namespace.c 70 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901
  1. /*
  2. * linux/fs/namespace.c
  3. *
  4. * (C) Copyright Al Viro 2000, 2001
  5. * Released under GPL v2.
  6. *
  7. * Based on code from fs/super.c, copyright Linus Torvalds and others.
  8. * Heavily rewritten.
  9. */
  10. #include <linux/syscalls.h>
  11. #include <linux/export.h>
  12. #include <linux/capability.h>
  13. #include <linux/mnt_namespace.h>
  14. #include <linux/user_namespace.h>
  15. #include <linux/namei.h>
  16. #include <linux/security.h>
  17. #include <linux/idr.h>
  18. #include <linux/acct.h> /* acct_auto_close_mnt */
  19. #include <linux/ramfs.h> /* init_rootfs */
  20. #include <linux/fs_struct.h> /* get_fs_root et.al. */
  21. #include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */
  22. #include <linux/uaccess.h>
  23. #include <linux/proc_ns.h>
  24. #include <linux/magic.h>
  25. #include "pnode.h"
  26. #include "internal.h"
  27. #define HASH_SHIFT ilog2(PAGE_SIZE / sizeof(struct list_head))
  28. #define HASH_SIZE (1UL << HASH_SHIFT)
  29. static int event;
  30. static DEFINE_IDA(mnt_id_ida);
  31. static DEFINE_IDA(mnt_group_ida);
  32. static DEFINE_SPINLOCK(mnt_id_lock);
  33. static int mnt_id_start = 0;
  34. static int mnt_group_start = 1;
  35. static struct list_head *mount_hashtable __read_mostly;
  36. static struct list_head *mountpoint_hashtable __read_mostly;
  37. static struct kmem_cache *mnt_cache __read_mostly;
  38. static struct rw_semaphore namespace_sem;
  39. /* /sys/fs */
  40. struct kobject *fs_kobj;
  41. EXPORT_SYMBOL_GPL(fs_kobj);
  42. /*
  43. * vfsmount lock may be taken for read to prevent changes to the
  44. * vfsmount hash, ie. during mountpoint lookups or walking back
  45. * up the tree.
  46. *
  47. * It should be taken for write in all cases where the vfsmount
  48. * tree or hash is modified or when a vfsmount structure is modified.
  49. */
  50. DEFINE_BRLOCK(vfsmount_lock);
  51. static inline unsigned long hash(struct vfsmount *mnt, struct dentry *dentry)
  52. {
  53. unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
  54. tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
  55. tmp = tmp + (tmp >> HASH_SHIFT);
  56. return tmp & (HASH_SIZE - 1);
  57. }
  58. #define MNT_WRITER_UNDERFLOW_LIMIT -(1<<16)
  59. /*
  60. * allocation is serialized by namespace_sem, but we need the spinlock to
  61. * serialize with freeing.
  62. */
  63. static int mnt_alloc_id(struct mount *mnt)
  64. {
  65. int res;
  66. retry:
  67. ida_pre_get(&mnt_id_ida, GFP_KERNEL);
  68. spin_lock(&mnt_id_lock);
  69. res = ida_get_new_above(&mnt_id_ida, mnt_id_start, &mnt->mnt_id);
  70. if (!res)
  71. mnt_id_start = mnt->mnt_id + 1;
  72. spin_unlock(&mnt_id_lock);
  73. if (res == -EAGAIN)
  74. goto retry;
  75. return res;
  76. }
  77. static void mnt_free_id(struct mount *mnt)
  78. {
  79. int id = mnt->mnt_id;
  80. spin_lock(&mnt_id_lock);
  81. ida_remove(&mnt_id_ida, id);
  82. if (mnt_id_start > id)
  83. mnt_id_start = id;
  84. spin_unlock(&mnt_id_lock);
  85. }
  86. /*
  87. * Allocate a new peer group ID
  88. *
  89. * mnt_group_ida is protected by namespace_sem
  90. */
  91. static int mnt_alloc_group_id(struct mount *mnt)
  92. {
  93. int res;
  94. if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL))
  95. return -ENOMEM;
  96. res = ida_get_new_above(&mnt_group_ida,
  97. mnt_group_start,
  98. &mnt->mnt_group_id);
  99. if (!res)
  100. mnt_group_start = mnt->mnt_group_id + 1;
  101. return res;
  102. }
  103. /*
  104. * Release a peer group ID
  105. */
  106. void mnt_release_group_id(struct mount *mnt)
  107. {
  108. int id = mnt->mnt_group_id;
  109. ida_remove(&mnt_group_ida, id);
  110. if (mnt_group_start > id)
  111. mnt_group_start = id;
  112. mnt->mnt_group_id = 0;
  113. }
  114. /*
  115. * vfsmount lock must be held for read
  116. */
  117. static inline void mnt_add_count(struct mount *mnt, int n)
  118. {
  119. #ifdef CONFIG_SMP
  120. this_cpu_add(mnt->mnt_pcp->mnt_count, n);
  121. #else
  122. preempt_disable();
  123. mnt->mnt_count += n;
  124. preempt_enable();
  125. #endif
  126. }
  127. /*
  128. * vfsmount lock must be held for write
  129. */
  130. unsigned int mnt_get_count(struct mount *mnt)
  131. {
  132. #ifdef CONFIG_SMP
  133. unsigned int count = 0;
  134. int cpu;
  135. for_each_possible_cpu(cpu) {
  136. count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
  137. }
  138. return count;
  139. #else
  140. return mnt->mnt_count;
  141. #endif
  142. }
  143. static struct mount *alloc_vfsmnt(const char *name)
  144. {
  145. struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
  146. if (mnt) {
  147. int err;
  148. err = mnt_alloc_id(mnt);
  149. if (err)
  150. goto out_free_cache;
  151. if (name) {
  152. mnt->mnt_devname = kstrdup(name, GFP_KERNEL);
  153. if (!mnt->mnt_devname)
  154. goto out_free_id;
  155. }
  156. #ifdef CONFIG_SMP
  157. mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
  158. if (!mnt->mnt_pcp)
  159. goto out_free_devname;
  160. this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
  161. #else
  162. mnt->mnt_count = 1;
  163. mnt->mnt_writers = 0;
  164. #endif
  165. INIT_LIST_HEAD(&mnt->mnt_hash);
  166. INIT_LIST_HEAD(&mnt->mnt_child);
  167. INIT_LIST_HEAD(&mnt->mnt_mounts);
  168. INIT_LIST_HEAD(&mnt->mnt_list);
  169. INIT_LIST_HEAD(&mnt->mnt_expire);
  170. INIT_LIST_HEAD(&mnt->mnt_share);
  171. INIT_LIST_HEAD(&mnt->mnt_slave_list);
  172. INIT_LIST_HEAD(&mnt->mnt_slave);
  173. #ifdef CONFIG_FSNOTIFY
  174. INIT_HLIST_HEAD(&mnt->mnt_fsnotify_marks);
  175. #endif
  176. }
  177. return mnt;
  178. #ifdef CONFIG_SMP
  179. out_free_devname:
  180. kfree(mnt->mnt_devname);
  181. #endif
  182. out_free_id:
  183. mnt_free_id(mnt);
  184. out_free_cache:
  185. kmem_cache_free(mnt_cache, mnt);
  186. return NULL;
  187. }
  188. /*
  189. * Most r/o checks on a fs are for operations that take
  190. * discrete amounts of time, like a write() or unlink().
  191. * We must keep track of when those operations start
  192. * (for permission checks) and when they end, so that
  193. * we can determine when writes are able to occur to
  194. * a filesystem.
  195. */
  196. /*
  197. * __mnt_is_readonly: check whether a mount is read-only
  198. * @mnt: the mount to check for its write status
  199. *
  200. * This shouldn't be used directly ouside of the VFS.
  201. * It does not guarantee that the filesystem will stay
  202. * r/w, just that it is right *now*. This can not and
  203. * should not be used in place of IS_RDONLY(inode).
  204. * mnt_want/drop_write() will _keep_ the filesystem
  205. * r/w.
  206. */
  207. int __mnt_is_readonly(struct vfsmount *mnt)
  208. {
  209. if (mnt->mnt_flags & MNT_READONLY)
  210. return 1;
  211. if (mnt->mnt_sb->s_flags & MS_RDONLY)
  212. return 1;
  213. return 0;
  214. }
  215. EXPORT_SYMBOL_GPL(__mnt_is_readonly);
  216. static inline void mnt_inc_writers(struct mount *mnt)
  217. {
  218. #ifdef CONFIG_SMP
  219. this_cpu_inc(mnt->mnt_pcp->mnt_writers);
  220. #else
  221. mnt->mnt_writers++;
  222. #endif
  223. }
  224. static inline void mnt_dec_writers(struct mount *mnt)
  225. {
  226. #ifdef CONFIG_SMP
  227. this_cpu_dec(mnt->mnt_pcp->mnt_writers);
  228. #else
  229. mnt->mnt_writers--;
  230. #endif
  231. }
  232. static unsigned int mnt_get_writers(struct mount *mnt)
  233. {
  234. #ifdef CONFIG_SMP
  235. unsigned int count = 0;
  236. int cpu;
  237. for_each_possible_cpu(cpu) {
  238. count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
  239. }
  240. return count;
  241. #else
  242. return mnt->mnt_writers;
  243. #endif
  244. }
  245. static int mnt_is_readonly(struct vfsmount *mnt)
  246. {
  247. if (mnt->mnt_sb->s_readonly_remount)
  248. return 1;
  249. /* Order wrt setting s_flags/s_readonly_remount in do_remount() */
  250. smp_rmb();
  251. return __mnt_is_readonly(mnt);
  252. }
  253. /*
  254. * Most r/o & frozen checks on a fs are for operations that take discrete
  255. * amounts of time, like a write() or unlink(). We must keep track of when
  256. * those operations start (for permission checks) and when they end, so that we
  257. * can determine when writes are able to occur to a filesystem.
  258. */
  259. /**
  260. * __mnt_want_write - get write access to a mount without freeze protection
  261. * @m: the mount on which to take a write
  262. *
  263. * This tells the low-level filesystem that a write is about to be performed to
  264. * it, and makes sure that writes are allowed (mnt it read-write) before
  265. * returning success. This operation does not protect against filesystem being
  266. * frozen. When the write operation is finished, __mnt_drop_write() must be
  267. * called. This is effectively a refcount.
  268. */
  269. int __mnt_want_write(struct vfsmount *m)
  270. {
  271. struct mount *mnt = real_mount(m);
  272. int ret = 0;
  273. preempt_disable();
  274. mnt_inc_writers(mnt);
  275. /*
  276. * The store to mnt_inc_writers must be visible before we pass
  277. * MNT_WRITE_HOLD loop below, so that the slowpath can see our
  278. * incremented count after it has set MNT_WRITE_HOLD.
  279. */
  280. smp_mb();
  281. while (ACCESS_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD)
  282. cpu_relax();
  283. /*
  284. * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
  285. * be set to match its requirements. So we must not load that until
  286. * MNT_WRITE_HOLD is cleared.
  287. */
  288. smp_rmb();
  289. if (mnt_is_readonly(m)) {
  290. mnt_dec_writers(mnt);
  291. ret = -EROFS;
  292. }
  293. preempt_enable();
  294. return ret;
  295. }
  296. /**
  297. * mnt_want_write - get write access to a mount
  298. * @m: the mount on which to take a write
  299. *
  300. * This tells the low-level filesystem that a write is about to be performed to
  301. * it, and makes sure that writes are allowed (mount is read-write, filesystem
  302. * is not frozen) before returning success. When the write operation is
  303. * finished, mnt_drop_write() must be called. This is effectively a refcount.
  304. */
  305. int mnt_want_write(struct vfsmount *m)
  306. {
  307. int ret;
  308. sb_start_write(m->mnt_sb);
  309. ret = __mnt_want_write(m);
  310. if (ret)
  311. sb_end_write(m->mnt_sb);
  312. return ret;
  313. }
  314. EXPORT_SYMBOL_GPL(mnt_want_write);
  315. /**
  316. * mnt_clone_write - get write access to a mount
  317. * @mnt: the mount on which to take a write
  318. *
  319. * This is effectively like mnt_want_write, except
  320. * it must only be used to take an extra write reference
  321. * on a mountpoint that we already know has a write reference
  322. * on it. This allows some optimisation.
  323. *
  324. * After finished, mnt_drop_write must be called as usual to
  325. * drop the reference.
  326. */
  327. int mnt_clone_write(struct vfsmount *mnt)
  328. {
  329. /* superblock may be r/o */
  330. if (__mnt_is_readonly(mnt))
  331. return -EROFS;
  332. preempt_disable();
  333. mnt_inc_writers(real_mount(mnt));
  334. preempt_enable();
  335. return 0;
  336. }
  337. EXPORT_SYMBOL_GPL(mnt_clone_write);
  338. /**
  339. * __mnt_want_write_file - get write access to a file's mount
  340. * @file: the file who's mount on which to take a write
  341. *
  342. * This is like __mnt_want_write, but it takes a file and can
  343. * do some optimisations if the file is open for write already
  344. */
  345. int __mnt_want_write_file(struct file *file)
  346. {
  347. struct inode *inode = file_inode(file);
  348. if (!(file->f_mode & FMODE_WRITE) || special_file(inode->i_mode))
  349. return __mnt_want_write(file->f_path.mnt);
  350. else
  351. return mnt_clone_write(file->f_path.mnt);
  352. }
  353. /**
  354. * mnt_want_write_file - get write access to a file's mount
  355. * @file: the file who's mount on which to take a write
  356. *
  357. * This is like mnt_want_write, but it takes a file and can
  358. * do some optimisations if the file is open for write already
  359. */
  360. int mnt_want_write_file(struct file *file)
  361. {
  362. int ret;
  363. sb_start_write(file->f_path.mnt->mnt_sb);
  364. ret = __mnt_want_write_file(file);
  365. if (ret)
  366. sb_end_write(file->f_path.mnt->mnt_sb);
  367. return ret;
  368. }
  369. EXPORT_SYMBOL_GPL(mnt_want_write_file);
  370. /**
  371. * __mnt_drop_write - give up write access to a mount
  372. * @mnt: the mount on which to give up write access
  373. *
  374. * Tells the low-level filesystem that we are done
  375. * performing writes to it. Must be matched with
  376. * __mnt_want_write() call above.
  377. */
  378. void __mnt_drop_write(struct vfsmount *mnt)
  379. {
  380. preempt_disable();
  381. mnt_dec_writers(real_mount(mnt));
  382. preempt_enable();
  383. }
  384. /**
  385. * mnt_drop_write - give up write access to a mount
  386. * @mnt: the mount on which to give up write access
  387. *
  388. * Tells the low-level filesystem that we are done performing writes to it and
  389. * also allows filesystem to be frozen again. Must be matched with
  390. * mnt_want_write() call above.
  391. */
  392. void mnt_drop_write(struct vfsmount *mnt)
  393. {
  394. __mnt_drop_write(mnt);
  395. sb_end_write(mnt->mnt_sb);
  396. }
  397. EXPORT_SYMBOL_GPL(mnt_drop_write);
  398. void __mnt_drop_write_file(struct file *file)
  399. {
  400. __mnt_drop_write(file->f_path.mnt);
  401. }
  402. void mnt_drop_write_file(struct file *file)
  403. {
  404. mnt_drop_write(file->f_path.mnt);
  405. }
  406. EXPORT_SYMBOL(mnt_drop_write_file);
  407. static int mnt_make_readonly(struct mount *mnt)
  408. {
  409. int ret = 0;
  410. br_write_lock(&vfsmount_lock);
  411. mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
  412. /*
  413. * After storing MNT_WRITE_HOLD, we'll read the counters. This store
  414. * should be visible before we do.
  415. */
  416. smp_mb();
  417. /*
  418. * With writers on hold, if this value is zero, then there are
  419. * definitely no active writers (although held writers may subsequently
  420. * increment the count, they'll have to wait, and decrement it after
  421. * seeing MNT_READONLY).
  422. *
  423. * It is OK to have counter incremented on one CPU and decremented on
  424. * another: the sum will add up correctly. The danger would be when we
  425. * sum up each counter, if we read a counter before it is incremented,
  426. * but then read another CPU's count which it has been subsequently
  427. * decremented from -- we would see more decrements than we should.
  428. * MNT_WRITE_HOLD protects against this scenario, because
  429. * mnt_want_write first increments count, then smp_mb, then spins on
  430. * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
  431. * we're counting up here.
  432. */
  433. if (mnt_get_writers(mnt) > 0)
  434. ret = -EBUSY;
  435. else
  436. mnt->mnt.mnt_flags |= MNT_READONLY;
  437. /*
  438. * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
  439. * that become unheld will see MNT_READONLY.
  440. */
  441. smp_wmb();
  442. mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
  443. br_write_unlock(&vfsmount_lock);
  444. return ret;
  445. }
  446. static void __mnt_unmake_readonly(struct mount *mnt)
  447. {
  448. br_write_lock(&vfsmount_lock);
  449. mnt->mnt.mnt_flags &= ~MNT_READONLY;
  450. br_write_unlock(&vfsmount_lock);
  451. }
  452. int sb_prepare_remount_readonly(struct super_block *sb)
  453. {
  454. struct mount *mnt;
  455. int err = 0;
  456. /* Racy optimization. Recheck the counter under MNT_WRITE_HOLD */
  457. if (atomic_long_read(&sb->s_remove_count))
  458. return -EBUSY;
  459. br_write_lock(&vfsmount_lock);
  460. list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
  461. if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
  462. mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
  463. smp_mb();
  464. if (mnt_get_writers(mnt) > 0) {
  465. err = -EBUSY;
  466. break;
  467. }
  468. }
  469. }
  470. if (!err && atomic_long_read(&sb->s_remove_count))
  471. err = -EBUSY;
  472. if (!err) {
  473. sb->s_readonly_remount = 1;
  474. smp_wmb();
  475. }
  476. list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
  477. if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
  478. mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
  479. }
  480. br_write_unlock(&vfsmount_lock);
  481. return err;
  482. }
  483. static void free_vfsmnt(struct mount *mnt)
  484. {
  485. kfree(mnt->mnt_devname);
  486. mnt_free_id(mnt);
  487. #ifdef CONFIG_SMP
  488. free_percpu(mnt->mnt_pcp);
  489. #endif
  490. kmem_cache_free(mnt_cache, mnt);
  491. }
  492. /*
  493. * find the first or last mount at @dentry on vfsmount @mnt depending on
  494. * @dir. If @dir is set return the first mount else return the last mount.
  495. * vfsmount_lock must be held for read or write.
  496. */
  497. struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry,
  498. int dir)
  499. {
  500. struct list_head *head = mount_hashtable + hash(mnt, dentry);
  501. struct list_head *tmp = head;
  502. struct mount *p, *found = NULL;
  503. for (;;) {
  504. tmp = dir ? tmp->next : tmp->prev;
  505. p = NULL;
  506. if (tmp == head)
  507. break;
  508. p = list_entry(tmp, struct mount, mnt_hash);
  509. if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry) {
  510. found = p;
  511. break;
  512. }
  513. }
  514. return found;
  515. }
  516. /*
  517. * lookup_mnt - Return the first child mount mounted at path
  518. *
  519. * "First" means first mounted chronologically. If you create the
  520. * following mounts:
  521. *
  522. * mount /dev/sda1 /mnt
  523. * mount /dev/sda2 /mnt
  524. * mount /dev/sda3 /mnt
  525. *
  526. * Then lookup_mnt() on the base /mnt dentry in the root mount will
  527. * return successively the root dentry and vfsmount of /dev/sda1, then
  528. * /dev/sda2, then /dev/sda3, then NULL.
  529. *
  530. * lookup_mnt takes a reference to the found vfsmount.
  531. */
  532. struct vfsmount *lookup_mnt(struct path *path)
  533. {
  534. struct mount *child_mnt;
  535. br_read_lock(&vfsmount_lock);
  536. child_mnt = __lookup_mnt(path->mnt, path->dentry, 1);
  537. if (child_mnt) {
  538. mnt_add_count(child_mnt, 1);
  539. br_read_unlock(&vfsmount_lock);
  540. return &child_mnt->mnt;
  541. } else {
  542. br_read_unlock(&vfsmount_lock);
  543. return NULL;
  544. }
  545. }
  546. static struct mountpoint *new_mountpoint(struct dentry *dentry)
  547. {
  548. struct list_head *chain = mountpoint_hashtable + hash(NULL, dentry);
  549. struct mountpoint *mp;
  550. int ret;
  551. list_for_each_entry(mp, chain, m_hash) {
  552. if (mp->m_dentry == dentry) {
  553. /* might be worth a WARN_ON() */
  554. if (d_unlinked(dentry))
  555. return ERR_PTR(-ENOENT);
  556. mp->m_count++;
  557. return mp;
  558. }
  559. }
  560. mp = kmalloc(sizeof(struct mountpoint), GFP_KERNEL);
  561. if (!mp)
  562. return ERR_PTR(-ENOMEM);
  563. ret = d_set_mounted(dentry);
  564. if (ret) {
  565. kfree(mp);
  566. return ERR_PTR(ret);
  567. }
  568. mp->m_dentry = dentry;
  569. mp->m_count = 1;
  570. list_add(&mp->m_hash, chain);
  571. return mp;
  572. }
  573. static void put_mountpoint(struct mountpoint *mp)
  574. {
  575. if (!--mp->m_count) {
  576. struct dentry *dentry = mp->m_dentry;
  577. spin_lock(&dentry->d_lock);
  578. dentry->d_flags &= ~DCACHE_MOUNTED;
  579. spin_unlock(&dentry->d_lock);
  580. list_del(&mp->m_hash);
  581. kfree(mp);
  582. }
  583. }
  584. static inline int check_mnt(struct mount *mnt)
  585. {
  586. return mnt->mnt_ns == current->nsproxy->mnt_ns;
  587. }
  588. /*
  589. * vfsmount lock must be held for write
  590. */
  591. static void touch_mnt_namespace(struct mnt_namespace *ns)
  592. {
  593. if (ns) {
  594. ns->event = ++event;
  595. wake_up_interruptible(&ns->poll);
  596. }
  597. }
  598. /*
  599. * vfsmount lock must be held for write
  600. */
  601. static void __touch_mnt_namespace(struct mnt_namespace *ns)
  602. {
  603. if (ns && ns->event != event) {
  604. ns->event = event;
  605. wake_up_interruptible(&ns->poll);
  606. }
  607. }
  608. /*
  609. * vfsmount lock must be held for write
  610. */
  611. static void detach_mnt(struct mount *mnt, struct path *old_path)
  612. {
  613. old_path->dentry = mnt->mnt_mountpoint;
  614. old_path->mnt = &mnt->mnt_parent->mnt;
  615. mnt->mnt_parent = mnt;
  616. mnt->mnt_mountpoint = mnt->mnt.mnt_root;
  617. list_del_init(&mnt->mnt_child);
  618. list_del_init(&mnt->mnt_hash);
  619. put_mountpoint(mnt->mnt_mp);
  620. mnt->mnt_mp = NULL;
  621. }
  622. /*
  623. * vfsmount lock must be held for write
  624. */
  625. void mnt_set_mountpoint(struct mount *mnt,
  626. struct mountpoint *mp,
  627. struct mount *child_mnt)
  628. {
  629. mp->m_count++;
  630. mnt_add_count(mnt, 1); /* essentially, that's mntget */
  631. child_mnt->mnt_mountpoint = dget(mp->m_dentry);
  632. child_mnt->mnt_parent = mnt;
  633. child_mnt->mnt_mp = mp;
  634. }
  635. /*
  636. * vfsmount lock must be held for write
  637. */
  638. static void attach_mnt(struct mount *mnt,
  639. struct mount *parent,
  640. struct mountpoint *mp)
  641. {
  642. mnt_set_mountpoint(parent, mp, mnt);
  643. list_add_tail(&mnt->mnt_hash, mount_hashtable +
  644. hash(&parent->mnt, mp->m_dentry));
  645. list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
  646. }
  647. /*
  648. * vfsmount lock must be held for write
  649. */
  650. static void commit_tree(struct mount *mnt)
  651. {
  652. struct mount *parent = mnt->mnt_parent;
  653. struct mount *m;
  654. LIST_HEAD(head);
  655. struct mnt_namespace *n = parent->mnt_ns;
  656. BUG_ON(parent == mnt);
  657. list_add_tail(&head, &mnt->mnt_list);
  658. list_for_each_entry(m, &head, mnt_list)
  659. m->mnt_ns = n;
  660. list_splice(&head, n->list.prev);
  661. list_add_tail(&mnt->mnt_hash, mount_hashtable +
  662. hash(&parent->mnt, mnt->mnt_mountpoint));
  663. list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
  664. touch_mnt_namespace(n);
  665. }
  666. static struct mount *next_mnt(struct mount *p, struct mount *root)
  667. {
  668. struct list_head *next = p->mnt_mounts.next;
  669. if (next == &p->mnt_mounts) {
  670. while (1) {
  671. if (p == root)
  672. return NULL;
  673. next = p->mnt_child.next;
  674. if (next != &p->mnt_parent->mnt_mounts)
  675. break;
  676. p = p->mnt_parent;
  677. }
  678. }
  679. return list_entry(next, struct mount, mnt_child);
  680. }
  681. static struct mount *skip_mnt_tree(struct mount *p)
  682. {
  683. struct list_head *prev = p->mnt_mounts.prev;
  684. while (prev != &p->mnt_mounts) {
  685. p = list_entry(prev, struct mount, mnt_child);
  686. prev = p->mnt_mounts.prev;
  687. }
  688. return p;
  689. }
  690. struct vfsmount *
  691. vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data)
  692. {
  693. struct mount *mnt;
  694. struct dentry *root;
  695. if (!type)
  696. return ERR_PTR(-ENODEV);
  697. mnt = alloc_vfsmnt(name);
  698. if (!mnt)
  699. return ERR_PTR(-ENOMEM);
  700. if (flags & MS_KERNMOUNT)
  701. mnt->mnt.mnt_flags = MNT_INTERNAL;
  702. root = mount_fs(type, flags, name, data);
  703. if (IS_ERR(root)) {
  704. free_vfsmnt(mnt);
  705. return ERR_CAST(root);
  706. }
  707. mnt->mnt.mnt_root = root;
  708. mnt->mnt.mnt_sb = root->d_sb;
  709. mnt->mnt_mountpoint = mnt->mnt.mnt_root;
  710. mnt->mnt_parent = mnt;
  711. br_write_lock(&vfsmount_lock);
  712. list_add_tail(&mnt->mnt_instance, &root->d_sb->s_mounts);
  713. br_write_unlock(&vfsmount_lock);
  714. return &mnt->mnt;
  715. }
  716. EXPORT_SYMBOL_GPL(vfs_kern_mount);
  717. static struct mount *clone_mnt(struct mount *old, struct dentry *root,
  718. int flag)
  719. {
  720. struct super_block *sb = old->mnt.mnt_sb;
  721. struct mount *mnt;
  722. int err;
  723. mnt = alloc_vfsmnt(old->mnt_devname);
  724. if (!mnt)
  725. return ERR_PTR(-ENOMEM);
  726. if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE))
  727. mnt->mnt_group_id = 0; /* not a peer of original */
  728. else
  729. mnt->mnt_group_id = old->mnt_group_id;
  730. if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
  731. err = mnt_alloc_group_id(mnt);
  732. if (err)
  733. goto out_free;
  734. }
  735. mnt->mnt.mnt_flags = old->mnt.mnt_flags & ~MNT_WRITE_HOLD;
  736. /* Don't allow unprivileged users to change mount flags */
  737. if ((flag & CL_UNPRIVILEGED) && (mnt->mnt.mnt_flags & MNT_READONLY))
  738. mnt->mnt.mnt_flags |= MNT_LOCK_READONLY;
  739. atomic_inc(&sb->s_active);
  740. mnt->mnt.mnt_sb = sb;
  741. mnt->mnt.mnt_root = dget(root);
  742. mnt->mnt_mountpoint = mnt->mnt.mnt_root;
  743. mnt->mnt_parent = mnt;
  744. br_write_lock(&vfsmount_lock);
  745. list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
  746. br_write_unlock(&vfsmount_lock);
  747. if ((flag & CL_SLAVE) ||
  748. ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) {
  749. list_add(&mnt->mnt_slave, &old->mnt_slave_list);
  750. mnt->mnt_master = old;
  751. CLEAR_MNT_SHARED(mnt);
  752. } else if (!(flag & CL_PRIVATE)) {
  753. if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
  754. list_add(&mnt->mnt_share, &old->mnt_share);
  755. if (IS_MNT_SLAVE(old))
  756. list_add(&mnt->mnt_slave, &old->mnt_slave);
  757. mnt->mnt_master = old->mnt_master;
  758. }
  759. if (flag & CL_MAKE_SHARED)
  760. set_mnt_shared(mnt);
  761. /* stick the duplicate mount on the same expiry list
  762. * as the original if that was on one */
  763. if (flag & CL_EXPIRE) {
  764. if (!list_empty(&old->mnt_expire))
  765. list_add(&mnt->mnt_expire, &old->mnt_expire);
  766. }
  767. return mnt;
  768. out_free:
  769. free_vfsmnt(mnt);
  770. return ERR_PTR(err);
  771. }
  772. static inline void mntfree(struct mount *mnt)
  773. {
  774. struct vfsmount *m = &mnt->mnt;
  775. struct super_block *sb = m->mnt_sb;
  776. /*
  777. * This probably indicates that somebody messed
  778. * up a mnt_want/drop_write() pair. If this
  779. * happens, the filesystem was probably unable
  780. * to make r/w->r/o transitions.
  781. */
  782. /*
  783. * The locking used to deal with mnt_count decrement provides barriers,
  784. * so mnt_get_writers() below is safe.
  785. */
  786. WARN_ON(mnt_get_writers(mnt));
  787. fsnotify_vfsmount_delete(m);
  788. dput(m->mnt_root);
  789. free_vfsmnt(mnt);
  790. deactivate_super(sb);
  791. }
  792. static void mntput_no_expire(struct mount *mnt)
  793. {
  794. put_again:
  795. #ifdef CONFIG_SMP
  796. br_read_lock(&vfsmount_lock);
  797. if (likely(mnt->mnt_ns)) {
  798. /* shouldn't be the last one */
  799. mnt_add_count(mnt, -1);
  800. br_read_unlock(&vfsmount_lock);
  801. return;
  802. }
  803. br_read_unlock(&vfsmount_lock);
  804. br_write_lock(&vfsmount_lock);
  805. mnt_add_count(mnt, -1);
  806. if (mnt_get_count(mnt)) {
  807. br_write_unlock(&vfsmount_lock);
  808. return;
  809. }
  810. #else
  811. mnt_add_count(mnt, -1);
  812. if (likely(mnt_get_count(mnt)))
  813. return;
  814. br_write_lock(&vfsmount_lock);
  815. #endif
  816. if (unlikely(mnt->mnt_pinned)) {
  817. mnt_add_count(mnt, mnt->mnt_pinned + 1);
  818. mnt->mnt_pinned = 0;
  819. br_write_unlock(&vfsmount_lock);
  820. acct_auto_close_mnt(&mnt->mnt);
  821. goto put_again;
  822. }
  823. list_del(&mnt->mnt_instance);
  824. br_write_unlock(&vfsmount_lock);
  825. mntfree(mnt);
  826. }
  827. void mntput(struct vfsmount *mnt)
  828. {
  829. if (mnt) {
  830. struct mount *m = real_mount(mnt);
  831. /* avoid cacheline pingpong, hope gcc doesn't get "smart" */
  832. if (unlikely(m->mnt_expiry_mark))
  833. m->mnt_expiry_mark = 0;
  834. mntput_no_expire(m);
  835. }
  836. }
  837. EXPORT_SYMBOL(mntput);
  838. struct vfsmount *mntget(struct vfsmount *mnt)
  839. {
  840. if (mnt)
  841. mnt_add_count(real_mount(mnt), 1);
  842. return mnt;
  843. }
  844. EXPORT_SYMBOL(mntget);
  845. void mnt_pin(struct vfsmount *mnt)
  846. {
  847. br_write_lock(&vfsmount_lock);
  848. real_mount(mnt)->mnt_pinned++;
  849. br_write_unlock(&vfsmount_lock);
  850. }
  851. EXPORT_SYMBOL(mnt_pin);
  852. void mnt_unpin(struct vfsmount *m)
  853. {
  854. struct mount *mnt = real_mount(m);
  855. br_write_lock(&vfsmount_lock);
  856. if (mnt->mnt_pinned) {
  857. mnt_add_count(mnt, 1);
  858. mnt->mnt_pinned--;
  859. }
  860. br_write_unlock(&vfsmount_lock);
  861. }
  862. EXPORT_SYMBOL(mnt_unpin);
  863. static inline void mangle(struct seq_file *m, const char *s)
  864. {
  865. seq_escape(m, s, " \t\n\\");
  866. }
  867. /*
  868. * Simple .show_options callback for filesystems which don't want to
  869. * implement more complex mount option showing.
  870. *
  871. * See also save_mount_options().
  872. */
  873. int generic_show_options(struct seq_file *m, struct dentry *root)
  874. {
  875. const char *options;
  876. rcu_read_lock();
  877. options = rcu_dereference(root->d_sb->s_options);
  878. if (options != NULL && options[0]) {
  879. seq_putc(m, ',');
  880. mangle(m, options);
  881. }
  882. rcu_read_unlock();
  883. return 0;
  884. }
  885. EXPORT_SYMBOL(generic_show_options);
  886. /*
  887. * If filesystem uses generic_show_options(), this function should be
  888. * called from the fill_super() callback.
  889. *
  890. * The .remount_fs callback usually needs to be handled in a special
  891. * way, to make sure, that previous options are not overwritten if the
  892. * remount fails.
  893. *
  894. * Also note, that if the filesystem's .remount_fs function doesn't
  895. * reset all options to their default value, but changes only newly
  896. * given options, then the displayed options will not reflect reality
  897. * any more.
  898. */
  899. void save_mount_options(struct super_block *sb, char *options)
  900. {
  901. BUG_ON(sb->s_options);
  902. rcu_assign_pointer(sb->s_options, kstrdup(options, GFP_KERNEL));
  903. }
  904. EXPORT_SYMBOL(save_mount_options);
  905. void replace_mount_options(struct super_block *sb, char *options)
  906. {
  907. char *old = sb->s_options;
  908. rcu_assign_pointer(sb->s_options, options);
  909. if (old) {
  910. synchronize_rcu();
  911. kfree(old);
  912. }
  913. }
  914. EXPORT_SYMBOL(replace_mount_options);
  915. #ifdef CONFIG_PROC_FS
  916. /* iterator; we want it to have access to namespace_sem, thus here... */
  917. static void *m_start(struct seq_file *m, loff_t *pos)
  918. {
  919. struct proc_mounts *p = proc_mounts(m);
  920. down_read(&namespace_sem);
  921. return seq_list_start(&p->ns->list, *pos);
  922. }
  923. static void *m_next(struct seq_file *m, void *v, loff_t *pos)
  924. {
  925. struct proc_mounts *p = proc_mounts(m);
  926. return seq_list_next(v, &p->ns->list, pos);
  927. }
  928. static void m_stop(struct seq_file *m, void *v)
  929. {
  930. up_read(&namespace_sem);
  931. }
  932. static int m_show(struct seq_file *m, void *v)
  933. {
  934. struct proc_mounts *p = proc_mounts(m);
  935. struct mount *r = list_entry(v, struct mount, mnt_list);
  936. return p->show(m, &r->mnt);
  937. }
  938. const struct seq_operations mounts_op = {
  939. .start = m_start,
  940. .next = m_next,
  941. .stop = m_stop,
  942. .show = m_show,
  943. };
  944. #endif /* CONFIG_PROC_FS */
  945. /**
  946. * may_umount_tree - check if a mount tree is busy
  947. * @mnt: root of mount tree
  948. *
  949. * This is called to check if a tree of mounts has any
  950. * open files, pwds, chroots or sub mounts that are
  951. * busy.
  952. */
  953. int may_umount_tree(struct vfsmount *m)
  954. {
  955. struct mount *mnt = real_mount(m);
  956. int actual_refs = 0;
  957. int minimum_refs = 0;
  958. struct mount *p;
  959. BUG_ON(!m);
  960. /* write lock needed for mnt_get_count */
  961. br_write_lock(&vfsmount_lock);
  962. for (p = mnt; p; p = next_mnt(p, mnt)) {
  963. actual_refs += mnt_get_count(p);
  964. minimum_refs += 2;
  965. }
  966. br_write_unlock(&vfsmount_lock);
  967. if (actual_refs > minimum_refs)
  968. return 0;
  969. return 1;
  970. }
  971. EXPORT_SYMBOL(may_umount_tree);
  972. /**
  973. * may_umount - check if a mount point is busy
  974. * @mnt: root of mount
  975. *
  976. * This is called to check if a mount point has any
  977. * open files, pwds, chroots or sub mounts. If the
  978. * mount has sub mounts this will return busy
  979. * regardless of whether the sub mounts are busy.
  980. *
  981. * Doesn't take quota and stuff into account. IOW, in some cases it will
  982. * give false negatives. The main reason why it's here is that we need
  983. * a non-destructive way to look for easily umountable filesystems.
  984. */
  985. int may_umount(struct vfsmount *mnt)
  986. {
  987. int ret = 1;
  988. down_read(&namespace_sem);
  989. br_write_lock(&vfsmount_lock);
  990. if (propagate_mount_busy(real_mount(mnt), 2))
  991. ret = 0;
  992. br_write_unlock(&vfsmount_lock);
  993. up_read(&namespace_sem);
  994. return ret;
  995. }
  996. EXPORT_SYMBOL(may_umount);
  997. static LIST_HEAD(unmounted); /* protected by namespace_sem */
  998. static void namespace_unlock(void)
  999. {
  1000. struct mount *mnt;
  1001. LIST_HEAD(head);
  1002. if (likely(list_empty(&unmounted))) {
  1003. up_write(&namespace_sem);
  1004. return;
  1005. }
  1006. list_splice_init(&unmounted, &head);
  1007. up_write(&namespace_sem);
  1008. while (!list_empty(&head)) {
  1009. mnt = list_first_entry(&head, struct mount, mnt_hash);
  1010. list_del_init(&mnt->mnt_hash);
  1011. if (mnt_has_parent(mnt)) {
  1012. struct dentry *dentry;
  1013. struct mount *m;
  1014. br_write_lock(&vfsmount_lock);
  1015. dentry = mnt->mnt_mountpoint;
  1016. m = mnt->mnt_parent;
  1017. mnt->mnt_mountpoint = mnt->mnt.mnt_root;
  1018. mnt->mnt_parent = mnt;
  1019. m->mnt_ghosts--;
  1020. br_write_unlock(&vfsmount_lock);
  1021. dput(dentry);
  1022. mntput(&m->mnt);
  1023. }
  1024. mntput(&mnt->mnt);
  1025. }
  1026. }
  1027. static inline void namespace_lock(void)
  1028. {
  1029. down_write(&namespace_sem);
  1030. }
  1031. /*
  1032. * vfsmount lock must be held for write
  1033. * namespace_sem must be held for write
  1034. */
  1035. void umount_tree(struct mount *mnt, int propagate)
  1036. {
  1037. LIST_HEAD(tmp_list);
  1038. struct mount *p;
  1039. for (p = mnt; p; p = next_mnt(p, mnt))
  1040. list_move(&p->mnt_hash, &tmp_list);
  1041. if (propagate)
  1042. propagate_umount(&tmp_list);
  1043. list_for_each_entry(p, &tmp_list, mnt_hash) {
  1044. list_del_init(&p->mnt_expire);
  1045. list_del_init(&p->mnt_list);
  1046. __touch_mnt_namespace(p->mnt_ns);
  1047. p->mnt_ns = NULL;
  1048. list_del_init(&p->mnt_child);
  1049. if (mnt_has_parent(p)) {
  1050. p->mnt_parent->mnt_ghosts++;
  1051. put_mountpoint(p->mnt_mp);
  1052. p->mnt_mp = NULL;
  1053. }
  1054. change_mnt_propagation(p, MS_PRIVATE);
  1055. }
  1056. list_splice(&tmp_list, &unmounted);
  1057. }
  1058. static void shrink_submounts(struct mount *mnt);
  1059. static int do_umount(struct mount *mnt, int flags)
  1060. {
  1061. struct super_block *sb = mnt->mnt.mnt_sb;
  1062. int retval;
  1063. retval = security_sb_umount(&mnt->mnt, flags);
  1064. if (retval)
  1065. return retval;
  1066. /*
  1067. * Allow userspace to request a mountpoint be expired rather than
  1068. * unmounting unconditionally. Unmount only happens if:
  1069. * (1) the mark is already set (the mark is cleared by mntput())
  1070. * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
  1071. */
  1072. if (flags & MNT_EXPIRE) {
  1073. if (&mnt->mnt == current->fs->root.mnt ||
  1074. flags & (MNT_FORCE | MNT_DETACH))
  1075. return -EINVAL;
  1076. /*
  1077. * probably don't strictly need the lock here if we examined
  1078. * all race cases, but it's a slowpath.
  1079. */
  1080. br_write_lock(&vfsmount_lock);
  1081. if (mnt_get_count(mnt) != 2) {
  1082. br_write_unlock(&vfsmount_lock);
  1083. return -EBUSY;
  1084. }
  1085. br_write_unlock(&vfsmount_lock);
  1086. if (!xchg(&mnt->mnt_expiry_mark, 1))
  1087. return -EAGAIN;
  1088. }
  1089. /*
  1090. * If we may have to abort operations to get out of this
  1091. * mount, and they will themselves hold resources we must
  1092. * allow the fs to do things. In the Unix tradition of
  1093. * 'Gee thats tricky lets do it in userspace' the umount_begin
  1094. * might fail to complete on the first run through as other tasks
  1095. * must return, and the like. Thats for the mount program to worry
  1096. * about for the moment.
  1097. */
  1098. if (flags & MNT_FORCE && sb->s_op->umount_begin) {
  1099. sb->s_op->umount_begin(sb);
  1100. }
  1101. /*
  1102. * No sense to grab the lock for this test, but test itself looks
  1103. * somewhat bogus. Suggestions for better replacement?
  1104. * Ho-hum... In principle, we might treat that as umount + switch
  1105. * to rootfs. GC would eventually take care of the old vfsmount.
  1106. * Actually it makes sense, especially if rootfs would contain a
  1107. * /reboot - static binary that would close all descriptors and
  1108. * call reboot(9). Then init(8) could umount root and exec /reboot.
  1109. */
  1110. if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
  1111. /*
  1112. * Special case for "unmounting" root ...
  1113. * we just try to remount it readonly.
  1114. */
  1115. down_write(&sb->s_umount);
  1116. if (!(sb->s_flags & MS_RDONLY))
  1117. retval = do_remount_sb(sb, MS_RDONLY, NULL, 0);
  1118. up_write(&sb->s_umount);
  1119. return retval;
  1120. }
  1121. namespace_lock();
  1122. br_write_lock(&vfsmount_lock);
  1123. event++;
  1124. if (!(flags & MNT_DETACH))
  1125. shrink_submounts(mnt);
  1126. retval = -EBUSY;
  1127. if (flags & MNT_DETACH || !propagate_mount_busy(mnt, 2)) {
  1128. if (!list_empty(&mnt->mnt_list))
  1129. umount_tree(mnt, 1);
  1130. retval = 0;
  1131. }
  1132. br_write_unlock(&vfsmount_lock);
  1133. namespace_unlock();
  1134. return retval;
  1135. }
  1136. /*
  1137. * Is the caller allowed to modify his namespace?
  1138. */
  1139. static inline bool may_mount(void)
  1140. {
  1141. return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN);
  1142. }
  1143. /*
  1144. * Now umount can handle mount points as well as block devices.
  1145. * This is important for filesystems which use unnamed block devices.
  1146. *
  1147. * We now support a flag for forced unmount like the other 'big iron'
  1148. * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
  1149. */
  1150. SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
  1151. {
  1152. struct path path;
  1153. struct mount *mnt;
  1154. int retval;
  1155. int lookup_flags = 0;
  1156. if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
  1157. return -EINVAL;
  1158. if (!may_mount())
  1159. return -EPERM;
  1160. if (!(flags & UMOUNT_NOFOLLOW))
  1161. lookup_flags |= LOOKUP_FOLLOW;
  1162. retval = user_path_umountat(AT_FDCWD, name, lookup_flags, &path);
  1163. if (retval)
  1164. goto out;
  1165. mnt = real_mount(path.mnt);
  1166. retval = -EINVAL;
  1167. if (path.dentry != path.mnt->mnt_root)
  1168. goto dput_and_out;
  1169. if (!check_mnt(mnt))
  1170. goto dput_and_out;
  1171. retval = do_umount(mnt, flags);
  1172. dput_and_out:
  1173. /* we mustn't call path_put() as that would clear mnt_expiry_mark */
  1174. dput(path.dentry);
  1175. mntput_no_expire(mnt);
  1176. out:
  1177. return retval;
  1178. }
  1179. #ifdef __ARCH_WANT_SYS_OLDUMOUNT
  1180. /*
  1181. * The 2.0 compatible umount. No flags.
  1182. */
  1183. SYSCALL_DEFINE1(oldumount, char __user *, name)
  1184. {
  1185. return sys_umount(name, 0);
  1186. }
  1187. #endif
  1188. static bool mnt_ns_loop(struct path *path)
  1189. {
  1190. /* Could bind mounting the mount namespace inode cause a
  1191. * mount namespace loop?
  1192. */
  1193. struct inode *inode = path->dentry->d_inode;
  1194. struct proc_ns *ei;
  1195. struct mnt_namespace *mnt_ns;
  1196. if (!proc_ns_inode(inode))
  1197. return false;
  1198. ei = get_proc_ns(inode);
  1199. if (ei->ns_ops != &mntns_operations)
  1200. return false;
  1201. mnt_ns = ei->ns;
  1202. return current->nsproxy->mnt_ns->seq >= mnt_ns->seq;
  1203. }
  1204. struct mount *copy_tree(struct mount *mnt, struct dentry *dentry,
  1205. int flag)
  1206. {
  1207. struct mount *res, *p, *q, *r, *parent;
  1208. if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(mnt))
  1209. return ERR_PTR(-EINVAL);
  1210. res = q = clone_mnt(mnt, dentry, flag);
  1211. if (IS_ERR(q))
  1212. return q;
  1213. q->mnt_mountpoint = mnt->mnt_mountpoint;
  1214. p = mnt;
  1215. list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
  1216. struct mount *s;
  1217. if (!is_subdir(r->mnt_mountpoint, dentry))
  1218. continue;
  1219. for (s = r; s; s = next_mnt(s, r)) {
  1220. if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(s)) {
  1221. s = skip_mnt_tree(s);
  1222. continue;
  1223. }
  1224. while (p != s->mnt_parent) {
  1225. p = p->mnt_parent;
  1226. q = q->mnt_parent;
  1227. }
  1228. p = s;
  1229. parent = q;
  1230. q = clone_mnt(p, p->mnt.mnt_root, flag);
  1231. if (IS_ERR(q))
  1232. goto out;
  1233. br_write_lock(&vfsmount_lock);
  1234. list_add_tail(&q->mnt_list, &res->mnt_list);
  1235. attach_mnt(q, parent, p->mnt_mp);
  1236. br_write_unlock(&vfsmount_lock);
  1237. }
  1238. }
  1239. return res;
  1240. out:
  1241. if (res) {
  1242. br_write_lock(&vfsmount_lock);
  1243. umount_tree(res, 0);
  1244. br_write_unlock(&vfsmount_lock);
  1245. }
  1246. return q;
  1247. }
  1248. /* Caller should check returned pointer for errors */
  1249. struct vfsmount *collect_mounts(struct path *path)
  1250. {
  1251. struct mount *tree;
  1252. namespace_lock();
  1253. tree = copy_tree(real_mount(path->mnt), path->dentry,
  1254. CL_COPY_ALL | CL_PRIVATE);
  1255. namespace_unlock();
  1256. if (IS_ERR(tree))
  1257. return ERR_CAST(tree);
  1258. return &tree->mnt;
  1259. }
  1260. void drop_collected_mounts(struct vfsmount *mnt)
  1261. {
  1262. namespace_lock();
  1263. br_write_lock(&vfsmount_lock);
  1264. umount_tree(real_mount(mnt), 0);
  1265. br_write_unlock(&vfsmount_lock);
  1266. namespace_unlock();
  1267. }
  1268. int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
  1269. struct vfsmount *root)
  1270. {
  1271. struct mount *mnt;
  1272. int res = f(root, arg);
  1273. if (res)
  1274. return res;
  1275. list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
  1276. res = f(&mnt->mnt, arg);
  1277. if (res)
  1278. return res;
  1279. }
  1280. return 0;
  1281. }
  1282. static void cleanup_group_ids(struct mount *mnt, struct mount *end)
  1283. {
  1284. struct mount *p;
  1285. for (p = mnt; p != end; p = next_mnt(p, mnt)) {
  1286. if (p->mnt_group_id && !IS_MNT_SHARED(p))
  1287. mnt_release_group_id(p);
  1288. }
  1289. }
  1290. static int invent_group_ids(struct mount *mnt, bool recurse)
  1291. {
  1292. struct mount *p;
  1293. for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
  1294. if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
  1295. int err = mnt_alloc_group_id(p);
  1296. if (err) {
  1297. cleanup_group_ids(mnt, p);
  1298. return err;
  1299. }
  1300. }
  1301. }
  1302. return 0;
  1303. }
  1304. /*
  1305. * @source_mnt : mount tree to be attached
  1306. * @nd : place the mount tree @source_mnt is attached
  1307. * @parent_nd : if non-null, detach the source_mnt from its parent and
  1308. * store the parent mount and mountpoint dentry.
  1309. * (done when source_mnt is moved)
  1310. *
  1311. * NOTE: in the table below explains the semantics when a source mount
  1312. * of a given type is attached to a destination mount of a given type.
  1313. * ---------------------------------------------------------------------------
  1314. * | BIND MOUNT OPERATION |
  1315. * |**************************************************************************
  1316. * | source-->| shared | private | slave | unbindable |
  1317. * | dest | | | | |
  1318. * | | | | | | |
  1319. * | v | | | | |
  1320. * |**************************************************************************
  1321. * | shared | shared (++) | shared (+) | shared(+++)| invalid |
  1322. * | | | | | |
  1323. * |non-shared| shared (+) | private | slave (*) | invalid |
  1324. * ***************************************************************************
  1325. * A bind operation clones the source mount and mounts the clone on the
  1326. * destination mount.
  1327. *
  1328. * (++) the cloned mount is propagated to all the mounts in the propagation
  1329. * tree of the destination mount and the cloned mount is added to
  1330. * the peer group of the source mount.
  1331. * (+) the cloned mount is created under the destination mount and is marked
  1332. * as shared. The cloned mount is added to the peer group of the source
  1333. * mount.
  1334. * (+++) the mount is propagated to all the mounts in the propagation tree
  1335. * of the destination mount and the cloned mount is made slave
  1336. * of the same master as that of the source mount. The cloned mount
  1337. * is marked as 'shared and slave'.
  1338. * (*) the cloned mount is made a slave of the same master as that of the
  1339. * source mount.
  1340. *
  1341. * ---------------------------------------------------------------------------
  1342. * | MOVE MOUNT OPERATION |
  1343. * |**************************************************************************
  1344. * | source-->| shared | private | slave | unbindable |
  1345. * | dest | | | | |
  1346. * | | | | | | |
  1347. * | v | | | | |
  1348. * |**************************************************************************
  1349. * | shared | shared (+) | shared (+) | shared(+++) | invalid |
  1350. * | | | | | |
  1351. * |non-shared| shared (+*) | private | slave (*) | unbindable |
  1352. * ***************************************************************************
  1353. *
  1354. * (+) the mount is moved to the destination. And is then propagated to
  1355. * all the mounts in the propagation tree of the destination mount.
  1356. * (+*) the mount is moved to the destination.
  1357. * (+++) the mount is moved to the destination and is then propagated to
  1358. * all the mounts belonging to the destination mount's propagation tree.
  1359. * the mount is marked as 'shared and slave'.
  1360. * (*) the mount continues to be a slave at the new location.
  1361. *
  1362. * if the source mount is a tree, the operations explained above is
  1363. * applied to each mount in the tree.
  1364. * Must be called without spinlocks held, since this function can sleep
  1365. * in allocations.
  1366. */
  1367. static int attach_recursive_mnt(struct mount *source_mnt,
  1368. struct mount *dest_mnt,
  1369. struct mountpoint *dest_mp,
  1370. struct path *parent_path)
  1371. {
  1372. LIST_HEAD(tree_list);
  1373. struct mount *child, *p;
  1374. int err;
  1375. if (IS_MNT_SHARED(dest_mnt)) {
  1376. err = invent_group_ids(source_mnt, true);
  1377. if (err)
  1378. goto out;
  1379. }
  1380. err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list);
  1381. if (err)
  1382. goto out_cleanup_ids;
  1383. br_write_lock(&vfsmount_lock);
  1384. if (IS_MNT_SHARED(dest_mnt)) {
  1385. for (p = source_mnt; p; p = next_mnt(p, source_mnt))
  1386. set_mnt_shared(p);
  1387. }
  1388. if (parent_path) {
  1389. detach_mnt(source_mnt, parent_path);
  1390. attach_mnt(source_mnt, dest_mnt, dest_mp);
  1391. touch_mnt_namespace(source_mnt->mnt_ns);
  1392. } else {
  1393. mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt);
  1394. commit_tree(source_mnt);
  1395. }
  1396. list_for_each_entry_safe(child, p, &tree_list, mnt_hash) {
  1397. list_del_init(&child->mnt_hash);
  1398. commit_tree(child);
  1399. }
  1400. br_write_unlock(&vfsmount_lock);
  1401. return 0;
  1402. out_cleanup_ids:
  1403. if (IS_MNT_SHARED(dest_mnt))
  1404. cleanup_group_ids(source_mnt, NULL);
  1405. out:
  1406. return err;
  1407. }
  1408. static struct mountpoint *lock_mount(struct path *path)
  1409. {
  1410. struct vfsmount *mnt;
  1411. struct dentry *dentry = path->dentry;
  1412. retry:
  1413. mutex_lock(&dentry->d_inode->i_mutex);
  1414. if (unlikely(cant_mount(dentry))) {
  1415. mutex_unlock(&dentry->d_inode->i_mutex);
  1416. return ERR_PTR(-ENOENT);
  1417. }
  1418. namespace_lock();
  1419. mnt = lookup_mnt(path);
  1420. if (likely(!mnt)) {
  1421. struct mountpoint *mp = new_mountpoint(dentry);
  1422. if (IS_ERR(mp)) {
  1423. namespace_unlock();
  1424. mutex_unlock(&dentry->d_inode->i_mutex);
  1425. return mp;
  1426. }
  1427. return mp;
  1428. }
  1429. namespace_unlock();
  1430. mutex_unlock(&path->dentry->d_inode->i_mutex);
  1431. path_put(path);
  1432. path->mnt = mnt;
  1433. dentry = path->dentry = dget(mnt->mnt_root);
  1434. goto retry;
  1435. }
  1436. static void unlock_mount(struct mountpoint *where)
  1437. {
  1438. struct dentry *dentry = where->m_dentry;
  1439. put_mountpoint(where);
  1440. namespace_unlock();
  1441. mutex_unlock(&dentry->d_inode->i_mutex);
  1442. }
  1443. static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp)
  1444. {
  1445. if (mnt->mnt.mnt_sb->s_flags & MS_NOUSER)
  1446. return -EINVAL;
  1447. if (S_ISDIR(mp->m_dentry->d_inode->i_mode) !=
  1448. S_ISDIR(mnt->mnt.mnt_root->d_inode->i_mode))
  1449. return -ENOTDIR;
  1450. return attach_recursive_mnt(mnt, p, mp, NULL);
  1451. }
  1452. /*
  1453. * Sanity check the flags to change_mnt_propagation.
  1454. */
  1455. static int flags_to_propagation_type(int flags)
  1456. {
  1457. int type = flags & ~(MS_REC | MS_SILENT);
  1458. /* Fail if any non-propagation flags are set */
  1459. if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
  1460. return 0;
  1461. /* Only one propagation flag should be set */
  1462. if (!is_power_of_2(type))
  1463. return 0;
  1464. return type;
  1465. }
  1466. /*
  1467. * recursively change the type of the mountpoint.
  1468. */
  1469. static int do_change_type(struct path *path, int flag)
  1470. {
  1471. struct mount *m;
  1472. struct mount *mnt = real_mount(path->mnt);
  1473. int recurse = flag & MS_REC;
  1474. int type;
  1475. int err = 0;
  1476. if (path->dentry != path->mnt->mnt_root)
  1477. return -EINVAL;
  1478. type = flags_to_propagation_type(flag);
  1479. if (!type)
  1480. return -EINVAL;
  1481. namespace_lock();
  1482. if (type == MS_SHARED) {
  1483. err = invent_group_ids(mnt, recurse);
  1484. if (err)
  1485. goto out_unlock;
  1486. }
  1487. br_write_lock(&vfsmount_lock);
  1488. for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
  1489. change_mnt_propagation(m, type);
  1490. br_write_unlock(&vfsmount_lock);
  1491. out_unlock:
  1492. namespace_unlock();
  1493. return err;
  1494. }
  1495. /*
  1496. * do loopback mount.
  1497. */
  1498. static int do_loopback(struct path *path, const char *old_name,
  1499. int recurse)
  1500. {
  1501. struct path old_path;
  1502. struct mount *mnt = NULL, *old, *parent;
  1503. struct mountpoint *mp;
  1504. int err;
  1505. if (!old_name || !*old_name)
  1506. return -EINVAL;
  1507. err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
  1508. if (err)
  1509. return err;
  1510. err = -EINVAL;
  1511. if (mnt_ns_loop(&old_path))
  1512. goto out;
  1513. mp = lock_mount(path);
  1514. err = PTR_ERR(mp);
  1515. if (IS_ERR(mp))
  1516. goto out;
  1517. old = real_mount(old_path.mnt);
  1518. parent = real_mount(path->mnt);
  1519. err = -EINVAL;
  1520. if (IS_MNT_UNBINDABLE(old))
  1521. goto out2;
  1522. if (!check_mnt(parent) || !check_mnt(old))
  1523. goto out2;
  1524. if (recurse)
  1525. mnt = copy_tree(old, old_path.dentry, 0);
  1526. else
  1527. mnt = clone_mnt(old, old_path.dentry, 0);
  1528. if (IS_ERR(mnt)) {
  1529. err = PTR_ERR(mnt);
  1530. goto out2;
  1531. }
  1532. err = graft_tree(mnt, parent, mp);
  1533. if (err) {
  1534. br_write_lock(&vfsmount_lock);
  1535. umount_tree(mnt, 0);
  1536. br_write_unlock(&vfsmount_lock);
  1537. }
  1538. out2:
  1539. unlock_mount(mp);
  1540. out:
  1541. path_put(&old_path);
  1542. return err;
  1543. }
  1544. static int change_mount_flags(struct vfsmount *mnt, int ms_flags)
  1545. {
  1546. int error = 0;
  1547. int readonly_request = 0;
  1548. if (ms_flags & MS_RDONLY)
  1549. readonly_request = 1;
  1550. if (readonly_request == __mnt_is_readonly(mnt))
  1551. return 0;
  1552. if (mnt->mnt_flags & MNT_LOCK_READONLY)
  1553. return -EPERM;
  1554. if (readonly_request)
  1555. error = mnt_make_readonly(real_mount(mnt));
  1556. else
  1557. __mnt_unmake_readonly(real_mount(mnt));
  1558. return error;
  1559. }
  1560. /*
  1561. * change filesystem flags. dir should be a physical root of filesystem.
  1562. * If you've mounted a non-root directory somewhere and want to do remount
  1563. * on it - tough luck.
  1564. */
  1565. static int do_remount(struct path *path, int flags, int mnt_flags,
  1566. void *data)
  1567. {
  1568. int err;
  1569. struct super_block *sb = path->mnt->mnt_sb;
  1570. struct mount *mnt = real_mount(path->mnt);
  1571. if (!check_mnt(mnt))
  1572. return -EINVAL;
  1573. if (path->dentry != path->mnt->mnt_root)
  1574. return -EINVAL;
  1575. err = security_sb_remount(sb, data);
  1576. if (err)
  1577. return err;
  1578. down_write(&sb->s_umount);
  1579. if (flags & MS_BIND)
  1580. err = change_mount_flags(path->mnt, flags);
  1581. else if (!capable(CAP_SYS_ADMIN))
  1582. err = -EPERM;
  1583. else
  1584. err = do_remount_sb(sb, flags, data, 0);
  1585. if (!err) {
  1586. br_write_lock(&vfsmount_lock);
  1587. mnt_flags |= mnt->mnt.mnt_flags & MNT_PROPAGATION_MASK;
  1588. mnt->mnt.mnt_flags = mnt_flags;
  1589. br_write_unlock(&vfsmount_lock);
  1590. }
  1591. up_write(&sb->s_umount);
  1592. if (!err) {
  1593. br_write_lock(&vfsmount_lock);
  1594. touch_mnt_namespace(mnt->mnt_ns);
  1595. br_write_unlock(&vfsmount_lock);
  1596. }
  1597. return err;
  1598. }
  1599. static inline int tree_contains_unbindable(struct mount *mnt)
  1600. {
  1601. struct mount *p;
  1602. for (p = mnt; p; p = next_mnt(p, mnt)) {
  1603. if (IS_MNT_UNBINDABLE(p))
  1604. return 1;
  1605. }
  1606. return 0;
  1607. }
  1608. static int do_move_mount(struct path *path, const char *old_name)
  1609. {
  1610. struct path old_path, parent_path;
  1611. struct mount *p;
  1612. struct mount *old;
  1613. struct mountpoint *mp;
  1614. int err;
  1615. if (!old_name || !*old_name)
  1616. return -EINVAL;
  1617. err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
  1618. if (err)
  1619. return err;
  1620. mp = lock_mount(path);
  1621. err = PTR_ERR(mp);
  1622. if (IS_ERR(mp))
  1623. goto out;
  1624. old = real_mount(old_path.mnt);
  1625. p = real_mount(path->mnt);
  1626. err = -EINVAL;
  1627. if (!check_mnt(p) || !check_mnt(old))
  1628. goto out1;
  1629. err = -EINVAL;
  1630. if (old_path.dentry != old_path.mnt->mnt_root)
  1631. goto out1;
  1632. if (!mnt_has_parent(old))
  1633. goto out1;
  1634. if (S_ISDIR(path->dentry->d_inode->i_mode) !=
  1635. S_ISDIR(old_path.dentry->d_inode->i_mode))
  1636. goto out1;
  1637. /*
  1638. * Don't move a mount residing in a shared parent.
  1639. */
  1640. if (IS_MNT_SHARED(old->mnt_parent))
  1641. goto out1;
  1642. /*
  1643. * Don't move a mount tree containing unbindable mounts to a destination
  1644. * mount which is shared.
  1645. */
  1646. if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
  1647. goto out1;
  1648. err = -ELOOP;
  1649. for (; mnt_has_parent(p); p = p->mnt_parent)
  1650. if (p == old)
  1651. goto out1;
  1652. err = attach_recursive_mnt(old, real_mount(path->mnt), mp, &parent_path);
  1653. if (err)
  1654. goto out1;
  1655. /* if the mount is moved, it should no longer be expire
  1656. * automatically */
  1657. list_del_init(&old->mnt_expire);
  1658. out1:
  1659. unlock_mount(mp);
  1660. out:
  1661. if (!err)
  1662. path_put(&parent_path);
  1663. path_put(&old_path);
  1664. return err;
  1665. }
  1666. static struct vfsmount *fs_set_subtype(struct vfsmount *mnt, const char *fstype)
  1667. {
  1668. int err;
  1669. const char *subtype = strchr(fstype, '.');
  1670. if (subtype) {
  1671. subtype++;
  1672. err = -EINVAL;
  1673. if (!subtype[0])
  1674. goto err;
  1675. } else
  1676. subtype = "";
  1677. mnt->mnt_sb->s_subtype = kstrdup(subtype, GFP_KERNEL);
  1678. err = -ENOMEM;
  1679. if (!mnt->mnt_sb->s_subtype)
  1680. goto err;
  1681. return mnt;
  1682. err:
  1683. mntput(mnt);
  1684. return ERR_PTR(err);
  1685. }
  1686. /*
  1687. * add a mount into a namespace's mount tree
  1688. */
  1689. static int do_add_mount(struct mount *newmnt, struct path *path, int mnt_flags)
  1690. {
  1691. struct mountpoint *mp;
  1692. struct mount *parent;
  1693. int err;
  1694. mnt_flags &= ~(MNT_SHARED | MNT_WRITE_HOLD | MNT_INTERNAL);
  1695. mp = lock_mount(path);
  1696. if (IS_ERR(mp))
  1697. return PTR_ERR(mp);
  1698. parent = real_mount(path->mnt);
  1699. err = -EINVAL;
  1700. if (unlikely(!check_mnt(parent))) {
  1701. /* that's acceptable only for automounts done in private ns */
  1702. if (!(mnt_flags & MNT_SHRINKABLE))
  1703. goto unlock;
  1704. /* ... and for those we'd better have mountpoint still alive */
  1705. if (!parent->mnt_ns)
  1706. goto unlock;
  1707. }
  1708. /* Refuse the same filesystem on the same mount point */
  1709. err = -EBUSY;
  1710. if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb &&
  1711. path->mnt->mnt_root == path->dentry)
  1712. goto unlock;
  1713. err = -EINVAL;
  1714. if (S_ISLNK(newmnt->mnt.mnt_root->d_inode->i_mode))
  1715. goto unlock;
  1716. newmnt->mnt.mnt_flags = mnt_flags;
  1717. err = graft_tree(newmnt, parent, mp);
  1718. unlock:
  1719. unlock_mount(mp);
  1720. return err;
  1721. }
  1722. /*
  1723. * create a new mount for userspace and request it to be added into the
  1724. * namespace's tree
  1725. */
  1726. static int do_new_mount(struct path *path, const char *fstype, int flags,
  1727. int mnt_flags, const char *name, void *data)
  1728. {
  1729. struct file_system_type *type;
  1730. struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
  1731. struct vfsmount *mnt;
  1732. int err;
  1733. if (!fstype)
  1734. return -EINVAL;
  1735. type = get_fs_type(fstype);
  1736. if (!type)
  1737. return -ENODEV;
  1738. if (user_ns != &init_user_ns) {
  1739. if (!(type->fs_flags & FS_USERNS_MOUNT)) {
  1740. put_filesystem(type);
  1741. return -EPERM;
  1742. }
  1743. /* Only in special cases allow devices from mounts
  1744. * created outside the initial user namespace.
  1745. */
  1746. if (!(type->fs_flags & FS_USERNS_DEV_MOUNT)) {
  1747. flags |= MS_NODEV;
  1748. mnt_flags |= MNT_NODEV;
  1749. }
  1750. }
  1751. mnt = vfs_kern_mount(type, flags, name, data);
  1752. if (!IS_ERR(mnt) && (type->fs_flags & FS_HAS_SUBTYPE) &&
  1753. !mnt->mnt_sb->s_subtype)
  1754. mnt = fs_set_subtype(mnt, fstype);
  1755. put_filesystem(type);
  1756. if (IS_ERR(mnt))
  1757. return PTR_ERR(mnt);
  1758. err = do_add_mount(real_mount(mnt), path, mnt_flags);
  1759. if (err)
  1760. mntput(mnt);
  1761. return err;
  1762. }
  1763. int finish_automount(struct vfsmount *m, struct path *path)
  1764. {
  1765. struct mount *mnt = real_mount(m);
  1766. int err;
  1767. /* The new mount record should have at least 2 refs to prevent it being
  1768. * expired before we get a chance to add it
  1769. */
  1770. BUG_ON(mnt_get_count(mnt) < 2);
  1771. if (m->mnt_sb == path->mnt->mnt_sb &&
  1772. m->mnt_root == path->dentry) {
  1773. err = -ELOOP;
  1774. goto fail;
  1775. }
  1776. err = do_add_mount(mnt, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
  1777. if (!err)
  1778. return 0;
  1779. fail:
  1780. /* remove m from any expiration list it may be on */
  1781. if (!list_empty(&mnt->mnt_expire)) {
  1782. namespace_lock();
  1783. br_write_lock(&vfsmount_lock);
  1784. list_del_init(&mnt->mnt_expire);
  1785. br_write_unlock(&vfsmount_lock);
  1786. namespace_unlock();
  1787. }
  1788. mntput(m);
  1789. mntput(m);
  1790. return err;
  1791. }
  1792. /**
  1793. * mnt_set_expiry - Put a mount on an expiration list
  1794. * @mnt: The mount to list.
  1795. * @expiry_list: The list to add the mount to.
  1796. */
  1797. void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
  1798. {
  1799. namespace_lock();
  1800. br_write_lock(&vfsmount_lock);
  1801. list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
  1802. br_write_unlock(&vfsmount_lock);
  1803. namespace_unlock();
  1804. }
  1805. EXPORT_SYMBOL(mnt_set_expiry);
  1806. /*
  1807. * process a list of expirable mountpoints with the intent of discarding any
  1808. * mountpoints that aren't in use and haven't been touched since last we came
  1809. * here
  1810. */
  1811. void mark_mounts_for_expiry(struct list_head *mounts)
  1812. {
  1813. struct mount *mnt, *next;
  1814. LIST_HEAD(graveyard);
  1815. if (list_empty(mounts))
  1816. return;
  1817. namespace_lock();
  1818. br_write_lock(&vfsmount_lock);
  1819. /* extract from the expiration list every vfsmount that matches the
  1820. * following criteria:
  1821. * - only referenced by its parent vfsmount
  1822. * - still marked for expiry (marked on the last call here; marks are
  1823. * cleared by mntput())
  1824. */
  1825. list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
  1826. if (!xchg(&mnt->mnt_expiry_mark, 1) ||
  1827. propagate_mount_busy(mnt, 1))
  1828. continue;
  1829. list_move(&mnt->mnt_expire, &graveyard);
  1830. }
  1831. while (!list_empty(&graveyard)) {
  1832. mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
  1833. touch_mnt_namespace(mnt->mnt_ns);
  1834. umount_tree(mnt, 1);
  1835. }
  1836. br_write_unlock(&vfsmount_lock);
  1837. namespace_unlock();
  1838. }
  1839. EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
  1840. /*
  1841. * Ripoff of 'select_parent()'
  1842. *
  1843. * search the list of submounts for a given mountpoint, and move any
  1844. * shrinkable submounts to the 'graveyard' list.
  1845. */
  1846. static int select_submounts(struct mount *parent, struct list_head *graveyard)
  1847. {
  1848. struct mount *this_parent = parent;
  1849. struct list_head *next;
  1850. int found = 0;
  1851. repeat:
  1852. next = this_parent->mnt_mounts.next;
  1853. resume:
  1854. while (next != &this_parent->mnt_mounts) {
  1855. struct list_head *tmp = next;
  1856. struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
  1857. next = tmp->next;
  1858. if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
  1859. continue;
  1860. /*
  1861. * Descend a level if the d_mounts list is non-empty.
  1862. */
  1863. if (!list_empty(&mnt->mnt_mounts)) {
  1864. this_parent = mnt;
  1865. goto repeat;
  1866. }
  1867. if (!propagate_mount_busy(mnt, 1)) {
  1868. list_move_tail(&mnt->mnt_expire, graveyard);
  1869. found++;
  1870. }
  1871. }
  1872. /*
  1873. * All done at this level ... ascend and resume the search
  1874. */
  1875. if (this_parent != parent) {
  1876. next = this_parent->mnt_child.next;
  1877. this_parent = this_parent->mnt_parent;
  1878. goto resume;
  1879. }
  1880. return found;
  1881. }
  1882. /*
  1883. * process a list of expirable mountpoints with the intent of discarding any
  1884. * submounts of a specific parent mountpoint
  1885. *
  1886. * vfsmount_lock must be held for write
  1887. */
  1888. static void shrink_submounts(struct mount *mnt)
  1889. {
  1890. LIST_HEAD(graveyard);
  1891. struct mount *m;
  1892. /* extract submounts of 'mountpoint' from the expiration list */
  1893. while (select_submounts(mnt, &graveyard)) {
  1894. while (!list_empty(&graveyard)) {
  1895. m = list_first_entry(&graveyard, struct mount,
  1896. mnt_expire);
  1897. touch_mnt_namespace(m->mnt_ns);
  1898. umount_tree(m, 1);
  1899. }
  1900. }
  1901. }
  1902. /*
  1903. * Some copy_from_user() implementations do not return the exact number of
  1904. * bytes remaining to copy on a fault. But copy_mount_options() requires that.
  1905. * Note that this function differs from copy_from_user() in that it will oops
  1906. * on bad values of `to', rather than returning a short copy.
  1907. */
  1908. static long exact_copy_from_user(void *to, const void __user * from,
  1909. unsigned long n)
  1910. {
  1911. char *t = to;
  1912. const char __user *f = from;
  1913. char c;
  1914. if (!access_ok(VERIFY_READ, from, n))
  1915. return n;
  1916. while (n) {
  1917. if (__get_user(c, f)) {
  1918. memset(t, 0, n);
  1919. break;
  1920. }
  1921. *t++ = c;
  1922. f++;
  1923. n--;
  1924. }
  1925. return n;
  1926. }
  1927. int copy_mount_options(const void __user * data, unsigned long *where)
  1928. {
  1929. int i;
  1930. unsigned long page;
  1931. unsigned long size;
  1932. *where = 0;
  1933. if (!data)
  1934. return 0;
  1935. if (!(page = __get_free_page(GFP_KERNEL)))
  1936. return -ENOMEM;
  1937. /* We only care that *some* data at the address the user
  1938. * gave us is valid. Just in case, we'll zero
  1939. * the remainder of the page.
  1940. */
  1941. /* copy_from_user cannot cross TASK_SIZE ! */
  1942. size = TASK_SIZE - (unsigned long)data;
  1943. if (size > PAGE_SIZE)
  1944. size = PAGE_SIZE;
  1945. i = size - exact_copy_from_user((void *)page, data, size);
  1946. if (!i) {
  1947. free_page(page);
  1948. return -EFAULT;
  1949. }
  1950. if (i != PAGE_SIZE)
  1951. memset((char *)page + i, 0, PAGE_SIZE - i);
  1952. *where = page;
  1953. return 0;
  1954. }
  1955. int copy_mount_string(const void __user *data, char **where)
  1956. {
  1957. char *tmp;
  1958. if (!data) {
  1959. *where = NULL;
  1960. return 0;
  1961. }
  1962. tmp = strndup_user(data, PAGE_SIZE);
  1963. if (IS_ERR(tmp))
  1964. return PTR_ERR(tmp);
  1965. *where = tmp;
  1966. return 0;
  1967. }
  1968. /*
  1969. * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
  1970. * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
  1971. *
  1972. * data is a (void *) that can point to any structure up to
  1973. * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
  1974. * information (or be NULL).
  1975. *
  1976. * Pre-0.97 versions of mount() didn't have a flags word.
  1977. * When the flags word was introduced its top half was required
  1978. * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
  1979. * Therefore, if this magic number is present, it carries no information
  1980. * and must be discarded.
  1981. */
  1982. long do_mount(const char *dev_name, const char *dir_name,
  1983. const char *type_page, unsigned long flags, void *data_page)
  1984. {
  1985. struct path path;
  1986. int retval = 0;
  1987. int mnt_flags = 0;
  1988. /* Discard magic */
  1989. if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
  1990. flags &= ~MS_MGC_MSK;
  1991. /* Basic sanity checks */
  1992. if (!dir_name || !*dir_name || !memchr(dir_name, 0, PAGE_SIZE))
  1993. return -EINVAL;
  1994. if (data_page)
  1995. ((char *)data_page)[PAGE_SIZE - 1] = 0;
  1996. /* ... and get the mountpoint */
  1997. retval = kern_path(dir_name, LOOKUP_FOLLOW, &path);
  1998. if (retval)
  1999. return retval;
  2000. retval = security_sb_mount(dev_name, &path,
  2001. type_page, flags, data_page);
  2002. if (!retval && !may_mount())
  2003. retval = -EPERM;
  2004. if (retval)
  2005. goto dput_out;
  2006. /* Default to relatime unless overriden */
  2007. if (!(flags & MS_NOATIME))
  2008. mnt_flags |= MNT_RELATIME;
  2009. /* Separate the per-mountpoint flags */
  2010. if (flags & MS_NOSUID)
  2011. mnt_flags |= MNT_NOSUID;
  2012. if (flags & MS_NODEV)
  2013. mnt_flags |= MNT_NODEV;
  2014. if (flags & MS_NOEXEC)
  2015. mnt_flags |= MNT_NOEXEC;
  2016. if (flags & MS_NOATIME)
  2017. mnt_flags |= MNT_NOATIME;
  2018. if (flags & MS_NODIRATIME)
  2019. mnt_flags |= MNT_NODIRATIME;
  2020. if (flags & MS_STRICTATIME)
  2021. mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
  2022. if (flags & MS_RDONLY)
  2023. mnt_flags |= MNT_READONLY;
  2024. flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE | MS_BORN |
  2025. MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT |
  2026. MS_STRICTATIME);
  2027. if (flags & MS_REMOUNT)
  2028. retval = do_remount(&path, flags & ~MS_REMOUNT, mnt_flags,
  2029. data_page);
  2030. else if (flags & MS_BIND)
  2031. retval = do_loopback(&path, dev_name, flags & MS_REC);
  2032. else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
  2033. retval = do_change_type(&path, flags);
  2034. else if (flags & MS_MOVE)
  2035. retval = do_move_mount(&path, dev_name);
  2036. else
  2037. retval = do_new_mount(&path, type_page, flags, mnt_flags,
  2038. dev_name, data_page);
  2039. dput_out:
  2040. path_put(&path);
  2041. return retval;
  2042. }
  2043. static void free_mnt_ns(struct mnt_namespace *ns)
  2044. {
  2045. proc_free_inum(ns->proc_inum);
  2046. put_user_ns(ns->user_ns);
  2047. kfree(ns);
  2048. }
  2049. /*
  2050. * Assign a sequence number so we can detect when we attempt to bind
  2051. * mount a reference to an older mount namespace into the current
  2052. * mount namespace, preventing reference counting loops. A 64bit
  2053. * number incrementing at 10Ghz will take 12,427 years to wrap which
  2054. * is effectively never, so we can ignore the possibility.
  2055. */
  2056. static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1);
  2057. static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns)
  2058. {
  2059. struct mnt_namespace *new_ns;
  2060. int ret;
  2061. new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
  2062. if (!new_ns)
  2063. return ERR_PTR(-ENOMEM);
  2064. ret = proc_alloc_inum(&new_ns->proc_inum);
  2065. if (ret) {
  2066. kfree(new_ns);
  2067. return ERR_PTR(ret);
  2068. }
  2069. new_ns->seq = atomic64_add_return(1, &mnt_ns_seq);
  2070. atomic_set(&new_ns->count, 1);
  2071. new_ns->root = NULL;
  2072. INIT_LIST_HEAD(&new_ns->list);
  2073. init_waitqueue_head(&new_ns->poll);
  2074. new_ns->event = 0;
  2075. new_ns->user_ns = get_user_ns(user_ns);
  2076. return new_ns;
  2077. }
  2078. /*
  2079. * Allocate a new namespace structure and populate it with contents
  2080. * copied from the namespace of the passed in task structure.
  2081. */
  2082. static struct mnt_namespace *dup_mnt_ns(struct mnt_namespace *mnt_ns,
  2083. struct user_namespace *user_ns, struct fs_struct *fs)
  2084. {
  2085. struct mnt_namespace *new_ns;
  2086. struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
  2087. struct mount *p, *q;
  2088. struct mount *old = mnt_ns->root;
  2089. struct mount *new;
  2090. int copy_flags;
  2091. new_ns = alloc_mnt_ns(user_ns);
  2092. if (IS_ERR(new_ns))
  2093. return new_ns;
  2094. namespace_lock();
  2095. /* First pass: copy the tree topology */
  2096. copy_flags = CL_COPY_ALL | CL_EXPIRE;
  2097. if (user_ns != mnt_ns->user_ns)
  2098. copy_flags |= CL_SHARED_TO_SLAVE | CL_UNPRIVILEGED;
  2099. new = copy_tree(old, old->mnt.mnt_root, copy_flags);
  2100. if (IS_ERR(new)) {
  2101. namespace_unlock();
  2102. free_mnt_ns(new_ns);
  2103. return ERR_CAST(new);
  2104. }
  2105. new_ns->root = new;
  2106. br_write_lock(&vfsmount_lock);
  2107. list_add_tail(&new_ns->list, &new->mnt_list);
  2108. br_write_unlock(&vfsmount_lock);
  2109. /*
  2110. * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
  2111. * as belonging to new namespace. We have already acquired a private
  2112. * fs_struct, so tsk->fs->lock is not needed.
  2113. */
  2114. p = old;
  2115. q = new;
  2116. while (p) {
  2117. q->mnt_ns = new_ns;
  2118. if (fs) {
  2119. if (&p->mnt == fs->root.mnt) {
  2120. fs->root.mnt = mntget(&q->mnt);
  2121. rootmnt = &p->mnt;
  2122. }
  2123. if (&p->mnt == fs->pwd.mnt) {
  2124. fs->pwd.mnt = mntget(&q->mnt);
  2125. pwdmnt = &p->mnt;
  2126. }
  2127. }
  2128. p = next_mnt(p, old);
  2129. q = next_mnt(q, new);
  2130. }
  2131. namespace_unlock();
  2132. if (rootmnt)
  2133. mntput(rootmnt);
  2134. if (pwdmnt)
  2135. mntput(pwdmnt);
  2136. return new_ns;
  2137. }
  2138. struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
  2139. struct user_namespace *user_ns, struct fs_struct *new_fs)
  2140. {
  2141. struct mnt_namespace *new_ns;
  2142. BUG_ON(!ns);
  2143. get_mnt_ns(ns);
  2144. if (!(flags & CLONE_NEWNS))
  2145. return ns;
  2146. new_ns = dup_mnt_ns(ns, user_ns, new_fs);
  2147. put_mnt_ns(ns);
  2148. return new_ns;
  2149. }
  2150. /**
  2151. * create_mnt_ns - creates a private namespace and adds a root filesystem
  2152. * @mnt: pointer to the new root filesystem mountpoint
  2153. */
  2154. static struct mnt_namespace *create_mnt_ns(struct vfsmount *m)
  2155. {
  2156. struct mnt_namespace *new_ns = alloc_mnt_ns(&init_user_ns);
  2157. if (!IS_ERR(new_ns)) {
  2158. struct mount *mnt = real_mount(m);
  2159. mnt->mnt_ns = new_ns;
  2160. new_ns->root = mnt;
  2161. list_add(&mnt->mnt_list, &new_ns->list);
  2162. } else {
  2163. mntput(m);
  2164. }
  2165. return new_ns;
  2166. }
  2167. struct dentry *mount_subtree(struct vfsmount *mnt, const char *name)
  2168. {
  2169. struct mnt_namespace *ns;
  2170. struct super_block *s;
  2171. struct path path;
  2172. int err;
  2173. ns = create_mnt_ns(mnt);
  2174. if (IS_ERR(ns))
  2175. return ERR_CAST(ns);
  2176. err = vfs_path_lookup(mnt->mnt_root, mnt,
  2177. name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
  2178. put_mnt_ns(ns);
  2179. if (err)
  2180. return ERR_PTR(err);
  2181. /* trade a vfsmount reference for active sb one */
  2182. s = path.mnt->mnt_sb;
  2183. atomic_inc(&s->s_active);
  2184. mntput(path.mnt);
  2185. /* lock the sucker */
  2186. down_write(&s->s_umount);
  2187. /* ... and return the root of (sub)tree on it */
  2188. return path.dentry;
  2189. }
  2190. EXPORT_SYMBOL(mount_subtree);
  2191. SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
  2192. char __user *, type, unsigned long, flags, void __user *, data)
  2193. {
  2194. int ret;
  2195. char *kernel_type;
  2196. struct filename *kernel_dir;
  2197. char *kernel_dev;
  2198. unsigned long data_page;
  2199. ret = copy_mount_string(type, &kernel_type);
  2200. if (ret < 0)
  2201. goto out_type;
  2202. kernel_dir = getname(dir_name);
  2203. if (IS_ERR(kernel_dir)) {
  2204. ret = PTR_ERR(kernel_dir);
  2205. goto out_dir;
  2206. }
  2207. ret = copy_mount_string(dev_name, &kernel_dev);
  2208. if (ret < 0)
  2209. goto out_dev;
  2210. ret = copy_mount_options(data, &data_page);
  2211. if (ret < 0)
  2212. goto out_data;
  2213. ret = do_mount(kernel_dev, kernel_dir->name, kernel_type, flags,
  2214. (void *) data_page);
  2215. free_page(data_page);
  2216. out_data:
  2217. kfree(kernel_dev);
  2218. out_dev:
  2219. putname(kernel_dir);
  2220. out_dir:
  2221. kfree(kernel_type);
  2222. out_type:
  2223. return ret;
  2224. }
  2225. /*
  2226. * Return true if path is reachable from root
  2227. *
  2228. * namespace_sem or vfsmount_lock is held
  2229. */
  2230. bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
  2231. const struct path *root)
  2232. {
  2233. while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
  2234. dentry = mnt->mnt_mountpoint;
  2235. mnt = mnt->mnt_parent;
  2236. }
  2237. return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
  2238. }
  2239. int path_is_under(struct path *path1, struct path *path2)
  2240. {
  2241. int res;
  2242. br_read_lock(&vfsmount_lock);
  2243. res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
  2244. br_read_unlock(&vfsmount_lock);
  2245. return res;
  2246. }
  2247. EXPORT_SYMBOL(path_is_under);
  2248. /*
  2249. * pivot_root Semantics:
  2250. * Moves the root file system of the current process to the directory put_old,
  2251. * makes new_root as the new root file system of the current process, and sets
  2252. * root/cwd of all processes which had them on the current root to new_root.
  2253. *
  2254. * Restrictions:
  2255. * The new_root and put_old must be directories, and must not be on the
  2256. * same file system as the current process root. The put_old must be
  2257. * underneath new_root, i.e. adding a non-zero number of /.. to the string
  2258. * pointed to by put_old must yield the same directory as new_root. No other
  2259. * file system may be mounted on put_old. After all, new_root is a mountpoint.
  2260. *
  2261. * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
  2262. * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
  2263. * in this situation.
  2264. *
  2265. * Notes:
  2266. * - we don't move root/cwd if they are not at the root (reason: if something
  2267. * cared enough to change them, it's probably wrong to force them elsewhere)
  2268. * - it's okay to pick a root that isn't the root of a file system, e.g.
  2269. * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
  2270. * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
  2271. * first.
  2272. */
  2273. SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
  2274. const char __user *, put_old)
  2275. {
  2276. struct path new, old, parent_path, root_parent, root;
  2277. struct mount *new_mnt, *root_mnt, *old_mnt;
  2278. struct mountpoint *old_mp, *root_mp;
  2279. int error;
  2280. if (!may_mount())
  2281. return -EPERM;
  2282. error = user_path_dir(new_root, &new);
  2283. if (error)
  2284. goto out0;
  2285. error = user_path_dir(put_old, &old);
  2286. if (error)
  2287. goto out1;
  2288. error = security_sb_pivotroot(&old, &new);
  2289. if (error)
  2290. goto out2;
  2291. get_fs_root(current->fs, &root);
  2292. old_mp = lock_mount(&old);
  2293. error = PTR_ERR(old_mp);
  2294. if (IS_ERR(old_mp))
  2295. goto out3;
  2296. error = -EINVAL;
  2297. new_mnt = real_mount(new.mnt);
  2298. root_mnt = real_mount(root.mnt);
  2299. old_mnt = real_mount(old.mnt);
  2300. if (IS_MNT_SHARED(old_mnt) ||
  2301. IS_MNT_SHARED(new_mnt->mnt_parent) ||
  2302. IS_MNT_SHARED(root_mnt->mnt_parent))
  2303. goto out4;
  2304. if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
  2305. goto out4;
  2306. error = -ENOENT;
  2307. if (d_unlinked(new.dentry))
  2308. goto out4;
  2309. error = -EBUSY;
  2310. if (new_mnt == root_mnt || old_mnt == root_mnt)
  2311. goto out4; /* loop, on the same file system */
  2312. error = -EINVAL;
  2313. if (root.mnt->mnt_root != root.dentry)
  2314. goto out4; /* not a mountpoint */
  2315. if (!mnt_has_parent(root_mnt))
  2316. goto out4; /* not attached */
  2317. root_mp = root_mnt->mnt_mp;
  2318. if (new.mnt->mnt_root != new.dentry)
  2319. goto out4; /* not a mountpoint */
  2320. if (!mnt_has_parent(new_mnt))
  2321. goto out4; /* not attached */
  2322. /* make sure we can reach put_old from new_root */
  2323. if (!is_path_reachable(old_mnt, old.dentry, &new))
  2324. goto out4;
  2325. root_mp->m_count++; /* pin it so it won't go away */
  2326. br_write_lock(&vfsmount_lock);
  2327. detach_mnt(new_mnt, &parent_path);
  2328. detach_mnt(root_mnt, &root_parent);
  2329. /* mount old root on put_old */
  2330. attach_mnt(root_mnt, old_mnt, old_mp);
  2331. /* mount new_root on / */
  2332. attach_mnt(new_mnt, real_mount(root_parent.mnt), root_mp);
  2333. touch_mnt_namespace(current->nsproxy->mnt_ns);
  2334. br_write_unlock(&vfsmount_lock);
  2335. chroot_fs_refs(&root, &new);
  2336. put_mountpoint(root_mp);
  2337. error = 0;
  2338. out4:
  2339. unlock_mount(old_mp);
  2340. if (!error) {
  2341. path_put(&root_parent);
  2342. path_put(&parent_path);
  2343. }
  2344. out3:
  2345. path_put(&root);
  2346. out2:
  2347. path_put(&old);
  2348. out1:
  2349. path_put(&new);
  2350. out0:
  2351. return error;
  2352. }
  2353. static void __init init_mount_tree(void)
  2354. {
  2355. struct vfsmount *mnt;
  2356. struct mnt_namespace *ns;
  2357. struct path root;
  2358. struct file_system_type *type;
  2359. type = get_fs_type("rootfs");
  2360. if (!type)
  2361. panic("Can't find rootfs type");
  2362. mnt = vfs_kern_mount(type, 0, "rootfs", NULL);
  2363. put_filesystem(type);
  2364. if (IS_ERR(mnt))
  2365. panic("Can't create rootfs");
  2366. ns = create_mnt_ns(mnt);
  2367. if (IS_ERR(ns))
  2368. panic("Can't allocate initial namespace");
  2369. init_task.nsproxy->mnt_ns = ns;
  2370. get_mnt_ns(ns);
  2371. root.mnt = mnt;
  2372. root.dentry = mnt->mnt_root;
  2373. set_fs_pwd(current->fs, &root);
  2374. set_fs_root(current->fs, &root);
  2375. }
  2376. void __init mnt_init(void)
  2377. {
  2378. unsigned u;
  2379. int err;
  2380. init_rwsem(&namespace_sem);
  2381. mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
  2382. 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
  2383. mount_hashtable = (struct list_head *)__get_free_page(GFP_ATOMIC);
  2384. mountpoint_hashtable = (struct list_head *)__get_free_page(GFP_ATOMIC);
  2385. if (!mount_hashtable || !mountpoint_hashtable)
  2386. panic("Failed to allocate mount hash table\n");
  2387. printk(KERN_INFO "Mount-cache hash table entries: %lu\n", HASH_SIZE);
  2388. for (u = 0; u < HASH_SIZE; u++)
  2389. INIT_LIST_HEAD(&mount_hashtable[u]);
  2390. for (u = 0; u < HASH_SIZE; u++)
  2391. INIT_LIST_HEAD(&mountpoint_hashtable[u]);
  2392. br_lock_init(&vfsmount_lock);
  2393. err = sysfs_init();
  2394. if (err)
  2395. printk(KERN_WARNING "%s: sysfs_init error: %d\n",
  2396. __func__, err);
  2397. fs_kobj = kobject_create_and_add("fs", NULL);
  2398. if (!fs_kobj)
  2399. printk(KERN_WARNING "%s: kobj create error\n", __func__);
  2400. init_rootfs();
  2401. init_mount_tree();
  2402. }
  2403. void put_mnt_ns(struct mnt_namespace *ns)
  2404. {
  2405. if (!atomic_dec_and_test(&ns->count))
  2406. return;
  2407. namespace_lock();
  2408. br_write_lock(&vfsmount_lock);
  2409. umount_tree(ns->root, 0);
  2410. br_write_unlock(&vfsmount_lock);
  2411. namespace_unlock();
  2412. free_mnt_ns(ns);
  2413. }
  2414. struct vfsmount *kern_mount_data(struct file_system_type *type, void *data)
  2415. {
  2416. struct vfsmount *mnt;
  2417. mnt = vfs_kern_mount(type, MS_KERNMOUNT, type->name, data);
  2418. if (!IS_ERR(mnt)) {
  2419. /*
  2420. * it is a longterm mount, don't release mnt until
  2421. * we unmount before file sys is unregistered
  2422. */
  2423. real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
  2424. }
  2425. return mnt;
  2426. }
  2427. EXPORT_SYMBOL_GPL(kern_mount_data);
  2428. void kern_unmount(struct vfsmount *mnt)
  2429. {
  2430. /* release long term mount so mount point can be released */
  2431. if (!IS_ERR_OR_NULL(mnt)) {
  2432. br_write_lock(&vfsmount_lock);
  2433. real_mount(mnt)->mnt_ns = NULL;
  2434. br_write_unlock(&vfsmount_lock);
  2435. mntput(mnt);
  2436. }
  2437. }
  2438. EXPORT_SYMBOL(kern_unmount);
  2439. bool our_mnt(struct vfsmount *mnt)
  2440. {
  2441. return check_mnt(real_mount(mnt));
  2442. }
  2443. bool current_chrooted(void)
  2444. {
  2445. /* Does the current process have a non-standard root */
  2446. struct path ns_root;
  2447. struct path fs_root;
  2448. bool chrooted;
  2449. /* Find the namespace root */
  2450. ns_root.mnt = &current->nsproxy->mnt_ns->root->mnt;
  2451. ns_root.dentry = ns_root.mnt->mnt_root;
  2452. path_get(&ns_root);
  2453. while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root))
  2454. ;
  2455. get_fs_root(current->fs, &fs_root);
  2456. chrooted = !path_equal(&fs_root, &ns_root);
  2457. path_put(&fs_root);
  2458. path_put(&ns_root);
  2459. return chrooted;
  2460. }
  2461. void update_mnt_policy(struct user_namespace *userns)
  2462. {
  2463. struct mnt_namespace *ns = current->nsproxy->mnt_ns;
  2464. struct mount *mnt;
  2465. down_read(&namespace_sem);
  2466. list_for_each_entry(mnt, &ns->list, mnt_list) {
  2467. switch (mnt->mnt.mnt_sb->s_magic) {
  2468. case SYSFS_MAGIC:
  2469. userns->may_mount_sysfs = true;
  2470. break;
  2471. case PROC_SUPER_MAGIC:
  2472. userns->may_mount_proc = true;
  2473. break;
  2474. }
  2475. if (userns->may_mount_sysfs && userns->may_mount_proc)
  2476. break;
  2477. }
  2478. up_read(&namespace_sem);
  2479. }
  2480. static void *mntns_get(struct task_struct *task)
  2481. {
  2482. struct mnt_namespace *ns = NULL;
  2483. struct nsproxy *nsproxy;
  2484. rcu_read_lock();
  2485. nsproxy = task_nsproxy(task);
  2486. if (nsproxy) {
  2487. ns = nsproxy->mnt_ns;
  2488. get_mnt_ns(ns);
  2489. }
  2490. rcu_read_unlock();
  2491. return ns;
  2492. }
  2493. static void mntns_put(void *ns)
  2494. {
  2495. put_mnt_ns(ns);
  2496. }
  2497. static int mntns_install(struct nsproxy *nsproxy, void *ns)
  2498. {
  2499. struct fs_struct *fs = current->fs;
  2500. struct mnt_namespace *mnt_ns = ns;
  2501. struct path root;
  2502. if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) ||
  2503. !nsown_capable(CAP_SYS_CHROOT) ||
  2504. !nsown_capable(CAP_SYS_ADMIN))
  2505. return -EPERM;
  2506. if (fs->users != 1)
  2507. return -EINVAL;
  2508. get_mnt_ns(mnt_ns);
  2509. put_mnt_ns(nsproxy->mnt_ns);
  2510. nsproxy->mnt_ns = mnt_ns;
  2511. /* Find the root */
  2512. root.mnt = &mnt_ns->root->mnt;
  2513. root.dentry = mnt_ns->root->mnt.mnt_root;
  2514. path_get(&root);
  2515. while(d_mountpoint(root.dentry) && follow_down_one(&root))
  2516. ;
  2517. /* Update the pwd and root */
  2518. set_fs_pwd(fs, &root);
  2519. set_fs_root(fs, &root);
  2520. path_put(&root);
  2521. return 0;
  2522. }
  2523. static unsigned int mntns_inum(void *ns)
  2524. {
  2525. struct mnt_namespace *mnt_ns = ns;
  2526. return mnt_ns->proc_inum;
  2527. }
  2528. const struct proc_ns_operations mntns_operations = {
  2529. .name = "mnt",
  2530. .type = CLONE_NEWNS,
  2531. .get = mntns_get,
  2532. .put = mntns_put,
  2533. .install = mntns_install,
  2534. .inum = mntns_inum,
  2535. };