page_alloc.c 131 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769
  1. /*
  2. * linux/mm/page_alloc.c
  3. *
  4. * Manages the free list, the system allocates free pages here.
  5. * Note that kmalloc() lives in slab.c
  6. *
  7. * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
  8. * Swap reorganised 29.12.95, Stephen Tweedie
  9. * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
  10. * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
  11. * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
  12. * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
  13. * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
  14. * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
  15. */
  16. #include <linux/stddef.h>
  17. #include <linux/mm.h>
  18. #include <linux/swap.h>
  19. #include <linux/interrupt.h>
  20. #include <linux/pagemap.h>
  21. #include <linux/jiffies.h>
  22. #include <linux/bootmem.h>
  23. #include <linux/compiler.h>
  24. #include <linux/kernel.h>
  25. #include <linux/module.h>
  26. #include <linux/suspend.h>
  27. #include <linux/pagevec.h>
  28. #include <linux/blkdev.h>
  29. #include <linux/slab.h>
  30. #include <linux/oom.h>
  31. #include <linux/notifier.h>
  32. #include <linux/topology.h>
  33. #include <linux/sysctl.h>
  34. #include <linux/cpu.h>
  35. #include <linux/cpuset.h>
  36. #include <linux/memory_hotplug.h>
  37. #include <linux/nodemask.h>
  38. #include <linux/vmalloc.h>
  39. #include <linux/mempolicy.h>
  40. #include <linux/stop_machine.h>
  41. #include <linux/sort.h>
  42. #include <linux/pfn.h>
  43. #include <linux/backing-dev.h>
  44. #include <linux/fault-inject.h>
  45. #include <linux/page-isolation.h>
  46. #include <linux/page_cgroup.h>
  47. #include <linux/debugobjects.h>
  48. #include <asm/tlbflush.h>
  49. #include <asm/div64.h>
  50. #include "internal.h"
  51. /*
  52. * Array of node states.
  53. */
  54. nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
  55. [N_POSSIBLE] = NODE_MASK_ALL,
  56. [N_ONLINE] = { { [0] = 1UL } },
  57. #ifndef CONFIG_NUMA
  58. [N_NORMAL_MEMORY] = { { [0] = 1UL } },
  59. #ifdef CONFIG_HIGHMEM
  60. [N_HIGH_MEMORY] = { { [0] = 1UL } },
  61. #endif
  62. [N_CPU] = { { [0] = 1UL } },
  63. #endif /* NUMA */
  64. };
  65. EXPORT_SYMBOL(node_states);
  66. unsigned long totalram_pages __read_mostly;
  67. unsigned long totalreserve_pages __read_mostly;
  68. unsigned long highest_memmap_pfn __read_mostly;
  69. int percpu_pagelist_fraction;
  70. #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
  71. int pageblock_order __read_mostly;
  72. #endif
  73. static void __free_pages_ok(struct page *page, unsigned int order);
  74. /*
  75. * results with 256, 32 in the lowmem_reserve sysctl:
  76. * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
  77. * 1G machine -> (16M dma, 784M normal, 224M high)
  78. * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
  79. * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
  80. * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
  81. *
  82. * TBD: should special case ZONE_DMA32 machines here - in those we normally
  83. * don't need any ZONE_NORMAL reservation
  84. */
  85. int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
  86. #ifdef CONFIG_ZONE_DMA
  87. 256,
  88. #endif
  89. #ifdef CONFIG_ZONE_DMA32
  90. 256,
  91. #endif
  92. #ifdef CONFIG_HIGHMEM
  93. 32,
  94. #endif
  95. 32,
  96. };
  97. EXPORT_SYMBOL(totalram_pages);
  98. static char * const zone_names[MAX_NR_ZONES] = {
  99. #ifdef CONFIG_ZONE_DMA
  100. "DMA",
  101. #endif
  102. #ifdef CONFIG_ZONE_DMA32
  103. "DMA32",
  104. #endif
  105. "Normal",
  106. #ifdef CONFIG_HIGHMEM
  107. "HighMem",
  108. #endif
  109. "Movable",
  110. };
  111. int min_free_kbytes = 1024;
  112. unsigned long __meminitdata nr_kernel_pages;
  113. unsigned long __meminitdata nr_all_pages;
  114. static unsigned long __meminitdata dma_reserve;
  115. #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
  116. /*
  117. * MAX_ACTIVE_REGIONS determines the maximum number of distinct
  118. * ranges of memory (RAM) that may be registered with add_active_range().
  119. * Ranges passed to add_active_range() will be merged if possible
  120. * so the number of times add_active_range() can be called is
  121. * related to the number of nodes and the number of holes
  122. */
  123. #ifdef CONFIG_MAX_ACTIVE_REGIONS
  124. /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
  125. #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
  126. #else
  127. #if MAX_NUMNODES >= 32
  128. /* If there can be many nodes, allow up to 50 holes per node */
  129. #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
  130. #else
  131. /* By default, allow up to 256 distinct regions */
  132. #define MAX_ACTIVE_REGIONS 256
  133. #endif
  134. #endif
  135. static struct node_active_region __meminitdata early_node_map[MAX_ACTIVE_REGIONS];
  136. static int __meminitdata nr_nodemap_entries;
  137. static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
  138. static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
  139. #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
  140. static unsigned long __meminitdata node_boundary_start_pfn[MAX_NUMNODES];
  141. static unsigned long __meminitdata node_boundary_end_pfn[MAX_NUMNODES];
  142. #endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */
  143. static unsigned long __initdata required_kernelcore;
  144. static unsigned long __initdata required_movablecore;
  145. static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
  146. /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
  147. int movable_zone;
  148. EXPORT_SYMBOL(movable_zone);
  149. #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
  150. #if MAX_NUMNODES > 1
  151. int nr_node_ids __read_mostly = MAX_NUMNODES;
  152. EXPORT_SYMBOL(nr_node_ids);
  153. #endif
  154. int page_group_by_mobility_disabled __read_mostly;
  155. static void set_pageblock_migratetype(struct page *page, int migratetype)
  156. {
  157. set_pageblock_flags_group(page, (unsigned long)migratetype,
  158. PB_migrate, PB_migrate_end);
  159. }
  160. #ifdef CONFIG_DEBUG_VM
  161. static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
  162. {
  163. int ret = 0;
  164. unsigned seq;
  165. unsigned long pfn = page_to_pfn(page);
  166. do {
  167. seq = zone_span_seqbegin(zone);
  168. if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
  169. ret = 1;
  170. else if (pfn < zone->zone_start_pfn)
  171. ret = 1;
  172. } while (zone_span_seqretry(zone, seq));
  173. return ret;
  174. }
  175. static int page_is_consistent(struct zone *zone, struct page *page)
  176. {
  177. if (!pfn_valid_within(page_to_pfn(page)))
  178. return 0;
  179. if (zone != page_zone(page))
  180. return 0;
  181. return 1;
  182. }
  183. /*
  184. * Temporary debugging check for pages not lying within a given zone.
  185. */
  186. static int bad_range(struct zone *zone, struct page *page)
  187. {
  188. if (page_outside_zone_boundaries(zone, page))
  189. return 1;
  190. if (!page_is_consistent(zone, page))
  191. return 1;
  192. return 0;
  193. }
  194. #else
  195. static inline int bad_range(struct zone *zone, struct page *page)
  196. {
  197. return 0;
  198. }
  199. #endif
  200. static void bad_page(struct page *page)
  201. {
  202. static unsigned long resume;
  203. static unsigned long nr_shown;
  204. static unsigned long nr_unshown;
  205. /*
  206. * Allow a burst of 60 reports, then keep quiet for that minute;
  207. * or allow a steady drip of one report per second.
  208. */
  209. if (nr_shown == 60) {
  210. if (time_before(jiffies, resume)) {
  211. nr_unshown++;
  212. goto out;
  213. }
  214. if (nr_unshown) {
  215. printk(KERN_ALERT
  216. "BUG: Bad page state: %lu messages suppressed\n",
  217. nr_unshown);
  218. nr_unshown = 0;
  219. }
  220. nr_shown = 0;
  221. }
  222. if (nr_shown++ == 0)
  223. resume = jiffies + 60 * HZ;
  224. printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
  225. current->comm, page_to_pfn(page));
  226. printk(KERN_ALERT
  227. "page:%p flags:%p count:%d mapcount:%d mapping:%p index:%lx\n",
  228. page, (void *)page->flags, page_count(page),
  229. page_mapcount(page), page->mapping, page->index);
  230. dump_stack();
  231. out:
  232. /* Leave bad fields for debug, except PageBuddy could make trouble */
  233. __ClearPageBuddy(page);
  234. add_taint(TAINT_BAD_PAGE);
  235. }
  236. /*
  237. * Higher-order pages are called "compound pages". They are structured thusly:
  238. *
  239. * The first PAGE_SIZE page is called the "head page".
  240. *
  241. * The remaining PAGE_SIZE pages are called "tail pages".
  242. *
  243. * All pages have PG_compound set. All pages have their ->private pointing at
  244. * the head page (even the head page has this).
  245. *
  246. * The first tail page's ->lru.next holds the address of the compound page's
  247. * put_page() function. Its ->lru.prev holds the order of allocation.
  248. * This usage means that zero-order pages may not be compound.
  249. */
  250. static void free_compound_page(struct page *page)
  251. {
  252. __free_pages_ok(page, compound_order(page));
  253. }
  254. void prep_compound_page(struct page *page, unsigned long order)
  255. {
  256. int i;
  257. int nr_pages = 1 << order;
  258. set_compound_page_dtor(page, free_compound_page);
  259. set_compound_order(page, order);
  260. __SetPageHead(page);
  261. for (i = 1; i < nr_pages; i++) {
  262. struct page *p = page + i;
  263. __SetPageTail(p);
  264. p->first_page = page;
  265. }
  266. }
  267. #ifdef CONFIG_HUGETLBFS
  268. void prep_compound_gigantic_page(struct page *page, unsigned long order)
  269. {
  270. int i;
  271. int nr_pages = 1 << order;
  272. struct page *p = page + 1;
  273. set_compound_page_dtor(page, free_compound_page);
  274. set_compound_order(page, order);
  275. __SetPageHead(page);
  276. for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
  277. __SetPageTail(p);
  278. p->first_page = page;
  279. }
  280. }
  281. #endif
  282. static int destroy_compound_page(struct page *page, unsigned long order)
  283. {
  284. int i;
  285. int nr_pages = 1 << order;
  286. int bad = 0;
  287. if (unlikely(compound_order(page) != order) ||
  288. unlikely(!PageHead(page))) {
  289. bad_page(page);
  290. bad++;
  291. }
  292. __ClearPageHead(page);
  293. for (i = 1; i < nr_pages; i++) {
  294. struct page *p = page + i;
  295. if (unlikely(!PageTail(p) | (p->first_page != page))) {
  296. bad_page(page);
  297. bad++;
  298. }
  299. __ClearPageTail(p);
  300. }
  301. return bad;
  302. }
  303. static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
  304. {
  305. int i;
  306. /*
  307. * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
  308. * and __GFP_HIGHMEM from hard or soft interrupt context.
  309. */
  310. VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
  311. for (i = 0; i < (1 << order); i++)
  312. clear_highpage(page + i);
  313. }
  314. static inline void set_page_order(struct page *page, int order)
  315. {
  316. set_page_private(page, order);
  317. __SetPageBuddy(page);
  318. }
  319. static inline void rmv_page_order(struct page *page)
  320. {
  321. __ClearPageBuddy(page);
  322. set_page_private(page, 0);
  323. }
  324. /*
  325. * Locate the struct page for both the matching buddy in our
  326. * pair (buddy1) and the combined O(n+1) page they form (page).
  327. *
  328. * 1) Any buddy B1 will have an order O twin B2 which satisfies
  329. * the following equation:
  330. * B2 = B1 ^ (1 << O)
  331. * For example, if the starting buddy (buddy2) is #8 its order
  332. * 1 buddy is #10:
  333. * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
  334. *
  335. * 2) Any buddy B will have an order O+1 parent P which
  336. * satisfies the following equation:
  337. * P = B & ~(1 << O)
  338. *
  339. * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
  340. */
  341. static inline struct page *
  342. __page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
  343. {
  344. unsigned long buddy_idx = page_idx ^ (1 << order);
  345. return page + (buddy_idx - page_idx);
  346. }
  347. static inline unsigned long
  348. __find_combined_index(unsigned long page_idx, unsigned int order)
  349. {
  350. return (page_idx & ~(1 << order));
  351. }
  352. /*
  353. * This function checks whether a page is free && is the buddy
  354. * we can do coalesce a page and its buddy if
  355. * (a) the buddy is not in a hole &&
  356. * (b) the buddy is in the buddy system &&
  357. * (c) a page and its buddy have the same order &&
  358. * (d) a page and its buddy are in the same zone.
  359. *
  360. * For recording whether a page is in the buddy system, we use PG_buddy.
  361. * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
  362. *
  363. * For recording page's order, we use page_private(page).
  364. */
  365. static inline int page_is_buddy(struct page *page, struct page *buddy,
  366. int order)
  367. {
  368. if (!pfn_valid_within(page_to_pfn(buddy)))
  369. return 0;
  370. if (page_zone_id(page) != page_zone_id(buddy))
  371. return 0;
  372. if (PageBuddy(buddy) && page_order(buddy) == order) {
  373. BUG_ON(page_count(buddy) != 0);
  374. return 1;
  375. }
  376. return 0;
  377. }
  378. /*
  379. * Freeing function for a buddy system allocator.
  380. *
  381. * The concept of a buddy system is to maintain direct-mapped table
  382. * (containing bit values) for memory blocks of various "orders".
  383. * The bottom level table contains the map for the smallest allocatable
  384. * units of memory (here, pages), and each level above it describes
  385. * pairs of units from the levels below, hence, "buddies".
  386. * At a high level, all that happens here is marking the table entry
  387. * at the bottom level available, and propagating the changes upward
  388. * as necessary, plus some accounting needed to play nicely with other
  389. * parts of the VM system.
  390. * At each level, we keep a list of pages, which are heads of continuous
  391. * free pages of length of (1 << order) and marked with PG_buddy. Page's
  392. * order is recorded in page_private(page) field.
  393. * So when we are allocating or freeing one, we can derive the state of the
  394. * other. That is, if we allocate a small block, and both were
  395. * free, the remainder of the region must be split into blocks.
  396. * If a block is freed, and its buddy is also free, then this
  397. * triggers coalescing into a block of larger size.
  398. *
  399. * -- wli
  400. */
  401. static inline void __free_one_page(struct page *page,
  402. struct zone *zone, unsigned int order)
  403. {
  404. unsigned long page_idx;
  405. int order_size = 1 << order;
  406. int migratetype = get_pageblock_migratetype(page);
  407. if (unlikely(PageCompound(page)))
  408. if (unlikely(destroy_compound_page(page, order)))
  409. return;
  410. page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
  411. VM_BUG_ON(page_idx & (order_size - 1));
  412. VM_BUG_ON(bad_range(zone, page));
  413. __mod_zone_page_state(zone, NR_FREE_PAGES, order_size);
  414. while (order < MAX_ORDER-1) {
  415. unsigned long combined_idx;
  416. struct page *buddy;
  417. buddy = __page_find_buddy(page, page_idx, order);
  418. if (!page_is_buddy(page, buddy, order))
  419. break;
  420. /* Our buddy is free, merge with it and move up one order. */
  421. list_del(&buddy->lru);
  422. zone->free_area[order].nr_free--;
  423. rmv_page_order(buddy);
  424. combined_idx = __find_combined_index(page_idx, order);
  425. page = page + (combined_idx - page_idx);
  426. page_idx = combined_idx;
  427. order++;
  428. }
  429. set_page_order(page, order);
  430. list_add(&page->lru,
  431. &zone->free_area[order].free_list[migratetype]);
  432. zone->free_area[order].nr_free++;
  433. }
  434. static inline int free_pages_check(struct page *page)
  435. {
  436. free_page_mlock(page);
  437. if (unlikely(page_mapcount(page) |
  438. (page->mapping != NULL) |
  439. (page_count(page) != 0) |
  440. (page->flags & PAGE_FLAGS_CHECK_AT_FREE))) {
  441. bad_page(page);
  442. return 1;
  443. }
  444. if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
  445. page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
  446. return 0;
  447. }
  448. /*
  449. * Frees a list of pages.
  450. * Assumes all pages on list are in same zone, and of same order.
  451. * count is the number of pages to free.
  452. *
  453. * If the zone was previously in an "all pages pinned" state then look to
  454. * see if this freeing clears that state.
  455. *
  456. * And clear the zone's pages_scanned counter, to hold off the "all pages are
  457. * pinned" detection logic.
  458. */
  459. static void free_pages_bulk(struct zone *zone, int count,
  460. struct list_head *list, int order)
  461. {
  462. spin_lock(&zone->lock);
  463. zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE);
  464. zone->pages_scanned = 0;
  465. while (count--) {
  466. struct page *page;
  467. VM_BUG_ON(list_empty(list));
  468. page = list_entry(list->prev, struct page, lru);
  469. /* have to delete it as __free_one_page list manipulates */
  470. list_del(&page->lru);
  471. __free_one_page(page, zone, order);
  472. }
  473. spin_unlock(&zone->lock);
  474. }
  475. static void free_one_page(struct zone *zone, struct page *page, int order)
  476. {
  477. spin_lock(&zone->lock);
  478. zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE);
  479. zone->pages_scanned = 0;
  480. __free_one_page(page, zone, order);
  481. spin_unlock(&zone->lock);
  482. }
  483. static void __free_pages_ok(struct page *page, unsigned int order)
  484. {
  485. unsigned long flags;
  486. int i;
  487. int bad = 0;
  488. for (i = 0 ; i < (1 << order) ; ++i)
  489. bad += free_pages_check(page + i);
  490. if (bad)
  491. return;
  492. if (!PageHighMem(page)) {
  493. debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
  494. debug_check_no_obj_freed(page_address(page),
  495. PAGE_SIZE << order);
  496. }
  497. arch_free_page(page, order);
  498. kernel_map_pages(page, 1 << order, 0);
  499. local_irq_save(flags);
  500. __count_vm_events(PGFREE, 1 << order);
  501. free_one_page(page_zone(page), page, order);
  502. local_irq_restore(flags);
  503. }
  504. /*
  505. * permit the bootmem allocator to evade page validation on high-order frees
  506. */
  507. void __meminit __free_pages_bootmem(struct page *page, unsigned int order)
  508. {
  509. if (order == 0) {
  510. __ClearPageReserved(page);
  511. set_page_count(page, 0);
  512. set_page_refcounted(page);
  513. __free_page(page);
  514. } else {
  515. int loop;
  516. prefetchw(page);
  517. for (loop = 0; loop < BITS_PER_LONG; loop++) {
  518. struct page *p = &page[loop];
  519. if (loop + 1 < BITS_PER_LONG)
  520. prefetchw(p + 1);
  521. __ClearPageReserved(p);
  522. set_page_count(p, 0);
  523. }
  524. set_page_refcounted(page);
  525. __free_pages(page, order);
  526. }
  527. }
  528. /*
  529. * The order of subdivision here is critical for the IO subsystem.
  530. * Please do not alter this order without good reasons and regression
  531. * testing. Specifically, as large blocks of memory are subdivided,
  532. * the order in which smaller blocks are delivered depends on the order
  533. * they're subdivided in this function. This is the primary factor
  534. * influencing the order in which pages are delivered to the IO
  535. * subsystem according to empirical testing, and this is also justified
  536. * by considering the behavior of a buddy system containing a single
  537. * large block of memory acted on by a series of small allocations.
  538. * This behavior is a critical factor in sglist merging's success.
  539. *
  540. * -- wli
  541. */
  542. static inline void expand(struct zone *zone, struct page *page,
  543. int low, int high, struct free_area *area,
  544. int migratetype)
  545. {
  546. unsigned long size = 1 << high;
  547. while (high > low) {
  548. area--;
  549. high--;
  550. size >>= 1;
  551. VM_BUG_ON(bad_range(zone, &page[size]));
  552. list_add(&page[size].lru, &area->free_list[migratetype]);
  553. area->nr_free++;
  554. set_page_order(&page[size], high);
  555. }
  556. }
  557. /*
  558. * This page is about to be returned from the page allocator
  559. */
  560. static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
  561. {
  562. if (unlikely(page_mapcount(page) |
  563. (page->mapping != NULL) |
  564. (page_count(page) != 0) |
  565. (page->flags & PAGE_FLAGS_CHECK_AT_PREP))) {
  566. bad_page(page);
  567. return 1;
  568. }
  569. set_page_private(page, 0);
  570. set_page_refcounted(page);
  571. arch_alloc_page(page, order);
  572. kernel_map_pages(page, 1 << order, 1);
  573. if (gfp_flags & __GFP_ZERO)
  574. prep_zero_page(page, order, gfp_flags);
  575. if (order && (gfp_flags & __GFP_COMP))
  576. prep_compound_page(page, order);
  577. return 0;
  578. }
  579. /*
  580. * Go through the free lists for the given migratetype and remove
  581. * the smallest available page from the freelists
  582. */
  583. static struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
  584. int migratetype)
  585. {
  586. unsigned int current_order;
  587. struct free_area * area;
  588. struct page *page;
  589. /* Find a page of the appropriate size in the preferred list */
  590. for (current_order = order; current_order < MAX_ORDER; ++current_order) {
  591. area = &(zone->free_area[current_order]);
  592. if (list_empty(&area->free_list[migratetype]))
  593. continue;
  594. page = list_entry(area->free_list[migratetype].next,
  595. struct page, lru);
  596. list_del(&page->lru);
  597. rmv_page_order(page);
  598. area->nr_free--;
  599. __mod_zone_page_state(zone, NR_FREE_PAGES, - (1UL << order));
  600. expand(zone, page, order, current_order, area, migratetype);
  601. return page;
  602. }
  603. return NULL;
  604. }
  605. /*
  606. * This array describes the order lists are fallen back to when
  607. * the free lists for the desirable migrate type are depleted
  608. */
  609. static int fallbacks[MIGRATE_TYPES][MIGRATE_TYPES-1] = {
  610. [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
  611. [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
  612. [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
  613. [MIGRATE_RESERVE] = { MIGRATE_RESERVE, MIGRATE_RESERVE, MIGRATE_RESERVE }, /* Never used */
  614. };
  615. /*
  616. * Move the free pages in a range to the free lists of the requested type.
  617. * Note that start_page and end_pages are not aligned on a pageblock
  618. * boundary. If alignment is required, use move_freepages_block()
  619. */
  620. static int move_freepages(struct zone *zone,
  621. struct page *start_page, struct page *end_page,
  622. int migratetype)
  623. {
  624. struct page *page;
  625. unsigned long order;
  626. int pages_moved = 0;
  627. #ifndef CONFIG_HOLES_IN_ZONE
  628. /*
  629. * page_zone is not safe to call in this context when
  630. * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
  631. * anyway as we check zone boundaries in move_freepages_block().
  632. * Remove at a later date when no bug reports exist related to
  633. * grouping pages by mobility
  634. */
  635. BUG_ON(page_zone(start_page) != page_zone(end_page));
  636. #endif
  637. for (page = start_page; page <= end_page;) {
  638. /* Make sure we are not inadvertently changing nodes */
  639. VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
  640. if (!pfn_valid_within(page_to_pfn(page))) {
  641. page++;
  642. continue;
  643. }
  644. if (!PageBuddy(page)) {
  645. page++;
  646. continue;
  647. }
  648. order = page_order(page);
  649. list_del(&page->lru);
  650. list_add(&page->lru,
  651. &zone->free_area[order].free_list[migratetype]);
  652. page += 1 << order;
  653. pages_moved += 1 << order;
  654. }
  655. return pages_moved;
  656. }
  657. static int move_freepages_block(struct zone *zone, struct page *page,
  658. int migratetype)
  659. {
  660. unsigned long start_pfn, end_pfn;
  661. struct page *start_page, *end_page;
  662. start_pfn = page_to_pfn(page);
  663. start_pfn = start_pfn & ~(pageblock_nr_pages-1);
  664. start_page = pfn_to_page(start_pfn);
  665. end_page = start_page + pageblock_nr_pages - 1;
  666. end_pfn = start_pfn + pageblock_nr_pages - 1;
  667. /* Do not cross zone boundaries */
  668. if (start_pfn < zone->zone_start_pfn)
  669. start_page = page;
  670. if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
  671. return 0;
  672. return move_freepages(zone, start_page, end_page, migratetype);
  673. }
  674. /* Remove an element from the buddy allocator from the fallback list */
  675. static struct page *__rmqueue_fallback(struct zone *zone, int order,
  676. int start_migratetype)
  677. {
  678. struct free_area * area;
  679. int current_order;
  680. struct page *page;
  681. int migratetype, i;
  682. /* Find the largest possible block of pages in the other list */
  683. for (current_order = MAX_ORDER-1; current_order >= order;
  684. --current_order) {
  685. for (i = 0; i < MIGRATE_TYPES - 1; i++) {
  686. migratetype = fallbacks[start_migratetype][i];
  687. /* MIGRATE_RESERVE handled later if necessary */
  688. if (migratetype == MIGRATE_RESERVE)
  689. continue;
  690. area = &(zone->free_area[current_order]);
  691. if (list_empty(&area->free_list[migratetype]))
  692. continue;
  693. page = list_entry(area->free_list[migratetype].next,
  694. struct page, lru);
  695. area->nr_free--;
  696. /*
  697. * If breaking a large block of pages, move all free
  698. * pages to the preferred allocation list. If falling
  699. * back for a reclaimable kernel allocation, be more
  700. * agressive about taking ownership of free pages
  701. */
  702. if (unlikely(current_order >= (pageblock_order >> 1)) ||
  703. start_migratetype == MIGRATE_RECLAIMABLE) {
  704. unsigned long pages;
  705. pages = move_freepages_block(zone, page,
  706. start_migratetype);
  707. /* Claim the whole block if over half of it is free */
  708. if (pages >= (1 << (pageblock_order-1)))
  709. set_pageblock_migratetype(page,
  710. start_migratetype);
  711. migratetype = start_migratetype;
  712. }
  713. /* Remove the page from the freelists */
  714. list_del(&page->lru);
  715. rmv_page_order(page);
  716. __mod_zone_page_state(zone, NR_FREE_PAGES,
  717. -(1UL << order));
  718. if (current_order == pageblock_order)
  719. set_pageblock_migratetype(page,
  720. start_migratetype);
  721. expand(zone, page, order, current_order, area, migratetype);
  722. return page;
  723. }
  724. }
  725. /* Use MIGRATE_RESERVE rather than fail an allocation */
  726. return __rmqueue_smallest(zone, order, MIGRATE_RESERVE);
  727. }
  728. /*
  729. * Do the hard work of removing an element from the buddy allocator.
  730. * Call me with the zone->lock already held.
  731. */
  732. static struct page *__rmqueue(struct zone *zone, unsigned int order,
  733. int migratetype)
  734. {
  735. struct page *page;
  736. page = __rmqueue_smallest(zone, order, migratetype);
  737. if (unlikely(!page))
  738. page = __rmqueue_fallback(zone, order, migratetype);
  739. return page;
  740. }
  741. /*
  742. * Obtain a specified number of elements from the buddy allocator, all under
  743. * a single hold of the lock, for efficiency. Add them to the supplied list.
  744. * Returns the number of new pages which were placed at *list.
  745. */
  746. static int rmqueue_bulk(struct zone *zone, unsigned int order,
  747. unsigned long count, struct list_head *list,
  748. int migratetype)
  749. {
  750. int i;
  751. spin_lock(&zone->lock);
  752. for (i = 0; i < count; ++i) {
  753. struct page *page = __rmqueue(zone, order, migratetype);
  754. if (unlikely(page == NULL))
  755. break;
  756. /*
  757. * Split buddy pages returned by expand() are received here
  758. * in physical page order. The page is added to the callers and
  759. * list and the list head then moves forward. From the callers
  760. * perspective, the linked list is ordered by page number in
  761. * some conditions. This is useful for IO devices that can
  762. * merge IO requests if the physical pages are ordered
  763. * properly.
  764. */
  765. list_add(&page->lru, list);
  766. set_page_private(page, migratetype);
  767. list = &page->lru;
  768. }
  769. spin_unlock(&zone->lock);
  770. return i;
  771. }
  772. #ifdef CONFIG_NUMA
  773. /*
  774. * Called from the vmstat counter updater to drain pagesets of this
  775. * currently executing processor on remote nodes after they have
  776. * expired.
  777. *
  778. * Note that this function must be called with the thread pinned to
  779. * a single processor.
  780. */
  781. void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
  782. {
  783. unsigned long flags;
  784. int to_drain;
  785. local_irq_save(flags);
  786. if (pcp->count >= pcp->batch)
  787. to_drain = pcp->batch;
  788. else
  789. to_drain = pcp->count;
  790. free_pages_bulk(zone, to_drain, &pcp->list, 0);
  791. pcp->count -= to_drain;
  792. local_irq_restore(flags);
  793. }
  794. #endif
  795. /*
  796. * Drain pages of the indicated processor.
  797. *
  798. * The processor must either be the current processor and the
  799. * thread pinned to the current processor or a processor that
  800. * is not online.
  801. */
  802. static void drain_pages(unsigned int cpu)
  803. {
  804. unsigned long flags;
  805. struct zone *zone;
  806. for_each_populated_zone(zone) {
  807. struct per_cpu_pageset *pset;
  808. struct per_cpu_pages *pcp;
  809. pset = zone_pcp(zone, cpu);
  810. pcp = &pset->pcp;
  811. local_irq_save(flags);
  812. free_pages_bulk(zone, pcp->count, &pcp->list, 0);
  813. pcp->count = 0;
  814. local_irq_restore(flags);
  815. }
  816. }
  817. /*
  818. * Spill all of this CPU's per-cpu pages back into the buddy allocator.
  819. */
  820. void drain_local_pages(void *arg)
  821. {
  822. drain_pages(smp_processor_id());
  823. }
  824. /*
  825. * Spill all the per-cpu pages from all CPUs back into the buddy allocator
  826. */
  827. void drain_all_pages(void)
  828. {
  829. on_each_cpu(drain_local_pages, NULL, 1);
  830. }
  831. #ifdef CONFIG_HIBERNATION
  832. void mark_free_pages(struct zone *zone)
  833. {
  834. unsigned long pfn, max_zone_pfn;
  835. unsigned long flags;
  836. int order, t;
  837. struct list_head *curr;
  838. if (!zone->spanned_pages)
  839. return;
  840. spin_lock_irqsave(&zone->lock, flags);
  841. max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
  842. for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
  843. if (pfn_valid(pfn)) {
  844. struct page *page = pfn_to_page(pfn);
  845. if (!swsusp_page_is_forbidden(page))
  846. swsusp_unset_page_free(page);
  847. }
  848. for_each_migratetype_order(order, t) {
  849. list_for_each(curr, &zone->free_area[order].free_list[t]) {
  850. unsigned long i;
  851. pfn = page_to_pfn(list_entry(curr, struct page, lru));
  852. for (i = 0; i < (1UL << order); i++)
  853. swsusp_set_page_free(pfn_to_page(pfn + i));
  854. }
  855. }
  856. spin_unlock_irqrestore(&zone->lock, flags);
  857. }
  858. #endif /* CONFIG_PM */
  859. /*
  860. * Free a 0-order page
  861. */
  862. static void free_hot_cold_page(struct page *page, int cold)
  863. {
  864. struct zone *zone = page_zone(page);
  865. struct per_cpu_pages *pcp;
  866. unsigned long flags;
  867. if (PageAnon(page))
  868. page->mapping = NULL;
  869. if (free_pages_check(page))
  870. return;
  871. if (!PageHighMem(page)) {
  872. debug_check_no_locks_freed(page_address(page), PAGE_SIZE);
  873. debug_check_no_obj_freed(page_address(page), PAGE_SIZE);
  874. }
  875. arch_free_page(page, 0);
  876. kernel_map_pages(page, 1, 0);
  877. pcp = &zone_pcp(zone, get_cpu())->pcp;
  878. local_irq_save(flags);
  879. __count_vm_event(PGFREE);
  880. if (cold)
  881. list_add_tail(&page->lru, &pcp->list);
  882. else
  883. list_add(&page->lru, &pcp->list);
  884. set_page_private(page, get_pageblock_migratetype(page));
  885. pcp->count++;
  886. if (pcp->count >= pcp->high) {
  887. free_pages_bulk(zone, pcp->batch, &pcp->list, 0);
  888. pcp->count -= pcp->batch;
  889. }
  890. local_irq_restore(flags);
  891. put_cpu();
  892. }
  893. void free_hot_page(struct page *page)
  894. {
  895. free_hot_cold_page(page, 0);
  896. }
  897. void free_cold_page(struct page *page)
  898. {
  899. free_hot_cold_page(page, 1);
  900. }
  901. /*
  902. * split_page takes a non-compound higher-order page, and splits it into
  903. * n (1<<order) sub-pages: page[0..n]
  904. * Each sub-page must be freed individually.
  905. *
  906. * Note: this is probably too low level an operation for use in drivers.
  907. * Please consult with lkml before using this in your driver.
  908. */
  909. void split_page(struct page *page, unsigned int order)
  910. {
  911. int i;
  912. VM_BUG_ON(PageCompound(page));
  913. VM_BUG_ON(!page_count(page));
  914. for (i = 1; i < (1 << order); i++)
  915. set_page_refcounted(page + i);
  916. }
  917. /*
  918. * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
  919. * we cheat by calling it from here, in the order > 0 path. Saves a branch
  920. * or two.
  921. */
  922. static struct page *buffered_rmqueue(struct zone *preferred_zone,
  923. struct zone *zone, int order, gfp_t gfp_flags)
  924. {
  925. unsigned long flags;
  926. struct page *page;
  927. int cold = !!(gfp_flags & __GFP_COLD);
  928. int cpu;
  929. int migratetype = allocflags_to_migratetype(gfp_flags);
  930. again:
  931. cpu = get_cpu();
  932. if (likely(order == 0)) {
  933. struct per_cpu_pages *pcp;
  934. pcp = &zone_pcp(zone, cpu)->pcp;
  935. local_irq_save(flags);
  936. if (!pcp->count) {
  937. pcp->count = rmqueue_bulk(zone, 0,
  938. pcp->batch, &pcp->list, migratetype);
  939. if (unlikely(!pcp->count))
  940. goto failed;
  941. }
  942. /* Find a page of the appropriate migrate type */
  943. if (cold) {
  944. list_for_each_entry_reverse(page, &pcp->list, lru)
  945. if (page_private(page) == migratetype)
  946. break;
  947. } else {
  948. list_for_each_entry(page, &pcp->list, lru)
  949. if (page_private(page) == migratetype)
  950. break;
  951. }
  952. /* Allocate more to the pcp list if necessary */
  953. if (unlikely(&page->lru == &pcp->list)) {
  954. pcp->count += rmqueue_bulk(zone, 0,
  955. pcp->batch, &pcp->list, migratetype);
  956. page = list_entry(pcp->list.next, struct page, lru);
  957. }
  958. list_del(&page->lru);
  959. pcp->count--;
  960. } else {
  961. spin_lock_irqsave(&zone->lock, flags);
  962. page = __rmqueue(zone, order, migratetype);
  963. spin_unlock(&zone->lock);
  964. if (!page)
  965. goto failed;
  966. }
  967. __count_zone_vm_events(PGALLOC, zone, 1 << order);
  968. zone_statistics(preferred_zone, zone);
  969. local_irq_restore(flags);
  970. put_cpu();
  971. VM_BUG_ON(bad_range(zone, page));
  972. if (prep_new_page(page, order, gfp_flags))
  973. goto again;
  974. return page;
  975. failed:
  976. local_irq_restore(flags);
  977. put_cpu();
  978. return NULL;
  979. }
  980. #define ALLOC_NO_WATERMARKS 0x01 /* don't check watermarks at all */
  981. #define ALLOC_WMARK_MIN 0x02 /* use pages_min watermark */
  982. #define ALLOC_WMARK_LOW 0x04 /* use pages_low watermark */
  983. #define ALLOC_WMARK_HIGH 0x08 /* use pages_high watermark */
  984. #define ALLOC_HARDER 0x10 /* try to alloc harder */
  985. #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
  986. #define ALLOC_CPUSET 0x40 /* check for correct cpuset */
  987. #ifdef CONFIG_FAIL_PAGE_ALLOC
  988. static struct fail_page_alloc_attr {
  989. struct fault_attr attr;
  990. u32 ignore_gfp_highmem;
  991. u32 ignore_gfp_wait;
  992. u32 min_order;
  993. #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
  994. struct dentry *ignore_gfp_highmem_file;
  995. struct dentry *ignore_gfp_wait_file;
  996. struct dentry *min_order_file;
  997. #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
  998. } fail_page_alloc = {
  999. .attr = FAULT_ATTR_INITIALIZER,
  1000. .ignore_gfp_wait = 1,
  1001. .ignore_gfp_highmem = 1,
  1002. .min_order = 1,
  1003. };
  1004. static int __init setup_fail_page_alloc(char *str)
  1005. {
  1006. return setup_fault_attr(&fail_page_alloc.attr, str);
  1007. }
  1008. __setup("fail_page_alloc=", setup_fail_page_alloc);
  1009. static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
  1010. {
  1011. if (order < fail_page_alloc.min_order)
  1012. return 0;
  1013. if (gfp_mask & __GFP_NOFAIL)
  1014. return 0;
  1015. if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
  1016. return 0;
  1017. if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
  1018. return 0;
  1019. return should_fail(&fail_page_alloc.attr, 1 << order);
  1020. }
  1021. #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
  1022. static int __init fail_page_alloc_debugfs(void)
  1023. {
  1024. mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
  1025. struct dentry *dir;
  1026. int err;
  1027. err = init_fault_attr_dentries(&fail_page_alloc.attr,
  1028. "fail_page_alloc");
  1029. if (err)
  1030. return err;
  1031. dir = fail_page_alloc.attr.dentries.dir;
  1032. fail_page_alloc.ignore_gfp_wait_file =
  1033. debugfs_create_bool("ignore-gfp-wait", mode, dir,
  1034. &fail_page_alloc.ignore_gfp_wait);
  1035. fail_page_alloc.ignore_gfp_highmem_file =
  1036. debugfs_create_bool("ignore-gfp-highmem", mode, dir,
  1037. &fail_page_alloc.ignore_gfp_highmem);
  1038. fail_page_alloc.min_order_file =
  1039. debugfs_create_u32("min-order", mode, dir,
  1040. &fail_page_alloc.min_order);
  1041. if (!fail_page_alloc.ignore_gfp_wait_file ||
  1042. !fail_page_alloc.ignore_gfp_highmem_file ||
  1043. !fail_page_alloc.min_order_file) {
  1044. err = -ENOMEM;
  1045. debugfs_remove(fail_page_alloc.ignore_gfp_wait_file);
  1046. debugfs_remove(fail_page_alloc.ignore_gfp_highmem_file);
  1047. debugfs_remove(fail_page_alloc.min_order_file);
  1048. cleanup_fault_attr_dentries(&fail_page_alloc.attr);
  1049. }
  1050. return err;
  1051. }
  1052. late_initcall(fail_page_alloc_debugfs);
  1053. #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
  1054. #else /* CONFIG_FAIL_PAGE_ALLOC */
  1055. static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
  1056. {
  1057. return 0;
  1058. }
  1059. #endif /* CONFIG_FAIL_PAGE_ALLOC */
  1060. /*
  1061. * Return 1 if free pages are above 'mark'. This takes into account the order
  1062. * of the allocation.
  1063. */
  1064. int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
  1065. int classzone_idx, int alloc_flags)
  1066. {
  1067. /* free_pages my go negative - that's OK */
  1068. long min = mark;
  1069. long free_pages = zone_page_state(z, NR_FREE_PAGES) - (1 << order) + 1;
  1070. int o;
  1071. if (alloc_flags & ALLOC_HIGH)
  1072. min -= min / 2;
  1073. if (alloc_flags & ALLOC_HARDER)
  1074. min -= min / 4;
  1075. if (free_pages <= min + z->lowmem_reserve[classzone_idx])
  1076. return 0;
  1077. for (o = 0; o < order; o++) {
  1078. /* At the next order, this order's pages become unavailable */
  1079. free_pages -= z->free_area[o].nr_free << o;
  1080. /* Require fewer higher order pages to be free */
  1081. min >>= 1;
  1082. if (free_pages <= min)
  1083. return 0;
  1084. }
  1085. return 1;
  1086. }
  1087. #ifdef CONFIG_NUMA
  1088. /*
  1089. * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
  1090. * skip over zones that are not allowed by the cpuset, or that have
  1091. * been recently (in last second) found to be nearly full. See further
  1092. * comments in mmzone.h. Reduces cache footprint of zonelist scans
  1093. * that have to skip over a lot of full or unallowed zones.
  1094. *
  1095. * If the zonelist cache is present in the passed in zonelist, then
  1096. * returns a pointer to the allowed node mask (either the current
  1097. * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
  1098. *
  1099. * If the zonelist cache is not available for this zonelist, does
  1100. * nothing and returns NULL.
  1101. *
  1102. * If the fullzones BITMAP in the zonelist cache is stale (more than
  1103. * a second since last zap'd) then we zap it out (clear its bits.)
  1104. *
  1105. * We hold off even calling zlc_setup, until after we've checked the
  1106. * first zone in the zonelist, on the theory that most allocations will
  1107. * be satisfied from that first zone, so best to examine that zone as
  1108. * quickly as we can.
  1109. */
  1110. static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
  1111. {
  1112. struct zonelist_cache *zlc; /* cached zonelist speedup info */
  1113. nodemask_t *allowednodes; /* zonelist_cache approximation */
  1114. zlc = zonelist->zlcache_ptr;
  1115. if (!zlc)
  1116. return NULL;
  1117. if (time_after(jiffies, zlc->last_full_zap + HZ)) {
  1118. bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
  1119. zlc->last_full_zap = jiffies;
  1120. }
  1121. allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
  1122. &cpuset_current_mems_allowed :
  1123. &node_states[N_HIGH_MEMORY];
  1124. return allowednodes;
  1125. }
  1126. /*
  1127. * Given 'z' scanning a zonelist, run a couple of quick checks to see
  1128. * if it is worth looking at further for free memory:
  1129. * 1) Check that the zone isn't thought to be full (doesn't have its
  1130. * bit set in the zonelist_cache fullzones BITMAP).
  1131. * 2) Check that the zones node (obtained from the zonelist_cache
  1132. * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
  1133. * Return true (non-zero) if zone is worth looking at further, or
  1134. * else return false (zero) if it is not.
  1135. *
  1136. * This check -ignores- the distinction between various watermarks,
  1137. * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
  1138. * found to be full for any variation of these watermarks, it will
  1139. * be considered full for up to one second by all requests, unless
  1140. * we are so low on memory on all allowed nodes that we are forced
  1141. * into the second scan of the zonelist.
  1142. *
  1143. * In the second scan we ignore this zonelist cache and exactly
  1144. * apply the watermarks to all zones, even it is slower to do so.
  1145. * We are low on memory in the second scan, and should leave no stone
  1146. * unturned looking for a free page.
  1147. */
  1148. static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
  1149. nodemask_t *allowednodes)
  1150. {
  1151. struct zonelist_cache *zlc; /* cached zonelist speedup info */
  1152. int i; /* index of *z in zonelist zones */
  1153. int n; /* node that zone *z is on */
  1154. zlc = zonelist->zlcache_ptr;
  1155. if (!zlc)
  1156. return 1;
  1157. i = z - zonelist->_zonerefs;
  1158. n = zlc->z_to_n[i];
  1159. /* This zone is worth trying if it is allowed but not full */
  1160. return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
  1161. }
  1162. /*
  1163. * Given 'z' scanning a zonelist, set the corresponding bit in
  1164. * zlc->fullzones, so that subsequent attempts to allocate a page
  1165. * from that zone don't waste time re-examining it.
  1166. */
  1167. static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
  1168. {
  1169. struct zonelist_cache *zlc; /* cached zonelist speedup info */
  1170. int i; /* index of *z in zonelist zones */
  1171. zlc = zonelist->zlcache_ptr;
  1172. if (!zlc)
  1173. return;
  1174. i = z - zonelist->_zonerefs;
  1175. set_bit(i, zlc->fullzones);
  1176. }
  1177. #else /* CONFIG_NUMA */
  1178. static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
  1179. {
  1180. return NULL;
  1181. }
  1182. static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
  1183. nodemask_t *allowednodes)
  1184. {
  1185. return 1;
  1186. }
  1187. static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
  1188. {
  1189. }
  1190. #endif /* CONFIG_NUMA */
  1191. /*
  1192. * get_page_from_freelist goes through the zonelist trying to allocate
  1193. * a page.
  1194. */
  1195. static struct page *
  1196. get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
  1197. struct zonelist *zonelist, int high_zoneidx, int alloc_flags)
  1198. {
  1199. struct zoneref *z;
  1200. struct page *page = NULL;
  1201. int classzone_idx;
  1202. struct zone *zone, *preferred_zone;
  1203. nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
  1204. int zlc_active = 0; /* set if using zonelist_cache */
  1205. int did_zlc_setup = 0; /* just call zlc_setup() one time */
  1206. (void)first_zones_zonelist(zonelist, high_zoneidx, nodemask,
  1207. &preferred_zone);
  1208. if (!preferred_zone)
  1209. return NULL;
  1210. classzone_idx = zone_idx(preferred_zone);
  1211. zonelist_scan:
  1212. /*
  1213. * Scan zonelist, looking for a zone with enough free.
  1214. * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
  1215. */
  1216. for_each_zone_zonelist_nodemask(zone, z, zonelist,
  1217. high_zoneidx, nodemask) {
  1218. if (NUMA_BUILD && zlc_active &&
  1219. !zlc_zone_worth_trying(zonelist, z, allowednodes))
  1220. continue;
  1221. if ((alloc_flags & ALLOC_CPUSET) &&
  1222. !cpuset_zone_allowed_softwall(zone, gfp_mask))
  1223. goto try_next_zone;
  1224. if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
  1225. unsigned long mark;
  1226. if (alloc_flags & ALLOC_WMARK_MIN)
  1227. mark = zone->pages_min;
  1228. else if (alloc_flags & ALLOC_WMARK_LOW)
  1229. mark = zone->pages_low;
  1230. else
  1231. mark = zone->pages_high;
  1232. if (!zone_watermark_ok(zone, order, mark,
  1233. classzone_idx, alloc_flags)) {
  1234. if (!zone_reclaim_mode ||
  1235. !zone_reclaim(zone, gfp_mask, order))
  1236. goto this_zone_full;
  1237. }
  1238. }
  1239. page = buffered_rmqueue(preferred_zone, zone, order, gfp_mask);
  1240. if (page)
  1241. break;
  1242. this_zone_full:
  1243. if (NUMA_BUILD)
  1244. zlc_mark_zone_full(zonelist, z);
  1245. try_next_zone:
  1246. if (NUMA_BUILD && !did_zlc_setup) {
  1247. /* we do zlc_setup after the first zone is tried */
  1248. allowednodes = zlc_setup(zonelist, alloc_flags);
  1249. zlc_active = 1;
  1250. did_zlc_setup = 1;
  1251. }
  1252. }
  1253. if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
  1254. /* Disable zlc cache for second zonelist scan */
  1255. zlc_active = 0;
  1256. goto zonelist_scan;
  1257. }
  1258. return page;
  1259. }
  1260. /*
  1261. * This is the 'heart' of the zoned buddy allocator.
  1262. */
  1263. struct page *
  1264. __alloc_pages_internal(gfp_t gfp_mask, unsigned int order,
  1265. struct zonelist *zonelist, nodemask_t *nodemask)
  1266. {
  1267. const gfp_t wait = gfp_mask & __GFP_WAIT;
  1268. enum zone_type high_zoneidx = gfp_zone(gfp_mask);
  1269. struct zoneref *z;
  1270. struct zone *zone;
  1271. struct page *page;
  1272. struct reclaim_state reclaim_state;
  1273. struct task_struct *p = current;
  1274. int do_retry;
  1275. int alloc_flags;
  1276. unsigned long did_some_progress;
  1277. unsigned long pages_reclaimed = 0;
  1278. lockdep_trace_alloc(gfp_mask);
  1279. might_sleep_if(wait);
  1280. if (should_fail_alloc_page(gfp_mask, order))
  1281. return NULL;
  1282. restart:
  1283. z = zonelist->_zonerefs; /* the list of zones suitable for gfp_mask */
  1284. if (unlikely(!z->zone)) {
  1285. /*
  1286. * Happens if we have an empty zonelist as a result of
  1287. * GFP_THISNODE being used on a memoryless node
  1288. */
  1289. return NULL;
  1290. }
  1291. page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
  1292. zonelist, high_zoneidx, ALLOC_WMARK_LOW|ALLOC_CPUSET);
  1293. if (page)
  1294. goto got_pg;
  1295. /*
  1296. * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
  1297. * __GFP_NOWARN set) should not cause reclaim since the subsystem
  1298. * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
  1299. * using a larger set of nodes after it has established that the
  1300. * allowed per node queues are empty and that nodes are
  1301. * over allocated.
  1302. */
  1303. if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
  1304. goto nopage;
  1305. for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
  1306. wakeup_kswapd(zone, order);
  1307. /*
  1308. * OK, we're below the kswapd watermark and have kicked background
  1309. * reclaim. Now things get more complex, so set up alloc_flags according
  1310. * to how we want to proceed.
  1311. *
  1312. * The caller may dip into page reserves a bit more if the caller
  1313. * cannot run direct reclaim, or if the caller has realtime scheduling
  1314. * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
  1315. * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
  1316. */
  1317. alloc_flags = ALLOC_WMARK_MIN;
  1318. if ((unlikely(rt_task(p)) && !in_interrupt()) || !wait)
  1319. alloc_flags |= ALLOC_HARDER;
  1320. if (gfp_mask & __GFP_HIGH)
  1321. alloc_flags |= ALLOC_HIGH;
  1322. if (wait)
  1323. alloc_flags |= ALLOC_CPUSET;
  1324. /*
  1325. * Go through the zonelist again. Let __GFP_HIGH and allocations
  1326. * coming from realtime tasks go deeper into reserves.
  1327. *
  1328. * This is the last chance, in general, before the goto nopage.
  1329. * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
  1330. * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
  1331. */
  1332. page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
  1333. high_zoneidx, alloc_flags);
  1334. if (page)
  1335. goto got_pg;
  1336. /* This allocation should allow future memory freeing. */
  1337. rebalance:
  1338. if (((p->flags & PF_MEMALLOC) || unlikely(test_thread_flag(TIF_MEMDIE)))
  1339. && !in_interrupt()) {
  1340. if (!(gfp_mask & __GFP_NOMEMALLOC)) {
  1341. nofail_alloc:
  1342. /* go through the zonelist yet again, ignoring mins */
  1343. page = get_page_from_freelist(gfp_mask, nodemask, order,
  1344. zonelist, high_zoneidx, ALLOC_NO_WATERMARKS);
  1345. if (page)
  1346. goto got_pg;
  1347. if (gfp_mask & __GFP_NOFAIL) {
  1348. congestion_wait(WRITE, HZ/50);
  1349. goto nofail_alloc;
  1350. }
  1351. }
  1352. goto nopage;
  1353. }
  1354. /* Atomic allocations - we can't balance anything */
  1355. if (!wait)
  1356. goto nopage;
  1357. cond_resched();
  1358. /* We now go into synchronous reclaim */
  1359. cpuset_memory_pressure_bump();
  1360. /*
  1361. * The task's cpuset might have expanded its set of allowable nodes
  1362. */
  1363. cpuset_update_task_memory_state();
  1364. p->flags |= PF_MEMALLOC;
  1365. lockdep_set_current_reclaim_state(gfp_mask);
  1366. reclaim_state.reclaimed_slab = 0;
  1367. p->reclaim_state = &reclaim_state;
  1368. did_some_progress = try_to_free_pages(zonelist, order, gfp_mask);
  1369. p->reclaim_state = NULL;
  1370. lockdep_clear_current_reclaim_state();
  1371. p->flags &= ~PF_MEMALLOC;
  1372. cond_resched();
  1373. if (order != 0)
  1374. drain_all_pages();
  1375. if (likely(did_some_progress)) {
  1376. page = get_page_from_freelist(gfp_mask, nodemask, order,
  1377. zonelist, high_zoneidx, alloc_flags);
  1378. if (page)
  1379. goto got_pg;
  1380. } else if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
  1381. if (!try_set_zone_oom(zonelist, gfp_mask)) {
  1382. schedule_timeout_uninterruptible(1);
  1383. goto restart;
  1384. }
  1385. /*
  1386. * Go through the zonelist yet one more time, keep
  1387. * very high watermark here, this is only to catch
  1388. * a parallel oom killing, we must fail if we're still
  1389. * under heavy pressure.
  1390. */
  1391. page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
  1392. order, zonelist, high_zoneidx,
  1393. ALLOC_WMARK_HIGH|ALLOC_CPUSET);
  1394. if (page) {
  1395. clear_zonelist_oom(zonelist, gfp_mask);
  1396. goto got_pg;
  1397. }
  1398. /* The OOM killer will not help higher order allocs so fail */
  1399. if (order > PAGE_ALLOC_COSTLY_ORDER) {
  1400. clear_zonelist_oom(zonelist, gfp_mask);
  1401. goto nopage;
  1402. }
  1403. out_of_memory(zonelist, gfp_mask, order);
  1404. clear_zonelist_oom(zonelist, gfp_mask);
  1405. goto restart;
  1406. }
  1407. /*
  1408. * Don't let big-order allocations loop unless the caller explicitly
  1409. * requests that. Wait for some write requests to complete then retry.
  1410. *
  1411. * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
  1412. * means __GFP_NOFAIL, but that may not be true in other
  1413. * implementations.
  1414. *
  1415. * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
  1416. * specified, then we retry until we no longer reclaim any pages
  1417. * (above), or we've reclaimed an order of pages at least as
  1418. * large as the allocation's order. In both cases, if the
  1419. * allocation still fails, we stop retrying.
  1420. */
  1421. pages_reclaimed += did_some_progress;
  1422. do_retry = 0;
  1423. if (!(gfp_mask & __GFP_NORETRY)) {
  1424. if (order <= PAGE_ALLOC_COSTLY_ORDER) {
  1425. do_retry = 1;
  1426. } else {
  1427. if (gfp_mask & __GFP_REPEAT &&
  1428. pages_reclaimed < (1 << order))
  1429. do_retry = 1;
  1430. }
  1431. if (gfp_mask & __GFP_NOFAIL)
  1432. do_retry = 1;
  1433. }
  1434. if (do_retry) {
  1435. congestion_wait(WRITE, HZ/50);
  1436. goto rebalance;
  1437. }
  1438. nopage:
  1439. if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
  1440. printk(KERN_WARNING "%s: page allocation failure."
  1441. " order:%d, mode:0x%x\n",
  1442. p->comm, order, gfp_mask);
  1443. dump_stack();
  1444. show_mem();
  1445. }
  1446. got_pg:
  1447. return page;
  1448. }
  1449. EXPORT_SYMBOL(__alloc_pages_internal);
  1450. /*
  1451. * Common helper functions.
  1452. */
  1453. unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
  1454. {
  1455. struct page * page;
  1456. page = alloc_pages(gfp_mask, order);
  1457. if (!page)
  1458. return 0;
  1459. return (unsigned long) page_address(page);
  1460. }
  1461. EXPORT_SYMBOL(__get_free_pages);
  1462. unsigned long get_zeroed_page(gfp_t gfp_mask)
  1463. {
  1464. struct page * page;
  1465. /*
  1466. * get_zeroed_page() returns a 32-bit address, which cannot represent
  1467. * a highmem page
  1468. */
  1469. VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
  1470. page = alloc_pages(gfp_mask | __GFP_ZERO, 0);
  1471. if (page)
  1472. return (unsigned long) page_address(page);
  1473. return 0;
  1474. }
  1475. EXPORT_SYMBOL(get_zeroed_page);
  1476. void __pagevec_free(struct pagevec *pvec)
  1477. {
  1478. int i = pagevec_count(pvec);
  1479. while (--i >= 0)
  1480. free_hot_cold_page(pvec->pages[i], pvec->cold);
  1481. }
  1482. void __free_pages(struct page *page, unsigned int order)
  1483. {
  1484. if (put_page_testzero(page)) {
  1485. if (order == 0)
  1486. free_hot_page(page);
  1487. else
  1488. __free_pages_ok(page, order);
  1489. }
  1490. }
  1491. EXPORT_SYMBOL(__free_pages);
  1492. void free_pages(unsigned long addr, unsigned int order)
  1493. {
  1494. if (addr != 0) {
  1495. VM_BUG_ON(!virt_addr_valid((void *)addr));
  1496. __free_pages(virt_to_page((void *)addr), order);
  1497. }
  1498. }
  1499. EXPORT_SYMBOL(free_pages);
  1500. /**
  1501. * alloc_pages_exact - allocate an exact number physically-contiguous pages.
  1502. * @size: the number of bytes to allocate
  1503. * @gfp_mask: GFP flags for the allocation
  1504. *
  1505. * This function is similar to alloc_pages(), except that it allocates the
  1506. * minimum number of pages to satisfy the request. alloc_pages() can only
  1507. * allocate memory in power-of-two pages.
  1508. *
  1509. * This function is also limited by MAX_ORDER.
  1510. *
  1511. * Memory allocated by this function must be released by free_pages_exact().
  1512. */
  1513. void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
  1514. {
  1515. unsigned int order = get_order(size);
  1516. unsigned long addr;
  1517. addr = __get_free_pages(gfp_mask, order);
  1518. if (addr) {
  1519. unsigned long alloc_end = addr + (PAGE_SIZE << order);
  1520. unsigned long used = addr + PAGE_ALIGN(size);
  1521. split_page(virt_to_page(addr), order);
  1522. while (used < alloc_end) {
  1523. free_page(used);
  1524. used += PAGE_SIZE;
  1525. }
  1526. }
  1527. return (void *)addr;
  1528. }
  1529. EXPORT_SYMBOL(alloc_pages_exact);
  1530. /**
  1531. * free_pages_exact - release memory allocated via alloc_pages_exact()
  1532. * @virt: the value returned by alloc_pages_exact.
  1533. * @size: size of allocation, same value as passed to alloc_pages_exact().
  1534. *
  1535. * Release the memory allocated by a previous call to alloc_pages_exact.
  1536. */
  1537. void free_pages_exact(void *virt, size_t size)
  1538. {
  1539. unsigned long addr = (unsigned long)virt;
  1540. unsigned long end = addr + PAGE_ALIGN(size);
  1541. while (addr < end) {
  1542. free_page(addr);
  1543. addr += PAGE_SIZE;
  1544. }
  1545. }
  1546. EXPORT_SYMBOL(free_pages_exact);
  1547. static unsigned int nr_free_zone_pages(int offset)
  1548. {
  1549. struct zoneref *z;
  1550. struct zone *zone;
  1551. /* Just pick one node, since fallback list is circular */
  1552. unsigned int sum = 0;
  1553. struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
  1554. for_each_zone_zonelist(zone, z, zonelist, offset) {
  1555. unsigned long size = zone->present_pages;
  1556. unsigned long high = zone->pages_high;
  1557. if (size > high)
  1558. sum += size - high;
  1559. }
  1560. return sum;
  1561. }
  1562. /*
  1563. * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
  1564. */
  1565. unsigned int nr_free_buffer_pages(void)
  1566. {
  1567. return nr_free_zone_pages(gfp_zone(GFP_USER));
  1568. }
  1569. EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
  1570. /*
  1571. * Amount of free RAM allocatable within all zones
  1572. */
  1573. unsigned int nr_free_pagecache_pages(void)
  1574. {
  1575. return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
  1576. }
  1577. static inline void show_node(struct zone *zone)
  1578. {
  1579. if (NUMA_BUILD)
  1580. printk("Node %d ", zone_to_nid(zone));
  1581. }
  1582. void si_meminfo(struct sysinfo *val)
  1583. {
  1584. val->totalram = totalram_pages;
  1585. val->sharedram = 0;
  1586. val->freeram = global_page_state(NR_FREE_PAGES);
  1587. val->bufferram = nr_blockdev_pages();
  1588. val->totalhigh = totalhigh_pages;
  1589. val->freehigh = nr_free_highpages();
  1590. val->mem_unit = PAGE_SIZE;
  1591. }
  1592. EXPORT_SYMBOL(si_meminfo);
  1593. #ifdef CONFIG_NUMA
  1594. void si_meminfo_node(struct sysinfo *val, int nid)
  1595. {
  1596. pg_data_t *pgdat = NODE_DATA(nid);
  1597. val->totalram = pgdat->node_present_pages;
  1598. val->freeram = node_page_state(nid, NR_FREE_PAGES);
  1599. #ifdef CONFIG_HIGHMEM
  1600. val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
  1601. val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
  1602. NR_FREE_PAGES);
  1603. #else
  1604. val->totalhigh = 0;
  1605. val->freehigh = 0;
  1606. #endif
  1607. val->mem_unit = PAGE_SIZE;
  1608. }
  1609. #endif
  1610. #define K(x) ((x) << (PAGE_SHIFT-10))
  1611. /*
  1612. * Show free area list (used inside shift_scroll-lock stuff)
  1613. * We also calculate the percentage fragmentation. We do this by counting the
  1614. * memory on each free list with the exception of the first item on the list.
  1615. */
  1616. void show_free_areas(void)
  1617. {
  1618. int cpu;
  1619. struct zone *zone;
  1620. for_each_populated_zone(zone) {
  1621. show_node(zone);
  1622. printk("%s per-cpu:\n", zone->name);
  1623. for_each_online_cpu(cpu) {
  1624. struct per_cpu_pageset *pageset;
  1625. pageset = zone_pcp(zone, cpu);
  1626. printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
  1627. cpu, pageset->pcp.high,
  1628. pageset->pcp.batch, pageset->pcp.count);
  1629. }
  1630. }
  1631. printk("Active_anon:%lu active_file:%lu inactive_anon:%lu\n"
  1632. " inactive_file:%lu"
  1633. //TODO: check/adjust line lengths
  1634. #ifdef CONFIG_UNEVICTABLE_LRU
  1635. " unevictable:%lu"
  1636. #endif
  1637. " dirty:%lu writeback:%lu unstable:%lu\n"
  1638. " free:%lu slab:%lu mapped:%lu pagetables:%lu bounce:%lu\n",
  1639. global_page_state(NR_ACTIVE_ANON),
  1640. global_page_state(NR_ACTIVE_FILE),
  1641. global_page_state(NR_INACTIVE_ANON),
  1642. global_page_state(NR_INACTIVE_FILE),
  1643. #ifdef CONFIG_UNEVICTABLE_LRU
  1644. global_page_state(NR_UNEVICTABLE),
  1645. #endif
  1646. global_page_state(NR_FILE_DIRTY),
  1647. global_page_state(NR_WRITEBACK),
  1648. global_page_state(NR_UNSTABLE_NFS),
  1649. global_page_state(NR_FREE_PAGES),
  1650. global_page_state(NR_SLAB_RECLAIMABLE) +
  1651. global_page_state(NR_SLAB_UNRECLAIMABLE),
  1652. global_page_state(NR_FILE_MAPPED),
  1653. global_page_state(NR_PAGETABLE),
  1654. global_page_state(NR_BOUNCE));
  1655. for_each_populated_zone(zone) {
  1656. int i;
  1657. show_node(zone);
  1658. printk("%s"
  1659. " free:%lukB"
  1660. " min:%lukB"
  1661. " low:%lukB"
  1662. " high:%lukB"
  1663. " active_anon:%lukB"
  1664. " inactive_anon:%lukB"
  1665. " active_file:%lukB"
  1666. " inactive_file:%lukB"
  1667. #ifdef CONFIG_UNEVICTABLE_LRU
  1668. " unevictable:%lukB"
  1669. #endif
  1670. " present:%lukB"
  1671. " pages_scanned:%lu"
  1672. " all_unreclaimable? %s"
  1673. "\n",
  1674. zone->name,
  1675. K(zone_page_state(zone, NR_FREE_PAGES)),
  1676. K(zone->pages_min),
  1677. K(zone->pages_low),
  1678. K(zone->pages_high),
  1679. K(zone_page_state(zone, NR_ACTIVE_ANON)),
  1680. K(zone_page_state(zone, NR_INACTIVE_ANON)),
  1681. K(zone_page_state(zone, NR_ACTIVE_FILE)),
  1682. K(zone_page_state(zone, NR_INACTIVE_FILE)),
  1683. #ifdef CONFIG_UNEVICTABLE_LRU
  1684. K(zone_page_state(zone, NR_UNEVICTABLE)),
  1685. #endif
  1686. K(zone->present_pages),
  1687. zone->pages_scanned,
  1688. (zone_is_all_unreclaimable(zone) ? "yes" : "no")
  1689. );
  1690. printk("lowmem_reserve[]:");
  1691. for (i = 0; i < MAX_NR_ZONES; i++)
  1692. printk(" %lu", zone->lowmem_reserve[i]);
  1693. printk("\n");
  1694. }
  1695. for_each_populated_zone(zone) {
  1696. unsigned long nr[MAX_ORDER], flags, order, total = 0;
  1697. show_node(zone);
  1698. printk("%s: ", zone->name);
  1699. spin_lock_irqsave(&zone->lock, flags);
  1700. for (order = 0; order < MAX_ORDER; order++) {
  1701. nr[order] = zone->free_area[order].nr_free;
  1702. total += nr[order] << order;
  1703. }
  1704. spin_unlock_irqrestore(&zone->lock, flags);
  1705. for (order = 0; order < MAX_ORDER; order++)
  1706. printk("%lu*%lukB ", nr[order], K(1UL) << order);
  1707. printk("= %lukB\n", K(total));
  1708. }
  1709. printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
  1710. show_swap_cache_info();
  1711. }
  1712. static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
  1713. {
  1714. zoneref->zone = zone;
  1715. zoneref->zone_idx = zone_idx(zone);
  1716. }
  1717. /*
  1718. * Builds allocation fallback zone lists.
  1719. *
  1720. * Add all populated zones of a node to the zonelist.
  1721. */
  1722. static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
  1723. int nr_zones, enum zone_type zone_type)
  1724. {
  1725. struct zone *zone;
  1726. BUG_ON(zone_type >= MAX_NR_ZONES);
  1727. zone_type++;
  1728. do {
  1729. zone_type--;
  1730. zone = pgdat->node_zones + zone_type;
  1731. if (populated_zone(zone)) {
  1732. zoneref_set_zone(zone,
  1733. &zonelist->_zonerefs[nr_zones++]);
  1734. check_highest_zone(zone_type);
  1735. }
  1736. } while (zone_type);
  1737. return nr_zones;
  1738. }
  1739. /*
  1740. * zonelist_order:
  1741. * 0 = automatic detection of better ordering.
  1742. * 1 = order by ([node] distance, -zonetype)
  1743. * 2 = order by (-zonetype, [node] distance)
  1744. *
  1745. * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
  1746. * the same zonelist. So only NUMA can configure this param.
  1747. */
  1748. #define ZONELIST_ORDER_DEFAULT 0
  1749. #define ZONELIST_ORDER_NODE 1
  1750. #define ZONELIST_ORDER_ZONE 2
  1751. /* zonelist order in the kernel.
  1752. * set_zonelist_order() will set this to NODE or ZONE.
  1753. */
  1754. static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
  1755. static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
  1756. #ifdef CONFIG_NUMA
  1757. /* The value user specified ....changed by config */
  1758. static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
  1759. /* string for sysctl */
  1760. #define NUMA_ZONELIST_ORDER_LEN 16
  1761. char numa_zonelist_order[16] = "default";
  1762. /*
  1763. * interface for configure zonelist ordering.
  1764. * command line option "numa_zonelist_order"
  1765. * = "[dD]efault - default, automatic configuration.
  1766. * = "[nN]ode - order by node locality, then by zone within node
  1767. * = "[zZ]one - order by zone, then by locality within zone
  1768. */
  1769. static int __parse_numa_zonelist_order(char *s)
  1770. {
  1771. if (*s == 'd' || *s == 'D') {
  1772. user_zonelist_order = ZONELIST_ORDER_DEFAULT;
  1773. } else if (*s == 'n' || *s == 'N') {
  1774. user_zonelist_order = ZONELIST_ORDER_NODE;
  1775. } else if (*s == 'z' || *s == 'Z') {
  1776. user_zonelist_order = ZONELIST_ORDER_ZONE;
  1777. } else {
  1778. printk(KERN_WARNING
  1779. "Ignoring invalid numa_zonelist_order value: "
  1780. "%s\n", s);
  1781. return -EINVAL;
  1782. }
  1783. return 0;
  1784. }
  1785. static __init int setup_numa_zonelist_order(char *s)
  1786. {
  1787. if (s)
  1788. return __parse_numa_zonelist_order(s);
  1789. return 0;
  1790. }
  1791. early_param("numa_zonelist_order", setup_numa_zonelist_order);
  1792. /*
  1793. * sysctl handler for numa_zonelist_order
  1794. */
  1795. int numa_zonelist_order_handler(ctl_table *table, int write,
  1796. struct file *file, void __user *buffer, size_t *length,
  1797. loff_t *ppos)
  1798. {
  1799. char saved_string[NUMA_ZONELIST_ORDER_LEN];
  1800. int ret;
  1801. if (write)
  1802. strncpy(saved_string, (char*)table->data,
  1803. NUMA_ZONELIST_ORDER_LEN);
  1804. ret = proc_dostring(table, write, file, buffer, length, ppos);
  1805. if (ret)
  1806. return ret;
  1807. if (write) {
  1808. int oldval = user_zonelist_order;
  1809. if (__parse_numa_zonelist_order((char*)table->data)) {
  1810. /*
  1811. * bogus value. restore saved string
  1812. */
  1813. strncpy((char*)table->data, saved_string,
  1814. NUMA_ZONELIST_ORDER_LEN);
  1815. user_zonelist_order = oldval;
  1816. } else if (oldval != user_zonelist_order)
  1817. build_all_zonelists();
  1818. }
  1819. return 0;
  1820. }
  1821. #define MAX_NODE_LOAD (num_online_nodes())
  1822. static int node_load[MAX_NUMNODES];
  1823. /**
  1824. * find_next_best_node - find the next node that should appear in a given node's fallback list
  1825. * @node: node whose fallback list we're appending
  1826. * @used_node_mask: nodemask_t of already used nodes
  1827. *
  1828. * We use a number of factors to determine which is the next node that should
  1829. * appear on a given node's fallback list. The node should not have appeared
  1830. * already in @node's fallback list, and it should be the next closest node
  1831. * according to the distance array (which contains arbitrary distance values
  1832. * from each node to each node in the system), and should also prefer nodes
  1833. * with no CPUs, since presumably they'll have very little allocation pressure
  1834. * on them otherwise.
  1835. * It returns -1 if no node is found.
  1836. */
  1837. static int find_next_best_node(int node, nodemask_t *used_node_mask)
  1838. {
  1839. int n, val;
  1840. int min_val = INT_MAX;
  1841. int best_node = -1;
  1842. node_to_cpumask_ptr(tmp, 0);
  1843. /* Use the local node if we haven't already */
  1844. if (!node_isset(node, *used_node_mask)) {
  1845. node_set(node, *used_node_mask);
  1846. return node;
  1847. }
  1848. for_each_node_state(n, N_HIGH_MEMORY) {
  1849. /* Don't want a node to appear more than once */
  1850. if (node_isset(n, *used_node_mask))
  1851. continue;
  1852. /* Use the distance array to find the distance */
  1853. val = node_distance(node, n);
  1854. /* Penalize nodes under us ("prefer the next node") */
  1855. val += (n < node);
  1856. /* Give preference to headless and unused nodes */
  1857. node_to_cpumask_ptr_next(tmp, n);
  1858. if (!cpus_empty(*tmp))
  1859. val += PENALTY_FOR_NODE_WITH_CPUS;
  1860. /* Slight preference for less loaded node */
  1861. val *= (MAX_NODE_LOAD*MAX_NUMNODES);
  1862. val += node_load[n];
  1863. if (val < min_val) {
  1864. min_val = val;
  1865. best_node = n;
  1866. }
  1867. }
  1868. if (best_node >= 0)
  1869. node_set(best_node, *used_node_mask);
  1870. return best_node;
  1871. }
  1872. /*
  1873. * Build zonelists ordered by node and zones within node.
  1874. * This results in maximum locality--normal zone overflows into local
  1875. * DMA zone, if any--but risks exhausting DMA zone.
  1876. */
  1877. static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
  1878. {
  1879. int j;
  1880. struct zonelist *zonelist;
  1881. zonelist = &pgdat->node_zonelists[0];
  1882. for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
  1883. ;
  1884. j = build_zonelists_node(NODE_DATA(node), zonelist, j,
  1885. MAX_NR_ZONES - 1);
  1886. zonelist->_zonerefs[j].zone = NULL;
  1887. zonelist->_zonerefs[j].zone_idx = 0;
  1888. }
  1889. /*
  1890. * Build gfp_thisnode zonelists
  1891. */
  1892. static void build_thisnode_zonelists(pg_data_t *pgdat)
  1893. {
  1894. int j;
  1895. struct zonelist *zonelist;
  1896. zonelist = &pgdat->node_zonelists[1];
  1897. j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
  1898. zonelist->_zonerefs[j].zone = NULL;
  1899. zonelist->_zonerefs[j].zone_idx = 0;
  1900. }
  1901. /*
  1902. * Build zonelists ordered by zone and nodes within zones.
  1903. * This results in conserving DMA zone[s] until all Normal memory is
  1904. * exhausted, but results in overflowing to remote node while memory
  1905. * may still exist in local DMA zone.
  1906. */
  1907. static int node_order[MAX_NUMNODES];
  1908. static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
  1909. {
  1910. int pos, j, node;
  1911. int zone_type; /* needs to be signed */
  1912. struct zone *z;
  1913. struct zonelist *zonelist;
  1914. zonelist = &pgdat->node_zonelists[0];
  1915. pos = 0;
  1916. for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
  1917. for (j = 0; j < nr_nodes; j++) {
  1918. node = node_order[j];
  1919. z = &NODE_DATA(node)->node_zones[zone_type];
  1920. if (populated_zone(z)) {
  1921. zoneref_set_zone(z,
  1922. &zonelist->_zonerefs[pos++]);
  1923. check_highest_zone(zone_type);
  1924. }
  1925. }
  1926. }
  1927. zonelist->_zonerefs[pos].zone = NULL;
  1928. zonelist->_zonerefs[pos].zone_idx = 0;
  1929. }
  1930. static int default_zonelist_order(void)
  1931. {
  1932. int nid, zone_type;
  1933. unsigned long low_kmem_size,total_size;
  1934. struct zone *z;
  1935. int average_size;
  1936. /*
  1937. * ZONE_DMA and ZONE_DMA32 can be very small area in the sytem.
  1938. * If they are really small and used heavily, the system can fall
  1939. * into OOM very easily.
  1940. * This function detect ZONE_DMA/DMA32 size and confgigures zone order.
  1941. */
  1942. /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
  1943. low_kmem_size = 0;
  1944. total_size = 0;
  1945. for_each_online_node(nid) {
  1946. for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
  1947. z = &NODE_DATA(nid)->node_zones[zone_type];
  1948. if (populated_zone(z)) {
  1949. if (zone_type < ZONE_NORMAL)
  1950. low_kmem_size += z->present_pages;
  1951. total_size += z->present_pages;
  1952. }
  1953. }
  1954. }
  1955. if (!low_kmem_size || /* there are no DMA area. */
  1956. low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
  1957. return ZONELIST_ORDER_NODE;
  1958. /*
  1959. * look into each node's config.
  1960. * If there is a node whose DMA/DMA32 memory is very big area on
  1961. * local memory, NODE_ORDER may be suitable.
  1962. */
  1963. average_size = total_size /
  1964. (nodes_weight(node_states[N_HIGH_MEMORY]) + 1);
  1965. for_each_online_node(nid) {
  1966. low_kmem_size = 0;
  1967. total_size = 0;
  1968. for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
  1969. z = &NODE_DATA(nid)->node_zones[zone_type];
  1970. if (populated_zone(z)) {
  1971. if (zone_type < ZONE_NORMAL)
  1972. low_kmem_size += z->present_pages;
  1973. total_size += z->present_pages;
  1974. }
  1975. }
  1976. if (low_kmem_size &&
  1977. total_size > average_size && /* ignore small node */
  1978. low_kmem_size > total_size * 70/100)
  1979. return ZONELIST_ORDER_NODE;
  1980. }
  1981. return ZONELIST_ORDER_ZONE;
  1982. }
  1983. static void set_zonelist_order(void)
  1984. {
  1985. if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
  1986. current_zonelist_order = default_zonelist_order();
  1987. else
  1988. current_zonelist_order = user_zonelist_order;
  1989. }
  1990. static void build_zonelists(pg_data_t *pgdat)
  1991. {
  1992. int j, node, load;
  1993. enum zone_type i;
  1994. nodemask_t used_mask;
  1995. int local_node, prev_node;
  1996. struct zonelist *zonelist;
  1997. int order = current_zonelist_order;
  1998. /* initialize zonelists */
  1999. for (i = 0; i < MAX_ZONELISTS; i++) {
  2000. zonelist = pgdat->node_zonelists + i;
  2001. zonelist->_zonerefs[0].zone = NULL;
  2002. zonelist->_zonerefs[0].zone_idx = 0;
  2003. }
  2004. /* NUMA-aware ordering of nodes */
  2005. local_node = pgdat->node_id;
  2006. load = num_online_nodes();
  2007. prev_node = local_node;
  2008. nodes_clear(used_mask);
  2009. memset(node_load, 0, sizeof(node_load));
  2010. memset(node_order, 0, sizeof(node_order));
  2011. j = 0;
  2012. while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
  2013. int distance = node_distance(local_node, node);
  2014. /*
  2015. * If another node is sufficiently far away then it is better
  2016. * to reclaim pages in a zone before going off node.
  2017. */
  2018. if (distance > RECLAIM_DISTANCE)
  2019. zone_reclaim_mode = 1;
  2020. /*
  2021. * We don't want to pressure a particular node.
  2022. * So adding penalty to the first node in same
  2023. * distance group to make it round-robin.
  2024. */
  2025. if (distance != node_distance(local_node, prev_node))
  2026. node_load[node] = load;
  2027. prev_node = node;
  2028. load--;
  2029. if (order == ZONELIST_ORDER_NODE)
  2030. build_zonelists_in_node_order(pgdat, node);
  2031. else
  2032. node_order[j++] = node; /* remember order */
  2033. }
  2034. if (order == ZONELIST_ORDER_ZONE) {
  2035. /* calculate node order -- i.e., DMA last! */
  2036. build_zonelists_in_zone_order(pgdat, j);
  2037. }
  2038. build_thisnode_zonelists(pgdat);
  2039. }
  2040. /* Construct the zonelist performance cache - see further mmzone.h */
  2041. static void build_zonelist_cache(pg_data_t *pgdat)
  2042. {
  2043. struct zonelist *zonelist;
  2044. struct zonelist_cache *zlc;
  2045. struct zoneref *z;
  2046. zonelist = &pgdat->node_zonelists[0];
  2047. zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
  2048. bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
  2049. for (z = zonelist->_zonerefs; z->zone; z++)
  2050. zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
  2051. }
  2052. #else /* CONFIG_NUMA */
  2053. static void set_zonelist_order(void)
  2054. {
  2055. current_zonelist_order = ZONELIST_ORDER_ZONE;
  2056. }
  2057. static void build_zonelists(pg_data_t *pgdat)
  2058. {
  2059. int node, local_node;
  2060. enum zone_type j;
  2061. struct zonelist *zonelist;
  2062. local_node = pgdat->node_id;
  2063. zonelist = &pgdat->node_zonelists[0];
  2064. j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
  2065. /*
  2066. * Now we build the zonelist so that it contains the zones
  2067. * of all the other nodes.
  2068. * We don't want to pressure a particular node, so when
  2069. * building the zones for node N, we make sure that the
  2070. * zones coming right after the local ones are those from
  2071. * node N+1 (modulo N)
  2072. */
  2073. for (node = local_node + 1; node < MAX_NUMNODES; node++) {
  2074. if (!node_online(node))
  2075. continue;
  2076. j = build_zonelists_node(NODE_DATA(node), zonelist, j,
  2077. MAX_NR_ZONES - 1);
  2078. }
  2079. for (node = 0; node < local_node; node++) {
  2080. if (!node_online(node))
  2081. continue;
  2082. j = build_zonelists_node(NODE_DATA(node), zonelist, j,
  2083. MAX_NR_ZONES - 1);
  2084. }
  2085. zonelist->_zonerefs[j].zone = NULL;
  2086. zonelist->_zonerefs[j].zone_idx = 0;
  2087. }
  2088. /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
  2089. static void build_zonelist_cache(pg_data_t *pgdat)
  2090. {
  2091. pgdat->node_zonelists[0].zlcache_ptr = NULL;
  2092. }
  2093. #endif /* CONFIG_NUMA */
  2094. /* return values int ....just for stop_machine() */
  2095. static int __build_all_zonelists(void *dummy)
  2096. {
  2097. int nid;
  2098. for_each_online_node(nid) {
  2099. pg_data_t *pgdat = NODE_DATA(nid);
  2100. build_zonelists(pgdat);
  2101. build_zonelist_cache(pgdat);
  2102. }
  2103. return 0;
  2104. }
  2105. void build_all_zonelists(void)
  2106. {
  2107. set_zonelist_order();
  2108. if (system_state == SYSTEM_BOOTING) {
  2109. __build_all_zonelists(NULL);
  2110. mminit_verify_zonelist();
  2111. cpuset_init_current_mems_allowed();
  2112. } else {
  2113. /* we have to stop all cpus to guarantee there is no user
  2114. of zonelist */
  2115. stop_machine(__build_all_zonelists, NULL, NULL);
  2116. /* cpuset refresh routine should be here */
  2117. }
  2118. vm_total_pages = nr_free_pagecache_pages();
  2119. /*
  2120. * Disable grouping by mobility if the number of pages in the
  2121. * system is too low to allow the mechanism to work. It would be
  2122. * more accurate, but expensive to check per-zone. This check is
  2123. * made on memory-hotadd so a system can start with mobility
  2124. * disabled and enable it later
  2125. */
  2126. if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
  2127. page_group_by_mobility_disabled = 1;
  2128. else
  2129. page_group_by_mobility_disabled = 0;
  2130. printk("Built %i zonelists in %s order, mobility grouping %s. "
  2131. "Total pages: %ld\n",
  2132. num_online_nodes(),
  2133. zonelist_order_name[current_zonelist_order],
  2134. page_group_by_mobility_disabled ? "off" : "on",
  2135. vm_total_pages);
  2136. #ifdef CONFIG_NUMA
  2137. printk("Policy zone: %s\n", zone_names[policy_zone]);
  2138. #endif
  2139. }
  2140. /*
  2141. * Helper functions to size the waitqueue hash table.
  2142. * Essentially these want to choose hash table sizes sufficiently
  2143. * large so that collisions trying to wait on pages are rare.
  2144. * But in fact, the number of active page waitqueues on typical
  2145. * systems is ridiculously low, less than 200. So this is even
  2146. * conservative, even though it seems large.
  2147. *
  2148. * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
  2149. * waitqueues, i.e. the size of the waitq table given the number of pages.
  2150. */
  2151. #define PAGES_PER_WAITQUEUE 256
  2152. #ifndef CONFIG_MEMORY_HOTPLUG
  2153. static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
  2154. {
  2155. unsigned long size = 1;
  2156. pages /= PAGES_PER_WAITQUEUE;
  2157. while (size < pages)
  2158. size <<= 1;
  2159. /*
  2160. * Once we have dozens or even hundreds of threads sleeping
  2161. * on IO we've got bigger problems than wait queue collision.
  2162. * Limit the size of the wait table to a reasonable size.
  2163. */
  2164. size = min(size, 4096UL);
  2165. return max(size, 4UL);
  2166. }
  2167. #else
  2168. /*
  2169. * A zone's size might be changed by hot-add, so it is not possible to determine
  2170. * a suitable size for its wait_table. So we use the maximum size now.
  2171. *
  2172. * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
  2173. *
  2174. * i386 (preemption config) : 4096 x 16 = 64Kbyte.
  2175. * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
  2176. * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
  2177. *
  2178. * The maximum entries are prepared when a zone's memory is (512K + 256) pages
  2179. * or more by the traditional way. (See above). It equals:
  2180. *
  2181. * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
  2182. * ia64(16K page size) : = ( 8G + 4M)byte.
  2183. * powerpc (64K page size) : = (32G +16M)byte.
  2184. */
  2185. static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
  2186. {
  2187. return 4096UL;
  2188. }
  2189. #endif
  2190. /*
  2191. * This is an integer logarithm so that shifts can be used later
  2192. * to extract the more random high bits from the multiplicative
  2193. * hash function before the remainder is taken.
  2194. */
  2195. static inline unsigned long wait_table_bits(unsigned long size)
  2196. {
  2197. return ffz(~size);
  2198. }
  2199. #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
  2200. /*
  2201. * Mark a number of pageblocks as MIGRATE_RESERVE. The number
  2202. * of blocks reserved is based on zone->pages_min. The memory within the
  2203. * reserve will tend to store contiguous free pages. Setting min_free_kbytes
  2204. * higher will lead to a bigger reserve which will get freed as contiguous
  2205. * blocks as reclaim kicks in
  2206. */
  2207. static void setup_zone_migrate_reserve(struct zone *zone)
  2208. {
  2209. unsigned long start_pfn, pfn, end_pfn;
  2210. struct page *page;
  2211. unsigned long reserve, block_migratetype;
  2212. /* Get the start pfn, end pfn and the number of blocks to reserve */
  2213. start_pfn = zone->zone_start_pfn;
  2214. end_pfn = start_pfn + zone->spanned_pages;
  2215. reserve = roundup(zone->pages_min, pageblock_nr_pages) >>
  2216. pageblock_order;
  2217. for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
  2218. if (!pfn_valid(pfn))
  2219. continue;
  2220. page = pfn_to_page(pfn);
  2221. /* Watch out for overlapping nodes */
  2222. if (page_to_nid(page) != zone_to_nid(zone))
  2223. continue;
  2224. /* Blocks with reserved pages will never free, skip them. */
  2225. if (PageReserved(page))
  2226. continue;
  2227. block_migratetype = get_pageblock_migratetype(page);
  2228. /* If this block is reserved, account for it */
  2229. if (reserve > 0 && block_migratetype == MIGRATE_RESERVE) {
  2230. reserve--;
  2231. continue;
  2232. }
  2233. /* Suitable for reserving if this block is movable */
  2234. if (reserve > 0 && block_migratetype == MIGRATE_MOVABLE) {
  2235. set_pageblock_migratetype(page, MIGRATE_RESERVE);
  2236. move_freepages_block(zone, page, MIGRATE_RESERVE);
  2237. reserve--;
  2238. continue;
  2239. }
  2240. /*
  2241. * If the reserve is met and this is a previous reserved block,
  2242. * take it back
  2243. */
  2244. if (block_migratetype == MIGRATE_RESERVE) {
  2245. set_pageblock_migratetype(page, MIGRATE_MOVABLE);
  2246. move_freepages_block(zone, page, MIGRATE_MOVABLE);
  2247. }
  2248. }
  2249. }
  2250. /*
  2251. * Initially all pages are reserved - free ones are freed
  2252. * up by free_all_bootmem() once the early boot process is
  2253. * done. Non-atomic initialization, single-pass.
  2254. */
  2255. void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
  2256. unsigned long start_pfn, enum memmap_context context)
  2257. {
  2258. struct page *page;
  2259. unsigned long end_pfn = start_pfn + size;
  2260. unsigned long pfn;
  2261. struct zone *z;
  2262. if (highest_memmap_pfn < end_pfn - 1)
  2263. highest_memmap_pfn = end_pfn - 1;
  2264. z = &NODE_DATA(nid)->node_zones[zone];
  2265. for (pfn = start_pfn; pfn < end_pfn; pfn++) {
  2266. /*
  2267. * There can be holes in boot-time mem_map[]s
  2268. * handed to this function. They do not
  2269. * exist on hotplugged memory.
  2270. */
  2271. if (context == MEMMAP_EARLY) {
  2272. if (!early_pfn_valid(pfn))
  2273. continue;
  2274. if (!early_pfn_in_nid(pfn, nid))
  2275. continue;
  2276. }
  2277. page = pfn_to_page(pfn);
  2278. set_page_links(page, zone, nid, pfn);
  2279. mminit_verify_page_links(page, zone, nid, pfn);
  2280. init_page_count(page);
  2281. reset_page_mapcount(page);
  2282. SetPageReserved(page);
  2283. /*
  2284. * Mark the block movable so that blocks are reserved for
  2285. * movable at startup. This will force kernel allocations
  2286. * to reserve their blocks rather than leaking throughout
  2287. * the address space during boot when many long-lived
  2288. * kernel allocations are made. Later some blocks near
  2289. * the start are marked MIGRATE_RESERVE by
  2290. * setup_zone_migrate_reserve()
  2291. *
  2292. * bitmap is created for zone's valid pfn range. but memmap
  2293. * can be created for invalid pages (for alignment)
  2294. * check here not to call set_pageblock_migratetype() against
  2295. * pfn out of zone.
  2296. */
  2297. if ((z->zone_start_pfn <= pfn)
  2298. && (pfn < z->zone_start_pfn + z->spanned_pages)
  2299. && !(pfn & (pageblock_nr_pages - 1)))
  2300. set_pageblock_migratetype(page, MIGRATE_MOVABLE);
  2301. INIT_LIST_HEAD(&page->lru);
  2302. #ifdef WANT_PAGE_VIRTUAL
  2303. /* The shift won't overflow because ZONE_NORMAL is below 4G. */
  2304. if (!is_highmem_idx(zone))
  2305. set_page_address(page, __va(pfn << PAGE_SHIFT));
  2306. #endif
  2307. }
  2308. }
  2309. static void __meminit zone_init_free_lists(struct zone *zone)
  2310. {
  2311. int order, t;
  2312. for_each_migratetype_order(order, t) {
  2313. INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
  2314. zone->free_area[order].nr_free = 0;
  2315. }
  2316. }
  2317. #ifndef __HAVE_ARCH_MEMMAP_INIT
  2318. #define memmap_init(size, nid, zone, start_pfn) \
  2319. memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
  2320. #endif
  2321. static int zone_batchsize(struct zone *zone)
  2322. {
  2323. int batch;
  2324. /*
  2325. * The per-cpu-pages pools are set to around 1000th of the
  2326. * size of the zone. But no more than 1/2 of a meg.
  2327. *
  2328. * OK, so we don't know how big the cache is. So guess.
  2329. */
  2330. batch = zone->present_pages / 1024;
  2331. if (batch * PAGE_SIZE > 512 * 1024)
  2332. batch = (512 * 1024) / PAGE_SIZE;
  2333. batch /= 4; /* We effectively *= 4 below */
  2334. if (batch < 1)
  2335. batch = 1;
  2336. /*
  2337. * Clamp the batch to a 2^n - 1 value. Having a power
  2338. * of 2 value was found to be more likely to have
  2339. * suboptimal cache aliasing properties in some cases.
  2340. *
  2341. * For example if 2 tasks are alternately allocating
  2342. * batches of pages, one task can end up with a lot
  2343. * of pages of one half of the possible page colors
  2344. * and the other with pages of the other colors.
  2345. */
  2346. batch = (1 << (fls(batch + batch/2)-1)) - 1;
  2347. return batch;
  2348. }
  2349. static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
  2350. {
  2351. struct per_cpu_pages *pcp;
  2352. memset(p, 0, sizeof(*p));
  2353. pcp = &p->pcp;
  2354. pcp->count = 0;
  2355. pcp->high = 6 * batch;
  2356. pcp->batch = max(1UL, 1 * batch);
  2357. INIT_LIST_HEAD(&pcp->list);
  2358. }
  2359. /*
  2360. * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
  2361. * to the value high for the pageset p.
  2362. */
  2363. static void setup_pagelist_highmark(struct per_cpu_pageset *p,
  2364. unsigned long high)
  2365. {
  2366. struct per_cpu_pages *pcp;
  2367. pcp = &p->pcp;
  2368. pcp->high = high;
  2369. pcp->batch = max(1UL, high/4);
  2370. if ((high/4) > (PAGE_SHIFT * 8))
  2371. pcp->batch = PAGE_SHIFT * 8;
  2372. }
  2373. #ifdef CONFIG_NUMA
  2374. /*
  2375. * Boot pageset table. One per cpu which is going to be used for all
  2376. * zones and all nodes. The parameters will be set in such a way
  2377. * that an item put on a list will immediately be handed over to
  2378. * the buddy list. This is safe since pageset manipulation is done
  2379. * with interrupts disabled.
  2380. *
  2381. * Some NUMA counter updates may also be caught by the boot pagesets.
  2382. *
  2383. * The boot_pagesets must be kept even after bootup is complete for
  2384. * unused processors and/or zones. They do play a role for bootstrapping
  2385. * hotplugged processors.
  2386. *
  2387. * zoneinfo_show() and maybe other functions do
  2388. * not check if the processor is online before following the pageset pointer.
  2389. * Other parts of the kernel may not check if the zone is available.
  2390. */
  2391. static struct per_cpu_pageset boot_pageset[NR_CPUS];
  2392. /*
  2393. * Dynamically allocate memory for the
  2394. * per cpu pageset array in struct zone.
  2395. */
  2396. static int __cpuinit process_zones(int cpu)
  2397. {
  2398. struct zone *zone, *dzone;
  2399. int node = cpu_to_node(cpu);
  2400. node_set_state(node, N_CPU); /* this node has a cpu */
  2401. for_each_populated_zone(zone) {
  2402. zone_pcp(zone, cpu) = kmalloc_node(sizeof(struct per_cpu_pageset),
  2403. GFP_KERNEL, node);
  2404. if (!zone_pcp(zone, cpu))
  2405. goto bad;
  2406. setup_pageset(zone_pcp(zone, cpu), zone_batchsize(zone));
  2407. if (percpu_pagelist_fraction)
  2408. setup_pagelist_highmark(zone_pcp(zone, cpu),
  2409. (zone->present_pages / percpu_pagelist_fraction));
  2410. }
  2411. return 0;
  2412. bad:
  2413. for_each_zone(dzone) {
  2414. if (!populated_zone(dzone))
  2415. continue;
  2416. if (dzone == zone)
  2417. break;
  2418. kfree(zone_pcp(dzone, cpu));
  2419. zone_pcp(dzone, cpu) = NULL;
  2420. }
  2421. return -ENOMEM;
  2422. }
  2423. static inline void free_zone_pagesets(int cpu)
  2424. {
  2425. struct zone *zone;
  2426. for_each_zone(zone) {
  2427. struct per_cpu_pageset *pset = zone_pcp(zone, cpu);
  2428. /* Free per_cpu_pageset if it is slab allocated */
  2429. if (pset != &boot_pageset[cpu])
  2430. kfree(pset);
  2431. zone_pcp(zone, cpu) = NULL;
  2432. }
  2433. }
  2434. static int __cpuinit pageset_cpuup_callback(struct notifier_block *nfb,
  2435. unsigned long action,
  2436. void *hcpu)
  2437. {
  2438. int cpu = (long)hcpu;
  2439. int ret = NOTIFY_OK;
  2440. switch (action) {
  2441. case CPU_UP_PREPARE:
  2442. case CPU_UP_PREPARE_FROZEN:
  2443. if (process_zones(cpu))
  2444. ret = NOTIFY_BAD;
  2445. break;
  2446. case CPU_UP_CANCELED:
  2447. case CPU_UP_CANCELED_FROZEN:
  2448. case CPU_DEAD:
  2449. case CPU_DEAD_FROZEN:
  2450. free_zone_pagesets(cpu);
  2451. break;
  2452. default:
  2453. break;
  2454. }
  2455. return ret;
  2456. }
  2457. static struct notifier_block __cpuinitdata pageset_notifier =
  2458. { &pageset_cpuup_callback, NULL, 0 };
  2459. void __init setup_per_cpu_pageset(void)
  2460. {
  2461. int err;
  2462. /* Initialize per_cpu_pageset for cpu 0.
  2463. * A cpuup callback will do this for every cpu
  2464. * as it comes online
  2465. */
  2466. err = process_zones(smp_processor_id());
  2467. BUG_ON(err);
  2468. register_cpu_notifier(&pageset_notifier);
  2469. }
  2470. #endif
  2471. static noinline __init_refok
  2472. int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
  2473. {
  2474. int i;
  2475. struct pglist_data *pgdat = zone->zone_pgdat;
  2476. size_t alloc_size;
  2477. /*
  2478. * The per-page waitqueue mechanism uses hashed waitqueues
  2479. * per zone.
  2480. */
  2481. zone->wait_table_hash_nr_entries =
  2482. wait_table_hash_nr_entries(zone_size_pages);
  2483. zone->wait_table_bits =
  2484. wait_table_bits(zone->wait_table_hash_nr_entries);
  2485. alloc_size = zone->wait_table_hash_nr_entries
  2486. * sizeof(wait_queue_head_t);
  2487. if (!slab_is_available()) {
  2488. zone->wait_table = (wait_queue_head_t *)
  2489. alloc_bootmem_node(pgdat, alloc_size);
  2490. } else {
  2491. /*
  2492. * This case means that a zone whose size was 0 gets new memory
  2493. * via memory hot-add.
  2494. * But it may be the case that a new node was hot-added. In
  2495. * this case vmalloc() will not be able to use this new node's
  2496. * memory - this wait_table must be initialized to use this new
  2497. * node itself as well.
  2498. * To use this new node's memory, further consideration will be
  2499. * necessary.
  2500. */
  2501. zone->wait_table = vmalloc(alloc_size);
  2502. }
  2503. if (!zone->wait_table)
  2504. return -ENOMEM;
  2505. for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
  2506. init_waitqueue_head(zone->wait_table + i);
  2507. return 0;
  2508. }
  2509. static __meminit void zone_pcp_init(struct zone *zone)
  2510. {
  2511. int cpu;
  2512. unsigned long batch = zone_batchsize(zone);
  2513. for (cpu = 0; cpu < NR_CPUS; cpu++) {
  2514. #ifdef CONFIG_NUMA
  2515. /* Early boot. Slab allocator not functional yet */
  2516. zone_pcp(zone, cpu) = &boot_pageset[cpu];
  2517. setup_pageset(&boot_pageset[cpu],0);
  2518. #else
  2519. setup_pageset(zone_pcp(zone,cpu), batch);
  2520. #endif
  2521. }
  2522. if (zone->present_pages)
  2523. printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%lu\n",
  2524. zone->name, zone->present_pages, batch);
  2525. }
  2526. __meminit int init_currently_empty_zone(struct zone *zone,
  2527. unsigned long zone_start_pfn,
  2528. unsigned long size,
  2529. enum memmap_context context)
  2530. {
  2531. struct pglist_data *pgdat = zone->zone_pgdat;
  2532. int ret;
  2533. ret = zone_wait_table_init(zone, size);
  2534. if (ret)
  2535. return ret;
  2536. pgdat->nr_zones = zone_idx(zone) + 1;
  2537. zone->zone_start_pfn = zone_start_pfn;
  2538. mminit_dprintk(MMINIT_TRACE, "memmap_init",
  2539. "Initialising map node %d zone %lu pfns %lu -> %lu\n",
  2540. pgdat->node_id,
  2541. (unsigned long)zone_idx(zone),
  2542. zone_start_pfn, (zone_start_pfn + size));
  2543. zone_init_free_lists(zone);
  2544. return 0;
  2545. }
  2546. #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
  2547. /*
  2548. * Basic iterator support. Return the first range of PFNs for a node
  2549. * Note: nid == MAX_NUMNODES returns first region regardless of node
  2550. */
  2551. static int __meminit first_active_region_index_in_nid(int nid)
  2552. {
  2553. int i;
  2554. for (i = 0; i < nr_nodemap_entries; i++)
  2555. if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
  2556. return i;
  2557. return -1;
  2558. }
  2559. /*
  2560. * Basic iterator support. Return the next active range of PFNs for a node
  2561. * Note: nid == MAX_NUMNODES returns next region regardless of node
  2562. */
  2563. static int __meminit next_active_region_index_in_nid(int index, int nid)
  2564. {
  2565. for (index = index + 1; index < nr_nodemap_entries; index++)
  2566. if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
  2567. return index;
  2568. return -1;
  2569. }
  2570. #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
  2571. /*
  2572. * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
  2573. * Architectures may implement their own version but if add_active_range()
  2574. * was used and there are no special requirements, this is a convenient
  2575. * alternative
  2576. */
  2577. int __meminit __early_pfn_to_nid(unsigned long pfn)
  2578. {
  2579. int i;
  2580. for (i = 0; i < nr_nodemap_entries; i++) {
  2581. unsigned long start_pfn = early_node_map[i].start_pfn;
  2582. unsigned long end_pfn = early_node_map[i].end_pfn;
  2583. if (start_pfn <= pfn && pfn < end_pfn)
  2584. return early_node_map[i].nid;
  2585. }
  2586. /* This is a memory hole */
  2587. return -1;
  2588. }
  2589. #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
  2590. int __meminit early_pfn_to_nid(unsigned long pfn)
  2591. {
  2592. int nid;
  2593. nid = __early_pfn_to_nid(pfn);
  2594. if (nid >= 0)
  2595. return nid;
  2596. /* just returns 0 */
  2597. return 0;
  2598. }
  2599. #ifdef CONFIG_NODES_SPAN_OTHER_NODES
  2600. bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
  2601. {
  2602. int nid;
  2603. nid = __early_pfn_to_nid(pfn);
  2604. if (nid >= 0 && nid != node)
  2605. return false;
  2606. return true;
  2607. }
  2608. #endif
  2609. /* Basic iterator support to walk early_node_map[] */
  2610. #define for_each_active_range_index_in_nid(i, nid) \
  2611. for (i = first_active_region_index_in_nid(nid); i != -1; \
  2612. i = next_active_region_index_in_nid(i, nid))
  2613. /**
  2614. * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
  2615. * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
  2616. * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
  2617. *
  2618. * If an architecture guarantees that all ranges registered with
  2619. * add_active_ranges() contain no holes and may be freed, this
  2620. * this function may be used instead of calling free_bootmem() manually.
  2621. */
  2622. void __init free_bootmem_with_active_regions(int nid,
  2623. unsigned long max_low_pfn)
  2624. {
  2625. int i;
  2626. for_each_active_range_index_in_nid(i, nid) {
  2627. unsigned long size_pages = 0;
  2628. unsigned long end_pfn = early_node_map[i].end_pfn;
  2629. if (early_node_map[i].start_pfn >= max_low_pfn)
  2630. continue;
  2631. if (end_pfn > max_low_pfn)
  2632. end_pfn = max_low_pfn;
  2633. size_pages = end_pfn - early_node_map[i].start_pfn;
  2634. free_bootmem_node(NODE_DATA(early_node_map[i].nid),
  2635. PFN_PHYS(early_node_map[i].start_pfn),
  2636. size_pages << PAGE_SHIFT);
  2637. }
  2638. }
  2639. void __init work_with_active_regions(int nid, work_fn_t work_fn, void *data)
  2640. {
  2641. int i;
  2642. int ret;
  2643. for_each_active_range_index_in_nid(i, nid) {
  2644. ret = work_fn(early_node_map[i].start_pfn,
  2645. early_node_map[i].end_pfn, data);
  2646. if (ret)
  2647. break;
  2648. }
  2649. }
  2650. /**
  2651. * sparse_memory_present_with_active_regions - Call memory_present for each active range
  2652. * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
  2653. *
  2654. * If an architecture guarantees that all ranges registered with
  2655. * add_active_ranges() contain no holes and may be freed, this
  2656. * function may be used instead of calling memory_present() manually.
  2657. */
  2658. void __init sparse_memory_present_with_active_regions(int nid)
  2659. {
  2660. int i;
  2661. for_each_active_range_index_in_nid(i, nid)
  2662. memory_present(early_node_map[i].nid,
  2663. early_node_map[i].start_pfn,
  2664. early_node_map[i].end_pfn);
  2665. }
  2666. /**
  2667. * push_node_boundaries - Push node boundaries to at least the requested boundary
  2668. * @nid: The nid of the node to push the boundary for
  2669. * @start_pfn: The start pfn of the node
  2670. * @end_pfn: The end pfn of the node
  2671. *
  2672. * In reserve-based hot-add, mem_map is allocated that is unused until hotadd
  2673. * time. Specifically, on x86_64, SRAT will report ranges that can potentially
  2674. * be hotplugged even though no physical memory exists. This function allows
  2675. * an arch to push out the node boundaries so mem_map is allocated that can
  2676. * be used later.
  2677. */
  2678. #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
  2679. void __init push_node_boundaries(unsigned int nid,
  2680. unsigned long start_pfn, unsigned long end_pfn)
  2681. {
  2682. mminit_dprintk(MMINIT_TRACE, "zoneboundary",
  2683. "Entering push_node_boundaries(%u, %lu, %lu)\n",
  2684. nid, start_pfn, end_pfn);
  2685. /* Initialise the boundary for this node if necessary */
  2686. if (node_boundary_end_pfn[nid] == 0)
  2687. node_boundary_start_pfn[nid] = -1UL;
  2688. /* Update the boundaries */
  2689. if (node_boundary_start_pfn[nid] > start_pfn)
  2690. node_boundary_start_pfn[nid] = start_pfn;
  2691. if (node_boundary_end_pfn[nid] < end_pfn)
  2692. node_boundary_end_pfn[nid] = end_pfn;
  2693. }
  2694. /* If necessary, push the node boundary out for reserve hotadd */
  2695. static void __meminit account_node_boundary(unsigned int nid,
  2696. unsigned long *start_pfn, unsigned long *end_pfn)
  2697. {
  2698. mminit_dprintk(MMINIT_TRACE, "zoneboundary",
  2699. "Entering account_node_boundary(%u, %lu, %lu)\n",
  2700. nid, *start_pfn, *end_pfn);
  2701. /* Return if boundary information has not been provided */
  2702. if (node_boundary_end_pfn[nid] == 0)
  2703. return;
  2704. /* Check the boundaries and update if necessary */
  2705. if (node_boundary_start_pfn[nid] < *start_pfn)
  2706. *start_pfn = node_boundary_start_pfn[nid];
  2707. if (node_boundary_end_pfn[nid] > *end_pfn)
  2708. *end_pfn = node_boundary_end_pfn[nid];
  2709. }
  2710. #else
  2711. void __init push_node_boundaries(unsigned int nid,
  2712. unsigned long start_pfn, unsigned long end_pfn) {}
  2713. static void __meminit account_node_boundary(unsigned int nid,
  2714. unsigned long *start_pfn, unsigned long *end_pfn) {}
  2715. #endif
  2716. /**
  2717. * get_pfn_range_for_nid - Return the start and end page frames for a node
  2718. * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
  2719. * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
  2720. * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
  2721. *
  2722. * It returns the start and end page frame of a node based on information
  2723. * provided by an arch calling add_active_range(). If called for a node
  2724. * with no available memory, a warning is printed and the start and end
  2725. * PFNs will be 0.
  2726. */
  2727. void __meminit get_pfn_range_for_nid(unsigned int nid,
  2728. unsigned long *start_pfn, unsigned long *end_pfn)
  2729. {
  2730. int i;
  2731. *start_pfn = -1UL;
  2732. *end_pfn = 0;
  2733. for_each_active_range_index_in_nid(i, nid) {
  2734. *start_pfn = min(*start_pfn, early_node_map[i].start_pfn);
  2735. *end_pfn = max(*end_pfn, early_node_map[i].end_pfn);
  2736. }
  2737. if (*start_pfn == -1UL)
  2738. *start_pfn = 0;
  2739. /* Push the node boundaries out if requested */
  2740. account_node_boundary(nid, start_pfn, end_pfn);
  2741. }
  2742. /*
  2743. * This finds a zone that can be used for ZONE_MOVABLE pages. The
  2744. * assumption is made that zones within a node are ordered in monotonic
  2745. * increasing memory addresses so that the "highest" populated zone is used
  2746. */
  2747. static void __init find_usable_zone_for_movable(void)
  2748. {
  2749. int zone_index;
  2750. for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
  2751. if (zone_index == ZONE_MOVABLE)
  2752. continue;
  2753. if (arch_zone_highest_possible_pfn[zone_index] >
  2754. arch_zone_lowest_possible_pfn[zone_index])
  2755. break;
  2756. }
  2757. VM_BUG_ON(zone_index == -1);
  2758. movable_zone = zone_index;
  2759. }
  2760. /*
  2761. * The zone ranges provided by the architecture do not include ZONE_MOVABLE
  2762. * because it is sized independant of architecture. Unlike the other zones,
  2763. * the starting point for ZONE_MOVABLE is not fixed. It may be different
  2764. * in each node depending on the size of each node and how evenly kernelcore
  2765. * is distributed. This helper function adjusts the zone ranges
  2766. * provided by the architecture for a given node by using the end of the
  2767. * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
  2768. * zones within a node are in order of monotonic increases memory addresses
  2769. */
  2770. static void __meminit adjust_zone_range_for_zone_movable(int nid,
  2771. unsigned long zone_type,
  2772. unsigned long node_start_pfn,
  2773. unsigned long node_end_pfn,
  2774. unsigned long *zone_start_pfn,
  2775. unsigned long *zone_end_pfn)
  2776. {
  2777. /* Only adjust if ZONE_MOVABLE is on this node */
  2778. if (zone_movable_pfn[nid]) {
  2779. /* Size ZONE_MOVABLE */
  2780. if (zone_type == ZONE_MOVABLE) {
  2781. *zone_start_pfn = zone_movable_pfn[nid];
  2782. *zone_end_pfn = min(node_end_pfn,
  2783. arch_zone_highest_possible_pfn[movable_zone]);
  2784. /* Adjust for ZONE_MOVABLE starting within this range */
  2785. } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
  2786. *zone_end_pfn > zone_movable_pfn[nid]) {
  2787. *zone_end_pfn = zone_movable_pfn[nid];
  2788. /* Check if this whole range is within ZONE_MOVABLE */
  2789. } else if (*zone_start_pfn >= zone_movable_pfn[nid])
  2790. *zone_start_pfn = *zone_end_pfn;
  2791. }
  2792. }
  2793. /*
  2794. * Return the number of pages a zone spans in a node, including holes
  2795. * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
  2796. */
  2797. static unsigned long __meminit zone_spanned_pages_in_node(int nid,
  2798. unsigned long zone_type,
  2799. unsigned long *ignored)
  2800. {
  2801. unsigned long node_start_pfn, node_end_pfn;
  2802. unsigned long zone_start_pfn, zone_end_pfn;
  2803. /* Get the start and end of the node and zone */
  2804. get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
  2805. zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
  2806. zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
  2807. adjust_zone_range_for_zone_movable(nid, zone_type,
  2808. node_start_pfn, node_end_pfn,
  2809. &zone_start_pfn, &zone_end_pfn);
  2810. /* Check that this node has pages within the zone's required range */
  2811. if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
  2812. return 0;
  2813. /* Move the zone boundaries inside the node if necessary */
  2814. zone_end_pfn = min(zone_end_pfn, node_end_pfn);
  2815. zone_start_pfn = max(zone_start_pfn, node_start_pfn);
  2816. /* Return the spanned pages */
  2817. return zone_end_pfn - zone_start_pfn;
  2818. }
  2819. /*
  2820. * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
  2821. * then all holes in the requested range will be accounted for.
  2822. */
  2823. static unsigned long __meminit __absent_pages_in_range(int nid,
  2824. unsigned long range_start_pfn,
  2825. unsigned long range_end_pfn)
  2826. {
  2827. int i = 0;
  2828. unsigned long prev_end_pfn = 0, hole_pages = 0;
  2829. unsigned long start_pfn;
  2830. /* Find the end_pfn of the first active range of pfns in the node */
  2831. i = first_active_region_index_in_nid(nid);
  2832. if (i == -1)
  2833. return 0;
  2834. prev_end_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
  2835. /* Account for ranges before physical memory on this node */
  2836. if (early_node_map[i].start_pfn > range_start_pfn)
  2837. hole_pages = prev_end_pfn - range_start_pfn;
  2838. /* Find all holes for the zone within the node */
  2839. for (; i != -1; i = next_active_region_index_in_nid(i, nid)) {
  2840. /* No need to continue if prev_end_pfn is outside the zone */
  2841. if (prev_end_pfn >= range_end_pfn)
  2842. break;
  2843. /* Make sure the end of the zone is not within the hole */
  2844. start_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
  2845. prev_end_pfn = max(prev_end_pfn, range_start_pfn);
  2846. /* Update the hole size cound and move on */
  2847. if (start_pfn > range_start_pfn) {
  2848. BUG_ON(prev_end_pfn > start_pfn);
  2849. hole_pages += start_pfn - prev_end_pfn;
  2850. }
  2851. prev_end_pfn = early_node_map[i].end_pfn;
  2852. }
  2853. /* Account for ranges past physical memory on this node */
  2854. if (range_end_pfn > prev_end_pfn)
  2855. hole_pages += range_end_pfn -
  2856. max(range_start_pfn, prev_end_pfn);
  2857. return hole_pages;
  2858. }
  2859. /**
  2860. * absent_pages_in_range - Return number of page frames in holes within a range
  2861. * @start_pfn: The start PFN to start searching for holes
  2862. * @end_pfn: The end PFN to stop searching for holes
  2863. *
  2864. * It returns the number of pages frames in memory holes within a range.
  2865. */
  2866. unsigned long __init absent_pages_in_range(unsigned long start_pfn,
  2867. unsigned long end_pfn)
  2868. {
  2869. return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
  2870. }
  2871. /* Return the number of page frames in holes in a zone on a node */
  2872. static unsigned long __meminit zone_absent_pages_in_node(int nid,
  2873. unsigned long zone_type,
  2874. unsigned long *ignored)
  2875. {
  2876. unsigned long node_start_pfn, node_end_pfn;
  2877. unsigned long zone_start_pfn, zone_end_pfn;
  2878. get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
  2879. zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type],
  2880. node_start_pfn);
  2881. zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type],
  2882. node_end_pfn);
  2883. adjust_zone_range_for_zone_movable(nid, zone_type,
  2884. node_start_pfn, node_end_pfn,
  2885. &zone_start_pfn, &zone_end_pfn);
  2886. return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
  2887. }
  2888. #else
  2889. static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
  2890. unsigned long zone_type,
  2891. unsigned long *zones_size)
  2892. {
  2893. return zones_size[zone_type];
  2894. }
  2895. static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
  2896. unsigned long zone_type,
  2897. unsigned long *zholes_size)
  2898. {
  2899. if (!zholes_size)
  2900. return 0;
  2901. return zholes_size[zone_type];
  2902. }
  2903. #endif
  2904. static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
  2905. unsigned long *zones_size, unsigned long *zholes_size)
  2906. {
  2907. unsigned long realtotalpages, totalpages = 0;
  2908. enum zone_type i;
  2909. for (i = 0; i < MAX_NR_ZONES; i++)
  2910. totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
  2911. zones_size);
  2912. pgdat->node_spanned_pages = totalpages;
  2913. realtotalpages = totalpages;
  2914. for (i = 0; i < MAX_NR_ZONES; i++)
  2915. realtotalpages -=
  2916. zone_absent_pages_in_node(pgdat->node_id, i,
  2917. zholes_size);
  2918. pgdat->node_present_pages = realtotalpages;
  2919. printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
  2920. realtotalpages);
  2921. }
  2922. #ifndef CONFIG_SPARSEMEM
  2923. /*
  2924. * Calculate the size of the zone->blockflags rounded to an unsigned long
  2925. * Start by making sure zonesize is a multiple of pageblock_order by rounding
  2926. * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
  2927. * round what is now in bits to nearest long in bits, then return it in
  2928. * bytes.
  2929. */
  2930. static unsigned long __init usemap_size(unsigned long zonesize)
  2931. {
  2932. unsigned long usemapsize;
  2933. usemapsize = roundup(zonesize, pageblock_nr_pages);
  2934. usemapsize = usemapsize >> pageblock_order;
  2935. usemapsize *= NR_PAGEBLOCK_BITS;
  2936. usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
  2937. return usemapsize / 8;
  2938. }
  2939. static void __init setup_usemap(struct pglist_data *pgdat,
  2940. struct zone *zone, unsigned long zonesize)
  2941. {
  2942. unsigned long usemapsize = usemap_size(zonesize);
  2943. zone->pageblock_flags = NULL;
  2944. if (usemapsize)
  2945. zone->pageblock_flags = alloc_bootmem_node(pgdat, usemapsize);
  2946. }
  2947. #else
  2948. static void inline setup_usemap(struct pglist_data *pgdat,
  2949. struct zone *zone, unsigned long zonesize) {}
  2950. #endif /* CONFIG_SPARSEMEM */
  2951. #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
  2952. /* Return a sensible default order for the pageblock size. */
  2953. static inline int pageblock_default_order(void)
  2954. {
  2955. if (HPAGE_SHIFT > PAGE_SHIFT)
  2956. return HUGETLB_PAGE_ORDER;
  2957. return MAX_ORDER-1;
  2958. }
  2959. /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
  2960. static inline void __init set_pageblock_order(unsigned int order)
  2961. {
  2962. /* Check that pageblock_nr_pages has not already been setup */
  2963. if (pageblock_order)
  2964. return;
  2965. /*
  2966. * Assume the largest contiguous order of interest is a huge page.
  2967. * This value may be variable depending on boot parameters on IA64
  2968. */
  2969. pageblock_order = order;
  2970. }
  2971. #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
  2972. /*
  2973. * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
  2974. * and pageblock_default_order() are unused as pageblock_order is set
  2975. * at compile-time. See include/linux/pageblock-flags.h for the values of
  2976. * pageblock_order based on the kernel config
  2977. */
  2978. static inline int pageblock_default_order(unsigned int order)
  2979. {
  2980. return MAX_ORDER-1;
  2981. }
  2982. #define set_pageblock_order(x) do {} while (0)
  2983. #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
  2984. /*
  2985. * Set up the zone data structures:
  2986. * - mark all pages reserved
  2987. * - mark all memory queues empty
  2988. * - clear the memory bitmaps
  2989. */
  2990. static void __paginginit free_area_init_core(struct pglist_data *pgdat,
  2991. unsigned long *zones_size, unsigned long *zholes_size)
  2992. {
  2993. enum zone_type j;
  2994. int nid = pgdat->node_id;
  2995. unsigned long zone_start_pfn = pgdat->node_start_pfn;
  2996. int ret;
  2997. pgdat_resize_init(pgdat);
  2998. pgdat->nr_zones = 0;
  2999. init_waitqueue_head(&pgdat->kswapd_wait);
  3000. pgdat->kswapd_max_order = 0;
  3001. pgdat_page_cgroup_init(pgdat);
  3002. for (j = 0; j < MAX_NR_ZONES; j++) {
  3003. struct zone *zone = pgdat->node_zones + j;
  3004. unsigned long size, realsize, memmap_pages;
  3005. enum lru_list l;
  3006. size = zone_spanned_pages_in_node(nid, j, zones_size);
  3007. realsize = size - zone_absent_pages_in_node(nid, j,
  3008. zholes_size);
  3009. /*
  3010. * Adjust realsize so that it accounts for how much memory
  3011. * is used by this zone for memmap. This affects the watermark
  3012. * and per-cpu initialisations
  3013. */
  3014. memmap_pages =
  3015. PAGE_ALIGN(size * sizeof(struct page)) >> PAGE_SHIFT;
  3016. if (realsize >= memmap_pages) {
  3017. realsize -= memmap_pages;
  3018. if (memmap_pages)
  3019. printk(KERN_DEBUG
  3020. " %s zone: %lu pages used for memmap\n",
  3021. zone_names[j], memmap_pages);
  3022. } else
  3023. printk(KERN_WARNING
  3024. " %s zone: %lu pages exceeds realsize %lu\n",
  3025. zone_names[j], memmap_pages, realsize);
  3026. /* Account for reserved pages */
  3027. if (j == 0 && realsize > dma_reserve) {
  3028. realsize -= dma_reserve;
  3029. printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
  3030. zone_names[0], dma_reserve);
  3031. }
  3032. if (!is_highmem_idx(j))
  3033. nr_kernel_pages += realsize;
  3034. nr_all_pages += realsize;
  3035. zone->spanned_pages = size;
  3036. zone->present_pages = realsize;
  3037. #ifdef CONFIG_NUMA
  3038. zone->node = nid;
  3039. zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
  3040. / 100;
  3041. zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
  3042. #endif
  3043. zone->name = zone_names[j];
  3044. spin_lock_init(&zone->lock);
  3045. spin_lock_init(&zone->lru_lock);
  3046. zone_seqlock_init(zone);
  3047. zone->zone_pgdat = pgdat;
  3048. zone->prev_priority = DEF_PRIORITY;
  3049. zone_pcp_init(zone);
  3050. for_each_lru(l) {
  3051. INIT_LIST_HEAD(&zone->lru[l].list);
  3052. zone->lru[l].nr_scan = 0;
  3053. }
  3054. zone->reclaim_stat.recent_rotated[0] = 0;
  3055. zone->reclaim_stat.recent_rotated[1] = 0;
  3056. zone->reclaim_stat.recent_scanned[0] = 0;
  3057. zone->reclaim_stat.recent_scanned[1] = 0;
  3058. zap_zone_vm_stats(zone);
  3059. zone->flags = 0;
  3060. if (!size)
  3061. continue;
  3062. set_pageblock_order(pageblock_default_order());
  3063. setup_usemap(pgdat, zone, size);
  3064. ret = init_currently_empty_zone(zone, zone_start_pfn,
  3065. size, MEMMAP_EARLY);
  3066. BUG_ON(ret);
  3067. memmap_init(size, nid, j, zone_start_pfn);
  3068. zone_start_pfn += size;
  3069. }
  3070. }
  3071. static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
  3072. {
  3073. /* Skip empty nodes */
  3074. if (!pgdat->node_spanned_pages)
  3075. return;
  3076. #ifdef CONFIG_FLAT_NODE_MEM_MAP
  3077. /* ia64 gets its own node_mem_map, before this, without bootmem */
  3078. if (!pgdat->node_mem_map) {
  3079. unsigned long size, start, end;
  3080. struct page *map;
  3081. /*
  3082. * The zone's endpoints aren't required to be MAX_ORDER
  3083. * aligned but the node_mem_map endpoints must be in order
  3084. * for the buddy allocator to function correctly.
  3085. */
  3086. start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
  3087. end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
  3088. end = ALIGN(end, MAX_ORDER_NR_PAGES);
  3089. size = (end - start) * sizeof(struct page);
  3090. map = alloc_remap(pgdat->node_id, size);
  3091. if (!map)
  3092. map = alloc_bootmem_node(pgdat, size);
  3093. pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
  3094. }
  3095. #ifndef CONFIG_NEED_MULTIPLE_NODES
  3096. /*
  3097. * With no DISCONTIG, the global mem_map is just set as node 0's
  3098. */
  3099. if (pgdat == NODE_DATA(0)) {
  3100. mem_map = NODE_DATA(0)->node_mem_map;
  3101. #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
  3102. if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
  3103. mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
  3104. #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
  3105. }
  3106. #endif
  3107. #endif /* CONFIG_FLAT_NODE_MEM_MAP */
  3108. }
  3109. void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
  3110. unsigned long node_start_pfn, unsigned long *zholes_size)
  3111. {
  3112. pg_data_t *pgdat = NODE_DATA(nid);
  3113. pgdat->node_id = nid;
  3114. pgdat->node_start_pfn = node_start_pfn;
  3115. calculate_node_totalpages(pgdat, zones_size, zholes_size);
  3116. alloc_node_mem_map(pgdat);
  3117. #ifdef CONFIG_FLAT_NODE_MEM_MAP
  3118. printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
  3119. nid, (unsigned long)pgdat,
  3120. (unsigned long)pgdat->node_mem_map);
  3121. #endif
  3122. free_area_init_core(pgdat, zones_size, zholes_size);
  3123. }
  3124. #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
  3125. #if MAX_NUMNODES > 1
  3126. /*
  3127. * Figure out the number of possible node ids.
  3128. */
  3129. static void __init setup_nr_node_ids(void)
  3130. {
  3131. unsigned int node;
  3132. unsigned int highest = 0;
  3133. for_each_node_mask(node, node_possible_map)
  3134. highest = node;
  3135. nr_node_ids = highest + 1;
  3136. }
  3137. #else
  3138. static inline void setup_nr_node_ids(void)
  3139. {
  3140. }
  3141. #endif
  3142. /**
  3143. * add_active_range - Register a range of PFNs backed by physical memory
  3144. * @nid: The node ID the range resides on
  3145. * @start_pfn: The start PFN of the available physical memory
  3146. * @end_pfn: The end PFN of the available physical memory
  3147. *
  3148. * These ranges are stored in an early_node_map[] and later used by
  3149. * free_area_init_nodes() to calculate zone sizes and holes. If the
  3150. * range spans a memory hole, it is up to the architecture to ensure
  3151. * the memory is not freed by the bootmem allocator. If possible
  3152. * the range being registered will be merged with existing ranges.
  3153. */
  3154. void __init add_active_range(unsigned int nid, unsigned long start_pfn,
  3155. unsigned long end_pfn)
  3156. {
  3157. int i;
  3158. mminit_dprintk(MMINIT_TRACE, "memory_register",
  3159. "Entering add_active_range(%d, %#lx, %#lx) "
  3160. "%d entries of %d used\n",
  3161. nid, start_pfn, end_pfn,
  3162. nr_nodemap_entries, MAX_ACTIVE_REGIONS);
  3163. mminit_validate_memmodel_limits(&start_pfn, &end_pfn);
  3164. /* Merge with existing active regions if possible */
  3165. for (i = 0; i < nr_nodemap_entries; i++) {
  3166. if (early_node_map[i].nid != nid)
  3167. continue;
  3168. /* Skip if an existing region covers this new one */
  3169. if (start_pfn >= early_node_map[i].start_pfn &&
  3170. end_pfn <= early_node_map[i].end_pfn)
  3171. return;
  3172. /* Merge forward if suitable */
  3173. if (start_pfn <= early_node_map[i].end_pfn &&
  3174. end_pfn > early_node_map[i].end_pfn) {
  3175. early_node_map[i].end_pfn = end_pfn;
  3176. return;
  3177. }
  3178. /* Merge backward if suitable */
  3179. if (start_pfn < early_node_map[i].end_pfn &&
  3180. end_pfn >= early_node_map[i].start_pfn) {
  3181. early_node_map[i].start_pfn = start_pfn;
  3182. return;
  3183. }
  3184. }
  3185. /* Check that early_node_map is large enough */
  3186. if (i >= MAX_ACTIVE_REGIONS) {
  3187. printk(KERN_CRIT "More than %d memory regions, truncating\n",
  3188. MAX_ACTIVE_REGIONS);
  3189. return;
  3190. }
  3191. early_node_map[i].nid = nid;
  3192. early_node_map[i].start_pfn = start_pfn;
  3193. early_node_map[i].end_pfn = end_pfn;
  3194. nr_nodemap_entries = i + 1;
  3195. }
  3196. /**
  3197. * remove_active_range - Shrink an existing registered range of PFNs
  3198. * @nid: The node id the range is on that should be shrunk
  3199. * @start_pfn: The new PFN of the range
  3200. * @end_pfn: The new PFN of the range
  3201. *
  3202. * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
  3203. * The map is kept near the end physical page range that has already been
  3204. * registered. This function allows an arch to shrink an existing registered
  3205. * range.
  3206. */
  3207. void __init remove_active_range(unsigned int nid, unsigned long start_pfn,
  3208. unsigned long end_pfn)
  3209. {
  3210. int i, j;
  3211. int removed = 0;
  3212. printk(KERN_DEBUG "remove_active_range (%d, %lu, %lu)\n",
  3213. nid, start_pfn, end_pfn);
  3214. /* Find the old active region end and shrink */
  3215. for_each_active_range_index_in_nid(i, nid) {
  3216. if (early_node_map[i].start_pfn >= start_pfn &&
  3217. early_node_map[i].end_pfn <= end_pfn) {
  3218. /* clear it */
  3219. early_node_map[i].start_pfn = 0;
  3220. early_node_map[i].end_pfn = 0;
  3221. removed = 1;
  3222. continue;
  3223. }
  3224. if (early_node_map[i].start_pfn < start_pfn &&
  3225. early_node_map[i].end_pfn > start_pfn) {
  3226. unsigned long temp_end_pfn = early_node_map[i].end_pfn;
  3227. early_node_map[i].end_pfn = start_pfn;
  3228. if (temp_end_pfn > end_pfn)
  3229. add_active_range(nid, end_pfn, temp_end_pfn);
  3230. continue;
  3231. }
  3232. if (early_node_map[i].start_pfn >= start_pfn &&
  3233. early_node_map[i].end_pfn > end_pfn &&
  3234. early_node_map[i].start_pfn < end_pfn) {
  3235. early_node_map[i].start_pfn = end_pfn;
  3236. continue;
  3237. }
  3238. }
  3239. if (!removed)
  3240. return;
  3241. /* remove the blank ones */
  3242. for (i = nr_nodemap_entries - 1; i > 0; i--) {
  3243. if (early_node_map[i].nid != nid)
  3244. continue;
  3245. if (early_node_map[i].end_pfn)
  3246. continue;
  3247. /* we found it, get rid of it */
  3248. for (j = i; j < nr_nodemap_entries - 1; j++)
  3249. memcpy(&early_node_map[j], &early_node_map[j+1],
  3250. sizeof(early_node_map[j]));
  3251. j = nr_nodemap_entries - 1;
  3252. memset(&early_node_map[j], 0, sizeof(early_node_map[j]));
  3253. nr_nodemap_entries--;
  3254. }
  3255. }
  3256. /**
  3257. * remove_all_active_ranges - Remove all currently registered regions
  3258. *
  3259. * During discovery, it may be found that a table like SRAT is invalid
  3260. * and an alternative discovery method must be used. This function removes
  3261. * all currently registered regions.
  3262. */
  3263. void __init remove_all_active_ranges(void)
  3264. {
  3265. memset(early_node_map, 0, sizeof(early_node_map));
  3266. nr_nodemap_entries = 0;
  3267. #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
  3268. memset(node_boundary_start_pfn, 0, sizeof(node_boundary_start_pfn));
  3269. memset(node_boundary_end_pfn, 0, sizeof(node_boundary_end_pfn));
  3270. #endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */
  3271. }
  3272. /* Compare two active node_active_regions */
  3273. static int __init cmp_node_active_region(const void *a, const void *b)
  3274. {
  3275. struct node_active_region *arange = (struct node_active_region *)a;
  3276. struct node_active_region *brange = (struct node_active_region *)b;
  3277. /* Done this way to avoid overflows */
  3278. if (arange->start_pfn > brange->start_pfn)
  3279. return 1;
  3280. if (arange->start_pfn < brange->start_pfn)
  3281. return -1;
  3282. return 0;
  3283. }
  3284. /* sort the node_map by start_pfn */
  3285. static void __init sort_node_map(void)
  3286. {
  3287. sort(early_node_map, (size_t)nr_nodemap_entries,
  3288. sizeof(struct node_active_region),
  3289. cmp_node_active_region, NULL);
  3290. }
  3291. /* Find the lowest pfn for a node */
  3292. static unsigned long __init find_min_pfn_for_node(int nid)
  3293. {
  3294. int i;
  3295. unsigned long min_pfn = ULONG_MAX;
  3296. /* Assuming a sorted map, the first range found has the starting pfn */
  3297. for_each_active_range_index_in_nid(i, nid)
  3298. min_pfn = min(min_pfn, early_node_map[i].start_pfn);
  3299. if (min_pfn == ULONG_MAX) {
  3300. printk(KERN_WARNING
  3301. "Could not find start_pfn for node %d\n", nid);
  3302. return 0;
  3303. }
  3304. return min_pfn;
  3305. }
  3306. /**
  3307. * find_min_pfn_with_active_regions - Find the minimum PFN registered
  3308. *
  3309. * It returns the minimum PFN based on information provided via
  3310. * add_active_range().
  3311. */
  3312. unsigned long __init find_min_pfn_with_active_regions(void)
  3313. {
  3314. return find_min_pfn_for_node(MAX_NUMNODES);
  3315. }
  3316. /*
  3317. * early_calculate_totalpages()
  3318. * Sum pages in active regions for movable zone.
  3319. * Populate N_HIGH_MEMORY for calculating usable_nodes.
  3320. */
  3321. static unsigned long __init early_calculate_totalpages(void)
  3322. {
  3323. int i;
  3324. unsigned long totalpages = 0;
  3325. for (i = 0; i < nr_nodemap_entries; i++) {
  3326. unsigned long pages = early_node_map[i].end_pfn -
  3327. early_node_map[i].start_pfn;
  3328. totalpages += pages;
  3329. if (pages)
  3330. node_set_state(early_node_map[i].nid, N_HIGH_MEMORY);
  3331. }
  3332. return totalpages;
  3333. }
  3334. /*
  3335. * Find the PFN the Movable zone begins in each node. Kernel memory
  3336. * is spread evenly between nodes as long as the nodes have enough
  3337. * memory. When they don't, some nodes will have more kernelcore than
  3338. * others
  3339. */
  3340. static void __init find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn)
  3341. {
  3342. int i, nid;
  3343. unsigned long usable_startpfn;
  3344. unsigned long kernelcore_node, kernelcore_remaining;
  3345. unsigned long totalpages = early_calculate_totalpages();
  3346. int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
  3347. /*
  3348. * If movablecore was specified, calculate what size of
  3349. * kernelcore that corresponds so that memory usable for
  3350. * any allocation type is evenly spread. If both kernelcore
  3351. * and movablecore are specified, then the value of kernelcore
  3352. * will be used for required_kernelcore if it's greater than
  3353. * what movablecore would have allowed.
  3354. */
  3355. if (required_movablecore) {
  3356. unsigned long corepages;
  3357. /*
  3358. * Round-up so that ZONE_MOVABLE is at least as large as what
  3359. * was requested by the user
  3360. */
  3361. required_movablecore =
  3362. roundup(required_movablecore, MAX_ORDER_NR_PAGES);
  3363. corepages = totalpages - required_movablecore;
  3364. required_kernelcore = max(required_kernelcore, corepages);
  3365. }
  3366. /* If kernelcore was not specified, there is no ZONE_MOVABLE */
  3367. if (!required_kernelcore)
  3368. return;
  3369. /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
  3370. find_usable_zone_for_movable();
  3371. usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
  3372. restart:
  3373. /* Spread kernelcore memory as evenly as possible throughout nodes */
  3374. kernelcore_node = required_kernelcore / usable_nodes;
  3375. for_each_node_state(nid, N_HIGH_MEMORY) {
  3376. /*
  3377. * Recalculate kernelcore_node if the division per node
  3378. * now exceeds what is necessary to satisfy the requested
  3379. * amount of memory for the kernel
  3380. */
  3381. if (required_kernelcore < kernelcore_node)
  3382. kernelcore_node = required_kernelcore / usable_nodes;
  3383. /*
  3384. * As the map is walked, we track how much memory is usable
  3385. * by the kernel using kernelcore_remaining. When it is
  3386. * 0, the rest of the node is usable by ZONE_MOVABLE
  3387. */
  3388. kernelcore_remaining = kernelcore_node;
  3389. /* Go through each range of PFNs within this node */
  3390. for_each_active_range_index_in_nid(i, nid) {
  3391. unsigned long start_pfn, end_pfn;
  3392. unsigned long size_pages;
  3393. start_pfn = max(early_node_map[i].start_pfn,
  3394. zone_movable_pfn[nid]);
  3395. end_pfn = early_node_map[i].end_pfn;
  3396. if (start_pfn >= end_pfn)
  3397. continue;
  3398. /* Account for what is only usable for kernelcore */
  3399. if (start_pfn < usable_startpfn) {
  3400. unsigned long kernel_pages;
  3401. kernel_pages = min(end_pfn, usable_startpfn)
  3402. - start_pfn;
  3403. kernelcore_remaining -= min(kernel_pages,
  3404. kernelcore_remaining);
  3405. required_kernelcore -= min(kernel_pages,
  3406. required_kernelcore);
  3407. /* Continue if range is now fully accounted */
  3408. if (end_pfn <= usable_startpfn) {
  3409. /*
  3410. * Push zone_movable_pfn to the end so
  3411. * that if we have to rebalance
  3412. * kernelcore across nodes, we will
  3413. * not double account here
  3414. */
  3415. zone_movable_pfn[nid] = end_pfn;
  3416. continue;
  3417. }
  3418. start_pfn = usable_startpfn;
  3419. }
  3420. /*
  3421. * The usable PFN range for ZONE_MOVABLE is from
  3422. * start_pfn->end_pfn. Calculate size_pages as the
  3423. * number of pages used as kernelcore
  3424. */
  3425. size_pages = end_pfn - start_pfn;
  3426. if (size_pages > kernelcore_remaining)
  3427. size_pages = kernelcore_remaining;
  3428. zone_movable_pfn[nid] = start_pfn + size_pages;
  3429. /*
  3430. * Some kernelcore has been met, update counts and
  3431. * break if the kernelcore for this node has been
  3432. * satisified
  3433. */
  3434. required_kernelcore -= min(required_kernelcore,
  3435. size_pages);
  3436. kernelcore_remaining -= size_pages;
  3437. if (!kernelcore_remaining)
  3438. break;
  3439. }
  3440. }
  3441. /*
  3442. * If there is still required_kernelcore, we do another pass with one
  3443. * less node in the count. This will push zone_movable_pfn[nid] further
  3444. * along on the nodes that still have memory until kernelcore is
  3445. * satisified
  3446. */
  3447. usable_nodes--;
  3448. if (usable_nodes && required_kernelcore > usable_nodes)
  3449. goto restart;
  3450. /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
  3451. for (nid = 0; nid < MAX_NUMNODES; nid++)
  3452. zone_movable_pfn[nid] =
  3453. roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
  3454. }
  3455. /* Any regular memory on that node ? */
  3456. static void check_for_regular_memory(pg_data_t *pgdat)
  3457. {
  3458. #ifdef CONFIG_HIGHMEM
  3459. enum zone_type zone_type;
  3460. for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) {
  3461. struct zone *zone = &pgdat->node_zones[zone_type];
  3462. if (zone->present_pages)
  3463. node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY);
  3464. }
  3465. #endif
  3466. }
  3467. /**
  3468. * free_area_init_nodes - Initialise all pg_data_t and zone data
  3469. * @max_zone_pfn: an array of max PFNs for each zone
  3470. *
  3471. * This will call free_area_init_node() for each active node in the system.
  3472. * Using the page ranges provided by add_active_range(), the size of each
  3473. * zone in each node and their holes is calculated. If the maximum PFN
  3474. * between two adjacent zones match, it is assumed that the zone is empty.
  3475. * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
  3476. * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
  3477. * starts where the previous one ended. For example, ZONE_DMA32 starts
  3478. * at arch_max_dma_pfn.
  3479. */
  3480. void __init free_area_init_nodes(unsigned long *max_zone_pfn)
  3481. {
  3482. unsigned long nid;
  3483. int i;
  3484. /* Sort early_node_map as initialisation assumes it is sorted */
  3485. sort_node_map();
  3486. /* Record where the zone boundaries are */
  3487. memset(arch_zone_lowest_possible_pfn, 0,
  3488. sizeof(arch_zone_lowest_possible_pfn));
  3489. memset(arch_zone_highest_possible_pfn, 0,
  3490. sizeof(arch_zone_highest_possible_pfn));
  3491. arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
  3492. arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
  3493. for (i = 1; i < MAX_NR_ZONES; i++) {
  3494. if (i == ZONE_MOVABLE)
  3495. continue;
  3496. arch_zone_lowest_possible_pfn[i] =
  3497. arch_zone_highest_possible_pfn[i-1];
  3498. arch_zone_highest_possible_pfn[i] =
  3499. max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
  3500. }
  3501. arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
  3502. arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
  3503. /* Find the PFNs that ZONE_MOVABLE begins at in each node */
  3504. memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
  3505. find_zone_movable_pfns_for_nodes(zone_movable_pfn);
  3506. /* Print out the zone ranges */
  3507. printk("Zone PFN ranges:\n");
  3508. for (i = 0; i < MAX_NR_ZONES; i++) {
  3509. if (i == ZONE_MOVABLE)
  3510. continue;
  3511. printk(" %-8s %0#10lx -> %0#10lx\n",
  3512. zone_names[i],
  3513. arch_zone_lowest_possible_pfn[i],
  3514. arch_zone_highest_possible_pfn[i]);
  3515. }
  3516. /* Print out the PFNs ZONE_MOVABLE begins at in each node */
  3517. printk("Movable zone start PFN for each node\n");
  3518. for (i = 0; i < MAX_NUMNODES; i++) {
  3519. if (zone_movable_pfn[i])
  3520. printk(" Node %d: %lu\n", i, zone_movable_pfn[i]);
  3521. }
  3522. /* Print out the early_node_map[] */
  3523. printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries);
  3524. for (i = 0; i < nr_nodemap_entries; i++)
  3525. printk(" %3d: %0#10lx -> %0#10lx\n", early_node_map[i].nid,
  3526. early_node_map[i].start_pfn,
  3527. early_node_map[i].end_pfn);
  3528. /* Initialise every node */
  3529. mminit_verify_pageflags_layout();
  3530. setup_nr_node_ids();
  3531. for_each_online_node(nid) {
  3532. pg_data_t *pgdat = NODE_DATA(nid);
  3533. free_area_init_node(nid, NULL,
  3534. find_min_pfn_for_node(nid), NULL);
  3535. /* Any memory on that node */
  3536. if (pgdat->node_present_pages)
  3537. node_set_state(nid, N_HIGH_MEMORY);
  3538. check_for_regular_memory(pgdat);
  3539. }
  3540. }
  3541. static int __init cmdline_parse_core(char *p, unsigned long *core)
  3542. {
  3543. unsigned long long coremem;
  3544. if (!p)
  3545. return -EINVAL;
  3546. coremem = memparse(p, &p);
  3547. *core = coremem >> PAGE_SHIFT;
  3548. /* Paranoid check that UL is enough for the coremem value */
  3549. WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
  3550. return 0;
  3551. }
  3552. /*
  3553. * kernelcore=size sets the amount of memory for use for allocations that
  3554. * cannot be reclaimed or migrated.
  3555. */
  3556. static int __init cmdline_parse_kernelcore(char *p)
  3557. {
  3558. return cmdline_parse_core(p, &required_kernelcore);
  3559. }
  3560. /*
  3561. * movablecore=size sets the amount of memory for use for allocations that
  3562. * can be reclaimed or migrated.
  3563. */
  3564. static int __init cmdline_parse_movablecore(char *p)
  3565. {
  3566. return cmdline_parse_core(p, &required_movablecore);
  3567. }
  3568. early_param("kernelcore", cmdline_parse_kernelcore);
  3569. early_param("movablecore", cmdline_parse_movablecore);
  3570. #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
  3571. /**
  3572. * set_dma_reserve - set the specified number of pages reserved in the first zone
  3573. * @new_dma_reserve: The number of pages to mark reserved
  3574. *
  3575. * The per-cpu batchsize and zone watermarks are determined by present_pages.
  3576. * In the DMA zone, a significant percentage may be consumed by kernel image
  3577. * and other unfreeable allocations which can skew the watermarks badly. This
  3578. * function may optionally be used to account for unfreeable pages in the
  3579. * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
  3580. * smaller per-cpu batchsize.
  3581. */
  3582. void __init set_dma_reserve(unsigned long new_dma_reserve)
  3583. {
  3584. dma_reserve = new_dma_reserve;
  3585. }
  3586. #ifndef CONFIG_NEED_MULTIPLE_NODES
  3587. struct pglist_data __refdata contig_page_data = { .bdata = &bootmem_node_data[0] };
  3588. EXPORT_SYMBOL(contig_page_data);
  3589. #endif
  3590. void __init free_area_init(unsigned long *zones_size)
  3591. {
  3592. free_area_init_node(0, zones_size,
  3593. __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
  3594. }
  3595. static int page_alloc_cpu_notify(struct notifier_block *self,
  3596. unsigned long action, void *hcpu)
  3597. {
  3598. int cpu = (unsigned long)hcpu;
  3599. if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
  3600. drain_pages(cpu);
  3601. /*
  3602. * Spill the event counters of the dead processor
  3603. * into the current processors event counters.
  3604. * This artificially elevates the count of the current
  3605. * processor.
  3606. */
  3607. vm_events_fold_cpu(cpu);
  3608. /*
  3609. * Zero the differential counters of the dead processor
  3610. * so that the vm statistics are consistent.
  3611. *
  3612. * This is only okay since the processor is dead and cannot
  3613. * race with what we are doing.
  3614. */
  3615. refresh_cpu_vm_stats(cpu);
  3616. }
  3617. return NOTIFY_OK;
  3618. }
  3619. void __init page_alloc_init(void)
  3620. {
  3621. hotcpu_notifier(page_alloc_cpu_notify, 0);
  3622. }
  3623. /*
  3624. * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
  3625. * or min_free_kbytes changes.
  3626. */
  3627. static void calculate_totalreserve_pages(void)
  3628. {
  3629. struct pglist_data *pgdat;
  3630. unsigned long reserve_pages = 0;
  3631. enum zone_type i, j;
  3632. for_each_online_pgdat(pgdat) {
  3633. for (i = 0; i < MAX_NR_ZONES; i++) {
  3634. struct zone *zone = pgdat->node_zones + i;
  3635. unsigned long max = 0;
  3636. /* Find valid and maximum lowmem_reserve in the zone */
  3637. for (j = i; j < MAX_NR_ZONES; j++) {
  3638. if (zone->lowmem_reserve[j] > max)
  3639. max = zone->lowmem_reserve[j];
  3640. }
  3641. /* we treat pages_high as reserved pages. */
  3642. max += zone->pages_high;
  3643. if (max > zone->present_pages)
  3644. max = zone->present_pages;
  3645. reserve_pages += max;
  3646. }
  3647. }
  3648. totalreserve_pages = reserve_pages;
  3649. }
  3650. /*
  3651. * setup_per_zone_lowmem_reserve - called whenever
  3652. * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
  3653. * has a correct pages reserved value, so an adequate number of
  3654. * pages are left in the zone after a successful __alloc_pages().
  3655. */
  3656. static void setup_per_zone_lowmem_reserve(void)
  3657. {
  3658. struct pglist_data *pgdat;
  3659. enum zone_type j, idx;
  3660. for_each_online_pgdat(pgdat) {
  3661. for (j = 0; j < MAX_NR_ZONES; j++) {
  3662. struct zone *zone = pgdat->node_zones + j;
  3663. unsigned long present_pages = zone->present_pages;
  3664. zone->lowmem_reserve[j] = 0;
  3665. idx = j;
  3666. while (idx) {
  3667. struct zone *lower_zone;
  3668. idx--;
  3669. if (sysctl_lowmem_reserve_ratio[idx] < 1)
  3670. sysctl_lowmem_reserve_ratio[idx] = 1;
  3671. lower_zone = pgdat->node_zones + idx;
  3672. lower_zone->lowmem_reserve[j] = present_pages /
  3673. sysctl_lowmem_reserve_ratio[idx];
  3674. present_pages += lower_zone->present_pages;
  3675. }
  3676. }
  3677. }
  3678. /* update totalreserve_pages */
  3679. calculate_totalreserve_pages();
  3680. }
  3681. /**
  3682. * setup_per_zone_pages_min - called when min_free_kbytes changes.
  3683. *
  3684. * Ensures that the pages_{min,low,high} values for each zone are set correctly
  3685. * with respect to min_free_kbytes.
  3686. */
  3687. void setup_per_zone_pages_min(void)
  3688. {
  3689. unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
  3690. unsigned long lowmem_pages = 0;
  3691. struct zone *zone;
  3692. unsigned long flags;
  3693. /* Calculate total number of !ZONE_HIGHMEM pages */
  3694. for_each_zone(zone) {
  3695. if (!is_highmem(zone))
  3696. lowmem_pages += zone->present_pages;
  3697. }
  3698. for_each_zone(zone) {
  3699. u64 tmp;
  3700. spin_lock_irqsave(&zone->lock, flags);
  3701. tmp = (u64)pages_min * zone->present_pages;
  3702. do_div(tmp, lowmem_pages);
  3703. if (is_highmem(zone)) {
  3704. /*
  3705. * __GFP_HIGH and PF_MEMALLOC allocations usually don't
  3706. * need highmem pages, so cap pages_min to a small
  3707. * value here.
  3708. *
  3709. * The (pages_high-pages_low) and (pages_low-pages_min)
  3710. * deltas controls asynch page reclaim, and so should
  3711. * not be capped for highmem.
  3712. */
  3713. int min_pages;
  3714. min_pages = zone->present_pages / 1024;
  3715. if (min_pages < SWAP_CLUSTER_MAX)
  3716. min_pages = SWAP_CLUSTER_MAX;
  3717. if (min_pages > 128)
  3718. min_pages = 128;
  3719. zone->pages_min = min_pages;
  3720. } else {
  3721. /*
  3722. * If it's a lowmem zone, reserve a number of pages
  3723. * proportionate to the zone's size.
  3724. */
  3725. zone->pages_min = tmp;
  3726. }
  3727. zone->pages_low = zone->pages_min + (tmp >> 2);
  3728. zone->pages_high = zone->pages_min + (tmp >> 1);
  3729. setup_zone_migrate_reserve(zone);
  3730. spin_unlock_irqrestore(&zone->lock, flags);
  3731. }
  3732. /* update totalreserve_pages */
  3733. calculate_totalreserve_pages();
  3734. }
  3735. /**
  3736. * setup_per_zone_inactive_ratio - called when min_free_kbytes changes.
  3737. *
  3738. * The inactive anon list should be small enough that the VM never has to
  3739. * do too much work, but large enough that each inactive page has a chance
  3740. * to be referenced again before it is swapped out.
  3741. *
  3742. * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
  3743. * INACTIVE_ANON pages on this zone's LRU, maintained by the
  3744. * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
  3745. * the anonymous pages are kept on the inactive list.
  3746. *
  3747. * total target max
  3748. * memory ratio inactive anon
  3749. * -------------------------------------
  3750. * 10MB 1 5MB
  3751. * 100MB 1 50MB
  3752. * 1GB 3 250MB
  3753. * 10GB 10 0.9GB
  3754. * 100GB 31 3GB
  3755. * 1TB 101 10GB
  3756. * 10TB 320 32GB
  3757. */
  3758. static void setup_per_zone_inactive_ratio(void)
  3759. {
  3760. struct zone *zone;
  3761. for_each_zone(zone) {
  3762. unsigned int gb, ratio;
  3763. /* Zone size in gigabytes */
  3764. gb = zone->present_pages >> (30 - PAGE_SHIFT);
  3765. ratio = int_sqrt(10 * gb);
  3766. if (!ratio)
  3767. ratio = 1;
  3768. zone->inactive_ratio = ratio;
  3769. }
  3770. }
  3771. /*
  3772. * Initialise min_free_kbytes.
  3773. *
  3774. * For small machines we want it small (128k min). For large machines
  3775. * we want it large (64MB max). But it is not linear, because network
  3776. * bandwidth does not increase linearly with machine size. We use
  3777. *
  3778. * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
  3779. * min_free_kbytes = sqrt(lowmem_kbytes * 16)
  3780. *
  3781. * which yields
  3782. *
  3783. * 16MB: 512k
  3784. * 32MB: 724k
  3785. * 64MB: 1024k
  3786. * 128MB: 1448k
  3787. * 256MB: 2048k
  3788. * 512MB: 2896k
  3789. * 1024MB: 4096k
  3790. * 2048MB: 5792k
  3791. * 4096MB: 8192k
  3792. * 8192MB: 11584k
  3793. * 16384MB: 16384k
  3794. */
  3795. static int __init init_per_zone_pages_min(void)
  3796. {
  3797. unsigned long lowmem_kbytes;
  3798. lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
  3799. min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
  3800. if (min_free_kbytes < 128)
  3801. min_free_kbytes = 128;
  3802. if (min_free_kbytes > 65536)
  3803. min_free_kbytes = 65536;
  3804. setup_per_zone_pages_min();
  3805. setup_per_zone_lowmem_reserve();
  3806. setup_per_zone_inactive_ratio();
  3807. return 0;
  3808. }
  3809. module_init(init_per_zone_pages_min)
  3810. /*
  3811. * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
  3812. * that we can call two helper functions whenever min_free_kbytes
  3813. * changes.
  3814. */
  3815. int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
  3816. struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
  3817. {
  3818. proc_dointvec(table, write, file, buffer, length, ppos);
  3819. if (write)
  3820. setup_per_zone_pages_min();
  3821. return 0;
  3822. }
  3823. #ifdef CONFIG_NUMA
  3824. int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
  3825. struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
  3826. {
  3827. struct zone *zone;
  3828. int rc;
  3829. rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
  3830. if (rc)
  3831. return rc;
  3832. for_each_zone(zone)
  3833. zone->min_unmapped_pages = (zone->present_pages *
  3834. sysctl_min_unmapped_ratio) / 100;
  3835. return 0;
  3836. }
  3837. int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
  3838. struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
  3839. {
  3840. struct zone *zone;
  3841. int rc;
  3842. rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
  3843. if (rc)
  3844. return rc;
  3845. for_each_zone(zone)
  3846. zone->min_slab_pages = (zone->present_pages *
  3847. sysctl_min_slab_ratio) / 100;
  3848. return 0;
  3849. }
  3850. #endif
  3851. /*
  3852. * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
  3853. * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
  3854. * whenever sysctl_lowmem_reserve_ratio changes.
  3855. *
  3856. * The reserve ratio obviously has absolutely no relation with the
  3857. * pages_min watermarks. The lowmem reserve ratio can only make sense
  3858. * if in function of the boot time zone sizes.
  3859. */
  3860. int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
  3861. struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
  3862. {
  3863. proc_dointvec_minmax(table, write, file, buffer, length, ppos);
  3864. setup_per_zone_lowmem_reserve();
  3865. return 0;
  3866. }
  3867. /*
  3868. * percpu_pagelist_fraction - changes the pcp->high for each zone on each
  3869. * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
  3870. * can have before it gets flushed back to buddy allocator.
  3871. */
  3872. int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
  3873. struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
  3874. {
  3875. struct zone *zone;
  3876. unsigned int cpu;
  3877. int ret;
  3878. ret = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
  3879. if (!write || (ret == -EINVAL))
  3880. return ret;
  3881. for_each_zone(zone) {
  3882. for_each_online_cpu(cpu) {
  3883. unsigned long high;
  3884. high = zone->present_pages / percpu_pagelist_fraction;
  3885. setup_pagelist_highmark(zone_pcp(zone, cpu), high);
  3886. }
  3887. }
  3888. return 0;
  3889. }
  3890. int hashdist = HASHDIST_DEFAULT;
  3891. #ifdef CONFIG_NUMA
  3892. static int __init set_hashdist(char *str)
  3893. {
  3894. if (!str)
  3895. return 0;
  3896. hashdist = simple_strtoul(str, &str, 0);
  3897. return 1;
  3898. }
  3899. __setup("hashdist=", set_hashdist);
  3900. #endif
  3901. /*
  3902. * allocate a large system hash table from bootmem
  3903. * - it is assumed that the hash table must contain an exact power-of-2
  3904. * quantity of entries
  3905. * - limit is the number of hash buckets, not the total allocation size
  3906. */
  3907. void *__init alloc_large_system_hash(const char *tablename,
  3908. unsigned long bucketsize,
  3909. unsigned long numentries,
  3910. int scale,
  3911. int flags,
  3912. unsigned int *_hash_shift,
  3913. unsigned int *_hash_mask,
  3914. unsigned long limit)
  3915. {
  3916. unsigned long long max = limit;
  3917. unsigned long log2qty, size;
  3918. void *table = NULL;
  3919. /* allow the kernel cmdline to have a say */
  3920. if (!numentries) {
  3921. /* round applicable memory size up to nearest megabyte */
  3922. numentries = nr_kernel_pages;
  3923. numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
  3924. numentries >>= 20 - PAGE_SHIFT;
  3925. numentries <<= 20 - PAGE_SHIFT;
  3926. /* limit to 1 bucket per 2^scale bytes of low memory */
  3927. if (scale > PAGE_SHIFT)
  3928. numentries >>= (scale - PAGE_SHIFT);
  3929. else
  3930. numentries <<= (PAGE_SHIFT - scale);
  3931. /* Make sure we've got at least a 0-order allocation.. */
  3932. if (unlikely((numentries * bucketsize) < PAGE_SIZE))
  3933. numentries = PAGE_SIZE / bucketsize;
  3934. }
  3935. numentries = roundup_pow_of_two(numentries);
  3936. /* limit allocation size to 1/16 total memory by default */
  3937. if (max == 0) {
  3938. max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
  3939. do_div(max, bucketsize);
  3940. }
  3941. if (numentries > max)
  3942. numentries = max;
  3943. log2qty = ilog2(numentries);
  3944. do {
  3945. size = bucketsize << log2qty;
  3946. if (flags & HASH_EARLY)
  3947. table = alloc_bootmem_nopanic(size);
  3948. else if (hashdist)
  3949. table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
  3950. else {
  3951. unsigned long order = get_order(size);
  3952. table = (void*) __get_free_pages(GFP_ATOMIC, order);
  3953. /*
  3954. * If bucketsize is not a power-of-two, we may free
  3955. * some pages at the end of hash table.
  3956. */
  3957. if (table) {
  3958. unsigned long alloc_end = (unsigned long)table +
  3959. (PAGE_SIZE << order);
  3960. unsigned long used = (unsigned long)table +
  3961. PAGE_ALIGN(size);
  3962. split_page(virt_to_page(table), order);
  3963. while (used < alloc_end) {
  3964. free_page(used);
  3965. used += PAGE_SIZE;
  3966. }
  3967. }
  3968. }
  3969. } while (!table && size > PAGE_SIZE && --log2qty);
  3970. if (!table)
  3971. panic("Failed to allocate %s hash table\n", tablename);
  3972. printk(KERN_INFO "%s hash table entries: %d (order: %d, %lu bytes)\n",
  3973. tablename,
  3974. (1U << log2qty),
  3975. ilog2(size) - PAGE_SHIFT,
  3976. size);
  3977. if (_hash_shift)
  3978. *_hash_shift = log2qty;
  3979. if (_hash_mask)
  3980. *_hash_mask = (1 << log2qty) - 1;
  3981. return table;
  3982. }
  3983. /* Return a pointer to the bitmap storing bits affecting a block of pages */
  3984. static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
  3985. unsigned long pfn)
  3986. {
  3987. #ifdef CONFIG_SPARSEMEM
  3988. return __pfn_to_section(pfn)->pageblock_flags;
  3989. #else
  3990. return zone->pageblock_flags;
  3991. #endif /* CONFIG_SPARSEMEM */
  3992. }
  3993. static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
  3994. {
  3995. #ifdef CONFIG_SPARSEMEM
  3996. pfn &= (PAGES_PER_SECTION-1);
  3997. return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
  3998. #else
  3999. pfn = pfn - zone->zone_start_pfn;
  4000. return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
  4001. #endif /* CONFIG_SPARSEMEM */
  4002. }
  4003. /**
  4004. * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
  4005. * @page: The page within the block of interest
  4006. * @start_bitidx: The first bit of interest to retrieve
  4007. * @end_bitidx: The last bit of interest
  4008. * returns pageblock_bits flags
  4009. */
  4010. unsigned long get_pageblock_flags_group(struct page *page,
  4011. int start_bitidx, int end_bitidx)
  4012. {
  4013. struct zone *zone;
  4014. unsigned long *bitmap;
  4015. unsigned long pfn, bitidx;
  4016. unsigned long flags = 0;
  4017. unsigned long value = 1;
  4018. zone = page_zone(page);
  4019. pfn = page_to_pfn(page);
  4020. bitmap = get_pageblock_bitmap(zone, pfn);
  4021. bitidx = pfn_to_bitidx(zone, pfn);
  4022. for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
  4023. if (test_bit(bitidx + start_bitidx, bitmap))
  4024. flags |= value;
  4025. return flags;
  4026. }
  4027. /**
  4028. * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
  4029. * @page: The page within the block of interest
  4030. * @start_bitidx: The first bit of interest
  4031. * @end_bitidx: The last bit of interest
  4032. * @flags: The flags to set
  4033. */
  4034. void set_pageblock_flags_group(struct page *page, unsigned long flags,
  4035. int start_bitidx, int end_bitidx)
  4036. {
  4037. struct zone *zone;
  4038. unsigned long *bitmap;
  4039. unsigned long pfn, bitidx;
  4040. unsigned long value = 1;
  4041. zone = page_zone(page);
  4042. pfn = page_to_pfn(page);
  4043. bitmap = get_pageblock_bitmap(zone, pfn);
  4044. bitidx = pfn_to_bitidx(zone, pfn);
  4045. VM_BUG_ON(pfn < zone->zone_start_pfn);
  4046. VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages);
  4047. for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
  4048. if (flags & value)
  4049. __set_bit(bitidx + start_bitidx, bitmap);
  4050. else
  4051. __clear_bit(bitidx + start_bitidx, bitmap);
  4052. }
  4053. /*
  4054. * This is designed as sub function...plz see page_isolation.c also.
  4055. * set/clear page block's type to be ISOLATE.
  4056. * page allocater never alloc memory from ISOLATE block.
  4057. */
  4058. int set_migratetype_isolate(struct page *page)
  4059. {
  4060. struct zone *zone;
  4061. unsigned long flags;
  4062. int ret = -EBUSY;
  4063. zone = page_zone(page);
  4064. spin_lock_irqsave(&zone->lock, flags);
  4065. /*
  4066. * In future, more migrate types will be able to be isolation target.
  4067. */
  4068. if (get_pageblock_migratetype(page) != MIGRATE_MOVABLE)
  4069. goto out;
  4070. set_pageblock_migratetype(page, MIGRATE_ISOLATE);
  4071. move_freepages_block(zone, page, MIGRATE_ISOLATE);
  4072. ret = 0;
  4073. out:
  4074. spin_unlock_irqrestore(&zone->lock, flags);
  4075. if (!ret)
  4076. drain_all_pages();
  4077. return ret;
  4078. }
  4079. void unset_migratetype_isolate(struct page *page)
  4080. {
  4081. struct zone *zone;
  4082. unsigned long flags;
  4083. zone = page_zone(page);
  4084. spin_lock_irqsave(&zone->lock, flags);
  4085. if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE)
  4086. goto out;
  4087. set_pageblock_migratetype(page, MIGRATE_MOVABLE);
  4088. move_freepages_block(zone, page, MIGRATE_MOVABLE);
  4089. out:
  4090. spin_unlock_irqrestore(&zone->lock, flags);
  4091. }
  4092. #ifdef CONFIG_MEMORY_HOTREMOVE
  4093. /*
  4094. * All pages in the range must be isolated before calling this.
  4095. */
  4096. void
  4097. __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
  4098. {
  4099. struct page *page;
  4100. struct zone *zone;
  4101. int order, i;
  4102. unsigned long pfn;
  4103. unsigned long flags;
  4104. /* find the first valid pfn */
  4105. for (pfn = start_pfn; pfn < end_pfn; pfn++)
  4106. if (pfn_valid(pfn))
  4107. break;
  4108. if (pfn == end_pfn)
  4109. return;
  4110. zone = page_zone(pfn_to_page(pfn));
  4111. spin_lock_irqsave(&zone->lock, flags);
  4112. pfn = start_pfn;
  4113. while (pfn < end_pfn) {
  4114. if (!pfn_valid(pfn)) {
  4115. pfn++;
  4116. continue;
  4117. }
  4118. page = pfn_to_page(pfn);
  4119. BUG_ON(page_count(page));
  4120. BUG_ON(!PageBuddy(page));
  4121. order = page_order(page);
  4122. #ifdef CONFIG_DEBUG_VM
  4123. printk(KERN_INFO "remove from free list %lx %d %lx\n",
  4124. pfn, 1 << order, end_pfn);
  4125. #endif
  4126. list_del(&page->lru);
  4127. rmv_page_order(page);
  4128. zone->free_area[order].nr_free--;
  4129. __mod_zone_page_state(zone, NR_FREE_PAGES,
  4130. - (1UL << order));
  4131. for (i = 0; i < (1 << order); i++)
  4132. SetPageReserved((page+i));
  4133. pfn += (1 << order);
  4134. }
  4135. spin_unlock_irqrestore(&zone->lock, flags);
  4136. }
  4137. #endif