sched.c 220 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217821882198220822182228223822482258226822782288229823082318232823382348235823682378238823982408241824282438244824582468247824882498250825182528253825482558256825782588259826082618262826382648265826682678268826982708271827282738274827582768277827882798280828182828283828482858286828782888289829082918292829382948295829682978298829983008301830283038304830583068307830883098310831183128313831483158316831783188319832083218322832383248325832683278328832983308331833283338334833583368337833883398340834183428343834483458346834783488349835083518352835383548355835683578358835983608361836283638364836583668367836883698370837183728373837483758376837783788379838083818382838383848385838683878388838983908391839283938394839583968397839883998400840184028403840484058406840784088409841084118412841384148415841684178418841984208421842284238424842584268427842884298430843184328433843484358436843784388439844084418442844384448445844684478448844984508451845284538454845584568457845884598460846184628463846484658466846784688469847084718472847384748475847684778478847984808481848284838484848584868487848884898490849184928493849484958496849784988499850085018502850385048505850685078508850985108511851285138514851585168517851885198520852185228523852485258526852785288529853085318532853385348535853685378538853985408541854285438544854585468547854885498550855185528553855485558556855785588559856085618562856385648565856685678568856985708571857285738574857585768577857885798580858185828583858485858586858785888589859085918592859385948595859685978598859986008601860286038604860586068607860886098610861186128613861486158616861786188619862086218622862386248625862686278628862986308631863286338634863586368637863886398640864186428643864486458646864786488649865086518652865386548655865686578658865986608661866286638664866586668667866886698670867186728673867486758676867786788679868086818682868386848685868686878688868986908691869286938694869586968697869886998700870187028703870487058706870787088709871087118712871387148715871687178718871987208721872287238724872587268727872887298730873187328733873487358736873787388739874087418742874387448745874687478748874987508751875287538754875587568757875887598760876187628763876487658766876787688769877087718772877387748775877687778778877987808781878287838784878587868787878887898790879187928793879487958796879787988799880088018802880388048805880688078808880988108811881288138814881588168817881888198820882188228823882488258826882788288829883088318832883388348835883688378838883988408841884288438844884588468847884888498850885188528853885488558856885788588859886088618862886388648865886688678868886988708871887288738874887588768877887888798880888188828883888488858886888788888889889088918892889388948895889688978898889989008901890289038904890589068907890889098910891189128913891489158916891789188919892089218922892389248925892689278928892989308931893289338934893589368937893889398940894189428943894489458946894789488949895089518952895389548955895689578958895989608961896289638964896589668967896889698970897189728973897489758976897789788979898089818982898389848985898689878988898989908991899289938994899589968997899889999000900190029003900490059006900790089009901090119012901390149015901690179018901990209021902290239024902590269027902890299030903190329033903490359036903790389039904090419042904390449045904690479048904990509051905290539054905590569057905890599060906190629063906490659066906790689069907090719072907390749075907690779078907990809081908290839084908590869087908890899090909190929093909490959096909790989099910091019102910391049105910691079108910991109111911291139114911591169117911891199120912191229123912491259126912791289129913091319132913391349135913691379138913991409141914291439144914591469147914891499150915191529153915491559156915791589159916091619162916391649165916691679168916991709171917291739174917591769177917891799180918191829183918491859186
  1. /*
  2. * kernel/sched.c
  3. *
  4. * Kernel scheduler and related syscalls
  5. *
  6. * Copyright (C) 1991-2002 Linus Torvalds
  7. *
  8. * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
  9. * make semaphores SMP safe
  10. * 1998-11-19 Implemented schedule_timeout() and related stuff
  11. * by Andrea Arcangeli
  12. * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
  13. * hybrid priority-list and round-robin design with
  14. * an array-switch method of distributing timeslices
  15. * and per-CPU runqueues. Cleanups and useful suggestions
  16. * by Davide Libenzi, preemptible kernel bits by Robert Love.
  17. * 2003-09-03 Interactivity tuning by Con Kolivas.
  18. * 2004-04-02 Scheduler domains code by Nick Piggin
  19. * 2007-04-15 Work begun on replacing all interactivity tuning with a
  20. * fair scheduling design by Con Kolivas.
  21. * 2007-05-05 Load balancing (smp-nice) and other improvements
  22. * by Peter Williams
  23. * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
  24. * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
  25. * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
  26. * Thomas Gleixner, Mike Kravetz
  27. */
  28. #include <linux/mm.h>
  29. #include <linux/module.h>
  30. #include <linux/nmi.h>
  31. #include <linux/init.h>
  32. #include <linux/uaccess.h>
  33. #include <linux/highmem.h>
  34. #include <linux/smp_lock.h>
  35. #include <asm/mmu_context.h>
  36. #include <linux/interrupt.h>
  37. #include <linux/capability.h>
  38. #include <linux/completion.h>
  39. #include <linux/kernel_stat.h>
  40. #include <linux/debug_locks.h>
  41. #include <linux/perf_event.h>
  42. #include <linux/security.h>
  43. #include <linux/notifier.h>
  44. #include <linux/profile.h>
  45. #include <linux/freezer.h>
  46. #include <linux/vmalloc.h>
  47. #include <linux/blkdev.h>
  48. #include <linux/delay.h>
  49. #include <linux/pid_namespace.h>
  50. #include <linux/smp.h>
  51. #include <linux/threads.h>
  52. #include <linux/timer.h>
  53. #include <linux/rcupdate.h>
  54. #include <linux/cpu.h>
  55. #include <linux/cpuset.h>
  56. #include <linux/percpu.h>
  57. #include <linux/proc_fs.h>
  58. #include <linux/seq_file.h>
  59. #include <linux/stop_machine.h>
  60. #include <linux/sysctl.h>
  61. #include <linux/syscalls.h>
  62. #include <linux/times.h>
  63. #include <linux/tsacct_kern.h>
  64. #include <linux/kprobes.h>
  65. #include <linux/delayacct.h>
  66. #include <linux/unistd.h>
  67. #include <linux/pagemap.h>
  68. #include <linux/hrtimer.h>
  69. #include <linux/tick.h>
  70. #include <linux/debugfs.h>
  71. #include <linux/ctype.h>
  72. #include <linux/ftrace.h>
  73. #include <linux/slab.h>
  74. #include <asm/tlb.h>
  75. #include <asm/irq_regs.h>
  76. #include "sched_cpupri.h"
  77. #include "workqueue_sched.h"
  78. #define CREATE_TRACE_POINTS
  79. #include <trace/events/sched.h>
  80. /*
  81. * Convert user-nice values [ -20 ... 0 ... 19 ]
  82. * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
  83. * and back.
  84. */
  85. #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
  86. #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
  87. #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
  88. /*
  89. * 'User priority' is the nice value converted to something we
  90. * can work with better when scaling various scheduler parameters,
  91. * it's a [ 0 ... 39 ] range.
  92. */
  93. #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
  94. #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
  95. #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
  96. /*
  97. * Helpers for converting nanosecond timing to jiffy resolution
  98. */
  99. #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
  100. #define NICE_0_LOAD SCHED_LOAD_SCALE
  101. #define NICE_0_SHIFT SCHED_LOAD_SHIFT
  102. /*
  103. * These are the 'tuning knobs' of the scheduler:
  104. *
  105. * default timeslice is 100 msecs (used only for SCHED_RR tasks).
  106. * Timeslices get refilled after they expire.
  107. */
  108. #define DEF_TIMESLICE (100 * HZ / 1000)
  109. /*
  110. * single value that denotes runtime == period, ie unlimited time.
  111. */
  112. #define RUNTIME_INF ((u64)~0ULL)
  113. static inline int rt_policy(int policy)
  114. {
  115. if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
  116. return 1;
  117. return 0;
  118. }
  119. static inline int task_has_rt_policy(struct task_struct *p)
  120. {
  121. return rt_policy(p->policy);
  122. }
  123. /*
  124. * This is the priority-queue data structure of the RT scheduling class:
  125. */
  126. struct rt_prio_array {
  127. DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
  128. struct list_head queue[MAX_RT_PRIO];
  129. };
  130. struct rt_bandwidth {
  131. /* nests inside the rq lock: */
  132. raw_spinlock_t rt_runtime_lock;
  133. ktime_t rt_period;
  134. u64 rt_runtime;
  135. struct hrtimer rt_period_timer;
  136. };
  137. static struct rt_bandwidth def_rt_bandwidth;
  138. static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
  139. static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
  140. {
  141. struct rt_bandwidth *rt_b =
  142. container_of(timer, struct rt_bandwidth, rt_period_timer);
  143. ktime_t now;
  144. int overrun;
  145. int idle = 0;
  146. for (;;) {
  147. now = hrtimer_cb_get_time(timer);
  148. overrun = hrtimer_forward(timer, now, rt_b->rt_period);
  149. if (!overrun)
  150. break;
  151. idle = do_sched_rt_period_timer(rt_b, overrun);
  152. }
  153. return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
  154. }
  155. static
  156. void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
  157. {
  158. rt_b->rt_period = ns_to_ktime(period);
  159. rt_b->rt_runtime = runtime;
  160. raw_spin_lock_init(&rt_b->rt_runtime_lock);
  161. hrtimer_init(&rt_b->rt_period_timer,
  162. CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  163. rt_b->rt_period_timer.function = sched_rt_period_timer;
  164. }
  165. static inline int rt_bandwidth_enabled(void)
  166. {
  167. return sysctl_sched_rt_runtime >= 0;
  168. }
  169. static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
  170. {
  171. ktime_t now;
  172. if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
  173. return;
  174. if (hrtimer_active(&rt_b->rt_period_timer))
  175. return;
  176. raw_spin_lock(&rt_b->rt_runtime_lock);
  177. for (;;) {
  178. unsigned long delta;
  179. ktime_t soft, hard;
  180. if (hrtimer_active(&rt_b->rt_period_timer))
  181. break;
  182. now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
  183. hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
  184. soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
  185. hard = hrtimer_get_expires(&rt_b->rt_period_timer);
  186. delta = ktime_to_ns(ktime_sub(hard, soft));
  187. __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
  188. HRTIMER_MODE_ABS_PINNED, 0);
  189. }
  190. raw_spin_unlock(&rt_b->rt_runtime_lock);
  191. }
  192. #ifdef CONFIG_RT_GROUP_SCHED
  193. static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
  194. {
  195. hrtimer_cancel(&rt_b->rt_period_timer);
  196. }
  197. #endif
  198. /*
  199. * sched_domains_mutex serializes calls to arch_init_sched_domains,
  200. * detach_destroy_domains and partition_sched_domains.
  201. */
  202. static DEFINE_MUTEX(sched_domains_mutex);
  203. #ifdef CONFIG_CGROUP_SCHED
  204. #include <linux/cgroup.h>
  205. struct cfs_rq;
  206. static LIST_HEAD(task_groups);
  207. /* task group related information */
  208. struct task_group {
  209. struct cgroup_subsys_state css;
  210. #ifdef CONFIG_FAIR_GROUP_SCHED
  211. /* schedulable entities of this group on each cpu */
  212. struct sched_entity **se;
  213. /* runqueue "owned" by this group on each cpu */
  214. struct cfs_rq **cfs_rq;
  215. unsigned long shares;
  216. #endif
  217. #ifdef CONFIG_RT_GROUP_SCHED
  218. struct sched_rt_entity **rt_se;
  219. struct rt_rq **rt_rq;
  220. struct rt_bandwidth rt_bandwidth;
  221. #endif
  222. struct rcu_head rcu;
  223. struct list_head list;
  224. struct task_group *parent;
  225. struct list_head siblings;
  226. struct list_head children;
  227. };
  228. #define root_task_group init_task_group
  229. /* task_group_lock serializes add/remove of task groups and also changes to
  230. * a task group's cpu shares.
  231. */
  232. static DEFINE_SPINLOCK(task_group_lock);
  233. #ifdef CONFIG_FAIR_GROUP_SCHED
  234. #ifdef CONFIG_SMP
  235. static int root_task_group_empty(void)
  236. {
  237. return list_empty(&root_task_group.children);
  238. }
  239. #endif
  240. # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
  241. /*
  242. * A weight of 0 or 1 can cause arithmetics problems.
  243. * A weight of a cfs_rq is the sum of weights of which entities
  244. * are queued on this cfs_rq, so a weight of a entity should not be
  245. * too large, so as the shares value of a task group.
  246. * (The default weight is 1024 - so there's no practical
  247. * limitation from this.)
  248. */
  249. #define MIN_SHARES 2
  250. #define MAX_SHARES (1UL << 18)
  251. static int init_task_group_load = INIT_TASK_GROUP_LOAD;
  252. #endif
  253. /* Default task group.
  254. * Every task in system belong to this group at bootup.
  255. */
  256. struct task_group init_task_group;
  257. #endif /* CONFIG_CGROUP_SCHED */
  258. /* CFS-related fields in a runqueue */
  259. struct cfs_rq {
  260. struct load_weight load;
  261. unsigned long nr_running;
  262. u64 exec_clock;
  263. u64 min_vruntime;
  264. struct rb_root tasks_timeline;
  265. struct rb_node *rb_leftmost;
  266. struct list_head tasks;
  267. struct list_head *balance_iterator;
  268. /*
  269. * 'curr' points to currently running entity on this cfs_rq.
  270. * It is set to NULL otherwise (i.e when none are currently running).
  271. */
  272. struct sched_entity *curr, *next, *last;
  273. unsigned int nr_spread_over;
  274. #ifdef CONFIG_FAIR_GROUP_SCHED
  275. struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
  276. /*
  277. * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
  278. * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
  279. * (like users, containers etc.)
  280. *
  281. * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
  282. * list is used during load balance.
  283. */
  284. struct list_head leaf_cfs_rq_list;
  285. struct task_group *tg; /* group that "owns" this runqueue */
  286. #ifdef CONFIG_SMP
  287. /*
  288. * the part of load.weight contributed by tasks
  289. */
  290. unsigned long task_weight;
  291. /*
  292. * h_load = weight * f(tg)
  293. *
  294. * Where f(tg) is the recursive weight fraction assigned to
  295. * this group.
  296. */
  297. unsigned long h_load;
  298. /*
  299. * this cpu's part of tg->shares
  300. */
  301. unsigned long shares;
  302. /*
  303. * load.weight at the time we set shares
  304. */
  305. unsigned long rq_weight;
  306. #endif
  307. #endif
  308. };
  309. /* Real-Time classes' related field in a runqueue: */
  310. struct rt_rq {
  311. struct rt_prio_array active;
  312. unsigned long rt_nr_running;
  313. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  314. struct {
  315. int curr; /* highest queued rt task prio */
  316. #ifdef CONFIG_SMP
  317. int next; /* next highest */
  318. #endif
  319. } highest_prio;
  320. #endif
  321. #ifdef CONFIG_SMP
  322. unsigned long rt_nr_migratory;
  323. unsigned long rt_nr_total;
  324. int overloaded;
  325. struct plist_head pushable_tasks;
  326. #endif
  327. int rt_throttled;
  328. u64 rt_time;
  329. u64 rt_runtime;
  330. /* Nests inside the rq lock: */
  331. raw_spinlock_t rt_runtime_lock;
  332. #ifdef CONFIG_RT_GROUP_SCHED
  333. unsigned long rt_nr_boosted;
  334. struct rq *rq;
  335. struct list_head leaf_rt_rq_list;
  336. struct task_group *tg;
  337. #endif
  338. };
  339. #ifdef CONFIG_SMP
  340. /*
  341. * We add the notion of a root-domain which will be used to define per-domain
  342. * variables. Each exclusive cpuset essentially defines an island domain by
  343. * fully partitioning the member cpus from any other cpuset. Whenever a new
  344. * exclusive cpuset is created, we also create and attach a new root-domain
  345. * object.
  346. *
  347. */
  348. struct root_domain {
  349. atomic_t refcount;
  350. cpumask_var_t span;
  351. cpumask_var_t online;
  352. /*
  353. * The "RT overload" flag: it gets set if a CPU has more than
  354. * one runnable RT task.
  355. */
  356. cpumask_var_t rto_mask;
  357. atomic_t rto_count;
  358. #ifdef CONFIG_SMP
  359. struct cpupri cpupri;
  360. #endif
  361. };
  362. /*
  363. * By default the system creates a single root-domain with all cpus as
  364. * members (mimicking the global state we have today).
  365. */
  366. static struct root_domain def_root_domain;
  367. #endif
  368. /*
  369. * This is the main, per-CPU runqueue data structure.
  370. *
  371. * Locking rule: those places that want to lock multiple runqueues
  372. * (such as the load balancing or the thread migration code), lock
  373. * acquire operations must be ordered by ascending &runqueue.
  374. */
  375. struct rq {
  376. /* runqueue lock: */
  377. raw_spinlock_t lock;
  378. /*
  379. * nr_running and cpu_load should be in the same cacheline because
  380. * remote CPUs use both these fields when doing load calculation.
  381. */
  382. unsigned long nr_running;
  383. #define CPU_LOAD_IDX_MAX 5
  384. unsigned long cpu_load[CPU_LOAD_IDX_MAX];
  385. unsigned long last_load_update_tick;
  386. #ifdef CONFIG_NO_HZ
  387. u64 nohz_stamp;
  388. unsigned char nohz_balance_kick;
  389. #endif
  390. unsigned int skip_clock_update;
  391. /* capture load from *all* tasks on this cpu: */
  392. struct load_weight load;
  393. unsigned long nr_load_updates;
  394. u64 nr_switches;
  395. struct cfs_rq cfs;
  396. struct rt_rq rt;
  397. #ifdef CONFIG_FAIR_GROUP_SCHED
  398. /* list of leaf cfs_rq on this cpu: */
  399. struct list_head leaf_cfs_rq_list;
  400. #endif
  401. #ifdef CONFIG_RT_GROUP_SCHED
  402. struct list_head leaf_rt_rq_list;
  403. #endif
  404. /*
  405. * This is part of a global counter where only the total sum
  406. * over all CPUs matters. A task can increase this counter on
  407. * one CPU and if it got migrated afterwards it may decrease
  408. * it on another CPU. Always updated under the runqueue lock:
  409. */
  410. unsigned long nr_uninterruptible;
  411. struct task_struct *curr, *idle;
  412. unsigned long next_balance;
  413. struct mm_struct *prev_mm;
  414. u64 clock;
  415. atomic_t nr_iowait;
  416. #ifdef CONFIG_SMP
  417. struct root_domain *rd;
  418. struct sched_domain *sd;
  419. unsigned long cpu_power;
  420. unsigned char idle_at_tick;
  421. /* For active balancing */
  422. int post_schedule;
  423. int active_balance;
  424. int push_cpu;
  425. struct cpu_stop_work active_balance_work;
  426. /* cpu of this runqueue: */
  427. int cpu;
  428. int online;
  429. unsigned long avg_load_per_task;
  430. u64 rt_avg;
  431. u64 age_stamp;
  432. u64 idle_stamp;
  433. u64 avg_idle;
  434. #endif
  435. /* calc_load related fields */
  436. unsigned long calc_load_update;
  437. long calc_load_active;
  438. #ifdef CONFIG_SCHED_HRTICK
  439. #ifdef CONFIG_SMP
  440. int hrtick_csd_pending;
  441. struct call_single_data hrtick_csd;
  442. #endif
  443. struct hrtimer hrtick_timer;
  444. #endif
  445. #ifdef CONFIG_SCHEDSTATS
  446. /* latency stats */
  447. struct sched_info rq_sched_info;
  448. unsigned long long rq_cpu_time;
  449. /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
  450. /* sys_sched_yield() stats */
  451. unsigned int yld_count;
  452. /* schedule() stats */
  453. unsigned int sched_switch;
  454. unsigned int sched_count;
  455. unsigned int sched_goidle;
  456. /* try_to_wake_up() stats */
  457. unsigned int ttwu_count;
  458. unsigned int ttwu_local;
  459. /* BKL stats */
  460. unsigned int bkl_count;
  461. #endif
  462. };
  463. static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
  464. static inline
  465. void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
  466. {
  467. rq->curr->sched_class->check_preempt_curr(rq, p, flags);
  468. /*
  469. * A queue event has occurred, and we're going to schedule. In
  470. * this case, we can save a useless back to back clock update.
  471. */
  472. if (test_tsk_need_resched(p))
  473. rq->skip_clock_update = 1;
  474. }
  475. static inline int cpu_of(struct rq *rq)
  476. {
  477. #ifdef CONFIG_SMP
  478. return rq->cpu;
  479. #else
  480. return 0;
  481. #endif
  482. }
  483. #define rcu_dereference_check_sched_domain(p) \
  484. rcu_dereference_check((p), \
  485. rcu_read_lock_sched_held() || \
  486. lockdep_is_held(&sched_domains_mutex))
  487. /*
  488. * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
  489. * See detach_destroy_domains: synchronize_sched for details.
  490. *
  491. * The domain tree of any CPU may only be accessed from within
  492. * preempt-disabled sections.
  493. */
  494. #define for_each_domain(cpu, __sd) \
  495. for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
  496. #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
  497. #define this_rq() (&__get_cpu_var(runqueues))
  498. #define task_rq(p) cpu_rq(task_cpu(p))
  499. #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
  500. #define raw_rq() (&__raw_get_cpu_var(runqueues))
  501. #ifdef CONFIG_CGROUP_SCHED
  502. /*
  503. * Return the group to which this tasks belongs.
  504. *
  505. * We use task_subsys_state_check() and extend the RCU verification
  506. * with lockdep_is_held(&task_rq(p)->lock) because cpu_cgroup_attach()
  507. * holds that lock for each task it moves into the cgroup. Therefore
  508. * by holding that lock, we pin the task to the current cgroup.
  509. */
  510. static inline struct task_group *task_group(struct task_struct *p)
  511. {
  512. struct cgroup_subsys_state *css;
  513. css = task_subsys_state_check(p, cpu_cgroup_subsys_id,
  514. lockdep_is_held(&task_rq(p)->lock));
  515. return container_of(css, struct task_group, css);
  516. }
  517. /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
  518. static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
  519. {
  520. #ifdef CONFIG_FAIR_GROUP_SCHED
  521. p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
  522. p->se.parent = task_group(p)->se[cpu];
  523. #endif
  524. #ifdef CONFIG_RT_GROUP_SCHED
  525. p->rt.rt_rq = task_group(p)->rt_rq[cpu];
  526. p->rt.parent = task_group(p)->rt_se[cpu];
  527. #endif
  528. }
  529. #else /* CONFIG_CGROUP_SCHED */
  530. static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
  531. static inline struct task_group *task_group(struct task_struct *p)
  532. {
  533. return NULL;
  534. }
  535. #endif /* CONFIG_CGROUP_SCHED */
  536. inline void update_rq_clock(struct rq *rq)
  537. {
  538. if (!rq->skip_clock_update)
  539. rq->clock = sched_clock_cpu(cpu_of(rq));
  540. }
  541. /*
  542. * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
  543. */
  544. #ifdef CONFIG_SCHED_DEBUG
  545. # define const_debug __read_mostly
  546. #else
  547. # define const_debug static const
  548. #endif
  549. /**
  550. * runqueue_is_locked
  551. * @cpu: the processor in question.
  552. *
  553. * Returns true if the current cpu runqueue is locked.
  554. * This interface allows printk to be called with the runqueue lock
  555. * held and know whether or not it is OK to wake up the klogd.
  556. */
  557. int runqueue_is_locked(int cpu)
  558. {
  559. return raw_spin_is_locked(&cpu_rq(cpu)->lock);
  560. }
  561. /*
  562. * Debugging: various feature bits
  563. */
  564. #define SCHED_FEAT(name, enabled) \
  565. __SCHED_FEAT_##name ,
  566. enum {
  567. #include "sched_features.h"
  568. };
  569. #undef SCHED_FEAT
  570. #define SCHED_FEAT(name, enabled) \
  571. (1UL << __SCHED_FEAT_##name) * enabled |
  572. const_debug unsigned int sysctl_sched_features =
  573. #include "sched_features.h"
  574. 0;
  575. #undef SCHED_FEAT
  576. #ifdef CONFIG_SCHED_DEBUG
  577. #define SCHED_FEAT(name, enabled) \
  578. #name ,
  579. static __read_mostly char *sched_feat_names[] = {
  580. #include "sched_features.h"
  581. NULL
  582. };
  583. #undef SCHED_FEAT
  584. static int sched_feat_show(struct seq_file *m, void *v)
  585. {
  586. int i;
  587. for (i = 0; sched_feat_names[i]; i++) {
  588. if (!(sysctl_sched_features & (1UL << i)))
  589. seq_puts(m, "NO_");
  590. seq_printf(m, "%s ", sched_feat_names[i]);
  591. }
  592. seq_puts(m, "\n");
  593. return 0;
  594. }
  595. static ssize_t
  596. sched_feat_write(struct file *filp, const char __user *ubuf,
  597. size_t cnt, loff_t *ppos)
  598. {
  599. char buf[64];
  600. char *cmp = buf;
  601. int neg = 0;
  602. int i;
  603. if (cnt > 63)
  604. cnt = 63;
  605. if (copy_from_user(&buf, ubuf, cnt))
  606. return -EFAULT;
  607. buf[cnt] = 0;
  608. if (strncmp(buf, "NO_", 3) == 0) {
  609. neg = 1;
  610. cmp += 3;
  611. }
  612. for (i = 0; sched_feat_names[i]; i++) {
  613. int len = strlen(sched_feat_names[i]);
  614. if (strncmp(cmp, sched_feat_names[i], len) == 0) {
  615. if (neg)
  616. sysctl_sched_features &= ~(1UL << i);
  617. else
  618. sysctl_sched_features |= (1UL << i);
  619. break;
  620. }
  621. }
  622. if (!sched_feat_names[i])
  623. return -EINVAL;
  624. *ppos += cnt;
  625. return cnt;
  626. }
  627. static int sched_feat_open(struct inode *inode, struct file *filp)
  628. {
  629. return single_open(filp, sched_feat_show, NULL);
  630. }
  631. static const struct file_operations sched_feat_fops = {
  632. .open = sched_feat_open,
  633. .write = sched_feat_write,
  634. .read = seq_read,
  635. .llseek = seq_lseek,
  636. .release = single_release,
  637. };
  638. static __init int sched_init_debug(void)
  639. {
  640. debugfs_create_file("sched_features", 0644, NULL, NULL,
  641. &sched_feat_fops);
  642. return 0;
  643. }
  644. late_initcall(sched_init_debug);
  645. #endif
  646. #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
  647. /*
  648. * Number of tasks to iterate in a single balance run.
  649. * Limited because this is done with IRQs disabled.
  650. */
  651. const_debug unsigned int sysctl_sched_nr_migrate = 32;
  652. /*
  653. * ratelimit for updating the group shares.
  654. * default: 0.25ms
  655. */
  656. unsigned int sysctl_sched_shares_ratelimit = 250000;
  657. unsigned int normalized_sysctl_sched_shares_ratelimit = 250000;
  658. /*
  659. * Inject some fuzzyness into changing the per-cpu group shares
  660. * this avoids remote rq-locks at the expense of fairness.
  661. * default: 4
  662. */
  663. unsigned int sysctl_sched_shares_thresh = 4;
  664. /*
  665. * period over which we average the RT time consumption, measured
  666. * in ms.
  667. *
  668. * default: 1s
  669. */
  670. const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
  671. /*
  672. * period over which we measure -rt task cpu usage in us.
  673. * default: 1s
  674. */
  675. unsigned int sysctl_sched_rt_period = 1000000;
  676. static __read_mostly int scheduler_running;
  677. /*
  678. * part of the period that we allow rt tasks to run in us.
  679. * default: 0.95s
  680. */
  681. int sysctl_sched_rt_runtime = 950000;
  682. static inline u64 global_rt_period(void)
  683. {
  684. return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
  685. }
  686. static inline u64 global_rt_runtime(void)
  687. {
  688. if (sysctl_sched_rt_runtime < 0)
  689. return RUNTIME_INF;
  690. return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
  691. }
  692. #ifndef prepare_arch_switch
  693. # define prepare_arch_switch(next) do { } while (0)
  694. #endif
  695. #ifndef finish_arch_switch
  696. # define finish_arch_switch(prev) do { } while (0)
  697. #endif
  698. static inline int task_current(struct rq *rq, struct task_struct *p)
  699. {
  700. return rq->curr == p;
  701. }
  702. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  703. static inline int task_running(struct rq *rq, struct task_struct *p)
  704. {
  705. return task_current(rq, p);
  706. }
  707. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  708. {
  709. }
  710. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  711. {
  712. #ifdef CONFIG_DEBUG_SPINLOCK
  713. /* this is a valid case when another task releases the spinlock */
  714. rq->lock.owner = current;
  715. #endif
  716. /*
  717. * If we are tracking spinlock dependencies then we have to
  718. * fix up the runqueue lock - which gets 'carried over' from
  719. * prev into current:
  720. */
  721. spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
  722. raw_spin_unlock_irq(&rq->lock);
  723. }
  724. #else /* __ARCH_WANT_UNLOCKED_CTXSW */
  725. static inline int task_running(struct rq *rq, struct task_struct *p)
  726. {
  727. #ifdef CONFIG_SMP
  728. return p->oncpu;
  729. #else
  730. return task_current(rq, p);
  731. #endif
  732. }
  733. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  734. {
  735. #ifdef CONFIG_SMP
  736. /*
  737. * We can optimise this out completely for !SMP, because the
  738. * SMP rebalancing from interrupt is the only thing that cares
  739. * here.
  740. */
  741. next->oncpu = 1;
  742. #endif
  743. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  744. raw_spin_unlock_irq(&rq->lock);
  745. #else
  746. raw_spin_unlock(&rq->lock);
  747. #endif
  748. }
  749. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  750. {
  751. #ifdef CONFIG_SMP
  752. /*
  753. * After ->oncpu is cleared, the task can be moved to a different CPU.
  754. * We must ensure this doesn't happen until the switch is completely
  755. * finished.
  756. */
  757. smp_wmb();
  758. prev->oncpu = 0;
  759. #endif
  760. #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  761. local_irq_enable();
  762. #endif
  763. }
  764. #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
  765. /*
  766. * Check whether the task is waking, we use this to synchronize ->cpus_allowed
  767. * against ttwu().
  768. */
  769. static inline int task_is_waking(struct task_struct *p)
  770. {
  771. return unlikely(p->state == TASK_WAKING);
  772. }
  773. /*
  774. * __task_rq_lock - lock the runqueue a given task resides on.
  775. * Must be called interrupts disabled.
  776. */
  777. static inline struct rq *__task_rq_lock(struct task_struct *p)
  778. __acquires(rq->lock)
  779. {
  780. struct rq *rq;
  781. for (;;) {
  782. rq = task_rq(p);
  783. raw_spin_lock(&rq->lock);
  784. if (likely(rq == task_rq(p)))
  785. return rq;
  786. raw_spin_unlock(&rq->lock);
  787. }
  788. }
  789. /*
  790. * task_rq_lock - lock the runqueue a given task resides on and disable
  791. * interrupts. Note the ordering: we can safely lookup the task_rq without
  792. * explicitly disabling preemption.
  793. */
  794. static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
  795. __acquires(rq->lock)
  796. {
  797. struct rq *rq;
  798. for (;;) {
  799. local_irq_save(*flags);
  800. rq = task_rq(p);
  801. raw_spin_lock(&rq->lock);
  802. if (likely(rq == task_rq(p)))
  803. return rq;
  804. raw_spin_unlock_irqrestore(&rq->lock, *flags);
  805. }
  806. }
  807. static void __task_rq_unlock(struct rq *rq)
  808. __releases(rq->lock)
  809. {
  810. raw_spin_unlock(&rq->lock);
  811. }
  812. static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
  813. __releases(rq->lock)
  814. {
  815. raw_spin_unlock_irqrestore(&rq->lock, *flags);
  816. }
  817. /*
  818. * this_rq_lock - lock this runqueue and disable interrupts.
  819. */
  820. static struct rq *this_rq_lock(void)
  821. __acquires(rq->lock)
  822. {
  823. struct rq *rq;
  824. local_irq_disable();
  825. rq = this_rq();
  826. raw_spin_lock(&rq->lock);
  827. return rq;
  828. }
  829. #ifdef CONFIG_SCHED_HRTICK
  830. /*
  831. * Use HR-timers to deliver accurate preemption points.
  832. *
  833. * Its all a bit involved since we cannot program an hrt while holding the
  834. * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
  835. * reschedule event.
  836. *
  837. * When we get rescheduled we reprogram the hrtick_timer outside of the
  838. * rq->lock.
  839. */
  840. /*
  841. * Use hrtick when:
  842. * - enabled by features
  843. * - hrtimer is actually high res
  844. */
  845. static inline int hrtick_enabled(struct rq *rq)
  846. {
  847. if (!sched_feat(HRTICK))
  848. return 0;
  849. if (!cpu_active(cpu_of(rq)))
  850. return 0;
  851. return hrtimer_is_hres_active(&rq->hrtick_timer);
  852. }
  853. static void hrtick_clear(struct rq *rq)
  854. {
  855. if (hrtimer_active(&rq->hrtick_timer))
  856. hrtimer_cancel(&rq->hrtick_timer);
  857. }
  858. /*
  859. * High-resolution timer tick.
  860. * Runs from hardirq context with interrupts disabled.
  861. */
  862. static enum hrtimer_restart hrtick(struct hrtimer *timer)
  863. {
  864. struct rq *rq = container_of(timer, struct rq, hrtick_timer);
  865. WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
  866. raw_spin_lock(&rq->lock);
  867. update_rq_clock(rq);
  868. rq->curr->sched_class->task_tick(rq, rq->curr, 1);
  869. raw_spin_unlock(&rq->lock);
  870. return HRTIMER_NORESTART;
  871. }
  872. #ifdef CONFIG_SMP
  873. /*
  874. * called from hardirq (IPI) context
  875. */
  876. static void __hrtick_start(void *arg)
  877. {
  878. struct rq *rq = arg;
  879. raw_spin_lock(&rq->lock);
  880. hrtimer_restart(&rq->hrtick_timer);
  881. rq->hrtick_csd_pending = 0;
  882. raw_spin_unlock(&rq->lock);
  883. }
  884. /*
  885. * Called to set the hrtick timer state.
  886. *
  887. * called with rq->lock held and irqs disabled
  888. */
  889. static void hrtick_start(struct rq *rq, u64 delay)
  890. {
  891. struct hrtimer *timer = &rq->hrtick_timer;
  892. ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
  893. hrtimer_set_expires(timer, time);
  894. if (rq == this_rq()) {
  895. hrtimer_restart(timer);
  896. } else if (!rq->hrtick_csd_pending) {
  897. __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
  898. rq->hrtick_csd_pending = 1;
  899. }
  900. }
  901. static int
  902. hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
  903. {
  904. int cpu = (int)(long)hcpu;
  905. switch (action) {
  906. case CPU_UP_CANCELED:
  907. case CPU_UP_CANCELED_FROZEN:
  908. case CPU_DOWN_PREPARE:
  909. case CPU_DOWN_PREPARE_FROZEN:
  910. case CPU_DEAD:
  911. case CPU_DEAD_FROZEN:
  912. hrtick_clear(cpu_rq(cpu));
  913. return NOTIFY_OK;
  914. }
  915. return NOTIFY_DONE;
  916. }
  917. static __init void init_hrtick(void)
  918. {
  919. hotcpu_notifier(hotplug_hrtick, 0);
  920. }
  921. #else
  922. /*
  923. * Called to set the hrtick timer state.
  924. *
  925. * called with rq->lock held and irqs disabled
  926. */
  927. static void hrtick_start(struct rq *rq, u64 delay)
  928. {
  929. __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
  930. HRTIMER_MODE_REL_PINNED, 0);
  931. }
  932. static inline void init_hrtick(void)
  933. {
  934. }
  935. #endif /* CONFIG_SMP */
  936. static void init_rq_hrtick(struct rq *rq)
  937. {
  938. #ifdef CONFIG_SMP
  939. rq->hrtick_csd_pending = 0;
  940. rq->hrtick_csd.flags = 0;
  941. rq->hrtick_csd.func = __hrtick_start;
  942. rq->hrtick_csd.info = rq;
  943. #endif
  944. hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  945. rq->hrtick_timer.function = hrtick;
  946. }
  947. #else /* CONFIG_SCHED_HRTICK */
  948. static inline void hrtick_clear(struct rq *rq)
  949. {
  950. }
  951. static inline void init_rq_hrtick(struct rq *rq)
  952. {
  953. }
  954. static inline void init_hrtick(void)
  955. {
  956. }
  957. #endif /* CONFIG_SCHED_HRTICK */
  958. /*
  959. * resched_task - mark a task 'to be rescheduled now'.
  960. *
  961. * On UP this means the setting of the need_resched flag, on SMP it
  962. * might also involve a cross-CPU call to trigger the scheduler on
  963. * the target CPU.
  964. */
  965. #ifdef CONFIG_SMP
  966. #ifndef tsk_is_polling
  967. #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
  968. #endif
  969. static void resched_task(struct task_struct *p)
  970. {
  971. int cpu;
  972. assert_raw_spin_locked(&task_rq(p)->lock);
  973. if (test_tsk_need_resched(p))
  974. return;
  975. set_tsk_need_resched(p);
  976. cpu = task_cpu(p);
  977. if (cpu == smp_processor_id())
  978. return;
  979. /* NEED_RESCHED must be visible before we test polling */
  980. smp_mb();
  981. if (!tsk_is_polling(p))
  982. smp_send_reschedule(cpu);
  983. }
  984. static void resched_cpu(int cpu)
  985. {
  986. struct rq *rq = cpu_rq(cpu);
  987. unsigned long flags;
  988. if (!raw_spin_trylock_irqsave(&rq->lock, flags))
  989. return;
  990. resched_task(cpu_curr(cpu));
  991. raw_spin_unlock_irqrestore(&rq->lock, flags);
  992. }
  993. #ifdef CONFIG_NO_HZ
  994. /*
  995. * In the semi idle case, use the nearest busy cpu for migrating timers
  996. * from an idle cpu. This is good for power-savings.
  997. *
  998. * We don't do similar optimization for completely idle system, as
  999. * selecting an idle cpu will add more delays to the timers than intended
  1000. * (as that cpu's timer base may not be uptodate wrt jiffies etc).
  1001. */
  1002. int get_nohz_timer_target(void)
  1003. {
  1004. int cpu = smp_processor_id();
  1005. int i;
  1006. struct sched_domain *sd;
  1007. for_each_domain(cpu, sd) {
  1008. for_each_cpu(i, sched_domain_span(sd))
  1009. if (!idle_cpu(i))
  1010. return i;
  1011. }
  1012. return cpu;
  1013. }
  1014. /*
  1015. * When add_timer_on() enqueues a timer into the timer wheel of an
  1016. * idle CPU then this timer might expire before the next timer event
  1017. * which is scheduled to wake up that CPU. In case of a completely
  1018. * idle system the next event might even be infinite time into the
  1019. * future. wake_up_idle_cpu() ensures that the CPU is woken up and
  1020. * leaves the inner idle loop so the newly added timer is taken into
  1021. * account when the CPU goes back to idle and evaluates the timer
  1022. * wheel for the next timer event.
  1023. */
  1024. void wake_up_idle_cpu(int cpu)
  1025. {
  1026. struct rq *rq = cpu_rq(cpu);
  1027. if (cpu == smp_processor_id())
  1028. return;
  1029. /*
  1030. * This is safe, as this function is called with the timer
  1031. * wheel base lock of (cpu) held. When the CPU is on the way
  1032. * to idle and has not yet set rq->curr to idle then it will
  1033. * be serialized on the timer wheel base lock and take the new
  1034. * timer into account automatically.
  1035. */
  1036. if (rq->curr != rq->idle)
  1037. return;
  1038. /*
  1039. * We can set TIF_RESCHED on the idle task of the other CPU
  1040. * lockless. The worst case is that the other CPU runs the
  1041. * idle task through an additional NOOP schedule()
  1042. */
  1043. set_tsk_need_resched(rq->idle);
  1044. /* NEED_RESCHED must be visible before we test polling */
  1045. smp_mb();
  1046. if (!tsk_is_polling(rq->idle))
  1047. smp_send_reschedule(cpu);
  1048. }
  1049. int nohz_ratelimit(int cpu)
  1050. {
  1051. struct rq *rq = cpu_rq(cpu);
  1052. u64 diff = rq->clock - rq->nohz_stamp;
  1053. rq->nohz_stamp = rq->clock;
  1054. return diff < (NSEC_PER_SEC / HZ) >> 1;
  1055. }
  1056. #endif /* CONFIG_NO_HZ */
  1057. static u64 sched_avg_period(void)
  1058. {
  1059. return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
  1060. }
  1061. static void sched_avg_update(struct rq *rq)
  1062. {
  1063. s64 period = sched_avg_period();
  1064. while ((s64)(rq->clock - rq->age_stamp) > period) {
  1065. /*
  1066. * Inline assembly required to prevent the compiler
  1067. * optimising this loop into a divmod call.
  1068. * See __iter_div_u64_rem() for another example of this.
  1069. */
  1070. asm("" : "+rm" (rq->age_stamp));
  1071. rq->age_stamp += period;
  1072. rq->rt_avg /= 2;
  1073. }
  1074. }
  1075. static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
  1076. {
  1077. rq->rt_avg += rt_delta;
  1078. sched_avg_update(rq);
  1079. }
  1080. #else /* !CONFIG_SMP */
  1081. static void resched_task(struct task_struct *p)
  1082. {
  1083. assert_raw_spin_locked(&task_rq(p)->lock);
  1084. set_tsk_need_resched(p);
  1085. }
  1086. static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
  1087. {
  1088. }
  1089. #endif /* CONFIG_SMP */
  1090. #if BITS_PER_LONG == 32
  1091. # define WMULT_CONST (~0UL)
  1092. #else
  1093. # define WMULT_CONST (1UL << 32)
  1094. #endif
  1095. #define WMULT_SHIFT 32
  1096. /*
  1097. * Shift right and round:
  1098. */
  1099. #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
  1100. /*
  1101. * delta *= weight / lw
  1102. */
  1103. static unsigned long
  1104. calc_delta_mine(unsigned long delta_exec, unsigned long weight,
  1105. struct load_weight *lw)
  1106. {
  1107. u64 tmp;
  1108. if (!lw->inv_weight) {
  1109. if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
  1110. lw->inv_weight = 1;
  1111. else
  1112. lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
  1113. / (lw->weight+1);
  1114. }
  1115. tmp = (u64)delta_exec * weight;
  1116. /*
  1117. * Check whether we'd overflow the 64-bit multiplication:
  1118. */
  1119. if (unlikely(tmp > WMULT_CONST))
  1120. tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
  1121. WMULT_SHIFT/2);
  1122. else
  1123. tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
  1124. return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
  1125. }
  1126. static inline void update_load_add(struct load_weight *lw, unsigned long inc)
  1127. {
  1128. lw->weight += inc;
  1129. lw->inv_weight = 0;
  1130. }
  1131. static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
  1132. {
  1133. lw->weight -= dec;
  1134. lw->inv_weight = 0;
  1135. }
  1136. /*
  1137. * To aid in avoiding the subversion of "niceness" due to uneven distribution
  1138. * of tasks with abnormal "nice" values across CPUs the contribution that
  1139. * each task makes to its run queue's load is weighted according to its
  1140. * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
  1141. * scaled version of the new time slice allocation that they receive on time
  1142. * slice expiry etc.
  1143. */
  1144. #define WEIGHT_IDLEPRIO 3
  1145. #define WMULT_IDLEPRIO 1431655765
  1146. /*
  1147. * Nice levels are multiplicative, with a gentle 10% change for every
  1148. * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
  1149. * nice 1, it will get ~10% less CPU time than another CPU-bound task
  1150. * that remained on nice 0.
  1151. *
  1152. * The "10% effect" is relative and cumulative: from _any_ nice level,
  1153. * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
  1154. * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
  1155. * If a task goes up by ~10% and another task goes down by ~10% then
  1156. * the relative distance between them is ~25%.)
  1157. */
  1158. static const int prio_to_weight[40] = {
  1159. /* -20 */ 88761, 71755, 56483, 46273, 36291,
  1160. /* -15 */ 29154, 23254, 18705, 14949, 11916,
  1161. /* -10 */ 9548, 7620, 6100, 4904, 3906,
  1162. /* -5 */ 3121, 2501, 1991, 1586, 1277,
  1163. /* 0 */ 1024, 820, 655, 526, 423,
  1164. /* 5 */ 335, 272, 215, 172, 137,
  1165. /* 10 */ 110, 87, 70, 56, 45,
  1166. /* 15 */ 36, 29, 23, 18, 15,
  1167. };
  1168. /*
  1169. * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
  1170. *
  1171. * In cases where the weight does not change often, we can use the
  1172. * precalculated inverse to speed up arithmetics by turning divisions
  1173. * into multiplications:
  1174. */
  1175. static const u32 prio_to_wmult[40] = {
  1176. /* -20 */ 48388, 59856, 76040, 92818, 118348,
  1177. /* -15 */ 147320, 184698, 229616, 287308, 360437,
  1178. /* -10 */ 449829, 563644, 704093, 875809, 1099582,
  1179. /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
  1180. /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
  1181. /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
  1182. /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
  1183. /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
  1184. };
  1185. /* Time spent by the tasks of the cpu accounting group executing in ... */
  1186. enum cpuacct_stat_index {
  1187. CPUACCT_STAT_USER, /* ... user mode */
  1188. CPUACCT_STAT_SYSTEM, /* ... kernel mode */
  1189. CPUACCT_STAT_NSTATS,
  1190. };
  1191. #ifdef CONFIG_CGROUP_CPUACCT
  1192. static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
  1193. static void cpuacct_update_stats(struct task_struct *tsk,
  1194. enum cpuacct_stat_index idx, cputime_t val);
  1195. #else
  1196. static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
  1197. static inline void cpuacct_update_stats(struct task_struct *tsk,
  1198. enum cpuacct_stat_index idx, cputime_t val) {}
  1199. #endif
  1200. static inline void inc_cpu_load(struct rq *rq, unsigned long load)
  1201. {
  1202. update_load_add(&rq->load, load);
  1203. }
  1204. static inline void dec_cpu_load(struct rq *rq, unsigned long load)
  1205. {
  1206. update_load_sub(&rq->load, load);
  1207. }
  1208. #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
  1209. typedef int (*tg_visitor)(struct task_group *, void *);
  1210. /*
  1211. * Iterate the full tree, calling @down when first entering a node and @up when
  1212. * leaving it for the final time.
  1213. */
  1214. static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
  1215. {
  1216. struct task_group *parent, *child;
  1217. int ret;
  1218. rcu_read_lock();
  1219. parent = &root_task_group;
  1220. down:
  1221. ret = (*down)(parent, data);
  1222. if (ret)
  1223. goto out_unlock;
  1224. list_for_each_entry_rcu(child, &parent->children, siblings) {
  1225. parent = child;
  1226. goto down;
  1227. up:
  1228. continue;
  1229. }
  1230. ret = (*up)(parent, data);
  1231. if (ret)
  1232. goto out_unlock;
  1233. child = parent;
  1234. parent = parent->parent;
  1235. if (parent)
  1236. goto up;
  1237. out_unlock:
  1238. rcu_read_unlock();
  1239. return ret;
  1240. }
  1241. static int tg_nop(struct task_group *tg, void *data)
  1242. {
  1243. return 0;
  1244. }
  1245. #endif
  1246. #ifdef CONFIG_SMP
  1247. /* Used instead of source_load when we know the type == 0 */
  1248. static unsigned long weighted_cpuload(const int cpu)
  1249. {
  1250. return cpu_rq(cpu)->load.weight;
  1251. }
  1252. /*
  1253. * Return a low guess at the load of a migration-source cpu weighted
  1254. * according to the scheduling class and "nice" value.
  1255. *
  1256. * We want to under-estimate the load of migration sources, to
  1257. * balance conservatively.
  1258. */
  1259. static unsigned long source_load(int cpu, int type)
  1260. {
  1261. struct rq *rq = cpu_rq(cpu);
  1262. unsigned long total = weighted_cpuload(cpu);
  1263. if (type == 0 || !sched_feat(LB_BIAS))
  1264. return total;
  1265. return min(rq->cpu_load[type-1], total);
  1266. }
  1267. /*
  1268. * Return a high guess at the load of a migration-target cpu weighted
  1269. * according to the scheduling class and "nice" value.
  1270. */
  1271. static unsigned long target_load(int cpu, int type)
  1272. {
  1273. struct rq *rq = cpu_rq(cpu);
  1274. unsigned long total = weighted_cpuload(cpu);
  1275. if (type == 0 || !sched_feat(LB_BIAS))
  1276. return total;
  1277. return max(rq->cpu_load[type-1], total);
  1278. }
  1279. static unsigned long power_of(int cpu)
  1280. {
  1281. return cpu_rq(cpu)->cpu_power;
  1282. }
  1283. static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
  1284. static unsigned long cpu_avg_load_per_task(int cpu)
  1285. {
  1286. struct rq *rq = cpu_rq(cpu);
  1287. unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
  1288. if (nr_running)
  1289. rq->avg_load_per_task = rq->load.weight / nr_running;
  1290. else
  1291. rq->avg_load_per_task = 0;
  1292. return rq->avg_load_per_task;
  1293. }
  1294. #ifdef CONFIG_FAIR_GROUP_SCHED
  1295. static __read_mostly unsigned long __percpu *update_shares_data;
  1296. static void __set_se_shares(struct sched_entity *se, unsigned long shares);
  1297. /*
  1298. * Calculate and set the cpu's group shares.
  1299. */
  1300. static void update_group_shares_cpu(struct task_group *tg, int cpu,
  1301. unsigned long sd_shares,
  1302. unsigned long sd_rq_weight,
  1303. unsigned long *usd_rq_weight)
  1304. {
  1305. unsigned long shares, rq_weight;
  1306. int boost = 0;
  1307. rq_weight = usd_rq_weight[cpu];
  1308. if (!rq_weight) {
  1309. boost = 1;
  1310. rq_weight = NICE_0_LOAD;
  1311. }
  1312. /*
  1313. * \Sum_j shares_j * rq_weight_i
  1314. * shares_i = -----------------------------
  1315. * \Sum_j rq_weight_j
  1316. */
  1317. shares = (sd_shares * rq_weight) / sd_rq_weight;
  1318. shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
  1319. if (abs(shares - tg->se[cpu]->load.weight) >
  1320. sysctl_sched_shares_thresh) {
  1321. struct rq *rq = cpu_rq(cpu);
  1322. unsigned long flags;
  1323. raw_spin_lock_irqsave(&rq->lock, flags);
  1324. tg->cfs_rq[cpu]->rq_weight = boost ? 0 : rq_weight;
  1325. tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
  1326. __set_se_shares(tg->se[cpu], shares);
  1327. raw_spin_unlock_irqrestore(&rq->lock, flags);
  1328. }
  1329. }
  1330. /*
  1331. * Re-compute the task group their per cpu shares over the given domain.
  1332. * This needs to be done in a bottom-up fashion because the rq weight of a
  1333. * parent group depends on the shares of its child groups.
  1334. */
  1335. static int tg_shares_up(struct task_group *tg, void *data)
  1336. {
  1337. unsigned long weight, rq_weight = 0, sum_weight = 0, shares = 0;
  1338. unsigned long *usd_rq_weight;
  1339. struct sched_domain *sd = data;
  1340. unsigned long flags;
  1341. int i;
  1342. if (!tg->se[0])
  1343. return 0;
  1344. local_irq_save(flags);
  1345. usd_rq_weight = per_cpu_ptr(update_shares_data, smp_processor_id());
  1346. for_each_cpu(i, sched_domain_span(sd)) {
  1347. weight = tg->cfs_rq[i]->load.weight;
  1348. usd_rq_weight[i] = weight;
  1349. rq_weight += weight;
  1350. /*
  1351. * If there are currently no tasks on the cpu pretend there
  1352. * is one of average load so that when a new task gets to
  1353. * run here it will not get delayed by group starvation.
  1354. */
  1355. if (!weight)
  1356. weight = NICE_0_LOAD;
  1357. sum_weight += weight;
  1358. shares += tg->cfs_rq[i]->shares;
  1359. }
  1360. if (!rq_weight)
  1361. rq_weight = sum_weight;
  1362. if ((!shares && rq_weight) || shares > tg->shares)
  1363. shares = tg->shares;
  1364. if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
  1365. shares = tg->shares;
  1366. for_each_cpu(i, sched_domain_span(sd))
  1367. update_group_shares_cpu(tg, i, shares, rq_weight, usd_rq_weight);
  1368. local_irq_restore(flags);
  1369. return 0;
  1370. }
  1371. /*
  1372. * Compute the cpu's hierarchical load factor for each task group.
  1373. * This needs to be done in a top-down fashion because the load of a child
  1374. * group is a fraction of its parents load.
  1375. */
  1376. static int tg_load_down(struct task_group *tg, void *data)
  1377. {
  1378. unsigned long load;
  1379. long cpu = (long)data;
  1380. if (!tg->parent) {
  1381. load = cpu_rq(cpu)->load.weight;
  1382. } else {
  1383. load = tg->parent->cfs_rq[cpu]->h_load;
  1384. load *= tg->cfs_rq[cpu]->shares;
  1385. load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
  1386. }
  1387. tg->cfs_rq[cpu]->h_load = load;
  1388. return 0;
  1389. }
  1390. static void update_shares(struct sched_domain *sd)
  1391. {
  1392. s64 elapsed;
  1393. u64 now;
  1394. if (root_task_group_empty())
  1395. return;
  1396. now = local_clock();
  1397. elapsed = now - sd->last_update;
  1398. if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
  1399. sd->last_update = now;
  1400. walk_tg_tree(tg_nop, tg_shares_up, sd);
  1401. }
  1402. }
  1403. static void update_h_load(long cpu)
  1404. {
  1405. walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
  1406. }
  1407. #else
  1408. static inline void update_shares(struct sched_domain *sd)
  1409. {
  1410. }
  1411. #endif
  1412. #ifdef CONFIG_PREEMPT
  1413. static void double_rq_lock(struct rq *rq1, struct rq *rq2);
  1414. /*
  1415. * fair double_lock_balance: Safely acquires both rq->locks in a fair
  1416. * way at the expense of forcing extra atomic operations in all
  1417. * invocations. This assures that the double_lock is acquired using the
  1418. * same underlying policy as the spinlock_t on this architecture, which
  1419. * reduces latency compared to the unfair variant below. However, it
  1420. * also adds more overhead and therefore may reduce throughput.
  1421. */
  1422. static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1423. __releases(this_rq->lock)
  1424. __acquires(busiest->lock)
  1425. __acquires(this_rq->lock)
  1426. {
  1427. raw_spin_unlock(&this_rq->lock);
  1428. double_rq_lock(this_rq, busiest);
  1429. return 1;
  1430. }
  1431. #else
  1432. /*
  1433. * Unfair double_lock_balance: Optimizes throughput at the expense of
  1434. * latency by eliminating extra atomic operations when the locks are
  1435. * already in proper order on entry. This favors lower cpu-ids and will
  1436. * grant the double lock to lower cpus over higher ids under contention,
  1437. * regardless of entry order into the function.
  1438. */
  1439. static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1440. __releases(this_rq->lock)
  1441. __acquires(busiest->lock)
  1442. __acquires(this_rq->lock)
  1443. {
  1444. int ret = 0;
  1445. if (unlikely(!raw_spin_trylock(&busiest->lock))) {
  1446. if (busiest < this_rq) {
  1447. raw_spin_unlock(&this_rq->lock);
  1448. raw_spin_lock(&busiest->lock);
  1449. raw_spin_lock_nested(&this_rq->lock,
  1450. SINGLE_DEPTH_NESTING);
  1451. ret = 1;
  1452. } else
  1453. raw_spin_lock_nested(&busiest->lock,
  1454. SINGLE_DEPTH_NESTING);
  1455. }
  1456. return ret;
  1457. }
  1458. #endif /* CONFIG_PREEMPT */
  1459. /*
  1460. * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
  1461. */
  1462. static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1463. {
  1464. if (unlikely(!irqs_disabled())) {
  1465. /* printk() doesn't work good under rq->lock */
  1466. raw_spin_unlock(&this_rq->lock);
  1467. BUG_ON(1);
  1468. }
  1469. return _double_lock_balance(this_rq, busiest);
  1470. }
  1471. static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
  1472. __releases(busiest->lock)
  1473. {
  1474. raw_spin_unlock(&busiest->lock);
  1475. lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
  1476. }
  1477. /*
  1478. * double_rq_lock - safely lock two runqueues
  1479. *
  1480. * Note this does not disable interrupts like task_rq_lock,
  1481. * you need to do so manually before calling.
  1482. */
  1483. static void double_rq_lock(struct rq *rq1, struct rq *rq2)
  1484. __acquires(rq1->lock)
  1485. __acquires(rq2->lock)
  1486. {
  1487. BUG_ON(!irqs_disabled());
  1488. if (rq1 == rq2) {
  1489. raw_spin_lock(&rq1->lock);
  1490. __acquire(rq2->lock); /* Fake it out ;) */
  1491. } else {
  1492. if (rq1 < rq2) {
  1493. raw_spin_lock(&rq1->lock);
  1494. raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
  1495. } else {
  1496. raw_spin_lock(&rq2->lock);
  1497. raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
  1498. }
  1499. }
  1500. }
  1501. /*
  1502. * double_rq_unlock - safely unlock two runqueues
  1503. *
  1504. * Note this does not restore interrupts like task_rq_unlock,
  1505. * you need to do so manually after calling.
  1506. */
  1507. static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
  1508. __releases(rq1->lock)
  1509. __releases(rq2->lock)
  1510. {
  1511. raw_spin_unlock(&rq1->lock);
  1512. if (rq1 != rq2)
  1513. raw_spin_unlock(&rq2->lock);
  1514. else
  1515. __release(rq2->lock);
  1516. }
  1517. #endif
  1518. #ifdef CONFIG_FAIR_GROUP_SCHED
  1519. static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
  1520. {
  1521. #ifdef CONFIG_SMP
  1522. cfs_rq->shares = shares;
  1523. #endif
  1524. }
  1525. #endif
  1526. static void calc_load_account_idle(struct rq *this_rq);
  1527. static void update_sysctl(void);
  1528. static int get_update_sysctl_factor(void);
  1529. static void update_cpu_load(struct rq *this_rq);
  1530. static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
  1531. {
  1532. set_task_rq(p, cpu);
  1533. #ifdef CONFIG_SMP
  1534. /*
  1535. * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
  1536. * successfuly executed on another CPU. We must ensure that updates of
  1537. * per-task data have been completed by this moment.
  1538. */
  1539. smp_wmb();
  1540. task_thread_info(p)->cpu = cpu;
  1541. #endif
  1542. }
  1543. static const struct sched_class rt_sched_class;
  1544. #define sched_class_highest (&rt_sched_class)
  1545. #define for_each_class(class) \
  1546. for (class = sched_class_highest; class; class = class->next)
  1547. #include "sched_stats.h"
  1548. static void inc_nr_running(struct rq *rq)
  1549. {
  1550. rq->nr_running++;
  1551. }
  1552. static void dec_nr_running(struct rq *rq)
  1553. {
  1554. rq->nr_running--;
  1555. }
  1556. static void set_load_weight(struct task_struct *p)
  1557. {
  1558. if (task_has_rt_policy(p)) {
  1559. p->se.load.weight = 0;
  1560. p->se.load.inv_weight = WMULT_CONST;
  1561. return;
  1562. }
  1563. /*
  1564. * SCHED_IDLE tasks get minimal weight:
  1565. */
  1566. if (p->policy == SCHED_IDLE) {
  1567. p->se.load.weight = WEIGHT_IDLEPRIO;
  1568. p->se.load.inv_weight = WMULT_IDLEPRIO;
  1569. return;
  1570. }
  1571. p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
  1572. p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
  1573. }
  1574. static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
  1575. {
  1576. update_rq_clock(rq);
  1577. sched_info_queued(p);
  1578. p->sched_class->enqueue_task(rq, p, flags);
  1579. p->se.on_rq = 1;
  1580. }
  1581. static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
  1582. {
  1583. update_rq_clock(rq);
  1584. sched_info_dequeued(p);
  1585. p->sched_class->dequeue_task(rq, p, flags);
  1586. p->se.on_rq = 0;
  1587. }
  1588. /*
  1589. * activate_task - move a task to the runqueue.
  1590. */
  1591. static void activate_task(struct rq *rq, struct task_struct *p, int flags)
  1592. {
  1593. if (task_contributes_to_load(p))
  1594. rq->nr_uninterruptible--;
  1595. enqueue_task(rq, p, flags);
  1596. inc_nr_running(rq);
  1597. }
  1598. /*
  1599. * deactivate_task - remove a task from the runqueue.
  1600. */
  1601. static void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
  1602. {
  1603. if (task_contributes_to_load(p))
  1604. rq->nr_uninterruptible++;
  1605. dequeue_task(rq, p, flags);
  1606. dec_nr_running(rq);
  1607. }
  1608. #include "sched_idletask.c"
  1609. #include "sched_fair.c"
  1610. #include "sched_rt.c"
  1611. #ifdef CONFIG_SCHED_DEBUG
  1612. # include "sched_debug.c"
  1613. #endif
  1614. /*
  1615. * __normal_prio - return the priority that is based on the static prio
  1616. */
  1617. static inline int __normal_prio(struct task_struct *p)
  1618. {
  1619. return p->static_prio;
  1620. }
  1621. /*
  1622. * Calculate the expected normal priority: i.e. priority
  1623. * without taking RT-inheritance into account. Might be
  1624. * boosted by interactivity modifiers. Changes upon fork,
  1625. * setprio syscalls, and whenever the interactivity
  1626. * estimator recalculates.
  1627. */
  1628. static inline int normal_prio(struct task_struct *p)
  1629. {
  1630. int prio;
  1631. if (task_has_rt_policy(p))
  1632. prio = MAX_RT_PRIO-1 - p->rt_priority;
  1633. else
  1634. prio = __normal_prio(p);
  1635. return prio;
  1636. }
  1637. /*
  1638. * Calculate the current priority, i.e. the priority
  1639. * taken into account by the scheduler. This value might
  1640. * be boosted by RT tasks, or might be boosted by
  1641. * interactivity modifiers. Will be RT if the task got
  1642. * RT-boosted. If not then it returns p->normal_prio.
  1643. */
  1644. static int effective_prio(struct task_struct *p)
  1645. {
  1646. p->normal_prio = normal_prio(p);
  1647. /*
  1648. * If we are RT tasks or we were boosted to RT priority,
  1649. * keep the priority unchanged. Otherwise, update priority
  1650. * to the normal priority:
  1651. */
  1652. if (!rt_prio(p->prio))
  1653. return p->normal_prio;
  1654. return p->prio;
  1655. }
  1656. /**
  1657. * task_curr - is this task currently executing on a CPU?
  1658. * @p: the task in question.
  1659. */
  1660. inline int task_curr(const struct task_struct *p)
  1661. {
  1662. return cpu_curr(task_cpu(p)) == p;
  1663. }
  1664. static inline void check_class_changed(struct rq *rq, struct task_struct *p,
  1665. const struct sched_class *prev_class,
  1666. int oldprio, int running)
  1667. {
  1668. if (prev_class != p->sched_class) {
  1669. if (prev_class->switched_from)
  1670. prev_class->switched_from(rq, p, running);
  1671. p->sched_class->switched_to(rq, p, running);
  1672. } else
  1673. p->sched_class->prio_changed(rq, p, oldprio, running);
  1674. }
  1675. #ifdef CONFIG_SMP
  1676. /*
  1677. * Is this task likely cache-hot:
  1678. */
  1679. static int
  1680. task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
  1681. {
  1682. s64 delta;
  1683. if (p->sched_class != &fair_sched_class)
  1684. return 0;
  1685. /*
  1686. * Buddy candidates are cache hot:
  1687. */
  1688. if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
  1689. (&p->se == cfs_rq_of(&p->se)->next ||
  1690. &p->se == cfs_rq_of(&p->se)->last))
  1691. return 1;
  1692. if (sysctl_sched_migration_cost == -1)
  1693. return 1;
  1694. if (sysctl_sched_migration_cost == 0)
  1695. return 0;
  1696. delta = now - p->se.exec_start;
  1697. return delta < (s64)sysctl_sched_migration_cost;
  1698. }
  1699. void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
  1700. {
  1701. #ifdef CONFIG_SCHED_DEBUG
  1702. /*
  1703. * We should never call set_task_cpu() on a blocked task,
  1704. * ttwu() will sort out the placement.
  1705. */
  1706. WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
  1707. !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
  1708. #endif
  1709. trace_sched_migrate_task(p, new_cpu);
  1710. if (task_cpu(p) != new_cpu) {
  1711. p->se.nr_migrations++;
  1712. perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 1, NULL, 0);
  1713. }
  1714. __set_task_cpu(p, new_cpu);
  1715. }
  1716. struct migration_arg {
  1717. struct task_struct *task;
  1718. int dest_cpu;
  1719. };
  1720. static int migration_cpu_stop(void *data);
  1721. /*
  1722. * The task's runqueue lock must be held.
  1723. * Returns true if you have to wait for migration thread.
  1724. */
  1725. static bool migrate_task(struct task_struct *p, int dest_cpu)
  1726. {
  1727. struct rq *rq = task_rq(p);
  1728. /*
  1729. * If the task is not on a runqueue (and not running), then
  1730. * the next wake-up will properly place the task.
  1731. */
  1732. return p->se.on_rq || task_running(rq, p);
  1733. }
  1734. /*
  1735. * wait_task_inactive - wait for a thread to unschedule.
  1736. *
  1737. * If @match_state is nonzero, it's the @p->state value just checked and
  1738. * not expected to change. If it changes, i.e. @p might have woken up,
  1739. * then return zero. When we succeed in waiting for @p to be off its CPU,
  1740. * we return a positive number (its total switch count). If a second call
  1741. * a short while later returns the same number, the caller can be sure that
  1742. * @p has remained unscheduled the whole time.
  1743. *
  1744. * The caller must ensure that the task *will* unschedule sometime soon,
  1745. * else this function might spin for a *long* time. This function can't
  1746. * be called with interrupts off, or it may introduce deadlock with
  1747. * smp_call_function() if an IPI is sent by the same process we are
  1748. * waiting to become inactive.
  1749. */
  1750. unsigned long wait_task_inactive(struct task_struct *p, long match_state)
  1751. {
  1752. unsigned long flags;
  1753. int running, on_rq;
  1754. unsigned long ncsw;
  1755. struct rq *rq;
  1756. for (;;) {
  1757. /*
  1758. * We do the initial early heuristics without holding
  1759. * any task-queue locks at all. We'll only try to get
  1760. * the runqueue lock when things look like they will
  1761. * work out!
  1762. */
  1763. rq = task_rq(p);
  1764. /*
  1765. * If the task is actively running on another CPU
  1766. * still, just relax and busy-wait without holding
  1767. * any locks.
  1768. *
  1769. * NOTE! Since we don't hold any locks, it's not
  1770. * even sure that "rq" stays as the right runqueue!
  1771. * But we don't care, since "task_running()" will
  1772. * return false if the runqueue has changed and p
  1773. * is actually now running somewhere else!
  1774. */
  1775. while (task_running(rq, p)) {
  1776. if (match_state && unlikely(p->state != match_state))
  1777. return 0;
  1778. cpu_relax();
  1779. }
  1780. /*
  1781. * Ok, time to look more closely! We need the rq
  1782. * lock now, to be *sure*. If we're wrong, we'll
  1783. * just go back and repeat.
  1784. */
  1785. rq = task_rq_lock(p, &flags);
  1786. trace_sched_wait_task(p);
  1787. running = task_running(rq, p);
  1788. on_rq = p->se.on_rq;
  1789. ncsw = 0;
  1790. if (!match_state || p->state == match_state)
  1791. ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
  1792. task_rq_unlock(rq, &flags);
  1793. /*
  1794. * If it changed from the expected state, bail out now.
  1795. */
  1796. if (unlikely(!ncsw))
  1797. break;
  1798. /*
  1799. * Was it really running after all now that we
  1800. * checked with the proper locks actually held?
  1801. *
  1802. * Oops. Go back and try again..
  1803. */
  1804. if (unlikely(running)) {
  1805. cpu_relax();
  1806. continue;
  1807. }
  1808. /*
  1809. * It's not enough that it's not actively running,
  1810. * it must be off the runqueue _entirely_, and not
  1811. * preempted!
  1812. *
  1813. * So if it was still runnable (but just not actively
  1814. * running right now), it's preempted, and we should
  1815. * yield - it could be a while.
  1816. */
  1817. if (unlikely(on_rq)) {
  1818. schedule_timeout_uninterruptible(1);
  1819. continue;
  1820. }
  1821. /*
  1822. * Ahh, all good. It wasn't running, and it wasn't
  1823. * runnable, which means that it will never become
  1824. * running in the future either. We're all done!
  1825. */
  1826. break;
  1827. }
  1828. return ncsw;
  1829. }
  1830. /***
  1831. * kick_process - kick a running thread to enter/exit the kernel
  1832. * @p: the to-be-kicked thread
  1833. *
  1834. * Cause a process which is running on another CPU to enter
  1835. * kernel-mode, without any delay. (to get signals handled.)
  1836. *
  1837. * NOTE: this function doesnt have to take the runqueue lock,
  1838. * because all it wants to ensure is that the remote task enters
  1839. * the kernel. If the IPI races and the task has been migrated
  1840. * to another CPU then no harm is done and the purpose has been
  1841. * achieved as well.
  1842. */
  1843. void kick_process(struct task_struct *p)
  1844. {
  1845. int cpu;
  1846. preempt_disable();
  1847. cpu = task_cpu(p);
  1848. if ((cpu != smp_processor_id()) && task_curr(p))
  1849. smp_send_reschedule(cpu);
  1850. preempt_enable();
  1851. }
  1852. EXPORT_SYMBOL_GPL(kick_process);
  1853. #endif /* CONFIG_SMP */
  1854. /**
  1855. * task_oncpu_function_call - call a function on the cpu on which a task runs
  1856. * @p: the task to evaluate
  1857. * @func: the function to be called
  1858. * @info: the function call argument
  1859. *
  1860. * Calls the function @func when the task is currently running. This might
  1861. * be on the current CPU, which just calls the function directly
  1862. */
  1863. void task_oncpu_function_call(struct task_struct *p,
  1864. void (*func) (void *info), void *info)
  1865. {
  1866. int cpu;
  1867. preempt_disable();
  1868. cpu = task_cpu(p);
  1869. if (task_curr(p))
  1870. smp_call_function_single(cpu, func, info, 1);
  1871. preempt_enable();
  1872. }
  1873. #ifdef CONFIG_SMP
  1874. /*
  1875. * ->cpus_allowed is protected by either TASK_WAKING or rq->lock held.
  1876. */
  1877. static int select_fallback_rq(int cpu, struct task_struct *p)
  1878. {
  1879. int dest_cpu;
  1880. const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
  1881. /* Look for allowed, online CPU in same node. */
  1882. for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
  1883. if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
  1884. return dest_cpu;
  1885. /* Any allowed, online CPU? */
  1886. dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_active_mask);
  1887. if (dest_cpu < nr_cpu_ids)
  1888. return dest_cpu;
  1889. /* No more Mr. Nice Guy. */
  1890. if (unlikely(dest_cpu >= nr_cpu_ids)) {
  1891. dest_cpu = cpuset_cpus_allowed_fallback(p);
  1892. /*
  1893. * Don't tell them about moving exiting tasks or
  1894. * kernel threads (both mm NULL), since they never
  1895. * leave kernel.
  1896. */
  1897. if (p->mm && printk_ratelimit()) {
  1898. printk(KERN_INFO "process %d (%s) no "
  1899. "longer affine to cpu%d\n",
  1900. task_pid_nr(p), p->comm, cpu);
  1901. }
  1902. }
  1903. return dest_cpu;
  1904. }
  1905. /*
  1906. * The caller (fork, wakeup) owns TASK_WAKING, ->cpus_allowed is stable.
  1907. */
  1908. static inline
  1909. int select_task_rq(struct rq *rq, struct task_struct *p, int sd_flags, int wake_flags)
  1910. {
  1911. int cpu = p->sched_class->select_task_rq(rq, p, sd_flags, wake_flags);
  1912. /*
  1913. * In order not to call set_task_cpu() on a blocking task we need
  1914. * to rely on ttwu() to place the task on a valid ->cpus_allowed
  1915. * cpu.
  1916. *
  1917. * Since this is common to all placement strategies, this lives here.
  1918. *
  1919. * [ this allows ->select_task() to simply return task_cpu(p) and
  1920. * not worry about this generic constraint ]
  1921. */
  1922. if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) ||
  1923. !cpu_online(cpu)))
  1924. cpu = select_fallback_rq(task_cpu(p), p);
  1925. return cpu;
  1926. }
  1927. static void update_avg(u64 *avg, u64 sample)
  1928. {
  1929. s64 diff = sample - *avg;
  1930. *avg += diff >> 3;
  1931. }
  1932. #endif
  1933. static inline void ttwu_activate(struct task_struct *p, struct rq *rq,
  1934. bool is_sync, bool is_migrate, bool is_local,
  1935. unsigned long en_flags)
  1936. {
  1937. schedstat_inc(p, se.statistics.nr_wakeups);
  1938. if (is_sync)
  1939. schedstat_inc(p, se.statistics.nr_wakeups_sync);
  1940. if (is_migrate)
  1941. schedstat_inc(p, se.statistics.nr_wakeups_migrate);
  1942. if (is_local)
  1943. schedstat_inc(p, se.statistics.nr_wakeups_local);
  1944. else
  1945. schedstat_inc(p, se.statistics.nr_wakeups_remote);
  1946. activate_task(rq, p, en_flags);
  1947. }
  1948. static inline void ttwu_post_activation(struct task_struct *p, struct rq *rq,
  1949. int wake_flags, bool success)
  1950. {
  1951. trace_sched_wakeup(p, success);
  1952. check_preempt_curr(rq, p, wake_flags);
  1953. p->state = TASK_RUNNING;
  1954. #ifdef CONFIG_SMP
  1955. if (p->sched_class->task_woken)
  1956. p->sched_class->task_woken(rq, p);
  1957. if (unlikely(rq->idle_stamp)) {
  1958. u64 delta = rq->clock - rq->idle_stamp;
  1959. u64 max = 2*sysctl_sched_migration_cost;
  1960. if (delta > max)
  1961. rq->avg_idle = max;
  1962. else
  1963. update_avg(&rq->avg_idle, delta);
  1964. rq->idle_stamp = 0;
  1965. }
  1966. #endif
  1967. /* if a worker is waking up, notify workqueue */
  1968. if ((p->flags & PF_WQ_WORKER) && success)
  1969. wq_worker_waking_up(p, cpu_of(rq));
  1970. }
  1971. /**
  1972. * try_to_wake_up - wake up a thread
  1973. * @p: the thread to be awakened
  1974. * @state: the mask of task states that can be woken
  1975. * @wake_flags: wake modifier flags (WF_*)
  1976. *
  1977. * Put it on the run-queue if it's not already there. The "current"
  1978. * thread is always on the run-queue (except when the actual
  1979. * re-schedule is in progress), and as such you're allowed to do
  1980. * the simpler "current->state = TASK_RUNNING" to mark yourself
  1981. * runnable without the overhead of this.
  1982. *
  1983. * Returns %true if @p was woken up, %false if it was already running
  1984. * or @state didn't match @p's state.
  1985. */
  1986. static int try_to_wake_up(struct task_struct *p, unsigned int state,
  1987. int wake_flags)
  1988. {
  1989. int cpu, orig_cpu, this_cpu, success = 0;
  1990. unsigned long flags;
  1991. unsigned long en_flags = ENQUEUE_WAKEUP;
  1992. struct rq *rq;
  1993. this_cpu = get_cpu();
  1994. smp_wmb();
  1995. rq = task_rq_lock(p, &flags);
  1996. if (!(p->state & state))
  1997. goto out;
  1998. if (p->se.on_rq)
  1999. goto out_running;
  2000. cpu = task_cpu(p);
  2001. orig_cpu = cpu;
  2002. #ifdef CONFIG_SMP
  2003. if (unlikely(task_running(rq, p)))
  2004. goto out_activate;
  2005. /*
  2006. * In order to handle concurrent wakeups and release the rq->lock
  2007. * we put the task in TASK_WAKING state.
  2008. *
  2009. * First fix up the nr_uninterruptible count:
  2010. */
  2011. if (task_contributes_to_load(p)) {
  2012. if (likely(cpu_online(orig_cpu)))
  2013. rq->nr_uninterruptible--;
  2014. else
  2015. this_rq()->nr_uninterruptible--;
  2016. }
  2017. p->state = TASK_WAKING;
  2018. if (p->sched_class->task_waking) {
  2019. p->sched_class->task_waking(rq, p);
  2020. en_flags |= ENQUEUE_WAKING;
  2021. }
  2022. cpu = select_task_rq(rq, p, SD_BALANCE_WAKE, wake_flags);
  2023. if (cpu != orig_cpu)
  2024. set_task_cpu(p, cpu);
  2025. __task_rq_unlock(rq);
  2026. rq = cpu_rq(cpu);
  2027. raw_spin_lock(&rq->lock);
  2028. /*
  2029. * We migrated the task without holding either rq->lock, however
  2030. * since the task is not on the task list itself, nobody else
  2031. * will try and migrate the task, hence the rq should match the
  2032. * cpu we just moved it to.
  2033. */
  2034. WARN_ON(task_cpu(p) != cpu);
  2035. WARN_ON(p->state != TASK_WAKING);
  2036. #ifdef CONFIG_SCHEDSTATS
  2037. schedstat_inc(rq, ttwu_count);
  2038. if (cpu == this_cpu)
  2039. schedstat_inc(rq, ttwu_local);
  2040. else {
  2041. struct sched_domain *sd;
  2042. for_each_domain(this_cpu, sd) {
  2043. if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  2044. schedstat_inc(sd, ttwu_wake_remote);
  2045. break;
  2046. }
  2047. }
  2048. }
  2049. #endif /* CONFIG_SCHEDSTATS */
  2050. out_activate:
  2051. #endif /* CONFIG_SMP */
  2052. ttwu_activate(p, rq, wake_flags & WF_SYNC, orig_cpu != cpu,
  2053. cpu == this_cpu, en_flags);
  2054. success = 1;
  2055. out_running:
  2056. ttwu_post_activation(p, rq, wake_flags, success);
  2057. out:
  2058. task_rq_unlock(rq, &flags);
  2059. put_cpu();
  2060. return success;
  2061. }
  2062. /**
  2063. * try_to_wake_up_local - try to wake up a local task with rq lock held
  2064. * @p: the thread to be awakened
  2065. *
  2066. * Put @p on the run-queue if it's not alredy there. The caller must
  2067. * ensure that this_rq() is locked, @p is bound to this_rq() and not
  2068. * the current task. this_rq() stays locked over invocation.
  2069. */
  2070. static void try_to_wake_up_local(struct task_struct *p)
  2071. {
  2072. struct rq *rq = task_rq(p);
  2073. bool success = false;
  2074. BUG_ON(rq != this_rq());
  2075. BUG_ON(p == current);
  2076. lockdep_assert_held(&rq->lock);
  2077. if (!(p->state & TASK_NORMAL))
  2078. return;
  2079. if (!p->se.on_rq) {
  2080. if (likely(!task_running(rq, p))) {
  2081. schedstat_inc(rq, ttwu_count);
  2082. schedstat_inc(rq, ttwu_local);
  2083. }
  2084. ttwu_activate(p, rq, false, false, true, ENQUEUE_WAKEUP);
  2085. success = true;
  2086. }
  2087. ttwu_post_activation(p, rq, 0, success);
  2088. }
  2089. /**
  2090. * wake_up_process - Wake up a specific process
  2091. * @p: The process to be woken up.
  2092. *
  2093. * Attempt to wake up the nominated process and move it to the set of runnable
  2094. * processes. Returns 1 if the process was woken up, 0 if it was already
  2095. * running.
  2096. *
  2097. * It may be assumed that this function implies a write memory barrier before
  2098. * changing the task state if and only if any tasks are woken up.
  2099. */
  2100. int wake_up_process(struct task_struct *p)
  2101. {
  2102. return try_to_wake_up(p, TASK_ALL, 0);
  2103. }
  2104. EXPORT_SYMBOL(wake_up_process);
  2105. int wake_up_state(struct task_struct *p, unsigned int state)
  2106. {
  2107. return try_to_wake_up(p, state, 0);
  2108. }
  2109. /*
  2110. * Perform scheduler related setup for a newly forked process p.
  2111. * p is forked by current.
  2112. *
  2113. * __sched_fork() is basic setup used by init_idle() too:
  2114. */
  2115. static void __sched_fork(struct task_struct *p)
  2116. {
  2117. p->se.exec_start = 0;
  2118. p->se.sum_exec_runtime = 0;
  2119. p->se.prev_sum_exec_runtime = 0;
  2120. p->se.nr_migrations = 0;
  2121. #ifdef CONFIG_SCHEDSTATS
  2122. memset(&p->se.statistics, 0, sizeof(p->se.statistics));
  2123. #endif
  2124. INIT_LIST_HEAD(&p->rt.run_list);
  2125. p->se.on_rq = 0;
  2126. INIT_LIST_HEAD(&p->se.group_node);
  2127. #ifdef CONFIG_PREEMPT_NOTIFIERS
  2128. INIT_HLIST_HEAD(&p->preempt_notifiers);
  2129. #endif
  2130. }
  2131. /*
  2132. * fork()/clone()-time setup:
  2133. */
  2134. void sched_fork(struct task_struct *p, int clone_flags)
  2135. {
  2136. int cpu = get_cpu();
  2137. __sched_fork(p);
  2138. /*
  2139. * We mark the process as running here. This guarantees that
  2140. * nobody will actually run it, and a signal or other external
  2141. * event cannot wake it up and insert it on the runqueue either.
  2142. */
  2143. p->state = TASK_RUNNING;
  2144. /*
  2145. * Revert to default priority/policy on fork if requested.
  2146. */
  2147. if (unlikely(p->sched_reset_on_fork)) {
  2148. if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) {
  2149. p->policy = SCHED_NORMAL;
  2150. p->normal_prio = p->static_prio;
  2151. }
  2152. if (PRIO_TO_NICE(p->static_prio) < 0) {
  2153. p->static_prio = NICE_TO_PRIO(0);
  2154. p->normal_prio = p->static_prio;
  2155. set_load_weight(p);
  2156. }
  2157. /*
  2158. * We don't need the reset flag anymore after the fork. It has
  2159. * fulfilled its duty:
  2160. */
  2161. p->sched_reset_on_fork = 0;
  2162. }
  2163. /*
  2164. * Make sure we do not leak PI boosting priority to the child.
  2165. */
  2166. p->prio = current->normal_prio;
  2167. if (!rt_prio(p->prio))
  2168. p->sched_class = &fair_sched_class;
  2169. if (p->sched_class->task_fork)
  2170. p->sched_class->task_fork(p);
  2171. /*
  2172. * The child is not yet in the pid-hash so no cgroup attach races,
  2173. * and the cgroup is pinned to this child due to cgroup_fork()
  2174. * is ran before sched_fork().
  2175. *
  2176. * Silence PROVE_RCU.
  2177. */
  2178. rcu_read_lock();
  2179. set_task_cpu(p, cpu);
  2180. rcu_read_unlock();
  2181. #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
  2182. if (likely(sched_info_on()))
  2183. memset(&p->sched_info, 0, sizeof(p->sched_info));
  2184. #endif
  2185. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  2186. p->oncpu = 0;
  2187. #endif
  2188. #ifdef CONFIG_PREEMPT
  2189. /* Want to start with kernel preemption disabled. */
  2190. task_thread_info(p)->preempt_count = 1;
  2191. #endif
  2192. plist_node_init(&p->pushable_tasks, MAX_PRIO);
  2193. put_cpu();
  2194. }
  2195. /*
  2196. * wake_up_new_task - wake up a newly created task for the first time.
  2197. *
  2198. * This function will do some initial scheduler statistics housekeeping
  2199. * that must be done for every newly created context, then puts the task
  2200. * on the runqueue and wakes it.
  2201. */
  2202. void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
  2203. {
  2204. unsigned long flags;
  2205. struct rq *rq;
  2206. int cpu __maybe_unused = get_cpu();
  2207. #ifdef CONFIG_SMP
  2208. rq = task_rq_lock(p, &flags);
  2209. p->state = TASK_WAKING;
  2210. /*
  2211. * Fork balancing, do it here and not earlier because:
  2212. * - cpus_allowed can change in the fork path
  2213. * - any previously selected cpu might disappear through hotplug
  2214. *
  2215. * We set TASK_WAKING so that select_task_rq() can drop rq->lock
  2216. * without people poking at ->cpus_allowed.
  2217. */
  2218. cpu = select_task_rq(rq, p, SD_BALANCE_FORK, 0);
  2219. set_task_cpu(p, cpu);
  2220. p->state = TASK_RUNNING;
  2221. task_rq_unlock(rq, &flags);
  2222. #endif
  2223. rq = task_rq_lock(p, &flags);
  2224. activate_task(rq, p, 0);
  2225. trace_sched_wakeup_new(p, 1);
  2226. check_preempt_curr(rq, p, WF_FORK);
  2227. #ifdef CONFIG_SMP
  2228. if (p->sched_class->task_woken)
  2229. p->sched_class->task_woken(rq, p);
  2230. #endif
  2231. task_rq_unlock(rq, &flags);
  2232. put_cpu();
  2233. }
  2234. #ifdef CONFIG_PREEMPT_NOTIFIERS
  2235. /**
  2236. * preempt_notifier_register - tell me when current is being preempted & rescheduled
  2237. * @notifier: notifier struct to register
  2238. */
  2239. void preempt_notifier_register(struct preempt_notifier *notifier)
  2240. {
  2241. hlist_add_head(&notifier->link, &current->preempt_notifiers);
  2242. }
  2243. EXPORT_SYMBOL_GPL(preempt_notifier_register);
  2244. /**
  2245. * preempt_notifier_unregister - no longer interested in preemption notifications
  2246. * @notifier: notifier struct to unregister
  2247. *
  2248. * This is safe to call from within a preemption notifier.
  2249. */
  2250. void preempt_notifier_unregister(struct preempt_notifier *notifier)
  2251. {
  2252. hlist_del(&notifier->link);
  2253. }
  2254. EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
  2255. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  2256. {
  2257. struct preempt_notifier *notifier;
  2258. struct hlist_node *node;
  2259. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  2260. notifier->ops->sched_in(notifier, raw_smp_processor_id());
  2261. }
  2262. static void
  2263. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  2264. struct task_struct *next)
  2265. {
  2266. struct preempt_notifier *notifier;
  2267. struct hlist_node *node;
  2268. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  2269. notifier->ops->sched_out(notifier, next);
  2270. }
  2271. #else /* !CONFIG_PREEMPT_NOTIFIERS */
  2272. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  2273. {
  2274. }
  2275. static void
  2276. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  2277. struct task_struct *next)
  2278. {
  2279. }
  2280. #endif /* CONFIG_PREEMPT_NOTIFIERS */
  2281. /**
  2282. * prepare_task_switch - prepare to switch tasks
  2283. * @rq: the runqueue preparing to switch
  2284. * @prev: the current task that is being switched out
  2285. * @next: the task we are going to switch to.
  2286. *
  2287. * This is called with the rq lock held and interrupts off. It must
  2288. * be paired with a subsequent finish_task_switch after the context
  2289. * switch.
  2290. *
  2291. * prepare_task_switch sets up locking and calls architecture specific
  2292. * hooks.
  2293. */
  2294. static inline void
  2295. prepare_task_switch(struct rq *rq, struct task_struct *prev,
  2296. struct task_struct *next)
  2297. {
  2298. fire_sched_out_preempt_notifiers(prev, next);
  2299. prepare_lock_switch(rq, next);
  2300. prepare_arch_switch(next);
  2301. }
  2302. /**
  2303. * finish_task_switch - clean up after a task-switch
  2304. * @rq: runqueue associated with task-switch
  2305. * @prev: the thread we just switched away from.
  2306. *
  2307. * finish_task_switch must be called after the context switch, paired
  2308. * with a prepare_task_switch call before the context switch.
  2309. * finish_task_switch will reconcile locking set up by prepare_task_switch,
  2310. * and do any other architecture-specific cleanup actions.
  2311. *
  2312. * Note that we may have delayed dropping an mm in context_switch(). If
  2313. * so, we finish that here outside of the runqueue lock. (Doing it
  2314. * with the lock held can cause deadlocks; see schedule() for
  2315. * details.)
  2316. */
  2317. static void finish_task_switch(struct rq *rq, struct task_struct *prev)
  2318. __releases(rq->lock)
  2319. {
  2320. struct mm_struct *mm = rq->prev_mm;
  2321. long prev_state;
  2322. rq->prev_mm = NULL;
  2323. /*
  2324. * A task struct has one reference for the use as "current".
  2325. * If a task dies, then it sets TASK_DEAD in tsk->state and calls
  2326. * schedule one last time. The schedule call will never return, and
  2327. * the scheduled task must drop that reference.
  2328. * The test for TASK_DEAD must occur while the runqueue locks are
  2329. * still held, otherwise prev could be scheduled on another cpu, die
  2330. * there before we look at prev->state, and then the reference would
  2331. * be dropped twice.
  2332. * Manfred Spraul <manfred@colorfullife.com>
  2333. */
  2334. prev_state = prev->state;
  2335. finish_arch_switch(prev);
  2336. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  2337. local_irq_disable();
  2338. #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
  2339. perf_event_task_sched_in(current);
  2340. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  2341. local_irq_enable();
  2342. #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
  2343. finish_lock_switch(rq, prev);
  2344. fire_sched_in_preempt_notifiers(current);
  2345. if (mm)
  2346. mmdrop(mm);
  2347. if (unlikely(prev_state == TASK_DEAD)) {
  2348. /*
  2349. * Remove function-return probe instances associated with this
  2350. * task and put them back on the free list.
  2351. */
  2352. kprobe_flush_task(prev);
  2353. put_task_struct(prev);
  2354. }
  2355. }
  2356. #ifdef CONFIG_SMP
  2357. /* assumes rq->lock is held */
  2358. static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
  2359. {
  2360. if (prev->sched_class->pre_schedule)
  2361. prev->sched_class->pre_schedule(rq, prev);
  2362. }
  2363. /* rq->lock is NOT held, but preemption is disabled */
  2364. static inline void post_schedule(struct rq *rq)
  2365. {
  2366. if (rq->post_schedule) {
  2367. unsigned long flags;
  2368. raw_spin_lock_irqsave(&rq->lock, flags);
  2369. if (rq->curr->sched_class->post_schedule)
  2370. rq->curr->sched_class->post_schedule(rq);
  2371. raw_spin_unlock_irqrestore(&rq->lock, flags);
  2372. rq->post_schedule = 0;
  2373. }
  2374. }
  2375. #else
  2376. static inline void pre_schedule(struct rq *rq, struct task_struct *p)
  2377. {
  2378. }
  2379. static inline void post_schedule(struct rq *rq)
  2380. {
  2381. }
  2382. #endif
  2383. /**
  2384. * schedule_tail - first thing a freshly forked thread must call.
  2385. * @prev: the thread we just switched away from.
  2386. */
  2387. asmlinkage void schedule_tail(struct task_struct *prev)
  2388. __releases(rq->lock)
  2389. {
  2390. struct rq *rq = this_rq();
  2391. finish_task_switch(rq, prev);
  2392. /*
  2393. * FIXME: do we need to worry about rq being invalidated by the
  2394. * task_switch?
  2395. */
  2396. post_schedule(rq);
  2397. #ifdef __ARCH_WANT_UNLOCKED_CTXSW
  2398. /* In this case, finish_task_switch does not reenable preemption */
  2399. preempt_enable();
  2400. #endif
  2401. if (current->set_child_tid)
  2402. put_user(task_pid_vnr(current), current->set_child_tid);
  2403. }
  2404. /*
  2405. * context_switch - switch to the new MM and the new
  2406. * thread's register state.
  2407. */
  2408. static inline void
  2409. context_switch(struct rq *rq, struct task_struct *prev,
  2410. struct task_struct *next)
  2411. {
  2412. struct mm_struct *mm, *oldmm;
  2413. prepare_task_switch(rq, prev, next);
  2414. trace_sched_switch(prev, next);
  2415. mm = next->mm;
  2416. oldmm = prev->active_mm;
  2417. /*
  2418. * For paravirt, this is coupled with an exit in switch_to to
  2419. * combine the page table reload and the switch backend into
  2420. * one hypercall.
  2421. */
  2422. arch_start_context_switch(prev);
  2423. if (likely(!mm)) {
  2424. next->active_mm = oldmm;
  2425. atomic_inc(&oldmm->mm_count);
  2426. enter_lazy_tlb(oldmm, next);
  2427. } else
  2428. switch_mm(oldmm, mm, next);
  2429. if (likely(!prev->mm)) {
  2430. prev->active_mm = NULL;
  2431. rq->prev_mm = oldmm;
  2432. }
  2433. /*
  2434. * Since the runqueue lock will be released by the next
  2435. * task (which is an invalid locking op but in the case
  2436. * of the scheduler it's an obvious special-case), so we
  2437. * do an early lockdep release here:
  2438. */
  2439. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  2440. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  2441. #endif
  2442. /* Here we just switch the register state and the stack. */
  2443. switch_to(prev, next, prev);
  2444. barrier();
  2445. /*
  2446. * this_rq must be evaluated again because prev may have moved
  2447. * CPUs since it called schedule(), thus the 'rq' on its stack
  2448. * frame will be invalid.
  2449. */
  2450. finish_task_switch(this_rq(), prev);
  2451. }
  2452. /*
  2453. * nr_running, nr_uninterruptible and nr_context_switches:
  2454. *
  2455. * externally visible scheduler statistics: current number of runnable
  2456. * threads, current number of uninterruptible-sleeping threads, total
  2457. * number of context switches performed since bootup.
  2458. */
  2459. unsigned long nr_running(void)
  2460. {
  2461. unsigned long i, sum = 0;
  2462. for_each_online_cpu(i)
  2463. sum += cpu_rq(i)->nr_running;
  2464. return sum;
  2465. }
  2466. unsigned long nr_uninterruptible(void)
  2467. {
  2468. unsigned long i, sum = 0;
  2469. for_each_possible_cpu(i)
  2470. sum += cpu_rq(i)->nr_uninterruptible;
  2471. /*
  2472. * Since we read the counters lockless, it might be slightly
  2473. * inaccurate. Do not allow it to go below zero though:
  2474. */
  2475. if (unlikely((long)sum < 0))
  2476. sum = 0;
  2477. return sum;
  2478. }
  2479. unsigned long long nr_context_switches(void)
  2480. {
  2481. int i;
  2482. unsigned long long sum = 0;
  2483. for_each_possible_cpu(i)
  2484. sum += cpu_rq(i)->nr_switches;
  2485. return sum;
  2486. }
  2487. unsigned long nr_iowait(void)
  2488. {
  2489. unsigned long i, sum = 0;
  2490. for_each_possible_cpu(i)
  2491. sum += atomic_read(&cpu_rq(i)->nr_iowait);
  2492. return sum;
  2493. }
  2494. unsigned long nr_iowait_cpu(int cpu)
  2495. {
  2496. struct rq *this = cpu_rq(cpu);
  2497. return atomic_read(&this->nr_iowait);
  2498. }
  2499. unsigned long this_cpu_load(void)
  2500. {
  2501. struct rq *this = this_rq();
  2502. return this->cpu_load[0];
  2503. }
  2504. /* Variables and functions for calc_load */
  2505. static atomic_long_t calc_load_tasks;
  2506. static unsigned long calc_load_update;
  2507. unsigned long avenrun[3];
  2508. EXPORT_SYMBOL(avenrun);
  2509. static long calc_load_fold_active(struct rq *this_rq)
  2510. {
  2511. long nr_active, delta = 0;
  2512. nr_active = this_rq->nr_running;
  2513. nr_active += (long) this_rq->nr_uninterruptible;
  2514. if (nr_active != this_rq->calc_load_active) {
  2515. delta = nr_active - this_rq->calc_load_active;
  2516. this_rq->calc_load_active = nr_active;
  2517. }
  2518. return delta;
  2519. }
  2520. #ifdef CONFIG_NO_HZ
  2521. /*
  2522. * For NO_HZ we delay the active fold to the next LOAD_FREQ update.
  2523. *
  2524. * When making the ILB scale, we should try to pull this in as well.
  2525. */
  2526. static atomic_long_t calc_load_tasks_idle;
  2527. static void calc_load_account_idle(struct rq *this_rq)
  2528. {
  2529. long delta;
  2530. delta = calc_load_fold_active(this_rq);
  2531. if (delta)
  2532. atomic_long_add(delta, &calc_load_tasks_idle);
  2533. }
  2534. static long calc_load_fold_idle(void)
  2535. {
  2536. long delta = 0;
  2537. /*
  2538. * Its got a race, we don't care...
  2539. */
  2540. if (atomic_long_read(&calc_load_tasks_idle))
  2541. delta = atomic_long_xchg(&calc_load_tasks_idle, 0);
  2542. return delta;
  2543. }
  2544. #else
  2545. static void calc_load_account_idle(struct rq *this_rq)
  2546. {
  2547. }
  2548. static inline long calc_load_fold_idle(void)
  2549. {
  2550. return 0;
  2551. }
  2552. #endif
  2553. /**
  2554. * get_avenrun - get the load average array
  2555. * @loads: pointer to dest load array
  2556. * @offset: offset to add
  2557. * @shift: shift count to shift the result left
  2558. *
  2559. * These values are estimates at best, so no need for locking.
  2560. */
  2561. void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
  2562. {
  2563. loads[0] = (avenrun[0] + offset) << shift;
  2564. loads[1] = (avenrun[1] + offset) << shift;
  2565. loads[2] = (avenrun[2] + offset) << shift;
  2566. }
  2567. static unsigned long
  2568. calc_load(unsigned long load, unsigned long exp, unsigned long active)
  2569. {
  2570. load *= exp;
  2571. load += active * (FIXED_1 - exp);
  2572. return load >> FSHIFT;
  2573. }
  2574. /*
  2575. * calc_load - update the avenrun load estimates 10 ticks after the
  2576. * CPUs have updated calc_load_tasks.
  2577. */
  2578. void calc_global_load(void)
  2579. {
  2580. unsigned long upd = calc_load_update + 10;
  2581. long active;
  2582. if (time_before(jiffies, upd))
  2583. return;
  2584. active = atomic_long_read(&calc_load_tasks);
  2585. active = active > 0 ? active * FIXED_1 : 0;
  2586. avenrun[0] = calc_load(avenrun[0], EXP_1, active);
  2587. avenrun[1] = calc_load(avenrun[1], EXP_5, active);
  2588. avenrun[2] = calc_load(avenrun[2], EXP_15, active);
  2589. calc_load_update += LOAD_FREQ;
  2590. }
  2591. /*
  2592. * Called from update_cpu_load() to periodically update this CPU's
  2593. * active count.
  2594. */
  2595. static void calc_load_account_active(struct rq *this_rq)
  2596. {
  2597. long delta;
  2598. if (time_before(jiffies, this_rq->calc_load_update))
  2599. return;
  2600. delta = calc_load_fold_active(this_rq);
  2601. delta += calc_load_fold_idle();
  2602. if (delta)
  2603. atomic_long_add(delta, &calc_load_tasks);
  2604. this_rq->calc_load_update += LOAD_FREQ;
  2605. }
  2606. /*
  2607. * The exact cpuload at various idx values, calculated at every tick would be
  2608. * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
  2609. *
  2610. * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
  2611. * on nth tick when cpu may be busy, then we have:
  2612. * load = ((2^idx - 1) / 2^idx)^(n-1) * load
  2613. * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
  2614. *
  2615. * decay_load_missed() below does efficient calculation of
  2616. * load = ((2^idx - 1) / 2^idx)^(n-1) * load
  2617. * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
  2618. *
  2619. * The calculation is approximated on a 128 point scale.
  2620. * degrade_zero_ticks is the number of ticks after which load at any
  2621. * particular idx is approximated to be zero.
  2622. * degrade_factor is a precomputed table, a row for each load idx.
  2623. * Each column corresponds to degradation factor for a power of two ticks,
  2624. * based on 128 point scale.
  2625. * Example:
  2626. * row 2, col 3 (=12) says that the degradation at load idx 2 after
  2627. * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
  2628. *
  2629. * With this power of 2 load factors, we can degrade the load n times
  2630. * by looking at 1 bits in n and doing as many mult/shift instead of
  2631. * n mult/shifts needed by the exact degradation.
  2632. */
  2633. #define DEGRADE_SHIFT 7
  2634. static const unsigned char
  2635. degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
  2636. static const unsigned char
  2637. degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
  2638. {0, 0, 0, 0, 0, 0, 0, 0},
  2639. {64, 32, 8, 0, 0, 0, 0, 0},
  2640. {96, 72, 40, 12, 1, 0, 0},
  2641. {112, 98, 75, 43, 15, 1, 0},
  2642. {120, 112, 98, 76, 45, 16, 2} };
  2643. /*
  2644. * Update cpu_load for any missed ticks, due to tickless idle. The backlog
  2645. * would be when CPU is idle and so we just decay the old load without
  2646. * adding any new load.
  2647. */
  2648. static unsigned long
  2649. decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
  2650. {
  2651. int j = 0;
  2652. if (!missed_updates)
  2653. return load;
  2654. if (missed_updates >= degrade_zero_ticks[idx])
  2655. return 0;
  2656. if (idx == 1)
  2657. return load >> missed_updates;
  2658. while (missed_updates) {
  2659. if (missed_updates % 2)
  2660. load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
  2661. missed_updates >>= 1;
  2662. j++;
  2663. }
  2664. return load;
  2665. }
  2666. /*
  2667. * Update rq->cpu_load[] statistics. This function is usually called every
  2668. * scheduler tick (TICK_NSEC). With tickless idle this will not be called
  2669. * every tick. We fix it up based on jiffies.
  2670. */
  2671. static void update_cpu_load(struct rq *this_rq)
  2672. {
  2673. unsigned long this_load = this_rq->load.weight;
  2674. unsigned long curr_jiffies = jiffies;
  2675. unsigned long pending_updates;
  2676. int i, scale;
  2677. this_rq->nr_load_updates++;
  2678. /* Avoid repeated calls on same jiffy, when moving in and out of idle */
  2679. if (curr_jiffies == this_rq->last_load_update_tick)
  2680. return;
  2681. pending_updates = curr_jiffies - this_rq->last_load_update_tick;
  2682. this_rq->last_load_update_tick = curr_jiffies;
  2683. /* Update our load: */
  2684. this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
  2685. for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
  2686. unsigned long old_load, new_load;
  2687. /* scale is effectively 1 << i now, and >> i divides by scale */
  2688. old_load = this_rq->cpu_load[i];
  2689. old_load = decay_load_missed(old_load, pending_updates - 1, i);
  2690. new_load = this_load;
  2691. /*
  2692. * Round up the averaging division if load is increasing. This
  2693. * prevents us from getting stuck on 9 if the load is 10, for
  2694. * example.
  2695. */
  2696. if (new_load > old_load)
  2697. new_load += scale - 1;
  2698. this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
  2699. }
  2700. }
  2701. static void update_cpu_load_active(struct rq *this_rq)
  2702. {
  2703. update_cpu_load(this_rq);
  2704. calc_load_account_active(this_rq);
  2705. }
  2706. #ifdef CONFIG_SMP
  2707. /*
  2708. * sched_exec - execve() is a valuable balancing opportunity, because at
  2709. * this point the task has the smallest effective memory and cache footprint.
  2710. */
  2711. void sched_exec(void)
  2712. {
  2713. struct task_struct *p = current;
  2714. unsigned long flags;
  2715. struct rq *rq;
  2716. int dest_cpu;
  2717. rq = task_rq_lock(p, &flags);
  2718. dest_cpu = p->sched_class->select_task_rq(rq, p, SD_BALANCE_EXEC, 0);
  2719. if (dest_cpu == smp_processor_id())
  2720. goto unlock;
  2721. /*
  2722. * select_task_rq() can race against ->cpus_allowed
  2723. */
  2724. if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed) &&
  2725. likely(cpu_active(dest_cpu)) && migrate_task(p, dest_cpu)) {
  2726. struct migration_arg arg = { p, dest_cpu };
  2727. task_rq_unlock(rq, &flags);
  2728. stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
  2729. return;
  2730. }
  2731. unlock:
  2732. task_rq_unlock(rq, &flags);
  2733. }
  2734. #endif
  2735. DEFINE_PER_CPU(struct kernel_stat, kstat);
  2736. EXPORT_PER_CPU_SYMBOL(kstat);
  2737. /*
  2738. * Return any ns on the sched_clock that have not yet been accounted in
  2739. * @p in case that task is currently running.
  2740. *
  2741. * Called with task_rq_lock() held on @rq.
  2742. */
  2743. static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
  2744. {
  2745. u64 ns = 0;
  2746. if (task_current(rq, p)) {
  2747. update_rq_clock(rq);
  2748. ns = rq->clock - p->se.exec_start;
  2749. if ((s64)ns < 0)
  2750. ns = 0;
  2751. }
  2752. return ns;
  2753. }
  2754. unsigned long long task_delta_exec(struct task_struct *p)
  2755. {
  2756. unsigned long flags;
  2757. struct rq *rq;
  2758. u64 ns = 0;
  2759. rq = task_rq_lock(p, &flags);
  2760. ns = do_task_delta_exec(p, rq);
  2761. task_rq_unlock(rq, &flags);
  2762. return ns;
  2763. }
  2764. /*
  2765. * Return accounted runtime for the task.
  2766. * In case the task is currently running, return the runtime plus current's
  2767. * pending runtime that have not been accounted yet.
  2768. */
  2769. unsigned long long task_sched_runtime(struct task_struct *p)
  2770. {
  2771. unsigned long flags;
  2772. struct rq *rq;
  2773. u64 ns = 0;
  2774. rq = task_rq_lock(p, &flags);
  2775. ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
  2776. task_rq_unlock(rq, &flags);
  2777. return ns;
  2778. }
  2779. /*
  2780. * Return sum_exec_runtime for the thread group.
  2781. * In case the task is currently running, return the sum plus current's
  2782. * pending runtime that have not been accounted yet.
  2783. *
  2784. * Note that the thread group might have other running tasks as well,
  2785. * so the return value not includes other pending runtime that other
  2786. * running tasks might have.
  2787. */
  2788. unsigned long long thread_group_sched_runtime(struct task_struct *p)
  2789. {
  2790. struct task_cputime totals;
  2791. unsigned long flags;
  2792. struct rq *rq;
  2793. u64 ns;
  2794. rq = task_rq_lock(p, &flags);
  2795. thread_group_cputime(p, &totals);
  2796. ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
  2797. task_rq_unlock(rq, &flags);
  2798. return ns;
  2799. }
  2800. /*
  2801. * Account user cpu time to a process.
  2802. * @p: the process that the cpu time gets accounted to
  2803. * @cputime: the cpu time spent in user space since the last update
  2804. * @cputime_scaled: cputime scaled by cpu frequency
  2805. */
  2806. void account_user_time(struct task_struct *p, cputime_t cputime,
  2807. cputime_t cputime_scaled)
  2808. {
  2809. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  2810. cputime64_t tmp;
  2811. /* Add user time to process. */
  2812. p->utime = cputime_add(p->utime, cputime);
  2813. p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
  2814. account_group_user_time(p, cputime);
  2815. /* Add user time to cpustat. */
  2816. tmp = cputime_to_cputime64(cputime);
  2817. if (TASK_NICE(p) > 0)
  2818. cpustat->nice = cputime64_add(cpustat->nice, tmp);
  2819. else
  2820. cpustat->user = cputime64_add(cpustat->user, tmp);
  2821. cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
  2822. /* Account for user time used */
  2823. acct_update_integrals(p);
  2824. }
  2825. /*
  2826. * Account guest cpu time to a process.
  2827. * @p: the process that the cpu time gets accounted to
  2828. * @cputime: the cpu time spent in virtual machine since the last update
  2829. * @cputime_scaled: cputime scaled by cpu frequency
  2830. */
  2831. static void account_guest_time(struct task_struct *p, cputime_t cputime,
  2832. cputime_t cputime_scaled)
  2833. {
  2834. cputime64_t tmp;
  2835. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  2836. tmp = cputime_to_cputime64(cputime);
  2837. /* Add guest time to process. */
  2838. p->utime = cputime_add(p->utime, cputime);
  2839. p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
  2840. account_group_user_time(p, cputime);
  2841. p->gtime = cputime_add(p->gtime, cputime);
  2842. /* Add guest time to cpustat. */
  2843. if (TASK_NICE(p) > 0) {
  2844. cpustat->nice = cputime64_add(cpustat->nice, tmp);
  2845. cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp);
  2846. } else {
  2847. cpustat->user = cputime64_add(cpustat->user, tmp);
  2848. cpustat->guest = cputime64_add(cpustat->guest, tmp);
  2849. }
  2850. }
  2851. /*
  2852. * Account system cpu time to a process.
  2853. * @p: the process that the cpu time gets accounted to
  2854. * @hardirq_offset: the offset to subtract from hardirq_count()
  2855. * @cputime: the cpu time spent in kernel space since the last update
  2856. * @cputime_scaled: cputime scaled by cpu frequency
  2857. */
  2858. void account_system_time(struct task_struct *p, int hardirq_offset,
  2859. cputime_t cputime, cputime_t cputime_scaled)
  2860. {
  2861. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  2862. cputime64_t tmp;
  2863. if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
  2864. account_guest_time(p, cputime, cputime_scaled);
  2865. return;
  2866. }
  2867. /* Add system time to process. */
  2868. p->stime = cputime_add(p->stime, cputime);
  2869. p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
  2870. account_group_system_time(p, cputime);
  2871. /* Add system time to cpustat. */
  2872. tmp = cputime_to_cputime64(cputime);
  2873. if (hardirq_count() - hardirq_offset)
  2874. cpustat->irq = cputime64_add(cpustat->irq, tmp);
  2875. else if (softirq_count())
  2876. cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
  2877. else
  2878. cpustat->system = cputime64_add(cpustat->system, tmp);
  2879. cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
  2880. /* Account for system time used */
  2881. acct_update_integrals(p);
  2882. }
  2883. /*
  2884. * Account for involuntary wait time.
  2885. * @steal: the cpu time spent in involuntary wait
  2886. */
  2887. void account_steal_time(cputime_t cputime)
  2888. {
  2889. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  2890. cputime64_t cputime64 = cputime_to_cputime64(cputime);
  2891. cpustat->steal = cputime64_add(cpustat->steal, cputime64);
  2892. }
  2893. /*
  2894. * Account for idle time.
  2895. * @cputime: the cpu time spent in idle wait
  2896. */
  2897. void account_idle_time(cputime_t cputime)
  2898. {
  2899. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  2900. cputime64_t cputime64 = cputime_to_cputime64(cputime);
  2901. struct rq *rq = this_rq();
  2902. if (atomic_read(&rq->nr_iowait) > 0)
  2903. cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
  2904. else
  2905. cpustat->idle = cputime64_add(cpustat->idle, cputime64);
  2906. }
  2907. #ifndef CONFIG_VIRT_CPU_ACCOUNTING
  2908. /*
  2909. * Account a single tick of cpu time.
  2910. * @p: the process that the cpu time gets accounted to
  2911. * @user_tick: indicates if the tick is a user or a system tick
  2912. */
  2913. void account_process_tick(struct task_struct *p, int user_tick)
  2914. {
  2915. cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
  2916. struct rq *rq = this_rq();
  2917. if (user_tick)
  2918. account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
  2919. else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
  2920. account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
  2921. one_jiffy_scaled);
  2922. else
  2923. account_idle_time(cputime_one_jiffy);
  2924. }
  2925. /*
  2926. * Account multiple ticks of steal time.
  2927. * @p: the process from which the cpu time has been stolen
  2928. * @ticks: number of stolen ticks
  2929. */
  2930. void account_steal_ticks(unsigned long ticks)
  2931. {
  2932. account_steal_time(jiffies_to_cputime(ticks));
  2933. }
  2934. /*
  2935. * Account multiple ticks of idle time.
  2936. * @ticks: number of stolen ticks
  2937. */
  2938. void account_idle_ticks(unsigned long ticks)
  2939. {
  2940. account_idle_time(jiffies_to_cputime(ticks));
  2941. }
  2942. #endif
  2943. /*
  2944. * Use precise platform statistics if available:
  2945. */
  2946. #ifdef CONFIG_VIRT_CPU_ACCOUNTING
  2947. void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
  2948. {
  2949. *ut = p->utime;
  2950. *st = p->stime;
  2951. }
  2952. void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
  2953. {
  2954. struct task_cputime cputime;
  2955. thread_group_cputime(p, &cputime);
  2956. *ut = cputime.utime;
  2957. *st = cputime.stime;
  2958. }
  2959. #else
  2960. #ifndef nsecs_to_cputime
  2961. # define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
  2962. #endif
  2963. void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
  2964. {
  2965. cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime);
  2966. /*
  2967. * Use CFS's precise accounting:
  2968. */
  2969. rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
  2970. if (total) {
  2971. u64 temp;
  2972. temp = (u64)(rtime * utime);
  2973. do_div(temp, total);
  2974. utime = (cputime_t)temp;
  2975. } else
  2976. utime = rtime;
  2977. /*
  2978. * Compare with previous values, to keep monotonicity:
  2979. */
  2980. p->prev_utime = max(p->prev_utime, utime);
  2981. p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime));
  2982. *ut = p->prev_utime;
  2983. *st = p->prev_stime;
  2984. }
  2985. /*
  2986. * Must be called with siglock held.
  2987. */
  2988. void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
  2989. {
  2990. struct signal_struct *sig = p->signal;
  2991. struct task_cputime cputime;
  2992. cputime_t rtime, utime, total;
  2993. thread_group_cputime(p, &cputime);
  2994. total = cputime_add(cputime.utime, cputime.stime);
  2995. rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
  2996. if (total) {
  2997. u64 temp;
  2998. temp = (u64)(rtime * cputime.utime);
  2999. do_div(temp, total);
  3000. utime = (cputime_t)temp;
  3001. } else
  3002. utime = rtime;
  3003. sig->prev_utime = max(sig->prev_utime, utime);
  3004. sig->prev_stime = max(sig->prev_stime,
  3005. cputime_sub(rtime, sig->prev_utime));
  3006. *ut = sig->prev_utime;
  3007. *st = sig->prev_stime;
  3008. }
  3009. #endif
  3010. /*
  3011. * This function gets called by the timer code, with HZ frequency.
  3012. * We call it with interrupts disabled.
  3013. *
  3014. * It also gets called by the fork code, when changing the parent's
  3015. * timeslices.
  3016. */
  3017. void scheduler_tick(void)
  3018. {
  3019. int cpu = smp_processor_id();
  3020. struct rq *rq = cpu_rq(cpu);
  3021. struct task_struct *curr = rq->curr;
  3022. sched_clock_tick();
  3023. raw_spin_lock(&rq->lock);
  3024. update_rq_clock(rq);
  3025. update_cpu_load_active(rq);
  3026. curr->sched_class->task_tick(rq, curr, 0);
  3027. raw_spin_unlock(&rq->lock);
  3028. perf_event_task_tick(curr);
  3029. #ifdef CONFIG_SMP
  3030. rq->idle_at_tick = idle_cpu(cpu);
  3031. trigger_load_balance(rq, cpu);
  3032. #endif
  3033. }
  3034. notrace unsigned long get_parent_ip(unsigned long addr)
  3035. {
  3036. if (in_lock_functions(addr)) {
  3037. addr = CALLER_ADDR2;
  3038. if (in_lock_functions(addr))
  3039. addr = CALLER_ADDR3;
  3040. }
  3041. return addr;
  3042. }
  3043. #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
  3044. defined(CONFIG_PREEMPT_TRACER))
  3045. void __kprobes add_preempt_count(int val)
  3046. {
  3047. #ifdef CONFIG_DEBUG_PREEMPT
  3048. /*
  3049. * Underflow?
  3050. */
  3051. if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
  3052. return;
  3053. #endif
  3054. preempt_count() += val;
  3055. #ifdef CONFIG_DEBUG_PREEMPT
  3056. /*
  3057. * Spinlock count overflowing soon?
  3058. */
  3059. DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
  3060. PREEMPT_MASK - 10);
  3061. #endif
  3062. if (preempt_count() == val)
  3063. trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  3064. }
  3065. EXPORT_SYMBOL(add_preempt_count);
  3066. void __kprobes sub_preempt_count(int val)
  3067. {
  3068. #ifdef CONFIG_DEBUG_PREEMPT
  3069. /*
  3070. * Underflow?
  3071. */
  3072. if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
  3073. return;
  3074. /*
  3075. * Is the spinlock portion underflowing?
  3076. */
  3077. if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
  3078. !(preempt_count() & PREEMPT_MASK)))
  3079. return;
  3080. #endif
  3081. if (preempt_count() == val)
  3082. trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  3083. preempt_count() -= val;
  3084. }
  3085. EXPORT_SYMBOL(sub_preempt_count);
  3086. #endif
  3087. /*
  3088. * Print scheduling while atomic bug:
  3089. */
  3090. static noinline void __schedule_bug(struct task_struct *prev)
  3091. {
  3092. struct pt_regs *regs = get_irq_regs();
  3093. printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
  3094. prev->comm, prev->pid, preempt_count());
  3095. debug_show_held_locks(prev);
  3096. print_modules();
  3097. if (irqs_disabled())
  3098. print_irqtrace_events(prev);
  3099. if (regs)
  3100. show_regs(regs);
  3101. else
  3102. dump_stack();
  3103. }
  3104. /*
  3105. * Various schedule()-time debugging checks and statistics:
  3106. */
  3107. static inline void schedule_debug(struct task_struct *prev)
  3108. {
  3109. /*
  3110. * Test if we are atomic. Since do_exit() needs to call into
  3111. * schedule() atomically, we ignore that path for now.
  3112. * Otherwise, whine if we are scheduling when we should not be.
  3113. */
  3114. if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
  3115. __schedule_bug(prev);
  3116. profile_hit(SCHED_PROFILING, __builtin_return_address(0));
  3117. schedstat_inc(this_rq(), sched_count);
  3118. #ifdef CONFIG_SCHEDSTATS
  3119. if (unlikely(prev->lock_depth >= 0)) {
  3120. schedstat_inc(this_rq(), bkl_count);
  3121. schedstat_inc(prev, sched_info.bkl_count);
  3122. }
  3123. #endif
  3124. }
  3125. static void put_prev_task(struct rq *rq, struct task_struct *prev)
  3126. {
  3127. if (prev->se.on_rq)
  3128. update_rq_clock(rq);
  3129. rq->skip_clock_update = 0;
  3130. prev->sched_class->put_prev_task(rq, prev);
  3131. }
  3132. /*
  3133. * Pick up the highest-prio task:
  3134. */
  3135. static inline struct task_struct *
  3136. pick_next_task(struct rq *rq)
  3137. {
  3138. const struct sched_class *class;
  3139. struct task_struct *p;
  3140. /*
  3141. * Optimization: we know that if all tasks are in
  3142. * the fair class we can call that function directly:
  3143. */
  3144. if (likely(rq->nr_running == rq->cfs.nr_running)) {
  3145. p = fair_sched_class.pick_next_task(rq);
  3146. if (likely(p))
  3147. return p;
  3148. }
  3149. class = sched_class_highest;
  3150. for ( ; ; ) {
  3151. p = class->pick_next_task(rq);
  3152. if (p)
  3153. return p;
  3154. /*
  3155. * Will never be NULL as the idle class always
  3156. * returns a non-NULL p:
  3157. */
  3158. class = class->next;
  3159. }
  3160. }
  3161. /*
  3162. * schedule() is the main scheduler function.
  3163. */
  3164. asmlinkage void __sched schedule(void)
  3165. {
  3166. struct task_struct *prev, *next;
  3167. unsigned long *switch_count;
  3168. struct rq *rq;
  3169. int cpu;
  3170. need_resched:
  3171. preempt_disable();
  3172. cpu = smp_processor_id();
  3173. rq = cpu_rq(cpu);
  3174. rcu_note_context_switch(cpu);
  3175. prev = rq->curr;
  3176. release_kernel_lock(prev);
  3177. need_resched_nonpreemptible:
  3178. schedule_debug(prev);
  3179. if (sched_feat(HRTICK))
  3180. hrtick_clear(rq);
  3181. raw_spin_lock_irq(&rq->lock);
  3182. clear_tsk_need_resched(prev);
  3183. switch_count = &prev->nivcsw;
  3184. if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
  3185. if (unlikely(signal_pending_state(prev->state, prev))) {
  3186. prev->state = TASK_RUNNING;
  3187. } else {
  3188. /*
  3189. * If a worker is going to sleep, notify and
  3190. * ask workqueue whether it wants to wake up a
  3191. * task to maintain concurrency. If so, wake
  3192. * up the task.
  3193. */
  3194. if (prev->flags & PF_WQ_WORKER) {
  3195. struct task_struct *to_wakeup;
  3196. to_wakeup = wq_worker_sleeping(prev, cpu);
  3197. if (to_wakeup)
  3198. try_to_wake_up_local(to_wakeup);
  3199. }
  3200. deactivate_task(rq, prev, DEQUEUE_SLEEP);
  3201. }
  3202. switch_count = &prev->nvcsw;
  3203. }
  3204. pre_schedule(rq, prev);
  3205. if (unlikely(!rq->nr_running))
  3206. idle_balance(cpu, rq);
  3207. put_prev_task(rq, prev);
  3208. next = pick_next_task(rq);
  3209. if (likely(prev != next)) {
  3210. sched_info_switch(prev, next);
  3211. perf_event_task_sched_out(prev, next);
  3212. rq->nr_switches++;
  3213. rq->curr = next;
  3214. ++*switch_count;
  3215. context_switch(rq, prev, next); /* unlocks the rq */
  3216. /*
  3217. * The context switch have flipped the stack from under us
  3218. * and restored the local variables which were saved when
  3219. * this task called schedule() in the past. prev == current
  3220. * is still correct, but it can be moved to another cpu/rq.
  3221. */
  3222. cpu = smp_processor_id();
  3223. rq = cpu_rq(cpu);
  3224. } else
  3225. raw_spin_unlock_irq(&rq->lock);
  3226. post_schedule(rq);
  3227. if (unlikely(reacquire_kernel_lock(prev)))
  3228. goto need_resched_nonpreemptible;
  3229. preempt_enable_no_resched();
  3230. if (need_resched())
  3231. goto need_resched;
  3232. }
  3233. EXPORT_SYMBOL(schedule);
  3234. #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
  3235. /*
  3236. * Look out! "owner" is an entirely speculative pointer
  3237. * access and not reliable.
  3238. */
  3239. int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
  3240. {
  3241. unsigned int cpu;
  3242. struct rq *rq;
  3243. if (!sched_feat(OWNER_SPIN))
  3244. return 0;
  3245. #ifdef CONFIG_DEBUG_PAGEALLOC
  3246. /*
  3247. * Need to access the cpu field knowing that
  3248. * DEBUG_PAGEALLOC could have unmapped it if
  3249. * the mutex owner just released it and exited.
  3250. */
  3251. if (probe_kernel_address(&owner->cpu, cpu))
  3252. return 0;
  3253. #else
  3254. cpu = owner->cpu;
  3255. #endif
  3256. /*
  3257. * Even if the access succeeded (likely case),
  3258. * the cpu field may no longer be valid.
  3259. */
  3260. if (cpu >= nr_cpumask_bits)
  3261. return 0;
  3262. /*
  3263. * We need to validate that we can do a
  3264. * get_cpu() and that we have the percpu area.
  3265. */
  3266. if (!cpu_online(cpu))
  3267. return 0;
  3268. rq = cpu_rq(cpu);
  3269. for (;;) {
  3270. /*
  3271. * Owner changed, break to re-assess state.
  3272. */
  3273. if (lock->owner != owner)
  3274. break;
  3275. /*
  3276. * Is that owner really running on that cpu?
  3277. */
  3278. if (task_thread_info(rq->curr) != owner || need_resched())
  3279. return 0;
  3280. cpu_relax();
  3281. }
  3282. return 1;
  3283. }
  3284. #endif
  3285. #ifdef CONFIG_PREEMPT
  3286. /*
  3287. * this is the entry point to schedule() from in-kernel preemption
  3288. * off of preempt_enable. Kernel preemptions off return from interrupt
  3289. * occur there and call schedule directly.
  3290. */
  3291. asmlinkage void __sched preempt_schedule(void)
  3292. {
  3293. struct thread_info *ti = current_thread_info();
  3294. /*
  3295. * If there is a non-zero preempt_count or interrupts are disabled,
  3296. * we do not want to preempt the current task. Just return..
  3297. */
  3298. if (likely(ti->preempt_count || irqs_disabled()))
  3299. return;
  3300. do {
  3301. add_preempt_count(PREEMPT_ACTIVE);
  3302. schedule();
  3303. sub_preempt_count(PREEMPT_ACTIVE);
  3304. /*
  3305. * Check again in case we missed a preemption opportunity
  3306. * between schedule and now.
  3307. */
  3308. barrier();
  3309. } while (need_resched());
  3310. }
  3311. EXPORT_SYMBOL(preempt_schedule);
  3312. /*
  3313. * this is the entry point to schedule() from kernel preemption
  3314. * off of irq context.
  3315. * Note, that this is called and return with irqs disabled. This will
  3316. * protect us against recursive calling from irq.
  3317. */
  3318. asmlinkage void __sched preempt_schedule_irq(void)
  3319. {
  3320. struct thread_info *ti = current_thread_info();
  3321. /* Catch callers which need to be fixed */
  3322. BUG_ON(ti->preempt_count || !irqs_disabled());
  3323. do {
  3324. add_preempt_count(PREEMPT_ACTIVE);
  3325. local_irq_enable();
  3326. schedule();
  3327. local_irq_disable();
  3328. sub_preempt_count(PREEMPT_ACTIVE);
  3329. /*
  3330. * Check again in case we missed a preemption opportunity
  3331. * between schedule and now.
  3332. */
  3333. barrier();
  3334. } while (need_resched());
  3335. }
  3336. #endif /* CONFIG_PREEMPT */
  3337. int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
  3338. void *key)
  3339. {
  3340. return try_to_wake_up(curr->private, mode, wake_flags);
  3341. }
  3342. EXPORT_SYMBOL(default_wake_function);
  3343. /*
  3344. * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
  3345. * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
  3346. * number) then we wake all the non-exclusive tasks and one exclusive task.
  3347. *
  3348. * There are circumstances in which we can try to wake a task which has already
  3349. * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
  3350. * zero in this (rare) case, and we handle it by continuing to scan the queue.
  3351. */
  3352. static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
  3353. int nr_exclusive, int wake_flags, void *key)
  3354. {
  3355. wait_queue_t *curr, *next;
  3356. list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
  3357. unsigned flags = curr->flags;
  3358. if (curr->func(curr, mode, wake_flags, key) &&
  3359. (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
  3360. break;
  3361. }
  3362. }
  3363. /**
  3364. * __wake_up - wake up threads blocked on a waitqueue.
  3365. * @q: the waitqueue
  3366. * @mode: which threads
  3367. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  3368. * @key: is directly passed to the wakeup function
  3369. *
  3370. * It may be assumed that this function implies a write memory barrier before
  3371. * changing the task state if and only if any tasks are woken up.
  3372. */
  3373. void __wake_up(wait_queue_head_t *q, unsigned int mode,
  3374. int nr_exclusive, void *key)
  3375. {
  3376. unsigned long flags;
  3377. spin_lock_irqsave(&q->lock, flags);
  3378. __wake_up_common(q, mode, nr_exclusive, 0, key);
  3379. spin_unlock_irqrestore(&q->lock, flags);
  3380. }
  3381. EXPORT_SYMBOL(__wake_up);
  3382. /*
  3383. * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
  3384. */
  3385. void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
  3386. {
  3387. __wake_up_common(q, mode, 1, 0, NULL);
  3388. }
  3389. EXPORT_SYMBOL_GPL(__wake_up_locked);
  3390. void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
  3391. {
  3392. __wake_up_common(q, mode, 1, 0, key);
  3393. }
  3394. /**
  3395. * __wake_up_sync_key - wake up threads blocked on a waitqueue.
  3396. * @q: the waitqueue
  3397. * @mode: which threads
  3398. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  3399. * @key: opaque value to be passed to wakeup targets
  3400. *
  3401. * The sync wakeup differs that the waker knows that it will schedule
  3402. * away soon, so while the target thread will be woken up, it will not
  3403. * be migrated to another CPU - ie. the two threads are 'synchronized'
  3404. * with each other. This can prevent needless bouncing between CPUs.
  3405. *
  3406. * On UP it can prevent extra preemption.
  3407. *
  3408. * It may be assumed that this function implies a write memory barrier before
  3409. * changing the task state if and only if any tasks are woken up.
  3410. */
  3411. void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
  3412. int nr_exclusive, void *key)
  3413. {
  3414. unsigned long flags;
  3415. int wake_flags = WF_SYNC;
  3416. if (unlikely(!q))
  3417. return;
  3418. if (unlikely(!nr_exclusive))
  3419. wake_flags = 0;
  3420. spin_lock_irqsave(&q->lock, flags);
  3421. __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
  3422. spin_unlock_irqrestore(&q->lock, flags);
  3423. }
  3424. EXPORT_SYMBOL_GPL(__wake_up_sync_key);
  3425. /*
  3426. * __wake_up_sync - see __wake_up_sync_key()
  3427. */
  3428. void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
  3429. {
  3430. __wake_up_sync_key(q, mode, nr_exclusive, NULL);
  3431. }
  3432. EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
  3433. /**
  3434. * complete: - signals a single thread waiting on this completion
  3435. * @x: holds the state of this particular completion
  3436. *
  3437. * This will wake up a single thread waiting on this completion. Threads will be
  3438. * awakened in the same order in which they were queued.
  3439. *
  3440. * See also complete_all(), wait_for_completion() and related routines.
  3441. *
  3442. * It may be assumed that this function implies a write memory barrier before
  3443. * changing the task state if and only if any tasks are woken up.
  3444. */
  3445. void complete(struct completion *x)
  3446. {
  3447. unsigned long flags;
  3448. spin_lock_irqsave(&x->wait.lock, flags);
  3449. x->done++;
  3450. __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
  3451. spin_unlock_irqrestore(&x->wait.lock, flags);
  3452. }
  3453. EXPORT_SYMBOL(complete);
  3454. /**
  3455. * complete_all: - signals all threads waiting on this completion
  3456. * @x: holds the state of this particular completion
  3457. *
  3458. * This will wake up all threads waiting on this particular completion event.
  3459. *
  3460. * It may be assumed that this function implies a write memory barrier before
  3461. * changing the task state if and only if any tasks are woken up.
  3462. */
  3463. void complete_all(struct completion *x)
  3464. {
  3465. unsigned long flags;
  3466. spin_lock_irqsave(&x->wait.lock, flags);
  3467. x->done += UINT_MAX/2;
  3468. __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
  3469. spin_unlock_irqrestore(&x->wait.lock, flags);
  3470. }
  3471. EXPORT_SYMBOL(complete_all);
  3472. static inline long __sched
  3473. do_wait_for_common(struct completion *x, long timeout, int state)
  3474. {
  3475. if (!x->done) {
  3476. DECLARE_WAITQUEUE(wait, current);
  3477. __add_wait_queue_tail_exclusive(&x->wait, &wait);
  3478. do {
  3479. if (signal_pending_state(state, current)) {
  3480. timeout = -ERESTARTSYS;
  3481. break;
  3482. }
  3483. __set_current_state(state);
  3484. spin_unlock_irq(&x->wait.lock);
  3485. timeout = schedule_timeout(timeout);
  3486. spin_lock_irq(&x->wait.lock);
  3487. } while (!x->done && timeout);
  3488. __remove_wait_queue(&x->wait, &wait);
  3489. if (!x->done)
  3490. return timeout;
  3491. }
  3492. x->done--;
  3493. return timeout ?: 1;
  3494. }
  3495. static long __sched
  3496. wait_for_common(struct completion *x, long timeout, int state)
  3497. {
  3498. might_sleep();
  3499. spin_lock_irq(&x->wait.lock);
  3500. timeout = do_wait_for_common(x, timeout, state);
  3501. spin_unlock_irq(&x->wait.lock);
  3502. return timeout;
  3503. }
  3504. /**
  3505. * wait_for_completion: - waits for completion of a task
  3506. * @x: holds the state of this particular completion
  3507. *
  3508. * This waits to be signaled for completion of a specific task. It is NOT
  3509. * interruptible and there is no timeout.
  3510. *
  3511. * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
  3512. * and interrupt capability. Also see complete().
  3513. */
  3514. void __sched wait_for_completion(struct completion *x)
  3515. {
  3516. wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
  3517. }
  3518. EXPORT_SYMBOL(wait_for_completion);
  3519. /**
  3520. * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
  3521. * @x: holds the state of this particular completion
  3522. * @timeout: timeout value in jiffies
  3523. *
  3524. * This waits for either a completion of a specific task to be signaled or for a
  3525. * specified timeout to expire. The timeout is in jiffies. It is not
  3526. * interruptible.
  3527. */
  3528. unsigned long __sched
  3529. wait_for_completion_timeout(struct completion *x, unsigned long timeout)
  3530. {
  3531. return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
  3532. }
  3533. EXPORT_SYMBOL(wait_for_completion_timeout);
  3534. /**
  3535. * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
  3536. * @x: holds the state of this particular completion
  3537. *
  3538. * This waits for completion of a specific task to be signaled. It is
  3539. * interruptible.
  3540. */
  3541. int __sched wait_for_completion_interruptible(struct completion *x)
  3542. {
  3543. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
  3544. if (t == -ERESTARTSYS)
  3545. return t;
  3546. return 0;
  3547. }
  3548. EXPORT_SYMBOL(wait_for_completion_interruptible);
  3549. /**
  3550. * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
  3551. * @x: holds the state of this particular completion
  3552. * @timeout: timeout value in jiffies
  3553. *
  3554. * This waits for either a completion of a specific task to be signaled or for a
  3555. * specified timeout to expire. It is interruptible. The timeout is in jiffies.
  3556. */
  3557. unsigned long __sched
  3558. wait_for_completion_interruptible_timeout(struct completion *x,
  3559. unsigned long timeout)
  3560. {
  3561. return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
  3562. }
  3563. EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
  3564. /**
  3565. * wait_for_completion_killable: - waits for completion of a task (killable)
  3566. * @x: holds the state of this particular completion
  3567. *
  3568. * This waits to be signaled for completion of a specific task. It can be
  3569. * interrupted by a kill signal.
  3570. */
  3571. int __sched wait_for_completion_killable(struct completion *x)
  3572. {
  3573. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
  3574. if (t == -ERESTARTSYS)
  3575. return t;
  3576. return 0;
  3577. }
  3578. EXPORT_SYMBOL(wait_for_completion_killable);
  3579. /**
  3580. * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
  3581. * @x: holds the state of this particular completion
  3582. * @timeout: timeout value in jiffies
  3583. *
  3584. * This waits for either a completion of a specific task to be
  3585. * signaled or for a specified timeout to expire. It can be
  3586. * interrupted by a kill signal. The timeout is in jiffies.
  3587. */
  3588. unsigned long __sched
  3589. wait_for_completion_killable_timeout(struct completion *x,
  3590. unsigned long timeout)
  3591. {
  3592. return wait_for_common(x, timeout, TASK_KILLABLE);
  3593. }
  3594. EXPORT_SYMBOL(wait_for_completion_killable_timeout);
  3595. /**
  3596. * try_wait_for_completion - try to decrement a completion without blocking
  3597. * @x: completion structure
  3598. *
  3599. * Returns: 0 if a decrement cannot be done without blocking
  3600. * 1 if a decrement succeeded.
  3601. *
  3602. * If a completion is being used as a counting completion,
  3603. * attempt to decrement the counter without blocking. This
  3604. * enables us to avoid waiting if the resource the completion
  3605. * is protecting is not available.
  3606. */
  3607. bool try_wait_for_completion(struct completion *x)
  3608. {
  3609. unsigned long flags;
  3610. int ret = 1;
  3611. spin_lock_irqsave(&x->wait.lock, flags);
  3612. if (!x->done)
  3613. ret = 0;
  3614. else
  3615. x->done--;
  3616. spin_unlock_irqrestore(&x->wait.lock, flags);
  3617. return ret;
  3618. }
  3619. EXPORT_SYMBOL(try_wait_for_completion);
  3620. /**
  3621. * completion_done - Test to see if a completion has any waiters
  3622. * @x: completion structure
  3623. *
  3624. * Returns: 0 if there are waiters (wait_for_completion() in progress)
  3625. * 1 if there are no waiters.
  3626. *
  3627. */
  3628. bool completion_done(struct completion *x)
  3629. {
  3630. unsigned long flags;
  3631. int ret = 1;
  3632. spin_lock_irqsave(&x->wait.lock, flags);
  3633. if (!x->done)
  3634. ret = 0;
  3635. spin_unlock_irqrestore(&x->wait.lock, flags);
  3636. return ret;
  3637. }
  3638. EXPORT_SYMBOL(completion_done);
  3639. static long __sched
  3640. sleep_on_common(wait_queue_head_t *q, int state, long timeout)
  3641. {
  3642. unsigned long flags;
  3643. wait_queue_t wait;
  3644. init_waitqueue_entry(&wait, current);
  3645. __set_current_state(state);
  3646. spin_lock_irqsave(&q->lock, flags);
  3647. __add_wait_queue(q, &wait);
  3648. spin_unlock(&q->lock);
  3649. timeout = schedule_timeout(timeout);
  3650. spin_lock_irq(&q->lock);
  3651. __remove_wait_queue(q, &wait);
  3652. spin_unlock_irqrestore(&q->lock, flags);
  3653. return timeout;
  3654. }
  3655. void __sched interruptible_sleep_on(wait_queue_head_t *q)
  3656. {
  3657. sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  3658. }
  3659. EXPORT_SYMBOL(interruptible_sleep_on);
  3660. long __sched
  3661. interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
  3662. {
  3663. return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
  3664. }
  3665. EXPORT_SYMBOL(interruptible_sleep_on_timeout);
  3666. void __sched sleep_on(wait_queue_head_t *q)
  3667. {
  3668. sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  3669. }
  3670. EXPORT_SYMBOL(sleep_on);
  3671. long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
  3672. {
  3673. return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
  3674. }
  3675. EXPORT_SYMBOL(sleep_on_timeout);
  3676. #ifdef CONFIG_RT_MUTEXES
  3677. /*
  3678. * rt_mutex_setprio - set the current priority of a task
  3679. * @p: task
  3680. * @prio: prio value (kernel-internal form)
  3681. *
  3682. * This function changes the 'effective' priority of a task. It does
  3683. * not touch ->normal_prio like __setscheduler().
  3684. *
  3685. * Used by the rt_mutex code to implement priority inheritance logic.
  3686. */
  3687. void rt_mutex_setprio(struct task_struct *p, int prio)
  3688. {
  3689. unsigned long flags;
  3690. int oldprio, on_rq, running;
  3691. struct rq *rq;
  3692. const struct sched_class *prev_class;
  3693. BUG_ON(prio < 0 || prio > MAX_PRIO);
  3694. rq = task_rq_lock(p, &flags);
  3695. oldprio = p->prio;
  3696. prev_class = p->sched_class;
  3697. on_rq = p->se.on_rq;
  3698. running = task_current(rq, p);
  3699. if (on_rq)
  3700. dequeue_task(rq, p, 0);
  3701. if (running)
  3702. p->sched_class->put_prev_task(rq, p);
  3703. if (rt_prio(prio))
  3704. p->sched_class = &rt_sched_class;
  3705. else
  3706. p->sched_class = &fair_sched_class;
  3707. p->prio = prio;
  3708. if (running)
  3709. p->sched_class->set_curr_task(rq);
  3710. if (on_rq) {
  3711. enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
  3712. check_class_changed(rq, p, prev_class, oldprio, running);
  3713. }
  3714. task_rq_unlock(rq, &flags);
  3715. }
  3716. #endif
  3717. void set_user_nice(struct task_struct *p, long nice)
  3718. {
  3719. int old_prio, delta, on_rq;
  3720. unsigned long flags;
  3721. struct rq *rq;
  3722. if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
  3723. return;
  3724. /*
  3725. * We have to be careful, if called from sys_setpriority(),
  3726. * the task might be in the middle of scheduling on another CPU.
  3727. */
  3728. rq = task_rq_lock(p, &flags);
  3729. /*
  3730. * The RT priorities are set via sched_setscheduler(), but we still
  3731. * allow the 'normal' nice value to be set - but as expected
  3732. * it wont have any effect on scheduling until the task is
  3733. * SCHED_FIFO/SCHED_RR:
  3734. */
  3735. if (task_has_rt_policy(p)) {
  3736. p->static_prio = NICE_TO_PRIO(nice);
  3737. goto out_unlock;
  3738. }
  3739. on_rq = p->se.on_rq;
  3740. if (on_rq)
  3741. dequeue_task(rq, p, 0);
  3742. p->static_prio = NICE_TO_PRIO(nice);
  3743. set_load_weight(p);
  3744. old_prio = p->prio;
  3745. p->prio = effective_prio(p);
  3746. delta = p->prio - old_prio;
  3747. if (on_rq) {
  3748. enqueue_task(rq, p, 0);
  3749. /*
  3750. * If the task increased its priority or is running and
  3751. * lowered its priority, then reschedule its CPU:
  3752. */
  3753. if (delta < 0 || (delta > 0 && task_running(rq, p)))
  3754. resched_task(rq->curr);
  3755. }
  3756. out_unlock:
  3757. task_rq_unlock(rq, &flags);
  3758. }
  3759. EXPORT_SYMBOL(set_user_nice);
  3760. /*
  3761. * can_nice - check if a task can reduce its nice value
  3762. * @p: task
  3763. * @nice: nice value
  3764. */
  3765. int can_nice(const struct task_struct *p, const int nice)
  3766. {
  3767. /* convert nice value [19,-20] to rlimit style value [1,40] */
  3768. int nice_rlim = 20 - nice;
  3769. return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
  3770. capable(CAP_SYS_NICE));
  3771. }
  3772. #ifdef __ARCH_WANT_SYS_NICE
  3773. /*
  3774. * sys_nice - change the priority of the current process.
  3775. * @increment: priority increment
  3776. *
  3777. * sys_setpriority is a more generic, but much slower function that
  3778. * does similar things.
  3779. */
  3780. SYSCALL_DEFINE1(nice, int, increment)
  3781. {
  3782. long nice, retval;
  3783. /*
  3784. * Setpriority might change our priority at the same moment.
  3785. * We don't have to worry. Conceptually one call occurs first
  3786. * and we have a single winner.
  3787. */
  3788. if (increment < -40)
  3789. increment = -40;
  3790. if (increment > 40)
  3791. increment = 40;
  3792. nice = TASK_NICE(current) + increment;
  3793. if (nice < -20)
  3794. nice = -20;
  3795. if (nice > 19)
  3796. nice = 19;
  3797. if (increment < 0 && !can_nice(current, nice))
  3798. return -EPERM;
  3799. retval = security_task_setnice(current, nice);
  3800. if (retval)
  3801. return retval;
  3802. set_user_nice(current, nice);
  3803. return 0;
  3804. }
  3805. #endif
  3806. /**
  3807. * task_prio - return the priority value of a given task.
  3808. * @p: the task in question.
  3809. *
  3810. * This is the priority value as seen by users in /proc.
  3811. * RT tasks are offset by -200. Normal tasks are centered
  3812. * around 0, value goes from -16 to +15.
  3813. */
  3814. int task_prio(const struct task_struct *p)
  3815. {
  3816. return p->prio - MAX_RT_PRIO;
  3817. }
  3818. /**
  3819. * task_nice - return the nice value of a given task.
  3820. * @p: the task in question.
  3821. */
  3822. int task_nice(const struct task_struct *p)
  3823. {
  3824. return TASK_NICE(p);
  3825. }
  3826. EXPORT_SYMBOL(task_nice);
  3827. /**
  3828. * idle_cpu - is a given cpu idle currently?
  3829. * @cpu: the processor in question.
  3830. */
  3831. int idle_cpu(int cpu)
  3832. {
  3833. return cpu_curr(cpu) == cpu_rq(cpu)->idle;
  3834. }
  3835. /**
  3836. * idle_task - return the idle task for a given cpu.
  3837. * @cpu: the processor in question.
  3838. */
  3839. struct task_struct *idle_task(int cpu)
  3840. {
  3841. return cpu_rq(cpu)->idle;
  3842. }
  3843. /**
  3844. * find_process_by_pid - find a process with a matching PID value.
  3845. * @pid: the pid in question.
  3846. */
  3847. static struct task_struct *find_process_by_pid(pid_t pid)
  3848. {
  3849. return pid ? find_task_by_vpid(pid) : current;
  3850. }
  3851. /* Actually do priority change: must hold rq lock. */
  3852. static void
  3853. __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
  3854. {
  3855. BUG_ON(p->se.on_rq);
  3856. p->policy = policy;
  3857. p->rt_priority = prio;
  3858. p->normal_prio = normal_prio(p);
  3859. /* we are holding p->pi_lock already */
  3860. p->prio = rt_mutex_getprio(p);
  3861. if (rt_prio(p->prio))
  3862. p->sched_class = &rt_sched_class;
  3863. else
  3864. p->sched_class = &fair_sched_class;
  3865. set_load_weight(p);
  3866. }
  3867. /*
  3868. * check the target process has a UID that matches the current process's
  3869. */
  3870. static bool check_same_owner(struct task_struct *p)
  3871. {
  3872. const struct cred *cred = current_cred(), *pcred;
  3873. bool match;
  3874. rcu_read_lock();
  3875. pcred = __task_cred(p);
  3876. match = (cred->euid == pcred->euid ||
  3877. cred->euid == pcred->uid);
  3878. rcu_read_unlock();
  3879. return match;
  3880. }
  3881. static int __sched_setscheduler(struct task_struct *p, int policy,
  3882. struct sched_param *param, bool user)
  3883. {
  3884. int retval, oldprio, oldpolicy = -1, on_rq, running;
  3885. unsigned long flags;
  3886. const struct sched_class *prev_class;
  3887. struct rq *rq;
  3888. int reset_on_fork;
  3889. /* may grab non-irq protected spin_locks */
  3890. BUG_ON(in_interrupt());
  3891. recheck:
  3892. /* double check policy once rq lock held */
  3893. if (policy < 0) {
  3894. reset_on_fork = p->sched_reset_on_fork;
  3895. policy = oldpolicy = p->policy;
  3896. } else {
  3897. reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
  3898. policy &= ~SCHED_RESET_ON_FORK;
  3899. if (policy != SCHED_FIFO && policy != SCHED_RR &&
  3900. policy != SCHED_NORMAL && policy != SCHED_BATCH &&
  3901. policy != SCHED_IDLE)
  3902. return -EINVAL;
  3903. }
  3904. /*
  3905. * Valid priorities for SCHED_FIFO and SCHED_RR are
  3906. * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
  3907. * SCHED_BATCH and SCHED_IDLE is 0.
  3908. */
  3909. if (param->sched_priority < 0 ||
  3910. (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
  3911. (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
  3912. return -EINVAL;
  3913. if (rt_policy(policy) != (param->sched_priority != 0))
  3914. return -EINVAL;
  3915. /*
  3916. * Allow unprivileged RT tasks to decrease priority:
  3917. */
  3918. if (user && !capable(CAP_SYS_NICE)) {
  3919. if (rt_policy(policy)) {
  3920. unsigned long rlim_rtprio =
  3921. task_rlimit(p, RLIMIT_RTPRIO);
  3922. /* can't set/change the rt policy */
  3923. if (policy != p->policy && !rlim_rtprio)
  3924. return -EPERM;
  3925. /* can't increase priority */
  3926. if (param->sched_priority > p->rt_priority &&
  3927. param->sched_priority > rlim_rtprio)
  3928. return -EPERM;
  3929. }
  3930. /*
  3931. * Like positive nice levels, dont allow tasks to
  3932. * move out of SCHED_IDLE either:
  3933. */
  3934. if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
  3935. return -EPERM;
  3936. /* can't change other user's priorities */
  3937. if (!check_same_owner(p))
  3938. return -EPERM;
  3939. /* Normal users shall not reset the sched_reset_on_fork flag */
  3940. if (p->sched_reset_on_fork && !reset_on_fork)
  3941. return -EPERM;
  3942. }
  3943. if (user) {
  3944. retval = security_task_setscheduler(p, policy, param);
  3945. if (retval)
  3946. return retval;
  3947. }
  3948. /*
  3949. * make sure no PI-waiters arrive (or leave) while we are
  3950. * changing the priority of the task:
  3951. */
  3952. raw_spin_lock_irqsave(&p->pi_lock, flags);
  3953. /*
  3954. * To be able to change p->policy safely, the apropriate
  3955. * runqueue lock must be held.
  3956. */
  3957. rq = __task_rq_lock(p);
  3958. #ifdef CONFIG_RT_GROUP_SCHED
  3959. if (user) {
  3960. /*
  3961. * Do not allow realtime tasks into groups that have no runtime
  3962. * assigned.
  3963. */
  3964. if (rt_bandwidth_enabled() && rt_policy(policy) &&
  3965. task_group(p)->rt_bandwidth.rt_runtime == 0) {
  3966. __task_rq_unlock(rq);
  3967. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  3968. return -EPERM;
  3969. }
  3970. }
  3971. #endif
  3972. /* recheck policy now with rq lock held */
  3973. if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
  3974. policy = oldpolicy = -1;
  3975. __task_rq_unlock(rq);
  3976. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  3977. goto recheck;
  3978. }
  3979. on_rq = p->se.on_rq;
  3980. running = task_current(rq, p);
  3981. if (on_rq)
  3982. deactivate_task(rq, p, 0);
  3983. if (running)
  3984. p->sched_class->put_prev_task(rq, p);
  3985. p->sched_reset_on_fork = reset_on_fork;
  3986. oldprio = p->prio;
  3987. prev_class = p->sched_class;
  3988. __setscheduler(rq, p, policy, param->sched_priority);
  3989. if (running)
  3990. p->sched_class->set_curr_task(rq);
  3991. if (on_rq) {
  3992. activate_task(rq, p, 0);
  3993. check_class_changed(rq, p, prev_class, oldprio, running);
  3994. }
  3995. __task_rq_unlock(rq);
  3996. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  3997. rt_mutex_adjust_pi(p);
  3998. return 0;
  3999. }
  4000. /**
  4001. * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
  4002. * @p: the task in question.
  4003. * @policy: new policy.
  4004. * @param: structure containing the new RT priority.
  4005. *
  4006. * NOTE that the task may be already dead.
  4007. */
  4008. int sched_setscheduler(struct task_struct *p, int policy,
  4009. struct sched_param *param)
  4010. {
  4011. return __sched_setscheduler(p, policy, param, true);
  4012. }
  4013. EXPORT_SYMBOL_GPL(sched_setscheduler);
  4014. /**
  4015. * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
  4016. * @p: the task in question.
  4017. * @policy: new policy.
  4018. * @param: structure containing the new RT priority.
  4019. *
  4020. * Just like sched_setscheduler, only don't bother checking if the
  4021. * current context has permission. For example, this is needed in
  4022. * stop_machine(): we create temporary high priority worker threads,
  4023. * but our caller might not have that capability.
  4024. */
  4025. int sched_setscheduler_nocheck(struct task_struct *p, int policy,
  4026. struct sched_param *param)
  4027. {
  4028. return __sched_setscheduler(p, policy, param, false);
  4029. }
  4030. static int
  4031. do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  4032. {
  4033. struct sched_param lparam;
  4034. struct task_struct *p;
  4035. int retval;
  4036. if (!param || pid < 0)
  4037. return -EINVAL;
  4038. if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
  4039. return -EFAULT;
  4040. rcu_read_lock();
  4041. retval = -ESRCH;
  4042. p = find_process_by_pid(pid);
  4043. if (p != NULL)
  4044. retval = sched_setscheduler(p, policy, &lparam);
  4045. rcu_read_unlock();
  4046. return retval;
  4047. }
  4048. /**
  4049. * sys_sched_setscheduler - set/change the scheduler policy and RT priority
  4050. * @pid: the pid in question.
  4051. * @policy: new policy.
  4052. * @param: structure containing the new RT priority.
  4053. */
  4054. SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
  4055. struct sched_param __user *, param)
  4056. {
  4057. /* negative values for policy are not valid */
  4058. if (policy < 0)
  4059. return -EINVAL;
  4060. return do_sched_setscheduler(pid, policy, param);
  4061. }
  4062. /**
  4063. * sys_sched_setparam - set/change the RT priority of a thread
  4064. * @pid: the pid in question.
  4065. * @param: structure containing the new RT priority.
  4066. */
  4067. SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
  4068. {
  4069. return do_sched_setscheduler(pid, -1, param);
  4070. }
  4071. /**
  4072. * sys_sched_getscheduler - get the policy (scheduling class) of a thread
  4073. * @pid: the pid in question.
  4074. */
  4075. SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
  4076. {
  4077. struct task_struct *p;
  4078. int retval;
  4079. if (pid < 0)
  4080. return -EINVAL;
  4081. retval = -ESRCH;
  4082. rcu_read_lock();
  4083. p = find_process_by_pid(pid);
  4084. if (p) {
  4085. retval = security_task_getscheduler(p);
  4086. if (!retval)
  4087. retval = p->policy
  4088. | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
  4089. }
  4090. rcu_read_unlock();
  4091. return retval;
  4092. }
  4093. /**
  4094. * sys_sched_getparam - get the RT priority of a thread
  4095. * @pid: the pid in question.
  4096. * @param: structure containing the RT priority.
  4097. */
  4098. SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
  4099. {
  4100. struct sched_param lp;
  4101. struct task_struct *p;
  4102. int retval;
  4103. if (!param || pid < 0)
  4104. return -EINVAL;
  4105. rcu_read_lock();
  4106. p = find_process_by_pid(pid);
  4107. retval = -ESRCH;
  4108. if (!p)
  4109. goto out_unlock;
  4110. retval = security_task_getscheduler(p);
  4111. if (retval)
  4112. goto out_unlock;
  4113. lp.sched_priority = p->rt_priority;
  4114. rcu_read_unlock();
  4115. /*
  4116. * This one might sleep, we cannot do it with a spinlock held ...
  4117. */
  4118. retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
  4119. return retval;
  4120. out_unlock:
  4121. rcu_read_unlock();
  4122. return retval;
  4123. }
  4124. long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
  4125. {
  4126. cpumask_var_t cpus_allowed, new_mask;
  4127. struct task_struct *p;
  4128. int retval;
  4129. get_online_cpus();
  4130. rcu_read_lock();
  4131. p = find_process_by_pid(pid);
  4132. if (!p) {
  4133. rcu_read_unlock();
  4134. put_online_cpus();
  4135. return -ESRCH;
  4136. }
  4137. /* Prevent p going away */
  4138. get_task_struct(p);
  4139. rcu_read_unlock();
  4140. if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
  4141. retval = -ENOMEM;
  4142. goto out_put_task;
  4143. }
  4144. if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
  4145. retval = -ENOMEM;
  4146. goto out_free_cpus_allowed;
  4147. }
  4148. retval = -EPERM;
  4149. if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
  4150. goto out_unlock;
  4151. retval = security_task_setscheduler(p, 0, NULL);
  4152. if (retval)
  4153. goto out_unlock;
  4154. cpuset_cpus_allowed(p, cpus_allowed);
  4155. cpumask_and(new_mask, in_mask, cpus_allowed);
  4156. again:
  4157. retval = set_cpus_allowed_ptr(p, new_mask);
  4158. if (!retval) {
  4159. cpuset_cpus_allowed(p, cpus_allowed);
  4160. if (!cpumask_subset(new_mask, cpus_allowed)) {
  4161. /*
  4162. * We must have raced with a concurrent cpuset
  4163. * update. Just reset the cpus_allowed to the
  4164. * cpuset's cpus_allowed
  4165. */
  4166. cpumask_copy(new_mask, cpus_allowed);
  4167. goto again;
  4168. }
  4169. }
  4170. out_unlock:
  4171. free_cpumask_var(new_mask);
  4172. out_free_cpus_allowed:
  4173. free_cpumask_var(cpus_allowed);
  4174. out_put_task:
  4175. put_task_struct(p);
  4176. put_online_cpus();
  4177. return retval;
  4178. }
  4179. static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
  4180. struct cpumask *new_mask)
  4181. {
  4182. if (len < cpumask_size())
  4183. cpumask_clear(new_mask);
  4184. else if (len > cpumask_size())
  4185. len = cpumask_size();
  4186. return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
  4187. }
  4188. /**
  4189. * sys_sched_setaffinity - set the cpu affinity of a process
  4190. * @pid: pid of the process
  4191. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  4192. * @user_mask_ptr: user-space pointer to the new cpu mask
  4193. */
  4194. SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
  4195. unsigned long __user *, user_mask_ptr)
  4196. {
  4197. cpumask_var_t new_mask;
  4198. int retval;
  4199. if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
  4200. return -ENOMEM;
  4201. retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
  4202. if (retval == 0)
  4203. retval = sched_setaffinity(pid, new_mask);
  4204. free_cpumask_var(new_mask);
  4205. return retval;
  4206. }
  4207. long sched_getaffinity(pid_t pid, struct cpumask *mask)
  4208. {
  4209. struct task_struct *p;
  4210. unsigned long flags;
  4211. struct rq *rq;
  4212. int retval;
  4213. get_online_cpus();
  4214. rcu_read_lock();
  4215. retval = -ESRCH;
  4216. p = find_process_by_pid(pid);
  4217. if (!p)
  4218. goto out_unlock;
  4219. retval = security_task_getscheduler(p);
  4220. if (retval)
  4221. goto out_unlock;
  4222. rq = task_rq_lock(p, &flags);
  4223. cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
  4224. task_rq_unlock(rq, &flags);
  4225. out_unlock:
  4226. rcu_read_unlock();
  4227. put_online_cpus();
  4228. return retval;
  4229. }
  4230. /**
  4231. * sys_sched_getaffinity - get the cpu affinity of a process
  4232. * @pid: pid of the process
  4233. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  4234. * @user_mask_ptr: user-space pointer to hold the current cpu mask
  4235. */
  4236. SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
  4237. unsigned long __user *, user_mask_ptr)
  4238. {
  4239. int ret;
  4240. cpumask_var_t mask;
  4241. if ((len * BITS_PER_BYTE) < nr_cpu_ids)
  4242. return -EINVAL;
  4243. if (len & (sizeof(unsigned long)-1))
  4244. return -EINVAL;
  4245. if (!alloc_cpumask_var(&mask, GFP_KERNEL))
  4246. return -ENOMEM;
  4247. ret = sched_getaffinity(pid, mask);
  4248. if (ret == 0) {
  4249. size_t retlen = min_t(size_t, len, cpumask_size());
  4250. if (copy_to_user(user_mask_ptr, mask, retlen))
  4251. ret = -EFAULT;
  4252. else
  4253. ret = retlen;
  4254. }
  4255. free_cpumask_var(mask);
  4256. return ret;
  4257. }
  4258. /**
  4259. * sys_sched_yield - yield the current processor to other threads.
  4260. *
  4261. * This function yields the current CPU to other tasks. If there are no
  4262. * other threads running on this CPU then this function will return.
  4263. */
  4264. SYSCALL_DEFINE0(sched_yield)
  4265. {
  4266. struct rq *rq = this_rq_lock();
  4267. schedstat_inc(rq, yld_count);
  4268. current->sched_class->yield_task(rq);
  4269. /*
  4270. * Since we are going to call schedule() anyway, there's
  4271. * no need to preempt or enable interrupts:
  4272. */
  4273. __release(rq->lock);
  4274. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  4275. do_raw_spin_unlock(&rq->lock);
  4276. preempt_enable_no_resched();
  4277. schedule();
  4278. return 0;
  4279. }
  4280. static inline int should_resched(void)
  4281. {
  4282. return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
  4283. }
  4284. static void __cond_resched(void)
  4285. {
  4286. add_preempt_count(PREEMPT_ACTIVE);
  4287. schedule();
  4288. sub_preempt_count(PREEMPT_ACTIVE);
  4289. }
  4290. int __sched _cond_resched(void)
  4291. {
  4292. if (should_resched()) {
  4293. __cond_resched();
  4294. return 1;
  4295. }
  4296. return 0;
  4297. }
  4298. EXPORT_SYMBOL(_cond_resched);
  4299. /*
  4300. * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
  4301. * call schedule, and on return reacquire the lock.
  4302. *
  4303. * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
  4304. * operations here to prevent schedule() from being called twice (once via
  4305. * spin_unlock(), once by hand).
  4306. */
  4307. int __cond_resched_lock(spinlock_t *lock)
  4308. {
  4309. int resched = should_resched();
  4310. int ret = 0;
  4311. lockdep_assert_held(lock);
  4312. if (spin_needbreak(lock) || resched) {
  4313. spin_unlock(lock);
  4314. if (resched)
  4315. __cond_resched();
  4316. else
  4317. cpu_relax();
  4318. ret = 1;
  4319. spin_lock(lock);
  4320. }
  4321. return ret;
  4322. }
  4323. EXPORT_SYMBOL(__cond_resched_lock);
  4324. int __sched __cond_resched_softirq(void)
  4325. {
  4326. BUG_ON(!in_softirq());
  4327. if (should_resched()) {
  4328. local_bh_enable();
  4329. __cond_resched();
  4330. local_bh_disable();
  4331. return 1;
  4332. }
  4333. return 0;
  4334. }
  4335. EXPORT_SYMBOL(__cond_resched_softirq);
  4336. /**
  4337. * yield - yield the current processor to other threads.
  4338. *
  4339. * This is a shortcut for kernel-space yielding - it marks the
  4340. * thread runnable and calls sys_sched_yield().
  4341. */
  4342. void __sched yield(void)
  4343. {
  4344. set_current_state(TASK_RUNNING);
  4345. sys_sched_yield();
  4346. }
  4347. EXPORT_SYMBOL(yield);
  4348. /*
  4349. * This task is about to go to sleep on IO. Increment rq->nr_iowait so
  4350. * that process accounting knows that this is a task in IO wait state.
  4351. */
  4352. void __sched io_schedule(void)
  4353. {
  4354. struct rq *rq = raw_rq();
  4355. delayacct_blkio_start();
  4356. atomic_inc(&rq->nr_iowait);
  4357. current->in_iowait = 1;
  4358. schedule();
  4359. current->in_iowait = 0;
  4360. atomic_dec(&rq->nr_iowait);
  4361. delayacct_blkio_end();
  4362. }
  4363. EXPORT_SYMBOL(io_schedule);
  4364. long __sched io_schedule_timeout(long timeout)
  4365. {
  4366. struct rq *rq = raw_rq();
  4367. long ret;
  4368. delayacct_blkio_start();
  4369. atomic_inc(&rq->nr_iowait);
  4370. current->in_iowait = 1;
  4371. ret = schedule_timeout(timeout);
  4372. current->in_iowait = 0;
  4373. atomic_dec(&rq->nr_iowait);
  4374. delayacct_blkio_end();
  4375. return ret;
  4376. }
  4377. /**
  4378. * sys_sched_get_priority_max - return maximum RT priority.
  4379. * @policy: scheduling class.
  4380. *
  4381. * this syscall returns the maximum rt_priority that can be used
  4382. * by a given scheduling class.
  4383. */
  4384. SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
  4385. {
  4386. int ret = -EINVAL;
  4387. switch (policy) {
  4388. case SCHED_FIFO:
  4389. case SCHED_RR:
  4390. ret = MAX_USER_RT_PRIO-1;
  4391. break;
  4392. case SCHED_NORMAL:
  4393. case SCHED_BATCH:
  4394. case SCHED_IDLE:
  4395. ret = 0;
  4396. break;
  4397. }
  4398. return ret;
  4399. }
  4400. /**
  4401. * sys_sched_get_priority_min - return minimum RT priority.
  4402. * @policy: scheduling class.
  4403. *
  4404. * this syscall returns the minimum rt_priority that can be used
  4405. * by a given scheduling class.
  4406. */
  4407. SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
  4408. {
  4409. int ret = -EINVAL;
  4410. switch (policy) {
  4411. case SCHED_FIFO:
  4412. case SCHED_RR:
  4413. ret = 1;
  4414. break;
  4415. case SCHED_NORMAL:
  4416. case SCHED_BATCH:
  4417. case SCHED_IDLE:
  4418. ret = 0;
  4419. }
  4420. return ret;
  4421. }
  4422. /**
  4423. * sys_sched_rr_get_interval - return the default timeslice of a process.
  4424. * @pid: pid of the process.
  4425. * @interval: userspace pointer to the timeslice value.
  4426. *
  4427. * this syscall writes the default timeslice value of a given process
  4428. * into the user-space timespec buffer. A value of '0' means infinity.
  4429. */
  4430. SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
  4431. struct timespec __user *, interval)
  4432. {
  4433. struct task_struct *p;
  4434. unsigned int time_slice;
  4435. unsigned long flags;
  4436. struct rq *rq;
  4437. int retval;
  4438. struct timespec t;
  4439. if (pid < 0)
  4440. return -EINVAL;
  4441. retval = -ESRCH;
  4442. rcu_read_lock();
  4443. p = find_process_by_pid(pid);
  4444. if (!p)
  4445. goto out_unlock;
  4446. retval = security_task_getscheduler(p);
  4447. if (retval)
  4448. goto out_unlock;
  4449. rq = task_rq_lock(p, &flags);
  4450. time_slice = p->sched_class->get_rr_interval(rq, p);
  4451. task_rq_unlock(rq, &flags);
  4452. rcu_read_unlock();
  4453. jiffies_to_timespec(time_slice, &t);
  4454. retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
  4455. return retval;
  4456. out_unlock:
  4457. rcu_read_unlock();
  4458. return retval;
  4459. }
  4460. static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
  4461. void sched_show_task(struct task_struct *p)
  4462. {
  4463. unsigned long free = 0;
  4464. unsigned state;
  4465. state = p->state ? __ffs(p->state) + 1 : 0;
  4466. printk(KERN_INFO "%-13.13s %c", p->comm,
  4467. state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
  4468. #if BITS_PER_LONG == 32
  4469. if (state == TASK_RUNNING)
  4470. printk(KERN_CONT " running ");
  4471. else
  4472. printk(KERN_CONT " %08lx ", thread_saved_pc(p));
  4473. #else
  4474. if (state == TASK_RUNNING)
  4475. printk(KERN_CONT " running task ");
  4476. else
  4477. printk(KERN_CONT " %016lx ", thread_saved_pc(p));
  4478. #endif
  4479. #ifdef CONFIG_DEBUG_STACK_USAGE
  4480. free = stack_not_used(p);
  4481. #endif
  4482. printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
  4483. task_pid_nr(p), task_pid_nr(p->real_parent),
  4484. (unsigned long)task_thread_info(p)->flags);
  4485. show_stack(p, NULL);
  4486. }
  4487. void show_state_filter(unsigned long state_filter)
  4488. {
  4489. struct task_struct *g, *p;
  4490. #if BITS_PER_LONG == 32
  4491. printk(KERN_INFO
  4492. " task PC stack pid father\n");
  4493. #else
  4494. printk(KERN_INFO
  4495. " task PC stack pid father\n");
  4496. #endif
  4497. read_lock(&tasklist_lock);
  4498. do_each_thread(g, p) {
  4499. /*
  4500. * reset the NMI-timeout, listing all files on a slow
  4501. * console might take alot of time:
  4502. */
  4503. touch_nmi_watchdog();
  4504. if (!state_filter || (p->state & state_filter))
  4505. sched_show_task(p);
  4506. } while_each_thread(g, p);
  4507. touch_all_softlockup_watchdogs();
  4508. #ifdef CONFIG_SCHED_DEBUG
  4509. sysrq_sched_debug_show();
  4510. #endif
  4511. read_unlock(&tasklist_lock);
  4512. /*
  4513. * Only show locks if all tasks are dumped:
  4514. */
  4515. if (!state_filter)
  4516. debug_show_all_locks();
  4517. }
  4518. void __cpuinit init_idle_bootup_task(struct task_struct *idle)
  4519. {
  4520. idle->sched_class = &idle_sched_class;
  4521. }
  4522. /**
  4523. * init_idle - set up an idle thread for a given CPU
  4524. * @idle: task in question
  4525. * @cpu: cpu the idle task belongs to
  4526. *
  4527. * NOTE: this function does not set the idle thread's NEED_RESCHED
  4528. * flag, to make booting more robust.
  4529. */
  4530. void __cpuinit init_idle(struct task_struct *idle, int cpu)
  4531. {
  4532. struct rq *rq = cpu_rq(cpu);
  4533. unsigned long flags;
  4534. raw_spin_lock_irqsave(&rq->lock, flags);
  4535. __sched_fork(idle);
  4536. idle->state = TASK_RUNNING;
  4537. idle->se.exec_start = sched_clock();
  4538. cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
  4539. __set_task_cpu(idle, cpu);
  4540. rq->curr = rq->idle = idle;
  4541. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  4542. idle->oncpu = 1;
  4543. #endif
  4544. raw_spin_unlock_irqrestore(&rq->lock, flags);
  4545. /* Set the preempt count _outside_ the spinlocks! */
  4546. #if defined(CONFIG_PREEMPT)
  4547. task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
  4548. #else
  4549. task_thread_info(idle)->preempt_count = 0;
  4550. #endif
  4551. /*
  4552. * The idle tasks have their own, simple scheduling class:
  4553. */
  4554. idle->sched_class = &idle_sched_class;
  4555. ftrace_graph_init_task(idle);
  4556. }
  4557. /*
  4558. * In a system that switches off the HZ timer nohz_cpu_mask
  4559. * indicates which cpus entered this state. This is used
  4560. * in the rcu update to wait only for active cpus. For system
  4561. * which do not switch off the HZ timer nohz_cpu_mask should
  4562. * always be CPU_BITS_NONE.
  4563. */
  4564. cpumask_var_t nohz_cpu_mask;
  4565. /*
  4566. * Increase the granularity value when there are more CPUs,
  4567. * because with more CPUs the 'effective latency' as visible
  4568. * to users decreases. But the relationship is not linear,
  4569. * so pick a second-best guess by going with the log2 of the
  4570. * number of CPUs.
  4571. *
  4572. * This idea comes from the SD scheduler of Con Kolivas:
  4573. */
  4574. static int get_update_sysctl_factor(void)
  4575. {
  4576. unsigned int cpus = min_t(int, num_online_cpus(), 8);
  4577. unsigned int factor;
  4578. switch (sysctl_sched_tunable_scaling) {
  4579. case SCHED_TUNABLESCALING_NONE:
  4580. factor = 1;
  4581. break;
  4582. case SCHED_TUNABLESCALING_LINEAR:
  4583. factor = cpus;
  4584. break;
  4585. case SCHED_TUNABLESCALING_LOG:
  4586. default:
  4587. factor = 1 + ilog2(cpus);
  4588. break;
  4589. }
  4590. return factor;
  4591. }
  4592. static void update_sysctl(void)
  4593. {
  4594. unsigned int factor = get_update_sysctl_factor();
  4595. #define SET_SYSCTL(name) \
  4596. (sysctl_##name = (factor) * normalized_sysctl_##name)
  4597. SET_SYSCTL(sched_min_granularity);
  4598. SET_SYSCTL(sched_latency);
  4599. SET_SYSCTL(sched_wakeup_granularity);
  4600. SET_SYSCTL(sched_shares_ratelimit);
  4601. #undef SET_SYSCTL
  4602. }
  4603. static inline void sched_init_granularity(void)
  4604. {
  4605. update_sysctl();
  4606. }
  4607. #ifdef CONFIG_SMP
  4608. /*
  4609. * This is how migration works:
  4610. *
  4611. * 1) we invoke migration_cpu_stop() on the target CPU using
  4612. * stop_one_cpu().
  4613. * 2) stopper starts to run (implicitly forcing the migrated thread
  4614. * off the CPU)
  4615. * 3) it checks whether the migrated task is still in the wrong runqueue.
  4616. * 4) if it's in the wrong runqueue then the migration thread removes
  4617. * it and puts it into the right queue.
  4618. * 5) stopper completes and stop_one_cpu() returns and the migration
  4619. * is done.
  4620. */
  4621. /*
  4622. * Change a given task's CPU affinity. Migrate the thread to a
  4623. * proper CPU and schedule it away if the CPU it's executing on
  4624. * is removed from the allowed bitmask.
  4625. *
  4626. * NOTE: the caller must have a valid reference to the task, the
  4627. * task must not exit() & deallocate itself prematurely. The
  4628. * call is not atomic; no spinlocks may be held.
  4629. */
  4630. int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
  4631. {
  4632. unsigned long flags;
  4633. struct rq *rq;
  4634. unsigned int dest_cpu;
  4635. int ret = 0;
  4636. /*
  4637. * Serialize against TASK_WAKING so that ttwu() and wunt() can
  4638. * drop the rq->lock and still rely on ->cpus_allowed.
  4639. */
  4640. again:
  4641. while (task_is_waking(p))
  4642. cpu_relax();
  4643. rq = task_rq_lock(p, &flags);
  4644. if (task_is_waking(p)) {
  4645. task_rq_unlock(rq, &flags);
  4646. goto again;
  4647. }
  4648. if (!cpumask_intersects(new_mask, cpu_active_mask)) {
  4649. ret = -EINVAL;
  4650. goto out;
  4651. }
  4652. if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
  4653. !cpumask_equal(&p->cpus_allowed, new_mask))) {
  4654. ret = -EINVAL;
  4655. goto out;
  4656. }
  4657. if (p->sched_class->set_cpus_allowed)
  4658. p->sched_class->set_cpus_allowed(p, new_mask);
  4659. else {
  4660. cpumask_copy(&p->cpus_allowed, new_mask);
  4661. p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
  4662. }
  4663. /* Can the task run on the task's current CPU? If so, we're done */
  4664. if (cpumask_test_cpu(task_cpu(p), new_mask))
  4665. goto out;
  4666. dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
  4667. if (migrate_task(p, dest_cpu)) {
  4668. struct migration_arg arg = { p, dest_cpu };
  4669. /* Need help from migration thread: drop lock and wait. */
  4670. task_rq_unlock(rq, &flags);
  4671. stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
  4672. tlb_migrate_finish(p->mm);
  4673. return 0;
  4674. }
  4675. out:
  4676. task_rq_unlock(rq, &flags);
  4677. return ret;
  4678. }
  4679. EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
  4680. /*
  4681. * Move (not current) task off this cpu, onto dest cpu. We're doing
  4682. * this because either it can't run here any more (set_cpus_allowed()
  4683. * away from this CPU, or CPU going down), or because we're
  4684. * attempting to rebalance this task on exec (sched_exec).
  4685. *
  4686. * So we race with normal scheduler movements, but that's OK, as long
  4687. * as the task is no longer on this CPU.
  4688. *
  4689. * Returns non-zero if task was successfully migrated.
  4690. */
  4691. static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
  4692. {
  4693. struct rq *rq_dest, *rq_src;
  4694. int ret = 0;
  4695. if (unlikely(!cpu_active(dest_cpu)))
  4696. return ret;
  4697. rq_src = cpu_rq(src_cpu);
  4698. rq_dest = cpu_rq(dest_cpu);
  4699. double_rq_lock(rq_src, rq_dest);
  4700. /* Already moved. */
  4701. if (task_cpu(p) != src_cpu)
  4702. goto done;
  4703. /* Affinity changed (again). */
  4704. if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
  4705. goto fail;
  4706. /*
  4707. * If we're not on a rq, the next wake-up will ensure we're
  4708. * placed properly.
  4709. */
  4710. if (p->se.on_rq) {
  4711. deactivate_task(rq_src, p, 0);
  4712. set_task_cpu(p, dest_cpu);
  4713. activate_task(rq_dest, p, 0);
  4714. check_preempt_curr(rq_dest, p, 0);
  4715. }
  4716. done:
  4717. ret = 1;
  4718. fail:
  4719. double_rq_unlock(rq_src, rq_dest);
  4720. return ret;
  4721. }
  4722. /*
  4723. * migration_cpu_stop - this will be executed by a highprio stopper thread
  4724. * and performs thread migration by bumping thread off CPU then
  4725. * 'pushing' onto another runqueue.
  4726. */
  4727. static int migration_cpu_stop(void *data)
  4728. {
  4729. struct migration_arg *arg = data;
  4730. /*
  4731. * The original target cpu might have gone down and we might
  4732. * be on another cpu but it doesn't matter.
  4733. */
  4734. local_irq_disable();
  4735. __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
  4736. local_irq_enable();
  4737. return 0;
  4738. }
  4739. #ifdef CONFIG_HOTPLUG_CPU
  4740. /*
  4741. * Figure out where task on dead CPU should go, use force if necessary.
  4742. */
  4743. void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
  4744. {
  4745. struct rq *rq = cpu_rq(dead_cpu);
  4746. int needs_cpu, uninitialized_var(dest_cpu);
  4747. unsigned long flags;
  4748. local_irq_save(flags);
  4749. raw_spin_lock(&rq->lock);
  4750. needs_cpu = (task_cpu(p) == dead_cpu) && (p->state != TASK_WAKING);
  4751. if (needs_cpu)
  4752. dest_cpu = select_fallback_rq(dead_cpu, p);
  4753. raw_spin_unlock(&rq->lock);
  4754. /*
  4755. * It can only fail if we race with set_cpus_allowed(),
  4756. * in the racer should migrate the task anyway.
  4757. */
  4758. if (needs_cpu)
  4759. __migrate_task(p, dead_cpu, dest_cpu);
  4760. local_irq_restore(flags);
  4761. }
  4762. /*
  4763. * While a dead CPU has no uninterruptible tasks queued at this point,
  4764. * it might still have a nonzero ->nr_uninterruptible counter, because
  4765. * for performance reasons the counter is not stricly tracking tasks to
  4766. * their home CPUs. So we just add the counter to another CPU's counter,
  4767. * to keep the global sum constant after CPU-down:
  4768. */
  4769. static void migrate_nr_uninterruptible(struct rq *rq_src)
  4770. {
  4771. struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
  4772. unsigned long flags;
  4773. local_irq_save(flags);
  4774. double_rq_lock(rq_src, rq_dest);
  4775. rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
  4776. rq_src->nr_uninterruptible = 0;
  4777. double_rq_unlock(rq_src, rq_dest);
  4778. local_irq_restore(flags);
  4779. }
  4780. /* Run through task list and migrate tasks from the dead cpu. */
  4781. static void migrate_live_tasks(int src_cpu)
  4782. {
  4783. struct task_struct *p, *t;
  4784. read_lock(&tasklist_lock);
  4785. do_each_thread(t, p) {
  4786. if (p == current)
  4787. continue;
  4788. if (task_cpu(p) == src_cpu)
  4789. move_task_off_dead_cpu(src_cpu, p);
  4790. } while_each_thread(t, p);
  4791. read_unlock(&tasklist_lock);
  4792. }
  4793. /*
  4794. * Schedules idle task to be the next runnable task on current CPU.
  4795. * It does so by boosting its priority to highest possible.
  4796. * Used by CPU offline code.
  4797. */
  4798. void sched_idle_next(void)
  4799. {
  4800. int this_cpu = smp_processor_id();
  4801. struct rq *rq = cpu_rq(this_cpu);
  4802. struct task_struct *p = rq->idle;
  4803. unsigned long flags;
  4804. /* cpu has to be offline */
  4805. BUG_ON(cpu_online(this_cpu));
  4806. /*
  4807. * Strictly not necessary since rest of the CPUs are stopped by now
  4808. * and interrupts disabled on the current cpu.
  4809. */
  4810. raw_spin_lock_irqsave(&rq->lock, flags);
  4811. __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
  4812. activate_task(rq, p, 0);
  4813. raw_spin_unlock_irqrestore(&rq->lock, flags);
  4814. }
  4815. /*
  4816. * Ensures that the idle task is using init_mm right before its cpu goes
  4817. * offline.
  4818. */
  4819. void idle_task_exit(void)
  4820. {
  4821. struct mm_struct *mm = current->active_mm;
  4822. BUG_ON(cpu_online(smp_processor_id()));
  4823. if (mm != &init_mm)
  4824. switch_mm(mm, &init_mm, current);
  4825. mmdrop(mm);
  4826. }
  4827. /* called under rq->lock with disabled interrupts */
  4828. static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
  4829. {
  4830. struct rq *rq = cpu_rq(dead_cpu);
  4831. /* Must be exiting, otherwise would be on tasklist. */
  4832. BUG_ON(!p->exit_state);
  4833. /* Cannot have done final schedule yet: would have vanished. */
  4834. BUG_ON(p->state == TASK_DEAD);
  4835. get_task_struct(p);
  4836. /*
  4837. * Drop lock around migration; if someone else moves it,
  4838. * that's OK. No task can be added to this CPU, so iteration is
  4839. * fine.
  4840. */
  4841. raw_spin_unlock_irq(&rq->lock);
  4842. move_task_off_dead_cpu(dead_cpu, p);
  4843. raw_spin_lock_irq(&rq->lock);
  4844. put_task_struct(p);
  4845. }
  4846. /* release_task() removes task from tasklist, so we won't find dead tasks. */
  4847. static void migrate_dead_tasks(unsigned int dead_cpu)
  4848. {
  4849. struct rq *rq = cpu_rq(dead_cpu);
  4850. struct task_struct *next;
  4851. for ( ; ; ) {
  4852. if (!rq->nr_running)
  4853. break;
  4854. next = pick_next_task(rq);
  4855. if (!next)
  4856. break;
  4857. next->sched_class->put_prev_task(rq, next);
  4858. migrate_dead(dead_cpu, next);
  4859. }
  4860. }
  4861. /*
  4862. * remove the tasks which were accounted by rq from calc_load_tasks.
  4863. */
  4864. static void calc_global_load_remove(struct rq *rq)
  4865. {
  4866. atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
  4867. rq->calc_load_active = 0;
  4868. }
  4869. #endif /* CONFIG_HOTPLUG_CPU */
  4870. #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
  4871. static struct ctl_table sd_ctl_dir[] = {
  4872. {
  4873. .procname = "sched_domain",
  4874. .mode = 0555,
  4875. },
  4876. {}
  4877. };
  4878. static struct ctl_table sd_ctl_root[] = {
  4879. {
  4880. .procname = "kernel",
  4881. .mode = 0555,
  4882. .child = sd_ctl_dir,
  4883. },
  4884. {}
  4885. };
  4886. static struct ctl_table *sd_alloc_ctl_entry(int n)
  4887. {
  4888. struct ctl_table *entry =
  4889. kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
  4890. return entry;
  4891. }
  4892. static void sd_free_ctl_entry(struct ctl_table **tablep)
  4893. {
  4894. struct ctl_table *entry;
  4895. /*
  4896. * In the intermediate directories, both the child directory and
  4897. * procname are dynamically allocated and could fail but the mode
  4898. * will always be set. In the lowest directory the names are
  4899. * static strings and all have proc handlers.
  4900. */
  4901. for (entry = *tablep; entry->mode; entry++) {
  4902. if (entry->child)
  4903. sd_free_ctl_entry(&entry->child);
  4904. if (entry->proc_handler == NULL)
  4905. kfree(entry->procname);
  4906. }
  4907. kfree(*tablep);
  4908. *tablep = NULL;
  4909. }
  4910. static void
  4911. set_table_entry(struct ctl_table *entry,
  4912. const char *procname, void *data, int maxlen,
  4913. mode_t mode, proc_handler *proc_handler)
  4914. {
  4915. entry->procname = procname;
  4916. entry->data = data;
  4917. entry->maxlen = maxlen;
  4918. entry->mode = mode;
  4919. entry->proc_handler = proc_handler;
  4920. }
  4921. static struct ctl_table *
  4922. sd_alloc_ctl_domain_table(struct sched_domain *sd)
  4923. {
  4924. struct ctl_table *table = sd_alloc_ctl_entry(13);
  4925. if (table == NULL)
  4926. return NULL;
  4927. set_table_entry(&table[0], "min_interval", &sd->min_interval,
  4928. sizeof(long), 0644, proc_doulongvec_minmax);
  4929. set_table_entry(&table[1], "max_interval", &sd->max_interval,
  4930. sizeof(long), 0644, proc_doulongvec_minmax);
  4931. set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
  4932. sizeof(int), 0644, proc_dointvec_minmax);
  4933. set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
  4934. sizeof(int), 0644, proc_dointvec_minmax);
  4935. set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
  4936. sizeof(int), 0644, proc_dointvec_minmax);
  4937. set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
  4938. sizeof(int), 0644, proc_dointvec_minmax);
  4939. set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
  4940. sizeof(int), 0644, proc_dointvec_minmax);
  4941. set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
  4942. sizeof(int), 0644, proc_dointvec_minmax);
  4943. set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
  4944. sizeof(int), 0644, proc_dointvec_minmax);
  4945. set_table_entry(&table[9], "cache_nice_tries",
  4946. &sd->cache_nice_tries,
  4947. sizeof(int), 0644, proc_dointvec_minmax);
  4948. set_table_entry(&table[10], "flags", &sd->flags,
  4949. sizeof(int), 0644, proc_dointvec_minmax);
  4950. set_table_entry(&table[11], "name", sd->name,
  4951. CORENAME_MAX_SIZE, 0444, proc_dostring);
  4952. /* &table[12] is terminator */
  4953. return table;
  4954. }
  4955. static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
  4956. {
  4957. struct ctl_table *entry, *table;
  4958. struct sched_domain *sd;
  4959. int domain_num = 0, i;
  4960. char buf[32];
  4961. for_each_domain(cpu, sd)
  4962. domain_num++;
  4963. entry = table = sd_alloc_ctl_entry(domain_num + 1);
  4964. if (table == NULL)
  4965. return NULL;
  4966. i = 0;
  4967. for_each_domain(cpu, sd) {
  4968. snprintf(buf, 32, "domain%d", i);
  4969. entry->procname = kstrdup(buf, GFP_KERNEL);
  4970. entry->mode = 0555;
  4971. entry->child = sd_alloc_ctl_domain_table(sd);
  4972. entry++;
  4973. i++;
  4974. }
  4975. return table;
  4976. }
  4977. static struct ctl_table_header *sd_sysctl_header;
  4978. static void register_sched_domain_sysctl(void)
  4979. {
  4980. int i, cpu_num = num_possible_cpus();
  4981. struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
  4982. char buf[32];
  4983. WARN_ON(sd_ctl_dir[0].child);
  4984. sd_ctl_dir[0].child = entry;
  4985. if (entry == NULL)
  4986. return;
  4987. for_each_possible_cpu(i) {
  4988. snprintf(buf, 32, "cpu%d", i);
  4989. entry->procname = kstrdup(buf, GFP_KERNEL);
  4990. entry->mode = 0555;
  4991. entry->child = sd_alloc_ctl_cpu_table(i);
  4992. entry++;
  4993. }
  4994. WARN_ON(sd_sysctl_header);
  4995. sd_sysctl_header = register_sysctl_table(sd_ctl_root);
  4996. }
  4997. /* may be called multiple times per register */
  4998. static void unregister_sched_domain_sysctl(void)
  4999. {
  5000. if (sd_sysctl_header)
  5001. unregister_sysctl_table(sd_sysctl_header);
  5002. sd_sysctl_header = NULL;
  5003. if (sd_ctl_dir[0].child)
  5004. sd_free_ctl_entry(&sd_ctl_dir[0].child);
  5005. }
  5006. #else
  5007. static void register_sched_domain_sysctl(void)
  5008. {
  5009. }
  5010. static void unregister_sched_domain_sysctl(void)
  5011. {
  5012. }
  5013. #endif
  5014. static void set_rq_online(struct rq *rq)
  5015. {
  5016. if (!rq->online) {
  5017. const struct sched_class *class;
  5018. cpumask_set_cpu(rq->cpu, rq->rd->online);
  5019. rq->online = 1;
  5020. for_each_class(class) {
  5021. if (class->rq_online)
  5022. class->rq_online(rq);
  5023. }
  5024. }
  5025. }
  5026. static void set_rq_offline(struct rq *rq)
  5027. {
  5028. if (rq->online) {
  5029. const struct sched_class *class;
  5030. for_each_class(class) {
  5031. if (class->rq_offline)
  5032. class->rq_offline(rq);
  5033. }
  5034. cpumask_clear_cpu(rq->cpu, rq->rd->online);
  5035. rq->online = 0;
  5036. }
  5037. }
  5038. /*
  5039. * migration_call - callback that gets triggered when a CPU is added.
  5040. * Here we can start up the necessary migration thread for the new CPU.
  5041. */
  5042. static int __cpuinit
  5043. migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
  5044. {
  5045. int cpu = (long)hcpu;
  5046. unsigned long flags;
  5047. struct rq *rq = cpu_rq(cpu);
  5048. switch (action) {
  5049. case CPU_UP_PREPARE:
  5050. case CPU_UP_PREPARE_FROZEN:
  5051. rq->calc_load_update = calc_load_update;
  5052. break;
  5053. case CPU_ONLINE:
  5054. case CPU_ONLINE_FROZEN:
  5055. /* Update our root-domain */
  5056. raw_spin_lock_irqsave(&rq->lock, flags);
  5057. if (rq->rd) {
  5058. BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
  5059. set_rq_online(rq);
  5060. }
  5061. raw_spin_unlock_irqrestore(&rq->lock, flags);
  5062. break;
  5063. #ifdef CONFIG_HOTPLUG_CPU
  5064. case CPU_DEAD:
  5065. case CPU_DEAD_FROZEN:
  5066. migrate_live_tasks(cpu);
  5067. /* Idle task back to normal (off runqueue, low prio) */
  5068. raw_spin_lock_irq(&rq->lock);
  5069. deactivate_task(rq, rq->idle, 0);
  5070. __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
  5071. rq->idle->sched_class = &idle_sched_class;
  5072. migrate_dead_tasks(cpu);
  5073. raw_spin_unlock_irq(&rq->lock);
  5074. migrate_nr_uninterruptible(rq);
  5075. BUG_ON(rq->nr_running != 0);
  5076. calc_global_load_remove(rq);
  5077. break;
  5078. case CPU_DYING:
  5079. case CPU_DYING_FROZEN:
  5080. /* Update our root-domain */
  5081. raw_spin_lock_irqsave(&rq->lock, flags);
  5082. if (rq->rd) {
  5083. BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
  5084. set_rq_offline(rq);
  5085. }
  5086. raw_spin_unlock_irqrestore(&rq->lock, flags);
  5087. break;
  5088. #endif
  5089. }
  5090. return NOTIFY_OK;
  5091. }
  5092. /*
  5093. * Register at high priority so that task migration (migrate_all_tasks)
  5094. * happens before everything else. This has to be lower priority than
  5095. * the notifier in the perf_event subsystem, though.
  5096. */
  5097. static struct notifier_block __cpuinitdata migration_notifier = {
  5098. .notifier_call = migration_call,
  5099. .priority = CPU_PRI_MIGRATION,
  5100. };
  5101. static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
  5102. unsigned long action, void *hcpu)
  5103. {
  5104. switch (action & ~CPU_TASKS_FROZEN) {
  5105. case CPU_ONLINE:
  5106. case CPU_DOWN_FAILED:
  5107. set_cpu_active((long)hcpu, true);
  5108. return NOTIFY_OK;
  5109. default:
  5110. return NOTIFY_DONE;
  5111. }
  5112. }
  5113. static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
  5114. unsigned long action, void *hcpu)
  5115. {
  5116. switch (action & ~CPU_TASKS_FROZEN) {
  5117. case CPU_DOWN_PREPARE:
  5118. set_cpu_active((long)hcpu, false);
  5119. return NOTIFY_OK;
  5120. default:
  5121. return NOTIFY_DONE;
  5122. }
  5123. }
  5124. static int __init migration_init(void)
  5125. {
  5126. void *cpu = (void *)(long)smp_processor_id();
  5127. int err;
  5128. /* Initialize migration for the boot CPU */
  5129. err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
  5130. BUG_ON(err == NOTIFY_BAD);
  5131. migration_call(&migration_notifier, CPU_ONLINE, cpu);
  5132. register_cpu_notifier(&migration_notifier);
  5133. /* Register cpu active notifiers */
  5134. cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
  5135. cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
  5136. return 0;
  5137. }
  5138. early_initcall(migration_init);
  5139. #endif
  5140. #ifdef CONFIG_SMP
  5141. #ifdef CONFIG_SCHED_DEBUG
  5142. static __read_mostly int sched_domain_debug_enabled;
  5143. static int __init sched_domain_debug_setup(char *str)
  5144. {
  5145. sched_domain_debug_enabled = 1;
  5146. return 0;
  5147. }
  5148. early_param("sched_debug", sched_domain_debug_setup);
  5149. static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
  5150. struct cpumask *groupmask)
  5151. {
  5152. struct sched_group *group = sd->groups;
  5153. char str[256];
  5154. cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
  5155. cpumask_clear(groupmask);
  5156. printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
  5157. if (!(sd->flags & SD_LOAD_BALANCE)) {
  5158. printk("does not load-balance\n");
  5159. if (sd->parent)
  5160. printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
  5161. " has parent");
  5162. return -1;
  5163. }
  5164. printk(KERN_CONT "span %s level %s\n", str, sd->name);
  5165. if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  5166. printk(KERN_ERR "ERROR: domain->span does not contain "
  5167. "CPU%d\n", cpu);
  5168. }
  5169. if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
  5170. printk(KERN_ERR "ERROR: domain->groups does not contain"
  5171. " CPU%d\n", cpu);
  5172. }
  5173. printk(KERN_DEBUG "%*s groups:", level + 1, "");
  5174. do {
  5175. if (!group) {
  5176. printk("\n");
  5177. printk(KERN_ERR "ERROR: group is NULL\n");
  5178. break;
  5179. }
  5180. if (!group->cpu_power) {
  5181. printk(KERN_CONT "\n");
  5182. printk(KERN_ERR "ERROR: domain->cpu_power not "
  5183. "set\n");
  5184. break;
  5185. }
  5186. if (!cpumask_weight(sched_group_cpus(group))) {
  5187. printk(KERN_CONT "\n");
  5188. printk(KERN_ERR "ERROR: empty group\n");
  5189. break;
  5190. }
  5191. if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
  5192. printk(KERN_CONT "\n");
  5193. printk(KERN_ERR "ERROR: repeated CPUs\n");
  5194. break;
  5195. }
  5196. cpumask_or(groupmask, groupmask, sched_group_cpus(group));
  5197. cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
  5198. printk(KERN_CONT " %s", str);
  5199. if (group->cpu_power != SCHED_LOAD_SCALE) {
  5200. printk(KERN_CONT " (cpu_power = %d)",
  5201. group->cpu_power);
  5202. }
  5203. group = group->next;
  5204. } while (group != sd->groups);
  5205. printk(KERN_CONT "\n");
  5206. if (!cpumask_equal(sched_domain_span(sd), groupmask))
  5207. printk(KERN_ERR "ERROR: groups don't span domain->span\n");
  5208. if (sd->parent &&
  5209. !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
  5210. printk(KERN_ERR "ERROR: parent span is not a superset "
  5211. "of domain->span\n");
  5212. return 0;
  5213. }
  5214. static void sched_domain_debug(struct sched_domain *sd, int cpu)
  5215. {
  5216. cpumask_var_t groupmask;
  5217. int level = 0;
  5218. if (!sched_domain_debug_enabled)
  5219. return;
  5220. if (!sd) {
  5221. printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
  5222. return;
  5223. }
  5224. printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
  5225. if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
  5226. printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
  5227. return;
  5228. }
  5229. for (;;) {
  5230. if (sched_domain_debug_one(sd, cpu, level, groupmask))
  5231. break;
  5232. level++;
  5233. sd = sd->parent;
  5234. if (!sd)
  5235. break;
  5236. }
  5237. free_cpumask_var(groupmask);
  5238. }
  5239. #else /* !CONFIG_SCHED_DEBUG */
  5240. # define sched_domain_debug(sd, cpu) do { } while (0)
  5241. #endif /* CONFIG_SCHED_DEBUG */
  5242. static int sd_degenerate(struct sched_domain *sd)
  5243. {
  5244. if (cpumask_weight(sched_domain_span(sd)) == 1)
  5245. return 1;
  5246. /* Following flags need at least 2 groups */
  5247. if (sd->flags & (SD_LOAD_BALANCE |
  5248. SD_BALANCE_NEWIDLE |
  5249. SD_BALANCE_FORK |
  5250. SD_BALANCE_EXEC |
  5251. SD_SHARE_CPUPOWER |
  5252. SD_SHARE_PKG_RESOURCES)) {
  5253. if (sd->groups != sd->groups->next)
  5254. return 0;
  5255. }
  5256. /* Following flags don't use groups */
  5257. if (sd->flags & (SD_WAKE_AFFINE))
  5258. return 0;
  5259. return 1;
  5260. }
  5261. static int
  5262. sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
  5263. {
  5264. unsigned long cflags = sd->flags, pflags = parent->flags;
  5265. if (sd_degenerate(parent))
  5266. return 1;
  5267. if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
  5268. return 0;
  5269. /* Flags needing groups don't count if only 1 group in parent */
  5270. if (parent->groups == parent->groups->next) {
  5271. pflags &= ~(SD_LOAD_BALANCE |
  5272. SD_BALANCE_NEWIDLE |
  5273. SD_BALANCE_FORK |
  5274. SD_BALANCE_EXEC |
  5275. SD_SHARE_CPUPOWER |
  5276. SD_SHARE_PKG_RESOURCES);
  5277. if (nr_node_ids == 1)
  5278. pflags &= ~SD_SERIALIZE;
  5279. }
  5280. if (~cflags & pflags)
  5281. return 0;
  5282. return 1;
  5283. }
  5284. static void free_rootdomain(struct root_domain *rd)
  5285. {
  5286. synchronize_sched();
  5287. cpupri_cleanup(&rd->cpupri);
  5288. free_cpumask_var(rd->rto_mask);
  5289. free_cpumask_var(rd->online);
  5290. free_cpumask_var(rd->span);
  5291. kfree(rd);
  5292. }
  5293. static void rq_attach_root(struct rq *rq, struct root_domain *rd)
  5294. {
  5295. struct root_domain *old_rd = NULL;
  5296. unsigned long flags;
  5297. raw_spin_lock_irqsave(&rq->lock, flags);
  5298. if (rq->rd) {
  5299. old_rd = rq->rd;
  5300. if (cpumask_test_cpu(rq->cpu, old_rd->online))
  5301. set_rq_offline(rq);
  5302. cpumask_clear_cpu(rq->cpu, old_rd->span);
  5303. /*
  5304. * If we dont want to free the old_rt yet then
  5305. * set old_rd to NULL to skip the freeing later
  5306. * in this function:
  5307. */
  5308. if (!atomic_dec_and_test(&old_rd->refcount))
  5309. old_rd = NULL;
  5310. }
  5311. atomic_inc(&rd->refcount);
  5312. rq->rd = rd;
  5313. cpumask_set_cpu(rq->cpu, rd->span);
  5314. if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
  5315. set_rq_online(rq);
  5316. raw_spin_unlock_irqrestore(&rq->lock, flags);
  5317. if (old_rd)
  5318. free_rootdomain(old_rd);
  5319. }
  5320. static int init_rootdomain(struct root_domain *rd)
  5321. {
  5322. memset(rd, 0, sizeof(*rd));
  5323. if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
  5324. goto out;
  5325. if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
  5326. goto free_span;
  5327. if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
  5328. goto free_online;
  5329. if (cpupri_init(&rd->cpupri) != 0)
  5330. goto free_rto_mask;
  5331. return 0;
  5332. free_rto_mask:
  5333. free_cpumask_var(rd->rto_mask);
  5334. free_online:
  5335. free_cpumask_var(rd->online);
  5336. free_span:
  5337. free_cpumask_var(rd->span);
  5338. out:
  5339. return -ENOMEM;
  5340. }
  5341. static void init_defrootdomain(void)
  5342. {
  5343. init_rootdomain(&def_root_domain);
  5344. atomic_set(&def_root_domain.refcount, 1);
  5345. }
  5346. static struct root_domain *alloc_rootdomain(void)
  5347. {
  5348. struct root_domain *rd;
  5349. rd = kmalloc(sizeof(*rd), GFP_KERNEL);
  5350. if (!rd)
  5351. return NULL;
  5352. if (init_rootdomain(rd) != 0) {
  5353. kfree(rd);
  5354. return NULL;
  5355. }
  5356. return rd;
  5357. }
  5358. /*
  5359. * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
  5360. * hold the hotplug lock.
  5361. */
  5362. static void
  5363. cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
  5364. {
  5365. struct rq *rq = cpu_rq(cpu);
  5366. struct sched_domain *tmp;
  5367. for (tmp = sd; tmp; tmp = tmp->parent)
  5368. tmp->span_weight = cpumask_weight(sched_domain_span(tmp));
  5369. /* Remove the sched domains which do not contribute to scheduling. */
  5370. for (tmp = sd; tmp; ) {
  5371. struct sched_domain *parent = tmp->parent;
  5372. if (!parent)
  5373. break;
  5374. if (sd_parent_degenerate(tmp, parent)) {
  5375. tmp->parent = parent->parent;
  5376. if (parent->parent)
  5377. parent->parent->child = tmp;
  5378. } else
  5379. tmp = tmp->parent;
  5380. }
  5381. if (sd && sd_degenerate(sd)) {
  5382. sd = sd->parent;
  5383. if (sd)
  5384. sd->child = NULL;
  5385. }
  5386. sched_domain_debug(sd, cpu);
  5387. rq_attach_root(rq, rd);
  5388. rcu_assign_pointer(rq->sd, sd);
  5389. }
  5390. /* cpus with isolated domains */
  5391. static cpumask_var_t cpu_isolated_map;
  5392. /* Setup the mask of cpus configured for isolated domains */
  5393. static int __init isolated_cpu_setup(char *str)
  5394. {
  5395. alloc_bootmem_cpumask_var(&cpu_isolated_map);
  5396. cpulist_parse(str, cpu_isolated_map);
  5397. return 1;
  5398. }
  5399. __setup("isolcpus=", isolated_cpu_setup);
  5400. /*
  5401. * init_sched_build_groups takes the cpumask we wish to span, and a pointer
  5402. * to a function which identifies what group(along with sched group) a CPU
  5403. * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
  5404. * (due to the fact that we keep track of groups covered with a struct cpumask).
  5405. *
  5406. * init_sched_build_groups will build a circular linked list of the groups
  5407. * covered by the given span, and will set each group's ->cpumask correctly,
  5408. * and ->cpu_power to 0.
  5409. */
  5410. static void
  5411. init_sched_build_groups(const struct cpumask *span,
  5412. const struct cpumask *cpu_map,
  5413. int (*group_fn)(int cpu, const struct cpumask *cpu_map,
  5414. struct sched_group **sg,
  5415. struct cpumask *tmpmask),
  5416. struct cpumask *covered, struct cpumask *tmpmask)
  5417. {
  5418. struct sched_group *first = NULL, *last = NULL;
  5419. int i;
  5420. cpumask_clear(covered);
  5421. for_each_cpu(i, span) {
  5422. struct sched_group *sg;
  5423. int group = group_fn(i, cpu_map, &sg, tmpmask);
  5424. int j;
  5425. if (cpumask_test_cpu(i, covered))
  5426. continue;
  5427. cpumask_clear(sched_group_cpus(sg));
  5428. sg->cpu_power = 0;
  5429. for_each_cpu(j, span) {
  5430. if (group_fn(j, cpu_map, NULL, tmpmask) != group)
  5431. continue;
  5432. cpumask_set_cpu(j, covered);
  5433. cpumask_set_cpu(j, sched_group_cpus(sg));
  5434. }
  5435. if (!first)
  5436. first = sg;
  5437. if (last)
  5438. last->next = sg;
  5439. last = sg;
  5440. }
  5441. last->next = first;
  5442. }
  5443. #define SD_NODES_PER_DOMAIN 16
  5444. #ifdef CONFIG_NUMA
  5445. /**
  5446. * find_next_best_node - find the next node to include in a sched_domain
  5447. * @node: node whose sched_domain we're building
  5448. * @used_nodes: nodes already in the sched_domain
  5449. *
  5450. * Find the next node to include in a given scheduling domain. Simply
  5451. * finds the closest node not already in the @used_nodes map.
  5452. *
  5453. * Should use nodemask_t.
  5454. */
  5455. static int find_next_best_node(int node, nodemask_t *used_nodes)
  5456. {
  5457. int i, n, val, min_val, best_node = 0;
  5458. min_val = INT_MAX;
  5459. for (i = 0; i < nr_node_ids; i++) {
  5460. /* Start at @node */
  5461. n = (node + i) % nr_node_ids;
  5462. if (!nr_cpus_node(n))
  5463. continue;
  5464. /* Skip already used nodes */
  5465. if (node_isset(n, *used_nodes))
  5466. continue;
  5467. /* Simple min distance search */
  5468. val = node_distance(node, n);
  5469. if (val < min_val) {
  5470. min_val = val;
  5471. best_node = n;
  5472. }
  5473. }
  5474. node_set(best_node, *used_nodes);
  5475. return best_node;
  5476. }
  5477. /**
  5478. * sched_domain_node_span - get a cpumask for a node's sched_domain
  5479. * @node: node whose cpumask we're constructing
  5480. * @span: resulting cpumask
  5481. *
  5482. * Given a node, construct a good cpumask for its sched_domain to span. It
  5483. * should be one that prevents unnecessary balancing, but also spreads tasks
  5484. * out optimally.
  5485. */
  5486. static void sched_domain_node_span(int node, struct cpumask *span)
  5487. {
  5488. nodemask_t used_nodes;
  5489. int i;
  5490. cpumask_clear(span);
  5491. nodes_clear(used_nodes);
  5492. cpumask_or(span, span, cpumask_of_node(node));
  5493. node_set(node, used_nodes);
  5494. for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
  5495. int next_node = find_next_best_node(node, &used_nodes);
  5496. cpumask_or(span, span, cpumask_of_node(next_node));
  5497. }
  5498. }
  5499. #endif /* CONFIG_NUMA */
  5500. int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
  5501. /*
  5502. * The cpus mask in sched_group and sched_domain hangs off the end.
  5503. *
  5504. * ( See the the comments in include/linux/sched.h:struct sched_group
  5505. * and struct sched_domain. )
  5506. */
  5507. struct static_sched_group {
  5508. struct sched_group sg;
  5509. DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
  5510. };
  5511. struct static_sched_domain {
  5512. struct sched_domain sd;
  5513. DECLARE_BITMAP(span, CONFIG_NR_CPUS);
  5514. };
  5515. struct s_data {
  5516. #ifdef CONFIG_NUMA
  5517. int sd_allnodes;
  5518. cpumask_var_t domainspan;
  5519. cpumask_var_t covered;
  5520. cpumask_var_t notcovered;
  5521. #endif
  5522. cpumask_var_t nodemask;
  5523. cpumask_var_t this_sibling_map;
  5524. cpumask_var_t this_core_map;
  5525. cpumask_var_t send_covered;
  5526. cpumask_var_t tmpmask;
  5527. struct sched_group **sched_group_nodes;
  5528. struct root_domain *rd;
  5529. };
  5530. enum s_alloc {
  5531. sa_sched_groups = 0,
  5532. sa_rootdomain,
  5533. sa_tmpmask,
  5534. sa_send_covered,
  5535. sa_this_core_map,
  5536. sa_this_sibling_map,
  5537. sa_nodemask,
  5538. sa_sched_group_nodes,
  5539. #ifdef CONFIG_NUMA
  5540. sa_notcovered,
  5541. sa_covered,
  5542. sa_domainspan,
  5543. #endif
  5544. sa_none,
  5545. };
  5546. /*
  5547. * SMT sched-domains:
  5548. */
  5549. #ifdef CONFIG_SCHED_SMT
  5550. static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
  5551. static DEFINE_PER_CPU(struct static_sched_group, sched_groups);
  5552. static int
  5553. cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
  5554. struct sched_group **sg, struct cpumask *unused)
  5555. {
  5556. if (sg)
  5557. *sg = &per_cpu(sched_groups, cpu).sg;
  5558. return cpu;
  5559. }
  5560. #endif /* CONFIG_SCHED_SMT */
  5561. /*
  5562. * multi-core sched-domains:
  5563. */
  5564. #ifdef CONFIG_SCHED_MC
  5565. static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
  5566. static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
  5567. #endif /* CONFIG_SCHED_MC */
  5568. #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
  5569. static int
  5570. cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
  5571. struct sched_group **sg, struct cpumask *mask)
  5572. {
  5573. int group;
  5574. cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
  5575. group = cpumask_first(mask);
  5576. if (sg)
  5577. *sg = &per_cpu(sched_group_core, group).sg;
  5578. return group;
  5579. }
  5580. #elif defined(CONFIG_SCHED_MC)
  5581. static int
  5582. cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
  5583. struct sched_group **sg, struct cpumask *unused)
  5584. {
  5585. if (sg)
  5586. *sg = &per_cpu(sched_group_core, cpu).sg;
  5587. return cpu;
  5588. }
  5589. #endif
  5590. static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
  5591. static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
  5592. static int
  5593. cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
  5594. struct sched_group **sg, struct cpumask *mask)
  5595. {
  5596. int group;
  5597. #ifdef CONFIG_SCHED_MC
  5598. cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
  5599. group = cpumask_first(mask);
  5600. #elif defined(CONFIG_SCHED_SMT)
  5601. cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
  5602. group = cpumask_first(mask);
  5603. #else
  5604. group = cpu;
  5605. #endif
  5606. if (sg)
  5607. *sg = &per_cpu(sched_group_phys, group).sg;
  5608. return group;
  5609. }
  5610. #ifdef CONFIG_NUMA
  5611. /*
  5612. * The init_sched_build_groups can't handle what we want to do with node
  5613. * groups, so roll our own. Now each node has its own list of groups which
  5614. * gets dynamically allocated.
  5615. */
  5616. static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
  5617. static struct sched_group ***sched_group_nodes_bycpu;
  5618. static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
  5619. static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
  5620. static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
  5621. struct sched_group **sg,
  5622. struct cpumask *nodemask)
  5623. {
  5624. int group;
  5625. cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
  5626. group = cpumask_first(nodemask);
  5627. if (sg)
  5628. *sg = &per_cpu(sched_group_allnodes, group).sg;
  5629. return group;
  5630. }
  5631. static void init_numa_sched_groups_power(struct sched_group *group_head)
  5632. {
  5633. struct sched_group *sg = group_head;
  5634. int j;
  5635. if (!sg)
  5636. return;
  5637. do {
  5638. for_each_cpu(j, sched_group_cpus(sg)) {
  5639. struct sched_domain *sd;
  5640. sd = &per_cpu(phys_domains, j).sd;
  5641. if (j != group_first_cpu(sd->groups)) {
  5642. /*
  5643. * Only add "power" once for each
  5644. * physical package.
  5645. */
  5646. continue;
  5647. }
  5648. sg->cpu_power += sd->groups->cpu_power;
  5649. }
  5650. sg = sg->next;
  5651. } while (sg != group_head);
  5652. }
  5653. static int build_numa_sched_groups(struct s_data *d,
  5654. const struct cpumask *cpu_map, int num)
  5655. {
  5656. struct sched_domain *sd;
  5657. struct sched_group *sg, *prev;
  5658. int n, j;
  5659. cpumask_clear(d->covered);
  5660. cpumask_and(d->nodemask, cpumask_of_node(num), cpu_map);
  5661. if (cpumask_empty(d->nodemask)) {
  5662. d->sched_group_nodes[num] = NULL;
  5663. goto out;
  5664. }
  5665. sched_domain_node_span(num, d->domainspan);
  5666. cpumask_and(d->domainspan, d->domainspan, cpu_map);
  5667. sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
  5668. GFP_KERNEL, num);
  5669. if (!sg) {
  5670. printk(KERN_WARNING "Can not alloc domain group for node %d\n",
  5671. num);
  5672. return -ENOMEM;
  5673. }
  5674. d->sched_group_nodes[num] = sg;
  5675. for_each_cpu(j, d->nodemask) {
  5676. sd = &per_cpu(node_domains, j).sd;
  5677. sd->groups = sg;
  5678. }
  5679. sg->cpu_power = 0;
  5680. cpumask_copy(sched_group_cpus(sg), d->nodemask);
  5681. sg->next = sg;
  5682. cpumask_or(d->covered, d->covered, d->nodemask);
  5683. prev = sg;
  5684. for (j = 0; j < nr_node_ids; j++) {
  5685. n = (num + j) % nr_node_ids;
  5686. cpumask_complement(d->notcovered, d->covered);
  5687. cpumask_and(d->tmpmask, d->notcovered, cpu_map);
  5688. cpumask_and(d->tmpmask, d->tmpmask, d->domainspan);
  5689. if (cpumask_empty(d->tmpmask))
  5690. break;
  5691. cpumask_and(d->tmpmask, d->tmpmask, cpumask_of_node(n));
  5692. if (cpumask_empty(d->tmpmask))
  5693. continue;
  5694. sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
  5695. GFP_KERNEL, num);
  5696. if (!sg) {
  5697. printk(KERN_WARNING
  5698. "Can not alloc domain group for node %d\n", j);
  5699. return -ENOMEM;
  5700. }
  5701. sg->cpu_power = 0;
  5702. cpumask_copy(sched_group_cpus(sg), d->tmpmask);
  5703. sg->next = prev->next;
  5704. cpumask_or(d->covered, d->covered, d->tmpmask);
  5705. prev->next = sg;
  5706. prev = sg;
  5707. }
  5708. out:
  5709. return 0;
  5710. }
  5711. #endif /* CONFIG_NUMA */
  5712. #ifdef CONFIG_NUMA
  5713. /* Free memory allocated for various sched_group structures */
  5714. static void free_sched_groups(const struct cpumask *cpu_map,
  5715. struct cpumask *nodemask)
  5716. {
  5717. int cpu, i;
  5718. for_each_cpu(cpu, cpu_map) {
  5719. struct sched_group **sched_group_nodes
  5720. = sched_group_nodes_bycpu[cpu];
  5721. if (!sched_group_nodes)
  5722. continue;
  5723. for (i = 0; i < nr_node_ids; i++) {
  5724. struct sched_group *oldsg, *sg = sched_group_nodes[i];
  5725. cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
  5726. if (cpumask_empty(nodemask))
  5727. continue;
  5728. if (sg == NULL)
  5729. continue;
  5730. sg = sg->next;
  5731. next_sg:
  5732. oldsg = sg;
  5733. sg = sg->next;
  5734. kfree(oldsg);
  5735. if (oldsg != sched_group_nodes[i])
  5736. goto next_sg;
  5737. }
  5738. kfree(sched_group_nodes);
  5739. sched_group_nodes_bycpu[cpu] = NULL;
  5740. }
  5741. }
  5742. #else /* !CONFIG_NUMA */
  5743. static void free_sched_groups(const struct cpumask *cpu_map,
  5744. struct cpumask *nodemask)
  5745. {
  5746. }
  5747. #endif /* CONFIG_NUMA */
  5748. /*
  5749. * Initialize sched groups cpu_power.
  5750. *
  5751. * cpu_power indicates the capacity of sched group, which is used while
  5752. * distributing the load between different sched groups in a sched domain.
  5753. * Typically cpu_power for all the groups in a sched domain will be same unless
  5754. * there are asymmetries in the topology. If there are asymmetries, group
  5755. * having more cpu_power will pickup more load compared to the group having
  5756. * less cpu_power.
  5757. */
  5758. static void init_sched_groups_power(int cpu, struct sched_domain *sd)
  5759. {
  5760. struct sched_domain *child;
  5761. struct sched_group *group;
  5762. long power;
  5763. int weight;
  5764. WARN_ON(!sd || !sd->groups);
  5765. if (cpu != group_first_cpu(sd->groups))
  5766. return;
  5767. child = sd->child;
  5768. sd->groups->cpu_power = 0;
  5769. if (!child) {
  5770. power = SCHED_LOAD_SCALE;
  5771. weight = cpumask_weight(sched_domain_span(sd));
  5772. /*
  5773. * SMT siblings share the power of a single core.
  5774. * Usually multiple threads get a better yield out of
  5775. * that one core than a single thread would have,
  5776. * reflect that in sd->smt_gain.
  5777. */
  5778. if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
  5779. power *= sd->smt_gain;
  5780. power /= weight;
  5781. power >>= SCHED_LOAD_SHIFT;
  5782. }
  5783. sd->groups->cpu_power += power;
  5784. return;
  5785. }
  5786. /*
  5787. * Add cpu_power of each child group to this groups cpu_power.
  5788. */
  5789. group = child->groups;
  5790. do {
  5791. sd->groups->cpu_power += group->cpu_power;
  5792. group = group->next;
  5793. } while (group != child->groups);
  5794. }
  5795. /*
  5796. * Initializers for schedule domains
  5797. * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
  5798. */
  5799. #ifdef CONFIG_SCHED_DEBUG
  5800. # define SD_INIT_NAME(sd, type) sd->name = #type
  5801. #else
  5802. # define SD_INIT_NAME(sd, type) do { } while (0)
  5803. #endif
  5804. #define SD_INIT(sd, type) sd_init_##type(sd)
  5805. #define SD_INIT_FUNC(type) \
  5806. static noinline void sd_init_##type(struct sched_domain *sd) \
  5807. { \
  5808. memset(sd, 0, sizeof(*sd)); \
  5809. *sd = SD_##type##_INIT; \
  5810. sd->level = SD_LV_##type; \
  5811. SD_INIT_NAME(sd, type); \
  5812. }
  5813. SD_INIT_FUNC(CPU)
  5814. #ifdef CONFIG_NUMA
  5815. SD_INIT_FUNC(ALLNODES)
  5816. SD_INIT_FUNC(NODE)
  5817. #endif
  5818. #ifdef CONFIG_SCHED_SMT
  5819. SD_INIT_FUNC(SIBLING)
  5820. #endif
  5821. #ifdef CONFIG_SCHED_MC
  5822. SD_INIT_FUNC(MC)
  5823. #endif
  5824. static int default_relax_domain_level = -1;
  5825. static int __init setup_relax_domain_level(char *str)
  5826. {
  5827. unsigned long val;
  5828. val = simple_strtoul(str, NULL, 0);
  5829. if (val < SD_LV_MAX)
  5830. default_relax_domain_level = val;
  5831. return 1;
  5832. }
  5833. __setup("relax_domain_level=", setup_relax_domain_level);
  5834. static void set_domain_attribute(struct sched_domain *sd,
  5835. struct sched_domain_attr *attr)
  5836. {
  5837. int request;
  5838. if (!attr || attr->relax_domain_level < 0) {
  5839. if (default_relax_domain_level < 0)
  5840. return;
  5841. else
  5842. request = default_relax_domain_level;
  5843. } else
  5844. request = attr->relax_domain_level;
  5845. if (request < sd->level) {
  5846. /* turn off idle balance on this domain */
  5847. sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
  5848. } else {
  5849. /* turn on idle balance on this domain */
  5850. sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
  5851. }
  5852. }
  5853. static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
  5854. const struct cpumask *cpu_map)
  5855. {
  5856. switch (what) {
  5857. case sa_sched_groups:
  5858. free_sched_groups(cpu_map, d->tmpmask); /* fall through */
  5859. d->sched_group_nodes = NULL;
  5860. case sa_rootdomain:
  5861. free_rootdomain(d->rd); /* fall through */
  5862. case sa_tmpmask:
  5863. free_cpumask_var(d->tmpmask); /* fall through */
  5864. case sa_send_covered:
  5865. free_cpumask_var(d->send_covered); /* fall through */
  5866. case sa_this_core_map:
  5867. free_cpumask_var(d->this_core_map); /* fall through */
  5868. case sa_this_sibling_map:
  5869. free_cpumask_var(d->this_sibling_map); /* fall through */
  5870. case sa_nodemask:
  5871. free_cpumask_var(d->nodemask); /* fall through */
  5872. case sa_sched_group_nodes:
  5873. #ifdef CONFIG_NUMA
  5874. kfree(d->sched_group_nodes); /* fall through */
  5875. case sa_notcovered:
  5876. free_cpumask_var(d->notcovered); /* fall through */
  5877. case sa_covered:
  5878. free_cpumask_var(d->covered); /* fall through */
  5879. case sa_domainspan:
  5880. free_cpumask_var(d->domainspan); /* fall through */
  5881. #endif
  5882. case sa_none:
  5883. break;
  5884. }
  5885. }
  5886. static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
  5887. const struct cpumask *cpu_map)
  5888. {
  5889. #ifdef CONFIG_NUMA
  5890. if (!alloc_cpumask_var(&d->domainspan, GFP_KERNEL))
  5891. return sa_none;
  5892. if (!alloc_cpumask_var(&d->covered, GFP_KERNEL))
  5893. return sa_domainspan;
  5894. if (!alloc_cpumask_var(&d->notcovered, GFP_KERNEL))
  5895. return sa_covered;
  5896. /* Allocate the per-node list of sched groups */
  5897. d->sched_group_nodes = kcalloc(nr_node_ids,
  5898. sizeof(struct sched_group *), GFP_KERNEL);
  5899. if (!d->sched_group_nodes) {
  5900. printk(KERN_WARNING "Can not alloc sched group node list\n");
  5901. return sa_notcovered;
  5902. }
  5903. sched_group_nodes_bycpu[cpumask_first(cpu_map)] = d->sched_group_nodes;
  5904. #endif
  5905. if (!alloc_cpumask_var(&d->nodemask, GFP_KERNEL))
  5906. return sa_sched_group_nodes;
  5907. if (!alloc_cpumask_var(&d->this_sibling_map, GFP_KERNEL))
  5908. return sa_nodemask;
  5909. if (!alloc_cpumask_var(&d->this_core_map, GFP_KERNEL))
  5910. return sa_this_sibling_map;
  5911. if (!alloc_cpumask_var(&d->send_covered, GFP_KERNEL))
  5912. return sa_this_core_map;
  5913. if (!alloc_cpumask_var(&d->tmpmask, GFP_KERNEL))
  5914. return sa_send_covered;
  5915. d->rd = alloc_rootdomain();
  5916. if (!d->rd) {
  5917. printk(KERN_WARNING "Cannot alloc root domain\n");
  5918. return sa_tmpmask;
  5919. }
  5920. return sa_rootdomain;
  5921. }
  5922. static struct sched_domain *__build_numa_sched_domains(struct s_data *d,
  5923. const struct cpumask *cpu_map, struct sched_domain_attr *attr, int i)
  5924. {
  5925. struct sched_domain *sd = NULL;
  5926. #ifdef CONFIG_NUMA
  5927. struct sched_domain *parent;
  5928. d->sd_allnodes = 0;
  5929. if (cpumask_weight(cpu_map) >
  5930. SD_NODES_PER_DOMAIN * cpumask_weight(d->nodemask)) {
  5931. sd = &per_cpu(allnodes_domains, i).sd;
  5932. SD_INIT(sd, ALLNODES);
  5933. set_domain_attribute(sd, attr);
  5934. cpumask_copy(sched_domain_span(sd), cpu_map);
  5935. cpu_to_allnodes_group(i, cpu_map, &sd->groups, d->tmpmask);
  5936. d->sd_allnodes = 1;
  5937. }
  5938. parent = sd;
  5939. sd = &per_cpu(node_domains, i).sd;
  5940. SD_INIT(sd, NODE);
  5941. set_domain_attribute(sd, attr);
  5942. sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
  5943. sd->parent = parent;
  5944. if (parent)
  5945. parent->child = sd;
  5946. cpumask_and(sched_domain_span(sd), sched_domain_span(sd), cpu_map);
  5947. #endif
  5948. return sd;
  5949. }
  5950. static struct sched_domain *__build_cpu_sched_domain(struct s_data *d,
  5951. const struct cpumask *cpu_map, struct sched_domain_attr *attr,
  5952. struct sched_domain *parent, int i)
  5953. {
  5954. struct sched_domain *sd;
  5955. sd = &per_cpu(phys_domains, i).sd;
  5956. SD_INIT(sd, CPU);
  5957. set_domain_attribute(sd, attr);
  5958. cpumask_copy(sched_domain_span(sd), d->nodemask);
  5959. sd->parent = parent;
  5960. if (parent)
  5961. parent->child = sd;
  5962. cpu_to_phys_group(i, cpu_map, &sd->groups, d->tmpmask);
  5963. return sd;
  5964. }
  5965. static struct sched_domain *__build_mc_sched_domain(struct s_data *d,
  5966. const struct cpumask *cpu_map, struct sched_domain_attr *attr,
  5967. struct sched_domain *parent, int i)
  5968. {
  5969. struct sched_domain *sd = parent;
  5970. #ifdef CONFIG_SCHED_MC
  5971. sd = &per_cpu(core_domains, i).sd;
  5972. SD_INIT(sd, MC);
  5973. set_domain_attribute(sd, attr);
  5974. cpumask_and(sched_domain_span(sd), cpu_map, cpu_coregroup_mask(i));
  5975. sd->parent = parent;
  5976. parent->child = sd;
  5977. cpu_to_core_group(i, cpu_map, &sd->groups, d->tmpmask);
  5978. #endif
  5979. return sd;
  5980. }
  5981. static struct sched_domain *__build_smt_sched_domain(struct s_data *d,
  5982. const struct cpumask *cpu_map, struct sched_domain_attr *attr,
  5983. struct sched_domain *parent, int i)
  5984. {
  5985. struct sched_domain *sd = parent;
  5986. #ifdef CONFIG_SCHED_SMT
  5987. sd = &per_cpu(cpu_domains, i).sd;
  5988. SD_INIT(sd, SIBLING);
  5989. set_domain_attribute(sd, attr);
  5990. cpumask_and(sched_domain_span(sd), cpu_map, topology_thread_cpumask(i));
  5991. sd->parent = parent;
  5992. parent->child = sd;
  5993. cpu_to_cpu_group(i, cpu_map, &sd->groups, d->tmpmask);
  5994. #endif
  5995. return sd;
  5996. }
  5997. static void build_sched_groups(struct s_data *d, enum sched_domain_level l,
  5998. const struct cpumask *cpu_map, int cpu)
  5999. {
  6000. switch (l) {
  6001. #ifdef CONFIG_SCHED_SMT
  6002. case SD_LV_SIBLING: /* set up CPU (sibling) groups */
  6003. cpumask_and(d->this_sibling_map, cpu_map,
  6004. topology_thread_cpumask(cpu));
  6005. if (cpu == cpumask_first(d->this_sibling_map))
  6006. init_sched_build_groups(d->this_sibling_map, cpu_map,
  6007. &cpu_to_cpu_group,
  6008. d->send_covered, d->tmpmask);
  6009. break;
  6010. #endif
  6011. #ifdef CONFIG_SCHED_MC
  6012. case SD_LV_MC: /* set up multi-core groups */
  6013. cpumask_and(d->this_core_map, cpu_map, cpu_coregroup_mask(cpu));
  6014. if (cpu == cpumask_first(d->this_core_map))
  6015. init_sched_build_groups(d->this_core_map, cpu_map,
  6016. &cpu_to_core_group,
  6017. d->send_covered, d->tmpmask);
  6018. break;
  6019. #endif
  6020. case SD_LV_CPU: /* set up physical groups */
  6021. cpumask_and(d->nodemask, cpumask_of_node(cpu), cpu_map);
  6022. if (!cpumask_empty(d->nodemask))
  6023. init_sched_build_groups(d->nodemask, cpu_map,
  6024. &cpu_to_phys_group,
  6025. d->send_covered, d->tmpmask);
  6026. break;
  6027. #ifdef CONFIG_NUMA
  6028. case SD_LV_ALLNODES:
  6029. init_sched_build_groups(cpu_map, cpu_map, &cpu_to_allnodes_group,
  6030. d->send_covered, d->tmpmask);
  6031. break;
  6032. #endif
  6033. default:
  6034. break;
  6035. }
  6036. }
  6037. /*
  6038. * Build sched domains for a given set of cpus and attach the sched domains
  6039. * to the individual cpus
  6040. */
  6041. static int __build_sched_domains(const struct cpumask *cpu_map,
  6042. struct sched_domain_attr *attr)
  6043. {
  6044. enum s_alloc alloc_state = sa_none;
  6045. struct s_data d;
  6046. struct sched_domain *sd;
  6047. int i;
  6048. #ifdef CONFIG_NUMA
  6049. d.sd_allnodes = 0;
  6050. #endif
  6051. alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
  6052. if (alloc_state != sa_rootdomain)
  6053. goto error;
  6054. alloc_state = sa_sched_groups;
  6055. /*
  6056. * Set up domains for cpus specified by the cpu_map.
  6057. */
  6058. for_each_cpu(i, cpu_map) {
  6059. cpumask_and(d.nodemask, cpumask_of_node(cpu_to_node(i)),
  6060. cpu_map);
  6061. sd = __build_numa_sched_domains(&d, cpu_map, attr, i);
  6062. sd = __build_cpu_sched_domain(&d, cpu_map, attr, sd, i);
  6063. sd = __build_mc_sched_domain(&d, cpu_map, attr, sd, i);
  6064. sd = __build_smt_sched_domain(&d, cpu_map, attr, sd, i);
  6065. }
  6066. for_each_cpu(i, cpu_map) {
  6067. build_sched_groups(&d, SD_LV_SIBLING, cpu_map, i);
  6068. build_sched_groups(&d, SD_LV_MC, cpu_map, i);
  6069. }
  6070. /* Set up physical groups */
  6071. for (i = 0; i < nr_node_ids; i++)
  6072. build_sched_groups(&d, SD_LV_CPU, cpu_map, i);
  6073. #ifdef CONFIG_NUMA
  6074. /* Set up node groups */
  6075. if (d.sd_allnodes)
  6076. build_sched_groups(&d, SD_LV_ALLNODES, cpu_map, 0);
  6077. for (i = 0; i < nr_node_ids; i++)
  6078. if (build_numa_sched_groups(&d, cpu_map, i))
  6079. goto error;
  6080. #endif
  6081. /* Calculate CPU power for physical packages and nodes */
  6082. #ifdef CONFIG_SCHED_SMT
  6083. for_each_cpu(i, cpu_map) {
  6084. sd = &per_cpu(cpu_domains, i).sd;
  6085. init_sched_groups_power(i, sd);
  6086. }
  6087. #endif
  6088. #ifdef CONFIG_SCHED_MC
  6089. for_each_cpu(i, cpu_map) {
  6090. sd = &per_cpu(core_domains, i).sd;
  6091. init_sched_groups_power(i, sd);
  6092. }
  6093. #endif
  6094. for_each_cpu(i, cpu_map) {
  6095. sd = &per_cpu(phys_domains, i).sd;
  6096. init_sched_groups_power(i, sd);
  6097. }
  6098. #ifdef CONFIG_NUMA
  6099. for (i = 0; i < nr_node_ids; i++)
  6100. init_numa_sched_groups_power(d.sched_group_nodes[i]);
  6101. if (d.sd_allnodes) {
  6102. struct sched_group *sg;
  6103. cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
  6104. d.tmpmask);
  6105. init_numa_sched_groups_power(sg);
  6106. }
  6107. #endif
  6108. /* Attach the domains */
  6109. for_each_cpu(i, cpu_map) {
  6110. #ifdef CONFIG_SCHED_SMT
  6111. sd = &per_cpu(cpu_domains, i).sd;
  6112. #elif defined(CONFIG_SCHED_MC)
  6113. sd = &per_cpu(core_domains, i).sd;
  6114. #else
  6115. sd = &per_cpu(phys_domains, i).sd;
  6116. #endif
  6117. cpu_attach_domain(sd, d.rd, i);
  6118. }
  6119. d.sched_group_nodes = NULL; /* don't free this we still need it */
  6120. __free_domain_allocs(&d, sa_tmpmask, cpu_map);
  6121. return 0;
  6122. error:
  6123. __free_domain_allocs(&d, alloc_state, cpu_map);
  6124. return -ENOMEM;
  6125. }
  6126. static int build_sched_domains(const struct cpumask *cpu_map)
  6127. {
  6128. return __build_sched_domains(cpu_map, NULL);
  6129. }
  6130. static cpumask_var_t *doms_cur; /* current sched domains */
  6131. static int ndoms_cur; /* number of sched domains in 'doms_cur' */
  6132. static struct sched_domain_attr *dattr_cur;
  6133. /* attribues of custom domains in 'doms_cur' */
  6134. /*
  6135. * Special case: If a kmalloc of a doms_cur partition (array of
  6136. * cpumask) fails, then fallback to a single sched domain,
  6137. * as determined by the single cpumask fallback_doms.
  6138. */
  6139. static cpumask_var_t fallback_doms;
  6140. /*
  6141. * arch_update_cpu_topology lets virtualized architectures update the
  6142. * cpu core maps. It is supposed to return 1 if the topology changed
  6143. * or 0 if it stayed the same.
  6144. */
  6145. int __attribute__((weak)) arch_update_cpu_topology(void)
  6146. {
  6147. return 0;
  6148. }
  6149. cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
  6150. {
  6151. int i;
  6152. cpumask_var_t *doms;
  6153. doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
  6154. if (!doms)
  6155. return NULL;
  6156. for (i = 0; i < ndoms; i++) {
  6157. if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
  6158. free_sched_domains(doms, i);
  6159. return NULL;
  6160. }
  6161. }
  6162. return doms;
  6163. }
  6164. void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
  6165. {
  6166. unsigned int i;
  6167. for (i = 0; i < ndoms; i++)
  6168. free_cpumask_var(doms[i]);
  6169. kfree(doms);
  6170. }
  6171. /*
  6172. * Set up scheduler domains and groups. Callers must hold the hotplug lock.
  6173. * For now this just excludes isolated cpus, but could be used to
  6174. * exclude other special cases in the future.
  6175. */
  6176. static int arch_init_sched_domains(const struct cpumask *cpu_map)
  6177. {
  6178. int err;
  6179. arch_update_cpu_topology();
  6180. ndoms_cur = 1;
  6181. doms_cur = alloc_sched_domains(ndoms_cur);
  6182. if (!doms_cur)
  6183. doms_cur = &fallback_doms;
  6184. cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
  6185. dattr_cur = NULL;
  6186. err = build_sched_domains(doms_cur[0]);
  6187. register_sched_domain_sysctl();
  6188. return err;
  6189. }
  6190. static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
  6191. struct cpumask *tmpmask)
  6192. {
  6193. free_sched_groups(cpu_map, tmpmask);
  6194. }
  6195. /*
  6196. * Detach sched domains from a group of cpus specified in cpu_map
  6197. * These cpus will now be attached to the NULL domain
  6198. */
  6199. static void detach_destroy_domains(const struct cpumask *cpu_map)
  6200. {
  6201. /* Save because hotplug lock held. */
  6202. static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
  6203. int i;
  6204. for_each_cpu(i, cpu_map)
  6205. cpu_attach_domain(NULL, &def_root_domain, i);
  6206. synchronize_sched();
  6207. arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
  6208. }
  6209. /* handle null as "default" */
  6210. static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
  6211. struct sched_domain_attr *new, int idx_new)
  6212. {
  6213. struct sched_domain_attr tmp;
  6214. /* fast path */
  6215. if (!new && !cur)
  6216. return 1;
  6217. tmp = SD_ATTR_INIT;
  6218. return !memcmp(cur ? (cur + idx_cur) : &tmp,
  6219. new ? (new + idx_new) : &tmp,
  6220. sizeof(struct sched_domain_attr));
  6221. }
  6222. /*
  6223. * Partition sched domains as specified by the 'ndoms_new'
  6224. * cpumasks in the array doms_new[] of cpumasks. This compares
  6225. * doms_new[] to the current sched domain partitioning, doms_cur[].
  6226. * It destroys each deleted domain and builds each new domain.
  6227. *
  6228. * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
  6229. * The masks don't intersect (don't overlap.) We should setup one
  6230. * sched domain for each mask. CPUs not in any of the cpumasks will
  6231. * not be load balanced. If the same cpumask appears both in the
  6232. * current 'doms_cur' domains and in the new 'doms_new', we can leave
  6233. * it as it is.
  6234. *
  6235. * The passed in 'doms_new' should be allocated using
  6236. * alloc_sched_domains. This routine takes ownership of it and will
  6237. * free_sched_domains it when done with it. If the caller failed the
  6238. * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
  6239. * and partition_sched_domains() will fallback to the single partition
  6240. * 'fallback_doms', it also forces the domains to be rebuilt.
  6241. *
  6242. * If doms_new == NULL it will be replaced with cpu_online_mask.
  6243. * ndoms_new == 0 is a special case for destroying existing domains,
  6244. * and it will not create the default domain.
  6245. *
  6246. * Call with hotplug lock held
  6247. */
  6248. void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
  6249. struct sched_domain_attr *dattr_new)
  6250. {
  6251. int i, j, n;
  6252. int new_topology;
  6253. mutex_lock(&sched_domains_mutex);
  6254. /* always unregister in case we don't destroy any domains */
  6255. unregister_sched_domain_sysctl();
  6256. /* Let architecture update cpu core mappings. */
  6257. new_topology = arch_update_cpu_topology();
  6258. n = doms_new ? ndoms_new : 0;
  6259. /* Destroy deleted domains */
  6260. for (i = 0; i < ndoms_cur; i++) {
  6261. for (j = 0; j < n && !new_topology; j++) {
  6262. if (cpumask_equal(doms_cur[i], doms_new[j])
  6263. && dattrs_equal(dattr_cur, i, dattr_new, j))
  6264. goto match1;
  6265. }
  6266. /* no match - a current sched domain not in new doms_new[] */
  6267. detach_destroy_domains(doms_cur[i]);
  6268. match1:
  6269. ;
  6270. }
  6271. if (doms_new == NULL) {
  6272. ndoms_cur = 0;
  6273. doms_new = &fallback_doms;
  6274. cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
  6275. WARN_ON_ONCE(dattr_new);
  6276. }
  6277. /* Build new domains */
  6278. for (i = 0; i < ndoms_new; i++) {
  6279. for (j = 0; j < ndoms_cur && !new_topology; j++) {
  6280. if (cpumask_equal(doms_new[i], doms_cur[j])
  6281. && dattrs_equal(dattr_new, i, dattr_cur, j))
  6282. goto match2;
  6283. }
  6284. /* no match - add a new doms_new */
  6285. __build_sched_domains(doms_new[i],
  6286. dattr_new ? dattr_new + i : NULL);
  6287. match2:
  6288. ;
  6289. }
  6290. /* Remember the new sched domains */
  6291. if (doms_cur != &fallback_doms)
  6292. free_sched_domains(doms_cur, ndoms_cur);
  6293. kfree(dattr_cur); /* kfree(NULL) is safe */
  6294. doms_cur = doms_new;
  6295. dattr_cur = dattr_new;
  6296. ndoms_cur = ndoms_new;
  6297. register_sched_domain_sysctl();
  6298. mutex_unlock(&sched_domains_mutex);
  6299. }
  6300. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  6301. static void arch_reinit_sched_domains(void)
  6302. {
  6303. get_online_cpus();
  6304. /* Destroy domains first to force the rebuild */
  6305. partition_sched_domains(0, NULL, NULL);
  6306. rebuild_sched_domains();
  6307. put_online_cpus();
  6308. }
  6309. static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
  6310. {
  6311. unsigned int level = 0;
  6312. if (sscanf(buf, "%u", &level) != 1)
  6313. return -EINVAL;
  6314. /*
  6315. * level is always be positive so don't check for
  6316. * level < POWERSAVINGS_BALANCE_NONE which is 0
  6317. * What happens on 0 or 1 byte write,
  6318. * need to check for count as well?
  6319. */
  6320. if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
  6321. return -EINVAL;
  6322. if (smt)
  6323. sched_smt_power_savings = level;
  6324. else
  6325. sched_mc_power_savings = level;
  6326. arch_reinit_sched_domains();
  6327. return count;
  6328. }
  6329. #ifdef CONFIG_SCHED_MC
  6330. static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
  6331. struct sysdev_class_attribute *attr,
  6332. char *page)
  6333. {
  6334. return sprintf(page, "%u\n", sched_mc_power_savings);
  6335. }
  6336. static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
  6337. struct sysdev_class_attribute *attr,
  6338. const char *buf, size_t count)
  6339. {
  6340. return sched_power_savings_store(buf, count, 0);
  6341. }
  6342. static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
  6343. sched_mc_power_savings_show,
  6344. sched_mc_power_savings_store);
  6345. #endif
  6346. #ifdef CONFIG_SCHED_SMT
  6347. static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
  6348. struct sysdev_class_attribute *attr,
  6349. char *page)
  6350. {
  6351. return sprintf(page, "%u\n", sched_smt_power_savings);
  6352. }
  6353. static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
  6354. struct sysdev_class_attribute *attr,
  6355. const char *buf, size_t count)
  6356. {
  6357. return sched_power_savings_store(buf, count, 1);
  6358. }
  6359. static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
  6360. sched_smt_power_savings_show,
  6361. sched_smt_power_savings_store);
  6362. #endif
  6363. int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
  6364. {
  6365. int err = 0;
  6366. #ifdef CONFIG_SCHED_SMT
  6367. if (smt_capable())
  6368. err = sysfs_create_file(&cls->kset.kobj,
  6369. &attr_sched_smt_power_savings.attr);
  6370. #endif
  6371. #ifdef CONFIG_SCHED_MC
  6372. if (!err && mc_capable())
  6373. err = sysfs_create_file(&cls->kset.kobj,
  6374. &attr_sched_mc_power_savings.attr);
  6375. #endif
  6376. return err;
  6377. }
  6378. #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
  6379. /*
  6380. * Update cpusets according to cpu_active mask. If cpusets are
  6381. * disabled, cpuset_update_active_cpus() becomes a simple wrapper
  6382. * around partition_sched_domains().
  6383. */
  6384. static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
  6385. void *hcpu)
  6386. {
  6387. switch (action & ~CPU_TASKS_FROZEN) {
  6388. case CPU_ONLINE:
  6389. case CPU_DOWN_FAILED:
  6390. cpuset_update_active_cpus();
  6391. return NOTIFY_OK;
  6392. default:
  6393. return NOTIFY_DONE;
  6394. }
  6395. }
  6396. static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
  6397. void *hcpu)
  6398. {
  6399. switch (action & ~CPU_TASKS_FROZEN) {
  6400. case CPU_DOWN_PREPARE:
  6401. cpuset_update_active_cpus();
  6402. return NOTIFY_OK;
  6403. default:
  6404. return NOTIFY_DONE;
  6405. }
  6406. }
  6407. static int update_runtime(struct notifier_block *nfb,
  6408. unsigned long action, void *hcpu)
  6409. {
  6410. int cpu = (int)(long)hcpu;
  6411. switch (action) {
  6412. case CPU_DOWN_PREPARE:
  6413. case CPU_DOWN_PREPARE_FROZEN:
  6414. disable_runtime(cpu_rq(cpu));
  6415. return NOTIFY_OK;
  6416. case CPU_DOWN_FAILED:
  6417. case CPU_DOWN_FAILED_FROZEN:
  6418. case CPU_ONLINE:
  6419. case CPU_ONLINE_FROZEN:
  6420. enable_runtime(cpu_rq(cpu));
  6421. return NOTIFY_OK;
  6422. default:
  6423. return NOTIFY_DONE;
  6424. }
  6425. }
  6426. void __init sched_init_smp(void)
  6427. {
  6428. cpumask_var_t non_isolated_cpus;
  6429. alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
  6430. alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
  6431. #if defined(CONFIG_NUMA)
  6432. sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
  6433. GFP_KERNEL);
  6434. BUG_ON(sched_group_nodes_bycpu == NULL);
  6435. #endif
  6436. get_online_cpus();
  6437. mutex_lock(&sched_domains_mutex);
  6438. arch_init_sched_domains(cpu_active_mask);
  6439. cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
  6440. if (cpumask_empty(non_isolated_cpus))
  6441. cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
  6442. mutex_unlock(&sched_domains_mutex);
  6443. put_online_cpus();
  6444. hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
  6445. hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
  6446. /* RT runtime code needs to handle some hotplug events */
  6447. hotcpu_notifier(update_runtime, 0);
  6448. init_hrtick();
  6449. /* Move init over to a non-isolated CPU */
  6450. if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
  6451. BUG();
  6452. sched_init_granularity();
  6453. free_cpumask_var(non_isolated_cpus);
  6454. init_sched_rt_class();
  6455. }
  6456. #else
  6457. void __init sched_init_smp(void)
  6458. {
  6459. sched_init_granularity();
  6460. }
  6461. #endif /* CONFIG_SMP */
  6462. const_debug unsigned int sysctl_timer_migration = 1;
  6463. int in_sched_functions(unsigned long addr)
  6464. {
  6465. return in_lock_functions(addr) ||
  6466. (addr >= (unsigned long)__sched_text_start
  6467. && addr < (unsigned long)__sched_text_end);
  6468. }
  6469. static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
  6470. {
  6471. cfs_rq->tasks_timeline = RB_ROOT;
  6472. INIT_LIST_HEAD(&cfs_rq->tasks);
  6473. #ifdef CONFIG_FAIR_GROUP_SCHED
  6474. cfs_rq->rq = rq;
  6475. #endif
  6476. cfs_rq->min_vruntime = (u64)(-(1LL << 20));
  6477. }
  6478. static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
  6479. {
  6480. struct rt_prio_array *array;
  6481. int i;
  6482. array = &rt_rq->active;
  6483. for (i = 0; i < MAX_RT_PRIO; i++) {
  6484. INIT_LIST_HEAD(array->queue + i);
  6485. __clear_bit(i, array->bitmap);
  6486. }
  6487. /* delimiter for bitsearch: */
  6488. __set_bit(MAX_RT_PRIO, array->bitmap);
  6489. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  6490. rt_rq->highest_prio.curr = MAX_RT_PRIO;
  6491. #ifdef CONFIG_SMP
  6492. rt_rq->highest_prio.next = MAX_RT_PRIO;
  6493. #endif
  6494. #endif
  6495. #ifdef CONFIG_SMP
  6496. rt_rq->rt_nr_migratory = 0;
  6497. rt_rq->overloaded = 0;
  6498. plist_head_init_raw(&rt_rq->pushable_tasks, &rq->lock);
  6499. #endif
  6500. rt_rq->rt_time = 0;
  6501. rt_rq->rt_throttled = 0;
  6502. rt_rq->rt_runtime = 0;
  6503. raw_spin_lock_init(&rt_rq->rt_runtime_lock);
  6504. #ifdef CONFIG_RT_GROUP_SCHED
  6505. rt_rq->rt_nr_boosted = 0;
  6506. rt_rq->rq = rq;
  6507. #endif
  6508. }
  6509. #ifdef CONFIG_FAIR_GROUP_SCHED
  6510. static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
  6511. struct sched_entity *se, int cpu, int add,
  6512. struct sched_entity *parent)
  6513. {
  6514. struct rq *rq = cpu_rq(cpu);
  6515. tg->cfs_rq[cpu] = cfs_rq;
  6516. init_cfs_rq(cfs_rq, rq);
  6517. cfs_rq->tg = tg;
  6518. if (add)
  6519. list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
  6520. tg->se[cpu] = se;
  6521. /* se could be NULL for init_task_group */
  6522. if (!se)
  6523. return;
  6524. if (!parent)
  6525. se->cfs_rq = &rq->cfs;
  6526. else
  6527. se->cfs_rq = parent->my_q;
  6528. se->my_q = cfs_rq;
  6529. se->load.weight = tg->shares;
  6530. se->load.inv_weight = 0;
  6531. se->parent = parent;
  6532. }
  6533. #endif
  6534. #ifdef CONFIG_RT_GROUP_SCHED
  6535. static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
  6536. struct sched_rt_entity *rt_se, int cpu, int add,
  6537. struct sched_rt_entity *parent)
  6538. {
  6539. struct rq *rq = cpu_rq(cpu);
  6540. tg->rt_rq[cpu] = rt_rq;
  6541. init_rt_rq(rt_rq, rq);
  6542. rt_rq->tg = tg;
  6543. rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
  6544. if (add)
  6545. list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
  6546. tg->rt_se[cpu] = rt_se;
  6547. if (!rt_se)
  6548. return;
  6549. if (!parent)
  6550. rt_se->rt_rq = &rq->rt;
  6551. else
  6552. rt_se->rt_rq = parent->my_q;
  6553. rt_se->my_q = rt_rq;
  6554. rt_se->parent = parent;
  6555. INIT_LIST_HEAD(&rt_se->run_list);
  6556. }
  6557. #endif
  6558. void __init sched_init(void)
  6559. {
  6560. int i, j;
  6561. unsigned long alloc_size = 0, ptr;
  6562. #ifdef CONFIG_FAIR_GROUP_SCHED
  6563. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  6564. #endif
  6565. #ifdef CONFIG_RT_GROUP_SCHED
  6566. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  6567. #endif
  6568. #ifdef CONFIG_CPUMASK_OFFSTACK
  6569. alloc_size += num_possible_cpus() * cpumask_size();
  6570. #endif
  6571. if (alloc_size) {
  6572. ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
  6573. #ifdef CONFIG_FAIR_GROUP_SCHED
  6574. init_task_group.se = (struct sched_entity **)ptr;
  6575. ptr += nr_cpu_ids * sizeof(void **);
  6576. init_task_group.cfs_rq = (struct cfs_rq **)ptr;
  6577. ptr += nr_cpu_ids * sizeof(void **);
  6578. #endif /* CONFIG_FAIR_GROUP_SCHED */
  6579. #ifdef CONFIG_RT_GROUP_SCHED
  6580. init_task_group.rt_se = (struct sched_rt_entity **)ptr;
  6581. ptr += nr_cpu_ids * sizeof(void **);
  6582. init_task_group.rt_rq = (struct rt_rq **)ptr;
  6583. ptr += nr_cpu_ids * sizeof(void **);
  6584. #endif /* CONFIG_RT_GROUP_SCHED */
  6585. #ifdef CONFIG_CPUMASK_OFFSTACK
  6586. for_each_possible_cpu(i) {
  6587. per_cpu(load_balance_tmpmask, i) = (void *)ptr;
  6588. ptr += cpumask_size();
  6589. }
  6590. #endif /* CONFIG_CPUMASK_OFFSTACK */
  6591. }
  6592. #ifdef CONFIG_SMP
  6593. init_defrootdomain();
  6594. #endif
  6595. init_rt_bandwidth(&def_rt_bandwidth,
  6596. global_rt_period(), global_rt_runtime());
  6597. #ifdef CONFIG_RT_GROUP_SCHED
  6598. init_rt_bandwidth(&init_task_group.rt_bandwidth,
  6599. global_rt_period(), global_rt_runtime());
  6600. #endif /* CONFIG_RT_GROUP_SCHED */
  6601. #ifdef CONFIG_CGROUP_SCHED
  6602. list_add(&init_task_group.list, &task_groups);
  6603. INIT_LIST_HEAD(&init_task_group.children);
  6604. #endif /* CONFIG_CGROUP_SCHED */
  6605. #if defined CONFIG_FAIR_GROUP_SCHED && defined CONFIG_SMP
  6606. update_shares_data = __alloc_percpu(nr_cpu_ids * sizeof(unsigned long),
  6607. __alignof__(unsigned long));
  6608. #endif
  6609. for_each_possible_cpu(i) {
  6610. struct rq *rq;
  6611. rq = cpu_rq(i);
  6612. raw_spin_lock_init(&rq->lock);
  6613. rq->nr_running = 0;
  6614. rq->calc_load_active = 0;
  6615. rq->calc_load_update = jiffies + LOAD_FREQ;
  6616. init_cfs_rq(&rq->cfs, rq);
  6617. init_rt_rq(&rq->rt, rq);
  6618. #ifdef CONFIG_FAIR_GROUP_SCHED
  6619. init_task_group.shares = init_task_group_load;
  6620. INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
  6621. #ifdef CONFIG_CGROUP_SCHED
  6622. /*
  6623. * How much cpu bandwidth does init_task_group get?
  6624. *
  6625. * In case of task-groups formed thr' the cgroup filesystem, it
  6626. * gets 100% of the cpu resources in the system. This overall
  6627. * system cpu resource is divided among the tasks of
  6628. * init_task_group and its child task-groups in a fair manner,
  6629. * based on each entity's (task or task-group's) weight
  6630. * (se->load.weight).
  6631. *
  6632. * In other words, if init_task_group has 10 tasks of weight
  6633. * 1024) and two child groups A0 and A1 (of weight 1024 each),
  6634. * then A0's share of the cpu resource is:
  6635. *
  6636. * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
  6637. *
  6638. * We achieve this by letting init_task_group's tasks sit
  6639. * directly in rq->cfs (i.e init_task_group->se[] = NULL).
  6640. */
  6641. init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
  6642. #endif
  6643. #endif /* CONFIG_FAIR_GROUP_SCHED */
  6644. rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
  6645. #ifdef CONFIG_RT_GROUP_SCHED
  6646. INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
  6647. #ifdef CONFIG_CGROUP_SCHED
  6648. init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
  6649. #endif
  6650. #endif
  6651. for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
  6652. rq->cpu_load[j] = 0;
  6653. rq->last_load_update_tick = jiffies;
  6654. #ifdef CONFIG_SMP
  6655. rq->sd = NULL;
  6656. rq->rd = NULL;
  6657. rq->cpu_power = SCHED_LOAD_SCALE;
  6658. rq->post_schedule = 0;
  6659. rq->active_balance = 0;
  6660. rq->next_balance = jiffies;
  6661. rq->push_cpu = 0;
  6662. rq->cpu = i;
  6663. rq->online = 0;
  6664. rq->idle_stamp = 0;
  6665. rq->avg_idle = 2*sysctl_sched_migration_cost;
  6666. rq_attach_root(rq, &def_root_domain);
  6667. #ifdef CONFIG_NO_HZ
  6668. rq->nohz_balance_kick = 0;
  6669. init_sched_softirq_csd(&per_cpu(remote_sched_softirq_cb, i));
  6670. #endif
  6671. #endif
  6672. init_rq_hrtick(rq);
  6673. atomic_set(&rq->nr_iowait, 0);
  6674. }
  6675. set_load_weight(&init_task);
  6676. #ifdef CONFIG_PREEMPT_NOTIFIERS
  6677. INIT_HLIST_HEAD(&init_task.preempt_notifiers);
  6678. #endif
  6679. #ifdef CONFIG_SMP
  6680. open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
  6681. #endif
  6682. #ifdef CONFIG_RT_MUTEXES
  6683. plist_head_init_raw(&init_task.pi_waiters, &init_task.pi_lock);
  6684. #endif
  6685. /*
  6686. * The boot idle thread does lazy MMU switching as well:
  6687. */
  6688. atomic_inc(&init_mm.mm_count);
  6689. enter_lazy_tlb(&init_mm, current);
  6690. /*
  6691. * Make us the idle thread. Technically, schedule() should not be
  6692. * called from this thread, however somewhere below it might be,
  6693. * but because we are the idle thread, we just pick up running again
  6694. * when this runqueue becomes "idle".
  6695. */
  6696. init_idle(current, smp_processor_id());
  6697. calc_load_update = jiffies + LOAD_FREQ;
  6698. /*
  6699. * During early bootup we pretend to be a normal task:
  6700. */
  6701. current->sched_class = &fair_sched_class;
  6702. /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
  6703. zalloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
  6704. #ifdef CONFIG_SMP
  6705. #ifdef CONFIG_NO_HZ
  6706. zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
  6707. alloc_cpumask_var(&nohz.grp_idle_mask, GFP_NOWAIT);
  6708. atomic_set(&nohz.load_balancer, nr_cpu_ids);
  6709. atomic_set(&nohz.first_pick_cpu, nr_cpu_ids);
  6710. atomic_set(&nohz.second_pick_cpu, nr_cpu_ids);
  6711. #endif
  6712. /* May be allocated at isolcpus cmdline parse time */
  6713. if (cpu_isolated_map == NULL)
  6714. zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
  6715. #endif /* SMP */
  6716. perf_event_init();
  6717. scheduler_running = 1;
  6718. }
  6719. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  6720. static inline int preempt_count_equals(int preempt_offset)
  6721. {
  6722. int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
  6723. return (nested == PREEMPT_INATOMIC_BASE + preempt_offset);
  6724. }
  6725. void __might_sleep(const char *file, int line, int preempt_offset)
  6726. {
  6727. #ifdef in_atomic
  6728. static unsigned long prev_jiffy; /* ratelimiting */
  6729. if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
  6730. system_state != SYSTEM_RUNNING || oops_in_progress)
  6731. return;
  6732. if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
  6733. return;
  6734. prev_jiffy = jiffies;
  6735. printk(KERN_ERR
  6736. "BUG: sleeping function called from invalid context at %s:%d\n",
  6737. file, line);
  6738. printk(KERN_ERR
  6739. "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
  6740. in_atomic(), irqs_disabled(),
  6741. current->pid, current->comm);
  6742. debug_show_held_locks(current);
  6743. if (irqs_disabled())
  6744. print_irqtrace_events(current);
  6745. dump_stack();
  6746. #endif
  6747. }
  6748. EXPORT_SYMBOL(__might_sleep);
  6749. #endif
  6750. #ifdef CONFIG_MAGIC_SYSRQ
  6751. static void normalize_task(struct rq *rq, struct task_struct *p)
  6752. {
  6753. int on_rq;
  6754. on_rq = p->se.on_rq;
  6755. if (on_rq)
  6756. deactivate_task(rq, p, 0);
  6757. __setscheduler(rq, p, SCHED_NORMAL, 0);
  6758. if (on_rq) {
  6759. activate_task(rq, p, 0);
  6760. resched_task(rq->curr);
  6761. }
  6762. }
  6763. void normalize_rt_tasks(void)
  6764. {
  6765. struct task_struct *g, *p;
  6766. unsigned long flags;
  6767. struct rq *rq;
  6768. read_lock_irqsave(&tasklist_lock, flags);
  6769. do_each_thread(g, p) {
  6770. /*
  6771. * Only normalize user tasks:
  6772. */
  6773. if (!p->mm)
  6774. continue;
  6775. p->se.exec_start = 0;
  6776. #ifdef CONFIG_SCHEDSTATS
  6777. p->se.statistics.wait_start = 0;
  6778. p->se.statistics.sleep_start = 0;
  6779. p->se.statistics.block_start = 0;
  6780. #endif
  6781. if (!rt_task(p)) {
  6782. /*
  6783. * Renice negative nice level userspace
  6784. * tasks back to 0:
  6785. */
  6786. if (TASK_NICE(p) < 0 && p->mm)
  6787. set_user_nice(p, 0);
  6788. continue;
  6789. }
  6790. raw_spin_lock(&p->pi_lock);
  6791. rq = __task_rq_lock(p);
  6792. normalize_task(rq, p);
  6793. __task_rq_unlock(rq);
  6794. raw_spin_unlock(&p->pi_lock);
  6795. } while_each_thread(g, p);
  6796. read_unlock_irqrestore(&tasklist_lock, flags);
  6797. }
  6798. #endif /* CONFIG_MAGIC_SYSRQ */
  6799. #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
  6800. /*
  6801. * These functions are only useful for the IA64 MCA handling, or kdb.
  6802. *
  6803. * They can only be called when the whole system has been
  6804. * stopped - every CPU needs to be quiescent, and no scheduling
  6805. * activity can take place. Using them for anything else would
  6806. * be a serious bug, and as a result, they aren't even visible
  6807. * under any other configuration.
  6808. */
  6809. /**
  6810. * curr_task - return the current task for a given cpu.
  6811. * @cpu: the processor in question.
  6812. *
  6813. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  6814. */
  6815. struct task_struct *curr_task(int cpu)
  6816. {
  6817. return cpu_curr(cpu);
  6818. }
  6819. #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
  6820. #ifdef CONFIG_IA64
  6821. /**
  6822. * set_curr_task - set the current task for a given cpu.
  6823. * @cpu: the processor in question.
  6824. * @p: the task pointer to set.
  6825. *
  6826. * Description: This function must only be used when non-maskable interrupts
  6827. * are serviced on a separate stack. It allows the architecture to switch the
  6828. * notion of the current task on a cpu in a non-blocking manner. This function
  6829. * must be called with all CPU's synchronized, and interrupts disabled, the
  6830. * and caller must save the original value of the current task (see
  6831. * curr_task() above) and restore that value before reenabling interrupts and
  6832. * re-starting the system.
  6833. *
  6834. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  6835. */
  6836. void set_curr_task(int cpu, struct task_struct *p)
  6837. {
  6838. cpu_curr(cpu) = p;
  6839. }
  6840. #endif
  6841. #ifdef CONFIG_FAIR_GROUP_SCHED
  6842. static void free_fair_sched_group(struct task_group *tg)
  6843. {
  6844. int i;
  6845. for_each_possible_cpu(i) {
  6846. if (tg->cfs_rq)
  6847. kfree(tg->cfs_rq[i]);
  6848. if (tg->se)
  6849. kfree(tg->se[i]);
  6850. }
  6851. kfree(tg->cfs_rq);
  6852. kfree(tg->se);
  6853. }
  6854. static
  6855. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  6856. {
  6857. struct cfs_rq *cfs_rq;
  6858. struct sched_entity *se;
  6859. struct rq *rq;
  6860. int i;
  6861. tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
  6862. if (!tg->cfs_rq)
  6863. goto err;
  6864. tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
  6865. if (!tg->se)
  6866. goto err;
  6867. tg->shares = NICE_0_LOAD;
  6868. for_each_possible_cpu(i) {
  6869. rq = cpu_rq(i);
  6870. cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
  6871. GFP_KERNEL, cpu_to_node(i));
  6872. if (!cfs_rq)
  6873. goto err;
  6874. se = kzalloc_node(sizeof(struct sched_entity),
  6875. GFP_KERNEL, cpu_to_node(i));
  6876. if (!se)
  6877. goto err_free_rq;
  6878. init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
  6879. }
  6880. return 1;
  6881. err_free_rq:
  6882. kfree(cfs_rq);
  6883. err:
  6884. return 0;
  6885. }
  6886. static inline void register_fair_sched_group(struct task_group *tg, int cpu)
  6887. {
  6888. list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
  6889. &cpu_rq(cpu)->leaf_cfs_rq_list);
  6890. }
  6891. static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
  6892. {
  6893. list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
  6894. }
  6895. #else /* !CONFG_FAIR_GROUP_SCHED */
  6896. static inline void free_fair_sched_group(struct task_group *tg)
  6897. {
  6898. }
  6899. static inline
  6900. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  6901. {
  6902. return 1;
  6903. }
  6904. static inline void register_fair_sched_group(struct task_group *tg, int cpu)
  6905. {
  6906. }
  6907. static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
  6908. {
  6909. }
  6910. #endif /* CONFIG_FAIR_GROUP_SCHED */
  6911. #ifdef CONFIG_RT_GROUP_SCHED
  6912. static void free_rt_sched_group(struct task_group *tg)
  6913. {
  6914. int i;
  6915. destroy_rt_bandwidth(&tg->rt_bandwidth);
  6916. for_each_possible_cpu(i) {
  6917. if (tg->rt_rq)
  6918. kfree(tg->rt_rq[i]);
  6919. if (tg->rt_se)
  6920. kfree(tg->rt_se[i]);
  6921. }
  6922. kfree(tg->rt_rq);
  6923. kfree(tg->rt_se);
  6924. }
  6925. static
  6926. int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
  6927. {
  6928. struct rt_rq *rt_rq;
  6929. struct sched_rt_entity *rt_se;
  6930. struct rq *rq;
  6931. int i;
  6932. tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
  6933. if (!tg->rt_rq)
  6934. goto err;
  6935. tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
  6936. if (!tg->rt_se)
  6937. goto err;
  6938. init_rt_bandwidth(&tg->rt_bandwidth,
  6939. ktime_to_ns(def_rt_bandwidth.rt_period), 0);
  6940. for_each_possible_cpu(i) {
  6941. rq = cpu_rq(i);
  6942. rt_rq = kzalloc_node(sizeof(struct rt_rq),
  6943. GFP_KERNEL, cpu_to_node(i));
  6944. if (!rt_rq)
  6945. goto err;
  6946. rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
  6947. GFP_KERNEL, cpu_to_node(i));
  6948. if (!rt_se)
  6949. goto err_free_rq;
  6950. init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
  6951. }
  6952. return 1;
  6953. err_free_rq:
  6954. kfree(rt_rq);
  6955. err:
  6956. return 0;
  6957. }
  6958. static inline void register_rt_sched_group(struct task_group *tg, int cpu)
  6959. {
  6960. list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
  6961. &cpu_rq(cpu)->leaf_rt_rq_list);
  6962. }
  6963. static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
  6964. {
  6965. list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
  6966. }
  6967. #else /* !CONFIG_RT_GROUP_SCHED */
  6968. static inline void free_rt_sched_group(struct task_group *tg)
  6969. {
  6970. }
  6971. static inline
  6972. int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
  6973. {
  6974. return 1;
  6975. }
  6976. static inline void register_rt_sched_group(struct task_group *tg, int cpu)
  6977. {
  6978. }
  6979. static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
  6980. {
  6981. }
  6982. #endif /* CONFIG_RT_GROUP_SCHED */
  6983. #ifdef CONFIG_CGROUP_SCHED
  6984. static void free_sched_group(struct task_group *tg)
  6985. {
  6986. free_fair_sched_group(tg);
  6987. free_rt_sched_group(tg);
  6988. kfree(tg);
  6989. }
  6990. /* allocate runqueue etc for a new task group */
  6991. struct task_group *sched_create_group(struct task_group *parent)
  6992. {
  6993. struct task_group *tg;
  6994. unsigned long flags;
  6995. int i;
  6996. tg = kzalloc(sizeof(*tg), GFP_KERNEL);
  6997. if (!tg)
  6998. return ERR_PTR(-ENOMEM);
  6999. if (!alloc_fair_sched_group(tg, parent))
  7000. goto err;
  7001. if (!alloc_rt_sched_group(tg, parent))
  7002. goto err;
  7003. spin_lock_irqsave(&task_group_lock, flags);
  7004. for_each_possible_cpu(i) {
  7005. register_fair_sched_group(tg, i);
  7006. register_rt_sched_group(tg, i);
  7007. }
  7008. list_add_rcu(&tg->list, &task_groups);
  7009. WARN_ON(!parent); /* root should already exist */
  7010. tg->parent = parent;
  7011. INIT_LIST_HEAD(&tg->children);
  7012. list_add_rcu(&tg->siblings, &parent->children);
  7013. spin_unlock_irqrestore(&task_group_lock, flags);
  7014. return tg;
  7015. err:
  7016. free_sched_group(tg);
  7017. return ERR_PTR(-ENOMEM);
  7018. }
  7019. /* rcu callback to free various structures associated with a task group */
  7020. static void free_sched_group_rcu(struct rcu_head *rhp)
  7021. {
  7022. /* now it should be safe to free those cfs_rqs */
  7023. free_sched_group(container_of(rhp, struct task_group, rcu));
  7024. }
  7025. /* Destroy runqueue etc associated with a task group */
  7026. void sched_destroy_group(struct task_group *tg)
  7027. {
  7028. unsigned long flags;
  7029. int i;
  7030. spin_lock_irqsave(&task_group_lock, flags);
  7031. for_each_possible_cpu(i) {
  7032. unregister_fair_sched_group(tg, i);
  7033. unregister_rt_sched_group(tg, i);
  7034. }
  7035. list_del_rcu(&tg->list);
  7036. list_del_rcu(&tg->siblings);
  7037. spin_unlock_irqrestore(&task_group_lock, flags);
  7038. /* wait for possible concurrent references to cfs_rqs complete */
  7039. call_rcu(&tg->rcu, free_sched_group_rcu);
  7040. }
  7041. /* change task's runqueue when it moves between groups.
  7042. * The caller of this function should have put the task in its new group
  7043. * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
  7044. * reflect its new group.
  7045. */
  7046. void sched_move_task(struct task_struct *tsk)
  7047. {
  7048. int on_rq, running;
  7049. unsigned long flags;
  7050. struct rq *rq;
  7051. rq = task_rq_lock(tsk, &flags);
  7052. running = task_current(rq, tsk);
  7053. on_rq = tsk->se.on_rq;
  7054. if (on_rq)
  7055. dequeue_task(rq, tsk, 0);
  7056. if (unlikely(running))
  7057. tsk->sched_class->put_prev_task(rq, tsk);
  7058. set_task_rq(tsk, task_cpu(tsk));
  7059. #ifdef CONFIG_FAIR_GROUP_SCHED
  7060. if (tsk->sched_class->moved_group)
  7061. tsk->sched_class->moved_group(tsk, on_rq);
  7062. #endif
  7063. if (unlikely(running))
  7064. tsk->sched_class->set_curr_task(rq);
  7065. if (on_rq)
  7066. enqueue_task(rq, tsk, 0);
  7067. task_rq_unlock(rq, &flags);
  7068. }
  7069. #endif /* CONFIG_CGROUP_SCHED */
  7070. #ifdef CONFIG_FAIR_GROUP_SCHED
  7071. static void __set_se_shares(struct sched_entity *se, unsigned long shares)
  7072. {
  7073. struct cfs_rq *cfs_rq = se->cfs_rq;
  7074. int on_rq;
  7075. on_rq = se->on_rq;
  7076. if (on_rq)
  7077. dequeue_entity(cfs_rq, se, 0);
  7078. se->load.weight = shares;
  7079. se->load.inv_weight = 0;
  7080. if (on_rq)
  7081. enqueue_entity(cfs_rq, se, 0);
  7082. }
  7083. static void set_se_shares(struct sched_entity *se, unsigned long shares)
  7084. {
  7085. struct cfs_rq *cfs_rq = se->cfs_rq;
  7086. struct rq *rq = cfs_rq->rq;
  7087. unsigned long flags;
  7088. raw_spin_lock_irqsave(&rq->lock, flags);
  7089. __set_se_shares(se, shares);
  7090. raw_spin_unlock_irqrestore(&rq->lock, flags);
  7091. }
  7092. static DEFINE_MUTEX(shares_mutex);
  7093. int sched_group_set_shares(struct task_group *tg, unsigned long shares)
  7094. {
  7095. int i;
  7096. unsigned long flags;
  7097. /*
  7098. * We can't change the weight of the root cgroup.
  7099. */
  7100. if (!tg->se[0])
  7101. return -EINVAL;
  7102. if (shares < MIN_SHARES)
  7103. shares = MIN_SHARES;
  7104. else if (shares > MAX_SHARES)
  7105. shares = MAX_SHARES;
  7106. mutex_lock(&shares_mutex);
  7107. if (tg->shares == shares)
  7108. goto done;
  7109. spin_lock_irqsave(&task_group_lock, flags);
  7110. for_each_possible_cpu(i)
  7111. unregister_fair_sched_group(tg, i);
  7112. list_del_rcu(&tg->siblings);
  7113. spin_unlock_irqrestore(&task_group_lock, flags);
  7114. /* wait for any ongoing reference to this group to finish */
  7115. synchronize_sched();
  7116. /*
  7117. * Now we are free to modify the group's share on each cpu
  7118. * w/o tripping rebalance_share or load_balance_fair.
  7119. */
  7120. tg->shares = shares;
  7121. for_each_possible_cpu(i) {
  7122. /*
  7123. * force a rebalance
  7124. */
  7125. cfs_rq_set_shares(tg->cfs_rq[i], 0);
  7126. set_se_shares(tg->se[i], shares);
  7127. }
  7128. /*
  7129. * Enable load balance activity on this group, by inserting it back on
  7130. * each cpu's rq->leaf_cfs_rq_list.
  7131. */
  7132. spin_lock_irqsave(&task_group_lock, flags);
  7133. for_each_possible_cpu(i)
  7134. register_fair_sched_group(tg, i);
  7135. list_add_rcu(&tg->siblings, &tg->parent->children);
  7136. spin_unlock_irqrestore(&task_group_lock, flags);
  7137. done:
  7138. mutex_unlock(&shares_mutex);
  7139. return 0;
  7140. }
  7141. unsigned long sched_group_shares(struct task_group *tg)
  7142. {
  7143. return tg->shares;
  7144. }
  7145. #endif
  7146. #ifdef CONFIG_RT_GROUP_SCHED
  7147. /*
  7148. * Ensure that the real time constraints are schedulable.
  7149. */
  7150. static DEFINE_MUTEX(rt_constraints_mutex);
  7151. static unsigned long to_ratio(u64 period, u64 runtime)
  7152. {
  7153. if (runtime == RUNTIME_INF)
  7154. return 1ULL << 20;
  7155. return div64_u64(runtime << 20, period);
  7156. }
  7157. /* Must be called with tasklist_lock held */
  7158. static inline int tg_has_rt_tasks(struct task_group *tg)
  7159. {
  7160. struct task_struct *g, *p;
  7161. do_each_thread(g, p) {
  7162. if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
  7163. return 1;
  7164. } while_each_thread(g, p);
  7165. return 0;
  7166. }
  7167. struct rt_schedulable_data {
  7168. struct task_group *tg;
  7169. u64 rt_period;
  7170. u64 rt_runtime;
  7171. };
  7172. static int tg_schedulable(struct task_group *tg, void *data)
  7173. {
  7174. struct rt_schedulable_data *d = data;
  7175. struct task_group *child;
  7176. unsigned long total, sum = 0;
  7177. u64 period, runtime;
  7178. period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  7179. runtime = tg->rt_bandwidth.rt_runtime;
  7180. if (tg == d->tg) {
  7181. period = d->rt_period;
  7182. runtime = d->rt_runtime;
  7183. }
  7184. /*
  7185. * Cannot have more runtime than the period.
  7186. */
  7187. if (runtime > period && runtime != RUNTIME_INF)
  7188. return -EINVAL;
  7189. /*
  7190. * Ensure we don't starve existing RT tasks.
  7191. */
  7192. if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
  7193. return -EBUSY;
  7194. total = to_ratio(period, runtime);
  7195. /*
  7196. * Nobody can have more than the global setting allows.
  7197. */
  7198. if (total > to_ratio(global_rt_period(), global_rt_runtime()))
  7199. return -EINVAL;
  7200. /*
  7201. * The sum of our children's runtime should not exceed our own.
  7202. */
  7203. list_for_each_entry_rcu(child, &tg->children, siblings) {
  7204. period = ktime_to_ns(child->rt_bandwidth.rt_period);
  7205. runtime = child->rt_bandwidth.rt_runtime;
  7206. if (child == d->tg) {
  7207. period = d->rt_period;
  7208. runtime = d->rt_runtime;
  7209. }
  7210. sum += to_ratio(period, runtime);
  7211. }
  7212. if (sum > total)
  7213. return -EINVAL;
  7214. return 0;
  7215. }
  7216. static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
  7217. {
  7218. struct rt_schedulable_data data = {
  7219. .tg = tg,
  7220. .rt_period = period,
  7221. .rt_runtime = runtime,
  7222. };
  7223. return walk_tg_tree(tg_schedulable, tg_nop, &data);
  7224. }
  7225. static int tg_set_bandwidth(struct task_group *tg,
  7226. u64 rt_period, u64 rt_runtime)
  7227. {
  7228. int i, err = 0;
  7229. mutex_lock(&rt_constraints_mutex);
  7230. read_lock(&tasklist_lock);
  7231. err = __rt_schedulable(tg, rt_period, rt_runtime);
  7232. if (err)
  7233. goto unlock;
  7234. raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  7235. tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
  7236. tg->rt_bandwidth.rt_runtime = rt_runtime;
  7237. for_each_possible_cpu(i) {
  7238. struct rt_rq *rt_rq = tg->rt_rq[i];
  7239. raw_spin_lock(&rt_rq->rt_runtime_lock);
  7240. rt_rq->rt_runtime = rt_runtime;
  7241. raw_spin_unlock(&rt_rq->rt_runtime_lock);
  7242. }
  7243. raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  7244. unlock:
  7245. read_unlock(&tasklist_lock);
  7246. mutex_unlock(&rt_constraints_mutex);
  7247. return err;
  7248. }
  7249. int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
  7250. {
  7251. u64 rt_runtime, rt_period;
  7252. rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  7253. rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
  7254. if (rt_runtime_us < 0)
  7255. rt_runtime = RUNTIME_INF;
  7256. return tg_set_bandwidth(tg, rt_period, rt_runtime);
  7257. }
  7258. long sched_group_rt_runtime(struct task_group *tg)
  7259. {
  7260. u64 rt_runtime_us;
  7261. if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
  7262. return -1;
  7263. rt_runtime_us = tg->rt_bandwidth.rt_runtime;
  7264. do_div(rt_runtime_us, NSEC_PER_USEC);
  7265. return rt_runtime_us;
  7266. }
  7267. int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
  7268. {
  7269. u64 rt_runtime, rt_period;
  7270. rt_period = (u64)rt_period_us * NSEC_PER_USEC;
  7271. rt_runtime = tg->rt_bandwidth.rt_runtime;
  7272. if (rt_period == 0)
  7273. return -EINVAL;
  7274. return tg_set_bandwidth(tg, rt_period, rt_runtime);
  7275. }
  7276. long sched_group_rt_period(struct task_group *tg)
  7277. {
  7278. u64 rt_period_us;
  7279. rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
  7280. do_div(rt_period_us, NSEC_PER_USEC);
  7281. return rt_period_us;
  7282. }
  7283. static int sched_rt_global_constraints(void)
  7284. {
  7285. u64 runtime, period;
  7286. int ret = 0;
  7287. if (sysctl_sched_rt_period <= 0)
  7288. return -EINVAL;
  7289. runtime = global_rt_runtime();
  7290. period = global_rt_period();
  7291. /*
  7292. * Sanity check on the sysctl variables.
  7293. */
  7294. if (runtime > period && runtime != RUNTIME_INF)
  7295. return -EINVAL;
  7296. mutex_lock(&rt_constraints_mutex);
  7297. read_lock(&tasklist_lock);
  7298. ret = __rt_schedulable(NULL, 0, 0);
  7299. read_unlock(&tasklist_lock);
  7300. mutex_unlock(&rt_constraints_mutex);
  7301. return ret;
  7302. }
  7303. int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
  7304. {
  7305. /* Don't accept realtime tasks when there is no way for them to run */
  7306. if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
  7307. return 0;
  7308. return 1;
  7309. }
  7310. #else /* !CONFIG_RT_GROUP_SCHED */
  7311. static int sched_rt_global_constraints(void)
  7312. {
  7313. unsigned long flags;
  7314. int i;
  7315. if (sysctl_sched_rt_period <= 0)
  7316. return -EINVAL;
  7317. /*
  7318. * There's always some RT tasks in the root group
  7319. * -- migration, kstopmachine etc..
  7320. */
  7321. if (sysctl_sched_rt_runtime == 0)
  7322. return -EBUSY;
  7323. raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
  7324. for_each_possible_cpu(i) {
  7325. struct rt_rq *rt_rq = &cpu_rq(i)->rt;
  7326. raw_spin_lock(&rt_rq->rt_runtime_lock);
  7327. rt_rq->rt_runtime = global_rt_runtime();
  7328. raw_spin_unlock(&rt_rq->rt_runtime_lock);
  7329. }
  7330. raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
  7331. return 0;
  7332. }
  7333. #endif /* CONFIG_RT_GROUP_SCHED */
  7334. int sched_rt_handler(struct ctl_table *table, int write,
  7335. void __user *buffer, size_t *lenp,
  7336. loff_t *ppos)
  7337. {
  7338. int ret;
  7339. int old_period, old_runtime;
  7340. static DEFINE_MUTEX(mutex);
  7341. mutex_lock(&mutex);
  7342. old_period = sysctl_sched_rt_period;
  7343. old_runtime = sysctl_sched_rt_runtime;
  7344. ret = proc_dointvec(table, write, buffer, lenp, ppos);
  7345. if (!ret && write) {
  7346. ret = sched_rt_global_constraints();
  7347. if (ret) {
  7348. sysctl_sched_rt_period = old_period;
  7349. sysctl_sched_rt_runtime = old_runtime;
  7350. } else {
  7351. def_rt_bandwidth.rt_runtime = global_rt_runtime();
  7352. def_rt_bandwidth.rt_period =
  7353. ns_to_ktime(global_rt_period());
  7354. }
  7355. }
  7356. mutex_unlock(&mutex);
  7357. return ret;
  7358. }
  7359. #ifdef CONFIG_CGROUP_SCHED
  7360. /* return corresponding task_group object of a cgroup */
  7361. static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
  7362. {
  7363. return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
  7364. struct task_group, css);
  7365. }
  7366. static struct cgroup_subsys_state *
  7367. cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7368. {
  7369. struct task_group *tg, *parent;
  7370. if (!cgrp->parent) {
  7371. /* This is early initialization for the top cgroup */
  7372. return &init_task_group.css;
  7373. }
  7374. parent = cgroup_tg(cgrp->parent);
  7375. tg = sched_create_group(parent);
  7376. if (IS_ERR(tg))
  7377. return ERR_PTR(-ENOMEM);
  7378. return &tg->css;
  7379. }
  7380. static void
  7381. cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7382. {
  7383. struct task_group *tg = cgroup_tg(cgrp);
  7384. sched_destroy_group(tg);
  7385. }
  7386. static int
  7387. cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
  7388. {
  7389. #ifdef CONFIG_RT_GROUP_SCHED
  7390. if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
  7391. return -EINVAL;
  7392. #else
  7393. /* We don't support RT-tasks being in separate groups */
  7394. if (tsk->sched_class != &fair_sched_class)
  7395. return -EINVAL;
  7396. #endif
  7397. return 0;
  7398. }
  7399. static int
  7400. cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
  7401. struct task_struct *tsk, bool threadgroup)
  7402. {
  7403. int retval = cpu_cgroup_can_attach_task(cgrp, tsk);
  7404. if (retval)
  7405. return retval;
  7406. if (threadgroup) {
  7407. struct task_struct *c;
  7408. rcu_read_lock();
  7409. list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
  7410. retval = cpu_cgroup_can_attach_task(cgrp, c);
  7411. if (retval) {
  7412. rcu_read_unlock();
  7413. return retval;
  7414. }
  7415. }
  7416. rcu_read_unlock();
  7417. }
  7418. return 0;
  7419. }
  7420. static void
  7421. cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
  7422. struct cgroup *old_cont, struct task_struct *tsk,
  7423. bool threadgroup)
  7424. {
  7425. sched_move_task(tsk);
  7426. if (threadgroup) {
  7427. struct task_struct *c;
  7428. rcu_read_lock();
  7429. list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
  7430. sched_move_task(c);
  7431. }
  7432. rcu_read_unlock();
  7433. }
  7434. }
  7435. #ifdef CONFIG_FAIR_GROUP_SCHED
  7436. static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
  7437. u64 shareval)
  7438. {
  7439. return sched_group_set_shares(cgroup_tg(cgrp), shareval);
  7440. }
  7441. static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
  7442. {
  7443. struct task_group *tg = cgroup_tg(cgrp);
  7444. return (u64) tg->shares;
  7445. }
  7446. #endif /* CONFIG_FAIR_GROUP_SCHED */
  7447. #ifdef CONFIG_RT_GROUP_SCHED
  7448. static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
  7449. s64 val)
  7450. {
  7451. return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
  7452. }
  7453. static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
  7454. {
  7455. return sched_group_rt_runtime(cgroup_tg(cgrp));
  7456. }
  7457. static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
  7458. u64 rt_period_us)
  7459. {
  7460. return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
  7461. }
  7462. static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
  7463. {
  7464. return sched_group_rt_period(cgroup_tg(cgrp));
  7465. }
  7466. #endif /* CONFIG_RT_GROUP_SCHED */
  7467. static struct cftype cpu_files[] = {
  7468. #ifdef CONFIG_FAIR_GROUP_SCHED
  7469. {
  7470. .name = "shares",
  7471. .read_u64 = cpu_shares_read_u64,
  7472. .write_u64 = cpu_shares_write_u64,
  7473. },
  7474. #endif
  7475. #ifdef CONFIG_RT_GROUP_SCHED
  7476. {
  7477. .name = "rt_runtime_us",
  7478. .read_s64 = cpu_rt_runtime_read,
  7479. .write_s64 = cpu_rt_runtime_write,
  7480. },
  7481. {
  7482. .name = "rt_period_us",
  7483. .read_u64 = cpu_rt_period_read_uint,
  7484. .write_u64 = cpu_rt_period_write_uint,
  7485. },
  7486. #endif
  7487. };
  7488. static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
  7489. {
  7490. return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
  7491. }
  7492. struct cgroup_subsys cpu_cgroup_subsys = {
  7493. .name = "cpu",
  7494. .create = cpu_cgroup_create,
  7495. .destroy = cpu_cgroup_destroy,
  7496. .can_attach = cpu_cgroup_can_attach,
  7497. .attach = cpu_cgroup_attach,
  7498. .populate = cpu_cgroup_populate,
  7499. .subsys_id = cpu_cgroup_subsys_id,
  7500. .early_init = 1,
  7501. };
  7502. #endif /* CONFIG_CGROUP_SCHED */
  7503. #ifdef CONFIG_CGROUP_CPUACCT
  7504. /*
  7505. * CPU accounting code for task groups.
  7506. *
  7507. * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
  7508. * (balbir@in.ibm.com).
  7509. */
  7510. /* track cpu usage of a group of tasks and its child groups */
  7511. struct cpuacct {
  7512. struct cgroup_subsys_state css;
  7513. /* cpuusage holds pointer to a u64-type object on every cpu */
  7514. u64 __percpu *cpuusage;
  7515. struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
  7516. struct cpuacct *parent;
  7517. };
  7518. struct cgroup_subsys cpuacct_subsys;
  7519. /* return cpu accounting group corresponding to this container */
  7520. static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
  7521. {
  7522. return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
  7523. struct cpuacct, css);
  7524. }
  7525. /* return cpu accounting group to which this task belongs */
  7526. static inline struct cpuacct *task_ca(struct task_struct *tsk)
  7527. {
  7528. return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
  7529. struct cpuacct, css);
  7530. }
  7531. /* create a new cpu accounting group */
  7532. static struct cgroup_subsys_state *cpuacct_create(
  7533. struct cgroup_subsys *ss, struct cgroup *cgrp)
  7534. {
  7535. struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
  7536. int i;
  7537. if (!ca)
  7538. goto out;
  7539. ca->cpuusage = alloc_percpu(u64);
  7540. if (!ca->cpuusage)
  7541. goto out_free_ca;
  7542. for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
  7543. if (percpu_counter_init(&ca->cpustat[i], 0))
  7544. goto out_free_counters;
  7545. if (cgrp->parent)
  7546. ca->parent = cgroup_ca(cgrp->parent);
  7547. return &ca->css;
  7548. out_free_counters:
  7549. while (--i >= 0)
  7550. percpu_counter_destroy(&ca->cpustat[i]);
  7551. free_percpu(ca->cpuusage);
  7552. out_free_ca:
  7553. kfree(ca);
  7554. out:
  7555. return ERR_PTR(-ENOMEM);
  7556. }
  7557. /* destroy an existing cpu accounting group */
  7558. static void
  7559. cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7560. {
  7561. struct cpuacct *ca = cgroup_ca(cgrp);
  7562. int i;
  7563. for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
  7564. percpu_counter_destroy(&ca->cpustat[i]);
  7565. free_percpu(ca->cpuusage);
  7566. kfree(ca);
  7567. }
  7568. static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
  7569. {
  7570. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  7571. u64 data;
  7572. #ifndef CONFIG_64BIT
  7573. /*
  7574. * Take rq->lock to make 64-bit read safe on 32-bit platforms.
  7575. */
  7576. raw_spin_lock_irq(&cpu_rq(cpu)->lock);
  7577. data = *cpuusage;
  7578. raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
  7579. #else
  7580. data = *cpuusage;
  7581. #endif
  7582. return data;
  7583. }
  7584. static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
  7585. {
  7586. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  7587. #ifndef CONFIG_64BIT
  7588. /*
  7589. * Take rq->lock to make 64-bit write safe on 32-bit platforms.
  7590. */
  7591. raw_spin_lock_irq(&cpu_rq(cpu)->lock);
  7592. *cpuusage = val;
  7593. raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
  7594. #else
  7595. *cpuusage = val;
  7596. #endif
  7597. }
  7598. /* return total cpu usage (in nanoseconds) of a group */
  7599. static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
  7600. {
  7601. struct cpuacct *ca = cgroup_ca(cgrp);
  7602. u64 totalcpuusage = 0;
  7603. int i;
  7604. for_each_present_cpu(i)
  7605. totalcpuusage += cpuacct_cpuusage_read(ca, i);
  7606. return totalcpuusage;
  7607. }
  7608. static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
  7609. u64 reset)
  7610. {
  7611. struct cpuacct *ca = cgroup_ca(cgrp);
  7612. int err = 0;
  7613. int i;
  7614. if (reset) {
  7615. err = -EINVAL;
  7616. goto out;
  7617. }
  7618. for_each_present_cpu(i)
  7619. cpuacct_cpuusage_write(ca, i, 0);
  7620. out:
  7621. return err;
  7622. }
  7623. static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
  7624. struct seq_file *m)
  7625. {
  7626. struct cpuacct *ca = cgroup_ca(cgroup);
  7627. u64 percpu;
  7628. int i;
  7629. for_each_present_cpu(i) {
  7630. percpu = cpuacct_cpuusage_read(ca, i);
  7631. seq_printf(m, "%llu ", (unsigned long long) percpu);
  7632. }
  7633. seq_printf(m, "\n");
  7634. return 0;
  7635. }
  7636. static const char *cpuacct_stat_desc[] = {
  7637. [CPUACCT_STAT_USER] = "user",
  7638. [CPUACCT_STAT_SYSTEM] = "system",
  7639. };
  7640. static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
  7641. struct cgroup_map_cb *cb)
  7642. {
  7643. struct cpuacct *ca = cgroup_ca(cgrp);
  7644. int i;
  7645. for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
  7646. s64 val = percpu_counter_read(&ca->cpustat[i]);
  7647. val = cputime64_to_clock_t(val);
  7648. cb->fill(cb, cpuacct_stat_desc[i], val);
  7649. }
  7650. return 0;
  7651. }
  7652. static struct cftype files[] = {
  7653. {
  7654. .name = "usage",
  7655. .read_u64 = cpuusage_read,
  7656. .write_u64 = cpuusage_write,
  7657. },
  7658. {
  7659. .name = "usage_percpu",
  7660. .read_seq_string = cpuacct_percpu_seq_read,
  7661. },
  7662. {
  7663. .name = "stat",
  7664. .read_map = cpuacct_stats_show,
  7665. },
  7666. };
  7667. static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7668. {
  7669. return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
  7670. }
  7671. /*
  7672. * charge this task's execution time to its accounting group.
  7673. *
  7674. * called with rq->lock held.
  7675. */
  7676. static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
  7677. {
  7678. struct cpuacct *ca;
  7679. int cpu;
  7680. if (unlikely(!cpuacct_subsys.active))
  7681. return;
  7682. cpu = task_cpu(tsk);
  7683. rcu_read_lock();
  7684. ca = task_ca(tsk);
  7685. for (; ca; ca = ca->parent) {
  7686. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  7687. *cpuusage += cputime;
  7688. }
  7689. rcu_read_unlock();
  7690. }
  7691. /*
  7692. * When CONFIG_VIRT_CPU_ACCOUNTING is enabled one jiffy can be very large
  7693. * in cputime_t units. As a result, cpuacct_update_stats calls
  7694. * percpu_counter_add with values large enough to always overflow the
  7695. * per cpu batch limit causing bad SMP scalability.
  7696. *
  7697. * To fix this we scale percpu_counter_batch by cputime_one_jiffy so we
  7698. * batch the same amount of time with CONFIG_VIRT_CPU_ACCOUNTING disabled
  7699. * and enabled. We cap it at INT_MAX which is the largest allowed batch value.
  7700. */
  7701. #ifdef CONFIG_SMP
  7702. #define CPUACCT_BATCH \
  7703. min_t(long, percpu_counter_batch * cputime_one_jiffy, INT_MAX)
  7704. #else
  7705. #define CPUACCT_BATCH 0
  7706. #endif
  7707. /*
  7708. * Charge the system/user time to the task's accounting group.
  7709. */
  7710. static void cpuacct_update_stats(struct task_struct *tsk,
  7711. enum cpuacct_stat_index idx, cputime_t val)
  7712. {
  7713. struct cpuacct *ca;
  7714. int batch = CPUACCT_BATCH;
  7715. if (unlikely(!cpuacct_subsys.active))
  7716. return;
  7717. rcu_read_lock();
  7718. ca = task_ca(tsk);
  7719. do {
  7720. __percpu_counter_add(&ca->cpustat[idx], val, batch);
  7721. ca = ca->parent;
  7722. } while (ca);
  7723. rcu_read_unlock();
  7724. }
  7725. struct cgroup_subsys cpuacct_subsys = {
  7726. .name = "cpuacct",
  7727. .create = cpuacct_create,
  7728. .destroy = cpuacct_destroy,
  7729. .populate = cpuacct_populate,
  7730. .subsys_id = cpuacct_subsys_id,
  7731. };
  7732. #endif /* CONFIG_CGROUP_CPUACCT */
  7733. #ifndef CONFIG_SMP
  7734. void synchronize_sched_expedited(void)
  7735. {
  7736. barrier();
  7737. }
  7738. EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
  7739. #else /* #ifndef CONFIG_SMP */
  7740. static atomic_t synchronize_sched_expedited_count = ATOMIC_INIT(0);
  7741. static int synchronize_sched_expedited_cpu_stop(void *data)
  7742. {
  7743. /*
  7744. * There must be a full memory barrier on each affected CPU
  7745. * between the time that try_stop_cpus() is called and the
  7746. * time that it returns.
  7747. *
  7748. * In the current initial implementation of cpu_stop, the
  7749. * above condition is already met when the control reaches
  7750. * this point and the following smp_mb() is not strictly
  7751. * necessary. Do smp_mb() anyway for documentation and
  7752. * robustness against future implementation changes.
  7753. */
  7754. smp_mb(); /* See above comment block. */
  7755. return 0;
  7756. }
  7757. /*
  7758. * Wait for an rcu-sched grace period to elapse, but use "big hammer"
  7759. * approach to force grace period to end quickly. This consumes
  7760. * significant time on all CPUs, and is thus not recommended for
  7761. * any sort of common-case code.
  7762. *
  7763. * Note that it is illegal to call this function while holding any
  7764. * lock that is acquired by a CPU-hotplug notifier. Failing to
  7765. * observe this restriction will result in deadlock.
  7766. */
  7767. void synchronize_sched_expedited(void)
  7768. {
  7769. int snap, trycount = 0;
  7770. smp_mb(); /* ensure prior mod happens before capturing snap. */
  7771. snap = atomic_read(&synchronize_sched_expedited_count) + 1;
  7772. get_online_cpus();
  7773. while (try_stop_cpus(cpu_online_mask,
  7774. synchronize_sched_expedited_cpu_stop,
  7775. NULL) == -EAGAIN) {
  7776. put_online_cpus();
  7777. if (trycount++ < 10)
  7778. udelay(trycount * num_online_cpus());
  7779. else {
  7780. synchronize_sched();
  7781. return;
  7782. }
  7783. if (atomic_read(&synchronize_sched_expedited_count) - snap > 0) {
  7784. smp_mb(); /* ensure test happens before caller kfree */
  7785. return;
  7786. }
  7787. get_online_cpus();
  7788. }
  7789. atomic_inc(&synchronize_sched_expedited_count);
  7790. smp_mb__after_atomic_inc(); /* ensure post-GP actions seen after GP. */
  7791. put_online_cpus();
  7792. }
  7793. EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
  7794. #endif /* #else #ifndef CONFIG_SMP */