lmb.c 8.5 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360
  1. /*
  2. * Procedures for maintaining information about logical memory blocks.
  3. *
  4. * Peter Bergner, IBM Corp. June 2001.
  5. * Copyright (C) 2001 Peter Bergner.
  6. *
  7. * This program is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU General Public License
  9. * as published by the Free Software Foundation; either version
  10. * 2 of the License, or (at your option) any later version.
  11. */
  12. #include <linux/kernel.h>
  13. #include <linux/init.h>
  14. #include <linux/bitops.h>
  15. #include <linux/lmb.h>
  16. #undef DEBUG
  17. #ifdef DEBUG
  18. #define DBG(fmt...) LMB_DBG(fmt)
  19. #else
  20. #define DBG(fmt...)
  21. #endif
  22. #define LMB_ALLOC_ANYWHERE 0
  23. struct lmb lmb;
  24. void lmb_dump_all(void)
  25. {
  26. #ifdef DEBUG
  27. unsigned long i;
  28. DBG("lmb_dump_all:\n");
  29. DBG(" memory.cnt = 0x%lx\n", lmb.memory.cnt);
  30. DBG(" memory.size = 0x%lx\n", lmb.memory.size);
  31. for (i=0; i < lmb.memory.cnt ;i++) {
  32. DBG(" memory.region[0x%x].base = 0x%lx\n",
  33. i, lmb.memory.region[i].base);
  34. DBG(" .size = 0x%lx\n",
  35. lmb.memory.region[i].size);
  36. }
  37. DBG("\n reserved.cnt = 0x%lx\n", lmb.reserved.cnt);
  38. DBG(" reserved.size = 0x%lx\n", lmb.reserved.size);
  39. for (i=0; i < lmb.reserved.cnt ;i++) {
  40. DBG(" reserved.region[0x%x].base = 0x%lx\n",
  41. i, lmb.reserved.region[i].base);
  42. DBG(" .size = 0x%lx\n",
  43. lmb.reserved.region[i].size);
  44. }
  45. #endif /* DEBUG */
  46. }
  47. static unsigned long __init lmb_addrs_overlap(unsigned long base1,
  48. unsigned long size1, unsigned long base2, unsigned long size2)
  49. {
  50. return ((base1 < (base2+size2)) && (base2 < (base1+size1)));
  51. }
  52. static long __init lmb_addrs_adjacent(unsigned long base1, unsigned long size1,
  53. unsigned long base2, unsigned long size2)
  54. {
  55. if (base2 == base1 + size1)
  56. return 1;
  57. else if (base1 == base2 + size2)
  58. return -1;
  59. return 0;
  60. }
  61. static long __init lmb_regions_adjacent(struct lmb_region *rgn,
  62. unsigned long r1, unsigned long r2)
  63. {
  64. unsigned long base1 = rgn->region[r1].base;
  65. unsigned long size1 = rgn->region[r1].size;
  66. unsigned long base2 = rgn->region[r2].base;
  67. unsigned long size2 = rgn->region[r2].size;
  68. return lmb_addrs_adjacent(base1, size1, base2, size2);
  69. }
  70. static void __init lmb_remove_region(struct lmb_region *rgn, unsigned long r)
  71. {
  72. unsigned long i;
  73. for (i = r; i < rgn->cnt - 1; i++) {
  74. rgn->region[i].base = rgn->region[i + 1].base;
  75. rgn->region[i].size = rgn->region[i + 1].size;
  76. }
  77. rgn->cnt--;
  78. }
  79. /* Assumption: base addr of region 1 < base addr of region 2 */
  80. static void __init lmb_coalesce_regions(struct lmb_region *rgn,
  81. unsigned long r1, unsigned long r2)
  82. {
  83. rgn->region[r1].size += rgn->region[r2].size;
  84. lmb_remove_region(rgn, r2);
  85. }
  86. /* This routine called with relocation disabled. */
  87. void __init lmb_init(void)
  88. {
  89. /* Create a dummy zero size LMB which will get coalesced away later.
  90. * This simplifies the lmb_add() code below...
  91. */
  92. lmb.memory.region[0].base = 0;
  93. lmb.memory.region[0].size = 0;
  94. lmb.memory.cnt = 1;
  95. /* Ditto. */
  96. lmb.reserved.region[0].base = 0;
  97. lmb.reserved.region[0].size = 0;
  98. lmb.reserved.cnt = 1;
  99. }
  100. /* This routine may be called with relocation disabled. */
  101. void __init lmb_analyze(void)
  102. {
  103. int i;
  104. lmb.memory.size = 0;
  105. for (i = 0; i < lmb.memory.cnt; i++)
  106. lmb.memory.size += lmb.memory.region[i].size;
  107. }
  108. /* This routine called with relocation disabled. */
  109. static long __init lmb_add_region(struct lmb_region *rgn, unsigned long base,
  110. unsigned long size)
  111. {
  112. unsigned long coalesced = 0;
  113. long adjacent, i;
  114. /* First try and coalesce this LMB with another. */
  115. for (i=0; i < rgn->cnt; i++) {
  116. unsigned long rgnbase = rgn->region[i].base;
  117. unsigned long rgnsize = rgn->region[i].size;
  118. if ((rgnbase == base) && (rgnsize == size))
  119. /* Already have this region, so we're done */
  120. return 0;
  121. adjacent = lmb_addrs_adjacent(base,size,rgnbase,rgnsize);
  122. if ( adjacent > 0 ) {
  123. rgn->region[i].base -= size;
  124. rgn->region[i].size += size;
  125. coalesced++;
  126. break;
  127. }
  128. else if ( adjacent < 0 ) {
  129. rgn->region[i].size += size;
  130. coalesced++;
  131. break;
  132. }
  133. }
  134. if ((i < rgn->cnt-1) && lmb_regions_adjacent(rgn, i, i+1) ) {
  135. lmb_coalesce_regions(rgn, i, i+1);
  136. coalesced++;
  137. }
  138. if (coalesced)
  139. return coalesced;
  140. if (rgn->cnt >= MAX_LMB_REGIONS)
  141. return -1;
  142. /* Couldn't coalesce the LMB, so add it to the sorted table. */
  143. for (i = rgn->cnt-1; i >= 0; i--) {
  144. if (base < rgn->region[i].base) {
  145. rgn->region[i+1].base = rgn->region[i].base;
  146. rgn->region[i+1].size = rgn->region[i].size;
  147. } else {
  148. rgn->region[i+1].base = base;
  149. rgn->region[i+1].size = size;
  150. break;
  151. }
  152. }
  153. rgn->cnt++;
  154. return 0;
  155. }
  156. /* This routine may be called with relocation disabled. */
  157. long __init lmb_add(unsigned long base, unsigned long size)
  158. {
  159. struct lmb_region *_rgn = &(lmb.memory);
  160. /* On pSeries LPAR systems, the first LMB is our RMO region. */
  161. if (base == 0)
  162. lmb.rmo_size = size;
  163. return lmb_add_region(_rgn, base, size);
  164. }
  165. long __init lmb_reserve(unsigned long base, unsigned long size)
  166. {
  167. struct lmb_region *_rgn = &(lmb.reserved);
  168. BUG_ON(0 == size);
  169. return lmb_add_region(_rgn, base, size);
  170. }
  171. long __init lmb_overlaps_region(struct lmb_region *rgn, unsigned long base,
  172. unsigned long size)
  173. {
  174. unsigned long i;
  175. for (i=0; i < rgn->cnt; i++) {
  176. unsigned long rgnbase = rgn->region[i].base;
  177. unsigned long rgnsize = rgn->region[i].size;
  178. if ( lmb_addrs_overlap(base,size,rgnbase,rgnsize) ) {
  179. break;
  180. }
  181. }
  182. return (i < rgn->cnt) ? i : -1;
  183. }
  184. unsigned long __init lmb_alloc(unsigned long size, unsigned long align)
  185. {
  186. return lmb_alloc_base(size, align, LMB_ALLOC_ANYWHERE);
  187. }
  188. unsigned long __init lmb_alloc_base(unsigned long size, unsigned long align,
  189. unsigned long max_addr)
  190. {
  191. unsigned long alloc;
  192. alloc = __lmb_alloc_base(size, align, max_addr);
  193. if (alloc == 0)
  194. panic("ERROR: Failed to allocate 0x%lx bytes below 0x%lx.\n",
  195. size, max_addr);
  196. return alloc;
  197. }
  198. static unsigned long lmb_align_down(unsigned long addr, unsigned long size)
  199. {
  200. return addr & ~(size - 1);
  201. }
  202. static unsigned long lmb_align_up(unsigned long addr, unsigned long size)
  203. {
  204. return (addr + (size - 1)) & ~(size - 1);
  205. }
  206. unsigned long __init __lmb_alloc_base(unsigned long size, unsigned long align,
  207. unsigned long max_addr)
  208. {
  209. long i, j;
  210. unsigned long base = 0;
  211. BUG_ON(0 == size);
  212. /* On some platforms, make sure we allocate lowmem */
  213. if (max_addr == LMB_ALLOC_ANYWHERE)
  214. max_addr = LMB_REAL_LIMIT;
  215. for (i = lmb.memory.cnt-1; i >= 0; i--) {
  216. unsigned long lmbbase = lmb.memory.region[i].base;
  217. unsigned long lmbsize = lmb.memory.region[i].size;
  218. if (max_addr == LMB_ALLOC_ANYWHERE)
  219. base = lmb_align_down(lmbbase + lmbsize - size, align);
  220. else if (lmbbase < max_addr) {
  221. base = min(lmbbase + lmbsize, max_addr);
  222. base = lmb_align_down(base - size, align);
  223. } else
  224. continue;
  225. while ((lmbbase <= base) &&
  226. ((j = lmb_overlaps_region(&lmb.reserved, base, size)) >= 0) )
  227. base = lmb_align_down(lmb.reserved.region[j].base - size,
  228. align);
  229. if ((base != 0) && (lmbbase <= base))
  230. break;
  231. }
  232. if (i < 0)
  233. return 0;
  234. if (lmb_add_region(&lmb.reserved, base, lmb_align_up(size, align)) < 0)
  235. return 0;
  236. return base;
  237. }
  238. /* You must call lmb_analyze() before this. */
  239. unsigned long __init lmb_phys_mem_size(void)
  240. {
  241. return lmb.memory.size;
  242. }
  243. unsigned long __init lmb_end_of_DRAM(void)
  244. {
  245. int idx = lmb.memory.cnt - 1;
  246. return (lmb.memory.region[idx].base + lmb.memory.region[idx].size);
  247. }
  248. /* You must call lmb_analyze() after this. */
  249. void __init lmb_enforce_memory_limit(unsigned long memory_limit)
  250. {
  251. unsigned long i, limit;
  252. struct lmb_property *p;
  253. if (! memory_limit)
  254. return;
  255. /* Truncate the lmb regions to satisfy the memory limit. */
  256. limit = memory_limit;
  257. for (i = 0; i < lmb.memory.cnt; i++) {
  258. if (limit > lmb.memory.region[i].size) {
  259. limit -= lmb.memory.region[i].size;
  260. continue;
  261. }
  262. lmb.memory.region[i].size = limit;
  263. lmb.memory.cnt = i + 1;
  264. break;
  265. }
  266. if (lmb.memory.region[0].size < lmb.rmo_size)
  267. lmb.rmo_size = lmb.memory.region[0].size;
  268. /* And truncate any reserves above the limit also. */
  269. for (i = 0; i < lmb.reserved.cnt; i++) {
  270. p = &lmb.reserved.region[i];
  271. if (p->base > memory_limit)
  272. p->size = 0;
  273. else if ((p->base + p->size) > memory_limit)
  274. p->size = memory_limit - p->base;
  275. if (p->size == 0) {
  276. lmb_remove_region(&lmb.reserved, i);
  277. i--;
  278. }
  279. }
  280. }
  281. int __init lmb_is_reserved(unsigned long addr)
  282. {
  283. int i;
  284. for (i = 0; i < lmb.reserved.cnt; i++) {
  285. unsigned long upper = lmb.reserved.region[i].base +
  286. lmb.reserved.region[i].size - 1;
  287. if ((addr >= lmb.reserved.region[i].base) && (addr <= upper))
  288. return 1;
  289. }
  290. return 0;
  291. }