev->dev_private;
  254. return (I915_READ(PCH_PP_STATUS) & PP_ON) != 0;
  255. }
  256. static bool ironlake_edp_have_panel_vdd(struct intel_dp *intel_dp)
  257. {
  258. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  259. struct drm_i915_private *dev_priv = dev->dev_private;
  260. return (I915_READ(PCH_PP_CONTROL) & EDP_FORCE_VDD) != 0;
  261. }
  262. static void
  263. intel_dp_check_edp(struct intel_dp *intel_dp)
  264. {
  265. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  266. struct drm_i915_private *dev_priv = dev->dev_private;
  267. if (!is_edp(intel_dp))
  268. return;
  269. if (!ironlake_edp_have_panel_power(intel_dp) && !ironlake_edp_have_panel_vdd(intel_dp)) {
  270. WARN(1, "eDP powered off while attempting aux channel communication.\n");
  271. DRM_DEBUG_KMS("Status 0x%08x Control 0x%08x\n",
  272. I915_READ(PCH_PP_STATUS),
  273. I915_READ(PCH_PP_CONTROL));
  274. }
  275. }
  276. static uint32_t
  277. intel_dp_aux_wait_done(struct intel_dp *intel_dp, bool has_aux_irq)
  278. {
  279. struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
  280. struct drm_device *dev = intel_dig_port->base.base.dev;
  281. struct drm_i915_private *dev_priv = dev->dev_private;
  282. uint32_t ch_ctl = intel_dp->output_reg + 0x10;
  283. uint32_t status;
  284. bool done;
  285. if (IS_HASWELL(dev)) {
  286. switch (intel_dig_port->port) {
  287. case PORT_A:
  288. ch_ctl = DPA_AUX_CH_CTL;
  289. break;
  290. case PORT_B:
  291. ch_ctl = PCH_DPB_AUX_CH_CTL;
  292. break;
  293. case PORT_C:
  294. ch_ctl = PCH_DPC_AUX_CH_CTL;
  295. break;
  296. case PORT_D:
  297. ch_ctl = PCH_DPD_AUX_CH_CTL;
  298. break;
  299. default:
  300. BUG();
  301. }
  302. }
  303. #define C (((status = I915_READ_NOTRACE(ch_ctl)) & DP_AUX_CH_CTL_SEND_BUSY) == 0)
  304. if (has_aux_irq)
  305. done = wait_event_timeout(dev_priv->gmbus_wait_queue, C, 10);
  306. else
  307. done = wait_for_atomic(C, 10) == 0;
  308. if (!done)
  309. DRM_ERROR("dp aux hw did not signal timeout (has irq: %i)!\n",
  310. has_aux_irq);
  311. #undef C
  312. return status;
  313. }
  314. static int
  315. intel_dp_aux_ch(struct intel_dp *intel_dp,
  316. uint8_t *send, int send_bytes,
  317. uint8_t *recv, int recv_size)
  318. {
  319. uint32_t output_reg = intel_dp->output_reg;
  320. struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
  321. struct drm_device *dev = intel_dig_port->base.base.dev;
  322. struct drm_i915_private *dev_priv = dev->dev_private;
  323. uint32_t ch_ctl = output_reg + 0x10;
  324. uint32_t ch_data = ch_ctl + 4;
  325. int i, ret, recv_bytes;
  326. uint32_t status;
  327. uint32_t aux_clock_divider;
  328. int try, precharge;
  329. bool has_aux_irq = INTEL_INFO(dev)->gen >= 5 && !IS_VALLEYVIEW(dev);
  330. /* dp aux is extremely sensitive to irq latency, hence request the
  331. * lowest possible wakeup latency and so prevent the cpu from going into
  332. * deep sleep states.
  333. */
  334. pm_qos_update_request(&dev_priv->pm_qos, 0);
  335. if (IS_HASWELL(dev)) {
  336. switch (intel_dig_port->port) {
  337. case PORT_A:
  338. ch_ctl = DPA_AUX_CH_CTL;
  339. ch_data = DPA_AUX_CH_DATA1;
  340. break;
  341. case PORT_B:
  342. ch_ctl = PCH_DPB_AUX_CH_CTL;
  343. ch_data = PCH_DPB_AUX_CH_DATA1;
  344. break;
  345. case PORT_C:
  346. ch_ctl = PCH_DPC_AUX_CH_CTL;
  347. ch_data = PCH_DPC_AUX_CH_DATA1;
  348. break;
  349. case PORT_D:
  350. ch_ctl = PCH_DPD_AUX_CH_CTL;
  351. ch_data = PCH_DPD_AUX_CH_DATA1;
  352. break;
  353. default:
  354. BUG();
  355. }
  356. }
  357. intel_dp_check_edp(intel_dp);
  358. /* The clock divider is based off the hrawclk,
  359. * and would like to run at 2MHz. So, take the
  360. * hrawclk value and divide by 2 and use that
  361. *
  362. * Note that PCH attached eDP panels should use a 125MHz input
  363. * clock divider.
  364. */
  365. if (is_cpu_edp(intel_dp)) {
  366. if (HAS_DDI(dev))
  367. aux_clock_divider = intel_ddi_get_cdclk_freq(dev_priv) >> 1;
  368. else if (IS_VALLEYVIEW(dev))
  369. aux_clock_divider = 100;
  370. else if (IS_GEN6(dev) || IS_GEN7(dev))
  371. aux_clock_divider = 200; /* SNB & IVB eDP input clock at 400Mhz */
  372. else
  373. aux_clock_divider = 225; /* eDP input clock at 450Mhz */
  374. } else if (HAS_PCH_SPLIT(dev))
  375. aux_clock_divider = DIV_ROUND_UP(intel_pch_rawclk(dev), 2);
  376. else
  377. aux_clock_divider = intel_hrawclk(dev) / 2;
  378. if (IS_GEN6(dev))
  379. precharge = 3;
  380. else
  381. precharge = 5;
  382. /* Try to wait for any previous AUX channel activity */
  383. for (try = 0; try < 3; try++) {
  384. status = I915_READ_NOTRACE(ch_ctl);
  385. if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
  386. break;
  387. msleep(1);
  388. }
  389. if (try == 3) {
  390. WARN(1, "dp_aux_ch not started status 0x%08x\n",
  391. I915_READ(ch_ctl));
  392. ret = -EBUSY;
  393. goto out;
  394. }
  395. /* Must try at least 3 times according to DP spec */
  396. for (try = 0; try < 5; try++) {
  397. /* Load the send data into the aux channel data registers */
  398. for (i = 0; i < send_bytes; i += 4)
  399. I915_WRITE(ch_data + i,
  400. pack_aux(send + i, send_bytes - i));
  401. /* Send the command and wait for it to complete */
  402. I915_WRITE(ch_ctl,
  403. DP_AUX_CH_CTL_SEND_BUSY |
  404. (has_aux_irq ? DP_AUX_CH_CTL_INTERRUPT : 0) |
  405. DP_AUX_CH_CTL_TIME_OUT_400us |
  406. (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
  407. (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
  408. (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT) |
  409. DP_AUX_CH_CTL_DONE |
  410. DP_AUX_CH_CTL_TIME_OUT_ERROR |
  411. DP_AUX_CH_CTL_RECEIVE_ERROR);
  412. status = intel_dp_aux_wait_done(intel_dp, has_aux_irq);
  413. /* Clear done status and any errors */
  414. I915_WRITE(ch_ctl,
  415. status |
  416. DP_AUX_CH_CTL_DONE |
  417. DP_AUX_CH_CTL_TIME_OUT_ERROR |
  418. DP_AUX_CH_CTL_RECEIVE_ERROR);
  419. if (status & (DP_AUX_CH_CTL_TIME_OUT_ERROR |
  420. DP_AUX_CH_CTL_RECEIVE_ERROR))
  421. continue;
  422. if (status & DP_AUX_CH_CTL_DONE)
  423. break;
  424. }
  425. if ((status & DP_AUX_CH_CTL_DONE) == 0) {
  426. DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
  427. ret = -EBUSY;
  428. goto out;
  429. }
  430. /* Check for timeout or receive error.
  431. * Timeouts occur when the sink is not connected
  432. */
  433. if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
  434. DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
  435. ret = -EIO;
  436. goto out;
  437. }
  438. /* Timeouts occur when the device isn't connected, so they're
  439. * "normal" -- don't fill the kernel log with these */
  440. if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
  441. DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
  442. ret = -ETIMEDOUT;
  443. goto out;
  444. }
  445. /* Unload any bytes sent back from the other side */
  446. recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
  447. DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
  448. if (recv_bytes > recv_size)
  449. recv_bytes = recv_size;
  450. for (i = 0; i < recv_bytes; i += 4)
  451. unpack_aux(I915_READ(ch_data + i),
  452. recv + i, recv_bytes - i);
  453. ret = recv_bytes;
  454. out:
  455. pm_qos_update_request(&dev_priv->pm_qos, PM_QOS_DEFAULT_VALUE);
  456. return ret;
  457. }
  458. /* Write data to the aux channel in native mode */
  459. static int
  460. intel_dp_aux_native_write(struct intel_dp *intel_dp,
  461. uint16_t address, uint8_t *send, int send_bytes)
  462. {
  463. int ret;
  464. uint8_t msg[20];
  465. int msg_bytes;
  466. uint8_t ack;
  467. intel_dp_check_edp(intel_dp);
  468. if (send_bytes > 16)
  469. return -1;
  470. msg[0] = AUX_NATIVE_WRITE << 4;
  471. msg[1] = address >> 8;
  472. msg[2] = address & 0xff;
  473. msg[3] = send_bytes - 1;
  474. memcpy(&msg[4], send, send_bytes);
  475. msg_bytes = send_bytes + 4;
  476. for (;;) {
  477. ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes, &ack, 1);
  478. if (ret < 0)
  479. return ret;
  480. if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK)
  481. break;
  482. else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
  483. udelay(100);
  484. else
  485. return -EIO;
  486. }
  487. return send_bytes;
  488. }
  489. /* Write a single byte to the aux channel in native mode */
  490. static int
  491. intel_dp_aux_native_write_1(struct intel_dp *intel_dp,
  492. uint16_t address, uint8_t byte)
  493. {
  494. return intel_dp_aux_native_write(intel_dp, address, &byte, 1);
  495. }
  496. /* read bytes from a native aux channel */
  497. static int
  498. intel_dp_aux_native_read(struct intel_dp *intel_dp,
  499. uint16_t address, uint8_t *recv, int recv_bytes)
  500. {
  501. uint8_t msg[4];
  502. int msg_bytes;
  503. uint8_t reply[20];
  504. int reply_bytes;
  505. uint8_t ack;
  506. int ret;
  507. intel_dp_check_edp(intel_dp);
  508. msg[0] = AUX_NATIVE_READ << 4;
  509. msg[1] = address >> 8;
  510. msg[2] = address & 0xff;
  511. msg[3] = recv_bytes - 1;
  512. msg_bytes = 4;
  513. reply_bytes = recv_bytes + 1;
  514. for (;;) {
  515. ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes,
  516. reply, reply_bytes);
  517. if (ret == 0)
  518. return -EPROTO;
  519. if (ret < 0)
  520. return ret;
  521. ack = reply[0];
  522. if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK) {
  523. memcpy(recv, reply + 1, ret - 1);
  524. return ret - 1;
  525. }
  526. else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
  527. udelay(100);
  528. else
  529. return -EIO;
  530. }
  531. }
  532. static int
  533. intel_dp_i2c_aux_ch(struct i2c_adapter *adapter, int mode,
  534. uint8_t write_byte, uint8_t *read_byte)
  535. {
  536. struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
  537. struct intel_dp *intel_dp = container_of(adapter,
  538. struct intel_dp,
  539. adapter);
  540. uint16_t address = algo_data->address;
  541. uint8_t msg[5];
  542. uint8_t reply[2];
  543. unsigned retry;
  544. int msg_bytes;
  545. int reply_bytes;
  546. int ret;
  547. intel_dp_check_edp(intel_dp);
  548. /* Set up the command byte */
  549. if (mode & MODE_I2C_READ)
  550. msg[0] = AUX_I2C_READ << 4;
  551. else
  552. msg[0] = AUX_I2C_WRITE << 4;
  553. if (!(mode & MODE_I2C_STOP))
  554. msg[0] |= AUX_I2C_MOT << 4;
  555. msg[1] = address >> 8;
  556. msg[2] = address;
  557. switch (mode) {
  558. case MODE_I2C_WRITE:
  559. msg[3] = 0;
  560. msg[4] = write_byte;
  561. msg_bytes = 5;
  562. reply_bytes = 1;
  563. break;
  564. case MODE_I2C_READ:
  565. msg[3] = 0;
  566. msg_bytes = 4;
  567. reply_bytes = 2;
  568. break;
  569. default:
  570. msg_bytes = 3;
  571. reply_bytes = 1;
  572. break;
  573. }
  574. for (retry = 0; retry < 5; retry++) {
  575. ret = intel_dp_aux_ch(intel_dp,
  576. msg, msg_bytes,
  577. reply, reply_bytes);
  578. if (ret < 0) {
  579. DRM_DEBUG_KMS("aux_ch failed %d\n", ret);
  580. return ret;
  581. }
  582. switch (reply[0] & AUX_NATIVE_REPLY_MASK) {
  583. case AUX_NATIVE_REPLY_ACK:
  584. /* I2C-over-AUX Reply field is only valid
  585. * when paired with AUX ACK.
  586. */
  587. break;
  588. case AUX_NATIVE_REPLY_NACK:
  589. DRM_DEBUG_KMS("aux_ch native nack\n");
  590. return -EREMOTEIO;
  591. case AUX_NATIVE_REPLY_DEFER:
  592. udelay(100);
  593. continue;
  594. default:
  595. DRM_ERROR("aux_ch invalid native reply 0x%02x\n",
  596. reply[0]);
  597. return -EREMOTEIO;
  598. }
  599. switch (reply[0] & AUX_I2C_REPLY_MASK) {
  600. case AUX_I2C_REPLY_ACK:
  601. if (mode == MODE_I2C_READ) {
  602. *read_byte = reply[1];
  603. }
  604. return reply_bytes - 1;
  605. case AUX_I2C_REPLY_NACK:
  606. DRM_DEBUG_KMS("aux_i2c nack\n");
  607. return -EREMOTEIO;
  608. case AUX_I2C_REPLY_DEFER:
  609. DRM_DEBUG_KMS("aux_i2c defer\n");
  610. udelay(100);
  611. break;
  612. default:
  613. DRM_ERROR("aux_i2c invalid reply 0x%02x\n", reply[0]);
  614. return -EREMOTEIO;
  615. }
  616. }
  617. DRM_ERROR("too many retries, giving up\n");
  618. return -EREMOTEIO;
  619. }
  620. static int
  621. intel_dp_i2c_init(struct intel_dp *intel_dp,
  622. struct intel_connector *intel_connector, const char *name)
  623. {
  624. int ret;
  625. DRM_DEBUG_KMS("i2c_init %s\n", name);
  626. intel_dp->algo.running = false;
  627. intel_dp->algo.address = 0;
  628. intel_dp->algo.aux_ch = intel_dp_i2c_aux_ch;
  629. memset(&intel_dp->adapter, '\0', sizeof(intel_dp->adapter));
  630. intel_dp->adapter.owner = THIS_MODULE;
  631. intel_dp->adapter.class = I2C_CLASS_DDC;
  632. strncpy(intel_dp->adapter.name, name, sizeof(intel_dp->adapter.name) - 1);
  633. intel_dp->adapter.name[sizeof(intel_dp->adapter.name) - 1] = '\0';
  634. intel_dp->adapter.algo_data = &intel_dp->algo;
  635. intel_dp->adapter.dev.parent = &intel_connector->base.kdev;
  636. ironlake_edp_panel_vdd_on(intel_dp);
  637. ret = i2c_dp_aux_add_bus(&intel_dp->adapter);
  638. ironlake_edp_panel_vdd_off(intel_dp, false);
  639. return ret;
  640. }
  641. bool
  642. intel_dp_mode_fixup(struct drm_encoder *encoder,
  643. const struct drm_display_mode *mode,
  644. struct drm_display_mode *adjusted_mode)
  645. {
  646. struct drm_device *dev = encoder->dev;
  647. struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
  648. struct intel_connector *intel_connector = intel_dp->attached_connector;
  649. int lane_count, clock;
  650. int max_lane_count = drm_dp_max_lane_count(intel_dp->dpcd);
  651. int max_clock = intel_dp_max_link_bw(intel_dp) == DP_LINK_BW_2_7 ? 1 : 0;
  652. int bpp, mode_rate;
  653. static int bws[2] = { DP_LINK_BW_1_62, DP_LINK_BW_2_7 };
  654. if (is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
  655. intel_fixed_panel_mode(intel_connector->panel.fixed_mode,
  656. adjusted_mode);
  657. intel_pch_panel_fitting(dev,
  658. intel_connector->panel.fitting_mode,
  659. mode, adjusted_mode);
  660. }
  661. if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
  662. return false;
  663. DRM_DEBUG_KMS("DP link computation with max lane count %i "
  664. "max bw %02x pixel clock %iKHz\n",
  665. max_lane_count, bws[max_clock], adjusted_mode->clock);
  666. if (!intel_dp_adjust_dithering(intel_dp, adjusted_mode, true))
  667. return false;
  668. bpp = adjusted_mode->private_flags & INTEL_MODE_DP_FORCE_6BPC ? 18 : 24;
  669. mode_rate = intel_dp_link_required(adjusted_mode->clock, bpp);
  670. for (clock = 0; clock <= max_clock; clock++) {
  671. for (lane_count = 1; lane_count <= max_lane_count; lane_count <<= 1) {
  672. int link_bw_clock =
  673. drm_dp_bw_code_to_link_rate(bws[clock]);
  674. int link_avail = intel_dp_max_data_rate(link_bw_clock,
  675. lane_count);
  676. if (mode_rate <= link_avail) {
  677. intel_dp->link_bw = bws[clock];
  678. intel_dp->lane_count = lane_count;
  679. adjusted_mode->clock = link_bw_clock;
  680. DRM_DEBUG_KMS("DP link bw %02x lane "
  681. "count %d clock %d bpp %d\n",
  682. intel_dp->link_bw, intel_dp->lane_count,
  683. adjusted_mode->clock, bpp);
  684. DRM_DEBUG_KMS("DP link bw required %i available %i\n",
  685. mode_rate, link_avail);
  686. return true;
  687. }
  688. }
  689. }
  690. return false;
  691. }
  692. struct intel_dp_m_n {
  693. uint32_t tu;
  694. uint32_t gmch_m;
  695. uint32_t gmch_n;
  696. uint32_t link_m;
  697. uint32_t link_n;
  698. };
  699. static void
  700. intel_reduce_ratio(uint32_t *num, uint32_t *den)
  701. {
  702. while (*num > 0xffffff || *den > 0xffffff) {
  703. *num >>= 1;
  704. *den >>= 1;
  705. }
  706. }
  707. static void
  708. intel_dp_compute_m_n(int bpp,
  709. int nlanes,
  710. int pixel_clock,
  711. int link_clock,
  712. struct intel_dp_m_n *m_n)
  713. {
  714. m_n->tu = 64;
  715. m_n->gmch_m = (pixel_clock * bpp) >> 3;
  716. m_n->gmch_n = link_clock * nlanes;
  717. intel_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
  718. m_n->link_m = pixel_clock;
  719. m_n->link_n = link_clock;
  720. intel_reduce_ratio(&m_n->link_m, &m_n->link_n);
  721. }
  722. void
  723. intel_dp_set_m_n(struct drm_crtc *crtc, struct drm_display_mode *mode,
  724. struct drm_display_mode *adjusted_mode)
  725. {
  726. struct drm_device *dev = crtc->dev;
  727. struct intel_encoder *intel_encoder;
  728. struct intel_dp *intel_dp;
  729. struct drm_i915_private *dev_priv = dev->dev_private;
  730. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  731. int lane_count = 4;
  732. struct intel_dp_m_n m_n;
  733. int pipe = intel_crtc->pipe;
  734. enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
  735. /*
  736. * Find the lane count in the intel_encoder private
  737. */
  738. for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
  739. intel_dp = enc_to_intel_dp(&intel_encoder->base);
  740. if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT ||
  741. intel_encoder->type == INTEL_OUTPUT_EDP)
  742. {
  743. lane_count = intel_dp->lane_count;
  744. break;
  745. }
  746. }
  747. /*
  748. * Compute the GMCH and Link ratios. The '3' here is
  749. * the number of bytes_per_pixel post-LUT, which we always
  750. * set up for 8-bits of R/G/B, or 3 bytes total.
  751. */
  752. intel_dp_compute_m_n(intel_crtc->bpp, lane_count,
  753. mode->clock, adjusted_mode->clock, &m_n);
  754. if (IS_HASWELL(dev)) {
  755. I915_WRITE(PIPE_DATA_M1(cpu_transcoder),
  756. TU_SIZE(m_n.tu) | m_n.gmch_m);
  757. I915_WRITE(PIPE_DATA_N1(cpu_transcoder), m_n.gmch_n);
  758. I915_WRITE(PIPE_LINK_M1(cpu_transcoder), m_n.link_m);
  759. I915_WRITE(PIPE_LINK_N1(cpu_transcoder), m_n.link_n);
  760. } else if (HAS_PCH_SPLIT(dev)) {
  761. I915_WRITE(TRANSDATA_M1(pipe), TU_SIZE(m_n.tu) | m_n.gmch_m);
  762. I915_WRITE(TRANSDATA_N1(pipe), m_n.gmch_n);
  763. I915_WRITE(TRANSDPLINK_M1(pipe), m_n.link_m);
  764. I915_WRITE(TRANSDPLINK_N1(pipe), m_n.link_n);
  765. } else if (IS_VALLEYVIEW(dev)) {
  766. I915_WRITE(PIPE_DATA_M1(pipe), TU_SIZE(m_n.tu) | m_n.gmch_m);
  767. I915_WRITE(PIPE_DATA_N1(pipe), m_n.gmch_n);
  768. I915_WRITE(PIPE_LINK_M1(pipe), m_n.link_m);
  769. I915_WRITE(PIPE_LINK_N1(pipe), m_n.link_n);
  770. } else {
  771. I915_WRITE(PIPE_GMCH_DATA_M(pipe),
  772. TU_SIZE(m_n.tu) | m_n.gmch_m);
  773. I915_WRITE(PIPE_GMCH_DATA_N(pipe), m_n.gmch_n);
  774. I915_WRITE(PIPE_DP_LINK_M(pipe), m_n.link_m);
  775. I915_WRITE(PIPE_DP_LINK_N(pipe), m_n.link_n);
  776. }
  777. }
  778. void intel_dp_init_link_config(struct intel_dp *intel_dp)
  779. {
  780. memset(intel_dp->link_configuration, 0, DP_LINK_CONFIGURATION_SIZE);
  781. intel_dp->link_configuration[0] = intel_dp->link_bw;
  782. intel_dp->link_configuration[1] = intel_dp->lane_count;
  783. intel_dp->link_configuration[8] = DP_SET_ANSI_8B10B;
  784. /*
  785. * Check for DPCD version > 1.1 and enhanced framing support
  786. */
  787. if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
  788. (intel_dp->dpcd[DP_MAX_LANE_COUNT] & DP_ENHANCED_FRAME_CAP)) {
  789. intel_dp->link_configuration[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN;
  790. }
  791. }
  792. static void
  793. intel_dp_mode_set(struct drm_encoder *encoder, struct drm_display_mode *mode,
  794. struct drm_display_mode *adjusted_mode)
  795. {
  796. struct drm_device *dev = encoder->dev;
  797. struct drm_i915_private *dev_priv = dev->dev_private;
  798. struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
  799. struct drm_crtc *crtc = encoder->crtc;
  800. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  801. /*
  802. * There are four kinds of DP registers:
  803. *
  804. * IBX PCH
  805. * SNB CPU
  806. * IVB CPU
  807. * CPT PCH
  808. *
  809. * IBX PCH and CPU are the same for almost everything,
  810. * except that the CPU DP PLL is configured in this
  811. * register
  812. *
  813. * CPT PCH is quite different, having many bits moved
  814. * to the TRANS_DP_CTL register instead. That
  815. * configuration happens (oddly) in ironlake_pch_enable
  816. */
  817. /* Preserve the BIOS-computed detected bit. This is
  818. * supposed to be read-only.
  819. */
  820. intel_dp->DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
  821. /* Handle DP bits in common between all three register formats */
  822. intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
  823. switch (intel_dp->lane_count) {
  824. case 1:
  825. intel_dp->DP |= DP_PORT_WIDTH_1;
  826. break;
  827. case 2:
  828. intel_dp->DP |= DP_PORT_WIDTH_2;
  829. break;
  830. case 4:
  831. intel_dp->DP |= DP_PORT_WIDTH_4;
  832. break;
  833. }
  834. if (intel_dp->has_audio) {
  835. DRM_DEBUG_DRIVER("Enabling DP audio on pipe %c\n",
  836. pipe_name(intel_crtc->pipe));
  837. intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
  838. intel_write_eld(encoder, adjusted_mode);
  839. }
  840. intel_dp_init_link_config(intel_dp);
  841. /* Split out the IBX/CPU vs CPT settings */
  842. if (is_cpu_edp(intel_dp) && IS_GEN7(dev) && !IS_VALLEYVIEW(dev)) {
  843. if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
  844. intel_dp->DP |= DP_SYNC_HS_HIGH;
  845. if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
  846. intel_dp->DP |= DP_SYNC_VS_HIGH;
  847. intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
  848. if (intel_dp->link_configuration[1] & DP_LANE_COUNT_ENHANCED_FRAME_EN)
  849. intel_dp->DP |= DP_ENHANCED_FRAMING;
  850. intel_dp->DP |= intel_crtc->pipe << 29;
  851. /* don't miss out required setting for eDP */
  852. if (adjusted_mode->clock < 200000)
  853. intel_dp->DP |= DP_PLL_FREQ_160MHZ;
  854. else
  855. intel_dp->DP |= DP_PLL_FREQ_270MHZ;
  856. } else if (!HAS_PCH_CPT(dev) || is_cpu_edp(intel_dp)) {
  857. intel_dp->DP |= intel_dp->color_range;
  858. if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
  859. intel_dp->DP |= DP_SYNC_HS_HIGH;
  860. if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
  861. intel_dp->DP |= DP_SYNC_VS_HIGH;
  862. intel_dp->DP |= DP_LINK_TRAIN_OFF;
  863. if (intel_dp->link_configuration[1] & DP_LANE_COUNT_ENHANCED_FRAME_EN)
  864. intel_dp->DP |= DP_ENHANCED_FRAMING;
  865. if (intel_crtc->pipe == 1)
  866. intel_dp->DP |= DP_PIPEB_SELECT;
  867. if (is_cpu_edp(intel_dp)) {
  868. /* don't miss out required setting for eDP */
  869. if (adjusted_mode->clock < 200000)
  870. intel_dp->DP |= DP_PLL_FREQ_160MHZ;
  871. else
  872. intel_dp->DP |= DP_PLL_FREQ_270MHZ;
  873. }
  874. } else {
  875. intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
  876. }
  877. }
  878. #define IDLE_ON_MASK (PP_ON | 0 | PP_SEQUENCE_MASK | 0 | PP_SEQUENCE_STATE_MASK)
  879. #define IDLE_ON_VALUE (PP_ON | 0 | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_ON_IDLE)
  880. #define IDLE_OFF_MASK (PP_ON | 0 | PP_SEQUENCE_MASK | 0 | PP_SEQUENCE_STATE_MASK)
  881. #define IDLE_OFF_VALUE (0 | 0 | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_OFF_IDLE)
  882. #define IDLE_CYCLE_MASK (PP_ON | 0 | PP_SEQUENCE_MASK | PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK)
  883. #define IDLE_CYCLE_VALUE (0 | 0 | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_OFF_IDLE)
  884. static void ironlake_wait_panel_status(struct intel_dp *intel_dp,
  885. u32 mask,
  886. u32 value)
  887. {
  888. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  889. struct drm_i915_private *dev_priv = dev->dev_private;
  890. DRM_DEBUG_KMS("mask %08x value %08x status %08x control %08x\n",
  891. mask, value,
  892. I915_READ(PCH_PP_STATUS),
  893. I915_READ(PCH_PP_CONTROL));
  894. if (_wait_for((I915_READ(PCH_PP_STATUS) & mask) == value, 5000, 10)) {
  895. DRM_ERROR("Panel status timeout: status %08x control %08x\n",
  896. I915_READ(PCH_PP_STATUS),
  897. I915_READ(PCH_PP_CONTROL));
  898. }
  899. }
  900. static void ironlake_wait_panel_on(struct intel_dp *intel_dp)
  901. {
  902. DRM_DEBUG_KMS("Wait for panel power on\n");
  903. ironlake_wait_panel_status(intel_dp, IDLE_ON_MASK, IDLE_ON_VALUE);
  904. }
  905. static void ironlake_wait_panel_off(struct intel_dp *intel_dp)
  906. {
  907. DRM_DEBUG_KMS("Wait for panel power off time\n");
  908. ironlake_wait_panel_status(intel_dp, IDLE_OFF_MASK, IDLE_OFF_VALUE);
  909. }
  910. static void ironlake_wait_panel_power_cycle(struct intel_dp *intel_dp)
  911. {
  912. DRM_DEBUG_KMS("Wait for panel power cycle\n");
  913. ironlake_wait_panel_status(intel_dp, IDLE_CYCLE_MASK, IDLE_CYCLE_VALUE);
  914. }
  915. /* Read the current pp_control value, unlocking the register if it
  916. * is locked
  917. */
  918. static u32 ironlake_get_pp_control(struct drm_i915_private *dev_priv)
  919. {
  920. u32 control = I915_READ(PCH_PP_CONTROL);
  921. control &= ~PANEL_UNLOCK_MASK;
  922. control |= PANEL_UNLOCK_REGS;
  923. return control;
  924. }
  925. void ironlake_edp_panel_vdd_on(struct intel_dp *intel_dp)
  926. {
  927. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  928. struct drm_i915_private *dev_priv = dev->dev_private;
  929. u32 pp;
  930. if (!is_edp(intel_dp))
  931. return;
  932. DRM_DEBUG_KMS("Turn eDP VDD on\n");
  933. WARN(intel_dp->want_panel_vdd,
  934. "eDP VDD already requested on\n");
  935. intel_dp->want_panel_vdd = true;
  936. if (ironlake_edp_have_panel_vdd(intel_dp)) {
  937. DRM_DEBUG_KMS("eDP VDD already on\n");
  938. return;
  939. }
  940. if (!ironlake_edp_have_panel_power(intel_dp))
  941. ironlake_wait_panel_power_cycle(intel_dp);
  942. pp = ironlake_get_pp_control(dev_priv);
  943. pp |= EDP_FORCE_VDD;
  944. I915_WRITE(PCH_PP_CONTROL, pp);
  945. POSTING_READ(PCH_PP_CONTROL);
  946. DRM_DEBUG_KMS("PCH_PP_STATUS: 0x%08x PCH_PP_CONTROL: 0x%08x\n",
  947. I915_READ(PCH_PP_STATUS), I915_READ(PCH_PP_CONTROL));
  948. /*
  949. * If the panel wasn't on, delay before accessing aux channel
  950. */
  951. if (!ironlake_edp_have_panel_power(intel_dp)) {
  952. DRM_DEBUG_KMS("eDP was not running\n");
  953. msleep(intel_dp->panel_power_up_delay);
  954. }
  955. }
  956. static void ironlake_panel_vdd_off_sync(struct intel_dp *intel_dp)
  957. {
  958. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  959. struct drm_i915_private *dev_priv = dev->dev_private;
  960. u32 pp;
  961. if (!intel_dp->want_panel_vdd && ironlake_edp_have_panel_vdd(intel_dp)) {
  962. pp = ironlake_get_pp_control(dev_priv);
  963. pp &= ~EDP_FORCE_VDD;
  964. I915_WRITE(PCH_PP_CONTROL, pp);
  965. POSTING_READ(PCH_PP_CONTROL);
  966. /* Make sure sequencer is idle before allowing subsequent activity */
  967. DRM_DEBUG_KMS("PCH_PP_STATUS: 0x%08x PCH_PP_CONTROL: 0x%08x\n",
  968. I915_READ(PCH_PP_STATUS), I915_READ(PCH_PP_CONTROL));
  969. msleep(intel_dp->panel_power_down_delay);
  970. }
  971. }
  972. static void ironlake_panel_vdd_work(struct work_struct *__work)
  973. {
  974. struct intel_dp *intel_dp = container_of(to_delayed_work(__work),
  975. struct intel_dp, panel_vdd_work);
  976. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  977. mutex_lock(&dev->mode_config.mutex);
  978. ironlake_panel_vdd_off_sync(intel_dp);
  979. mutex_unlock(&dev->mode_config.mutex);
  980. }
  981. void ironlake_edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync)
  982. {
  983. if (!is_edp(intel_dp))
  984. return;
  985. DRM_DEBUG_KMS("Turn eDP VDD off %d\n", intel_dp->want_panel_vdd);
  986. WARN(!intel_dp->want_panel_vdd, "eDP VDD not forced on");
  987. intel_dp->want_panel_vdd = false;
  988. if (sync) {
  989. ironlake_panel_vdd_off_sync(intel_dp);
  990. } else {
  991. /*
  992. * Queue the timer to fire a long
  993. * time from now (relative to the power down delay)
  994. * to keep the panel power up across a sequence of operations
  995. */
  996. schedule_delayed_work(&intel_dp->panel_vdd_work,
  997. msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5));
  998. }
  999. }
  1000. void ironlake_edp_panel_on(struct intel_dp *intel_dp)
  1001. {
  1002. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  1003. struct drm_i915_private *dev_priv = dev->dev_private;
  1004. u32 pp;
  1005. if (!is_edp(intel_dp))
  1006. return;
  1007. DRM_DEBUG_KMS("Turn eDP power on\n");
  1008. if (ironlake_edp_have_panel_power(intel_dp)) {
  1009. DRM_DEBUG_KMS("eDP power already on\n");
  1010. return;
  1011. }
  1012. ironlake_wait_panel_power_cycle(intel_dp);
  1013. pp = ironlake_get_pp_control(dev_priv);
  1014. if (IS_GEN5(dev)) {
  1015. /* ILK workaround: disable reset around power sequence */
  1016. pp &= ~PANEL_POWER_RESET;
  1017. I915_WRITE(PCH_PP_CONTROL, pp);
  1018. POSTING_READ(PCH_PP_CONTROL);
  1019. }
  1020. pp |= POWER_TARGET_ON;
  1021. if (!IS_GEN5(dev))
  1022. pp |= PANEL_POWER_RESET;
  1023. I915_WRITE(PCH_PP_CONTROL, pp);
  1024. POSTING_READ(PCH_PP_CONTROL);
  1025. ironlake_wait_panel_on(intel_dp);
  1026. if (IS_GEN5(dev)) {
  1027. pp |= PANEL_POWER_RESET; /* restore panel reset bit */
  1028. I915_WRITE(PCH_PP_CONTROL, pp);
  1029. POSTING_READ(PCH_PP_CONTROL);
  1030. }
  1031. }
  1032. void ironlake_edp_panel_off(struct intel_dp *intel_dp)
  1033. {
  1034. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  1035. struct drm_i915_private *dev_priv = dev->dev_private;
  1036. u32 pp;
  1037. if (!is_edp(intel_dp))
  1038. return;
  1039. DRM_DEBUG_KMS("Turn eDP power off\n");
  1040. WARN(!intel_dp->want_panel_vdd, "Need VDD to turn off panel\n");
  1041. pp = ironlake_get_pp_control(dev_priv);
  1042. /* We need to switch off panel power _and_ force vdd, for otherwise some
  1043. * panels get very unhappy and cease to work. */
  1044. pp &= ~(POWER_TARGET_ON | EDP_FORCE_VDD | PANEL_POWER_RESET | EDP_BLC_ENABLE);
  1045. I915_WRITE(PCH_PP_CONTROL, pp);
  1046. POSTING_READ(PCH_PP_CONTROL);
  1047. intel_dp->want_panel_vdd = false;
  1048. ironlake_wait_panel_off(intel_dp);
  1049. }
  1050. void ironlake_edp_backlight_on(struct intel_dp *intel_dp)
  1051. {
  1052. struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
  1053. struct drm_device *dev = intel_dig_port->base.base.dev;
  1054. struct drm_i915_private *dev_priv = dev->dev_private;
  1055. int pipe = to_intel_crtc(intel_dig_port->base.base.crtc)->pipe;
  1056. u32 pp;
  1057. if (!is_edp(intel_dp))
  1058. return;
  1059. DRM_DEBUG_KMS("\n");
  1060. /*
  1061. * If we enable the backlight right away following a panel power
  1062. * on, we may see slight flicker as the panel syncs with the eDP
  1063. * link. So delay a bit to make sure the image is solid before
  1064. * allowing it to appear.
  1065. */
  1066. msleep(intel_dp->backlight_on_delay);
  1067. pp = ironlake_get_pp_control(dev_priv);
  1068. pp |= EDP_BLC_ENABLE;
  1069. I915_WRITE(PCH_PP_CONTROL, pp);
  1070. POSTING_READ(PCH_PP_CONTROL);
  1071. intel_panel_enable_backlight(dev, pipe);
  1072. }
  1073. void ironlake_edp_backlight_off(struct intel_dp *intel_dp)
  1074. {
  1075. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  1076. struct drm_i915_private *dev_priv = dev->dev_private;
  1077. u32 pp;
  1078. if (!is_edp(intel_dp))
  1079. return;
  1080. intel_panel_disable_backlight(dev);
  1081. DRM_DEBUG_KMS("\n");
  1082. pp = ironlake_get_pp_control(dev_priv);
  1083. pp &= ~EDP_BLC_ENABLE;
  1084. I915_WRITE(PCH_PP_CONTROL, pp);
  1085. POSTING_READ(PCH_PP_CONTROL);
  1086. msleep(intel_dp->backlight_off_delay);
  1087. }
  1088. static void ironlake_edp_pll_on(struct intel_dp *intel_dp)
  1089. {
  1090. struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
  1091. struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
  1092. struct drm_device *dev = crtc->dev;
  1093. struct drm_i915_private *dev_priv = dev->dev_private;
  1094. u32 dpa_ctl;
  1095. assert_pipe_disabled(dev_priv,
  1096. to_intel_crtc(crtc)->pipe);
  1097. DRM_DEBUG_KMS("\n");
  1098. dpa_ctl = I915_READ(DP_A);
  1099. WARN(dpa_ctl & DP_PLL_ENABLE, "dp pll on, should be off\n");
  1100. WARN(dpa_ctl & DP_PORT_EN, "dp port still on, should be off\n");
  1101. /* We don't adjust intel_dp->DP while tearing down the link, to
  1102. * facilitate link retraining (e.g. after hotplug). Hence clear all
  1103. * enable bits here to ensure that we don't enable too much. */
  1104. intel_dp->DP &= ~(DP_PORT_EN | DP_AUDIO_OUTPUT_ENABLE);
  1105. intel_dp->DP |= DP_PLL_ENABLE;
  1106. I915_WRITE(DP_A, intel_dp->DP);
  1107. POSTING_READ(DP_A);
  1108. udelay(200);
  1109. }
  1110. static void ironlake_edp_pll_off(struct intel_dp *intel_dp)
  1111. {
  1112. struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
  1113. struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
  1114. struct drm_device *dev = crtc->dev;
  1115. struct drm_i915_private *dev_priv = dev->dev_private;
  1116. u32 dpa_ctl;
  1117. assert_pipe_disabled(dev_priv,
  1118. to_intel_crtc(crtc)->pipe);
  1119. dpa_ctl = I915_READ(DP_A);
  1120. WARN((dpa_ctl & DP_PLL_ENABLE) == 0,
  1121. "dp pll off, should be on\n");
  1122. WARN(dpa_ctl & DP_PORT_EN, "dp port still on, should be off\n");
  1123. /* We can't rely on the value tracked for the DP register in
  1124. * intel_dp->DP because link_down must not change that (otherwise link
  1125. * re-training will fail. */
  1126. dpa_ctl &= ~DP_PLL_ENABLE;
  1127. I915_WRITE(DP_A, dpa_ctl);
  1128. POSTING_READ(DP_A);
  1129. udelay(200);
  1130. }
  1131. /* If the sink supports it, try to set the power state appropriately */
  1132. void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode)
  1133. {
  1134. int ret, i;
  1135. /* Should have a valid DPCD by this point */
  1136. if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
  1137. return;
  1138. if (mode != DRM_MODE_DPMS_ON) {
  1139. ret = intel_dp_aux_native_write_1(intel_dp, DP_SET_POWER,
  1140. DP_SET_POWER_D3);
  1141. if (ret != 1)
  1142. DRM_DEBUG_DRIVER("failed to write sink power state\n");
  1143. } else {
  1144. /*
  1145. * When turning on, we need to retry for 1ms to give the sink
  1146. * time to wake up.
  1147. */
  1148. for (i = 0; i < 3; i++) {
  1149. ret = intel_dp_aux_native_write_1(intel_dp,
  1150. DP_SET_POWER,
  1151. DP_SET_POWER_D0);
  1152. if (ret == 1)
  1153. break;
  1154. msleep(1);
  1155. }
  1156. }
  1157. }
  1158. static bool intel_dp_get_hw_state(struct intel_encoder *encoder,
  1159. enum pipe *pipe)
  1160. {
  1161. struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
  1162. struct drm_device *dev = encoder->base.dev;
  1163. struct drm_i915_private *dev_priv = dev->dev_private;
  1164. u32 tmp = I915_READ(intel_dp->output_reg);
  1165. if (!(tmp & DP_PORT_EN))
  1166. return false;
  1167. if (is_cpu_edp(intel_dp) && IS_GEN7(dev)) {
  1168. *pipe = PORT_TO_PIPE_CPT(tmp);
  1169. } else if (!HAS_PCH_CPT(dev) || is_cpu_edp(intel_dp)) {
  1170. *pipe = PORT_TO_PIPE(tmp);
  1171. } else {
  1172. u32 trans_sel;
  1173. u32 trans_dp;
  1174. int i;
  1175. switch (intel_dp->output_reg) {
  1176. case PCH_DP_B:
  1177. trans_sel = TRANS_DP_PORT_SEL_B;
  1178. break;
  1179. case PCH_DP_C:
  1180. trans_sel = TRANS_DP_PORT_SEL_C;
  1181. break;
  1182. case PCH_DP_D:
  1183. trans_sel = TRANS_DP_PORT_SEL_D;
  1184. break;
  1185. default:
  1186. return true;
  1187. }
  1188. for_each_pipe(i) {
  1189. trans_dp = I915_READ(TRANS_DP_CTL(i));
  1190. if ((trans_dp & TRANS_DP_PORT_SEL_MASK) == trans_sel) {
  1191. *pipe = i;
  1192. return true;
  1193. }
  1194. }
  1195. DRM_DEBUG_KMS("No pipe for dp port 0x%x found\n",
  1196. intel_dp->output_reg);
  1197. }
  1198. return true;
  1199. }
  1200. static void intel_disable_dp(struct intel_encoder *encoder)
  1201. {
  1202. struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
  1203. /* Make sure the panel is off before trying to change the mode. But also
  1204. * ensure that we have vdd while we switch off the panel. */
  1205. ironlake_edp_panel_vdd_on(intel_dp);
  1206. ironlake_edp_backlight_off(intel_dp);
  1207. intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
  1208. ironlake_edp_panel_off(intel_dp);
  1209. /* cpu edp my only be disable _after_ the cpu pipe/plane is disabled. */
  1210. if (!is_cpu_edp(intel_dp))
  1211. intel_dp_link_down(intel_dp);
  1212. }
  1213. static void intel_post_disable_dp(struct intel_encoder *encoder)
  1214. {
  1215. struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
  1216. if (is_cpu_edp(intel_dp)) {
  1217. intel_dp_link_down(intel_dp);
  1218. ironlake_edp_pll_off(intel_dp);
  1219. }
  1220. }
  1221. static void intel_enable_dp(struct intel_encoder *encoder)
  1222. {
  1223. struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
  1224. struct drm_device *dev = encoder->base.dev;
  1225. struct drm_i915_private *dev_priv = dev->dev_private;
  1226. uint32_t dp_reg = I915_READ(intel_dp->output_reg);
  1227. if (WARN_ON(dp_reg & DP_PORT_EN))
  1228. return;
  1229. ironlake_edp_panel_vdd_on(intel_dp);
  1230. intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
  1231. intel_dp_start_link_train(intel_dp);
  1232. ironlake_edp_panel_on(intel_dp);
  1233. ironlake_edp_panel_vdd_off(intel_dp, true);
  1234. intel_dp_complete_link_train(intel_dp);
  1235. ironlake_edp_backlight_on(intel_dp);
  1236. }
  1237. static void intel_pre_enable_dp(struct intel_encoder *encoder)
  1238. {
  1239. struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
  1240. if (is_cpu_edp(intel_dp))
  1241. ironlake_edp_pll_on(intel_dp);
  1242. }
  1243. /*
  1244. * Native read with retry for link status and receiver capability reads for
  1245. * cases where the sink may still be asleep.
  1246. */
  1247. static bool
  1248. intel_dp_aux_native_read_retry(struct intel_dp *intel_dp, uint16_t address,
  1249. uint8_t *recv, int recv_bytes)
  1250. {
  1251. int ret, i;
  1252. /*
  1253. * Sinks are *supposed* to come up within 1ms from an off state,
  1254. * but we're also supposed to retry 3 times per the spec.
  1255. */
  1256. for (i = 0; i < 3; i++) {
  1257. ret = intel_dp_aux_native_read(intel_dp, address, recv,
  1258. recv_bytes);
  1259. if (ret == recv_bytes)
  1260. return true;
  1261. msleep(1);
  1262. }
  1263. return false;
  1264. }
  1265. /*
  1266. * Fetch AUX CH registers 0x202 - 0x207 which contain
  1267. * link status information
  1268. */
  1269. static bool
  1270. intel_dp_get_link_status(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
  1271. {
  1272. return intel_dp_aux_native_read_retry(intel_dp,
  1273. DP_LANE0_1_STATUS,
  1274. link_status,
  1275. DP_LINK_STATUS_SIZE);
  1276. }
  1277. #if 0
  1278. static char *voltage_names[] = {
  1279. "0.4V", "0.6V", "0.8V", "1.2V"
  1280. };
  1281. static char *pre_emph_names[] = {
  1282. "0dB", "3.5dB", "6dB", "9.5dB"
  1283. };
  1284. static char *link_train_names[] = {
  1285. "pattern 1", "pattern 2", "idle", "off"
  1286. };
  1287. #endif
  1288. /*
  1289. * These are source-specific values; current Intel hardware supports
  1290. * a maximum voltage of 800mV and a maximum pre-emphasis of 6dB
  1291. */
  1292. static uint8_t
  1293. intel_dp_voltage_max(struct intel_dp *intel_dp)
  1294. {
  1295. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  1296. if (IS_GEN7(dev) && is_cpu_edp(intel_dp))
  1297. return DP_TRAIN_VOLTAGE_SWING_800;
  1298. else if (HAS_PCH_CPT(dev) && !is_cpu_edp(intel_dp))
  1299. return DP_TRAIN_VOLTAGE_SWING_1200;
  1300. else
  1301. return DP_TRAIN_VOLTAGE_SWING_800;
  1302. }
  1303. static uint8_t
  1304. intel_dp_pre_emphasis_max(struct intel_dp *intel_dp, uint8_t voltage_swing)
  1305. {
  1306. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  1307. if (IS_HASWELL(dev)) {
  1308. switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
  1309. case DP_TRAIN_VOLTAGE_SWING_400:
  1310. return DP_TRAIN_PRE_EMPHASIS_9_5;
  1311. case DP_TRAIN_VOLTAGE_SWING_600:
  1312. return DP_TRAIN_PRE_EMPHASIS_6;
  1313. case DP_TRAIN_VOLTAGE_SWING_800:
  1314. return DP_TRAIN_PRE_EMPHASIS_3_5;
  1315. case DP_TRAIN_VOLTAGE_SWING_1200:
  1316. default:
  1317. return DP_TRAIN_PRE_EMPHASIS_0;
  1318. }
  1319. } else if (IS_GEN7(dev) && is_cpu_edp(intel_dp) && !IS_VALLEYVIEW(dev)) {
  1320. switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
  1321. case DP_TRAIN_VOLTAGE_SWING_400:
  1322. return DP_TRAIN_PRE_EMPHASIS_6;
  1323. case DP_TRAIN_VOLTAGE_SWING_600:
  1324. case DP_TRAIN_VOLTAGE_SWING_800:
  1325. return DP_TRAIN_PRE_EMPHASIS_3_5;
  1326. default:
  1327. return DP_TRAIN_PRE_EMPHASIS_0;
  1328. }
  1329. } else {
  1330. switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
  1331. case DP_TRAIN_VOLTAGE_SWING_400:
  1332. return DP_TRAIN_PRE_EMPHASIS_6;
  1333. case DP_TRAIN_VOLTAGE_SWING_600:
  1334. return DP_TRAIN_PRE_EMPHASIS_6;
  1335. case DP_TRAIN_VOLTAGE_SWING_800:
  1336. return DP_TRAIN_PRE_EMPHASIS_3_5;
  1337. case DP_TRAIN_VOLTAGE_SWING_1200:
  1338. default:
  1339. return DP_TRAIN_PRE_EMPHASIS_0;
  1340. }
  1341. }
  1342. }
  1343. static void
  1344. intel_get_adjust_train(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
  1345. {
  1346. uint8_t v = 0;
  1347. uint8_t p = 0;
  1348. int lane;
  1349. uint8_t voltage_max;
  1350. uint8_t preemph_max;
  1351. for (lane = 0; lane < intel_dp->lane_count; lane++) {
  1352. uint8_t this_v = drm_dp_get_adjust_request_voltage(link_status, lane);
  1353. uint8_t this_p = drm_dp_get_adjust_request_pre_emphasis(link_status, lane);
  1354. if (this_v > v)
  1355. v = this_v;
  1356. if (this_p > p)
  1357. p = this_p;
  1358. }
  1359. voltage_max = intel_dp_voltage_max(intel_dp);
  1360. if (v >= voltage_max)
  1361. v = voltage_max | DP_TRAIN_MAX_SWING_REACHED;
  1362. preemph_max = intel_dp_pre_emphasis_max(intel_dp, v);
  1363. if (p >= preemph_max)
  1364. p = preemph_max | DP_TRAIN_MAX_PRE_EMPHASIS_REACHED;
  1365. for (lane = 0; lane < 4; lane++)
  1366. intel_dp->train_set[lane] = v | p;
  1367. }
  1368. static uint32_t
  1369. intel_dp_signal_levels(uint8_t train_set)
  1370. {
  1371. uint32_t signal_levels = 0;
  1372. switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
  1373. case DP_TRAIN_VOLTAGE_SWING_400:
  1374. default:
  1375. signal_levels |= DP_VOLTAGE_0_4;
  1376. break;
  1377. case DP_TRAIN_VOLTAGE_SWING_600:
  1378. signal_levels |= DP_VOLTAGE_0_6;
  1379. break;
  1380. case DP_TRAIN_VOLTAGE_SWING_800:
  1381. signal_levels |= DP_VOLTAGE_0_8;
  1382. break;
  1383. case DP_TRAIN_VOLTAGE_SWING_1200:
  1384. signal_levels |= DP_VOLTAGE_1_2;
  1385. break;
  1386. }
  1387. switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
  1388. case DP_TRAIN_PRE_EMPHASIS_0:
  1389. default:
  1390. signal_levels |= DP_PRE_EMPHASIS_0;
  1391. break;
  1392. case DP_TRAIN_PRE_EMPHASIS_3_5:
  1393. signal_levels |= DP_PRE_EMPHASIS_3_5;
  1394. break;
  1395. case DP_TRAIN_PRE_EMPHASIS_6:
  1396. signal_levels |= DP_PRE_EMPHASIS_6;
  1397. break;
  1398. case DP_TRAIN_PRE_EMPHASIS_9_5:
  1399. signal_levels |= DP_PRE_EMPHASIS_9_5;
  1400. break;
  1401. }
  1402. return signal_levels;
  1403. }
  1404. /* Gen6's DP voltage swing and pre-emphasis control */
  1405. static uint32_t
  1406. intel_gen6_edp_signal_levels(uint8_t train_set)
  1407. {
  1408. int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
  1409. DP_TRAIN_PRE_EMPHASIS_MASK);
  1410. switch (signal_levels) {
  1411. case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
  1412. case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
  1413. return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
  1414. case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
  1415. return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B;
  1416. case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
  1417. case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_6:
  1418. return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B;
  1419. case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
  1420. case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
  1421. return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B;
  1422. case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
  1423. case DP_TRAIN_VOLTAGE_SWING_1200 | DP_TRAIN_PRE_EMPHASIS_0:
  1424. return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B;
  1425. default:
  1426. DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
  1427. "0x%x\n", signal_levels);
  1428. return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
  1429. }
  1430. }
  1431. /* Gen7's DP voltage swing and pre-emphasis control */
  1432. static uint32_t
  1433. intel_gen7_edp_signal_levels(uint8_t train_set)
  1434. {
  1435. int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
  1436. DP_TRAIN_PRE_EMPHASIS_MASK);
  1437. switch (signal_levels) {
  1438. case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
  1439. return EDP_LINK_TRAIN_400MV_0DB_IVB;
  1440. case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
  1441. return EDP_LINK_TRAIN_400MV_3_5DB_IVB;
  1442. case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
  1443. return EDP_LINK_TRAIN_400MV_6DB_IVB;
  1444. case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
  1445. return EDP_LINK_TRAIN_600MV_0DB_IVB;
  1446. case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
  1447. return EDP_LINK_TRAIN_600MV_3_5DB_IVB;
  1448. case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
  1449. return EDP_LINK_TRAIN_800MV_0DB_IVB;
  1450. case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
  1451. return EDP_LINK_TRAIN_800MV_3_5DB_IVB;
  1452. default:
  1453. DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
  1454. "0x%x\n", signal_levels);
  1455. return EDP_LINK_TRAIN_500MV_0DB_IVB;
  1456. }
  1457. }
  1458. /* Gen7.5's (HSW) DP voltage swing and pre-emphasis control */
  1459. static uint32_t
  1460. intel_dp_signal_levels_hsw(uint8_t train_set)
  1461. {
  1462. int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
  1463. DP_TRAIN_PRE_EMPHASIS_MASK);
  1464. switch (signal_levels) {
  1465. case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
  1466. return DDI_BUF_EMP_400MV_0DB_HSW;
  1467. case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
  1468. return DDI_BUF_EMP_400MV_3_5DB_HSW;
  1469. case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
  1470. return DDI_BUF_EMP_400MV_6DB_HSW;
  1471. case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_9_5:
  1472. return DDI_BUF_EMP_400MV_9_5DB_HSW;
  1473. case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
  1474. return DDI_BUF_EMP_600MV_0DB_HSW;
  1475. case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
  1476. return DDI_BUF_EMP_600MV_3_5DB_HSW;
  1477. case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_6:
  1478. return DDI_BUF_EMP_600MV_6DB_HSW;
  1479. case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
  1480. return DDI_BUF_EMP_800MV_0DB_HSW;
  1481. case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
  1482. return DDI_BUF_EMP_800MV_3_5DB_HSW;
  1483. default:
  1484. DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
  1485. "0x%x\n", signal_levels);
  1486. return DDI_BUF_EMP_400MV_0DB_HSW;
  1487. }
  1488. }
  1489. static bool
  1490. intel_dp_set_link_train(struct intel_dp *intel_dp,
  1491. uint32_t dp_reg_value,
  1492. uint8_t dp_train_pat)
  1493. {
  1494. struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
  1495. struct drm_device *dev = intel_dig_port->base.base.dev;
  1496. struct drm_i915_private *dev_priv = dev->dev_private;
  1497. enum port port = intel_dig_port->port;
  1498. int ret;
  1499. uint32_t temp;
  1500. if (IS_HASWELL(dev)) {
  1501. temp = I915_READ(DP_TP_CTL(port));
  1502. if (dp_train_pat & DP_LINK_SCRAMBLING_DISABLE)
  1503. temp |= DP_TP_CTL_SCRAMBLE_DISABLE;
  1504. else
  1505. temp &= ~DP_TP_CTL_SCRAMBLE_DISABLE;
  1506. temp &= ~DP_TP_CTL_LINK_TRAIN_MASK;
  1507. switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
  1508. case DP_TRAINING_PATTERN_DISABLE:
  1509. temp |= DP_TP_CTL_LINK_TRAIN_IDLE;
  1510. I915_WRITE(DP_TP_CTL(port), temp);
  1511. if (wait_for((I915_READ(DP_TP_STATUS(port)) &
  1512. DP_TP_STATUS_IDLE_DONE), 1))
  1513. DRM_ERROR("Timed out waiting for DP idle patterns\n");
  1514. temp &= ~DP_TP_CTL_LINK_TRAIN_MASK;
  1515. temp |= DP_TP_CTL_LINK_TRAIN_NORMAL;
  1516. break;
  1517. case DP_TRAINING_PATTERN_1:
  1518. temp |= DP_TP_CTL_LINK_TRAIN_PAT1;
  1519. break;
  1520. case DP_TRAINING_PATTERN_2:
  1521. temp |= DP_TP_CTL_LINK_TRAIN_PAT2;
  1522. break;
  1523. case DP_TRAINING_PATTERN_3:
  1524. temp |= DP_TP_CTL_LINK_TRAIN_PAT3;
  1525. break;
  1526. }
  1527. I915_WRITE(DP_TP_CTL(port), temp);
  1528. } else if (HAS_PCH_CPT(dev) &&
  1529. (IS_GEN7(dev) || !is_cpu_edp(intel_dp))) {
  1530. dp_reg_value &= ~DP_LINK_TRAIN_MASK_CPT;
  1531. switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
  1532. case DP_TRAINING_PATTERN_DISABLE:
  1533. dp_reg_value |= DP_LINK_TRAIN_OFF_CPT;
  1534. break;
  1535. case DP_TRAINING_PATTERN_1:
  1536. dp_reg_value |= DP_LINK_TRAIN_PAT_1_CPT;
  1537. break;
  1538. case DP_TRAINING_PATTERN_2:
  1539. dp_reg_value |= DP_LINK_TRAIN_PAT_2_CPT;
  1540. break;
  1541. case DP_TRAINING_PATTERN_3:
  1542. DRM_ERROR("DP training pattern 3 not supported\n");
  1543. dp_reg_value |= DP_LINK_TRAIN_PAT_2_CPT;
  1544. break;
  1545. }
  1546. } else {
  1547. dp_reg_value &= ~DP_LINK_TRAIN_MASK;
  1548. switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
  1549. case DP_TRAINING_PATTERN_DISABLE:
  1550. dp_reg_value |= DP_LINK_TRAIN_OFF;
  1551. break;
  1552. case DP_TRAINING_PATTERN_1:
  1553. dp_reg_value |= DP_LINK_TRAIN_PAT_1;
  1554. break;
  1555. case DP_TRAINING_PATTERN_2:
  1556. dp_reg_value |= DP_LINK_TRAIN_PAT_2;
  1557. break;
  1558. case DP_TRAINING_PATTERN_3:
  1559. DRM_ERROR("DP training pattern 3 not supported\n");
  1560. dp_reg_value |= DP_LINK_TRAIN_PAT_2;
  1561. break;
  1562. }
  1563. }
  1564. I915_WRITE(intel_dp->output_reg, dp_reg_value);
  1565. POSTING_READ(intel_dp->output_reg);
  1566. intel_dp_aux_native_write_1(intel_dp,
  1567. DP_TRAINING_PATTERN_SET,
  1568. dp_train_pat);
  1569. if ((dp_train_pat & DP_TRAINING_PATTERN_MASK) !=
  1570. DP_TRAINING_PATTERN_DISABLE) {
  1571. ret = intel_dp_aux_native_write(intel_dp,
  1572. DP_TRAINING_LANE0_SET,
  1573. intel_dp->train_set,
  1574. intel_dp->lane_count);
  1575. if (ret != intel_dp->lane_count)
  1576. return false;
  1577. }
  1578. return true;
  1579. }
  1580. /* Enable corresponding port and start training pattern 1 */
  1581. void
  1582. intel_dp_start_link_train(struct intel_dp *intel_dp)
  1583. {
  1584. struct drm_encoder *encoder = &dp_to_dig_port(intel_dp)->base.base;
  1585. struct drm_device *dev = encoder->dev;
  1586. int i;
  1587. uint8_t voltage;
  1588. bool clock_recovery = false;
  1589. int voltage_tries, loop_tries;
  1590. uint32_t DP = intel_dp->DP;
  1591. if (HAS_DDI(dev))
  1592. intel_ddi_prepare_link_retrain(encoder);
  1593. /* Write the link configuration data */
  1594. intel_dp_aux_native_write(intel_dp, DP_LINK_BW_SET,
  1595. intel_dp->link_configuration,
  1596. DP_LINK_CONFIGURATION_SIZE);
  1597. DP |= DP_PORT_EN;
  1598. memset(intel_dp->train_set, 0, 4);
  1599. voltage = 0xff;
  1600. voltage_tries = 0;
  1601. loop_tries = 0;
  1602. clock_recovery = false;
  1603. for (;;) {
  1604. /* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */
  1605. uint8_t link_status[DP_LINK_STATUS_SIZE];
  1606. uint32_t signal_levels;
  1607. if (IS_HASWELL(dev)) {
  1608. signal_levels = intel_dp_signal_levels_hsw(
  1609. intel_dp->train_set[0]);
  1610. DP = (DP & ~DDI_BUF_EMP_MASK) | signal_levels;
  1611. } else if (IS_GEN7(dev) && is_cpu_edp(intel_dp) && !IS_VALLEYVIEW(dev)) {
  1612. signal_levels = intel_gen7_edp_signal_levels(intel_dp->train_set[0]);
  1613. DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_IVB) | signal_levels;
  1614. } else if (IS_GEN6(dev) && is_cpu_edp(intel_dp)) {
  1615. signal_levels = intel_gen6_edp_signal_levels(intel_dp->train_set[0]);
  1616. DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_SNB) | signal_levels;
  1617. } else {
  1618. signal_levels = intel_dp_signal_levels(intel_dp->train_set[0]);
  1619. DP = (DP & ~(DP_VOLTAGE_MASK|DP_PRE_EMPHASIS_MASK)) | signal_levels;
  1620. }
  1621. DRM_DEBUG_KMS("training pattern 1 signal levels %08x\n",
  1622. signal_levels);
  1623. /* Set training pattern 1 */
  1624. if (!intel_dp_set_link_train(intel_dp, DP,
  1625. DP_TRAINING_PATTERN_1 |
  1626. DP_LINK_SCRAMBLING_DISABLE))
  1627. break;
  1628. drm_dp_link_train_clock_recovery_delay(intel_dp->dpcd);
  1629. if (!intel_dp_get_link_status(intel_dp, link_status)) {
  1630. DRM_ERROR("failed to get link status\n");
  1631. break;
  1632. }
  1633. if (drm_dp_clock_recovery_ok(link_status, intel_dp->lane_count)) {
  1634. DRM_DEBUG_KMS("clock recovery OK\n");
  1635. clock_recovery = true;
  1636. break;
  1637. }
  1638. /* Check to see if we've tried the max voltage */
  1639. for (i = 0; i < intel_dp->lane_count; i++)
  1640. if ((intel_dp->train_set[i] & DP_TRAIN_MAX_SWING_REACHED) == 0)
  1641. break;
  1642. if (i == intel_dp->lane_count && voltage_tries == 5) {
  1643. ++loop_tries;
  1644. if (loop_tries == 5) {
  1645. DRM_DEBUG_KMS("too many full retries, give up\n");
  1646. break;
  1647. }
  1648. memset(intel_dp->train_set, 0, 4);
  1649. voltage_tries = 0;
  1650. continue;
  1651. }
  1652. /* Check to see if we've tried the same voltage 5 times */
  1653. if ((intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK) == voltage) {
  1654. ++voltage_tries;
  1655. if (voltage_tries == 5) {
  1656. DRM_DEBUG_KMS("too many voltage retries, give up\n");
  1657. break;
  1658. }
  1659. } else
  1660. voltage_tries = 0;
  1661. voltage = intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK;
  1662. /* Compute new intel_dp->train_set as requested by target */
  1663. intel_get_adjust_train(intel_dp, link_status);
  1664. }
  1665. intel_dp->DP = DP;
  1666. }
  1667. void
  1668. intel_dp_complete_link_train(struct intel_dp *intel_dp)
  1669. {
  1670. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  1671. bool channel_eq = false;
  1672. int tries, cr_tries;
  1673. uint32_t DP = intel_dp->DP;
  1674. /* channel equalization */
  1675. tries = 0;
  1676. cr_tries = 0;
  1677. channel_eq = false;
  1678. for (;;) {
  1679. /* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */
  1680. uint32_t signal_levels;
  1681. uint8_t link_status[DP_LINK_STATUS_SIZE];
  1682. if (cr_tries > 5) {
  1683. DRM_ERROR("failed to train DP, aborting\n");
  1684. intel_dp_link_down(intel_dp);
  1685. break;
  1686. }
  1687. if (IS_HASWELL(dev)) {
  1688. signal_levels = intel_dp_signal_levels_hsw(intel_dp->train_set[0]);
  1689. DP = (DP & ~DDI_BUF_EMP_MASK) | signal_levels;
  1690. } else if (IS_GEN7(dev) && is_cpu_edp(intel_dp) && !IS_VALLEYVIEW(dev)) {
  1691. signal_levels = intel_gen7_edp_signal_levels(intel_dp->train_set[0]);
  1692. DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_IVB) | signal_levels;
  1693. } else if (IS_GEN6(dev) && is_cpu_edp(intel_dp)) {
  1694. signal_levels = intel_gen6_edp_signal_levels(intel_dp->train_set[0]);
  1695. DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_SNB) | signal_levels;
  1696. } else {
  1697. signal_levels = intel_dp_signal_levels(intel_dp->train_set[0]);
  1698. DP = (DP & ~(DP_VOLTAGE_MASK|DP_PRE_EMPHASIS_MASK)) | signal_levels;
  1699. }
  1700. /* channel eq pattern */
  1701. if (!intel_dp_set_link_train(intel_dp, DP,
  1702. DP_TRAINING_PATTERN_2 |
  1703. DP_LINK_SCRAMBLING_DISABLE))
  1704. break;
  1705. drm_dp_link_train_channel_eq_delay(intel_dp->dpcd);
  1706. if (!intel_dp_get_link_status(intel_dp, link_status))
  1707. break;
  1708. /* Make sure clock is still ok */
  1709. if (!drm_dp_clock_recovery_ok(link_status, intel_dp->lane_count)) {
  1710. intel_dp_start_link_train(intel_dp);
  1711. cr_tries++;
  1712. continue;
  1713. }
  1714. if (drm_dp_channel_eq_ok(link_status, intel_dp->lane_count)) {
  1715. channel_eq = true;
  1716. break;
  1717. }
  1718. /* Try 5 times, then try clock recovery if that fails */
  1719. if (tries > 5) {
  1720. intel_dp_link_down(intel_dp);
  1721. intel_dp_start_link_train(intel_dp);
  1722. tries = 0;
  1723. cr_tries++;
  1724. continue;
  1725. }
  1726. /* Compute new intel_dp->train_set as requested by target */
  1727. intel_get_adjust_train(intel_dp, link_status);
  1728. ++tries;
  1729. }
  1730. if (channel_eq)
  1731. DRM_DEBUG_KMS("Channel EQ done. DP Training successfull\n");
  1732. intel_dp_set_link_train(intel_dp, DP, DP_TRAINING_PATTERN_DISABLE);
  1733. }
  1734. static void
  1735. intel_dp_link_down(struct intel_dp *intel_dp)
  1736. {
  1737. struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
  1738. struct drm_device *dev = intel_dig_port->base.base.dev;
  1739. struct drm_i915_private *dev_priv = dev->dev_private;
  1740. uint32_t DP = intel_dp->DP;
  1741. /*
  1742. * DDI code has a strict mode set sequence and we should try to respect
  1743. * it, otherwise we might hang the machine in many different ways. So we
  1744. * really should be disabling the port only on a complete crtc_disable
  1745. * sequence. This function is just called under two conditions on DDI
  1746. * code:
  1747. * - Link train failed while doing crtc_enable, and on this case we
  1748. * really should respect the mode set sequence and wait for a
  1749. * crtc_disable.
  1750. * - Someone turned the monitor off and intel_dp_check_link_status
  1751. * called us. We don't need to disable the whole port on this case, so
  1752. * when someone turns the monitor on again,
  1753. * intel_ddi_prepare_link_retrain will take care of redoing the link
  1754. * train.
  1755. */
  1756. if (HAS_DDI(dev))
  1757. return;
  1758. if (WARN_ON((I915_READ(intel_dp->output_reg) & DP_PORT_EN) == 0))
  1759. return;
  1760. DRM_DEBUG_KMS("\n");
  1761. if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || !is_cpu_edp(intel_dp))) {
  1762. DP &= ~DP_LINK_TRAIN_MASK_CPT;
  1763. I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE_CPT);
  1764. } else {
  1765. DP &= ~DP_LINK_TRAIN_MASK;
  1766. I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE);
  1767. }
  1768. POSTING_READ(intel_dp->output_reg);
  1769. msleep(17);
  1770. if (HAS_PCH_IBX(dev) &&
  1771. I915_READ(intel_dp->output_reg) & DP_PIPEB_SELECT) {
  1772. struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
  1773. /* Hardware workaround: leaving our transcoder select
  1774. * set to transcoder B while it's off will prevent the
  1775. * corresponding HDMI output on transcoder A.
  1776. *
  1777. * Combine this with another hardware workaround:
  1778. * transcoder select bit can only be cleared while the
  1779. * port is enabled.
  1780. */
  1781. DP &= ~DP_PIPEB_SELECT;
  1782. I915_WRITE(intel_dp->output_reg, DP);
  1783. /* Changes to enable or select take place the vblank
  1784. * after being written.
  1785. */
  1786. if (crtc == NULL) {
  1787. /* We can arrive here never having been attached
  1788. * to a CRTC, for instance, due to inheriting
  1789. * random state from the BIOS.
  1790. *
  1791. * If the pipe is not running, play safe and
  1792. * wait for the clocks to stabilise before
  1793. * continuing.
  1794. */
  1795. POSTING_READ(intel_dp->output_reg);
  1796. msleep(50);
  1797. } else
  1798. intel_wait_for_vblank(dev, to_intel_crtc(crtc)->pipe);
  1799. }
  1800. DP &= ~DP_AUDIO_OUTPUT_ENABLE;
  1801. I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
  1802. POSTING_READ(intel_dp->output_reg);
  1803. msleep(intel_dp->panel_power_down_delay);
  1804. }
  1805. static bool
  1806. intel_dp_get_dpcd(struct intel_dp *intel_dp)
  1807. {
  1808. if (intel_dp_aux_native_read_retry(intel_dp, 0x000, intel_dp->dpcd,
  1809. sizeof(intel_dp->dpcd)) == 0)
  1810. return false; /* aux transfer failed */
  1811. if (intel_dp->dpcd[DP_DPCD_REV] == 0)
  1812. return false; /* DPCD not present */
  1813. if (!(intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
  1814. DP_DWN_STRM_PORT_PRESENT))
  1815. return true; /* native DP sink */
  1816. if (intel_dp->dpcd[DP_DPCD_REV] == 0x10)
  1817. return true; /* no per-port downstream info */
  1818. if (intel_dp_aux_native_read_retry(intel_dp, DP_DOWNSTREAM_PORT_0,
  1819. intel_dp->downstream_ports,
  1820. DP_MAX_DOWNSTREAM_PORTS) == 0)
  1821. return false; /* downstream port status fetch failed */
  1822. return true;
  1823. }
  1824. static void
  1825. intel_dp_probe_oui(struct intel_dp *intel_dp)
  1826. {
  1827. u8 buf[3];
  1828. if (!(intel_dp->dpcd[DP_DOWN_STREAM_PORT_COUNT] & DP_OUI_SUPPORT))
  1829. return;
  1830. ironlake_edp_panel_vdd_on(intel_dp);
  1831. if (intel_dp_aux_native_read_retry(intel_dp, DP_SINK_OUI, buf, 3))
  1832. DRM_DEBUG_KMS("Sink OUI: %02hx%02hx%02hx\n",
  1833. buf[0], buf[1], buf[2]);
  1834. if (intel_dp_aux_native_read_retry(intel_dp, DP_BRANCH_OUI, buf, 3))
  1835. DRM_DEBUG_KMS("Branch OUI: %02hx%02hx%02hx\n",
  1836. buf[0], buf[1], buf[2]);
  1837. ironlake_edp_panel_vdd_off(intel_dp, false);
  1838. }
  1839. static bool
  1840. intel_dp_get_sink_irq(struct intel_dp *intel_dp, u8 *sink_irq_vector)
  1841. {
  1842. int ret;
  1843. ret = intel_dp_aux_native_read_retry(intel_dp,
  1844. DP_DEVICE_SERVICE_IRQ_VECTOR,
  1845. sink_irq_vector, 1);
  1846. if (!ret)
  1847. return false;
  1848. return true;
  1849. }
  1850. static void
  1851. intel_dp_handle_test_request(struct intel_dp *intel_dp)
  1852. {
  1853. /* NAK by default */
  1854. intel_dp_aux_native_write_1(intel_dp, DP_TEST_RESPONSE, DP_TEST_NAK);
  1855. }
  1856. /*
  1857. * According to DP spec
  1858. * 5.1.2:
  1859. * 1. Read DPCD
  1860. * 2. Configure link according to Receiver Capabilities
  1861. * 3. Use Link Training from 2.5.3.3 and 3.5.1.3
  1862. * 4. Check link status on receipt of hot-plug interrupt
  1863. */
  1864. void
  1865. intel_dp_check_link_status(struct intel_dp *intel_dp)
  1866. {
  1867. struct intel_encoder *intel_encoder = &dp_to_dig_port(intel_dp)->base;
  1868. u8 sink_irq_vector;
  1869. u8 link_status[DP_LINK_STATUS_SIZE];
  1870. if (!intel_encoder->connectors_active)
  1871. return;
  1872. if (WARN_ON(!intel_encoder->base.crtc))
  1873. return;
  1874. /* Try to read receiver status if the link appears to be up */
  1875. if (!intel_dp_get_link_status(intel_dp, link_status)) {
  1876. intel_dp_link_down(intel_dp);
  1877. return;
  1878. }
  1879. /* Now read the DPCD to see if it's actually running */
  1880. if (!intel_dp_get_dpcd(intel_dp)) {
  1881. intel_dp_link_down(intel_dp);
  1882. return;
  1883. }
  1884. /* Try to read the source of the interrupt */
  1885. if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
  1886. intel_dp_get_sink_irq(intel_dp, &sink_irq_vector)) {
  1887. /* Clear interrupt source */
  1888. intel_dp_aux_native_write_1(intel_dp,
  1889. DP_DEVICE_SERVICE_IRQ_VECTOR,
  1890. sink_irq_vector);
  1891. if (sink_irq_vector & DP_AUTOMATED_TEST_REQUEST)
  1892. intel_dp_handle_test_request(intel_dp);
  1893. if (sink_irq_vector & (DP_CP_IRQ | DP_SINK_SPECIFIC_IRQ))
  1894. DRM_DEBUG_DRIVER("CP or sink specific irq unhandled\n");
  1895. }
  1896. if (!drm_dp_channel_eq_ok(link_status, intel_dp->lane_count)) {
  1897. DRM_DEBUG_KMS("%s: channel EQ not ok, retraining\n",
  1898. drm_get_encoder_name(&intel_encoder->base));
  1899. intel_dp_start_link_train(intel_dp);
  1900. intel_dp_complete_link_train(intel_dp);
  1901. }
  1902. }
  1903. /* XXX this is probably wrong for multiple downstream ports */
  1904. static enum drm_connector_status
  1905. intel_dp_detect_dpcd(struct intel_dp *intel_dp)
  1906. {
  1907. uint8_t *dpcd = intel_dp->dpcd;
  1908. bool hpd;
  1909. uint8_t type;
  1910. if (!intel_dp_get_dpcd(intel_dp))
  1911. return connector_status_disconnected;
  1912. /* if there's no downstream port, we're done */
  1913. if (!(dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_PRESENT))
  1914. return connector_status_connected;
  1915. /* If we're HPD-aware, SINK_COUNT changes dynamically */
  1916. hpd = !!(intel_dp->downstream_ports[0] & DP_DS_PORT_HPD);
  1917. if (hpd) {
  1918. uint8_t reg;
  1919. if (!intel_dp_aux_native_read_retry(intel_dp, DP_SINK_COUNT,
  1920. &reg, 1))
  1921. return connector_status_unknown;
  1922. return DP_GET_SINK_COUNT(reg) ? connector_status_connected
  1923. : connector_status_disconnected;
  1924. }
  1925. /* If no HPD, poke DDC gently */
  1926. if (drm_probe_ddc(&intel_dp->adapter))
  1927. return connector_status_connected;
  1928. /* Well we tried, say unknown for unreliable port types */
  1929. type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;
  1930. if (type == DP_DS_PORT_TYPE_VGA || type == DP_DS_PORT_TYPE_NON_EDID)
  1931. return connector_status_unknown;
  1932. /* Anything else is out of spec, warn and ignore */
  1933. DRM_DEBUG_KMS("Broken DP branch device, ignoring\n");
  1934. return connector_status_disconnected;
  1935. }
  1936. static enum drm_connector_status
  1937. ironlake_dp_detect(struct intel_dp *intel_dp)
  1938. {
  1939. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  1940. enum drm_connector_status status;
  1941. /* Can't disconnect eDP, but you can close the lid... */
  1942. if (is_edp(intel_dp)) {
  1943. status = intel_panel_detect(dev);
  1944. if (status == connector_status_unknown)
  1945. status = connector_status_connected;
  1946. return status;
  1947. }
  1948. return intel_dp_detect_dpcd(intel_dp);
  1949. }
  1950. static enum drm_connector_status
  1951. g4x_dp_detect(struct intel_dp *intel_dp)
  1952. {
  1953. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  1954. struct drm_i915_private *dev_priv = dev->dev_private;
  1955. uint32_t bit;
  1956. switch (intel_dp->output_reg) {
  1957. case DP_B:
  1958. bit = DPB_HOTPLUG_LIVE_STATUS;
  1959. break;
  1960. case DP_C:
  1961. bit = DPC_HOTPLUG_LIVE_STATUS;
  1962. break;
  1963. case DP_D:
  1964. bit = DPD_HOTPLUG_LIVE_STATUS;
  1965. break;
  1966. default:
  1967. return connector_status_unknown;
  1968. }
  1969. if ((I915_READ(PORT_HOTPLUG_STAT) & bit) == 0)
  1970. return connector_status_disconnected;
  1971. return intel_dp_detect_dpcd(intel_dp);
  1972. }
  1973. static struct edid *
  1974. intel_dp_get_edid(struct drm_connector *connector, struct i2c_adapter *adapter)
  1975. {
  1976. struct intel_connector *intel_connector = to_intel_connector(connector);
  1977. /* use cached edid if we have one */
  1978. if (intel_connector->edid) {
  1979. struct edid *edid;
  1980. int size;
  1981. /* invalid edid */
  1982. if (IS_ERR(intel_connector->edid))
  1983. return NULL;
  1984. size = (intel_connector->edid->extensions + 1) * EDID_LENGTH;
  1985. edid = kmalloc(size, GFP_KERNEL);
  1986. if (!edid)
  1987. return NULL;
  1988. memcpy(edid, intel_connector->edid, size);
  1989. return edid;
  1990. }
  1991. return drm_get_edid(connector, adapter);
  1992. }
  1993. static int
  1994. intel_dp_get_edid_modes(struct drm_connector *connector, struct i2c_adapter *adapter)
  1995. {
  1996. struct intel_connector *intel_connector = to_intel_connector(connector);
  1997. /* use cached edid if we have one */
  1998. if (intel_connector->edid) {
  1999. /* invalid edid */
  2000. if (IS_ERR(intel_connector->edid))
  2001. return 0;
  2002. return intel_connector_update_modes(connector,
  2003. intel_connector->edid);
  2004. }
  2005. return intel_ddc_get_modes(connector, adapter);
  2006. }
  2007. /**
  2008. * Uses CRT_HOTPLUG_EN and CRT_HOTPLUG_STAT to detect DP connection.
  2009. *
  2010. * \return true if DP port is connected.
  2011. * \return false if DP port is disconnected.
  2012. */
  2013. static enum drm_connector_status
  2014. intel_dp_detect(struct drm_connector *connector, bool force)
  2015. {
  2016. struct intel_dp *intel_dp = intel_attached_dp(connector);
  2017. struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
  2018. struct intel_encoder *intel_encoder = &intel_dig_port->base;
  2019. struct drm_device *dev = connector->dev;
  2020. enum drm_connector_status status;
  2021. struct edid *edid = NULL;
  2022. char dpcd_hex_dump[sizeof(intel_dp->dpcd) * 3];
  2023. intel_dp->has_audio = false;
  2024. if (HAS_PCH_SPLIT(dev))
  2025. status = ironlake_dp_detect(intel_dp);
  2026. else
  2027. status = g4x_dp_detect(intel_dp);
  2028. hex_dump_to_buffer(intel_dp->dpcd, sizeof(intel_dp->dpcd),
  2029. 32, 1, dpcd_hex_dump, sizeof(dpcd_hex_dump), false);
  2030. DRM_DEBUG_KMS("DPCD: %s\n", dpcd_hex_dump);
  2031. if (status != connector_status_connected)
  2032. return status;
  2033. intel_dp_probe_oui(intel_dp);
  2034. if (intel_dp->force_audio != HDMI_AUDIO_AUTO) {
  2035. intel_dp->has_audio = (intel_dp->force_audio == HDMI_AUDIO_ON);
  2036. } else {
  2037. edid = intel_dp_get_edid(connector, &intel_dp->adapter);
  2038. if (edid) {
  2039. intel_dp->has_audio = drm_detect_monitor_audio(edid);
  2040. kfree(edid);
  2041. }
  2042. }
  2043. if (intel_encoder->type != INTEL_OUTPUT_EDP)
  2044. intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
  2045. return connector_status_connected;
  2046. }
  2047. static int intel_dp_get_modes(struct drm_connector *connector)
  2048. {
  2049. struct intel_dp *intel_dp = intel_attached_dp(connector);
  2050. struct intel_connector *intel_connector = to_intel_connector(connector);
  2051. struct drm_device *dev = connector->dev;
  2052. int ret;
  2053. /* We should parse the EDID data and find out if it has an audio sink
  2054. */
  2055. ret = intel_dp_get_edid_modes(connector, &intel_dp->adapter);
  2056. if (ret)
  2057. return ret;
  2058. /* if eDP has no EDID, fall back to fixed mode */
  2059. if (is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
  2060. struct drm_display_mode *mode;
  2061. mode = drm_mode_duplicate(dev,
  2062. intel_connector->panel.fixed_mode);
  2063. if (mode) {
  2064. drm_mode_probed_add(connector, mode);
  2065. return 1;
  2066. }
  2067. }
  2068. return 0;
  2069. }
  2070. static bool
  2071. intel_dp_detect_audio(struct drm_connector *connector)
  2072. {
  2073. struct intel_dp *intel_dp = intel_attached_dp(connector);
  2074. struct edid *edid;
  2075. bool has_audio = false;
  2076. edid = intel_dp_get_edid(connector, &intel_dp->adapter);
  2077. if (edid) {
  2078. has_audio = drm_detect_monitor_audio(edid);
  2079. kfree(edid);
  2080. }
  2081. return has_audio;
  2082. }
  2083. static int
  2084. intel_dp_set_property(struct drm_connector *connector,
  2085. struct drm_property *property,
  2086. uint64_t val)
  2087. {
  2088. struct drm_i915_private *dev_priv = connector->dev->dev_private;
  2089. struct intel_connector *intel_connector = to_intel_connector(connector);
  2090. struct intel_encoder *intel_encoder = intel_attached_encoder(connector);
  2091. struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
  2092. int ret;
  2093. ret = drm_object_property_set_value(&connector->base, property, val);
  2094. if (ret)
  2095. return ret;
  2096. if (property == dev_priv->force_audio_property) {
  2097. int i = val;
  2098. bool has_audio;
  2099. if (i == intel_dp->force_audio)
  2100. return 0;
  2101. intel_dp->force_audio = i;
  2102. if (i == HDMI_AUDIO_AUTO)
  2103. has_audio = intel_dp_detect_audio(connector);
  2104. else
  2105. has_audio = (i == HDMI_AUDIO_ON);
  2106. if (has_audio == intel_dp->has_audio)
  2107. return 0;
  2108. intel_dp->has_audio = has_audio;
  2109. goto done;
  2110. }
  2111. if (property == dev_priv->broadcast_rgb_property) {
  2112. if (val == !!intel_dp->color_range)
  2113. return 0;
  2114. intel_dp->color_range = val ? DP_COLOR_RANGE_16_235 : 0;
  2115. goto done;
  2116. }
  2117. if (is_edp(intel_dp) &&
  2118. property == connector->dev->mode_config.scaling_mode_property) {
  2119. if (val == DRM_MODE_SCALE_NONE) {
  2120. DRM_DEBUG_KMS("no scaling not supported\n");
  2121. return -EINVAL;
  2122. }
  2123. if (intel_connector->panel.fitting_mode == val) {
  2124. /* the eDP scaling property is not changed */
  2125. return 0;
  2126. }
  2127. intel_connector->panel.fitting_mode = val;
  2128. goto done;
  2129. }
  2130. return -EINVAL;
  2131. done:
  2132. if (intel_encoder->base.crtc) {
  2133. struct drm_crtc *crtc = intel_encoder->base.crtc;
  2134. intel_set_mode(crtc, &crtc->mode,
  2135. crtc->x, crtc->y, crtc->fb);
  2136. }
  2137. return 0;
  2138. }
  2139. static void
  2140. intel_dp_destroy(struct drm_connector *connector)
  2141. {
  2142. struct drm_device *dev = connector->dev;
  2143. struct intel_dp *intel_dp = intel_attached_dp(connector);
  2144. struct intel_connector *intel_connector = to_intel_connector(connector);
  2145. if (!IS_ERR_OR_NULL(intel_connector->edid))
  2146. kfree(intel_connector->edid);
  2147. if (is_edp(intel_dp)) {
  2148. intel_panel_destroy_backlight(dev);
  2149. intel_panel_fini(&intel_connector->panel);
  2150. }
  2151. drm_sysfs_connector_remove(connector);
  2152. drm_connector_cleanup(connector);
  2153. kfree(connector);
  2154. }
  2155. void intel_dp_encoder_destroy(struct drm_encoder *encoder)
  2156. {
  2157. struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
  2158. struct intel_dp *intel_dp = &intel_dig_port->dp;
  2159. i2c_del_adapter(&intel_dp->adapter);
  2160. drm_encoder_cleanup(encoder);
  2161. if (is_edp(intel_dp)) {
  2162. cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
  2163. ironlake_panel_vdd_off_sync(intel_dp);
  2164. }
  2165. kfree(intel_dig_port);
  2166. }
  2167. static const struct drm_encoder_helper_funcs intel_dp_helper_funcs = {
  2168. .mode_fixup = intel_dp_mode_fixup,
  2169. .mode_set = intel_dp_mode_set,
  2170. .disable = intel_encoder_noop,
  2171. };
  2172. static const struct drm_connector_funcs intel_dp_connector_funcs = {
  2173. .dpms = intel_connector_dpms,
  2174. .detect = intel_dp_detect,
  2175. .fill_modes = drm_helper_probe_single_connector_modes,
  2176. .set_property = intel_dp_set_property,
  2177. .destroy = intel_dp_destroy,
  2178. };
  2179. static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
  2180. .get_modes = intel_dp_get_modes,
  2181. .mode_valid = intel_dp_mode_valid,
  2182. .best_encoder = intel_best_encoder,
  2183. };
  2184. static const struct drm_encoder_funcs intel_dp_enc_funcs = {
  2185. .destroy = intel_dp_encoder_destroy,
  2186. };
  2187. static void
  2188. intel_dp_hot_plug(struct intel_encoder *intel_encoder)
  2189. {
  2190. struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
  2191. intel_dp_check_link_status(intel_dp);
  2192. }
  2193. /* Return which DP Port should be selected for Transcoder DP control */
  2194. int
  2195. intel_trans_dp_port_sel(struct drm_crtc *crtc)
  2196. {
  2197. struct drm_device *dev = crtc->dev;
  2198. struct intel_encoder *intel_encoder;
  2199. struct intel_dp *intel_dp;
  2200. for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
  2201. intel_dp = enc_to_intel_dp(&intel_encoder->base);
  2202. if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT ||
  2203. intel_encoder->type == INTEL_OUTPUT_EDP)
  2204. return intel_dp->output_reg;
  2205. }
  2206. return -1;
  2207. }
  2208. /* check the VBT to see whether the eDP is on DP-D port */
  2209. bool intel_dpd_is_edp(struct drm_device *dev)
  2210. {
  2211. struct drm_i915_private *dev_priv = dev->dev_private;
  2212. struct child_device_config *p_child;
  2213. int i;
  2214. if (!dev_priv->child_dev_num)
  2215. return false;
  2216. for (i = 0; i < dev_priv->child_dev_num; i++) {
  2217. p_child = dev_priv->child_dev + i;
  2218. if (p_child->dvo_port == PORT_IDPD &&
  2219. p_child->device_type == DEVICE_TYPE_eDP)
  2220. return true;
  2221. }
  2222. return false;
  2223. }
  2224. static void
  2225. intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
  2226. {
  2227. struct intel_connector *intel_connector = to_intel_connector(connector);
  2228. intel_attach_force_audio_property(connector);
  2229. intel_attach_broadcast_rgb_property(connector);
  2230. if (is_edp(intel_dp)) {
  2231. drm_mode_create_scaling_mode_property(connector->dev);
  2232. drm_connector_attach_property(
  2233. connector,
  2234. connector->dev->mode_config.scaling_mode_property,
  2235. DRM_MODE_SCALE_ASPECT);
  2236. intel_connector->panel.fitting_mode = DRM_MODE_SCALE_ASPECT;
  2237. }
  2238. }
  2239. static void
  2240. intel_dp_init_panel_power_sequencer(struct drm_device *dev,
  2241. struct intel_dp *intel_dp)
  2242. {
  2243. struct drm_i915_private *dev_priv = dev->dev_private;
  2244. struct edp_power_seq cur, vbt, spec, final;
  2245. u32 pp_on, pp_off, pp_div, pp;
  2246. /* Workaround: Need to write PP_CONTROL with the unlock key as
  2247. * the very first thing. */
  2248. pp = ironlake_get_pp_control(dev_priv);
  2249. I915_WRITE(PCH_PP_CONTROL, pp);
  2250. pp_on = I915_READ(PCH_PP_ON_DELAYS);
  2251. pp_off = I915_READ(PCH_PP_OFF_DELAYS);
  2252. pp_div = I915_READ(PCH_PP_DIVISOR);
  2253. /* Pull timing values out of registers */
  2254. cur.t1_t3 = (pp_on & PANEL_POWER_UP_DELAY_MASK) >>
  2255. PANEL_POWER_UP_DELAY_SHIFT;
  2256. cur.t8 = (pp_on & PANEL_LIGHT_ON_DELAY_MASK) >>
  2257. PANEL_LIGHT_ON_DELAY_SHIFT;
  2258. cur.t9 = (pp_off & PANEL_LIGHT_OFF_DELAY_MASK) >>
  2259. PANEL_LIGHT_OFF_DELAY_SHIFT;
  2260. cur.t10 = (pp_off & PANEL_POWER_DOWN_DELAY_MASK) >>
  2261. PANEL_POWER_DOWN_DELAY_SHIFT;
  2262. cur.t11_t12 = ((pp_div & PANEL_POWER_CYCLE_DELAY_MASK) >>
  2263. PANEL_POWER_CYCLE_DELAY_SHIFT) * 1000;
  2264. DRM_DEBUG_KMS("cur t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
  2265. cur.t1_t3, cur.t8, cur.t9, cur.t10, cur.t11_t12);
  2266. vbt = dev_priv->edp.pps;
  2267. /* Upper limits from eDP 1.3 spec. Note that we use the clunky units of
  2268. * our hw here, which are all in 100usec. */
  2269. spec.t1_t3 = 210 * 10;
  2270. spec.t8 = 50 * 10; /* no limit for t8, use t7 instead */
  2271. spec.t9 = 50 * 10; /* no limit for t9, make it symmetric with t8 */
  2272. spec.t10 = 500 * 10;
  2273. /* This one is special and actually in units of 100ms, but zero
  2274. * based in the hw (so we need to add 100 ms). But the sw vbt
  2275. * table multiplies it with 1000 to make it in units of 100usec,
  2276. * too. */
  2277. spec.t11_t12 = (510 + 100) * 10;
  2278. DRM_DEBUG_KMS("vbt t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
  2279. vbt.t1_t3, vbt.t8, vbt.t9, vbt.t10, vbt.t11_t12);
  2280. /* Use the max of the register settings and vbt. If both are
  2281. * unset, fall back to the spec limits. */
  2282. #define assign_final(field) final.field = (max(cur.field, vbt.field) == 0 ? \
  2283. spec.field : \
  2284. max(cur.field, vbt.field))
  2285. assign_final(t1_t3);
  2286. assign_final(t8);
  2287. assign_final(t9);
  2288. assign_final(t10);
  2289. assign_final(t11_t12);
  2290. #undef assign_final
  2291. #define get_delay(field) (DIV_ROUND_UP(final.field, 10))
  2292. intel_dp->panel_power_up_delay = get_delay(t1_t3);
  2293. intel_dp->backlight_on_delay = get_delay(t8);
  2294. intel_dp->backlight_off_delay = get_delay(t9);
  2295. intel_dp->panel_power_down_delay = get_delay(t10);
  2296. intel_dp->panel_power_cycle_delay = get_delay(t11_t12);
  2297. #undef get_delay
  2298. /* And finally store the new values in the power sequencer. */
  2299. pp_on = (final.t1_t3 << PANEL_POWER_UP_DELAY_SHIFT) |
  2300. (final.t8 << PANEL_LIGHT_ON_DELAY_SHIFT);
  2301. pp_off = (final.t9 << PANEL_LIGHT_OFF_DELAY_SHIFT) |
  2302. (final.t10 << PANEL_POWER_DOWN_DELAY_SHIFT);
  2303. /* Compute the divisor for the pp clock, simply match the Bspec
  2304. * formula. */
  2305. pp_div = ((100 * intel_pch_rawclk(dev))/2 - 1)
  2306. << PP_REFERENCE_DIVIDER_SHIFT;
  2307. pp_div |= (DIV_ROUND_UP(final.t11_t12, 1000)
  2308. << PANEL_POWER_CYCLE_DELAY_SHIFT);
  2309. /* Haswell doesn't have any port selection bits for the panel
  2310. * power sequencer any more. */
  2311. if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
  2312. if (is_cpu_edp(intel_dp))
  2313. pp_on |= PANEL_POWER_PORT_DP_A;
  2314. else
  2315. pp_on |= PANEL_POWER_PORT_DP_D;
  2316. }
  2317. I915_WRITE(PCH_PP_ON_DELAYS, pp_on);
  2318. I915_WRITE(PCH_PP_OFF_DELAYS, pp_off);
  2319. I915_WRITE(PCH_PP_DIVISOR, pp_div);
  2320. DRM_DEBUG_KMS("panel power up delay %d, power down delay %d, power cycle delay %d\n",
  2321. intel_dp->panel_power_up_delay, intel_dp->panel_power_down_delay,
  2322. intel_dp->panel_power_cycle_delay);
  2323. DRM_DEBUG_KMS("backlight on delay %d, off delay %d\n",
  2324. intel_dp->backlight_on_delay, intel_dp->backlight_off_delay);
  2325. DRM_DEBUG_KMS("panel power sequencer register settings: PP_ON %#x, PP_OFF %#x, PP_DIV %#x\n",
  2326. I915_READ(PCH_PP_ON_DELAYS),
  2327. I915_READ(PCH_PP_OFF_DELAYS),
  2328. I915_READ(PCH_PP_DIVISOR));
  2329. }
  2330. void
  2331. intel_dp_init_connector(struct intel_digital_port *intel_dig_port,
  2332. struct intel_connector *intel_connector)
  2333. {
  2334. struct drm_connector *connector = &intel_connector->base;
  2335. struct intel_dp *intel_dp = &intel_dig_port->dp;
  2336. struct intel_encoder *intel_encoder = &intel_dig_port->base;
  2337. struct drm_device *dev = intel_encoder->base.dev;
  2338. struct drm_i915_private *dev_priv = dev->dev_private;
  2339. struct drm_display_mode *fixed_mode = NULL;
  2340. enum port port = intel_dig_port->port;
  2341. const char *name = NULL;
  2342. int type;
  2343. /* Preserve the current hw state. */
  2344. intel_dp->DP = I915_READ(intel_dp->output_reg);
  2345. intel_dp->attached_connector = intel_connector;
  2346. if (HAS_PCH_SPLIT(dev) && port == PORT_D)
  2347. if (intel_dpd_is_edp(dev))
  2348. intel_dp->is_pch_edp = true;
  2349. /*
  2350. * FIXME : We need to initialize built-in panels before external panels.
  2351. * For X0, DP_C is fixed as eDP. Revisit this as part of VLV eDP cleanup
  2352. */
  2353. if (IS_VALLEYVIEW(dev) && port == PORT_C) {
  2354. type = DRM_MODE_CONNECTOR_eDP;
  2355. intel_encoder->type = INTEL_OUTPUT_EDP;
  2356. } else if (port == PORT_A || is_pch_edp(intel_dp)) {
  2357. type = DRM_MODE_CONNECTOR_eDP;
  2358. intel_encoder->type = INTEL_OUTPUT_EDP;
  2359. } else {
  2360. /* The intel_encoder->type value may be INTEL_OUTPUT_UNKNOWN for
  2361. * DDI or INTEL_OUTPUT_DISPLAYPORT for the older gens, so don't
  2362. * rewrite it.
  2363. */
  2364. type = DRM_MODE_CONNECTOR_DisplayPort;
  2365. }
  2366. drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
  2367. drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
  2368. connector->polled = DRM_CONNECTOR_POLL_HPD;
  2369. connector->interlace_allowed = true;
  2370. connector->doublescan_allowed = 0;
  2371. INIT_DELAYED_WORK(&intel_dp->panel_vdd_work,
  2372. ironlake_panel_vdd_work);
  2373. intel_connector_attach_encoder(intel_connector, intel_encoder);
  2374. drm_sysfs_connector_add(connector);
  2375. if (HAS_DDI(dev))
  2376. intel_connector->get_hw_state = intel_ddi_connector_get_hw_state;
  2377. else
  2378. intel_connector->get_hw_state = intel_connector_get_hw_state;
  2379. /* Set up the DDC bus. */
  2380. switch (port) {
  2381. case PORT_A:
  2382. name = "DPDDC-A";
  2383. break;
  2384. case PORT_B:
  2385. dev_priv->hotplug_supported_mask |= DPB_HOTPLUG_INT_STATUS;
  2386. name = "DPDDC-B";
  2387. break;
  2388. case PORT_C:
  2389. dev_priv->hotplug_supported_mask |= DPC_HOTPLUG_INT_STATUS;
  2390. name = "DPDDC-C";
  2391. break;
  2392. case PORT_D:
  2393. dev_priv->hotplug_supported_mask |= DPD_HOTPLUG_INT_STATUS;
  2394. name = "DPDDC-D";
  2395. break;
  2396. default:
  2397. WARN(1, "Invalid port %c\n", port_name(port));
  2398. break;
  2399. }
  2400. if (is_edp(intel_dp))
  2401. intel_dp_init_panel_power_sequencer(dev, intel_dp);
  2402. intel_dp_i2c_init(intel_dp, intel_connector, name);
  2403. /* Cache DPCD and EDID for edp. */
  2404. if (is_edp(intel_dp)) {
  2405. bool ret;
  2406. struct drm_display_mode *scan;
  2407. struct edid *edid;
  2408. ironlake_edp_panel_vdd_on(intel_dp);
  2409. ret = intel_dp_get_dpcd(intel_dp);
  2410. ironlake_edp_panel_vdd_off(intel_dp, false);
  2411. if (ret) {
  2412. if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11)
  2413. dev_priv->no_aux_handshake =
  2414. intel_dp->dpcd[DP_MAX_DOWNSPREAD] &
  2415. DP_NO_AUX_HANDSHAKE_LINK_TRAINING;
  2416. } else {
  2417. /* if this fails, presume the device is a ghost */
  2418. DRM_INFO("failed to retrieve link info, disabling eDP\n");
  2419. intel_dp_encoder_destroy(&intel_encoder->base);
  2420. intel_dp_destroy(connector);
  2421. return;
  2422. }
  2423. ironlake_edp_panel_vdd_on(intel_dp);
  2424. edid = drm_get_edid(connector, &intel_dp->adapter);
  2425. if (edid) {
  2426. if (drm_add_edid_modes(connector, edid)) {
  2427. drm_mode_connector_update_edid_property(connector, edid);
  2428. drm_edid_to_eld(connector, edid);
  2429. } else {
  2430. kfree(edid);
  2431. edid = ERR_PTR(-EINVAL);
  2432. }
  2433. } else {
  2434. edid = ERR_PTR(-ENOENT);
  2435. }
  2436. intel_connector->edid = edid;
  2437. /* prefer fixed mode from EDID if available */
  2438. list_for_each_entry(scan, &connector->probed_modes, head) {
  2439. if ((scan->type & DRM_MODE_TYPE_PREFERRED)) {
  2440. fixed_mode = drm_mode_duplicate(dev, scan);
  2441. break;
  2442. }
  2443. }
  2444. /* fallback to VBT if available for eDP */
  2445. if (!fixed_mode && dev_priv->lfp_lvds_vbt_mode) {
  2446. fixed_mode = drm_mode_duplicate(dev, dev_priv->lfp_lvds_vbt_mode);
  2447. if (fixed_mode)
  2448. fixed_mode->type |= DRM_MODE_TYPE_PREFERRED;
  2449. }
  2450. ironlake_edp_panel_vdd_off(intel_dp, false);
  2451. }
  2452. if (is_edp(intel_dp)) {
  2453. intel_panel_init(&intel_connector->panel, fixed_mode);
  2454. intel_panel_setup_backlight(connector);
  2455. }
  2456. intel_dp_add_properties(intel_dp, connector);
  2457. /* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
  2458. * 0xd. Failure to do so will result in spurious interrupts being
  2459. * generated on the port when a cable is not attached.
  2460. */
  2461. if (IS_G4X(dev) && !IS_GM45(dev)) {
  2462. u32 temp = I915_READ(PEG_BAND_GAP_DATA);
  2463. I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
  2464. }
  2465. }
  2466. void
  2467. intel_dp_init(struct drm_device *dev, int output_reg, enum port port)
  2468. {
  2469. struct intel_digital_port *intel_dig_port;
  2470. struct intel_encoder *intel_encoder;
  2471. struct drm_encoder *encoder;
  2472. struct intel_connector *intel_connector;
  2473. intel_dig_port = kzalloc(sizeof(struct intel_digital_port), GFP_KERNEL);
  2474. if (!intel_dig_port)
  2475. return;
  2476. intel_connector = kzalloc(sizeof(struct intel_connector), GFP_KERNEL);
  2477. if (!intel_connector) {
  2478. kfree(intel_dig_port);
  2479. return;
  2480. }
  2481. intel_encoder = &intel_dig_port->base;
  2482. encoder = &intel_encoder->base;
  2483. drm_encoder_init(dev, &intel_encoder->base, &intel_dp_enc_funcs,
  2484. DRM_MODE_ENCODER_TMDS);
  2485. drm_encoder_helper_add(&intel_encoder->base, &intel_dp_helper_funcs);
  2486. intel_encoder->enable = intel_enable_dp;
  2487. intel_encoder->pre_enable = intel_pre_enable_dp;
  2488. intel_encoder->disable = intel_disable_dp;
  2489. intel_encoder->post_disable = intel_post_disable_dp;
  2490. intel_encoder->get_hw_state = intel_dp_get_hw_state;
  2491. intel_dig_port->port = port;
  2492. intel_dig_port->dp.output_reg = output_reg;
  2493. intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
  2494. intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
  2495. intel_encoder->cloneable = false;
  2496. intel_encoder->hot_plug = intel_dp_hot_plug;
  2497. intel_dp_init_connector(intel_dig_port, intel_connector);
  2498. }