intel_display.c 267 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555855685578558855985608561856285638564856585668567856885698570857185728573857485758576857785788579858085818582858385848585858685878588858985908591859285938594859585968597859885998600860186028603860486058606860786088609861086118612861386148615861686178618861986208621862286238624862586268627862886298630863186328633863486358636863786388639864086418642864386448645864686478648864986508651865286538654865586568657865886598660866186628663866486658666866786688669867086718672867386748675867686778678867986808681868286838684868586868687868886898690869186928693869486958696869786988699870087018702870387048705870687078708870987108711871287138714871587168717871887198720872187228723872487258726872787288729873087318732873387348735873687378738873987408741874287438744874587468747874887498750875187528753875487558756875787588759876087618762876387648765876687678768876987708771877287738774877587768777877887798780878187828783878487858786878787888789879087918792879387948795879687978798879988008801880288038804880588068807880888098810881188128813881488158816881788188819882088218822882388248825882688278828882988308831883288338834883588368837883888398840884188428843884488458846884788488849885088518852885388548855885688578858885988608861886288638864886588668867886888698870887188728873887488758876887788788879888088818882888388848885888688878888888988908891889288938894889588968897889888998900890189028903890489058906890789088909891089118912891389148915891689178918891989208921892289238924892589268927892889298930893189328933893489358936893789388939894089418942894389448945894689478948894989508951895289538954895589568957895889598960896189628963896489658966896789688969897089718972897389748975897689778978897989808981898289838984898589868987898889898990899189928993899489958996899789988999900090019002900390049005900690079008900990109011901290139014901590169017901890199020902190229023902490259026902790289029903090319032903390349035903690379038903990409041904290439044904590469047904890499050905190529053905490559056905790589059906090619062906390649065906690679068906990709071907290739074907590769077907890799080908190829083908490859086908790889089909090919092909390949095909690979098909991009101910291039104910591069107910891099110911191129113911491159116911791189119912091219122912391249125912691279128912991309131913291339134913591369137913891399140914191429143914491459146914791489149915091519152915391549155915691579158915991609161916291639164916591669167916891699170917191729173917491759176917791789179918091819182918391849185918691879188918991909191919291939194919591969197919891999200920192029203920492059206920792089209921092119212921392149215921692179218921992209221922292239224922592269227922892299230923192329233923492359236923792389239924092419242924392449245924692479248924992509251925292539254925592569257925892599260926192629263926492659266926792689269927092719272927392749275927692779278927992809281928292839284928592869287928892899290929192929293929492959296929792989299930093019302930393049305930693079308930993109311931293139314931593169317931893199320932193229323932493259326932793289329933093319332933393349335933693379338933993409341934293439344934593469347934893499350935193529353935493559356935793589359936093619362936393649365936693679368936993709371937293739374937593769377937893799380938193829383938493859386938793889389939093919392939393949395939693979398939994009401940294039404940594069407940894099410941194129413941494159416941794189419942094219422942394249425942694279428942994309431943294339434943594369437943894399440944194429443944494459446944794489449945094519452945394549455945694579458945994609461946294639464946594669467946894699470947194729473947494759476947794789479948094819482948394849485948694879488948994909491949294939494949594969497949894999500950195029503950495059506950795089509951095119512951395149515951695179518951995209521952295239524952595269527952895299530953195329533953495359536953795389539954095419542954395449545954695479548954995509551955295539554955595569557955895599560956195629563956495659566956795689569957095719572957395749575957695779578957995809581958295839584958595869587958895899590959195929593959495959596959795989599960096019602960396049605960696079608960996109611961296139614961596169617961896199620962196229623962496259626962796289629963096319632963396349635963696379638963996409641964296439644964596469647964896499650965196529653965496559656965796589659966096619662966396649665966696679668966996709671967296739674967596769677967896799680968196829683968496859686968796889689969096919692969396949695969696979698969997009701970297039704970597069707970897099710971197129713971497159716971797189719972097219722972397249725972697279728972997309731973297339734973597369737973897399740974197429743974497459746974797489749975097519752975397549755975697579758975997609761976297639764976597669767976897699770977197729773977497759776977797789779978097819782978397849785978697879788978997909791979297939794979597969797979897999800980198029803980498059806980798089809981098119812981398149815981698179818981998209821982298239824982598269827982898299830983198329833983498359836983798389839984098419842984398449845984698479848984998509851985298539854985598569857985898599860986198629863986498659866986798689869987098719872987398749875987698779878987998809881988298839884988598869887988898899890989198929893
  1. /*
  2. * Copyright © 2006-2007 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
  21. * DEALINGS IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eric Anholt <eric@anholt.net>
  25. */
  26. #include <linux/dmi.h>
  27. #include <linux/module.h>
  28. #include <linux/input.h>
  29. #include <linux/i2c.h>
  30. #include <linux/kernel.h>
  31. #include <linux/slab.h>
  32. #include <linux/vgaarb.h>
  33. #include <drm/drm_edid.h>
  34. #include <drm/drmP.h>
  35. #include "intel_drv.h"
  36. #include <drm/i915_drm.h>
  37. #include "i915_drv.h"
  38. #include "i915_trace.h"
  39. #include <drm/drm_dp_helper.h>
  40. #include <drm/drm_crtc_helper.h>
  41. #include <linux/dma_remapping.h>
  42. bool intel_pipe_has_type(struct drm_crtc *crtc, int type);
  43. static void intel_increase_pllclock(struct drm_crtc *crtc);
  44. static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
  45. typedef struct {
  46. int min, max;
  47. } intel_range_t;
  48. typedef struct {
  49. int dot_limit;
  50. int p2_slow, p2_fast;
  51. } intel_p2_t;
  52. #define INTEL_P2_NUM 2
  53. typedef struct intel_limit intel_limit_t;
  54. struct intel_limit {
  55. intel_range_t dot, vco, n, m, m1, m2, p, p1;
  56. intel_p2_t p2;
  57. };
  58. /* FDI */
  59. #define IRONLAKE_FDI_FREQ 2700000 /* in kHz for mode->clock */
  60. int
  61. intel_pch_rawclk(struct drm_device *dev)
  62. {
  63. struct drm_i915_private *dev_priv = dev->dev_private;
  64. WARN_ON(!HAS_PCH_SPLIT(dev));
  65. return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK;
  66. }
  67. static inline u32 /* units of 100MHz */
  68. intel_fdi_link_freq(struct drm_device *dev)
  69. {
  70. if (IS_GEN5(dev)) {
  71. struct drm_i915_private *dev_priv = dev->dev_private;
  72. return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
  73. } else
  74. return 27;
  75. }
  76. static const intel_limit_t intel_limits_i8xx_dvo = {
  77. .dot = { .min = 25000, .max = 350000 },
  78. .vco = { .min = 930000, .max = 1400000 },
  79. .n = { .min = 3, .max = 16 },
  80. .m = { .min = 96, .max = 140 },
  81. .m1 = { .min = 18, .max = 26 },
  82. .m2 = { .min = 6, .max = 16 },
  83. .p = { .min = 4, .max = 128 },
  84. .p1 = { .min = 2, .max = 33 },
  85. .p2 = { .dot_limit = 165000,
  86. .p2_slow = 4, .p2_fast = 2 },
  87. };
  88. static const intel_limit_t intel_limits_i8xx_lvds = {
  89. .dot = { .min = 25000, .max = 350000 },
  90. .vco = { .min = 930000, .max = 1400000 },
  91. .n = { .min = 3, .max = 16 },
  92. .m = { .min = 96, .max = 140 },
  93. .m1 = { .min = 18, .max = 26 },
  94. .m2 = { .min = 6, .max = 16 },
  95. .p = { .min = 4, .max = 128 },
  96. .p1 = { .min = 1, .max = 6 },
  97. .p2 = { .dot_limit = 165000,
  98. .p2_slow = 14, .p2_fast = 7 },
  99. };
  100. static const intel_limit_t intel_limits_i9xx_sdvo = {
  101. .dot = { .min = 20000, .max = 400000 },
  102. .vco = { .min = 1400000, .max = 2800000 },
  103. .n = { .min = 1, .max = 6 },
  104. .m = { .min = 70, .max = 120 },
  105. .m1 = { .min = 8, .max = 18 },
  106. .m2 = { .min = 3, .max = 7 },
  107. .p = { .min = 5, .max = 80 },
  108. .p1 = { .min = 1, .max = 8 },
  109. .p2 = { .dot_limit = 200000,
  110. .p2_slow = 10, .p2_fast = 5 },
  111. };
  112. static const intel_limit_t intel_limits_i9xx_lvds = {
  113. .dot = { .min = 20000, .max = 400000 },
  114. .vco = { .min = 1400000, .max = 2800000 },
  115. .n = { .min = 1, .max = 6 },
  116. .m = { .min = 70, .max = 120 },
  117. .m1 = { .min = 8, .max = 18 },
  118. .m2 = { .min = 3, .max = 7 },
  119. .p = { .min = 7, .max = 98 },
  120. .p1 = { .min = 1, .max = 8 },
  121. .p2 = { .dot_limit = 112000,
  122. .p2_slow = 14, .p2_fast = 7 },
  123. };
  124. static const intel_limit_t intel_limits_g4x_sdvo = {
  125. .dot = { .min = 25000, .max = 270000 },
  126. .vco = { .min = 1750000, .max = 3500000},
  127. .n = { .min = 1, .max = 4 },
  128. .m = { .min = 104, .max = 138 },
  129. .m1 = { .min = 17, .max = 23 },
  130. .m2 = { .min = 5, .max = 11 },
  131. .p = { .min = 10, .max = 30 },
  132. .p1 = { .min = 1, .max = 3},
  133. .p2 = { .dot_limit = 270000,
  134. .p2_slow = 10,
  135. .p2_fast = 10
  136. },
  137. };
  138. static const intel_limit_t intel_limits_g4x_hdmi = {
  139. .dot = { .min = 22000, .max = 400000 },
  140. .vco = { .min = 1750000, .max = 3500000},
  141. .n = { .min = 1, .max = 4 },
  142. .m = { .min = 104, .max = 138 },
  143. .m1 = { .min = 16, .max = 23 },
  144. .m2 = { .min = 5, .max = 11 },
  145. .p = { .min = 5, .max = 80 },
  146. .p1 = { .min = 1, .max = 8},
  147. .p2 = { .dot_limit = 165000,
  148. .p2_slow = 10, .p2_fast = 5 },
  149. };
  150. static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
  151. .dot = { .min = 20000, .max = 115000 },
  152. .vco = { .min = 1750000, .max = 3500000 },
  153. .n = { .min = 1, .max = 3 },
  154. .m = { .min = 104, .max = 138 },
  155. .m1 = { .min = 17, .max = 23 },
  156. .m2 = { .min = 5, .max = 11 },
  157. .p = { .min = 28, .max = 112 },
  158. .p1 = { .min = 2, .max = 8 },
  159. .p2 = { .dot_limit = 0,
  160. .p2_slow = 14, .p2_fast = 14
  161. },
  162. };
  163. static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
  164. .dot = { .min = 80000, .max = 224000 },
  165. .vco = { .min = 1750000, .max = 3500000 },
  166. .n = { .min = 1, .max = 3 },
  167. .m = { .min = 104, .max = 138 },
  168. .m1 = { .min = 17, .max = 23 },
  169. .m2 = { .min = 5, .max = 11 },
  170. .p = { .min = 14, .max = 42 },
  171. .p1 = { .min = 2, .max = 6 },
  172. .p2 = { .dot_limit = 0,
  173. .p2_slow = 7, .p2_fast = 7
  174. },
  175. };
  176. static const intel_limit_t intel_limits_pineview_sdvo = {
  177. .dot = { .min = 20000, .max = 400000},
  178. .vco = { .min = 1700000, .max = 3500000 },
  179. /* Pineview's Ncounter is a ring counter */
  180. .n = { .min = 3, .max = 6 },
  181. .m = { .min = 2, .max = 256 },
  182. /* Pineview only has one combined m divider, which we treat as m2. */
  183. .m1 = { .min = 0, .max = 0 },
  184. .m2 = { .min = 0, .max = 254 },
  185. .p = { .min = 5, .max = 80 },
  186. .p1 = { .min = 1, .max = 8 },
  187. .p2 = { .dot_limit = 200000,
  188. .p2_slow = 10, .p2_fast = 5 },
  189. };
  190. static const intel_limit_t intel_limits_pineview_lvds = {
  191. .dot = { .min = 20000, .max = 400000 },
  192. .vco = { .min = 1700000, .max = 3500000 },
  193. .n = { .min = 3, .max = 6 },
  194. .m = { .min = 2, .max = 256 },
  195. .m1 = { .min = 0, .max = 0 },
  196. .m2 = { .min = 0, .max = 254 },
  197. .p = { .min = 7, .max = 112 },
  198. .p1 = { .min = 1, .max = 8 },
  199. .p2 = { .dot_limit = 112000,
  200. .p2_slow = 14, .p2_fast = 14 },
  201. };
  202. /* Ironlake / Sandybridge
  203. *
  204. * We calculate clock using (register_value + 2) for N/M1/M2, so here
  205. * the range value for them is (actual_value - 2).
  206. */
  207. static const intel_limit_t intel_limits_ironlake_dac = {
  208. .dot = { .min = 25000, .max = 350000 },
  209. .vco = { .min = 1760000, .max = 3510000 },
  210. .n = { .min = 1, .max = 5 },
  211. .m = { .min = 79, .max = 127 },
  212. .m1 = { .min = 12, .max = 22 },
  213. .m2 = { .min = 5, .max = 9 },
  214. .p = { .min = 5, .max = 80 },
  215. .p1 = { .min = 1, .max = 8 },
  216. .p2 = { .dot_limit = 225000,
  217. .p2_slow = 10, .p2_fast = 5 },
  218. };
  219. static const intel_limit_t intel_limits_ironlake_single_lvds = {
  220. .dot = { .min = 25000, .max = 350000 },
  221. .vco = { .min = 1760000, .max = 3510000 },
  222. .n = { .min = 1, .max = 3 },
  223. .m = { .min = 79, .max = 118 },
  224. .m1 = { .min = 12, .max = 22 },
  225. .m2 = { .min = 5, .max = 9 },
  226. .p = { .min = 28, .max = 112 },
  227. .p1 = { .min = 2, .max = 8 },
  228. .p2 = { .dot_limit = 225000,
  229. .p2_slow = 14, .p2_fast = 14 },
  230. };
  231. static const intel_limit_t intel_limits_ironlake_dual_lvds = {
  232. .dot = { .min = 25000, .max = 350000 },
  233. .vco = { .min = 1760000, .max = 3510000 },
  234. .n = { .min = 1, .max = 3 },
  235. .m = { .min = 79, .max = 127 },
  236. .m1 = { .min = 12, .max = 22 },
  237. .m2 = { .min = 5, .max = 9 },
  238. .p = { .min = 14, .max = 56 },
  239. .p1 = { .min = 2, .max = 8 },
  240. .p2 = { .dot_limit = 225000,
  241. .p2_slow = 7, .p2_fast = 7 },
  242. };
  243. /* LVDS 100mhz refclk limits. */
  244. static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
  245. .dot = { .min = 25000, .max = 350000 },
  246. .vco = { .min = 1760000, .max = 3510000 },
  247. .n = { .min = 1, .max = 2 },
  248. .m = { .min = 79, .max = 126 },
  249. .m1 = { .min = 12, .max = 22 },
  250. .m2 = { .min = 5, .max = 9 },
  251. .p = { .min = 28, .max = 112 },
  252. .p1 = { .min = 2, .max = 8 },
  253. .p2 = { .dot_limit = 225000,
  254. .p2_slow = 14, .p2_fast = 14 },
  255. };
  256. static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
  257. .dot = { .min = 25000, .max = 350000 },
  258. .vco = { .min = 1760000, .max = 3510000 },
  259. .n = { .min = 1, .max = 3 },
  260. .m = { .min = 79, .max = 126 },
  261. .m1 = { .min = 12, .max = 22 },
  262. .m2 = { .min = 5, .max = 9 },
  263. .p = { .min = 14, .max = 42 },
  264. .p1 = { .min = 2, .max = 6 },
  265. .p2 = { .dot_limit = 225000,
  266. .p2_slow = 7, .p2_fast = 7 },
  267. };
  268. static const intel_limit_t intel_limits_vlv_dac = {
  269. .dot = { .min = 25000, .max = 270000 },
  270. .vco = { .min = 4000000, .max = 6000000 },
  271. .n = { .min = 1, .max = 7 },
  272. .m = { .min = 22, .max = 450 }, /* guess */
  273. .m1 = { .min = 2, .max = 3 },
  274. .m2 = { .min = 11, .max = 156 },
  275. .p = { .min = 10, .max = 30 },
  276. .p1 = { .min = 1, .max = 3 },
  277. .p2 = { .dot_limit = 270000,
  278. .p2_slow = 2, .p2_fast = 20 },
  279. };
  280. static const intel_limit_t intel_limits_vlv_hdmi = {
  281. .dot = { .min = 25000, .max = 270000 },
  282. .vco = { .min = 4000000, .max = 6000000 },
  283. .n = { .min = 1, .max = 7 },
  284. .m = { .min = 60, .max = 300 }, /* guess */
  285. .m1 = { .min = 2, .max = 3 },
  286. .m2 = { .min = 11, .max = 156 },
  287. .p = { .min = 10, .max = 30 },
  288. .p1 = { .min = 2, .max = 3 },
  289. .p2 = { .dot_limit = 270000,
  290. .p2_slow = 2, .p2_fast = 20 },
  291. };
  292. static const intel_limit_t intel_limits_vlv_dp = {
  293. .dot = { .min = 25000, .max = 270000 },
  294. .vco = { .min = 4000000, .max = 6000000 },
  295. .n = { .min = 1, .max = 7 },
  296. .m = { .min = 22, .max = 450 },
  297. .m1 = { .min = 2, .max = 3 },
  298. .m2 = { .min = 11, .max = 156 },
  299. .p = { .min = 10, .max = 30 },
  300. .p1 = { .min = 1, .max = 3 },
  301. .p2 = { .dot_limit = 270000,
  302. .p2_slow = 2, .p2_fast = 20 },
  303. };
  304. static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc,
  305. int refclk)
  306. {
  307. struct drm_device *dev = crtc->dev;
  308. const intel_limit_t *limit;
  309. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  310. if (intel_is_dual_link_lvds(dev)) {
  311. if (refclk == 100000)
  312. limit = &intel_limits_ironlake_dual_lvds_100m;
  313. else
  314. limit = &intel_limits_ironlake_dual_lvds;
  315. } else {
  316. if (refclk == 100000)
  317. limit = &intel_limits_ironlake_single_lvds_100m;
  318. else
  319. limit = &intel_limits_ironlake_single_lvds;
  320. }
  321. } else
  322. limit = &intel_limits_ironlake_dac;
  323. return limit;
  324. }
  325. static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
  326. {
  327. struct drm_device *dev = crtc->dev;
  328. const intel_limit_t *limit;
  329. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  330. if (intel_is_dual_link_lvds(dev))
  331. limit = &intel_limits_g4x_dual_channel_lvds;
  332. else
  333. limit = &intel_limits_g4x_single_channel_lvds;
  334. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
  335. intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
  336. limit = &intel_limits_g4x_hdmi;
  337. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
  338. limit = &intel_limits_g4x_sdvo;
  339. } else /* The option is for other outputs */
  340. limit = &intel_limits_i9xx_sdvo;
  341. return limit;
  342. }
  343. static const intel_limit_t *intel_limit(struct drm_crtc *crtc, int refclk)
  344. {
  345. struct drm_device *dev = crtc->dev;
  346. const intel_limit_t *limit;
  347. if (HAS_PCH_SPLIT(dev))
  348. limit = intel_ironlake_limit(crtc, refclk);
  349. else if (IS_G4X(dev)) {
  350. limit = intel_g4x_limit(crtc);
  351. } else if (IS_PINEVIEW(dev)) {
  352. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
  353. limit = &intel_limits_pineview_lvds;
  354. else
  355. limit = &intel_limits_pineview_sdvo;
  356. } else if (IS_VALLEYVIEW(dev)) {
  357. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG))
  358. limit = &intel_limits_vlv_dac;
  359. else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
  360. limit = &intel_limits_vlv_hdmi;
  361. else
  362. limit = &intel_limits_vlv_dp;
  363. } else if (!IS_GEN2(dev)) {
  364. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
  365. limit = &intel_limits_i9xx_lvds;
  366. else
  367. limit = &intel_limits_i9xx_sdvo;
  368. } else {
  369. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
  370. limit = &intel_limits_i8xx_lvds;
  371. else
  372. limit = &intel_limits_i8xx_dvo;
  373. }
  374. return limit;
  375. }
  376. /* m1 is reserved as 0 in Pineview, n is a ring counter */
  377. static void pineview_clock(int refclk, intel_clock_t *clock)
  378. {
  379. clock->m = clock->m2 + 2;
  380. clock->p = clock->p1 * clock->p2;
  381. clock->vco = refclk * clock->m / clock->n;
  382. clock->dot = clock->vco / clock->p;
  383. }
  384. static uint32_t i9xx_dpll_compute_m(struct dpll *dpll)
  385. {
  386. return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
  387. }
  388. static void i9xx_clock(int refclk, intel_clock_t *clock)
  389. {
  390. clock->m = i9xx_dpll_compute_m(clock);
  391. clock->p = clock->p1 * clock->p2;
  392. clock->vco = refclk * clock->m / (clock->n + 2);
  393. clock->dot = clock->vco / clock->p;
  394. }
  395. /**
  396. * Returns whether any output on the specified pipe is of the specified type
  397. */
  398. bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
  399. {
  400. struct drm_device *dev = crtc->dev;
  401. struct intel_encoder *encoder;
  402. for_each_encoder_on_crtc(dev, crtc, encoder)
  403. if (encoder->type == type)
  404. return true;
  405. return false;
  406. }
  407. #define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
  408. /**
  409. * Returns whether the given set of divisors are valid for a given refclk with
  410. * the given connectors.
  411. */
  412. static bool intel_PLL_is_valid(struct drm_device *dev,
  413. const intel_limit_t *limit,
  414. const intel_clock_t *clock)
  415. {
  416. if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
  417. INTELPllInvalid("p1 out of range\n");
  418. if (clock->p < limit->p.min || limit->p.max < clock->p)
  419. INTELPllInvalid("p out of range\n");
  420. if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
  421. INTELPllInvalid("m2 out of range\n");
  422. if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
  423. INTELPllInvalid("m1 out of range\n");
  424. if (clock->m1 <= clock->m2 && !IS_PINEVIEW(dev))
  425. INTELPllInvalid("m1 <= m2\n");
  426. if (clock->m < limit->m.min || limit->m.max < clock->m)
  427. INTELPllInvalid("m out of range\n");
  428. if (clock->n < limit->n.min || limit->n.max < clock->n)
  429. INTELPllInvalid("n out of range\n");
  430. if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
  431. INTELPllInvalid("vco out of range\n");
  432. /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
  433. * connector, etc., rather than just a single range.
  434. */
  435. if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
  436. INTELPllInvalid("dot out of range\n");
  437. return true;
  438. }
  439. static bool
  440. i9xx_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
  441. int target, int refclk, intel_clock_t *match_clock,
  442. intel_clock_t *best_clock)
  443. {
  444. struct drm_device *dev = crtc->dev;
  445. intel_clock_t clock;
  446. int err = target;
  447. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  448. /*
  449. * For LVDS just rely on its current settings for dual-channel.
  450. * We haven't figured out how to reliably set up different
  451. * single/dual channel state, if we even can.
  452. */
  453. if (intel_is_dual_link_lvds(dev))
  454. clock.p2 = limit->p2.p2_fast;
  455. else
  456. clock.p2 = limit->p2.p2_slow;
  457. } else {
  458. if (target < limit->p2.dot_limit)
  459. clock.p2 = limit->p2.p2_slow;
  460. else
  461. clock.p2 = limit->p2.p2_fast;
  462. }
  463. memset(best_clock, 0, sizeof(*best_clock));
  464. for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
  465. clock.m1++) {
  466. for (clock.m2 = limit->m2.min;
  467. clock.m2 <= limit->m2.max; clock.m2++) {
  468. /* m1 is always 0 in Pineview */
  469. if (clock.m2 >= clock.m1 && !IS_PINEVIEW(dev))
  470. break;
  471. for (clock.n = limit->n.min;
  472. clock.n <= limit->n.max; clock.n++) {
  473. for (clock.p1 = limit->p1.min;
  474. clock.p1 <= limit->p1.max; clock.p1++) {
  475. int this_err;
  476. i9xx_clock(refclk, &clock);
  477. if (!intel_PLL_is_valid(dev, limit,
  478. &clock))
  479. continue;
  480. if (match_clock &&
  481. clock.p != match_clock->p)
  482. continue;
  483. this_err = abs(clock.dot - target);
  484. if (this_err < err) {
  485. *best_clock = clock;
  486. err = this_err;
  487. }
  488. }
  489. }
  490. }
  491. }
  492. return (err != target);
  493. }
  494. static bool
  495. pnv_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
  496. int target, int refclk, intel_clock_t *match_clock,
  497. intel_clock_t *best_clock)
  498. {
  499. struct drm_device *dev = crtc->dev;
  500. intel_clock_t clock;
  501. int err = target;
  502. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  503. /*
  504. * For LVDS just rely on its current settings for dual-channel.
  505. * We haven't figured out how to reliably set up different
  506. * single/dual channel state, if we even can.
  507. */
  508. if (intel_is_dual_link_lvds(dev))
  509. clock.p2 = limit->p2.p2_fast;
  510. else
  511. clock.p2 = limit->p2.p2_slow;
  512. } else {
  513. if (target < limit->p2.dot_limit)
  514. clock.p2 = limit->p2.p2_slow;
  515. else
  516. clock.p2 = limit->p2.p2_fast;
  517. }
  518. memset(best_clock, 0, sizeof(*best_clock));
  519. for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
  520. clock.m1++) {
  521. for (clock.m2 = limit->m2.min;
  522. clock.m2 <= limit->m2.max; clock.m2++) {
  523. /* m1 is always 0 in Pineview */
  524. if (clock.m2 >= clock.m1 && !IS_PINEVIEW(dev))
  525. break;
  526. for (clock.n = limit->n.min;
  527. clock.n <= limit->n.max; clock.n++) {
  528. for (clock.p1 = limit->p1.min;
  529. clock.p1 <= limit->p1.max; clock.p1++) {
  530. int this_err;
  531. pineview_clock(refclk, &clock);
  532. if (!intel_PLL_is_valid(dev, limit,
  533. &clock))
  534. continue;
  535. if (match_clock &&
  536. clock.p != match_clock->p)
  537. continue;
  538. this_err = abs(clock.dot - target);
  539. if (this_err < err) {
  540. *best_clock = clock;
  541. err = this_err;
  542. }
  543. }
  544. }
  545. }
  546. }
  547. return (err != target);
  548. }
  549. static bool
  550. g4x_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
  551. int target, int refclk, intel_clock_t *match_clock,
  552. intel_clock_t *best_clock)
  553. {
  554. struct drm_device *dev = crtc->dev;
  555. intel_clock_t clock;
  556. int max_n;
  557. bool found;
  558. /* approximately equals target * 0.00585 */
  559. int err_most = (target >> 8) + (target >> 9);
  560. found = false;
  561. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  562. if (intel_is_dual_link_lvds(dev))
  563. clock.p2 = limit->p2.p2_fast;
  564. else
  565. clock.p2 = limit->p2.p2_slow;
  566. } else {
  567. if (target < limit->p2.dot_limit)
  568. clock.p2 = limit->p2.p2_slow;
  569. else
  570. clock.p2 = limit->p2.p2_fast;
  571. }
  572. memset(best_clock, 0, sizeof(*best_clock));
  573. max_n = limit->n.max;
  574. /* based on hardware requirement, prefer smaller n to precision */
  575. for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
  576. /* based on hardware requirement, prefere larger m1,m2 */
  577. for (clock.m1 = limit->m1.max;
  578. clock.m1 >= limit->m1.min; clock.m1--) {
  579. for (clock.m2 = limit->m2.max;
  580. clock.m2 >= limit->m2.min; clock.m2--) {
  581. for (clock.p1 = limit->p1.max;
  582. clock.p1 >= limit->p1.min; clock.p1--) {
  583. int this_err;
  584. i9xx_clock(refclk, &clock);
  585. if (!intel_PLL_is_valid(dev, limit,
  586. &clock))
  587. continue;
  588. this_err = abs(clock.dot - target);
  589. if (this_err < err_most) {
  590. *best_clock = clock;
  591. err_most = this_err;
  592. max_n = clock.n;
  593. found = true;
  594. }
  595. }
  596. }
  597. }
  598. }
  599. return found;
  600. }
  601. static bool
  602. vlv_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
  603. int target, int refclk, intel_clock_t *match_clock,
  604. intel_clock_t *best_clock)
  605. {
  606. u32 p1, p2, m1, m2, vco, bestn, bestm1, bestm2, bestp1, bestp2;
  607. u32 m, n, fastclk;
  608. u32 updrate, minupdate, fracbits, p;
  609. unsigned long bestppm, ppm, absppm;
  610. int dotclk, flag;
  611. flag = 0;
  612. dotclk = target * 1000;
  613. bestppm = 1000000;
  614. ppm = absppm = 0;
  615. fastclk = dotclk / (2*100);
  616. updrate = 0;
  617. minupdate = 19200;
  618. fracbits = 1;
  619. n = p = p1 = p2 = m = m1 = m2 = vco = bestn = 0;
  620. bestm1 = bestm2 = bestp1 = bestp2 = 0;
  621. /* based on hardware requirement, prefer smaller n to precision */
  622. for (n = limit->n.min; n <= ((refclk) / minupdate); n++) {
  623. updrate = refclk / n;
  624. for (p1 = limit->p1.max; p1 > limit->p1.min; p1--) {
  625. for (p2 = limit->p2.p2_fast+1; p2 > 0; p2--) {
  626. if (p2 > 10)
  627. p2 = p2 - 1;
  628. p = p1 * p2;
  629. /* based on hardware requirement, prefer bigger m1,m2 values */
  630. for (m1 = limit->m1.min; m1 <= limit->m1.max; m1++) {
  631. m2 = (((2*(fastclk * p * n / m1 )) +
  632. refclk) / (2*refclk));
  633. m = m1 * m2;
  634. vco = updrate * m;
  635. if (vco >= limit->vco.min && vco < limit->vco.max) {
  636. ppm = 1000000 * ((vco / p) - fastclk) / fastclk;
  637. absppm = (ppm > 0) ? ppm : (-ppm);
  638. if (absppm < 100 && ((p1 * p2) > (bestp1 * bestp2))) {
  639. bestppm = 0;
  640. flag = 1;
  641. }
  642. if (absppm < bestppm - 10) {
  643. bestppm = absppm;
  644. flag = 1;
  645. }
  646. if (flag) {
  647. bestn = n;
  648. bestm1 = m1;
  649. bestm2 = m2;
  650. bestp1 = p1;
  651. bestp2 = p2;
  652. flag = 0;
  653. }
  654. }
  655. }
  656. }
  657. }
  658. }
  659. best_clock->n = bestn;
  660. best_clock->m1 = bestm1;
  661. best_clock->m2 = bestm2;
  662. best_clock->p1 = bestp1;
  663. best_clock->p2 = bestp2;
  664. return true;
  665. }
  666. enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
  667. enum pipe pipe)
  668. {
  669. struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
  670. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  671. return intel_crtc->config.cpu_transcoder;
  672. }
  673. static void ironlake_wait_for_vblank(struct drm_device *dev, int pipe)
  674. {
  675. struct drm_i915_private *dev_priv = dev->dev_private;
  676. u32 frame, frame_reg = PIPEFRAME(pipe);
  677. frame = I915_READ(frame_reg);
  678. if (wait_for(I915_READ_NOTRACE(frame_reg) != frame, 50))
  679. DRM_DEBUG_KMS("vblank wait timed out\n");
  680. }
  681. /**
  682. * intel_wait_for_vblank - wait for vblank on a given pipe
  683. * @dev: drm device
  684. * @pipe: pipe to wait for
  685. *
  686. * Wait for vblank to occur on a given pipe. Needed for various bits of
  687. * mode setting code.
  688. */
  689. void intel_wait_for_vblank(struct drm_device *dev, int pipe)
  690. {
  691. struct drm_i915_private *dev_priv = dev->dev_private;
  692. int pipestat_reg = PIPESTAT(pipe);
  693. if (INTEL_INFO(dev)->gen >= 5) {
  694. ironlake_wait_for_vblank(dev, pipe);
  695. return;
  696. }
  697. /* Clear existing vblank status. Note this will clear any other
  698. * sticky status fields as well.
  699. *
  700. * This races with i915_driver_irq_handler() with the result
  701. * that either function could miss a vblank event. Here it is not
  702. * fatal, as we will either wait upon the next vblank interrupt or
  703. * timeout. Generally speaking intel_wait_for_vblank() is only
  704. * called during modeset at which time the GPU should be idle and
  705. * should *not* be performing page flips and thus not waiting on
  706. * vblanks...
  707. * Currently, the result of us stealing a vblank from the irq
  708. * handler is that a single frame will be skipped during swapbuffers.
  709. */
  710. I915_WRITE(pipestat_reg,
  711. I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
  712. /* Wait for vblank interrupt bit to set */
  713. if (wait_for(I915_READ(pipestat_reg) &
  714. PIPE_VBLANK_INTERRUPT_STATUS,
  715. 50))
  716. DRM_DEBUG_KMS("vblank wait timed out\n");
  717. }
  718. /*
  719. * intel_wait_for_pipe_off - wait for pipe to turn off
  720. * @dev: drm device
  721. * @pipe: pipe to wait for
  722. *
  723. * After disabling a pipe, we can't wait for vblank in the usual way,
  724. * spinning on the vblank interrupt status bit, since we won't actually
  725. * see an interrupt when the pipe is disabled.
  726. *
  727. * On Gen4 and above:
  728. * wait for the pipe register state bit to turn off
  729. *
  730. * Otherwise:
  731. * wait for the display line value to settle (it usually
  732. * ends up stopping at the start of the next frame).
  733. *
  734. */
  735. void intel_wait_for_pipe_off(struct drm_device *dev, int pipe)
  736. {
  737. struct drm_i915_private *dev_priv = dev->dev_private;
  738. enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
  739. pipe);
  740. if (INTEL_INFO(dev)->gen >= 4) {
  741. int reg = PIPECONF(cpu_transcoder);
  742. /* Wait for the Pipe State to go off */
  743. if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
  744. 100))
  745. WARN(1, "pipe_off wait timed out\n");
  746. } else {
  747. u32 last_line, line_mask;
  748. int reg = PIPEDSL(pipe);
  749. unsigned long timeout = jiffies + msecs_to_jiffies(100);
  750. if (IS_GEN2(dev))
  751. line_mask = DSL_LINEMASK_GEN2;
  752. else
  753. line_mask = DSL_LINEMASK_GEN3;
  754. /* Wait for the display line to settle */
  755. do {
  756. last_line = I915_READ(reg) & line_mask;
  757. mdelay(5);
  758. } while (((I915_READ(reg) & line_mask) != last_line) &&
  759. time_after(timeout, jiffies));
  760. if (time_after(jiffies, timeout))
  761. WARN(1, "pipe_off wait timed out\n");
  762. }
  763. }
  764. /*
  765. * ibx_digital_port_connected - is the specified port connected?
  766. * @dev_priv: i915 private structure
  767. * @port: the port to test
  768. *
  769. * Returns true if @port is connected, false otherwise.
  770. */
  771. bool ibx_digital_port_connected(struct drm_i915_private *dev_priv,
  772. struct intel_digital_port *port)
  773. {
  774. u32 bit;
  775. if (HAS_PCH_IBX(dev_priv->dev)) {
  776. switch(port->port) {
  777. case PORT_B:
  778. bit = SDE_PORTB_HOTPLUG;
  779. break;
  780. case PORT_C:
  781. bit = SDE_PORTC_HOTPLUG;
  782. break;
  783. case PORT_D:
  784. bit = SDE_PORTD_HOTPLUG;
  785. break;
  786. default:
  787. return true;
  788. }
  789. } else {
  790. switch(port->port) {
  791. case PORT_B:
  792. bit = SDE_PORTB_HOTPLUG_CPT;
  793. break;
  794. case PORT_C:
  795. bit = SDE_PORTC_HOTPLUG_CPT;
  796. break;
  797. case PORT_D:
  798. bit = SDE_PORTD_HOTPLUG_CPT;
  799. break;
  800. default:
  801. return true;
  802. }
  803. }
  804. return I915_READ(SDEISR) & bit;
  805. }
  806. static const char *state_string(bool enabled)
  807. {
  808. return enabled ? "on" : "off";
  809. }
  810. /* Only for pre-ILK configs */
  811. static void assert_pll(struct drm_i915_private *dev_priv,
  812. enum pipe pipe, bool state)
  813. {
  814. int reg;
  815. u32 val;
  816. bool cur_state;
  817. reg = DPLL(pipe);
  818. val = I915_READ(reg);
  819. cur_state = !!(val & DPLL_VCO_ENABLE);
  820. WARN(cur_state != state,
  821. "PLL state assertion failure (expected %s, current %s)\n",
  822. state_string(state), state_string(cur_state));
  823. }
  824. #define assert_pll_enabled(d, p) assert_pll(d, p, true)
  825. #define assert_pll_disabled(d, p) assert_pll(d, p, false)
  826. /* For ILK+ */
  827. static void assert_pch_pll(struct drm_i915_private *dev_priv,
  828. struct intel_pch_pll *pll,
  829. struct intel_crtc *crtc,
  830. bool state)
  831. {
  832. u32 val;
  833. bool cur_state;
  834. if (HAS_PCH_LPT(dev_priv->dev)) {
  835. DRM_DEBUG_DRIVER("LPT detected: skipping PCH PLL test\n");
  836. return;
  837. }
  838. if (WARN (!pll,
  839. "asserting PCH PLL %s with no PLL\n", state_string(state)))
  840. return;
  841. val = I915_READ(pll->pll_reg);
  842. cur_state = !!(val & DPLL_VCO_ENABLE);
  843. WARN(cur_state != state,
  844. "PCH PLL state for reg %x assertion failure (expected %s, current %s), val=%08x\n",
  845. pll->pll_reg, state_string(state), state_string(cur_state), val);
  846. /* Make sure the selected PLL is correctly attached to the transcoder */
  847. if (crtc && HAS_PCH_CPT(dev_priv->dev)) {
  848. u32 pch_dpll;
  849. pch_dpll = I915_READ(PCH_DPLL_SEL);
  850. cur_state = pll->pll_reg == _PCH_DPLL_B;
  851. if (!WARN(((pch_dpll >> (4 * crtc->pipe)) & 1) != cur_state,
  852. "PLL[%d] not attached to this transcoder %c: %08x\n",
  853. cur_state, pipe_name(crtc->pipe), pch_dpll)) {
  854. cur_state = !!(val >> (4*crtc->pipe + 3));
  855. WARN(cur_state != state,
  856. "PLL[%d] not %s on this transcoder %c: %08x\n",
  857. pll->pll_reg == _PCH_DPLL_B,
  858. state_string(state),
  859. pipe_name(crtc->pipe),
  860. val);
  861. }
  862. }
  863. }
  864. #define assert_pch_pll_enabled(d, p, c) assert_pch_pll(d, p, c, true)
  865. #define assert_pch_pll_disabled(d, p, c) assert_pch_pll(d, p, c, false)
  866. static void assert_fdi_tx(struct drm_i915_private *dev_priv,
  867. enum pipe pipe, bool state)
  868. {
  869. int reg;
  870. u32 val;
  871. bool cur_state;
  872. enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
  873. pipe);
  874. if (HAS_DDI(dev_priv->dev)) {
  875. /* DDI does not have a specific FDI_TX register */
  876. reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
  877. val = I915_READ(reg);
  878. cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
  879. } else {
  880. reg = FDI_TX_CTL(pipe);
  881. val = I915_READ(reg);
  882. cur_state = !!(val & FDI_TX_ENABLE);
  883. }
  884. WARN(cur_state != state,
  885. "FDI TX state assertion failure (expected %s, current %s)\n",
  886. state_string(state), state_string(cur_state));
  887. }
  888. #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
  889. #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
  890. static void assert_fdi_rx(struct drm_i915_private *dev_priv,
  891. enum pipe pipe, bool state)
  892. {
  893. int reg;
  894. u32 val;
  895. bool cur_state;
  896. reg = FDI_RX_CTL(pipe);
  897. val = I915_READ(reg);
  898. cur_state = !!(val & FDI_RX_ENABLE);
  899. WARN(cur_state != state,
  900. "FDI RX state assertion failure (expected %s, current %s)\n",
  901. state_string(state), state_string(cur_state));
  902. }
  903. #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
  904. #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
  905. static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
  906. enum pipe pipe)
  907. {
  908. int reg;
  909. u32 val;
  910. /* ILK FDI PLL is always enabled */
  911. if (dev_priv->info->gen == 5)
  912. return;
  913. /* On Haswell, DDI ports are responsible for the FDI PLL setup */
  914. if (HAS_DDI(dev_priv->dev))
  915. return;
  916. reg = FDI_TX_CTL(pipe);
  917. val = I915_READ(reg);
  918. WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
  919. }
  920. static void assert_fdi_rx_pll_enabled(struct drm_i915_private *dev_priv,
  921. enum pipe pipe)
  922. {
  923. int reg;
  924. u32 val;
  925. reg = FDI_RX_CTL(pipe);
  926. val = I915_READ(reg);
  927. WARN(!(val & FDI_RX_PLL_ENABLE), "FDI RX PLL assertion failure, should be active but is disabled\n");
  928. }
  929. static void assert_panel_unlocked(struct drm_i915_private *dev_priv,
  930. enum pipe pipe)
  931. {
  932. int pp_reg, lvds_reg;
  933. u32 val;
  934. enum pipe panel_pipe = PIPE_A;
  935. bool locked = true;
  936. if (HAS_PCH_SPLIT(dev_priv->dev)) {
  937. pp_reg = PCH_PP_CONTROL;
  938. lvds_reg = PCH_LVDS;
  939. } else {
  940. pp_reg = PP_CONTROL;
  941. lvds_reg = LVDS;
  942. }
  943. val = I915_READ(pp_reg);
  944. if (!(val & PANEL_POWER_ON) ||
  945. ((val & PANEL_UNLOCK_REGS) == PANEL_UNLOCK_REGS))
  946. locked = false;
  947. if (I915_READ(lvds_reg) & LVDS_PIPEB_SELECT)
  948. panel_pipe = PIPE_B;
  949. WARN(panel_pipe == pipe && locked,
  950. "panel assertion failure, pipe %c regs locked\n",
  951. pipe_name(pipe));
  952. }
  953. void assert_pipe(struct drm_i915_private *dev_priv,
  954. enum pipe pipe, bool state)
  955. {
  956. int reg;
  957. u32 val;
  958. bool cur_state;
  959. enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
  960. pipe);
  961. /* if we need the pipe A quirk it must be always on */
  962. if (pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
  963. state = true;
  964. if (!intel_display_power_enabled(dev_priv->dev,
  965. POWER_DOMAIN_TRANSCODER(cpu_transcoder))) {
  966. cur_state = false;
  967. } else {
  968. reg = PIPECONF(cpu_transcoder);
  969. val = I915_READ(reg);
  970. cur_state = !!(val & PIPECONF_ENABLE);
  971. }
  972. WARN(cur_state != state,
  973. "pipe %c assertion failure (expected %s, current %s)\n",
  974. pipe_name(pipe), state_string(state), state_string(cur_state));
  975. }
  976. static void assert_plane(struct drm_i915_private *dev_priv,
  977. enum plane plane, bool state)
  978. {
  979. int reg;
  980. u32 val;
  981. bool cur_state;
  982. reg = DSPCNTR(plane);
  983. val = I915_READ(reg);
  984. cur_state = !!(val & DISPLAY_PLANE_ENABLE);
  985. WARN(cur_state != state,
  986. "plane %c assertion failure (expected %s, current %s)\n",
  987. plane_name(plane), state_string(state), state_string(cur_state));
  988. }
  989. #define assert_plane_enabled(d, p) assert_plane(d, p, true)
  990. #define assert_plane_disabled(d, p) assert_plane(d, p, false)
  991. static void assert_planes_disabled(struct drm_i915_private *dev_priv,
  992. enum pipe pipe)
  993. {
  994. int reg, i;
  995. u32 val;
  996. int cur_pipe;
  997. /* Planes are fixed to pipes on ILK+ */
  998. if (HAS_PCH_SPLIT(dev_priv->dev) || IS_VALLEYVIEW(dev_priv->dev)) {
  999. reg = DSPCNTR(pipe);
  1000. val = I915_READ(reg);
  1001. WARN((val & DISPLAY_PLANE_ENABLE),
  1002. "plane %c assertion failure, should be disabled but not\n",
  1003. plane_name(pipe));
  1004. return;
  1005. }
  1006. /* Need to check both planes against the pipe */
  1007. for (i = 0; i < 2; i++) {
  1008. reg = DSPCNTR(i);
  1009. val = I915_READ(reg);
  1010. cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
  1011. DISPPLANE_SEL_PIPE_SHIFT;
  1012. WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
  1013. "plane %c assertion failure, should be off on pipe %c but is still active\n",
  1014. plane_name(i), pipe_name(pipe));
  1015. }
  1016. }
  1017. static void assert_sprites_disabled(struct drm_i915_private *dev_priv,
  1018. enum pipe pipe)
  1019. {
  1020. int reg, i;
  1021. u32 val;
  1022. if (!IS_VALLEYVIEW(dev_priv->dev))
  1023. return;
  1024. /* Need to check both planes against the pipe */
  1025. for (i = 0; i < dev_priv->num_plane; i++) {
  1026. reg = SPCNTR(pipe, i);
  1027. val = I915_READ(reg);
  1028. WARN((val & SP_ENABLE),
  1029. "sprite %c assertion failure, should be off on pipe %c but is still active\n",
  1030. sprite_name(pipe, i), pipe_name(pipe));
  1031. }
  1032. }
  1033. static void assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
  1034. {
  1035. u32 val;
  1036. bool enabled;
  1037. if (HAS_PCH_LPT(dev_priv->dev)) {
  1038. DRM_DEBUG_DRIVER("LPT does not has PCH refclk, skipping check\n");
  1039. return;
  1040. }
  1041. val = I915_READ(PCH_DREF_CONTROL);
  1042. enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
  1043. DREF_SUPERSPREAD_SOURCE_MASK));
  1044. WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
  1045. }
  1046. static void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
  1047. enum pipe pipe)
  1048. {
  1049. int reg;
  1050. u32 val;
  1051. bool enabled;
  1052. reg = PCH_TRANSCONF(pipe);
  1053. val = I915_READ(reg);
  1054. enabled = !!(val & TRANS_ENABLE);
  1055. WARN(enabled,
  1056. "transcoder assertion failed, should be off on pipe %c but is still active\n",
  1057. pipe_name(pipe));
  1058. }
  1059. static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
  1060. enum pipe pipe, u32 port_sel, u32 val)
  1061. {
  1062. if ((val & DP_PORT_EN) == 0)
  1063. return false;
  1064. if (HAS_PCH_CPT(dev_priv->dev)) {
  1065. u32 trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
  1066. u32 trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
  1067. if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
  1068. return false;
  1069. } else {
  1070. if ((val & DP_PIPE_MASK) != (pipe << 30))
  1071. return false;
  1072. }
  1073. return true;
  1074. }
  1075. static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
  1076. enum pipe pipe, u32 val)
  1077. {
  1078. if ((val & SDVO_ENABLE) == 0)
  1079. return false;
  1080. if (HAS_PCH_CPT(dev_priv->dev)) {
  1081. if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
  1082. return false;
  1083. } else {
  1084. if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
  1085. return false;
  1086. }
  1087. return true;
  1088. }
  1089. static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
  1090. enum pipe pipe, u32 val)
  1091. {
  1092. if ((val & LVDS_PORT_EN) == 0)
  1093. return false;
  1094. if (HAS_PCH_CPT(dev_priv->dev)) {
  1095. if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
  1096. return false;
  1097. } else {
  1098. if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
  1099. return false;
  1100. }
  1101. return true;
  1102. }
  1103. static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
  1104. enum pipe pipe, u32 val)
  1105. {
  1106. if ((val & ADPA_DAC_ENABLE) == 0)
  1107. return false;
  1108. if (HAS_PCH_CPT(dev_priv->dev)) {
  1109. if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
  1110. return false;
  1111. } else {
  1112. if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
  1113. return false;
  1114. }
  1115. return true;
  1116. }
  1117. static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
  1118. enum pipe pipe, int reg, u32 port_sel)
  1119. {
  1120. u32 val = I915_READ(reg);
  1121. WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
  1122. "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
  1123. reg, pipe_name(pipe));
  1124. WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
  1125. && (val & DP_PIPEB_SELECT),
  1126. "IBX PCH dp port still using transcoder B\n");
  1127. }
  1128. static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
  1129. enum pipe pipe, int reg)
  1130. {
  1131. u32 val = I915_READ(reg);
  1132. WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
  1133. "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
  1134. reg, pipe_name(pipe));
  1135. WARN(HAS_PCH_IBX(dev_priv->dev) && (val & SDVO_ENABLE) == 0
  1136. && (val & SDVO_PIPE_B_SELECT),
  1137. "IBX PCH hdmi port still using transcoder B\n");
  1138. }
  1139. static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
  1140. enum pipe pipe)
  1141. {
  1142. int reg;
  1143. u32 val;
  1144. assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
  1145. assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
  1146. assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
  1147. reg = PCH_ADPA;
  1148. val = I915_READ(reg);
  1149. WARN(adpa_pipe_enabled(dev_priv, pipe, val),
  1150. "PCH VGA enabled on transcoder %c, should be disabled\n",
  1151. pipe_name(pipe));
  1152. reg = PCH_LVDS;
  1153. val = I915_READ(reg);
  1154. WARN(lvds_pipe_enabled(dev_priv, pipe, val),
  1155. "PCH LVDS enabled on transcoder %c, should be disabled\n",
  1156. pipe_name(pipe));
  1157. assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
  1158. assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
  1159. assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
  1160. }
  1161. /**
  1162. * intel_enable_pll - enable a PLL
  1163. * @dev_priv: i915 private structure
  1164. * @pipe: pipe PLL to enable
  1165. *
  1166. * Enable @pipe's PLL so we can start pumping pixels from a plane. Check to
  1167. * make sure the PLL reg is writable first though, since the panel write
  1168. * protect mechanism may be enabled.
  1169. *
  1170. * Note! This is for pre-ILK only.
  1171. *
  1172. * Unfortunately needed by dvo_ns2501 since the dvo depends on it running.
  1173. */
  1174. static void intel_enable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
  1175. {
  1176. int reg;
  1177. u32 val;
  1178. assert_pipe_disabled(dev_priv, pipe);
  1179. /* No really, not for ILK+ */
  1180. BUG_ON(!IS_VALLEYVIEW(dev_priv->dev) && dev_priv->info->gen >= 5);
  1181. /* PLL is protected by panel, make sure we can write it */
  1182. if (IS_MOBILE(dev_priv->dev) && !IS_I830(dev_priv->dev))
  1183. assert_panel_unlocked(dev_priv, pipe);
  1184. reg = DPLL(pipe);
  1185. val = I915_READ(reg);
  1186. val |= DPLL_VCO_ENABLE;
  1187. /* We do this three times for luck */
  1188. I915_WRITE(reg, val);
  1189. POSTING_READ(reg);
  1190. udelay(150); /* wait for warmup */
  1191. I915_WRITE(reg, val);
  1192. POSTING_READ(reg);
  1193. udelay(150); /* wait for warmup */
  1194. I915_WRITE(reg, val);
  1195. POSTING_READ(reg);
  1196. udelay(150); /* wait for warmup */
  1197. }
  1198. /**
  1199. * intel_disable_pll - disable a PLL
  1200. * @dev_priv: i915 private structure
  1201. * @pipe: pipe PLL to disable
  1202. *
  1203. * Disable the PLL for @pipe, making sure the pipe is off first.
  1204. *
  1205. * Note! This is for pre-ILK only.
  1206. */
  1207. static void intel_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
  1208. {
  1209. int reg;
  1210. u32 val;
  1211. /* Don't disable pipe A or pipe A PLLs if needed */
  1212. if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
  1213. return;
  1214. /* Make sure the pipe isn't still relying on us */
  1215. assert_pipe_disabled(dev_priv, pipe);
  1216. reg = DPLL(pipe);
  1217. val = I915_READ(reg);
  1218. val &= ~DPLL_VCO_ENABLE;
  1219. I915_WRITE(reg, val);
  1220. POSTING_READ(reg);
  1221. }
  1222. void vlv_wait_port_ready(struct drm_i915_private *dev_priv, int port)
  1223. {
  1224. u32 port_mask;
  1225. if (!port)
  1226. port_mask = DPLL_PORTB_READY_MASK;
  1227. else
  1228. port_mask = DPLL_PORTC_READY_MASK;
  1229. if (wait_for((I915_READ(DPLL(0)) & port_mask) == 0, 1000))
  1230. WARN(1, "timed out waiting for port %c ready: 0x%08x\n",
  1231. 'B' + port, I915_READ(DPLL(0)));
  1232. }
  1233. /**
  1234. * ironlake_enable_pch_pll - enable PCH PLL
  1235. * @dev_priv: i915 private structure
  1236. * @pipe: pipe PLL to enable
  1237. *
  1238. * The PCH PLL needs to be enabled before the PCH transcoder, since it
  1239. * drives the transcoder clock.
  1240. */
  1241. static void ironlake_enable_pch_pll(struct intel_crtc *intel_crtc)
  1242. {
  1243. struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
  1244. struct intel_pch_pll *pll;
  1245. int reg;
  1246. u32 val;
  1247. /* PCH PLLs only available on ILK, SNB and IVB */
  1248. BUG_ON(dev_priv->info->gen < 5);
  1249. pll = intel_crtc->pch_pll;
  1250. if (pll == NULL)
  1251. return;
  1252. if (WARN_ON(pll->refcount == 0))
  1253. return;
  1254. DRM_DEBUG_KMS("enable PCH PLL %x (active %d, on? %d)for crtc %d\n",
  1255. pll->pll_reg, pll->active, pll->on,
  1256. intel_crtc->base.base.id);
  1257. /* PCH refclock must be enabled first */
  1258. assert_pch_refclk_enabled(dev_priv);
  1259. if (pll->active++ && pll->on) {
  1260. assert_pch_pll_enabled(dev_priv, pll, NULL);
  1261. return;
  1262. }
  1263. DRM_DEBUG_KMS("enabling PCH PLL %x\n", pll->pll_reg);
  1264. reg = pll->pll_reg;
  1265. val = I915_READ(reg);
  1266. val |= DPLL_VCO_ENABLE;
  1267. I915_WRITE(reg, val);
  1268. POSTING_READ(reg);
  1269. udelay(200);
  1270. pll->on = true;
  1271. }
  1272. static void intel_disable_pch_pll(struct intel_crtc *intel_crtc)
  1273. {
  1274. struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
  1275. struct intel_pch_pll *pll = intel_crtc->pch_pll;
  1276. int reg;
  1277. u32 val;
  1278. /* PCH only available on ILK+ */
  1279. BUG_ON(dev_priv->info->gen < 5);
  1280. if (pll == NULL)
  1281. return;
  1282. if (WARN_ON(pll->refcount == 0))
  1283. return;
  1284. DRM_DEBUG_KMS("disable PCH PLL %x (active %d, on? %d) for crtc %d\n",
  1285. pll->pll_reg, pll->active, pll->on,
  1286. intel_crtc->base.base.id);
  1287. if (WARN_ON(pll->active == 0)) {
  1288. assert_pch_pll_disabled(dev_priv, pll, NULL);
  1289. return;
  1290. }
  1291. if (--pll->active) {
  1292. assert_pch_pll_enabled(dev_priv, pll, NULL);
  1293. return;
  1294. }
  1295. DRM_DEBUG_KMS("disabling PCH PLL %x\n", pll->pll_reg);
  1296. /* Make sure transcoder isn't still depending on us */
  1297. assert_pch_transcoder_disabled(dev_priv, intel_crtc->pipe);
  1298. reg = pll->pll_reg;
  1299. val = I915_READ(reg);
  1300. val &= ~DPLL_VCO_ENABLE;
  1301. I915_WRITE(reg, val);
  1302. POSTING_READ(reg);
  1303. udelay(200);
  1304. pll->on = false;
  1305. }
  1306. static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
  1307. enum pipe pipe)
  1308. {
  1309. struct drm_device *dev = dev_priv->dev;
  1310. struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
  1311. uint32_t reg, val, pipeconf_val;
  1312. /* PCH only available on ILK+ */
  1313. BUG_ON(dev_priv->info->gen < 5);
  1314. /* Make sure PCH DPLL is enabled */
  1315. assert_pch_pll_enabled(dev_priv,
  1316. to_intel_crtc(crtc)->pch_pll,
  1317. to_intel_crtc(crtc));
  1318. /* FDI must be feeding us bits for PCH ports */
  1319. assert_fdi_tx_enabled(dev_priv, pipe);
  1320. assert_fdi_rx_enabled(dev_priv, pipe);
  1321. if (HAS_PCH_CPT(dev)) {
  1322. /* Workaround: Set the timing override bit before enabling the
  1323. * pch transcoder. */
  1324. reg = TRANS_CHICKEN2(pipe);
  1325. val = I915_READ(reg);
  1326. val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
  1327. I915_WRITE(reg, val);
  1328. }
  1329. reg = PCH_TRANSCONF(pipe);
  1330. val = I915_READ(reg);
  1331. pipeconf_val = I915_READ(PIPECONF(pipe));
  1332. if (HAS_PCH_IBX(dev_priv->dev)) {
  1333. /*
  1334. * make the BPC in transcoder be consistent with
  1335. * that in pipeconf reg.
  1336. */
  1337. val &= ~PIPECONF_BPC_MASK;
  1338. val |= pipeconf_val & PIPECONF_BPC_MASK;
  1339. }
  1340. val &= ~TRANS_INTERLACE_MASK;
  1341. if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
  1342. if (HAS_PCH_IBX(dev_priv->dev) &&
  1343. intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO))
  1344. val |= TRANS_LEGACY_INTERLACED_ILK;
  1345. else
  1346. val |= TRANS_INTERLACED;
  1347. else
  1348. val |= TRANS_PROGRESSIVE;
  1349. I915_WRITE(reg, val | TRANS_ENABLE);
  1350. if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
  1351. DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
  1352. }
  1353. static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
  1354. enum transcoder cpu_transcoder)
  1355. {
  1356. u32 val, pipeconf_val;
  1357. /* PCH only available on ILK+ */
  1358. BUG_ON(dev_priv->info->gen < 5);
  1359. /* FDI must be feeding us bits for PCH ports */
  1360. assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
  1361. assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
  1362. /* Workaround: set timing override bit. */
  1363. val = I915_READ(_TRANSA_CHICKEN2);
  1364. val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
  1365. I915_WRITE(_TRANSA_CHICKEN2, val);
  1366. val = TRANS_ENABLE;
  1367. pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
  1368. if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
  1369. PIPECONF_INTERLACED_ILK)
  1370. val |= TRANS_INTERLACED;
  1371. else
  1372. val |= TRANS_PROGRESSIVE;
  1373. I915_WRITE(LPT_TRANSCONF, val);
  1374. if (wait_for(I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE, 100))
  1375. DRM_ERROR("Failed to enable PCH transcoder\n");
  1376. }
  1377. static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
  1378. enum pipe pipe)
  1379. {
  1380. struct drm_device *dev = dev_priv->dev;
  1381. uint32_t reg, val;
  1382. /* FDI relies on the transcoder */
  1383. assert_fdi_tx_disabled(dev_priv, pipe);
  1384. assert_fdi_rx_disabled(dev_priv, pipe);
  1385. /* Ports must be off as well */
  1386. assert_pch_ports_disabled(dev_priv, pipe);
  1387. reg = PCH_TRANSCONF(pipe);
  1388. val = I915_READ(reg);
  1389. val &= ~TRANS_ENABLE;
  1390. I915_WRITE(reg, val);
  1391. /* wait for PCH transcoder off, transcoder state */
  1392. if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
  1393. DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
  1394. if (!HAS_PCH_IBX(dev)) {
  1395. /* Workaround: Clear the timing override chicken bit again. */
  1396. reg = TRANS_CHICKEN2(pipe);
  1397. val = I915_READ(reg);
  1398. val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
  1399. I915_WRITE(reg, val);
  1400. }
  1401. }
  1402. static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
  1403. {
  1404. u32 val;
  1405. val = I915_READ(LPT_TRANSCONF);
  1406. val &= ~TRANS_ENABLE;
  1407. I915_WRITE(LPT_TRANSCONF, val);
  1408. /* wait for PCH transcoder off, transcoder state */
  1409. if (wait_for((I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE) == 0, 50))
  1410. DRM_ERROR("Failed to disable PCH transcoder\n");
  1411. /* Workaround: clear timing override bit. */
  1412. val = I915_READ(_TRANSA_CHICKEN2);
  1413. val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
  1414. I915_WRITE(_TRANSA_CHICKEN2, val);
  1415. }
  1416. /**
  1417. * intel_enable_pipe - enable a pipe, asserting requirements
  1418. * @dev_priv: i915 private structure
  1419. * @pipe: pipe to enable
  1420. * @pch_port: on ILK+, is this pipe driving a PCH port or not
  1421. *
  1422. * Enable @pipe, making sure that various hardware specific requirements
  1423. * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
  1424. *
  1425. * @pipe should be %PIPE_A or %PIPE_B.
  1426. *
  1427. * Will wait until the pipe is actually running (i.e. first vblank) before
  1428. * returning.
  1429. */
  1430. static void intel_enable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe,
  1431. bool pch_port)
  1432. {
  1433. enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
  1434. pipe);
  1435. enum pipe pch_transcoder;
  1436. int reg;
  1437. u32 val;
  1438. assert_planes_disabled(dev_priv, pipe);
  1439. assert_sprites_disabled(dev_priv, pipe);
  1440. if (HAS_PCH_LPT(dev_priv->dev))
  1441. pch_transcoder = TRANSCODER_A;
  1442. else
  1443. pch_transcoder = pipe;
  1444. /*
  1445. * A pipe without a PLL won't actually be able to drive bits from
  1446. * a plane. On ILK+ the pipe PLLs are integrated, so we don't
  1447. * need the check.
  1448. */
  1449. if (!HAS_PCH_SPLIT(dev_priv->dev))
  1450. assert_pll_enabled(dev_priv, pipe);
  1451. else {
  1452. if (pch_port) {
  1453. /* if driving the PCH, we need FDI enabled */
  1454. assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
  1455. assert_fdi_tx_pll_enabled(dev_priv,
  1456. (enum pipe) cpu_transcoder);
  1457. }
  1458. /* FIXME: assert CPU port conditions for SNB+ */
  1459. }
  1460. reg = PIPECONF(cpu_transcoder);
  1461. val = I915_READ(reg);
  1462. if (val & PIPECONF_ENABLE)
  1463. return;
  1464. I915_WRITE(reg, val | PIPECONF_ENABLE);
  1465. intel_wait_for_vblank(dev_priv->dev, pipe);
  1466. }
  1467. /**
  1468. * intel_disable_pipe - disable a pipe, asserting requirements
  1469. * @dev_priv: i915 private structure
  1470. * @pipe: pipe to disable
  1471. *
  1472. * Disable @pipe, making sure that various hardware specific requirements
  1473. * are met, if applicable, e.g. plane disabled, panel fitter off, etc.
  1474. *
  1475. * @pipe should be %PIPE_A or %PIPE_B.
  1476. *
  1477. * Will wait until the pipe has shut down before returning.
  1478. */
  1479. static void intel_disable_pipe(struct drm_i915_private *dev_priv,
  1480. enum pipe pipe)
  1481. {
  1482. enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
  1483. pipe);
  1484. int reg;
  1485. u32 val;
  1486. /*
  1487. * Make sure planes won't keep trying to pump pixels to us,
  1488. * or we might hang the display.
  1489. */
  1490. assert_planes_disabled(dev_priv, pipe);
  1491. assert_sprites_disabled(dev_priv, pipe);
  1492. /* Don't disable pipe A or pipe A PLLs if needed */
  1493. if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
  1494. return;
  1495. reg = PIPECONF(cpu_transcoder);
  1496. val = I915_READ(reg);
  1497. if ((val & PIPECONF_ENABLE) == 0)
  1498. return;
  1499. I915_WRITE(reg, val & ~PIPECONF_ENABLE);
  1500. intel_wait_for_pipe_off(dev_priv->dev, pipe);
  1501. }
  1502. /*
  1503. * Plane regs are double buffered, going from enabled->disabled needs a
  1504. * trigger in order to latch. The display address reg provides this.
  1505. */
  1506. void intel_flush_display_plane(struct drm_i915_private *dev_priv,
  1507. enum plane plane)
  1508. {
  1509. if (dev_priv->info->gen >= 4)
  1510. I915_WRITE(DSPSURF(plane), I915_READ(DSPSURF(plane)));
  1511. else
  1512. I915_WRITE(DSPADDR(plane), I915_READ(DSPADDR(plane)));
  1513. }
  1514. /**
  1515. * intel_enable_plane - enable a display plane on a given pipe
  1516. * @dev_priv: i915 private structure
  1517. * @plane: plane to enable
  1518. * @pipe: pipe being fed
  1519. *
  1520. * Enable @plane on @pipe, making sure that @pipe is running first.
  1521. */
  1522. static void intel_enable_plane(struct drm_i915_private *dev_priv,
  1523. enum plane plane, enum pipe pipe)
  1524. {
  1525. int reg;
  1526. u32 val;
  1527. /* If the pipe isn't enabled, we can't pump pixels and may hang */
  1528. assert_pipe_enabled(dev_priv, pipe);
  1529. reg = DSPCNTR(plane);
  1530. val = I915_READ(reg);
  1531. if (val & DISPLAY_PLANE_ENABLE)
  1532. return;
  1533. I915_WRITE(reg, val | DISPLAY_PLANE_ENABLE);
  1534. intel_flush_display_plane(dev_priv, plane);
  1535. intel_wait_for_vblank(dev_priv->dev, pipe);
  1536. }
  1537. /**
  1538. * intel_disable_plane - disable a display plane
  1539. * @dev_priv: i915 private structure
  1540. * @plane: plane to disable
  1541. * @pipe: pipe consuming the data
  1542. *
  1543. * Disable @plane; should be an independent operation.
  1544. */
  1545. static void intel_disable_plane(struct drm_i915_private *dev_priv,
  1546. enum plane plane, enum pipe pipe)
  1547. {
  1548. int reg;
  1549. u32 val;
  1550. reg = DSPCNTR(plane);
  1551. val = I915_READ(reg);
  1552. if ((val & DISPLAY_PLANE_ENABLE) == 0)
  1553. return;
  1554. I915_WRITE(reg, val & ~DISPLAY_PLANE_ENABLE);
  1555. intel_flush_display_plane(dev_priv, plane);
  1556. intel_wait_for_vblank(dev_priv->dev, pipe);
  1557. }
  1558. static bool need_vtd_wa(struct drm_device *dev)
  1559. {
  1560. #ifdef CONFIG_INTEL_IOMMU
  1561. if (INTEL_INFO(dev)->gen >= 6 && intel_iommu_gfx_mapped)
  1562. return true;
  1563. #endif
  1564. return false;
  1565. }
  1566. int
  1567. intel_pin_and_fence_fb_obj(struct drm_device *dev,
  1568. struct drm_i915_gem_object *obj,
  1569. struct intel_ring_buffer *pipelined)
  1570. {
  1571. struct drm_i915_private *dev_priv = dev->dev_private;
  1572. u32 alignment;
  1573. int ret;
  1574. switch (obj->tiling_mode) {
  1575. case I915_TILING_NONE:
  1576. if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
  1577. alignment = 128 * 1024;
  1578. else if (INTEL_INFO(dev)->gen >= 4)
  1579. alignment = 4 * 1024;
  1580. else
  1581. alignment = 64 * 1024;
  1582. break;
  1583. case I915_TILING_X:
  1584. /* pin() will align the object as required by fence */
  1585. alignment = 0;
  1586. break;
  1587. case I915_TILING_Y:
  1588. /* Despite that we check this in framebuffer_init userspace can
  1589. * screw us over and change the tiling after the fact. Only
  1590. * pinned buffers can't change their tiling. */
  1591. DRM_DEBUG_DRIVER("Y tiled not allowed for scan out buffers\n");
  1592. return -EINVAL;
  1593. default:
  1594. BUG();
  1595. }
  1596. /* Note that the w/a also requires 64 PTE of padding following the
  1597. * bo. We currently fill all unused PTE with the shadow page and so
  1598. * we should always have valid PTE following the scanout preventing
  1599. * the VT-d warning.
  1600. */
  1601. if (need_vtd_wa(dev) && alignment < 256 * 1024)
  1602. alignment = 256 * 1024;
  1603. dev_priv->mm.interruptible = false;
  1604. ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
  1605. if (ret)
  1606. goto err_interruptible;
  1607. /* Install a fence for tiled scan-out. Pre-i965 always needs a
  1608. * fence, whereas 965+ only requires a fence if using
  1609. * framebuffer compression. For simplicity, we always install
  1610. * a fence as the cost is not that onerous.
  1611. */
  1612. ret = i915_gem_object_get_fence(obj);
  1613. if (ret)
  1614. goto err_unpin;
  1615. i915_gem_object_pin_fence(obj);
  1616. dev_priv->mm.interruptible = true;
  1617. return 0;
  1618. err_unpin:
  1619. i915_gem_object_unpin(obj);
  1620. err_interruptible:
  1621. dev_priv->mm.interruptible = true;
  1622. return ret;
  1623. }
  1624. void intel_unpin_fb_obj(struct drm_i915_gem_object *obj)
  1625. {
  1626. i915_gem_object_unpin_fence(obj);
  1627. i915_gem_object_unpin(obj);
  1628. }
  1629. /* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
  1630. * is assumed to be a power-of-two. */
  1631. unsigned long intel_gen4_compute_page_offset(int *x, int *y,
  1632. unsigned int tiling_mode,
  1633. unsigned int cpp,
  1634. unsigned int pitch)
  1635. {
  1636. if (tiling_mode != I915_TILING_NONE) {
  1637. unsigned int tile_rows, tiles;
  1638. tile_rows = *y / 8;
  1639. *y %= 8;
  1640. tiles = *x / (512/cpp);
  1641. *x %= 512/cpp;
  1642. return tile_rows * pitch * 8 + tiles * 4096;
  1643. } else {
  1644. unsigned int offset;
  1645. offset = *y * pitch + *x * cpp;
  1646. *y = 0;
  1647. *x = (offset & 4095) / cpp;
  1648. return offset & -4096;
  1649. }
  1650. }
  1651. static int i9xx_update_plane(struct drm_crtc *crtc, struct drm_framebuffer *fb,
  1652. int x, int y)
  1653. {
  1654. struct drm_device *dev = crtc->dev;
  1655. struct drm_i915_private *dev_priv = dev->dev_private;
  1656. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1657. struct intel_framebuffer *intel_fb;
  1658. struct drm_i915_gem_object *obj;
  1659. int plane = intel_crtc->plane;
  1660. unsigned long linear_offset;
  1661. u32 dspcntr;
  1662. u32 reg;
  1663. switch (plane) {
  1664. case 0:
  1665. case 1:
  1666. break;
  1667. default:
  1668. DRM_ERROR("Can't update plane %c in SAREA\n", plane_name(plane));
  1669. return -EINVAL;
  1670. }
  1671. intel_fb = to_intel_framebuffer(fb);
  1672. obj = intel_fb->obj;
  1673. reg = DSPCNTR(plane);
  1674. dspcntr = I915_READ(reg);
  1675. /* Mask out pixel format bits in case we change it */
  1676. dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
  1677. switch (fb->pixel_format) {
  1678. case DRM_FORMAT_C8:
  1679. dspcntr |= DISPPLANE_8BPP;
  1680. break;
  1681. case DRM_FORMAT_XRGB1555:
  1682. case DRM_FORMAT_ARGB1555:
  1683. dspcntr |= DISPPLANE_BGRX555;
  1684. break;
  1685. case DRM_FORMAT_RGB565:
  1686. dspcntr |= DISPPLANE_BGRX565;
  1687. break;
  1688. case DRM_FORMAT_XRGB8888:
  1689. case DRM_FORMAT_ARGB8888:
  1690. dspcntr |= DISPPLANE_BGRX888;
  1691. break;
  1692. case DRM_FORMAT_XBGR8888:
  1693. case DRM_FORMAT_ABGR8888:
  1694. dspcntr |= DISPPLANE_RGBX888;
  1695. break;
  1696. case DRM_FORMAT_XRGB2101010:
  1697. case DRM_FORMAT_ARGB2101010:
  1698. dspcntr |= DISPPLANE_BGRX101010;
  1699. break;
  1700. case DRM_FORMAT_XBGR2101010:
  1701. case DRM_FORMAT_ABGR2101010:
  1702. dspcntr |= DISPPLANE_RGBX101010;
  1703. break;
  1704. default:
  1705. BUG();
  1706. }
  1707. if (INTEL_INFO(dev)->gen >= 4) {
  1708. if (obj->tiling_mode != I915_TILING_NONE)
  1709. dspcntr |= DISPPLANE_TILED;
  1710. else
  1711. dspcntr &= ~DISPPLANE_TILED;
  1712. }
  1713. I915_WRITE(reg, dspcntr);
  1714. linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
  1715. if (INTEL_INFO(dev)->gen >= 4) {
  1716. intel_crtc->dspaddr_offset =
  1717. intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
  1718. fb->bits_per_pixel / 8,
  1719. fb->pitches[0]);
  1720. linear_offset -= intel_crtc->dspaddr_offset;
  1721. } else {
  1722. intel_crtc->dspaddr_offset = linear_offset;
  1723. }
  1724. DRM_DEBUG_KMS("Writing base %08X %08lX %d %d %d\n",
  1725. obj->gtt_offset, linear_offset, x, y, fb->pitches[0]);
  1726. I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
  1727. if (INTEL_INFO(dev)->gen >= 4) {
  1728. I915_MODIFY_DISPBASE(DSPSURF(plane),
  1729. obj->gtt_offset + intel_crtc->dspaddr_offset);
  1730. I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
  1731. I915_WRITE(DSPLINOFF(plane), linear_offset);
  1732. } else
  1733. I915_WRITE(DSPADDR(plane), obj->gtt_offset + linear_offset);
  1734. POSTING_READ(reg);
  1735. return 0;
  1736. }
  1737. static int ironlake_update_plane(struct drm_crtc *crtc,
  1738. struct drm_framebuffer *fb, int x, int y)
  1739. {
  1740. struct drm_device *dev = crtc->dev;
  1741. struct drm_i915_private *dev_priv = dev->dev_private;
  1742. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1743. struct intel_framebuffer *intel_fb;
  1744. struct drm_i915_gem_object *obj;
  1745. int plane = intel_crtc->plane;
  1746. unsigned long linear_offset;
  1747. u32 dspcntr;
  1748. u32 reg;
  1749. switch (plane) {
  1750. case 0:
  1751. case 1:
  1752. case 2:
  1753. break;
  1754. default:
  1755. DRM_ERROR("Can't update plane %c in SAREA\n", plane_name(plane));
  1756. return -EINVAL;
  1757. }
  1758. intel_fb = to_intel_framebuffer(fb);
  1759. obj = intel_fb->obj;
  1760. reg = DSPCNTR(plane);
  1761. dspcntr = I915_READ(reg);
  1762. /* Mask out pixel format bits in case we change it */
  1763. dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
  1764. switch (fb->pixel_format) {
  1765. case DRM_FORMAT_C8:
  1766. dspcntr |= DISPPLANE_8BPP;
  1767. break;
  1768. case DRM_FORMAT_RGB565:
  1769. dspcntr |= DISPPLANE_BGRX565;
  1770. break;
  1771. case DRM_FORMAT_XRGB8888:
  1772. case DRM_FORMAT_ARGB8888:
  1773. dspcntr |= DISPPLANE_BGRX888;
  1774. break;
  1775. case DRM_FORMAT_XBGR8888:
  1776. case DRM_FORMAT_ABGR8888:
  1777. dspcntr |= DISPPLANE_RGBX888;
  1778. break;
  1779. case DRM_FORMAT_XRGB2101010:
  1780. case DRM_FORMAT_ARGB2101010:
  1781. dspcntr |= DISPPLANE_BGRX101010;
  1782. break;
  1783. case DRM_FORMAT_XBGR2101010:
  1784. case DRM_FORMAT_ABGR2101010:
  1785. dspcntr |= DISPPLANE_RGBX101010;
  1786. break;
  1787. default:
  1788. BUG();
  1789. }
  1790. if (obj->tiling_mode != I915_TILING_NONE)
  1791. dspcntr |= DISPPLANE_TILED;
  1792. else
  1793. dspcntr &= ~DISPPLANE_TILED;
  1794. /* must disable */
  1795. dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
  1796. I915_WRITE(reg, dspcntr);
  1797. linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
  1798. intel_crtc->dspaddr_offset =
  1799. intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
  1800. fb->bits_per_pixel / 8,
  1801. fb->pitches[0]);
  1802. linear_offset -= intel_crtc->dspaddr_offset;
  1803. DRM_DEBUG_KMS("Writing base %08X %08lX %d %d %d\n",
  1804. obj->gtt_offset, linear_offset, x, y, fb->pitches[0]);
  1805. I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
  1806. I915_MODIFY_DISPBASE(DSPSURF(plane),
  1807. obj->gtt_offset + intel_crtc->dspaddr_offset);
  1808. if (IS_HASWELL(dev)) {
  1809. I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
  1810. } else {
  1811. I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
  1812. I915_WRITE(DSPLINOFF(plane), linear_offset);
  1813. }
  1814. POSTING_READ(reg);
  1815. return 0;
  1816. }
  1817. /* Assume fb object is pinned & idle & fenced and just update base pointers */
  1818. static int
  1819. intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
  1820. int x, int y, enum mode_set_atomic state)
  1821. {
  1822. struct drm_device *dev = crtc->dev;
  1823. struct drm_i915_private *dev_priv = dev->dev_private;
  1824. if (dev_priv->display.disable_fbc)
  1825. dev_priv->display.disable_fbc(dev);
  1826. intel_increase_pllclock(crtc);
  1827. return dev_priv->display.update_plane(crtc, fb, x, y);
  1828. }
  1829. void intel_display_handle_reset(struct drm_device *dev)
  1830. {
  1831. struct drm_i915_private *dev_priv = dev->dev_private;
  1832. struct drm_crtc *crtc;
  1833. /*
  1834. * Flips in the rings have been nuked by the reset,
  1835. * so complete all pending flips so that user space
  1836. * will get its events and not get stuck.
  1837. *
  1838. * Also update the base address of all primary
  1839. * planes to the the last fb to make sure we're
  1840. * showing the correct fb after a reset.
  1841. *
  1842. * Need to make two loops over the crtcs so that we
  1843. * don't try to grab a crtc mutex before the
  1844. * pending_flip_queue really got woken up.
  1845. */
  1846. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  1847. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1848. enum plane plane = intel_crtc->plane;
  1849. intel_prepare_page_flip(dev, plane);
  1850. intel_finish_page_flip_plane(dev, plane);
  1851. }
  1852. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  1853. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1854. mutex_lock(&crtc->mutex);
  1855. if (intel_crtc->active)
  1856. dev_priv->display.update_plane(crtc, crtc->fb,
  1857. crtc->x, crtc->y);
  1858. mutex_unlock(&crtc->mutex);
  1859. }
  1860. }
  1861. static int
  1862. intel_finish_fb(struct drm_framebuffer *old_fb)
  1863. {
  1864. struct drm_i915_gem_object *obj = to_intel_framebuffer(old_fb)->obj;
  1865. struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
  1866. bool was_interruptible = dev_priv->mm.interruptible;
  1867. int ret;
  1868. /* Big Hammer, we also need to ensure that any pending
  1869. * MI_WAIT_FOR_EVENT inside a user batch buffer on the
  1870. * current scanout is retired before unpinning the old
  1871. * framebuffer.
  1872. *
  1873. * This should only fail upon a hung GPU, in which case we
  1874. * can safely continue.
  1875. */
  1876. dev_priv->mm.interruptible = false;
  1877. ret = i915_gem_object_finish_gpu(obj);
  1878. dev_priv->mm.interruptible = was_interruptible;
  1879. return ret;
  1880. }
  1881. static void intel_crtc_update_sarea_pos(struct drm_crtc *crtc, int x, int y)
  1882. {
  1883. struct drm_device *dev = crtc->dev;
  1884. struct drm_i915_master_private *master_priv;
  1885. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1886. if (!dev->primary->master)
  1887. return;
  1888. master_priv = dev->primary->master->driver_priv;
  1889. if (!master_priv->sarea_priv)
  1890. return;
  1891. switch (intel_crtc->pipe) {
  1892. case 0:
  1893. master_priv->sarea_priv->pipeA_x = x;
  1894. master_priv->sarea_priv->pipeA_y = y;
  1895. break;
  1896. case 1:
  1897. master_priv->sarea_priv->pipeB_x = x;
  1898. master_priv->sarea_priv->pipeB_y = y;
  1899. break;
  1900. default:
  1901. break;
  1902. }
  1903. }
  1904. static int
  1905. intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
  1906. struct drm_framebuffer *fb)
  1907. {
  1908. struct drm_device *dev = crtc->dev;
  1909. struct drm_i915_private *dev_priv = dev->dev_private;
  1910. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1911. struct drm_framebuffer *old_fb;
  1912. int ret;
  1913. /* no fb bound */
  1914. if (!fb) {
  1915. DRM_ERROR("No FB bound\n");
  1916. return 0;
  1917. }
  1918. if (intel_crtc->plane > INTEL_INFO(dev)->num_pipes) {
  1919. DRM_ERROR("no plane for crtc: plane %c, num_pipes %d\n",
  1920. plane_name(intel_crtc->plane),
  1921. INTEL_INFO(dev)->num_pipes);
  1922. return -EINVAL;
  1923. }
  1924. mutex_lock(&dev->struct_mutex);
  1925. ret = intel_pin_and_fence_fb_obj(dev,
  1926. to_intel_framebuffer(fb)->obj,
  1927. NULL);
  1928. if (ret != 0) {
  1929. mutex_unlock(&dev->struct_mutex);
  1930. DRM_ERROR("pin & fence failed\n");
  1931. return ret;
  1932. }
  1933. ret = dev_priv->display.update_plane(crtc, fb, x, y);
  1934. if (ret) {
  1935. intel_unpin_fb_obj(to_intel_framebuffer(fb)->obj);
  1936. mutex_unlock(&dev->struct_mutex);
  1937. DRM_ERROR("failed to update base address\n");
  1938. return ret;
  1939. }
  1940. old_fb = crtc->fb;
  1941. crtc->fb = fb;
  1942. crtc->x = x;
  1943. crtc->y = y;
  1944. if (old_fb) {
  1945. if (intel_crtc->active && old_fb != fb)
  1946. intel_wait_for_vblank(dev, intel_crtc->pipe);
  1947. intel_unpin_fb_obj(to_intel_framebuffer(old_fb)->obj);
  1948. }
  1949. intel_update_fbc(dev);
  1950. mutex_unlock(&dev->struct_mutex);
  1951. intel_crtc_update_sarea_pos(crtc, x, y);
  1952. return 0;
  1953. }
  1954. static void intel_fdi_normal_train(struct drm_crtc *crtc)
  1955. {
  1956. struct drm_device *dev = crtc->dev;
  1957. struct drm_i915_private *dev_priv = dev->dev_private;
  1958. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1959. int pipe = intel_crtc->pipe;
  1960. u32 reg, temp;
  1961. /* enable normal train */
  1962. reg = FDI_TX_CTL(pipe);
  1963. temp = I915_READ(reg);
  1964. if (IS_IVYBRIDGE(dev)) {
  1965. temp &= ~FDI_LINK_TRAIN_NONE_IVB;
  1966. temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
  1967. } else {
  1968. temp &= ~FDI_LINK_TRAIN_NONE;
  1969. temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
  1970. }
  1971. I915_WRITE(reg, temp);
  1972. reg = FDI_RX_CTL(pipe);
  1973. temp = I915_READ(reg);
  1974. if (HAS_PCH_CPT(dev)) {
  1975. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  1976. temp |= FDI_LINK_TRAIN_NORMAL_CPT;
  1977. } else {
  1978. temp &= ~FDI_LINK_TRAIN_NONE;
  1979. temp |= FDI_LINK_TRAIN_NONE;
  1980. }
  1981. I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
  1982. /* wait one idle pattern time */
  1983. POSTING_READ(reg);
  1984. udelay(1000);
  1985. /* IVB wants error correction enabled */
  1986. if (IS_IVYBRIDGE(dev))
  1987. I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
  1988. FDI_FE_ERRC_ENABLE);
  1989. }
  1990. static bool pipe_has_enabled_pch(struct intel_crtc *intel_crtc)
  1991. {
  1992. return intel_crtc->base.enabled && intel_crtc->config.has_pch_encoder;
  1993. }
  1994. static void ivb_modeset_global_resources(struct drm_device *dev)
  1995. {
  1996. struct drm_i915_private *dev_priv = dev->dev_private;
  1997. struct intel_crtc *pipe_B_crtc =
  1998. to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
  1999. struct intel_crtc *pipe_C_crtc =
  2000. to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_C]);
  2001. uint32_t temp;
  2002. /*
  2003. * When everything is off disable fdi C so that we could enable fdi B
  2004. * with all lanes. Note that we don't care about enabled pipes without
  2005. * an enabled pch encoder.
  2006. */
  2007. if (!pipe_has_enabled_pch(pipe_B_crtc) &&
  2008. !pipe_has_enabled_pch(pipe_C_crtc)) {
  2009. WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
  2010. WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
  2011. temp = I915_READ(SOUTH_CHICKEN1);
  2012. temp &= ~FDI_BC_BIFURCATION_SELECT;
  2013. DRM_DEBUG_KMS("disabling fdi C rx\n");
  2014. I915_WRITE(SOUTH_CHICKEN1, temp);
  2015. }
  2016. }
  2017. /* The FDI link training functions for ILK/Ibexpeak. */
  2018. static void ironlake_fdi_link_train(struct drm_crtc *crtc)
  2019. {
  2020. struct drm_device *dev = crtc->dev;
  2021. struct drm_i915_private *dev_priv = dev->dev_private;
  2022. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2023. int pipe = intel_crtc->pipe;
  2024. int plane = intel_crtc->plane;
  2025. u32 reg, temp, tries;
  2026. /* FDI needs bits from pipe & plane first */
  2027. assert_pipe_enabled(dev_priv, pipe);
  2028. assert_plane_enabled(dev_priv, plane);
  2029. /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
  2030. for train result */
  2031. reg = FDI_RX_IMR(pipe);
  2032. temp = I915_READ(reg);
  2033. temp &= ~FDI_RX_SYMBOL_LOCK;
  2034. temp &= ~FDI_RX_BIT_LOCK;
  2035. I915_WRITE(reg, temp);
  2036. I915_READ(reg);
  2037. udelay(150);
  2038. /* enable CPU FDI TX and PCH FDI RX */
  2039. reg = FDI_TX_CTL(pipe);
  2040. temp = I915_READ(reg);
  2041. temp &= ~FDI_DP_PORT_WIDTH_MASK;
  2042. temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
  2043. temp &= ~FDI_LINK_TRAIN_NONE;
  2044. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2045. I915_WRITE(reg, temp | FDI_TX_ENABLE);
  2046. reg = FDI_RX_CTL(pipe);
  2047. temp = I915_READ(reg);
  2048. temp &= ~FDI_LINK_TRAIN_NONE;
  2049. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2050. I915_WRITE(reg, temp | FDI_RX_ENABLE);
  2051. POSTING_READ(reg);
  2052. udelay(150);
  2053. /* Ironlake workaround, enable clock pointer after FDI enable*/
  2054. I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
  2055. I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
  2056. FDI_RX_PHASE_SYNC_POINTER_EN);
  2057. reg = FDI_RX_IIR(pipe);
  2058. for (tries = 0; tries < 5; tries++) {
  2059. temp = I915_READ(reg);
  2060. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2061. if ((temp & FDI_RX_BIT_LOCK)) {
  2062. DRM_DEBUG_KMS("FDI train 1 done.\n");
  2063. I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
  2064. break;
  2065. }
  2066. }
  2067. if (tries == 5)
  2068. DRM_ERROR("FDI train 1 fail!\n");
  2069. /* Train 2 */
  2070. reg = FDI_TX_CTL(pipe);
  2071. temp = I915_READ(reg);
  2072. temp &= ~FDI_LINK_TRAIN_NONE;
  2073. temp |= FDI_LINK_TRAIN_PATTERN_2;
  2074. I915_WRITE(reg, temp);
  2075. reg = FDI_RX_CTL(pipe);
  2076. temp = I915_READ(reg);
  2077. temp &= ~FDI_LINK_TRAIN_NONE;
  2078. temp |= FDI_LINK_TRAIN_PATTERN_2;
  2079. I915_WRITE(reg, temp);
  2080. POSTING_READ(reg);
  2081. udelay(150);
  2082. reg = FDI_RX_IIR(pipe);
  2083. for (tries = 0; tries < 5; tries++) {
  2084. temp = I915_READ(reg);
  2085. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2086. if (temp & FDI_RX_SYMBOL_LOCK) {
  2087. I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
  2088. DRM_DEBUG_KMS("FDI train 2 done.\n");
  2089. break;
  2090. }
  2091. }
  2092. if (tries == 5)
  2093. DRM_ERROR("FDI train 2 fail!\n");
  2094. DRM_DEBUG_KMS("FDI train done\n");
  2095. }
  2096. static const int snb_b_fdi_train_param[] = {
  2097. FDI_LINK_TRAIN_400MV_0DB_SNB_B,
  2098. FDI_LINK_TRAIN_400MV_6DB_SNB_B,
  2099. FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
  2100. FDI_LINK_TRAIN_800MV_0DB_SNB_B,
  2101. };
  2102. /* The FDI link training functions for SNB/Cougarpoint. */
  2103. static void gen6_fdi_link_train(struct drm_crtc *crtc)
  2104. {
  2105. struct drm_device *dev = crtc->dev;
  2106. struct drm_i915_private *dev_priv = dev->dev_private;
  2107. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2108. int pipe = intel_crtc->pipe;
  2109. u32 reg, temp, i, retry;
  2110. /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
  2111. for train result */
  2112. reg = FDI_RX_IMR(pipe);
  2113. temp = I915_READ(reg);
  2114. temp &= ~FDI_RX_SYMBOL_LOCK;
  2115. temp &= ~FDI_RX_BIT_LOCK;
  2116. I915_WRITE(reg, temp);
  2117. POSTING_READ(reg);
  2118. udelay(150);
  2119. /* enable CPU FDI TX and PCH FDI RX */
  2120. reg = FDI_TX_CTL(pipe);
  2121. temp = I915_READ(reg);
  2122. temp &= ~FDI_DP_PORT_WIDTH_MASK;
  2123. temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
  2124. temp &= ~FDI_LINK_TRAIN_NONE;
  2125. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2126. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2127. /* SNB-B */
  2128. temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
  2129. I915_WRITE(reg, temp | FDI_TX_ENABLE);
  2130. I915_WRITE(FDI_RX_MISC(pipe),
  2131. FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
  2132. reg = FDI_RX_CTL(pipe);
  2133. temp = I915_READ(reg);
  2134. if (HAS_PCH_CPT(dev)) {
  2135. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2136. temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
  2137. } else {
  2138. temp &= ~FDI_LINK_TRAIN_NONE;
  2139. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2140. }
  2141. I915_WRITE(reg, temp | FDI_RX_ENABLE);
  2142. POSTING_READ(reg);
  2143. udelay(150);
  2144. for (i = 0; i < 4; i++) {
  2145. reg = FDI_TX_CTL(pipe);
  2146. temp = I915_READ(reg);
  2147. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2148. temp |= snb_b_fdi_train_param[i];
  2149. I915_WRITE(reg, temp);
  2150. POSTING_READ(reg);
  2151. udelay(500);
  2152. for (retry = 0; retry < 5; retry++) {
  2153. reg = FDI_RX_IIR(pipe);
  2154. temp = I915_READ(reg);
  2155. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2156. if (temp & FDI_RX_BIT_LOCK) {
  2157. I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
  2158. DRM_DEBUG_KMS("FDI train 1 done.\n");
  2159. break;
  2160. }
  2161. udelay(50);
  2162. }
  2163. if (retry < 5)
  2164. break;
  2165. }
  2166. if (i == 4)
  2167. DRM_ERROR("FDI train 1 fail!\n");
  2168. /* Train 2 */
  2169. reg = FDI_TX_CTL(pipe);
  2170. temp = I915_READ(reg);
  2171. temp &= ~FDI_LINK_TRAIN_NONE;
  2172. temp |= FDI_LINK_TRAIN_PATTERN_2;
  2173. if (IS_GEN6(dev)) {
  2174. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2175. /* SNB-B */
  2176. temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
  2177. }
  2178. I915_WRITE(reg, temp);
  2179. reg = FDI_RX_CTL(pipe);
  2180. temp = I915_READ(reg);
  2181. if (HAS_PCH_CPT(dev)) {
  2182. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2183. temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
  2184. } else {
  2185. temp &= ~FDI_LINK_TRAIN_NONE;
  2186. temp |= FDI_LINK_TRAIN_PATTERN_2;
  2187. }
  2188. I915_WRITE(reg, temp);
  2189. POSTING_READ(reg);
  2190. udelay(150);
  2191. for (i = 0; i < 4; i++) {
  2192. reg = FDI_TX_CTL(pipe);
  2193. temp = I915_READ(reg);
  2194. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2195. temp |= snb_b_fdi_train_param[i];
  2196. I915_WRITE(reg, temp);
  2197. POSTING_READ(reg);
  2198. udelay(500);
  2199. for (retry = 0; retry < 5; retry++) {
  2200. reg = FDI_RX_IIR(pipe);
  2201. temp = I915_READ(reg);
  2202. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2203. if (temp & FDI_RX_SYMBOL_LOCK) {
  2204. I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
  2205. DRM_DEBUG_KMS("FDI train 2 done.\n");
  2206. break;
  2207. }
  2208. udelay(50);
  2209. }
  2210. if (retry < 5)
  2211. break;
  2212. }
  2213. if (i == 4)
  2214. DRM_ERROR("FDI train 2 fail!\n");
  2215. DRM_DEBUG_KMS("FDI train done.\n");
  2216. }
  2217. /* Manual link training for Ivy Bridge A0 parts */
  2218. static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
  2219. {
  2220. struct drm_device *dev = crtc->dev;
  2221. struct drm_i915_private *dev_priv = dev->dev_private;
  2222. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2223. int pipe = intel_crtc->pipe;
  2224. u32 reg, temp, i;
  2225. /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
  2226. for train result */
  2227. reg = FDI_RX_IMR(pipe);
  2228. temp = I915_READ(reg);
  2229. temp &= ~FDI_RX_SYMBOL_LOCK;
  2230. temp &= ~FDI_RX_BIT_LOCK;
  2231. I915_WRITE(reg, temp);
  2232. POSTING_READ(reg);
  2233. udelay(150);
  2234. DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
  2235. I915_READ(FDI_RX_IIR(pipe)));
  2236. /* enable CPU FDI TX and PCH FDI RX */
  2237. reg = FDI_TX_CTL(pipe);
  2238. temp = I915_READ(reg);
  2239. temp &= ~FDI_DP_PORT_WIDTH_MASK;
  2240. temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
  2241. temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
  2242. temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
  2243. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2244. temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
  2245. temp |= FDI_COMPOSITE_SYNC;
  2246. I915_WRITE(reg, temp | FDI_TX_ENABLE);
  2247. I915_WRITE(FDI_RX_MISC(pipe),
  2248. FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
  2249. reg = FDI_RX_CTL(pipe);
  2250. temp = I915_READ(reg);
  2251. temp &= ~FDI_LINK_TRAIN_AUTO;
  2252. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2253. temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
  2254. temp |= FDI_COMPOSITE_SYNC;
  2255. I915_WRITE(reg, temp | FDI_RX_ENABLE);
  2256. POSTING_READ(reg);
  2257. udelay(150);
  2258. for (i = 0; i < 4; i++) {
  2259. reg = FDI_TX_CTL(pipe);
  2260. temp = I915_READ(reg);
  2261. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2262. temp |= snb_b_fdi_train_param[i];
  2263. I915_WRITE(reg, temp);
  2264. POSTING_READ(reg);
  2265. udelay(500);
  2266. reg = FDI_RX_IIR(pipe);
  2267. temp = I915_READ(reg);
  2268. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2269. if (temp & FDI_RX_BIT_LOCK ||
  2270. (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
  2271. I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
  2272. DRM_DEBUG_KMS("FDI train 1 done, level %i.\n", i);
  2273. break;
  2274. }
  2275. }
  2276. if (i == 4)
  2277. DRM_ERROR("FDI train 1 fail!\n");
  2278. /* Train 2 */
  2279. reg = FDI_TX_CTL(pipe);
  2280. temp = I915_READ(reg);
  2281. temp &= ~FDI_LINK_TRAIN_NONE_IVB;
  2282. temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
  2283. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2284. temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
  2285. I915_WRITE(reg, temp);
  2286. reg = FDI_RX_CTL(pipe);
  2287. temp = I915_READ(reg);
  2288. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2289. temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
  2290. I915_WRITE(reg, temp);
  2291. POSTING_READ(reg);
  2292. udelay(150);
  2293. for (i = 0; i < 4; i++) {
  2294. reg = FDI_TX_CTL(pipe);
  2295. temp = I915_READ(reg);
  2296. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2297. temp |= snb_b_fdi_train_param[i];
  2298. I915_WRITE(reg, temp);
  2299. POSTING_READ(reg);
  2300. udelay(500);
  2301. reg = FDI_RX_IIR(pipe);
  2302. temp = I915_READ(reg);
  2303. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2304. if (temp & FDI_RX_SYMBOL_LOCK) {
  2305. I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
  2306. DRM_DEBUG_KMS("FDI train 2 done, level %i.\n", i);
  2307. break;
  2308. }
  2309. }
  2310. if (i == 4)
  2311. DRM_ERROR("FDI train 2 fail!\n");
  2312. DRM_DEBUG_KMS("FDI train done.\n");
  2313. }
  2314. static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
  2315. {
  2316. struct drm_device *dev = intel_crtc->base.dev;
  2317. struct drm_i915_private *dev_priv = dev->dev_private;
  2318. int pipe = intel_crtc->pipe;
  2319. u32 reg, temp;
  2320. /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
  2321. reg = FDI_RX_CTL(pipe);
  2322. temp = I915_READ(reg);
  2323. temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
  2324. temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
  2325. temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
  2326. I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
  2327. POSTING_READ(reg);
  2328. udelay(200);
  2329. /* Switch from Rawclk to PCDclk */
  2330. temp = I915_READ(reg);
  2331. I915_WRITE(reg, temp | FDI_PCDCLK);
  2332. POSTING_READ(reg);
  2333. udelay(200);
  2334. /* Enable CPU FDI TX PLL, always on for Ironlake */
  2335. reg = FDI_TX_CTL(pipe);
  2336. temp = I915_READ(reg);
  2337. if ((temp & FDI_TX_PLL_ENABLE) == 0) {
  2338. I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
  2339. POSTING_READ(reg);
  2340. udelay(100);
  2341. }
  2342. }
  2343. static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
  2344. {
  2345. struct drm_device *dev = intel_crtc->base.dev;
  2346. struct drm_i915_private *dev_priv = dev->dev_private;
  2347. int pipe = intel_crtc->pipe;
  2348. u32 reg, temp;
  2349. /* Switch from PCDclk to Rawclk */
  2350. reg = FDI_RX_CTL(pipe);
  2351. temp = I915_READ(reg);
  2352. I915_WRITE(reg, temp & ~FDI_PCDCLK);
  2353. /* Disable CPU FDI TX PLL */
  2354. reg = FDI_TX_CTL(pipe);
  2355. temp = I915_READ(reg);
  2356. I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
  2357. POSTING_READ(reg);
  2358. udelay(100);
  2359. reg = FDI_RX_CTL(pipe);
  2360. temp = I915_READ(reg);
  2361. I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
  2362. /* Wait for the clocks to turn off. */
  2363. POSTING_READ(reg);
  2364. udelay(100);
  2365. }
  2366. static void ironlake_fdi_disable(struct drm_crtc *crtc)
  2367. {
  2368. struct drm_device *dev = crtc->dev;
  2369. struct drm_i915_private *dev_priv = dev->dev_private;
  2370. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2371. int pipe = intel_crtc->pipe;
  2372. u32 reg, temp;
  2373. /* disable CPU FDI tx and PCH FDI rx */
  2374. reg = FDI_TX_CTL(pipe);
  2375. temp = I915_READ(reg);
  2376. I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
  2377. POSTING_READ(reg);
  2378. reg = FDI_RX_CTL(pipe);
  2379. temp = I915_READ(reg);
  2380. temp &= ~(0x7 << 16);
  2381. temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
  2382. I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
  2383. POSTING_READ(reg);
  2384. udelay(100);
  2385. /* Ironlake workaround, disable clock pointer after downing FDI */
  2386. if (HAS_PCH_IBX(dev)) {
  2387. I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
  2388. }
  2389. /* still set train pattern 1 */
  2390. reg = FDI_TX_CTL(pipe);
  2391. temp = I915_READ(reg);
  2392. temp &= ~FDI_LINK_TRAIN_NONE;
  2393. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2394. I915_WRITE(reg, temp);
  2395. reg = FDI_RX_CTL(pipe);
  2396. temp = I915_READ(reg);
  2397. if (HAS_PCH_CPT(dev)) {
  2398. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2399. temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
  2400. } else {
  2401. temp &= ~FDI_LINK_TRAIN_NONE;
  2402. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2403. }
  2404. /* BPC in FDI rx is consistent with that in PIPECONF */
  2405. temp &= ~(0x07 << 16);
  2406. temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
  2407. I915_WRITE(reg, temp);
  2408. POSTING_READ(reg);
  2409. udelay(100);
  2410. }
  2411. static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
  2412. {
  2413. struct drm_device *dev = crtc->dev;
  2414. struct drm_i915_private *dev_priv = dev->dev_private;
  2415. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2416. unsigned long flags;
  2417. bool pending;
  2418. if (i915_reset_in_progress(&dev_priv->gpu_error) ||
  2419. intel_crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
  2420. return false;
  2421. spin_lock_irqsave(&dev->event_lock, flags);
  2422. pending = to_intel_crtc(crtc)->unpin_work != NULL;
  2423. spin_unlock_irqrestore(&dev->event_lock, flags);
  2424. return pending;
  2425. }
  2426. static void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
  2427. {
  2428. struct drm_device *dev = crtc->dev;
  2429. struct drm_i915_private *dev_priv = dev->dev_private;
  2430. if (crtc->fb == NULL)
  2431. return;
  2432. WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
  2433. wait_event(dev_priv->pending_flip_queue,
  2434. !intel_crtc_has_pending_flip(crtc));
  2435. mutex_lock(&dev->struct_mutex);
  2436. intel_finish_fb(crtc->fb);
  2437. mutex_unlock(&dev->struct_mutex);
  2438. }
  2439. /* Program iCLKIP clock to the desired frequency */
  2440. static void lpt_program_iclkip(struct drm_crtc *crtc)
  2441. {
  2442. struct drm_device *dev = crtc->dev;
  2443. struct drm_i915_private *dev_priv = dev->dev_private;
  2444. u32 divsel, phaseinc, auxdiv, phasedir = 0;
  2445. u32 temp;
  2446. mutex_lock(&dev_priv->dpio_lock);
  2447. /* It is necessary to ungate the pixclk gate prior to programming
  2448. * the divisors, and gate it back when it is done.
  2449. */
  2450. I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
  2451. /* Disable SSCCTL */
  2452. intel_sbi_write(dev_priv, SBI_SSCCTL6,
  2453. intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK) |
  2454. SBI_SSCCTL_DISABLE,
  2455. SBI_ICLK);
  2456. /* 20MHz is a corner case which is out of range for the 7-bit divisor */
  2457. if (crtc->mode.clock == 20000) {
  2458. auxdiv = 1;
  2459. divsel = 0x41;
  2460. phaseinc = 0x20;
  2461. } else {
  2462. /* The iCLK virtual clock root frequency is in MHz,
  2463. * but the crtc->mode.clock in in KHz. To get the divisors,
  2464. * it is necessary to divide one by another, so we
  2465. * convert the virtual clock precision to KHz here for higher
  2466. * precision.
  2467. */
  2468. u32 iclk_virtual_root_freq = 172800 * 1000;
  2469. u32 iclk_pi_range = 64;
  2470. u32 desired_divisor, msb_divisor_value, pi_value;
  2471. desired_divisor = (iclk_virtual_root_freq / crtc->mode.clock);
  2472. msb_divisor_value = desired_divisor / iclk_pi_range;
  2473. pi_value = desired_divisor % iclk_pi_range;
  2474. auxdiv = 0;
  2475. divsel = msb_divisor_value - 2;
  2476. phaseinc = pi_value;
  2477. }
  2478. /* This should not happen with any sane values */
  2479. WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
  2480. ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
  2481. WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
  2482. ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
  2483. DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
  2484. crtc->mode.clock,
  2485. auxdiv,
  2486. divsel,
  2487. phasedir,
  2488. phaseinc);
  2489. /* Program SSCDIVINTPHASE6 */
  2490. temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
  2491. temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
  2492. temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
  2493. temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
  2494. temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
  2495. temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
  2496. temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
  2497. intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
  2498. /* Program SSCAUXDIV */
  2499. temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
  2500. temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
  2501. temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
  2502. intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
  2503. /* Enable modulator and associated divider */
  2504. temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
  2505. temp &= ~SBI_SSCCTL_DISABLE;
  2506. intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
  2507. /* Wait for initialization time */
  2508. udelay(24);
  2509. I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
  2510. mutex_unlock(&dev_priv->dpio_lock);
  2511. }
  2512. static void ironlake_pch_transcoder_set_timings(struct intel_crtc *crtc,
  2513. enum pipe pch_transcoder)
  2514. {
  2515. struct drm_device *dev = crtc->base.dev;
  2516. struct drm_i915_private *dev_priv = dev->dev_private;
  2517. enum transcoder cpu_transcoder = crtc->config.cpu_transcoder;
  2518. I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder),
  2519. I915_READ(HTOTAL(cpu_transcoder)));
  2520. I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder),
  2521. I915_READ(HBLANK(cpu_transcoder)));
  2522. I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder),
  2523. I915_READ(HSYNC(cpu_transcoder)));
  2524. I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder),
  2525. I915_READ(VTOTAL(cpu_transcoder)));
  2526. I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder),
  2527. I915_READ(VBLANK(cpu_transcoder)));
  2528. I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder),
  2529. I915_READ(VSYNC(cpu_transcoder)));
  2530. I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder),
  2531. I915_READ(VSYNCSHIFT(cpu_transcoder)));
  2532. }
  2533. /*
  2534. * Enable PCH resources required for PCH ports:
  2535. * - PCH PLLs
  2536. * - FDI training & RX/TX
  2537. * - update transcoder timings
  2538. * - DP transcoding bits
  2539. * - transcoder
  2540. */
  2541. static void ironlake_pch_enable(struct drm_crtc *crtc)
  2542. {
  2543. struct drm_device *dev = crtc->dev;
  2544. struct drm_i915_private *dev_priv = dev->dev_private;
  2545. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2546. int pipe = intel_crtc->pipe;
  2547. u32 reg, temp;
  2548. assert_pch_transcoder_disabled(dev_priv, pipe);
  2549. /* Write the TU size bits before fdi link training, so that error
  2550. * detection works. */
  2551. I915_WRITE(FDI_RX_TUSIZE1(pipe),
  2552. I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
  2553. /* For PCH output, training FDI link */
  2554. dev_priv->display.fdi_link_train(crtc);
  2555. /* XXX: pch pll's can be enabled any time before we enable the PCH
  2556. * transcoder, and we actually should do this to not upset any PCH
  2557. * transcoder that already use the clock when we share it.
  2558. *
  2559. * Note that enable_pch_pll tries to do the right thing, but get_pch_pll
  2560. * unconditionally resets the pll - we need that to have the right LVDS
  2561. * enable sequence. */
  2562. ironlake_enable_pch_pll(intel_crtc);
  2563. if (HAS_PCH_CPT(dev)) {
  2564. u32 sel;
  2565. temp = I915_READ(PCH_DPLL_SEL);
  2566. switch (pipe) {
  2567. default:
  2568. case 0:
  2569. temp |= TRANSA_DPLL_ENABLE;
  2570. sel = TRANSA_DPLLB_SEL;
  2571. break;
  2572. case 1:
  2573. temp |= TRANSB_DPLL_ENABLE;
  2574. sel = TRANSB_DPLLB_SEL;
  2575. break;
  2576. case 2:
  2577. temp |= TRANSC_DPLL_ENABLE;
  2578. sel = TRANSC_DPLLB_SEL;
  2579. break;
  2580. }
  2581. if (intel_crtc->pch_pll->pll_reg == _PCH_DPLL_B)
  2582. temp |= sel;
  2583. else
  2584. temp &= ~sel;
  2585. I915_WRITE(PCH_DPLL_SEL, temp);
  2586. }
  2587. /* set transcoder timing, panel must allow it */
  2588. assert_panel_unlocked(dev_priv, pipe);
  2589. ironlake_pch_transcoder_set_timings(intel_crtc, pipe);
  2590. intel_fdi_normal_train(crtc);
  2591. /* For PCH DP, enable TRANS_DP_CTL */
  2592. if (HAS_PCH_CPT(dev) &&
  2593. (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
  2594. intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
  2595. u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
  2596. reg = TRANS_DP_CTL(pipe);
  2597. temp = I915_READ(reg);
  2598. temp &= ~(TRANS_DP_PORT_SEL_MASK |
  2599. TRANS_DP_SYNC_MASK |
  2600. TRANS_DP_BPC_MASK);
  2601. temp |= (TRANS_DP_OUTPUT_ENABLE |
  2602. TRANS_DP_ENH_FRAMING);
  2603. temp |= bpc << 9; /* same format but at 11:9 */
  2604. if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
  2605. temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
  2606. if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
  2607. temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
  2608. switch (intel_trans_dp_port_sel(crtc)) {
  2609. case PCH_DP_B:
  2610. temp |= TRANS_DP_PORT_SEL_B;
  2611. break;
  2612. case PCH_DP_C:
  2613. temp |= TRANS_DP_PORT_SEL_C;
  2614. break;
  2615. case PCH_DP_D:
  2616. temp |= TRANS_DP_PORT_SEL_D;
  2617. break;
  2618. default:
  2619. BUG();
  2620. }
  2621. I915_WRITE(reg, temp);
  2622. }
  2623. ironlake_enable_pch_transcoder(dev_priv, pipe);
  2624. }
  2625. static void lpt_pch_enable(struct drm_crtc *crtc)
  2626. {
  2627. struct drm_device *dev = crtc->dev;
  2628. struct drm_i915_private *dev_priv = dev->dev_private;
  2629. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2630. enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
  2631. assert_pch_transcoder_disabled(dev_priv, TRANSCODER_A);
  2632. lpt_program_iclkip(crtc);
  2633. /* Set transcoder timing. */
  2634. ironlake_pch_transcoder_set_timings(intel_crtc, PIPE_A);
  2635. lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
  2636. }
  2637. static void intel_put_pch_pll(struct intel_crtc *intel_crtc)
  2638. {
  2639. struct intel_pch_pll *pll = intel_crtc->pch_pll;
  2640. if (pll == NULL)
  2641. return;
  2642. if (pll->refcount == 0) {
  2643. WARN(1, "bad PCH PLL refcount\n");
  2644. return;
  2645. }
  2646. --pll->refcount;
  2647. intel_crtc->pch_pll = NULL;
  2648. }
  2649. static struct intel_pch_pll *intel_get_pch_pll(struct intel_crtc *intel_crtc, u32 dpll, u32 fp)
  2650. {
  2651. struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
  2652. struct intel_pch_pll *pll;
  2653. int i;
  2654. pll = intel_crtc->pch_pll;
  2655. if (pll) {
  2656. DRM_DEBUG_KMS("CRTC:%d reusing existing PCH PLL %x\n",
  2657. intel_crtc->base.base.id, pll->pll_reg);
  2658. goto prepare;
  2659. }
  2660. if (HAS_PCH_IBX(dev_priv->dev)) {
  2661. /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
  2662. i = intel_crtc->pipe;
  2663. pll = &dev_priv->pch_plls[i];
  2664. DRM_DEBUG_KMS("CRTC:%d using pre-allocated PCH PLL %x\n",
  2665. intel_crtc->base.base.id, pll->pll_reg);
  2666. goto found;
  2667. }
  2668. for (i = 0; i < dev_priv->num_pch_pll; i++) {
  2669. pll = &dev_priv->pch_plls[i];
  2670. /* Only want to check enabled timings first */
  2671. if (pll->refcount == 0)
  2672. continue;
  2673. if (dpll == (I915_READ(pll->pll_reg) & 0x7fffffff) &&
  2674. fp == I915_READ(pll->fp0_reg)) {
  2675. DRM_DEBUG_KMS("CRTC:%d sharing existing PCH PLL %x (refcount %d, ative %d)\n",
  2676. intel_crtc->base.base.id,
  2677. pll->pll_reg, pll->refcount, pll->active);
  2678. goto found;
  2679. }
  2680. }
  2681. /* Ok no matching timings, maybe there's a free one? */
  2682. for (i = 0; i < dev_priv->num_pch_pll; i++) {
  2683. pll = &dev_priv->pch_plls[i];
  2684. if (pll->refcount == 0) {
  2685. DRM_DEBUG_KMS("CRTC:%d allocated PCH PLL %x\n",
  2686. intel_crtc->base.base.id, pll->pll_reg);
  2687. goto found;
  2688. }
  2689. }
  2690. return NULL;
  2691. found:
  2692. intel_crtc->pch_pll = pll;
  2693. pll->refcount++;
  2694. DRM_DEBUG_DRIVER("using pll %d for pipe %c\n", i, pipe_name(intel_crtc->pipe));
  2695. prepare: /* separate function? */
  2696. DRM_DEBUG_DRIVER("switching PLL %x off\n", pll->pll_reg);
  2697. /* Wait for the clocks to stabilize before rewriting the regs */
  2698. I915_WRITE(pll->pll_reg, dpll & ~DPLL_VCO_ENABLE);
  2699. POSTING_READ(pll->pll_reg);
  2700. udelay(150);
  2701. I915_WRITE(pll->fp0_reg, fp);
  2702. I915_WRITE(pll->pll_reg, dpll & ~DPLL_VCO_ENABLE);
  2703. pll->on = false;
  2704. return pll;
  2705. }
  2706. static void cpt_verify_modeset(struct drm_device *dev, int pipe)
  2707. {
  2708. struct drm_i915_private *dev_priv = dev->dev_private;
  2709. int dslreg = PIPEDSL(pipe);
  2710. u32 temp;
  2711. temp = I915_READ(dslreg);
  2712. udelay(500);
  2713. if (wait_for(I915_READ(dslreg) != temp, 5)) {
  2714. if (wait_for(I915_READ(dslreg) != temp, 5))
  2715. DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
  2716. }
  2717. }
  2718. static void ironlake_pfit_enable(struct intel_crtc *crtc)
  2719. {
  2720. struct drm_device *dev = crtc->base.dev;
  2721. struct drm_i915_private *dev_priv = dev->dev_private;
  2722. int pipe = crtc->pipe;
  2723. if (crtc->config.pch_pfit.size) {
  2724. /* Force use of hard-coded filter coefficients
  2725. * as some pre-programmed values are broken,
  2726. * e.g. x201.
  2727. */
  2728. if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
  2729. I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
  2730. PF_PIPE_SEL_IVB(pipe));
  2731. else
  2732. I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
  2733. I915_WRITE(PF_WIN_POS(pipe), crtc->config.pch_pfit.pos);
  2734. I915_WRITE(PF_WIN_SZ(pipe), crtc->config.pch_pfit.size);
  2735. }
  2736. }
  2737. static void ironlake_crtc_enable(struct drm_crtc *crtc)
  2738. {
  2739. struct drm_device *dev = crtc->dev;
  2740. struct drm_i915_private *dev_priv = dev->dev_private;
  2741. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2742. struct intel_encoder *encoder;
  2743. int pipe = intel_crtc->pipe;
  2744. int plane = intel_crtc->plane;
  2745. u32 temp;
  2746. WARN_ON(!crtc->enabled);
  2747. if (intel_crtc->active)
  2748. return;
  2749. intel_crtc->active = true;
  2750. intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
  2751. intel_set_pch_fifo_underrun_reporting(dev, pipe, true);
  2752. intel_update_watermarks(dev);
  2753. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  2754. temp = I915_READ(PCH_LVDS);
  2755. if ((temp & LVDS_PORT_EN) == 0)
  2756. I915_WRITE(PCH_LVDS, temp | LVDS_PORT_EN);
  2757. }
  2758. if (intel_crtc->config.has_pch_encoder) {
  2759. /* Note: FDI PLL enabling _must_ be done before we enable the
  2760. * cpu pipes, hence this is separate from all the other fdi/pch
  2761. * enabling. */
  2762. ironlake_fdi_pll_enable(intel_crtc);
  2763. } else {
  2764. assert_fdi_tx_disabled(dev_priv, pipe);
  2765. assert_fdi_rx_disabled(dev_priv, pipe);
  2766. }
  2767. for_each_encoder_on_crtc(dev, crtc, encoder)
  2768. if (encoder->pre_enable)
  2769. encoder->pre_enable(encoder);
  2770. /* Enable panel fitting for LVDS */
  2771. ironlake_pfit_enable(intel_crtc);
  2772. /*
  2773. * On ILK+ LUT must be loaded before the pipe is running but with
  2774. * clocks enabled
  2775. */
  2776. intel_crtc_load_lut(crtc);
  2777. intel_enable_pipe(dev_priv, pipe,
  2778. intel_crtc->config.has_pch_encoder);
  2779. intel_enable_plane(dev_priv, plane, pipe);
  2780. if (intel_crtc->config.has_pch_encoder)
  2781. ironlake_pch_enable(crtc);
  2782. mutex_lock(&dev->struct_mutex);
  2783. intel_update_fbc(dev);
  2784. mutex_unlock(&dev->struct_mutex);
  2785. intel_crtc_update_cursor(crtc, true);
  2786. for_each_encoder_on_crtc(dev, crtc, encoder)
  2787. encoder->enable(encoder);
  2788. if (HAS_PCH_CPT(dev))
  2789. cpt_verify_modeset(dev, intel_crtc->pipe);
  2790. /*
  2791. * There seems to be a race in PCH platform hw (at least on some
  2792. * outputs) where an enabled pipe still completes any pageflip right
  2793. * away (as if the pipe is off) instead of waiting for vblank. As soon
  2794. * as the first vblank happend, everything works as expected. Hence just
  2795. * wait for one vblank before returning to avoid strange things
  2796. * happening.
  2797. */
  2798. intel_wait_for_vblank(dev, intel_crtc->pipe);
  2799. }
  2800. /* IPS only exists on ULT machines and is tied to pipe A. */
  2801. static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
  2802. {
  2803. return IS_ULT(crtc->base.dev) && crtc->pipe == PIPE_A;
  2804. }
  2805. static void hsw_enable_ips(struct intel_crtc *crtc)
  2806. {
  2807. struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
  2808. if (!crtc->config.ips_enabled)
  2809. return;
  2810. /* We can only enable IPS after we enable a plane and wait for a vblank.
  2811. * We guarantee that the plane is enabled by calling intel_enable_ips
  2812. * only after intel_enable_plane. And intel_enable_plane already waits
  2813. * for a vblank, so all we need to do here is to enable the IPS bit. */
  2814. assert_plane_enabled(dev_priv, crtc->plane);
  2815. I915_WRITE(IPS_CTL, IPS_ENABLE);
  2816. }
  2817. static void hsw_disable_ips(struct intel_crtc *crtc)
  2818. {
  2819. struct drm_device *dev = crtc->base.dev;
  2820. struct drm_i915_private *dev_priv = dev->dev_private;
  2821. if (!crtc->config.ips_enabled)
  2822. return;
  2823. assert_plane_enabled(dev_priv, crtc->plane);
  2824. I915_WRITE(IPS_CTL, 0);
  2825. /* We need to wait for a vblank before we can disable the plane. */
  2826. intel_wait_for_vblank(dev, crtc->pipe);
  2827. }
  2828. static void haswell_crtc_enable(struct drm_crtc *crtc)
  2829. {
  2830. struct drm_device *dev = crtc->dev;
  2831. struct drm_i915_private *dev_priv = dev->dev_private;
  2832. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2833. struct intel_encoder *encoder;
  2834. int pipe = intel_crtc->pipe;
  2835. int plane = intel_crtc->plane;
  2836. WARN_ON(!crtc->enabled);
  2837. if (intel_crtc->active)
  2838. return;
  2839. intel_crtc->active = true;
  2840. intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
  2841. if (intel_crtc->config.has_pch_encoder)
  2842. intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, true);
  2843. intel_update_watermarks(dev);
  2844. if (intel_crtc->config.has_pch_encoder)
  2845. dev_priv->display.fdi_link_train(crtc);
  2846. for_each_encoder_on_crtc(dev, crtc, encoder)
  2847. if (encoder->pre_enable)
  2848. encoder->pre_enable(encoder);
  2849. intel_ddi_enable_pipe_clock(intel_crtc);
  2850. /* Enable panel fitting for eDP */
  2851. ironlake_pfit_enable(intel_crtc);
  2852. /*
  2853. * On ILK+ LUT must be loaded before the pipe is running but with
  2854. * clocks enabled
  2855. */
  2856. intel_crtc_load_lut(crtc);
  2857. intel_ddi_set_pipe_settings(crtc);
  2858. intel_ddi_enable_transcoder_func(crtc);
  2859. intel_enable_pipe(dev_priv, pipe,
  2860. intel_crtc->config.has_pch_encoder);
  2861. intel_enable_plane(dev_priv, plane, pipe);
  2862. hsw_enable_ips(intel_crtc);
  2863. if (intel_crtc->config.has_pch_encoder)
  2864. lpt_pch_enable(crtc);
  2865. mutex_lock(&dev->struct_mutex);
  2866. intel_update_fbc(dev);
  2867. mutex_unlock(&dev->struct_mutex);
  2868. intel_crtc_update_cursor(crtc, true);
  2869. for_each_encoder_on_crtc(dev, crtc, encoder)
  2870. encoder->enable(encoder);
  2871. /*
  2872. * There seems to be a race in PCH platform hw (at least on some
  2873. * outputs) where an enabled pipe still completes any pageflip right
  2874. * away (as if the pipe is off) instead of waiting for vblank. As soon
  2875. * as the first vblank happend, everything works as expected. Hence just
  2876. * wait for one vblank before returning to avoid strange things
  2877. * happening.
  2878. */
  2879. intel_wait_for_vblank(dev, intel_crtc->pipe);
  2880. }
  2881. static void ironlake_pfit_disable(struct intel_crtc *crtc)
  2882. {
  2883. struct drm_device *dev = crtc->base.dev;
  2884. struct drm_i915_private *dev_priv = dev->dev_private;
  2885. int pipe = crtc->pipe;
  2886. /* To avoid upsetting the power well on haswell only disable the pfit if
  2887. * it's in use. The hw state code will make sure we get this right. */
  2888. if (crtc->config.pch_pfit.size) {
  2889. I915_WRITE(PF_CTL(pipe), 0);
  2890. I915_WRITE(PF_WIN_POS(pipe), 0);
  2891. I915_WRITE(PF_WIN_SZ(pipe), 0);
  2892. }
  2893. }
  2894. static void ironlake_crtc_disable(struct drm_crtc *crtc)
  2895. {
  2896. struct drm_device *dev = crtc->dev;
  2897. struct drm_i915_private *dev_priv = dev->dev_private;
  2898. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2899. struct intel_encoder *encoder;
  2900. int pipe = intel_crtc->pipe;
  2901. int plane = intel_crtc->plane;
  2902. u32 reg, temp;
  2903. if (!intel_crtc->active)
  2904. return;
  2905. for_each_encoder_on_crtc(dev, crtc, encoder)
  2906. encoder->disable(encoder);
  2907. intel_crtc_wait_for_pending_flips(crtc);
  2908. drm_vblank_off(dev, pipe);
  2909. intel_crtc_update_cursor(crtc, false);
  2910. intel_disable_plane(dev_priv, plane, pipe);
  2911. if (dev_priv->cfb_plane == plane)
  2912. intel_disable_fbc(dev);
  2913. intel_set_pch_fifo_underrun_reporting(dev, pipe, false);
  2914. intel_disable_pipe(dev_priv, pipe);
  2915. ironlake_pfit_disable(intel_crtc);
  2916. for_each_encoder_on_crtc(dev, crtc, encoder)
  2917. if (encoder->post_disable)
  2918. encoder->post_disable(encoder);
  2919. ironlake_fdi_disable(crtc);
  2920. ironlake_disable_pch_transcoder(dev_priv, pipe);
  2921. intel_set_pch_fifo_underrun_reporting(dev, pipe, true);
  2922. if (HAS_PCH_CPT(dev)) {
  2923. /* disable TRANS_DP_CTL */
  2924. reg = TRANS_DP_CTL(pipe);
  2925. temp = I915_READ(reg);
  2926. temp &= ~(TRANS_DP_OUTPUT_ENABLE | TRANS_DP_PORT_SEL_MASK);
  2927. temp |= TRANS_DP_PORT_SEL_NONE;
  2928. I915_WRITE(reg, temp);
  2929. /* disable DPLL_SEL */
  2930. temp = I915_READ(PCH_DPLL_SEL);
  2931. switch (pipe) {
  2932. case 0:
  2933. temp &= ~(TRANSA_DPLL_ENABLE | TRANSA_DPLLB_SEL);
  2934. break;
  2935. case 1:
  2936. temp &= ~(TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
  2937. break;
  2938. case 2:
  2939. /* C shares PLL A or B */
  2940. temp &= ~(TRANSC_DPLL_ENABLE | TRANSC_DPLLB_SEL);
  2941. break;
  2942. default:
  2943. BUG(); /* wtf */
  2944. }
  2945. I915_WRITE(PCH_DPLL_SEL, temp);
  2946. }
  2947. /* disable PCH DPLL */
  2948. intel_disable_pch_pll(intel_crtc);
  2949. ironlake_fdi_pll_disable(intel_crtc);
  2950. intel_crtc->active = false;
  2951. intel_update_watermarks(dev);
  2952. mutex_lock(&dev->struct_mutex);
  2953. intel_update_fbc(dev);
  2954. mutex_unlock(&dev->struct_mutex);
  2955. }
  2956. static void haswell_crtc_disable(struct drm_crtc *crtc)
  2957. {
  2958. struct drm_device *dev = crtc->dev;
  2959. struct drm_i915_private *dev_priv = dev->dev_private;
  2960. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2961. struct intel_encoder *encoder;
  2962. int pipe = intel_crtc->pipe;
  2963. int plane = intel_crtc->plane;
  2964. enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
  2965. if (!intel_crtc->active)
  2966. return;
  2967. for_each_encoder_on_crtc(dev, crtc, encoder)
  2968. encoder->disable(encoder);
  2969. intel_crtc_wait_for_pending_flips(crtc);
  2970. drm_vblank_off(dev, pipe);
  2971. intel_crtc_update_cursor(crtc, false);
  2972. /* FBC must be disabled before disabling the plane on HSW. */
  2973. if (dev_priv->cfb_plane == plane)
  2974. intel_disable_fbc(dev);
  2975. hsw_disable_ips(intel_crtc);
  2976. intel_disable_plane(dev_priv, plane, pipe);
  2977. if (intel_crtc->config.has_pch_encoder)
  2978. intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, false);
  2979. intel_disable_pipe(dev_priv, pipe);
  2980. intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
  2981. ironlake_pfit_disable(intel_crtc);
  2982. intel_ddi_disable_pipe_clock(intel_crtc);
  2983. for_each_encoder_on_crtc(dev, crtc, encoder)
  2984. if (encoder->post_disable)
  2985. encoder->post_disable(encoder);
  2986. if (intel_crtc->config.has_pch_encoder) {
  2987. lpt_disable_pch_transcoder(dev_priv);
  2988. intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, true);
  2989. intel_ddi_fdi_disable(crtc);
  2990. }
  2991. intel_crtc->active = false;
  2992. intel_update_watermarks(dev);
  2993. mutex_lock(&dev->struct_mutex);
  2994. intel_update_fbc(dev);
  2995. mutex_unlock(&dev->struct_mutex);
  2996. }
  2997. static void ironlake_crtc_off(struct drm_crtc *crtc)
  2998. {
  2999. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3000. intel_put_pch_pll(intel_crtc);
  3001. }
  3002. static void haswell_crtc_off(struct drm_crtc *crtc)
  3003. {
  3004. intel_ddi_put_crtc_pll(crtc);
  3005. }
  3006. static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
  3007. {
  3008. if (!enable && intel_crtc->overlay) {
  3009. struct drm_device *dev = intel_crtc->base.dev;
  3010. struct drm_i915_private *dev_priv = dev->dev_private;
  3011. mutex_lock(&dev->struct_mutex);
  3012. dev_priv->mm.interruptible = false;
  3013. (void) intel_overlay_switch_off(intel_crtc->overlay);
  3014. dev_priv->mm.interruptible = true;
  3015. mutex_unlock(&dev->struct_mutex);
  3016. }
  3017. /* Let userspace switch the overlay on again. In most cases userspace
  3018. * has to recompute where to put it anyway.
  3019. */
  3020. }
  3021. /**
  3022. * i9xx_fixup_plane - ugly workaround for G45 to fire up the hardware
  3023. * cursor plane briefly if not already running after enabling the display
  3024. * plane.
  3025. * This workaround avoids occasional blank screens when self refresh is
  3026. * enabled.
  3027. */
  3028. static void
  3029. g4x_fixup_plane(struct drm_i915_private *dev_priv, enum pipe pipe)
  3030. {
  3031. u32 cntl = I915_READ(CURCNTR(pipe));
  3032. if ((cntl & CURSOR_MODE) == 0) {
  3033. u32 fw_bcl_self = I915_READ(FW_BLC_SELF);
  3034. I915_WRITE(FW_BLC_SELF, fw_bcl_self & ~FW_BLC_SELF_EN);
  3035. I915_WRITE(CURCNTR(pipe), CURSOR_MODE_64_ARGB_AX);
  3036. intel_wait_for_vblank(dev_priv->dev, pipe);
  3037. I915_WRITE(CURCNTR(pipe), cntl);
  3038. I915_WRITE(CURBASE(pipe), I915_READ(CURBASE(pipe)));
  3039. I915_WRITE(FW_BLC_SELF, fw_bcl_self);
  3040. }
  3041. }
  3042. static void i9xx_pfit_enable(struct intel_crtc *crtc)
  3043. {
  3044. struct drm_device *dev = crtc->base.dev;
  3045. struct drm_i915_private *dev_priv = dev->dev_private;
  3046. struct intel_crtc_config *pipe_config = &crtc->config;
  3047. if (!crtc->config.gmch_pfit.control)
  3048. return;
  3049. /*
  3050. * The panel fitter should only be adjusted whilst the pipe is disabled,
  3051. * according to register description and PRM.
  3052. */
  3053. WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
  3054. assert_pipe_disabled(dev_priv, crtc->pipe);
  3055. I915_WRITE(PFIT_PGM_RATIOS, pipe_config->gmch_pfit.pgm_ratios);
  3056. I915_WRITE(PFIT_CONTROL, pipe_config->gmch_pfit.control);
  3057. /* Border color in case we don't scale up to the full screen. Black by
  3058. * default, change to something else for debugging. */
  3059. I915_WRITE(BCLRPAT(crtc->pipe), 0);
  3060. }
  3061. static void valleyview_crtc_enable(struct drm_crtc *crtc)
  3062. {
  3063. struct drm_device *dev = crtc->dev;
  3064. struct drm_i915_private *dev_priv = dev->dev_private;
  3065. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3066. struct intel_encoder *encoder;
  3067. int pipe = intel_crtc->pipe;
  3068. int plane = intel_crtc->plane;
  3069. WARN_ON(!crtc->enabled);
  3070. if (intel_crtc->active)
  3071. return;
  3072. intel_crtc->active = true;
  3073. intel_update_watermarks(dev);
  3074. mutex_lock(&dev_priv->dpio_lock);
  3075. for_each_encoder_on_crtc(dev, crtc, encoder)
  3076. if (encoder->pre_pll_enable)
  3077. encoder->pre_pll_enable(encoder);
  3078. intel_enable_pll(dev_priv, pipe);
  3079. for_each_encoder_on_crtc(dev, crtc, encoder)
  3080. if (encoder->pre_enable)
  3081. encoder->pre_enable(encoder);
  3082. /* VLV wants encoder enabling _before_ the pipe is up. */
  3083. for_each_encoder_on_crtc(dev, crtc, encoder)
  3084. encoder->enable(encoder);
  3085. /* Enable panel fitting for eDP */
  3086. i9xx_pfit_enable(intel_crtc);
  3087. intel_enable_pipe(dev_priv, pipe, false);
  3088. intel_enable_plane(dev_priv, plane, pipe);
  3089. intel_crtc_load_lut(crtc);
  3090. intel_update_fbc(dev);
  3091. /* Give the overlay scaler a chance to enable if it's on this pipe */
  3092. intel_crtc_dpms_overlay(intel_crtc, true);
  3093. intel_crtc_update_cursor(crtc, true);
  3094. mutex_unlock(&dev_priv->dpio_lock);
  3095. }
  3096. static void i9xx_crtc_enable(struct drm_crtc *crtc)
  3097. {
  3098. struct drm_device *dev = crtc->dev;
  3099. struct drm_i915_private *dev_priv = dev->dev_private;
  3100. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3101. struct intel_encoder *encoder;
  3102. int pipe = intel_crtc->pipe;
  3103. int plane = intel_crtc->plane;
  3104. WARN_ON(!crtc->enabled);
  3105. if (intel_crtc->active)
  3106. return;
  3107. intel_crtc->active = true;
  3108. intel_update_watermarks(dev);
  3109. intel_enable_pll(dev_priv, pipe);
  3110. for_each_encoder_on_crtc(dev, crtc, encoder)
  3111. if (encoder->pre_enable)
  3112. encoder->pre_enable(encoder);
  3113. /* Enable panel fitting for LVDS */
  3114. i9xx_pfit_enable(intel_crtc);
  3115. intel_enable_pipe(dev_priv, pipe, false);
  3116. intel_enable_plane(dev_priv, plane, pipe);
  3117. if (IS_G4X(dev))
  3118. g4x_fixup_plane(dev_priv, pipe);
  3119. intel_crtc_load_lut(crtc);
  3120. intel_update_fbc(dev);
  3121. /* Give the overlay scaler a chance to enable if it's on this pipe */
  3122. intel_crtc_dpms_overlay(intel_crtc, true);
  3123. intel_crtc_update_cursor(crtc, true);
  3124. for_each_encoder_on_crtc(dev, crtc, encoder)
  3125. encoder->enable(encoder);
  3126. }
  3127. static void i9xx_pfit_disable(struct intel_crtc *crtc)
  3128. {
  3129. struct drm_device *dev = crtc->base.dev;
  3130. struct drm_i915_private *dev_priv = dev->dev_private;
  3131. if (!crtc->config.gmch_pfit.control)
  3132. return;
  3133. assert_pipe_disabled(dev_priv, crtc->pipe);
  3134. DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n",
  3135. I915_READ(PFIT_CONTROL));
  3136. I915_WRITE(PFIT_CONTROL, 0);
  3137. }
  3138. static void i9xx_crtc_disable(struct drm_crtc *crtc)
  3139. {
  3140. struct drm_device *dev = crtc->dev;
  3141. struct drm_i915_private *dev_priv = dev->dev_private;
  3142. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3143. struct intel_encoder *encoder;
  3144. int pipe = intel_crtc->pipe;
  3145. int plane = intel_crtc->plane;
  3146. if (!intel_crtc->active)
  3147. return;
  3148. for_each_encoder_on_crtc(dev, crtc, encoder)
  3149. encoder->disable(encoder);
  3150. /* Give the overlay scaler a chance to disable if it's on this pipe */
  3151. intel_crtc_wait_for_pending_flips(crtc);
  3152. drm_vblank_off(dev, pipe);
  3153. intel_crtc_dpms_overlay(intel_crtc, false);
  3154. intel_crtc_update_cursor(crtc, false);
  3155. if (dev_priv->cfb_plane == plane)
  3156. intel_disable_fbc(dev);
  3157. intel_disable_plane(dev_priv, plane, pipe);
  3158. intel_disable_pipe(dev_priv, pipe);
  3159. i9xx_pfit_disable(intel_crtc);
  3160. for_each_encoder_on_crtc(dev, crtc, encoder)
  3161. if (encoder->post_disable)
  3162. encoder->post_disable(encoder);
  3163. intel_disable_pll(dev_priv, pipe);
  3164. intel_crtc->active = false;
  3165. intel_update_fbc(dev);
  3166. intel_update_watermarks(dev);
  3167. }
  3168. static void i9xx_crtc_off(struct drm_crtc *crtc)
  3169. {
  3170. }
  3171. static void intel_crtc_update_sarea(struct drm_crtc *crtc,
  3172. bool enabled)
  3173. {
  3174. struct drm_device *dev = crtc->dev;
  3175. struct drm_i915_master_private *master_priv;
  3176. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3177. int pipe = intel_crtc->pipe;
  3178. if (!dev->primary->master)
  3179. return;
  3180. master_priv = dev->primary->master->driver_priv;
  3181. if (!master_priv->sarea_priv)
  3182. return;
  3183. switch (pipe) {
  3184. case 0:
  3185. master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
  3186. master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
  3187. break;
  3188. case 1:
  3189. master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
  3190. master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
  3191. break;
  3192. default:
  3193. DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe));
  3194. break;
  3195. }
  3196. }
  3197. /**
  3198. * Sets the power management mode of the pipe and plane.
  3199. */
  3200. void intel_crtc_update_dpms(struct drm_crtc *crtc)
  3201. {
  3202. struct drm_device *dev = crtc->dev;
  3203. struct drm_i915_private *dev_priv = dev->dev_private;
  3204. struct intel_encoder *intel_encoder;
  3205. bool enable = false;
  3206. for_each_encoder_on_crtc(dev, crtc, intel_encoder)
  3207. enable |= intel_encoder->connectors_active;
  3208. if (enable)
  3209. dev_priv->display.crtc_enable(crtc);
  3210. else
  3211. dev_priv->display.crtc_disable(crtc);
  3212. intel_crtc_update_sarea(crtc, enable);
  3213. }
  3214. static void intel_crtc_disable(struct drm_crtc *crtc)
  3215. {
  3216. struct drm_device *dev = crtc->dev;
  3217. struct drm_connector *connector;
  3218. struct drm_i915_private *dev_priv = dev->dev_private;
  3219. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3220. /* crtc should still be enabled when we disable it. */
  3221. WARN_ON(!crtc->enabled);
  3222. dev_priv->display.crtc_disable(crtc);
  3223. intel_crtc->eld_vld = false;
  3224. intel_crtc_update_sarea(crtc, false);
  3225. dev_priv->display.off(crtc);
  3226. assert_plane_disabled(dev->dev_private, to_intel_crtc(crtc)->plane);
  3227. assert_pipe_disabled(dev->dev_private, to_intel_crtc(crtc)->pipe);
  3228. if (crtc->fb) {
  3229. mutex_lock(&dev->struct_mutex);
  3230. intel_unpin_fb_obj(to_intel_framebuffer(crtc->fb)->obj);
  3231. mutex_unlock(&dev->struct_mutex);
  3232. crtc->fb = NULL;
  3233. }
  3234. /* Update computed state. */
  3235. list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
  3236. if (!connector->encoder || !connector->encoder->crtc)
  3237. continue;
  3238. if (connector->encoder->crtc != crtc)
  3239. continue;
  3240. connector->dpms = DRM_MODE_DPMS_OFF;
  3241. to_intel_encoder(connector->encoder)->connectors_active = false;
  3242. }
  3243. }
  3244. void intel_modeset_disable(struct drm_device *dev)
  3245. {
  3246. struct drm_crtc *crtc;
  3247. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  3248. if (crtc->enabled)
  3249. intel_crtc_disable(crtc);
  3250. }
  3251. }
  3252. void intel_encoder_destroy(struct drm_encoder *encoder)
  3253. {
  3254. struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
  3255. drm_encoder_cleanup(encoder);
  3256. kfree(intel_encoder);
  3257. }
  3258. /* Simple dpms helper for encodres with just one connector, no cloning and only
  3259. * one kind of off state. It clamps all !ON modes to fully OFF and changes the
  3260. * state of the entire output pipe. */
  3261. void intel_encoder_dpms(struct intel_encoder *encoder, int mode)
  3262. {
  3263. if (mode == DRM_MODE_DPMS_ON) {
  3264. encoder->connectors_active = true;
  3265. intel_crtc_update_dpms(encoder->base.crtc);
  3266. } else {
  3267. encoder->connectors_active = false;
  3268. intel_crtc_update_dpms(encoder->base.crtc);
  3269. }
  3270. }
  3271. /* Cross check the actual hw state with our own modeset state tracking (and it's
  3272. * internal consistency). */
  3273. static void intel_connector_check_state(struct intel_connector *connector)
  3274. {
  3275. if (connector->get_hw_state(connector)) {
  3276. struct intel_encoder *encoder = connector->encoder;
  3277. struct drm_crtc *crtc;
  3278. bool encoder_enabled;
  3279. enum pipe pipe;
  3280. DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
  3281. connector->base.base.id,
  3282. drm_get_connector_name(&connector->base));
  3283. WARN(connector->base.dpms == DRM_MODE_DPMS_OFF,
  3284. "wrong connector dpms state\n");
  3285. WARN(connector->base.encoder != &encoder->base,
  3286. "active connector not linked to encoder\n");
  3287. WARN(!encoder->connectors_active,
  3288. "encoder->connectors_active not set\n");
  3289. encoder_enabled = encoder->get_hw_state(encoder, &pipe);
  3290. WARN(!encoder_enabled, "encoder not enabled\n");
  3291. if (WARN_ON(!encoder->base.crtc))
  3292. return;
  3293. crtc = encoder->base.crtc;
  3294. WARN(!crtc->enabled, "crtc not enabled\n");
  3295. WARN(!to_intel_crtc(crtc)->active, "crtc not active\n");
  3296. WARN(pipe != to_intel_crtc(crtc)->pipe,
  3297. "encoder active on the wrong pipe\n");
  3298. }
  3299. }
  3300. /* Even simpler default implementation, if there's really no special case to
  3301. * consider. */
  3302. void intel_connector_dpms(struct drm_connector *connector, int mode)
  3303. {
  3304. struct intel_encoder *encoder = intel_attached_encoder(connector);
  3305. /* All the simple cases only support two dpms states. */
  3306. if (mode != DRM_MODE_DPMS_ON)
  3307. mode = DRM_MODE_DPMS_OFF;
  3308. if (mode == connector->dpms)
  3309. return;
  3310. connector->dpms = mode;
  3311. /* Only need to change hw state when actually enabled */
  3312. if (encoder->base.crtc)
  3313. intel_encoder_dpms(encoder, mode);
  3314. else
  3315. WARN_ON(encoder->connectors_active != false);
  3316. intel_modeset_check_state(connector->dev);
  3317. }
  3318. /* Simple connector->get_hw_state implementation for encoders that support only
  3319. * one connector and no cloning and hence the encoder state determines the state
  3320. * of the connector. */
  3321. bool intel_connector_get_hw_state(struct intel_connector *connector)
  3322. {
  3323. enum pipe pipe = 0;
  3324. struct intel_encoder *encoder = connector->encoder;
  3325. return encoder->get_hw_state(encoder, &pipe);
  3326. }
  3327. static bool ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
  3328. struct intel_crtc_config *pipe_config)
  3329. {
  3330. struct drm_i915_private *dev_priv = dev->dev_private;
  3331. struct intel_crtc *pipe_B_crtc =
  3332. to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
  3333. DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
  3334. pipe_name(pipe), pipe_config->fdi_lanes);
  3335. if (pipe_config->fdi_lanes > 4) {
  3336. DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
  3337. pipe_name(pipe), pipe_config->fdi_lanes);
  3338. return false;
  3339. }
  3340. if (IS_HASWELL(dev)) {
  3341. if (pipe_config->fdi_lanes > 2) {
  3342. DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
  3343. pipe_config->fdi_lanes);
  3344. return false;
  3345. } else {
  3346. return true;
  3347. }
  3348. }
  3349. if (INTEL_INFO(dev)->num_pipes == 2)
  3350. return true;
  3351. /* Ivybridge 3 pipe is really complicated */
  3352. switch (pipe) {
  3353. case PIPE_A:
  3354. return true;
  3355. case PIPE_B:
  3356. if (dev_priv->pipe_to_crtc_mapping[PIPE_C]->enabled &&
  3357. pipe_config->fdi_lanes > 2) {
  3358. DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
  3359. pipe_name(pipe), pipe_config->fdi_lanes);
  3360. return false;
  3361. }
  3362. return true;
  3363. case PIPE_C:
  3364. if (!pipe_has_enabled_pch(pipe_B_crtc) ||
  3365. pipe_B_crtc->config.fdi_lanes <= 2) {
  3366. if (pipe_config->fdi_lanes > 2) {
  3367. DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
  3368. pipe_name(pipe), pipe_config->fdi_lanes);
  3369. return false;
  3370. }
  3371. } else {
  3372. DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
  3373. return false;
  3374. }
  3375. return true;
  3376. default:
  3377. BUG();
  3378. }
  3379. }
  3380. #define RETRY 1
  3381. static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc,
  3382. struct intel_crtc_config *pipe_config)
  3383. {
  3384. struct drm_device *dev = intel_crtc->base.dev;
  3385. struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
  3386. int target_clock, lane, link_bw;
  3387. bool setup_ok, needs_recompute = false;
  3388. retry:
  3389. /* FDI is a binary signal running at ~2.7GHz, encoding
  3390. * each output octet as 10 bits. The actual frequency
  3391. * is stored as a divider into a 100MHz clock, and the
  3392. * mode pixel clock is stored in units of 1KHz.
  3393. * Hence the bw of each lane in terms of the mode signal
  3394. * is:
  3395. */
  3396. link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
  3397. if (pipe_config->pixel_target_clock)
  3398. target_clock = pipe_config->pixel_target_clock;
  3399. else
  3400. target_clock = adjusted_mode->clock;
  3401. lane = ironlake_get_lanes_required(target_clock, link_bw,
  3402. pipe_config->pipe_bpp);
  3403. pipe_config->fdi_lanes = lane;
  3404. if (pipe_config->pixel_multiplier > 1)
  3405. link_bw *= pipe_config->pixel_multiplier;
  3406. intel_link_compute_m_n(pipe_config->pipe_bpp, lane, target_clock,
  3407. link_bw, &pipe_config->fdi_m_n);
  3408. setup_ok = ironlake_check_fdi_lanes(intel_crtc->base.dev,
  3409. intel_crtc->pipe, pipe_config);
  3410. if (!setup_ok && pipe_config->pipe_bpp > 6*3) {
  3411. pipe_config->pipe_bpp -= 2*3;
  3412. DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
  3413. pipe_config->pipe_bpp);
  3414. needs_recompute = true;
  3415. pipe_config->bw_constrained = true;
  3416. goto retry;
  3417. }
  3418. if (needs_recompute)
  3419. return RETRY;
  3420. return setup_ok ? 0 : -EINVAL;
  3421. }
  3422. static void hsw_compute_ips_config(struct intel_crtc *crtc,
  3423. struct intel_crtc_config *pipe_config)
  3424. {
  3425. pipe_config->ips_enabled = i915_enable_ips &&
  3426. hsw_crtc_supports_ips(crtc) &&
  3427. pipe_config->pipe_bpp == 24;
  3428. }
  3429. static int intel_crtc_compute_config(struct drm_crtc *crtc,
  3430. struct intel_crtc_config *pipe_config)
  3431. {
  3432. struct drm_device *dev = crtc->dev;
  3433. struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
  3434. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3435. if (HAS_PCH_SPLIT(dev)) {
  3436. /* FDI link clock is fixed at 2.7G */
  3437. if (pipe_config->requested_mode.clock * 3
  3438. > IRONLAKE_FDI_FREQ * 4)
  3439. return -EINVAL;
  3440. }
  3441. /* All interlaced capable intel hw wants timings in frames. Note though
  3442. * that intel_lvds_mode_fixup does some funny tricks with the crtc
  3443. * timings, so we need to be careful not to clobber these.*/
  3444. if (!pipe_config->timings_set)
  3445. drm_mode_set_crtcinfo(adjusted_mode, 0);
  3446. /* Cantiga+ cannot handle modes with a hsync front porch of 0.
  3447. * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
  3448. */
  3449. if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
  3450. adjusted_mode->hsync_start == adjusted_mode->hdisplay)
  3451. return -EINVAL;
  3452. if ((IS_G4X(dev) || IS_VALLEYVIEW(dev)) && pipe_config->pipe_bpp > 10*3) {
  3453. pipe_config->pipe_bpp = 10*3; /* 12bpc is gen5+ */
  3454. } else if (INTEL_INFO(dev)->gen <= 4 && pipe_config->pipe_bpp > 8*3) {
  3455. /* only a 8bpc pipe, with 6bpc dither through the panel fitter
  3456. * for lvds. */
  3457. pipe_config->pipe_bpp = 8*3;
  3458. }
  3459. if (IS_HASWELL(dev))
  3460. hsw_compute_ips_config(intel_crtc, pipe_config);
  3461. if (pipe_config->has_pch_encoder)
  3462. return ironlake_fdi_compute_config(intel_crtc, pipe_config);
  3463. return 0;
  3464. }
  3465. static int valleyview_get_display_clock_speed(struct drm_device *dev)
  3466. {
  3467. return 400000; /* FIXME */
  3468. }
  3469. static int i945_get_display_clock_speed(struct drm_device *dev)
  3470. {
  3471. return 400000;
  3472. }
  3473. static int i915_get_display_clock_speed(struct drm_device *dev)
  3474. {
  3475. return 333000;
  3476. }
  3477. static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
  3478. {
  3479. return 200000;
  3480. }
  3481. static int i915gm_get_display_clock_speed(struct drm_device *dev)
  3482. {
  3483. u16 gcfgc = 0;
  3484. pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
  3485. if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
  3486. return 133000;
  3487. else {
  3488. switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
  3489. case GC_DISPLAY_CLOCK_333_MHZ:
  3490. return 333000;
  3491. default:
  3492. case GC_DISPLAY_CLOCK_190_200_MHZ:
  3493. return 190000;
  3494. }
  3495. }
  3496. }
  3497. static int i865_get_display_clock_speed(struct drm_device *dev)
  3498. {
  3499. return 266000;
  3500. }
  3501. static int i855_get_display_clock_speed(struct drm_device *dev)
  3502. {
  3503. u16 hpllcc = 0;
  3504. /* Assume that the hardware is in the high speed state. This
  3505. * should be the default.
  3506. */
  3507. switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
  3508. case GC_CLOCK_133_200:
  3509. case GC_CLOCK_100_200:
  3510. return 200000;
  3511. case GC_CLOCK_166_250:
  3512. return 250000;
  3513. case GC_CLOCK_100_133:
  3514. return 133000;
  3515. }
  3516. /* Shouldn't happen */
  3517. return 0;
  3518. }
  3519. static int i830_get_display_clock_speed(struct drm_device *dev)
  3520. {
  3521. return 133000;
  3522. }
  3523. static void
  3524. intel_reduce_m_n_ratio(uint32_t *num, uint32_t *den)
  3525. {
  3526. while (*num > DATA_LINK_M_N_MASK ||
  3527. *den > DATA_LINK_M_N_MASK) {
  3528. *num >>= 1;
  3529. *den >>= 1;
  3530. }
  3531. }
  3532. static void compute_m_n(unsigned int m, unsigned int n,
  3533. uint32_t *ret_m, uint32_t *ret_n)
  3534. {
  3535. *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
  3536. *ret_m = div_u64((uint64_t) m * *ret_n, n);
  3537. intel_reduce_m_n_ratio(ret_m, ret_n);
  3538. }
  3539. void
  3540. intel_link_compute_m_n(int bits_per_pixel, int nlanes,
  3541. int pixel_clock, int link_clock,
  3542. struct intel_link_m_n *m_n)
  3543. {
  3544. m_n->tu = 64;
  3545. compute_m_n(bits_per_pixel * pixel_clock,
  3546. link_clock * nlanes * 8,
  3547. &m_n->gmch_m, &m_n->gmch_n);
  3548. compute_m_n(pixel_clock, link_clock,
  3549. &m_n->link_m, &m_n->link_n);
  3550. }
  3551. static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
  3552. {
  3553. if (i915_panel_use_ssc >= 0)
  3554. return i915_panel_use_ssc != 0;
  3555. return dev_priv->vbt.lvds_use_ssc
  3556. && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
  3557. }
  3558. static int vlv_get_refclk(struct drm_crtc *crtc)
  3559. {
  3560. struct drm_device *dev = crtc->dev;
  3561. struct drm_i915_private *dev_priv = dev->dev_private;
  3562. int refclk = 27000; /* for DP & HDMI */
  3563. return 100000; /* only one validated so far */
  3564. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
  3565. refclk = 96000;
  3566. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  3567. if (intel_panel_use_ssc(dev_priv))
  3568. refclk = 100000;
  3569. else
  3570. refclk = 96000;
  3571. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP)) {
  3572. refclk = 100000;
  3573. }
  3574. return refclk;
  3575. }
  3576. static int i9xx_get_refclk(struct drm_crtc *crtc, int num_connectors)
  3577. {
  3578. struct drm_device *dev = crtc->dev;
  3579. struct drm_i915_private *dev_priv = dev->dev_private;
  3580. int refclk;
  3581. if (IS_VALLEYVIEW(dev)) {
  3582. refclk = vlv_get_refclk(crtc);
  3583. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
  3584. intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
  3585. refclk = dev_priv->vbt.lvds_ssc_freq * 1000;
  3586. DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
  3587. refclk / 1000);
  3588. } else if (!IS_GEN2(dev)) {
  3589. refclk = 96000;
  3590. } else {
  3591. refclk = 48000;
  3592. }
  3593. return refclk;
  3594. }
  3595. static uint32_t pnv_dpll_compute_fp(struct dpll *dpll)
  3596. {
  3597. return (1 << dpll->n) << 16 | dpll->m1 << 8 | dpll->m2;
  3598. }
  3599. static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll)
  3600. {
  3601. return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
  3602. }
  3603. static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
  3604. intel_clock_t *reduced_clock)
  3605. {
  3606. struct drm_device *dev = crtc->base.dev;
  3607. struct drm_i915_private *dev_priv = dev->dev_private;
  3608. int pipe = crtc->pipe;
  3609. u32 fp, fp2 = 0;
  3610. if (IS_PINEVIEW(dev)) {
  3611. fp = pnv_dpll_compute_fp(&crtc->config.dpll);
  3612. if (reduced_clock)
  3613. fp2 = pnv_dpll_compute_fp(reduced_clock);
  3614. } else {
  3615. fp = i9xx_dpll_compute_fp(&crtc->config.dpll);
  3616. if (reduced_clock)
  3617. fp2 = i9xx_dpll_compute_fp(reduced_clock);
  3618. }
  3619. I915_WRITE(FP0(pipe), fp);
  3620. crtc->lowfreq_avail = false;
  3621. if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
  3622. reduced_clock && i915_powersave) {
  3623. I915_WRITE(FP1(pipe), fp2);
  3624. crtc->lowfreq_avail = true;
  3625. } else {
  3626. I915_WRITE(FP1(pipe), fp);
  3627. }
  3628. }
  3629. static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv)
  3630. {
  3631. u32 reg_val;
  3632. /*
  3633. * PLLB opamp always calibrates to max value of 0x3f, force enable it
  3634. * and set it to a reasonable value instead.
  3635. */
  3636. reg_val = vlv_dpio_read(dev_priv, DPIO_IREF(1));
  3637. reg_val &= 0xffffff00;
  3638. reg_val |= 0x00000030;
  3639. vlv_dpio_write(dev_priv, DPIO_IREF(1), reg_val);
  3640. reg_val = vlv_dpio_read(dev_priv, DPIO_CALIBRATION);
  3641. reg_val &= 0x8cffffff;
  3642. reg_val = 0x8c000000;
  3643. vlv_dpio_write(dev_priv, DPIO_CALIBRATION, reg_val);
  3644. reg_val = vlv_dpio_read(dev_priv, DPIO_IREF(1));
  3645. reg_val &= 0xffffff00;
  3646. vlv_dpio_write(dev_priv, DPIO_IREF(1), reg_val);
  3647. reg_val = vlv_dpio_read(dev_priv, DPIO_CALIBRATION);
  3648. reg_val &= 0x00ffffff;
  3649. reg_val |= 0xb0000000;
  3650. vlv_dpio_write(dev_priv, DPIO_CALIBRATION, reg_val);
  3651. }
  3652. static void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
  3653. struct intel_link_m_n *m_n)
  3654. {
  3655. struct drm_device *dev = crtc->base.dev;
  3656. struct drm_i915_private *dev_priv = dev->dev_private;
  3657. int pipe = crtc->pipe;
  3658. I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
  3659. I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
  3660. I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m);
  3661. I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n);
  3662. }
  3663. static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
  3664. struct intel_link_m_n *m_n)
  3665. {
  3666. struct drm_device *dev = crtc->base.dev;
  3667. struct drm_i915_private *dev_priv = dev->dev_private;
  3668. int pipe = crtc->pipe;
  3669. enum transcoder transcoder = crtc->config.cpu_transcoder;
  3670. if (INTEL_INFO(dev)->gen >= 5) {
  3671. I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
  3672. I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
  3673. I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
  3674. I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
  3675. } else {
  3676. I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
  3677. I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
  3678. I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m);
  3679. I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n);
  3680. }
  3681. }
  3682. static void intel_dp_set_m_n(struct intel_crtc *crtc)
  3683. {
  3684. if (crtc->config.has_pch_encoder)
  3685. intel_pch_transcoder_set_m_n(crtc, &crtc->config.dp_m_n);
  3686. else
  3687. intel_cpu_transcoder_set_m_n(crtc, &crtc->config.dp_m_n);
  3688. }
  3689. static void vlv_update_pll(struct intel_crtc *crtc)
  3690. {
  3691. struct drm_device *dev = crtc->base.dev;
  3692. struct drm_i915_private *dev_priv = dev->dev_private;
  3693. struct drm_display_mode *adjusted_mode =
  3694. &crtc->config.adjusted_mode;
  3695. struct intel_encoder *encoder;
  3696. int pipe = crtc->pipe;
  3697. u32 dpll, mdiv;
  3698. u32 bestn, bestm1, bestm2, bestp1, bestp2;
  3699. bool is_hdmi;
  3700. u32 coreclk, reg_val, dpll_md;
  3701. mutex_lock(&dev_priv->dpio_lock);
  3702. is_hdmi = intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI);
  3703. bestn = crtc->config.dpll.n;
  3704. bestm1 = crtc->config.dpll.m1;
  3705. bestm2 = crtc->config.dpll.m2;
  3706. bestp1 = crtc->config.dpll.p1;
  3707. bestp2 = crtc->config.dpll.p2;
  3708. /* See eDP HDMI DPIO driver vbios notes doc */
  3709. /* PLL B needs special handling */
  3710. if (pipe)
  3711. vlv_pllb_recal_opamp(dev_priv);
  3712. /* Set up Tx target for periodic Rcomp update */
  3713. vlv_dpio_write(dev_priv, DPIO_IREF_BCAST, 0x0100000f);
  3714. /* Disable target IRef on PLL */
  3715. reg_val = vlv_dpio_read(dev_priv, DPIO_IREF_CTL(pipe));
  3716. reg_val &= 0x00ffffff;
  3717. vlv_dpio_write(dev_priv, DPIO_IREF_CTL(pipe), reg_val);
  3718. /* Disable fast lock */
  3719. vlv_dpio_write(dev_priv, DPIO_FASTCLK_DISABLE, 0x610);
  3720. /* Set idtafcrecal before PLL is enabled */
  3721. mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
  3722. mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
  3723. mdiv |= ((bestn << DPIO_N_SHIFT));
  3724. mdiv |= (1 << DPIO_K_SHIFT);
  3725. /*
  3726. * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
  3727. * but we don't support that).
  3728. * Note: don't use the DAC post divider as it seems unstable.
  3729. */
  3730. mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
  3731. vlv_dpio_write(dev_priv, DPIO_DIV(pipe), mdiv);
  3732. mdiv |= DPIO_ENABLE_CALIBRATION;
  3733. vlv_dpio_write(dev_priv, DPIO_DIV(pipe), mdiv);
  3734. /* Set HBR and RBR LPF coefficients */
  3735. if (adjusted_mode->clock == 162000 ||
  3736. intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI))
  3737. vlv_dpio_write(dev_priv, DPIO_LFP_COEFF(pipe),
  3738. 0x005f0021);
  3739. else
  3740. vlv_dpio_write(dev_priv, DPIO_LFP_COEFF(pipe),
  3741. 0x00d0000f);
  3742. if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_EDP) ||
  3743. intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT)) {
  3744. /* Use SSC source */
  3745. if (!pipe)
  3746. vlv_dpio_write(dev_priv, DPIO_REFSFR(pipe),
  3747. 0x0df40000);
  3748. else
  3749. vlv_dpio_write(dev_priv, DPIO_REFSFR(pipe),
  3750. 0x0df70000);
  3751. } else { /* HDMI or VGA */
  3752. /* Use bend source */
  3753. if (!pipe)
  3754. vlv_dpio_write(dev_priv, DPIO_REFSFR(pipe),
  3755. 0x0df70000);
  3756. else
  3757. vlv_dpio_write(dev_priv, DPIO_REFSFR(pipe),
  3758. 0x0df40000);
  3759. }
  3760. coreclk = vlv_dpio_read(dev_priv, DPIO_CORE_CLK(pipe));
  3761. coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
  3762. if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT) ||
  3763. intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_EDP))
  3764. coreclk |= 0x01000000;
  3765. vlv_dpio_write(dev_priv, DPIO_CORE_CLK(pipe), coreclk);
  3766. vlv_dpio_write(dev_priv, DPIO_PLL_CML(pipe), 0x87871000);
  3767. for_each_encoder_on_crtc(dev, &crtc->base, encoder)
  3768. if (encoder->pre_pll_enable)
  3769. encoder->pre_pll_enable(encoder);
  3770. /* Enable DPIO clock input */
  3771. dpll = DPLL_EXT_BUFFER_ENABLE_VLV | DPLL_REFA_CLK_ENABLE_VLV |
  3772. DPLL_VGA_MODE_DIS | DPLL_INTEGRATED_CLOCK_VLV;
  3773. if (pipe)
  3774. dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
  3775. dpll |= DPLL_VCO_ENABLE;
  3776. I915_WRITE(DPLL(pipe), dpll);
  3777. POSTING_READ(DPLL(pipe));
  3778. udelay(150);
  3779. if (wait_for(((I915_READ(DPLL(pipe)) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
  3780. DRM_ERROR("DPLL %d failed to lock\n", pipe);
  3781. dpll_md = 0;
  3782. if (crtc->config.pixel_multiplier > 1) {
  3783. dpll_md = (crtc->config.pixel_multiplier - 1)
  3784. << DPLL_MD_UDI_MULTIPLIER_SHIFT;
  3785. }
  3786. I915_WRITE(DPLL_MD(pipe), dpll_md);
  3787. POSTING_READ(DPLL_MD(pipe));
  3788. if (crtc->config.has_dp_encoder)
  3789. intel_dp_set_m_n(crtc);
  3790. mutex_unlock(&dev_priv->dpio_lock);
  3791. }
  3792. static void i9xx_update_pll(struct intel_crtc *crtc,
  3793. intel_clock_t *reduced_clock,
  3794. int num_connectors)
  3795. {
  3796. struct drm_device *dev = crtc->base.dev;
  3797. struct drm_i915_private *dev_priv = dev->dev_private;
  3798. struct intel_encoder *encoder;
  3799. int pipe = crtc->pipe;
  3800. u32 dpll;
  3801. bool is_sdvo;
  3802. struct dpll *clock = &crtc->config.dpll;
  3803. i9xx_update_pll_dividers(crtc, reduced_clock);
  3804. is_sdvo = intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_SDVO) ||
  3805. intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI);
  3806. dpll = DPLL_VGA_MODE_DIS;
  3807. if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS))
  3808. dpll |= DPLLB_MODE_LVDS;
  3809. else
  3810. dpll |= DPLLB_MODE_DAC_SERIAL;
  3811. if ((crtc->config.pixel_multiplier > 1) &&
  3812. (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))) {
  3813. dpll |= (crtc->config.pixel_multiplier - 1)
  3814. << SDVO_MULTIPLIER_SHIFT_HIRES;
  3815. }
  3816. if (is_sdvo)
  3817. dpll |= DPLL_DVO_HIGH_SPEED;
  3818. if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT))
  3819. dpll |= DPLL_DVO_HIGH_SPEED;
  3820. /* compute bitmask from p1 value */
  3821. if (IS_PINEVIEW(dev))
  3822. dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
  3823. else {
  3824. dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
  3825. if (IS_G4X(dev) && reduced_clock)
  3826. dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
  3827. }
  3828. switch (clock->p2) {
  3829. case 5:
  3830. dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
  3831. break;
  3832. case 7:
  3833. dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
  3834. break;
  3835. case 10:
  3836. dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
  3837. break;
  3838. case 14:
  3839. dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
  3840. break;
  3841. }
  3842. if (INTEL_INFO(dev)->gen >= 4)
  3843. dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
  3844. if (crtc->config.sdvo_tv_clock)
  3845. dpll |= PLL_REF_INPUT_TVCLKINBC;
  3846. else if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
  3847. intel_panel_use_ssc(dev_priv) && num_connectors < 2)
  3848. dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
  3849. else
  3850. dpll |= PLL_REF_INPUT_DREFCLK;
  3851. dpll |= DPLL_VCO_ENABLE;
  3852. I915_WRITE(DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
  3853. POSTING_READ(DPLL(pipe));
  3854. udelay(150);
  3855. for_each_encoder_on_crtc(dev, &crtc->base, encoder)
  3856. if (encoder->pre_pll_enable)
  3857. encoder->pre_pll_enable(encoder);
  3858. if (crtc->config.has_dp_encoder)
  3859. intel_dp_set_m_n(crtc);
  3860. I915_WRITE(DPLL(pipe), dpll);
  3861. /* Wait for the clocks to stabilize. */
  3862. POSTING_READ(DPLL(pipe));
  3863. udelay(150);
  3864. if (INTEL_INFO(dev)->gen >= 4) {
  3865. u32 dpll_md = 0;
  3866. if (crtc->config.pixel_multiplier > 1) {
  3867. dpll_md = (crtc->config.pixel_multiplier - 1)
  3868. << DPLL_MD_UDI_MULTIPLIER_SHIFT;
  3869. }
  3870. I915_WRITE(DPLL_MD(pipe), dpll_md);
  3871. } else {
  3872. /* The pixel multiplier can only be updated once the
  3873. * DPLL is enabled and the clocks are stable.
  3874. *
  3875. * So write it again.
  3876. */
  3877. I915_WRITE(DPLL(pipe), dpll);
  3878. }
  3879. }
  3880. static void i8xx_update_pll(struct intel_crtc *crtc,
  3881. struct drm_display_mode *adjusted_mode,
  3882. intel_clock_t *reduced_clock,
  3883. int num_connectors)
  3884. {
  3885. struct drm_device *dev = crtc->base.dev;
  3886. struct drm_i915_private *dev_priv = dev->dev_private;
  3887. struct intel_encoder *encoder;
  3888. int pipe = crtc->pipe;
  3889. u32 dpll;
  3890. struct dpll *clock = &crtc->config.dpll;
  3891. i9xx_update_pll_dividers(crtc, reduced_clock);
  3892. dpll = DPLL_VGA_MODE_DIS;
  3893. if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS)) {
  3894. dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
  3895. } else {
  3896. if (clock->p1 == 2)
  3897. dpll |= PLL_P1_DIVIDE_BY_TWO;
  3898. else
  3899. dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
  3900. if (clock->p2 == 4)
  3901. dpll |= PLL_P2_DIVIDE_BY_4;
  3902. }
  3903. if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
  3904. intel_panel_use_ssc(dev_priv) && num_connectors < 2)
  3905. dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
  3906. else
  3907. dpll |= PLL_REF_INPUT_DREFCLK;
  3908. dpll |= DPLL_VCO_ENABLE;
  3909. I915_WRITE(DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
  3910. POSTING_READ(DPLL(pipe));
  3911. udelay(150);
  3912. for_each_encoder_on_crtc(dev, &crtc->base, encoder)
  3913. if (encoder->pre_pll_enable)
  3914. encoder->pre_pll_enable(encoder);
  3915. I915_WRITE(DPLL(pipe), dpll);
  3916. /* Wait for the clocks to stabilize. */
  3917. POSTING_READ(DPLL(pipe));
  3918. udelay(150);
  3919. /* The pixel multiplier can only be updated once the
  3920. * DPLL is enabled and the clocks are stable.
  3921. *
  3922. * So write it again.
  3923. */
  3924. I915_WRITE(DPLL(pipe), dpll);
  3925. }
  3926. static void intel_set_pipe_timings(struct intel_crtc *intel_crtc,
  3927. struct drm_display_mode *mode,
  3928. struct drm_display_mode *adjusted_mode)
  3929. {
  3930. struct drm_device *dev = intel_crtc->base.dev;
  3931. struct drm_i915_private *dev_priv = dev->dev_private;
  3932. enum pipe pipe = intel_crtc->pipe;
  3933. enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
  3934. uint32_t vsyncshift, crtc_vtotal, crtc_vblank_end;
  3935. /* We need to be careful not to changed the adjusted mode, for otherwise
  3936. * the hw state checker will get angry at the mismatch. */
  3937. crtc_vtotal = adjusted_mode->crtc_vtotal;
  3938. crtc_vblank_end = adjusted_mode->crtc_vblank_end;
  3939. if (!IS_GEN2(dev) && adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
  3940. /* the chip adds 2 halflines automatically */
  3941. crtc_vtotal -= 1;
  3942. crtc_vblank_end -= 1;
  3943. vsyncshift = adjusted_mode->crtc_hsync_start
  3944. - adjusted_mode->crtc_htotal / 2;
  3945. } else {
  3946. vsyncshift = 0;
  3947. }
  3948. if (INTEL_INFO(dev)->gen > 3)
  3949. I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
  3950. I915_WRITE(HTOTAL(cpu_transcoder),
  3951. (adjusted_mode->crtc_hdisplay - 1) |
  3952. ((adjusted_mode->crtc_htotal - 1) << 16));
  3953. I915_WRITE(HBLANK(cpu_transcoder),
  3954. (adjusted_mode->crtc_hblank_start - 1) |
  3955. ((adjusted_mode->crtc_hblank_end - 1) << 16));
  3956. I915_WRITE(HSYNC(cpu_transcoder),
  3957. (adjusted_mode->crtc_hsync_start - 1) |
  3958. ((adjusted_mode->crtc_hsync_end - 1) << 16));
  3959. I915_WRITE(VTOTAL(cpu_transcoder),
  3960. (adjusted_mode->crtc_vdisplay - 1) |
  3961. ((crtc_vtotal - 1) << 16));
  3962. I915_WRITE(VBLANK(cpu_transcoder),
  3963. (adjusted_mode->crtc_vblank_start - 1) |
  3964. ((crtc_vblank_end - 1) << 16));
  3965. I915_WRITE(VSYNC(cpu_transcoder),
  3966. (adjusted_mode->crtc_vsync_start - 1) |
  3967. ((adjusted_mode->crtc_vsync_end - 1) << 16));
  3968. /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
  3969. * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
  3970. * documented on the DDI_FUNC_CTL register description, EDP Input Select
  3971. * bits. */
  3972. if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
  3973. (pipe == PIPE_B || pipe == PIPE_C))
  3974. I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
  3975. /* pipesrc controls the size that is scaled from, which should
  3976. * always be the user's requested size.
  3977. */
  3978. I915_WRITE(PIPESRC(pipe),
  3979. ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
  3980. }
  3981. static void intel_get_pipe_timings(struct intel_crtc *crtc,
  3982. struct intel_crtc_config *pipe_config)
  3983. {
  3984. struct drm_device *dev = crtc->base.dev;
  3985. struct drm_i915_private *dev_priv = dev->dev_private;
  3986. enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
  3987. uint32_t tmp;
  3988. tmp = I915_READ(HTOTAL(cpu_transcoder));
  3989. pipe_config->adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
  3990. pipe_config->adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
  3991. tmp = I915_READ(HBLANK(cpu_transcoder));
  3992. pipe_config->adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1;
  3993. pipe_config->adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1;
  3994. tmp = I915_READ(HSYNC(cpu_transcoder));
  3995. pipe_config->adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
  3996. pipe_config->adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
  3997. tmp = I915_READ(VTOTAL(cpu_transcoder));
  3998. pipe_config->adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
  3999. pipe_config->adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
  4000. tmp = I915_READ(VBLANK(cpu_transcoder));
  4001. pipe_config->adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1;
  4002. pipe_config->adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1;
  4003. tmp = I915_READ(VSYNC(cpu_transcoder));
  4004. pipe_config->adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
  4005. pipe_config->adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
  4006. if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) {
  4007. pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
  4008. pipe_config->adjusted_mode.crtc_vtotal += 1;
  4009. pipe_config->adjusted_mode.crtc_vblank_end += 1;
  4010. }
  4011. tmp = I915_READ(PIPESRC(crtc->pipe));
  4012. pipe_config->requested_mode.vdisplay = (tmp & 0xffff) + 1;
  4013. pipe_config->requested_mode.hdisplay = ((tmp >> 16) & 0xffff) + 1;
  4014. }
  4015. static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
  4016. {
  4017. struct drm_device *dev = intel_crtc->base.dev;
  4018. struct drm_i915_private *dev_priv = dev->dev_private;
  4019. uint32_t pipeconf;
  4020. pipeconf = I915_READ(PIPECONF(intel_crtc->pipe));
  4021. if (intel_crtc->pipe == 0 && INTEL_INFO(dev)->gen < 4) {
  4022. /* Enable pixel doubling when the dot clock is > 90% of the (display)
  4023. * core speed.
  4024. *
  4025. * XXX: No double-wide on 915GM pipe B. Is that the only reason for the
  4026. * pipe == 0 check?
  4027. */
  4028. if (intel_crtc->config.requested_mode.clock >
  4029. dev_priv->display.get_display_clock_speed(dev) * 9 / 10)
  4030. pipeconf |= PIPECONF_DOUBLE_WIDE;
  4031. else
  4032. pipeconf &= ~PIPECONF_DOUBLE_WIDE;
  4033. }
  4034. /* only g4x and later have fancy bpc/dither controls */
  4035. if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
  4036. pipeconf &= ~(PIPECONF_BPC_MASK |
  4037. PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_MASK);
  4038. /* Bspec claims that we can't use dithering for 30bpp pipes. */
  4039. if (intel_crtc->config.dither && intel_crtc->config.pipe_bpp != 30)
  4040. pipeconf |= PIPECONF_DITHER_EN |
  4041. PIPECONF_DITHER_TYPE_SP;
  4042. switch (intel_crtc->config.pipe_bpp) {
  4043. case 18:
  4044. pipeconf |= PIPECONF_6BPC;
  4045. break;
  4046. case 24:
  4047. pipeconf |= PIPECONF_8BPC;
  4048. break;
  4049. case 30:
  4050. pipeconf |= PIPECONF_10BPC;
  4051. break;
  4052. default:
  4053. /* Case prevented by intel_choose_pipe_bpp_dither. */
  4054. BUG();
  4055. }
  4056. }
  4057. if (HAS_PIPE_CXSR(dev)) {
  4058. if (intel_crtc->lowfreq_avail) {
  4059. DRM_DEBUG_KMS("enabling CxSR downclocking\n");
  4060. pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
  4061. } else {
  4062. DRM_DEBUG_KMS("disabling CxSR downclocking\n");
  4063. pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK;
  4064. }
  4065. }
  4066. pipeconf &= ~PIPECONF_INTERLACE_MASK;
  4067. if (!IS_GEN2(dev) &&
  4068. intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
  4069. pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
  4070. else
  4071. pipeconf |= PIPECONF_PROGRESSIVE;
  4072. if (IS_VALLEYVIEW(dev)) {
  4073. if (intel_crtc->config.limited_color_range)
  4074. pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
  4075. else
  4076. pipeconf &= ~PIPECONF_COLOR_RANGE_SELECT;
  4077. }
  4078. I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
  4079. POSTING_READ(PIPECONF(intel_crtc->pipe));
  4080. }
  4081. static int i9xx_crtc_mode_set(struct drm_crtc *crtc,
  4082. int x, int y,
  4083. struct drm_framebuffer *fb)
  4084. {
  4085. struct drm_device *dev = crtc->dev;
  4086. struct drm_i915_private *dev_priv = dev->dev_private;
  4087. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4088. struct drm_display_mode *adjusted_mode =
  4089. &intel_crtc->config.adjusted_mode;
  4090. struct drm_display_mode *mode = &intel_crtc->config.requested_mode;
  4091. int pipe = intel_crtc->pipe;
  4092. int plane = intel_crtc->plane;
  4093. int refclk, num_connectors = 0;
  4094. intel_clock_t clock, reduced_clock;
  4095. u32 dspcntr;
  4096. bool ok, has_reduced_clock = false;
  4097. bool is_lvds = false;
  4098. struct intel_encoder *encoder;
  4099. const intel_limit_t *limit;
  4100. int ret;
  4101. for_each_encoder_on_crtc(dev, crtc, encoder) {
  4102. switch (encoder->type) {
  4103. case INTEL_OUTPUT_LVDS:
  4104. is_lvds = true;
  4105. break;
  4106. }
  4107. num_connectors++;
  4108. }
  4109. refclk = i9xx_get_refclk(crtc, num_connectors);
  4110. /*
  4111. * Returns a set of divisors for the desired target clock with the given
  4112. * refclk, or FALSE. The returned values represent the clock equation:
  4113. * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
  4114. */
  4115. limit = intel_limit(crtc, refclk);
  4116. ok = dev_priv->display.find_dpll(limit, crtc, adjusted_mode->clock,
  4117. refclk, NULL, &clock);
  4118. if (!ok && !intel_crtc->config.clock_set) {
  4119. DRM_ERROR("Couldn't find PLL settings for mode!\n");
  4120. return -EINVAL;
  4121. }
  4122. /* Ensure that the cursor is valid for the new mode before changing... */
  4123. intel_crtc_update_cursor(crtc, true);
  4124. if (is_lvds && dev_priv->lvds_downclock_avail) {
  4125. /*
  4126. * Ensure we match the reduced clock's P to the target clock.
  4127. * If the clocks don't match, we can't switch the display clock
  4128. * by using the FP0/FP1. In such case we will disable the LVDS
  4129. * downclock feature.
  4130. */
  4131. has_reduced_clock =
  4132. dev_priv->display.find_dpll(limit, crtc,
  4133. dev_priv->lvds_downclock,
  4134. refclk, &clock,
  4135. &reduced_clock);
  4136. }
  4137. /* Compat-code for transition, will disappear. */
  4138. if (!intel_crtc->config.clock_set) {
  4139. intel_crtc->config.dpll.n = clock.n;
  4140. intel_crtc->config.dpll.m1 = clock.m1;
  4141. intel_crtc->config.dpll.m2 = clock.m2;
  4142. intel_crtc->config.dpll.p1 = clock.p1;
  4143. intel_crtc->config.dpll.p2 = clock.p2;
  4144. }
  4145. if (IS_GEN2(dev))
  4146. i8xx_update_pll(intel_crtc, adjusted_mode,
  4147. has_reduced_clock ? &reduced_clock : NULL,
  4148. num_connectors);
  4149. else if (IS_VALLEYVIEW(dev))
  4150. vlv_update_pll(intel_crtc);
  4151. else
  4152. i9xx_update_pll(intel_crtc,
  4153. has_reduced_clock ? &reduced_clock : NULL,
  4154. num_connectors);
  4155. /* Set up the display plane register */
  4156. dspcntr = DISPPLANE_GAMMA_ENABLE;
  4157. if (!IS_VALLEYVIEW(dev)) {
  4158. if (pipe == 0)
  4159. dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
  4160. else
  4161. dspcntr |= DISPPLANE_SEL_PIPE_B;
  4162. }
  4163. intel_set_pipe_timings(intel_crtc, mode, adjusted_mode);
  4164. /* pipesrc and dspsize control the size that is scaled from,
  4165. * which should always be the user's requested size.
  4166. */
  4167. I915_WRITE(DSPSIZE(plane),
  4168. ((mode->vdisplay - 1) << 16) |
  4169. (mode->hdisplay - 1));
  4170. I915_WRITE(DSPPOS(plane), 0);
  4171. i9xx_set_pipeconf(intel_crtc);
  4172. I915_WRITE(DSPCNTR(plane), dspcntr);
  4173. POSTING_READ(DSPCNTR(plane));
  4174. ret = intel_pipe_set_base(crtc, x, y, fb);
  4175. intel_update_watermarks(dev);
  4176. return ret;
  4177. }
  4178. static void i9xx_get_pfit_config(struct intel_crtc *crtc,
  4179. struct intel_crtc_config *pipe_config)
  4180. {
  4181. struct drm_device *dev = crtc->base.dev;
  4182. struct drm_i915_private *dev_priv = dev->dev_private;
  4183. uint32_t tmp;
  4184. tmp = I915_READ(PFIT_CONTROL);
  4185. if (INTEL_INFO(dev)->gen < 4) {
  4186. if (crtc->pipe != PIPE_B)
  4187. return;
  4188. /* gen2/3 store dither state in pfit control, needs to match */
  4189. pipe_config->gmch_pfit.control = tmp & PANEL_8TO6_DITHER_ENABLE;
  4190. } else {
  4191. if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
  4192. return;
  4193. }
  4194. if (!(tmp & PFIT_ENABLE))
  4195. return;
  4196. pipe_config->gmch_pfit.control = I915_READ(PFIT_CONTROL);
  4197. pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS);
  4198. if (INTEL_INFO(dev)->gen < 5)
  4199. pipe_config->gmch_pfit.lvds_border_bits =
  4200. I915_READ(LVDS) & LVDS_BORDER_ENABLE;
  4201. }
  4202. static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
  4203. struct intel_crtc_config *pipe_config)
  4204. {
  4205. struct drm_device *dev = crtc->base.dev;
  4206. struct drm_i915_private *dev_priv = dev->dev_private;
  4207. uint32_t tmp;
  4208. pipe_config->cpu_transcoder = crtc->pipe;
  4209. tmp = I915_READ(PIPECONF(crtc->pipe));
  4210. if (!(tmp & PIPECONF_ENABLE))
  4211. return false;
  4212. intel_get_pipe_timings(crtc, pipe_config);
  4213. i9xx_get_pfit_config(crtc, pipe_config);
  4214. return true;
  4215. }
  4216. static void ironlake_init_pch_refclk(struct drm_device *dev)
  4217. {
  4218. struct drm_i915_private *dev_priv = dev->dev_private;
  4219. struct drm_mode_config *mode_config = &dev->mode_config;
  4220. struct intel_encoder *encoder;
  4221. u32 val, final;
  4222. bool has_lvds = false;
  4223. bool has_cpu_edp = false;
  4224. bool has_panel = false;
  4225. bool has_ck505 = false;
  4226. bool can_ssc = false;
  4227. /* We need to take the global config into account */
  4228. list_for_each_entry(encoder, &mode_config->encoder_list,
  4229. base.head) {
  4230. switch (encoder->type) {
  4231. case INTEL_OUTPUT_LVDS:
  4232. has_panel = true;
  4233. has_lvds = true;
  4234. break;
  4235. case INTEL_OUTPUT_EDP:
  4236. has_panel = true;
  4237. if (enc_to_dig_port(&encoder->base)->port == PORT_A)
  4238. has_cpu_edp = true;
  4239. break;
  4240. }
  4241. }
  4242. if (HAS_PCH_IBX(dev)) {
  4243. has_ck505 = dev_priv->vbt.display_clock_mode;
  4244. can_ssc = has_ck505;
  4245. } else {
  4246. has_ck505 = false;
  4247. can_ssc = true;
  4248. }
  4249. DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d\n",
  4250. has_panel, has_lvds, has_ck505);
  4251. /* Ironlake: try to setup display ref clock before DPLL
  4252. * enabling. This is only under driver's control after
  4253. * PCH B stepping, previous chipset stepping should be
  4254. * ignoring this setting.
  4255. */
  4256. val = I915_READ(PCH_DREF_CONTROL);
  4257. /* As we must carefully and slowly disable/enable each source in turn,
  4258. * compute the final state we want first and check if we need to
  4259. * make any changes at all.
  4260. */
  4261. final = val;
  4262. final &= ~DREF_NONSPREAD_SOURCE_MASK;
  4263. if (has_ck505)
  4264. final |= DREF_NONSPREAD_CK505_ENABLE;
  4265. else
  4266. final |= DREF_NONSPREAD_SOURCE_ENABLE;
  4267. final &= ~DREF_SSC_SOURCE_MASK;
  4268. final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
  4269. final &= ~DREF_SSC1_ENABLE;
  4270. if (has_panel) {
  4271. final |= DREF_SSC_SOURCE_ENABLE;
  4272. if (intel_panel_use_ssc(dev_priv) && can_ssc)
  4273. final |= DREF_SSC1_ENABLE;
  4274. if (has_cpu_edp) {
  4275. if (intel_panel_use_ssc(dev_priv) && can_ssc)
  4276. final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
  4277. else
  4278. final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
  4279. } else
  4280. final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
  4281. } else {
  4282. final |= DREF_SSC_SOURCE_DISABLE;
  4283. final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
  4284. }
  4285. if (final == val)
  4286. return;
  4287. /* Always enable nonspread source */
  4288. val &= ~DREF_NONSPREAD_SOURCE_MASK;
  4289. if (has_ck505)
  4290. val |= DREF_NONSPREAD_CK505_ENABLE;
  4291. else
  4292. val |= DREF_NONSPREAD_SOURCE_ENABLE;
  4293. if (has_panel) {
  4294. val &= ~DREF_SSC_SOURCE_MASK;
  4295. val |= DREF_SSC_SOURCE_ENABLE;
  4296. /* SSC must be turned on before enabling the CPU output */
  4297. if (intel_panel_use_ssc(dev_priv) && can_ssc) {
  4298. DRM_DEBUG_KMS("Using SSC on panel\n");
  4299. val |= DREF_SSC1_ENABLE;
  4300. } else
  4301. val &= ~DREF_SSC1_ENABLE;
  4302. /* Get SSC going before enabling the outputs */
  4303. I915_WRITE(PCH_DREF_CONTROL, val);
  4304. POSTING_READ(PCH_DREF_CONTROL);
  4305. udelay(200);
  4306. val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
  4307. /* Enable CPU source on CPU attached eDP */
  4308. if (has_cpu_edp) {
  4309. if (intel_panel_use_ssc(dev_priv) && can_ssc) {
  4310. DRM_DEBUG_KMS("Using SSC on eDP\n");
  4311. val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
  4312. }
  4313. else
  4314. val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
  4315. } else
  4316. val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
  4317. I915_WRITE(PCH_DREF_CONTROL, val);
  4318. POSTING_READ(PCH_DREF_CONTROL);
  4319. udelay(200);
  4320. } else {
  4321. DRM_DEBUG_KMS("Disabling SSC entirely\n");
  4322. val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
  4323. /* Turn off CPU output */
  4324. val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
  4325. I915_WRITE(PCH_DREF_CONTROL, val);
  4326. POSTING_READ(PCH_DREF_CONTROL);
  4327. udelay(200);
  4328. /* Turn off the SSC source */
  4329. val &= ~DREF_SSC_SOURCE_MASK;
  4330. val |= DREF_SSC_SOURCE_DISABLE;
  4331. /* Turn off SSC1 */
  4332. val &= ~DREF_SSC1_ENABLE;
  4333. I915_WRITE(PCH_DREF_CONTROL, val);
  4334. POSTING_READ(PCH_DREF_CONTROL);
  4335. udelay(200);
  4336. }
  4337. BUG_ON(val != final);
  4338. }
  4339. /* Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O. */
  4340. static void lpt_init_pch_refclk(struct drm_device *dev)
  4341. {
  4342. struct drm_i915_private *dev_priv = dev->dev_private;
  4343. struct drm_mode_config *mode_config = &dev->mode_config;
  4344. struct intel_encoder *encoder;
  4345. bool has_vga = false;
  4346. bool is_sdv = false;
  4347. u32 tmp;
  4348. list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
  4349. switch (encoder->type) {
  4350. case INTEL_OUTPUT_ANALOG:
  4351. has_vga = true;
  4352. break;
  4353. }
  4354. }
  4355. if (!has_vga)
  4356. return;
  4357. mutex_lock(&dev_priv->dpio_lock);
  4358. /* XXX: Rip out SDV support once Haswell ships for real. */
  4359. if (IS_HASWELL(dev) && (dev->pci_device & 0xFF00) == 0x0C00)
  4360. is_sdv = true;
  4361. tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
  4362. tmp &= ~SBI_SSCCTL_DISABLE;
  4363. tmp |= SBI_SSCCTL_PATHALT;
  4364. intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
  4365. udelay(24);
  4366. tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
  4367. tmp &= ~SBI_SSCCTL_PATHALT;
  4368. intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
  4369. if (!is_sdv) {
  4370. tmp = I915_READ(SOUTH_CHICKEN2);
  4371. tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
  4372. I915_WRITE(SOUTH_CHICKEN2, tmp);
  4373. if (wait_for_atomic_us(I915_READ(SOUTH_CHICKEN2) &
  4374. FDI_MPHY_IOSFSB_RESET_STATUS, 100))
  4375. DRM_ERROR("FDI mPHY reset assert timeout\n");
  4376. tmp = I915_READ(SOUTH_CHICKEN2);
  4377. tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
  4378. I915_WRITE(SOUTH_CHICKEN2, tmp);
  4379. if (wait_for_atomic_us((I915_READ(SOUTH_CHICKEN2) &
  4380. FDI_MPHY_IOSFSB_RESET_STATUS) == 0,
  4381. 100))
  4382. DRM_ERROR("FDI mPHY reset de-assert timeout\n");
  4383. }
  4384. tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
  4385. tmp &= ~(0xFF << 24);
  4386. tmp |= (0x12 << 24);
  4387. intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
  4388. if (is_sdv) {
  4389. tmp = intel_sbi_read(dev_priv, 0x800C, SBI_MPHY);
  4390. tmp |= 0x7FFF;
  4391. intel_sbi_write(dev_priv, 0x800C, tmp, SBI_MPHY);
  4392. }
  4393. tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
  4394. tmp |= (1 << 11);
  4395. intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
  4396. tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
  4397. tmp |= (1 << 11);
  4398. intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
  4399. if (is_sdv) {
  4400. tmp = intel_sbi_read(dev_priv, 0x2038, SBI_MPHY);
  4401. tmp |= (0x3F << 24) | (0xF << 20) | (0xF << 16);
  4402. intel_sbi_write(dev_priv, 0x2038, tmp, SBI_MPHY);
  4403. tmp = intel_sbi_read(dev_priv, 0x2138, SBI_MPHY);
  4404. tmp |= (0x3F << 24) | (0xF << 20) | (0xF << 16);
  4405. intel_sbi_write(dev_priv, 0x2138, tmp, SBI_MPHY);
  4406. tmp = intel_sbi_read(dev_priv, 0x203C, SBI_MPHY);
  4407. tmp |= (0x3F << 8);
  4408. intel_sbi_write(dev_priv, 0x203C, tmp, SBI_MPHY);
  4409. tmp = intel_sbi_read(dev_priv, 0x213C, SBI_MPHY);
  4410. tmp |= (0x3F << 8);
  4411. intel_sbi_write(dev_priv, 0x213C, tmp, SBI_MPHY);
  4412. }
  4413. tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
  4414. tmp |= (1 << 24) | (1 << 21) | (1 << 18);
  4415. intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
  4416. tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
  4417. tmp |= (1 << 24) | (1 << 21) | (1 << 18);
  4418. intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
  4419. if (!is_sdv) {
  4420. tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
  4421. tmp &= ~(7 << 13);
  4422. tmp |= (5 << 13);
  4423. intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
  4424. tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
  4425. tmp &= ~(7 << 13);
  4426. tmp |= (5 << 13);
  4427. intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
  4428. }
  4429. tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
  4430. tmp &= ~0xFF;
  4431. tmp |= 0x1C;
  4432. intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
  4433. tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
  4434. tmp &= ~0xFF;
  4435. tmp |= 0x1C;
  4436. intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
  4437. tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
  4438. tmp &= ~(0xFF << 16);
  4439. tmp |= (0x1C << 16);
  4440. intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
  4441. tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
  4442. tmp &= ~(0xFF << 16);
  4443. tmp |= (0x1C << 16);
  4444. intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
  4445. if (!is_sdv) {
  4446. tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
  4447. tmp |= (1 << 27);
  4448. intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
  4449. tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
  4450. tmp |= (1 << 27);
  4451. intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
  4452. tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
  4453. tmp &= ~(0xF << 28);
  4454. tmp |= (4 << 28);
  4455. intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
  4456. tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
  4457. tmp &= ~(0xF << 28);
  4458. tmp |= (4 << 28);
  4459. intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
  4460. }
  4461. /* ULT uses SBI_GEN0, but ULT doesn't have VGA, so we don't care. */
  4462. tmp = intel_sbi_read(dev_priv, SBI_DBUFF0, SBI_ICLK);
  4463. tmp |= SBI_DBUFF0_ENABLE;
  4464. intel_sbi_write(dev_priv, SBI_DBUFF0, tmp, SBI_ICLK);
  4465. mutex_unlock(&dev_priv->dpio_lock);
  4466. }
  4467. /*
  4468. * Initialize reference clocks when the driver loads
  4469. */
  4470. void intel_init_pch_refclk(struct drm_device *dev)
  4471. {
  4472. if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
  4473. ironlake_init_pch_refclk(dev);
  4474. else if (HAS_PCH_LPT(dev))
  4475. lpt_init_pch_refclk(dev);
  4476. }
  4477. static int ironlake_get_refclk(struct drm_crtc *crtc)
  4478. {
  4479. struct drm_device *dev = crtc->dev;
  4480. struct drm_i915_private *dev_priv = dev->dev_private;
  4481. struct intel_encoder *encoder;
  4482. int num_connectors = 0;
  4483. bool is_lvds = false;
  4484. for_each_encoder_on_crtc(dev, crtc, encoder) {
  4485. switch (encoder->type) {
  4486. case INTEL_OUTPUT_LVDS:
  4487. is_lvds = true;
  4488. break;
  4489. }
  4490. num_connectors++;
  4491. }
  4492. if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
  4493. DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
  4494. dev_priv->vbt.lvds_ssc_freq);
  4495. return dev_priv->vbt.lvds_ssc_freq * 1000;
  4496. }
  4497. return 120000;
  4498. }
  4499. static void ironlake_set_pipeconf(struct drm_crtc *crtc)
  4500. {
  4501. struct drm_i915_private *dev_priv = crtc->dev->dev_private;
  4502. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4503. int pipe = intel_crtc->pipe;
  4504. uint32_t val;
  4505. val = I915_READ(PIPECONF(pipe));
  4506. val &= ~PIPECONF_BPC_MASK;
  4507. switch (intel_crtc->config.pipe_bpp) {
  4508. case 18:
  4509. val |= PIPECONF_6BPC;
  4510. break;
  4511. case 24:
  4512. val |= PIPECONF_8BPC;
  4513. break;
  4514. case 30:
  4515. val |= PIPECONF_10BPC;
  4516. break;
  4517. case 36:
  4518. val |= PIPECONF_12BPC;
  4519. break;
  4520. default:
  4521. /* Case prevented by intel_choose_pipe_bpp_dither. */
  4522. BUG();
  4523. }
  4524. val &= ~(PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_MASK);
  4525. if (intel_crtc->config.dither)
  4526. val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
  4527. val &= ~PIPECONF_INTERLACE_MASK;
  4528. if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
  4529. val |= PIPECONF_INTERLACED_ILK;
  4530. else
  4531. val |= PIPECONF_PROGRESSIVE;
  4532. if (intel_crtc->config.limited_color_range)
  4533. val |= PIPECONF_COLOR_RANGE_SELECT;
  4534. else
  4535. val &= ~PIPECONF_COLOR_RANGE_SELECT;
  4536. I915_WRITE(PIPECONF(pipe), val);
  4537. POSTING_READ(PIPECONF(pipe));
  4538. }
  4539. /*
  4540. * Set up the pipe CSC unit.
  4541. *
  4542. * Currently only full range RGB to limited range RGB conversion
  4543. * is supported, but eventually this should handle various
  4544. * RGB<->YCbCr scenarios as well.
  4545. */
  4546. static void intel_set_pipe_csc(struct drm_crtc *crtc)
  4547. {
  4548. struct drm_device *dev = crtc->dev;
  4549. struct drm_i915_private *dev_priv = dev->dev_private;
  4550. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4551. int pipe = intel_crtc->pipe;
  4552. uint16_t coeff = 0x7800; /* 1.0 */
  4553. /*
  4554. * TODO: Check what kind of values actually come out of the pipe
  4555. * with these coeff/postoff values and adjust to get the best
  4556. * accuracy. Perhaps we even need to take the bpc value into
  4557. * consideration.
  4558. */
  4559. if (intel_crtc->config.limited_color_range)
  4560. coeff = ((235 - 16) * (1 << 12) / 255) & 0xff8; /* 0.xxx... */
  4561. /*
  4562. * GY/GU and RY/RU should be the other way around according
  4563. * to BSpec, but reality doesn't agree. Just set them up in
  4564. * a way that results in the correct picture.
  4565. */
  4566. I915_WRITE(PIPE_CSC_COEFF_RY_GY(pipe), coeff << 16);
  4567. I915_WRITE(PIPE_CSC_COEFF_BY(pipe), 0);
  4568. I915_WRITE(PIPE_CSC_COEFF_RU_GU(pipe), coeff);
  4569. I915_WRITE(PIPE_CSC_COEFF_BU(pipe), 0);
  4570. I915_WRITE(PIPE_CSC_COEFF_RV_GV(pipe), 0);
  4571. I915_WRITE(PIPE_CSC_COEFF_BV(pipe), coeff << 16);
  4572. I915_WRITE(PIPE_CSC_PREOFF_HI(pipe), 0);
  4573. I915_WRITE(PIPE_CSC_PREOFF_ME(pipe), 0);
  4574. I915_WRITE(PIPE_CSC_PREOFF_LO(pipe), 0);
  4575. if (INTEL_INFO(dev)->gen > 6) {
  4576. uint16_t postoff = 0;
  4577. if (intel_crtc->config.limited_color_range)
  4578. postoff = (16 * (1 << 13) / 255) & 0x1fff;
  4579. I915_WRITE(PIPE_CSC_POSTOFF_HI(pipe), postoff);
  4580. I915_WRITE(PIPE_CSC_POSTOFF_ME(pipe), postoff);
  4581. I915_WRITE(PIPE_CSC_POSTOFF_LO(pipe), postoff);
  4582. I915_WRITE(PIPE_CSC_MODE(pipe), 0);
  4583. } else {
  4584. uint32_t mode = CSC_MODE_YUV_TO_RGB;
  4585. if (intel_crtc->config.limited_color_range)
  4586. mode |= CSC_BLACK_SCREEN_OFFSET;
  4587. I915_WRITE(PIPE_CSC_MODE(pipe), mode);
  4588. }
  4589. }
  4590. static void haswell_set_pipeconf(struct drm_crtc *crtc)
  4591. {
  4592. struct drm_i915_private *dev_priv = crtc->dev->dev_private;
  4593. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4594. enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
  4595. uint32_t val;
  4596. val = I915_READ(PIPECONF(cpu_transcoder));
  4597. val &= ~(PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_MASK);
  4598. if (intel_crtc->config.dither)
  4599. val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
  4600. val &= ~PIPECONF_INTERLACE_MASK_HSW;
  4601. if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
  4602. val |= PIPECONF_INTERLACED_ILK;
  4603. else
  4604. val |= PIPECONF_PROGRESSIVE;
  4605. I915_WRITE(PIPECONF(cpu_transcoder), val);
  4606. POSTING_READ(PIPECONF(cpu_transcoder));
  4607. }
  4608. static bool ironlake_compute_clocks(struct drm_crtc *crtc,
  4609. struct drm_display_mode *adjusted_mode,
  4610. intel_clock_t *clock,
  4611. bool *has_reduced_clock,
  4612. intel_clock_t *reduced_clock)
  4613. {
  4614. struct drm_device *dev = crtc->dev;
  4615. struct drm_i915_private *dev_priv = dev->dev_private;
  4616. struct intel_encoder *intel_encoder;
  4617. int refclk;
  4618. const intel_limit_t *limit;
  4619. bool ret, is_lvds = false;
  4620. for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
  4621. switch (intel_encoder->type) {
  4622. case INTEL_OUTPUT_LVDS:
  4623. is_lvds = true;
  4624. break;
  4625. }
  4626. }
  4627. refclk = ironlake_get_refclk(crtc);
  4628. /*
  4629. * Returns a set of divisors for the desired target clock with the given
  4630. * refclk, or FALSE. The returned values represent the clock equation:
  4631. * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
  4632. */
  4633. limit = intel_limit(crtc, refclk);
  4634. ret = dev_priv->display.find_dpll(limit, crtc, adjusted_mode->clock,
  4635. refclk, NULL, clock);
  4636. if (!ret)
  4637. return false;
  4638. if (is_lvds && dev_priv->lvds_downclock_avail) {
  4639. /*
  4640. * Ensure we match the reduced clock's P to the target clock.
  4641. * If the clocks don't match, we can't switch the display clock
  4642. * by using the FP0/FP1. In such case we will disable the LVDS
  4643. * downclock feature.
  4644. */
  4645. *has_reduced_clock =
  4646. dev_priv->display.find_dpll(limit, crtc,
  4647. dev_priv->lvds_downclock,
  4648. refclk, clock,
  4649. reduced_clock);
  4650. }
  4651. return true;
  4652. }
  4653. static void cpt_enable_fdi_bc_bifurcation(struct drm_device *dev)
  4654. {
  4655. struct drm_i915_private *dev_priv = dev->dev_private;
  4656. uint32_t temp;
  4657. temp = I915_READ(SOUTH_CHICKEN1);
  4658. if (temp & FDI_BC_BIFURCATION_SELECT)
  4659. return;
  4660. WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
  4661. WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
  4662. temp |= FDI_BC_BIFURCATION_SELECT;
  4663. DRM_DEBUG_KMS("enabling fdi C rx\n");
  4664. I915_WRITE(SOUTH_CHICKEN1, temp);
  4665. POSTING_READ(SOUTH_CHICKEN1);
  4666. }
  4667. static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc *intel_crtc)
  4668. {
  4669. struct drm_device *dev = intel_crtc->base.dev;
  4670. struct drm_i915_private *dev_priv = dev->dev_private;
  4671. switch (intel_crtc->pipe) {
  4672. case PIPE_A:
  4673. break;
  4674. case PIPE_B:
  4675. if (intel_crtc->config.fdi_lanes > 2)
  4676. WARN_ON(I915_READ(SOUTH_CHICKEN1) & FDI_BC_BIFURCATION_SELECT);
  4677. else
  4678. cpt_enable_fdi_bc_bifurcation(dev);
  4679. break;
  4680. case PIPE_C:
  4681. cpt_enable_fdi_bc_bifurcation(dev);
  4682. break;
  4683. default:
  4684. BUG();
  4685. }
  4686. }
  4687. int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
  4688. {
  4689. /*
  4690. * Account for spread spectrum to avoid
  4691. * oversubscribing the link. Max center spread
  4692. * is 2.5%; use 5% for safety's sake.
  4693. */
  4694. u32 bps = target_clock * bpp * 21 / 20;
  4695. return bps / (link_bw * 8) + 1;
  4696. }
  4697. static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
  4698. {
  4699. return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
  4700. }
  4701. static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
  4702. u32 *fp,
  4703. intel_clock_t *reduced_clock, u32 *fp2)
  4704. {
  4705. struct drm_crtc *crtc = &intel_crtc->base;
  4706. struct drm_device *dev = crtc->dev;
  4707. struct drm_i915_private *dev_priv = dev->dev_private;
  4708. struct intel_encoder *intel_encoder;
  4709. uint32_t dpll;
  4710. int factor, num_connectors = 0;
  4711. bool is_lvds = false, is_sdvo = false;
  4712. for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
  4713. switch (intel_encoder->type) {
  4714. case INTEL_OUTPUT_LVDS:
  4715. is_lvds = true;
  4716. break;
  4717. case INTEL_OUTPUT_SDVO:
  4718. case INTEL_OUTPUT_HDMI:
  4719. is_sdvo = true;
  4720. break;
  4721. }
  4722. num_connectors++;
  4723. }
  4724. /* Enable autotuning of the PLL clock (if permissible) */
  4725. factor = 21;
  4726. if (is_lvds) {
  4727. if ((intel_panel_use_ssc(dev_priv) &&
  4728. dev_priv->vbt.lvds_ssc_freq == 100) ||
  4729. (HAS_PCH_IBX(dev) && intel_is_dual_link_lvds(dev)))
  4730. factor = 25;
  4731. } else if (intel_crtc->config.sdvo_tv_clock)
  4732. factor = 20;
  4733. if (ironlake_needs_fb_cb_tune(&intel_crtc->config.dpll, factor))
  4734. *fp |= FP_CB_TUNE;
  4735. if (fp2 && (reduced_clock->m < factor * reduced_clock->n))
  4736. *fp2 |= FP_CB_TUNE;
  4737. dpll = 0;
  4738. if (is_lvds)
  4739. dpll |= DPLLB_MODE_LVDS;
  4740. else
  4741. dpll |= DPLLB_MODE_DAC_SERIAL;
  4742. if (intel_crtc->config.pixel_multiplier > 1) {
  4743. dpll |= (intel_crtc->config.pixel_multiplier - 1)
  4744. << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
  4745. }
  4746. if (is_sdvo)
  4747. dpll |= DPLL_DVO_HIGH_SPEED;
  4748. if (intel_crtc->config.has_dp_encoder)
  4749. dpll |= DPLL_DVO_HIGH_SPEED;
  4750. /* compute bitmask from p1 value */
  4751. dpll |= (1 << (intel_crtc->config.dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
  4752. /* also FPA1 */
  4753. dpll |= (1 << (intel_crtc->config.dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
  4754. switch (intel_crtc->config.dpll.p2) {
  4755. case 5:
  4756. dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
  4757. break;
  4758. case 7:
  4759. dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
  4760. break;
  4761. case 10:
  4762. dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
  4763. break;
  4764. case 14:
  4765. dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
  4766. break;
  4767. }
  4768. if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
  4769. dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
  4770. else
  4771. dpll |= PLL_REF_INPUT_DREFCLK;
  4772. return dpll;
  4773. }
  4774. static int ironlake_crtc_mode_set(struct drm_crtc *crtc,
  4775. int x, int y,
  4776. struct drm_framebuffer *fb)
  4777. {
  4778. struct drm_device *dev = crtc->dev;
  4779. struct drm_i915_private *dev_priv = dev->dev_private;
  4780. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4781. struct drm_display_mode *adjusted_mode =
  4782. &intel_crtc->config.adjusted_mode;
  4783. struct drm_display_mode *mode = &intel_crtc->config.requested_mode;
  4784. int pipe = intel_crtc->pipe;
  4785. int plane = intel_crtc->plane;
  4786. int num_connectors = 0;
  4787. intel_clock_t clock, reduced_clock;
  4788. u32 dpll = 0, fp = 0, fp2 = 0;
  4789. bool ok, has_reduced_clock = false;
  4790. bool is_lvds = false;
  4791. struct intel_encoder *encoder;
  4792. int ret;
  4793. for_each_encoder_on_crtc(dev, crtc, encoder) {
  4794. switch (encoder->type) {
  4795. case INTEL_OUTPUT_LVDS:
  4796. is_lvds = true;
  4797. break;
  4798. }
  4799. num_connectors++;
  4800. }
  4801. WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
  4802. "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
  4803. ok = ironlake_compute_clocks(crtc, adjusted_mode, &clock,
  4804. &has_reduced_clock, &reduced_clock);
  4805. if (!ok && !intel_crtc->config.clock_set) {
  4806. DRM_ERROR("Couldn't find PLL settings for mode!\n");
  4807. return -EINVAL;
  4808. }
  4809. /* Compat-code for transition, will disappear. */
  4810. if (!intel_crtc->config.clock_set) {
  4811. intel_crtc->config.dpll.n = clock.n;
  4812. intel_crtc->config.dpll.m1 = clock.m1;
  4813. intel_crtc->config.dpll.m2 = clock.m2;
  4814. intel_crtc->config.dpll.p1 = clock.p1;
  4815. intel_crtc->config.dpll.p2 = clock.p2;
  4816. }
  4817. /* Ensure that the cursor is valid for the new mode before changing... */
  4818. intel_crtc_update_cursor(crtc, true);
  4819. /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
  4820. if (intel_crtc->config.has_pch_encoder) {
  4821. struct intel_pch_pll *pll;
  4822. fp = i9xx_dpll_compute_fp(&intel_crtc->config.dpll);
  4823. if (has_reduced_clock)
  4824. fp2 = i9xx_dpll_compute_fp(&reduced_clock);
  4825. dpll = ironlake_compute_dpll(intel_crtc,
  4826. &fp, &reduced_clock,
  4827. has_reduced_clock ? &fp2 : NULL);
  4828. pll = intel_get_pch_pll(intel_crtc, dpll, fp);
  4829. if (pll == NULL) {
  4830. DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
  4831. pipe_name(pipe));
  4832. return -EINVAL;
  4833. }
  4834. } else
  4835. intel_put_pch_pll(intel_crtc);
  4836. if (intel_crtc->config.has_dp_encoder)
  4837. intel_dp_set_m_n(intel_crtc);
  4838. for_each_encoder_on_crtc(dev, crtc, encoder)
  4839. if (encoder->pre_pll_enable)
  4840. encoder->pre_pll_enable(encoder);
  4841. if (intel_crtc->pch_pll) {
  4842. I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
  4843. /* Wait for the clocks to stabilize. */
  4844. POSTING_READ(intel_crtc->pch_pll->pll_reg);
  4845. udelay(150);
  4846. /* The pixel multiplier can only be updated once the
  4847. * DPLL is enabled and the clocks are stable.
  4848. *
  4849. * So write it again.
  4850. */
  4851. I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
  4852. }
  4853. intel_crtc->lowfreq_avail = false;
  4854. if (intel_crtc->pch_pll) {
  4855. if (is_lvds && has_reduced_clock && i915_powersave) {
  4856. I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp2);
  4857. intel_crtc->lowfreq_avail = true;
  4858. } else {
  4859. I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp);
  4860. }
  4861. }
  4862. intel_set_pipe_timings(intel_crtc, mode, adjusted_mode);
  4863. if (intel_crtc->config.has_pch_encoder) {
  4864. intel_cpu_transcoder_set_m_n(intel_crtc,
  4865. &intel_crtc->config.fdi_m_n);
  4866. }
  4867. if (IS_IVYBRIDGE(dev))
  4868. ivybridge_update_fdi_bc_bifurcation(intel_crtc);
  4869. ironlake_set_pipeconf(crtc);
  4870. /* Set up the display plane register */
  4871. I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE);
  4872. POSTING_READ(DSPCNTR(plane));
  4873. ret = intel_pipe_set_base(crtc, x, y, fb);
  4874. intel_update_watermarks(dev);
  4875. return ret;
  4876. }
  4877. static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc,
  4878. struct intel_crtc_config *pipe_config)
  4879. {
  4880. struct drm_device *dev = crtc->base.dev;
  4881. struct drm_i915_private *dev_priv = dev->dev_private;
  4882. enum transcoder transcoder = pipe_config->cpu_transcoder;
  4883. pipe_config->fdi_m_n.link_m = I915_READ(PIPE_LINK_M1(transcoder));
  4884. pipe_config->fdi_m_n.link_n = I915_READ(PIPE_LINK_N1(transcoder));
  4885. pipe_config->fdi_m_n.gmch_m = I915_READ(PIPE_DATA_M1(transcoder))
  4886. & ~TU_SIZE_MASK;
  4887. pipe_config->fdi_m_n.gmch_n = I915_READ(PIPE_DATA_N1(transcoder));
  4888. pipe_config->fdi_m_n.tu = ((I915_READ(PIPE_DATA_M1(transcoder))
  4889. & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
  4890. }
  4891. static void ironlake_get_pfit_config(struct intel_crtc *crtc,
  4892. struct intel_crtc_config *pipe_config)
  4893. {
  4894. struct drm_device *dev = crtc->base.dev;
  4895. struct drm_i915_private *dev_priv = dev->dev_private;
  4896. uint32_t tmp;
  4897. tmp = I915_READ(PF_CTL(crtc->pipe));
  4898. if (tmp & PF_ENABLE) {
  4899. pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe));
  4900. pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe));
  4901. }
  4902. }
  4903. static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
  4904. struct intel_crtc_config *pipe_config)
  4905. {
  4906. struct drm_device *dev = crtc->base.dev;
  4907. struct drm_i915_private *dev_priv = dev->dev_private;
  4908. uint32_t tmp;
  4909. pipe_config->cpu_transcoder = crtc->pipe;
  4910. tmp = I915_READ(PIPECONF(crtc->pipe));
  4911. if (!(tmp & PIPECONF_ENABLE))
  4912. return false;
  4913. if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
  4914. pipe_config->has_pch_encoder = true;
  4915. tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
  4916. pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
  4917. FDI_DP_PORT_WIDTH_SHIFT) + 1;
  4918. ironlake_get_fdi_m_n_config(crtc, pipe_config);
  4919. }
  4920. intel_get_pipe_timings(crtc, pipe_config);
  4921. ironlake_get_pfit_config(crtc, pipe_config);
  4922. return true;
  4923. }
  4924. static void haswell_modeset_global_resources(struct drm_device *dev)
  4925. {
  4926. bool enable = false;
  4927. struct intel_crtc *crtc;
  4928. list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head) {
  4929. if (!crtc->base.enabled)
  4930. continue;
  4931. if (crtc->pipe != PIPE_A || crtc->config.pch_pfit.size ||
  4932. crtc->config.cpu_transcoder != TRANSCODER_EDP)
  4933. enable = true;
  4934. }
  4935. intel_set_power_well(dev, enable);
  4936. }
  4937. static int haswell_crtc_mode_set(struct drm_crtc *crtc,
  4938. int x, int y,
  4939. struct drm_framebuffer *fb)
  4940. {
  4941. struct drm_device *dev = crtc->dev;
  4942. struct drm_i915_private *dev_priv = dev->dev_private;
  4943. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4944. struct drm_display_mode *adjusted_mode =
  4945. &intel_crtc->config.adjusted_mode;
  4946. struct drm_display_mode *mode = &intel_crtc->config.requested_mode;
  4947. int pipe = intel_crtc->pipe;
  4948. int plane = intel_crtc->plane;
  4949. int num_connectors = 0;
  4950. bool is_cpu_edp = false;
  4951. struct intel_encoder *encoder;
  4952. int ret;
  4953. for_each_encoder_on_crtc(dev, crtc, encoder) {
  4954. switch (encoder->type) {
  4955. case INTEL_OUTPUT_EDP:
  4956. if (enc_to_dig_port(&encoder->base)->port == PORT_A)
  4957. is_cpu_edp = true;
  4958. break;
  4959. }
  4960. num_connectors++;
  4961. }
  4962. WARN(num_connectors != 1, "%d connectors attached to pipe %c\n",
  4963. num_connectors, pipe_name(pipe));
  4964. if (!intel_ddi_pll_mode_set(crtc, adjusted_mode->clock))
  4965. return -EINVAL;
  4966. /* Ensure that the cursor is valid for the new mode before changing... */
  4967. intel_crtc_update_cursor(crtc, true);
  4968. if (intel_crtc->config.has_dp_encoder)
  4969. intel_dp_set_m_n(intel_crtc);
  4970. intel_crtc->lowfreq_avail = false;
  4971. intel_set_pipe_timings(intel_crtc, mode, adjusted_mode);
  4972. if (intel_crtc->config.has_pch_encoder) {
  4973. intel_cpu_transcoder_set_m_n(intel_crtc,
  4974. &intel_crtc->config.fdi_m_n);
  4975. }
  4976. haswell_set_pipeconf(crtc);
  4977. intel_set_pipe_csc(crtc);
  4978. /* Set up the display plane register */
  4979. I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE | DISPPLANE_PIPE_CSC_ENABLE);
  4980. POSTING_READ(DSPCNTR(plane));
  4981. ret = intel_pipe_set_base(crtc, x, y, fb);
  4982. intel_update_watermarks(dev);
  4983. return ret;
  4984. }
  4985. static bool haswell_get_pipe_config(struct intel_crtc *crtc,
  4986. struct intel_crtc_config *pipe_config)
  4987. {
  4988. struct drm_device *dev = crtc->base.dev;
  4989. struct drm_i915_private *dev_priv = dev->dev_private;
  4990. enum intel_display_power_domain pfit_domain;
  4991. uint32_t tmp;
  4992. pipe_config->cpu_transcoder = crtc->pipe;
  4993. tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
  4994. if (tmp & TRANS_DDI_FUNC_ENABLE) {
  4995. enum pipe trans_edp_pipe;
  4996. switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
  4997. default:
  4998. WARN(1, "unknown pipe linked to edp transcoder\n");
  4999. case TRANS_DDI_EDP_INPUT_A_ONOFF:
  5000. case TRANS_DDI_EDP_INPUT_A_ON:
  5001. trans_edp_pipe = PIPE_A;
  5002. break;
  5003. case TRANS_DDI_EDP_INPUT_B_ONOFF:
  5004. trans_edp_pipe = PIPE_B;
  5005. break;
  5006. case TRANS_DDI_EDP_INPUT_C_ONOFF:
  5007. trans_edp_pipe = PIPE_C;
  5008. break;
  5009. }
  5010. if (trans_edp_pipe == crtc->pipe)
  5011. pipe_config->cpu_transcoder = TRANSCODER_EDP;
  5012. }
  5013. if (!intel_display_power_enabled(dev,
  5014. POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder)))
  5015. return false;
  5016. tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder));
  5017. if (!(tmp & PIPECONF_ENABLE))
  5018. return false;
  5019. /*
  5020. * Haswell has only FDI/PCH transcoder A. It is which is connected to
  5021. * DDI E. So just check whether this pipe is wired to DDI E and whether
  5022. * the PCH transcoder is on.
  5023. */
  5024. tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder));
  5025. if ((tmp & TRANS_DDI_PORT_MASK) == TRANS_DDI_SELECT_PORT(PORT_E) &&
  5026. I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) {
  5027. pipe_config->has_pch_encoder = true;
  5028. tmp = I915_READ(FDI_RX_CTL(PIPE_A));
  5029. pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
  5030. FDI_DP_PORT_WIDTH_SHIFT) + 1;
  5031. ironlake_get_fdi_m_n_config(crtc, pipe_config);
  5032. }
  5033. intel_get_pipe_timings(crtc, pipe_config);
  5034. pfit_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
  5035. if (intel_display_power_enabled(dev, pfit_domain))
  5036. ironlake_get_pfit_config(crtc, pipe_config);
  5037. pipe_config->ips_enabled = hsw_crtc_supports_ips(crtc) &&
  5038. (I915_READ(IPS_CTL) & IPS_ENABLE);
  5039. return true;
  5040. }
  5041. static int intel_crtc_mode_set(struct drm_crtc *crtc,
  5042. int x, int y,
  5043. struct drm_framebuffer *fb)
  5044. {
  5045. struct drm_device *dev = crtc->dev;
  5046. struct drm_i915_private *dev_priv = dev->dev_private;
  5047. struct drm_encoder_helper_funcs *encoder_funcs;
  5048. struct intel_encoder *encoder;
  5049. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5050. struct drm_display_mode *adjusted_mode =
  5051. &intel_crtc->config.adjusted_mode;
  5052. struct drm_display_mode *mode = &intel_crtc->config.requested_mode;
  5053. int pipe = intel_crtc->pipe;
  5054. int ret;
  5055. drm_vblank_pre_modeset(dev, pipe);
  5056. ret = dev_priv->display.crtc_mode_set(crtc, x, y, fb);
  5057. drm_vblank_post_modeset(dev, pipe);
  5058. if (ret != 0)
  5059. return ret;
  5060. for_each_encoder_on_crtc(dev, crtc, encoder) {
  5061. DRM_DEBUG_KMS("[ENCODER:%d:%s] set [MODE:%d:%s]\n",
  5062. encoder->base.base.id,
  5063. drm_get_encoder_name(&encoder->base),
  5064. mode->base.id, mode->name);
  5065. if (encoder->mode_set) {
  5066. encoder->mode_set(encoder);
  5067. } else {
  5068. encoder_funcs = encoder->base.helper_private;
  5069. encoder_funcs->mode_set(&encoder->base, mode, adjusted_mode);
  5070. }
  5071. }
  5072. return 0;
  5073. }
  5074. static bool intel_eld_uptodate(struct drm_connector *connector,
  5075. int reg_eldv, uint32_t bits_eldv,
  5076. int reg_elda, uint32_t bits_elda,
  5077. int reg_edid)
  5078. {
  5079. struct drm_i915_private *dev_priv = connector->dev->dev_private;
  5080. uint8_t *eld = connector->eld;
  5081. uint32_t i;
  5082. i = I915_READ(reg_eldv);
  5083. i &= bits_eldv;
  5084. if (!eld[0])
  5085. return !i;
  5086. if (!i)
  5087. return false;
  5088. i = I915_READ(reg_elda);
  5089. i &= ~bits_elda;
  5090. I915_WRITE(reg_elda, i);
  5091. for (i = 0; i < eld[2]; i++)
  5092. if (I915_READ(reg_edid) != *((uint32_t *)eld + i))
  5093. return false;
  5094. return true;
  5095. }
  5096. static void g4x_write_eld(struct drm_connector *connector,
  5097. struct drm_crtc *crtc)
  5098. {
  5099. struct drm_i915_private *dev_priv = connector->dev->dev_private;
  5100. uint8_t *eld = connector->eld;
  5101. uint32_t eldv;
  5102. uint32_t len;
  5103. uint32_t i;
  5104. i = I915_READ(G4X_AUD_VID_DID);
  5105. if (i == INTEL_AUDIO_DEVBLC || i == INTEL_AUDIO_DEVCL)
  5106. eldv = G4X_ELDV_DEVCL_DEVBLC;
  5107. else
  5108. eldv = G4X_ELDV_DEVCTG;
  5109. if (intel_eld_uptodate(connector,
  5110. G4X_AUD_CNTL_ST, eldv,
  5111. G4X_AUD_CNTL_ST, G4X_ELD_ADDR,
  5112. G4X_HDMIW_HDMIEDID))
  5113. return;
  5114. i = I915_READ(G4X_AUD_CNTL_ST);
  5115. i &= ~(eldv | G4X_ELD_ADDR);
  5116. len = (i >> 9) & 0x1f; /* ELD buffer size */
  5117. I915_WRITE(G4X_AUD_CNTL_ST, i);
  5118. if (!eld[0])
  5119. return;
  5120. len = min_t(uint8_t, eld[2], len);
  5121. DRM_DEBUG_DRIVER("ELD size %d\n", len);
  5122. for (i = 0; i < len; i++)
  5123. I915_WRITE(G4X_HDMIW_HDMIEDID, *((uint32_t *)eld + i));
  5124. i = I915_READ(G4X_AUD_CNTL_ST);
  5125. i |= eldv;
  5126. I915_WRITE(G4X_AUD_CNTL_ST, i);
  5127. }
  5128. static void haswell_write_eld(struct drm_connector *connector,
  5129. struct drm_crtc *crtc)
  5130. {
  5131. struct drm_i915_private *dev_priv = connector->dev->dev_private;
  5132. uint8_t *eld = connector->eld;
  5133. struct drm_device *dev = crtc->dev;
  5134. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5135. uint32_t eldv;
  5136. uint32_t i;
  5137. int len;
  5138. int pipe = to_intel_crtc(crtc)->pipe;
  5139. int tmp;
  5140. int hdmiw_hdmiedid = HSW_AUD_EDID_DATA(pipe);
  5141. int aud_cntl_st = HSW_AUD_DIP_ELD_CTRL(pipe);
  5142. int aud_config = HSW_AUD_CFG(pipe);
  5143. int aud_cntrl_st2 = HSW_AUD_PIN_ELD_CP_VLD;
  5144. DRM_DEBUG_DRIVER("HDMI: Haswell Audio initialize....\n");
  5145. /* Audio output enable */
  5146. DRM_DEBUG_DRIVER("HDMI audio: enable codec\n");
  5147. tmp = I915_READ(aud_cntrl_st2);
  5148. tmp |= (AUDIO_OUTPUT_ENABLE_A << (pipe * 4));
  5149. I915_WRITE(aud_cntrl_st2, tmp);
  5150. /* Wait for 1 vertical blank */
  5151. intel_wait_for_vblank(dev, pipe);
  5152. /* Set ELD valid state */
  5153. tmp = I915_READ(aud_cntrl_st2);
  5154. DRM_DEBUG_DRIVER("HDMI audio: pin eld vld status=0x%8x\n", tmp);
  5155. tmp |= (AUDIO_ELD_VALID_A << (pipe * 4));
  5156. I915_WRITE(aud_cntrl_st2, tmp);
  5157. tmp = I915_READ(aud_cntrl_st2);
  5158. DRM_DEBUG_DRIVER("HDMI audio: eld vld status=0x%8x\n", tmp);
  5159. /* Enable HDMI mode */
  5160. tmp = I915_READ(aud_config);
  5161. DRM_DEBUG_DRIVER("HDMI audio: audio conf: 0x%8x\n", tmp);
  5162. /* clear N_programing_enable and N_value_index */
  5163. tmp &= ~(AUD_CONFIG_N_VALUE_INDEX | AUD_CONFIG_N_PROG_ENABLE);
  5164. I915_WRITE(aud_config, tmp);
  5165. DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
  5166. eldv = AUDIO_ELD_VALID_A << (pipe * 4);
  5167. intel_crtc->eld_vld = true;
  5168. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
  5169. DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
  5170. eld[5] |= (1 << 2); /* Conn_Type, 0x1 = DisplayPort */
  5171. I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
  5172. } else
  5173. I915_WRITE(aud_config, 0);
  5174. if (intel_eld_uptodate(connector,
  5175. aud_cntrl_st2, eldv,
  5176. aud_cntl_st, IBX_ELD_ADDRESS,
  5177. hdmiw_hdmiedid))
  5178. return;
  5179. i = I915_READ(aud_cntrl_st2);
  5180. i &= ~eldv;
  5181. I915_WRITE(aud_cntrl_st2, i);
  5182. if (!eld[0])
  5183. return;
  5184. i = I915_READ(aud_cntl_st);
  5185. i &= ~IBX_ELD_ADDRESS;
  5186. I915_WRITE(aud_cntl_st, i);
  5187. i = (i >> 29) & DIP_PORT_SEL_MASK; /* DIP_Port_Select, 0x1 = PortB */
  5188. DRM_DEBUG_DRIVER("port num:%d\n", i);
  5189. len = min_t(uint8_t, eld[2], 21); /* 84 bytes of hw ELD buffer */
  5190. DRM_DEBUG_DRIVER("ELD size %d\n", len);
  5191. for (i = 0; i < len; i++)
  5192. I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
  5193. i = I915_READ(aud_cntrl_st2);
  5194. i |= eldv;
  5195. I915_WRITE(aud_cntrl_st2, i);
  5196. }
  5197. static void ironlake_write_eld(struct drm_connector *connector,
  5198. struct drm_crtc *crtc)
  5199. {
  5200. struct drm_i915_private *dev_priv = connector->dev->dev_private;
  5201. uint8_t *eld = connector->eld;
  5202. uint32_t eldv;
  5203. uint32_t i;
  5204. int len;
  5205. int hdmiw_hdmiedid;
  5206. int aud_config;
  5207. int aud_cntl_st;
  5208. int aud_cntrl_st2;
  5209. int pipe = to_intel_crtc(crtc)->pipe;
  5210. if (HAS_PCH_IBX(connector->dev)) {
  5211. hdmiw_hdmiedid = IBX_HDMIW_HDMIEDID(pipe);
  5212. aud_config = IBX_AUD_CFG(pipe);
  5213. aud_cntl_st = IBX_AUD_CNTL_ST(pipe);
  5214. aud_cntrl_st2 = IBX_AUD_CNTL_ST2;
  5215. } else {
  5216. hdmiw_hdmiedid = CPT_HDMIW_HDMIEDID(pipe);
  5217. aud_config = CPT_AUD_CFG(pipe);
  5218. aud_cntl_st = CPT_AUD_CNTL_ST(pipe);
  5219. aud_cntrl_st2 = CPT_AUD_CNTRL_ST2;
  5220. }
  5221. DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
  5222. i = I915_READ(aud_cntl_st);
  5223. i = (i >> 29) & DIP_PORT_SEL_MASK; /* DIP_Port_Select, 0x1 = PortB */
  5224. if (!i) {
  5225. DRM_DEBUG_DRIVER("Audio directed to unknown port\n");
  5226. /* operate blindly on all ports */
  5227. eldv = IBX_ELD_VALIDB;
  5228. eldv |= IBX_ELD_VALIDB << 4;
  5229. eldv |= IBX_ELD_VALIDB << 8;
  5230. } else {
  5231. DRM_DEBUG_DRIVER("ELD on port %c\n", port_name(i));
  5232. eldv = IBX_ELD_VALIDB << ((i - 1) * 4);
  5233. }
  5234. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
  5235. DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
  5236. eld[5] |= (1 << 2); /* Conn_Type, 0x1 = DisplayPort */
  5237. I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
  5238. } else
  5239. I915_WRITE(aud_config, 0);
  5240. if (intel_eld_uptodate(connector,
  5241. aud_cntrl_st2, eldv,
  5242. aud_cntl_st, IBX_ELD_ADDRESS,
  5243. hdmiw_hdmiedid))
  5244. return;
  5245. i = I915_READ(aud_cntrl_st2);
  5246. i &= ~eldv;
  5247. I915_WRITE(aud_cntrl_st2, i);
  5248. if (!eld[0])
  5249. return;
  5250. i = I915_READ(aud_cntl_st);
  5251. i &= ~IBX_ELD_ADDRESS;
  5252. I915_WRITE(aud_cntl_st, i);
  5253. len = min_t(uint8_t, eld[2], 21); /* 84 bytes of hw ELD buffer */
  5254. DRM_DEBUG_DRIVER("ELD size %d\n", len);
  5255. for (i = 0; i < len; i++)
  5256. I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
  5257. i = I915_READ(aud_cntrl_st2);
  5258. i |= eldv;
  5259. I915_WRITE(aud_cntrl_st2, i);
  5260. }
  5261. void intel_write_eld(struct drm_encoder *encoder,
  5262. struct drm_display_mode *mode)
  5263. {
  5264. struct drm_crtc *crtc = encoder->crtc;
  5265. struct drm_connector *connector;
  5266. struct drm_device *dev = encoder->dev;
  5267. struct drm_i915_private *dev_priv = dev->dev_private;
  5268. connector = drm_select_eld(encoder, mode);
  5269. if (!connector)
  5270. return;
  5271. DRM_DEBUG_DRIVER("ELD on [CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
  5272. connector->base.id,
  5273. drm_get_connector_name(connector),
  5274. connector->encoder->base.id,
  5275. drm_get_encoder_name(connector->encoder));
  5276. connector->eld[6] = drm_av_sync_delay(connector, mode) / 2;
  5277. if (dev_priv->display.write_eld)
  5278. dev_priv->display.write_eld(connector, crtc);
  5279. }
  5280. /** Loads the palette/gamma unit for the CRTC with the prepared values */
  5281. void intel_crtc_load_lut(struct drm_crtc *crtc)
  5282. {
  5283. struct drm_device *dev = crtc->dev;
  5284. struct drm_i915_private *dev_priv = dev->dev_private;
  5285. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5286. enum pipe pipe = intel_crtc->pipe;
  5287. int palreg = PALETTE(pipe);
  5288. int i;
  5289. bool reenable_ips = false;
  5290. /* The clocks have to be on to load the palette. */
  5291. if (!crtc->enabled || !intel_crtc->active)
  5292. return;
  5293. /* use legacy palette for Ironlake */
  5294. if (HAS_PCH_SPLIT(dev))
  5295. palreg = LGC_PALETTE(pipe);
  5296. /* Workaround : Do not read or write the pipe palette/gamma data while
  5297. * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled.
  5298. */
  5299. if (intel_crtc->config.ips_enabled &&
  5300. ((I915_READ(GAMMA_MODE(pipe)) & GAMMA_MODE_MODE_MASK) ==
  5301. GAMMA_MODE_MODE_SPLIT)) {
  5302. hsw_disable_ips(intel_crtc);
  5303. reenable_ips = true;
  5304. }
  5305. for (i = 0; i < 256; i++) {
  5306. I915_WRITE(palreg + 4 * i,
  5307. (intel_crtc->lut_r[i] << 16) |
  5308. (intel_crtc->lut_g[i] << 8) |
  5309. intel_crtc->lut_b[i]);
  5310. }
  5311. if (reenable_ips)
  5312. hsw_enable_ips(intel_crtc);
  5313. }
  5314. static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
  5315. {
  5316. struct drm_device *dev = crtc->dev;
  5317. struct drm_i915_private *dev_priv = dev->dev_private;
  5318. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5319. bool visible = base != 0;
  5320. u32 cntl;
  5321. if (intel_crtc->cursor_visible == visible)
  5322. return;
  5323. cntl = I915_READ(_CURACNTR);
  5324. if (visible) {
  5325. /* On these chipsets we can only modify the base whilst
  5326. * the cursor is disabled.
  5327. */
  5328. I915_WRITE(_CURABASE, base);
  5329. cntl &= ~(CURSOR_FORMAT_MASK);
  5330. /* XXX width must be 64, stride 256 => 0x00 << 28 */
  5331. cntl |= CURSOR_ENABLE |
  5332. CURSOR_GAMMA_ENABLE |
  5333. CURSOR_FORMAT_ARGB;
  5334. } else
  5335. cntl &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
  5336. I915_WRITE(_CURACNTR, cntl);
  5337. intel_crtc->cursor_visible = visible;
  5338. }
  5339. static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
  5340. {
  5341. struct drm_device *dev = crtc->dev;
  5342. struct drm_i915_private *dev_priv = dev->dev_private;
  5343. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5344. int pipe = intel_crtc->pipe;
  5345. bool visible = base != 0;
  5346. if (intel_crtc->cursor_visible != visible) {
  5347. uint32_t cntl = I915_READ(CURCNTR(pipe));
  5348. if (base) {
  5349. cntl &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
  5350. cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
  5351. cntl |= pipe << 28; /* Connect to correct pipe */
  5352. } else {
  5353. cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
  5354. cntl |= CURSOR_MODE_DISABLE;
  5355. }
  5356. I915_WRITE(CURCNTR(pipe), cntl);
  5357. intel_crtc->cursor_visible = visible;
  5358. }
  5359. /* and commit changes on next vblank */
  5360. I915_WRITE(CURBASE(pipe), base);
  5361. }
  5362. static void ivb_update_cursor(struct drm_crtc *crtc, u32 base)
  5363. {
  5364. struct drm_device *dev = crtc->dev;
  5365. struct drm_i915_private *dev_priv = dev->dev_private;
  5366. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5367. int pipe = intel_crtc->pipe;
  5368. bool visible = base != 0;
  5369. if (intel_crtc->cursor_visible != visible) {
  5370. uint32_t cntl = I915_READ(CURCNTR_IVB(pipe));
  5371. if (base) {
  5372. cntl &= ~CURSOR_MODE;
  5373. cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
  5374. } else {
  5375. cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
  5376. cntl |= CURSOR_MODE_DISABLE;
  5377. }
  5378. if (IS_HASWELL(dev))
  5379. cntl |= CURSOR_PIPE_CSC_ENABLE;
  5380. I915_WRITE(CURCNTR_IVB(pipe), cntl);
  5381. intel_crtc->cursor_visible = visible;
  5382. }
  5383. /* and commit changes on next vblank */
  5384. I915_WRITE(CURBASE_IVB(pipe), base);
  5385. }
  5386. /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
  5387. static void intel_crtc_update_cursor(struct drm_crtc *crtc,
  5388. bool on)
  5389. {
  5390. struct drm_device *dev = crtc->dev;
  5391. struct drm_i915_private *dev_priv = dev->dev_private;
  5392. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5393. int pipe = intel_crtc->pipe;
  5394. int x = intel_crtc->cursor_x;
  5395. int y = intel_crtc->cursor_y;
  5396. u32 base, pos;
  5397. bool visible;
  5398. pos = 0;
  5399. if (on && crtc->enabled && crtc->fb) {
  5400. base = intel_crtc->cursor_addr;
  5401. if (x > (int) crtc->fb->width)
  5402. base = 0;
  5403. if (y > (int) crtc->fb->height)
  5404. base = 0;
  5405. } else
  5406. base = 0;
  5407. if (x < 0) {
  5408. if (x + intel_crtc->cursor_width < 0)
  5409. base = 0;
  5410. pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
  5411. x = -x;
  5412. }
  5413. pos |= x << CURSOR_X_SHIFT;
  5414. if (y < 0) {
  5415. if (y + intel_crtc->cursor_height < 0)
  5416. base = 0;
  5417. pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
  5418. y = -y;
  5419. }
  5420. pos |= y << CURSOR_Y_SHIFT;
  5421. visible = base != 0;
  5422. if (!visible && !intel_crtc->cursor_visible)
  5423. return;
  5424. if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
  5425. I915_WRITE(CURPOS_IVB(pipe), pos);
  5426. ivb_update_cursor(crtc, base);
  5427. } else {
  5428. I915_WRITE(CURPOS(pipe), pos);
  5429. if (IS_845G(dev) || IS_I865G(dev))
  5430. i845_update_cursor(crtc, base);
  5431. else
  5432. i9xx_update_cursor(crtc, base);
  5433. }
  5434. }
  5435. static int intel_crtc_cursor_set(struct drm_crtc *crtc,
  5436. struct drm_file *file,
  5437. uint32_t handle,
  5438. uint32_t width, uint32_t height)
  5439. {
  5440. struct drm_device *dev = crtc->dev;
  5441. struct drm_i915_private *dev_priv = dev->dev_private;
  5442. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5443. struct drm_i915_gem_object *obj;
  5444. uint32_t addr;
  5445. int ret;
  5446. /* if we want to turn off the cursor ignore width and height */
  5447. if (!handle) {
  5448. DRM_DEBUG_KMS("cursor off\n");
  5449. addr = 0;
  5450. obj = NULL;
  5451. mutex_lock(&dev->struct_mutex);
  5452. goto finish;
  5453. }
  5454. /* Currently we only support 64x64 cursors */
  5455. if (width != 64 || height != 64) {
  5456. DRM_ERROR("we currently only support 64x64 cursors\n");
  5457. return -EINVAL;
  5458. }
  5459. obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
  5460. if (&obj->base == NULL)
  5461. return -ENOENT;
  5462. if (obj->base.size < width * height * 4) {
  5463. DRM_ERROR("buffer is to small\n");
  5464. ret = -ENOMEM;
  5465. goto fail;
  5466. }
  5467. /* we only need to pin inside GTT if cursor is non-phy */
  5468. mutex_lock(&dev->struct_mutex);
  5469. if (!dev_priv->info->cursor_needs_physical) {
  5470. unsigned alignment;
  5471. if (obj->tiling_mode) {
  5472. DRM_ERROR("cursor cannot be tiled\n");
  5473. ret = -EINVAL;
  5474. goto fail_locked;
  5475. }
  5476. /* Note that the w/a also requires 2 PTE of padding following
  5477. * the bo. We currently fill all unused PTE with the shadow
  5478. * page and so we should always have valid PTE following the
  5479. * cursor preventing the VT-d warning.
  5480. */
  5481. alignment = 0;
  5482. if (need_vtd_wa(dev))
  5483. alignment = 64*1024;
  5484. ret = i915_gem_object_pin_to_display_plane(obj, alignment, NULL);
  5485. if (ret) {
  5486. DRM_ERROR("failed to move cursor bo into the GTT\n");
  5487. goto fail_locked;
  5488. }
  5489. ret = i915_gem_object_put_fence(obj);
  5490. if (ret) {
  5491. DRM_ERROR("failed to release fence for cursor");
  5492. goto fail_unpin;
  5493. }
  5494. addr = obj->gtt_offset;
  5495. } else {
  5496. int align = IS_I830(dev) ? 16 * 1024 : 256;
  5497. ret = i915_gem_attach_phys_object(dev, obj,
  5498. (intel_crtc->pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1,
  5499. align);
  5500. if (ret) {
  5501. DRM_ERROR("failed to attach phys object\n");
  5502. goto fail_locked;
  5503. }
  5504. addr = obj->phys_obj->handle->busaddr;
  5505. }
  5506. if (IS_GEN2(dev))
  5507. I915_WRITE(CURSIZE, (height << 12) | width);
  5508. finish:
  5509. if (intel_crtc->cursor_bo) {
  5510. if (dev_priv->info->cursor_needs_physical) {
  5511. if (intel_crtc->cursor_bo != obj)
  5512. i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
  5513. } else
  5514. i915_gem_object_unpin(intel_crtc->cursor_bo);
  5515. drm_gem_object_unreference(&intel_crtc->cursor_bo->base);
  5516. }
  5517. mutex_unlock(&dev->struct_mutex);
  5518. intel_crtc->cursor_addr = addr;
  5519. intel_crtc->cursor_bo = obj;
  5520. intel_crtc->cursor_width = width;
  5521. intel_crtc->cursor_height = height;
  5522. intel_crtc_update_cursor(crtc, intel_crtc->cursor_bo != NULL);
  5523. return 0;
  5524. fail_unpin:
  5525. i915_gem_object_unpin(obj);
  5526. fail_locked:
  5527. mutex_unlock(&dev->struct_mutex);
  5528. fail:
  5529. drm_gem_object_unreference_unlocked(&obj->base);
  5530. return ret;
  5531. }
  5532. static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
  5533. {
  5534. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5535. intel_crtc->cursor_x = x;
  5536. intel_crtc->cursor_y = y;
  5537. intel_crtc_update_cursor(crtc, intel_crtc->cursor_bo != NULL);
  5538. return 0;
  5539. }
  5540. /** Sets the color ramps on behalf of RandR */
  5541. void intel_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
  5542. u16 blue, int regno)
  5543. {
  5544. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5545. intel_crtc->lut_r[regno] = red >> 8;
  5546. intel_crtc->lut_g[regno] = green >> 8;
  5547. intel_crtc->lut_b[regno] = blue >> 8;
  5548. }
  5549. void intel_crtc_fb_gamma_get(struct drm_crtc *crtc, u16 *red, u16 *green,
  5550. u16 *blue, int regno)
  5551. {
  5552. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5553. *red = intel_crtc->lut_r[regno] << 8;
  5554. *green = intel_crtc->lut_g[regno] << 8;
  5555. *blue = intel_crtc->lut_b[regno] << 8;
  5556. }
  5557. static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
  5558. u16 *blue, uint32_t start, uint32_t size)
  5559. {
  5560. int end = (start + size > 256) ? 256 : start + size, i;
  5561. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5562. for (i = start; i < end; i++) {
  5563. intel_crtc->lut_r[i] = red[i] >> 8;
  5564. intel_crtc->lut_g[i] = green[i] >> 8;
  5565. intel_crtc->lut_b[i] = blue[i] >> 8;
  5566. }
  5567. intel_crtc_load_lut(crtc);
  5568. }
  5569. /* VESA 640x480x72Hz mode to set on the pipe */
  5570. static struct drm_display_mode load_detect_mode = {
  5571. DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
  5572. 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
  5573. };
  5574. static struct drm_framebuffer *
  5575. intel_framebuffer_create(struct drm_device *dev,
  5576. struct drm_mode_fb_cmd2 *mode_cmd,
  5577. struct drm_i915_gem_object *obj)
  5578. {
  5579. struct intel_framebuffer *intel_fb;
  5580. int ret;
  5581. intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
  5582. if (!intel_fb) {
  5583. drm_gem_object_unreference_unlocked(&obj->base);
  5584. return ERR_PTR(-ENOMEM);
  5585. }
  5586. ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
  5587. if (ret) {
  5588. drm_gem_object_unreference_unlocked(&obj->base);
  5589. kfree(intel_fb);
  5590. return ERR_PTR(ret);
  5591. }
  5592. return &intel_fb->base;
  5593. }
  5594. static u32
  5595. intel_framebuffer_pitch_for_width(int width, int bpp)
  5596. {
  5597. u32 pitch = DIV_ROUND_UP(width * bpp, 8);
  5598. return ALIGN(pitch, 64);
  5599. }
  5600. static u32
  5601. intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
  5602. {
  5603. u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
  5604. return ALIGN(pitch * mode->vdisplay, PAGE_SIZE);
  5605. }
  5606. static struct drm_framebuffer *
  5607. intel_framebuffer_create_for_mode(struct drm_device *dev,
  5608. struct drm_display_mode *mode,
  5609. int depth, int bpp)
  5610. {
  5611. struct drm_i915_gem_object *obj;
  5612. struct drm_mode_fb_cmd2 mode_cmd = { 0 };
  5613. obj = i915_gem_alloc_object(dev,
  5614. intel_framebuffer_size_for_mode(mode, bpp));
  5615. if (obj == NULL)
  5616. return ERR_PTR(-ENOMEM);
  5617. mode_cmd.width = mode->hdisplay;
  5618. mode_cmd.height = mode->vdisplay;
  5619. mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
  5620. bpp);
  5621. mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
  5622. return intel_framebuffer_create(dev, &mode_cmd, obj);
  5623. }
  5624. static struct drm_framebuffer *
  5625. mode_fits_in_fbdev(struct drm_device *dev,
  5626. struct drm_display_mode *mode)
  5627. {
  5628. struct drm_i915_private *dev_priv = dev->dev_private;
  5629. struct drm_i915_gem_object *obj;
  5630. struct drm_framebuffer *fb;
  5631. if (dev_priv->fbdev == NULL)
  5632. return NULL;
  5633. obj = dev_priv->fbdev->ifb.obj;
  5634. if (obj == NULL)
  5635. return NULL;
  5636. fb = &dev_priv->fbdev->ifb.base;
  5637. if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
  5638. fb->bits_per_pixel))
  5639. return NULL;
  5640. if (obj->base.size < mode->vdisplay * fb->pitches[0])
  5641. return NULL;
  5642. return fb;
  5643. }
  5644. bool intel_get_load_detect_pipe(struct drm_connector *connector,
  5645. struct drm_display_mode *mode,
  5646. struct intel_load_detect_pipe *old)
  5647. {
  5648. struct intel_crtc *intel_crtc;
  5649. struct intel_encoder *intel_encoder =
  5650. intel_attached_encoder(connector);
  5651. struct drm_crtc *possible_crtc;
  5652. struct drm_encoder *encoder = &intel_encoder->base;
  5653. struct drm_crtc *crtc = NULL;
  5654. struct drm_device *dev = encoder->dev;
  5655. struct drm_framebuffer *fb;
  5656. int i = -1;
  5657. DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
  5658. connector->base.id, drm_get_connector_name(connector),
  5659. encoder->base.id, drm_get_encoder_name(encoder));
  5660. /*
  5661. * Algorithm gets a little messy:
  5662. *
  5663. * - if the connector already has an assigned crtc, use it (but make
  5664. * sure it's on first)
  5665. *
  5666. * - try to find the first unused crtc that can drive this connector,
  5667. * and use that if we find one
  5668. */
  5669. /* See if we already have a CRTC for this connector */
  5670. if (encoder->crtc) {
  5671. crtc = encoder->crtc;
  5672. mutex_lock(&crtc->mutex);
  5673. old->dpms_mode = connector->dpms;
  5674. old->load_detect_temp = false;
  5675. /* Make sure the crtc and connector are running */
  5676. if (connector->dpms != DRM_MODE_DPMS_ON)
  5677. connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
  5678. return true;
  5679. }
  5680. /* Find an unused one (if possible) */
  5681. list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
  5682. i++;
  5683. if (!(encoder->possible_crtcs & (1 << i)))
  5684. continue;
  5685. if (!possible_crtc->enabled) {
  5686. crtc = possible_crtc;
  5687. break;
  5688. }
  5689. }
  5690. /*
  5691. * If we didn't find an unused CRTC, don't use any.
  5692. */
  5693. if (!crtc) {
  5694. DRM_DEBUG_KMS("no pipe available for load-detect\n");
  5695. return false;
  5696. }
  5697. mutex_lock(&crtc->mutex);
  5698. intel_encoder->new_crtc = to_intel_crtc(crtc);
  5699. to_intel_connector(connector)->new_encoder = intel_encoder;
  5700. intel_crtc = to_intel_crtc(crtc);
  5701. old->dpms_mode = connector->dpms;
  5702. old->load_detect_temp = true;
  5703. old->release_fb = NULL;
  5704. if (!mode)
  5705. mode = &load_detect_mode;
  5706. /* We need a framebuffer large enough to accommodate all accesses
  5707. * that the plane may generate whilst we perform load detection.
  5708. * We can not rely on the fbcon either being present (we get called
  5709. * during its initialisation to detect all boot displays, or it may
  5710. * not even exist) or that it is large enough to satisfy the
  5711. * requested mode.
  5712. */
  5713. fb = mode_fits_in_fbdev(dev, mode);
  5714. if (fb == NULL) {
  5715. DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
  5716. fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
  5717. old->release_fb = fb;
  5718. } else
  5719. DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
  5720. if (IS_ERR(fb)) {
  5721. DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
  5722. mutex_unlock(&crtc->mutex);
  5723. return false;
  5724. }
  5725. if (intel_set_mode(crtc, mode, 0, 0, fb)) {
  5726. DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
  5727. if (old->release_fb)
  5728. old->release_fb->funcs->destroy(old->release_fb);
  5729. mutex_unlock(&crtc->mutex);
  5730. return false;
  5731. }
  5732. /* let the connector get through one full cycle before testing */
  5733. intel_wait_for_vblank(dev, intel_crtc->pipe);
  5734. return true;
  5735. }
  5736. void intel_release_load_detect_pipe(struct drm_connector *connector,
  5737. struct intel_load_detect_pipe *old)
  5738. {
  5739. struct intel_encoder *intel_encoder =
  5740. intel_attached_encoder(connector);
  5741. struct drm_encoder *encoder = &intel_encoder->base;
  5742. struct drm_crtc *crtc = encoder->crtc;
  5743. DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
  5744. connector->base.id, drm_get_connector_name(connector),
  5745. encoder->base.id, drm_get_encoder_name(encoder));
  5746. if (old->load_detect_temp) {
  5747. to_intel_connector(connector)->new_encoder = NULL;
  5748. intel_encoder->new_crtc = NULL;
  5749. intel_set_mode(crtc, NULL, 0, 0, NULL);
  5750. if (old->release_fb) {
  5751. drm_framebuffer_unregister_private(old->release_fb);
  5752. drm_framebuffer_unreference(old->release_fb);
  5753. }
  5754. mutex_unlock(&crtc->mutex);
  5755. return;
  5756. }
  5757. /* Switch crtc and encoder back off if necessary */
  5758. if (old->dpms_mode != DRM_MODE_DPMS_ON)
  5759. connector->funcs->dpms(connector, old->dpms_mode);
  5760. mutex_unlock(&crtc->mutex);
  5761. }
  5762. /* Returns the clock of the currently programmed mode of the given pipe. */
  5763. static int intel_crtc_clock_get(struct drm_device *dev, struct drm_crtc *crtc)
  5764. {
  5765. struct drm_i915_private *dev_priv = dev->dev_private;
  5766. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5767. int pipe = intel_crtc->pipe;
  5768. u32 dpll = I915_READ(DPLL(pipe));
  5769. u32 fp;
  5770. intel_clock_t clock;
  5771. if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
  5772. fp = I915_READ(FP0(pipe));
  5773. else
  5774. fp = I915_READ(FP1(pipe));
  5775. clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
  5776. if (IS_PINEVIEW(dev)) {
  5777. clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
  5778. clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
  5779. } else {
  5780. clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
  5781. clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
  5782. }
  5783. if (!IS_GEN2(dev)) {
  5784. if (IS_PINEVIEW(dev))
  5785. clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
  5786. DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
  5787. else
  5788. clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
  5789. DPLL_FPA01_P1_POST_DIV_SHIFT);
  5790. switch (dpll & DPLL_MODE_MASK) {
  5791. case DPLLB_MODE_DAC_SERIAL:
  5792. clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
  5793. 5 : 10;
  5794. break;
  5795. case DPLLB_MODE_LVDS:
  5796. clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
  5797. 7 : 14;
  5798. break;
  5799. default:
  5800. DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
  5801. "mode\n", (int)(dpll & DPLL_MODE_MASK));
  5802. return 0;
  5803. }
  5804. if (IS_PINEVIEW(dev))
  5805. pineview_clock(96000, &clock);
  5806. else
  5807. i9xx_clock(96000, &clock);
  5808. } else {
  5809. bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
  5810. if (is_lvds) {
  5811. clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
  5812. DPLL_FPA01_P1_POST_DIV_SHIFT);
  5813. clock.p2 = 14;
  5814. if ((dpll & PLL_REF_INPUT_MASK) ==
  5815. PLLB_REF_INPUT_SPREADSPECTRUMIN) {
  5816. /* XXX: might not be 66MHz */
  5817. i9xx_clock(66000, &clock);
  5818. } else
  5819. i9xx_clock(48000, &clock);
  5820. } else {
  5821. if (dpll & PLL_P1_DIVIDE_BY_TWO)
  5822. clock.p1 = 2;
  5823. else {
  5824. clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
  5825. DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
  5826. }
  5827. if (dpll & PLL_P2_DIVIDE_BY_4)
  5828. clock.p2 = 4;
  5829. else
  5830. clock.p2 = 2;
  5831. i9xx_clock(48000, &clock);
  5832. }
  5833. }
  5834. /* XXX: It would be nice to validate the clocks, but we can't reuse
  5835. * i830PllIsValid() because it relies on the xf86_config connector
  5836. * configuration being accurate, which it isn't necessarily.
  5837. */
  5838. return clock.dot;
  5839. }
  5840. /** Returns the currently programmed mode of the given pipe. */
  5841. struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
  5842. struct drm_crtc *crtc)
  5843. {
  5844. struct drm_i915_private *dev_priv = dev->dev_private;
  5845. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5846. enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
  5847. struct drm_display_mode *mode;
  5848. int htot = I915_READ(HTOTAL(cpu_transcoder));
  5849. int hsync = I915_READ(HSYNC(cpu_transcoder));
  5850. int vtot = I915_READ(VTOTAL(cpu_transcoder));
  5851. int vsync = I915_READ(VSYNC(cpu_transcoder));
  5852. mode = kzalloc(sizeof(*mode), GFP_KERNEL);
  5853. if (!mode)
  5854. return NULL;
  5855. mode->clock = intel_crtc_clock_get(dev, crtc);
  5856. mode->hdisplay = (htot & 0xffff) + 1;
  5857. mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
  5858. mode->hsync_start = (hsync & 0xffff) + 1;
  5859. mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
  5860. mode->vdisplay = (vtot & 0xffff) + 1;
  5861. mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
  5862. mode->vsync_start = (vsync & 0xffff) + 1;
  5863. mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
  5864. drm_mode_set_name(mode);
  5865. return mode;
  5866. }
  5867. static void intel_increase_pllclock(struct drm_crtc *crtc)
  5868. {
  5869. struct drm_device *dev = crtc->dev;
  5870. drm_i915_private_t *dev_priv = dev->dev_private;
  5871. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5872. int pipe = intel_crtc->pipe;
  5873. int dpll_reg = DPLL(pipe);
  5874. int dpll;
  5875. if (HAS_PCH_SPLIT(dev))
  5876. return;
  5877. if (!dev_priv->lvds_downclock_avail)
  5878. return;
  5879. dpll = I915_READ(dpll_reg);
  5880. if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
  5881. DRM_DEBUG_DRIVER("upclocking LVDS\n");
  5882. assert_panel_unlocked(dev_priv, pipe);
  5883. dpll &= ~DISPLAY_RATE_SELECT_FPA1;
  5884. I915_WRITE(dpll_reg, dpll);
  5885. intel_wait_for_vblank(dev, pipe);
  5886. dpll = I915_READ(dpll_reg);
  5887. if (dpll & DISPLAY_RATE_SELECT_FPA1)
  5888. DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
  5889. }
  5890. }
  5891. static void intel_decrease_pllclock(struct drm_crtc *crtc)
  5892. {
  5893. struct drm_device *dev = crtc->dev;
  5894. drm_i915_private_t *dev_priv = dev->dev_private;
  5895. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5896. if (HAS_PCH_SPLIT(dev))
  5897. return;
  5898. if (!dev_priv->lvds_downclock_avail)
  5899. return;
  5900. /*
  5901. * Since this is called by a timer, we should never get here in
  5902. * the manual case.
  5903. */
  5904. if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
  5905. int pipe = intel_crtc->pipe;
  5906. int dpll_reg = DPLL(pipe);
  5907. int dpll;
  5908. DRM_DEBUG_DRIVER("downclocking LVDS\n");
  5909. assert_panel_unlocked(dev_priv, pipe);
  5910. dpll = I915_READ(dpll_reg);
  5911. dpll |= DISPLAY_RATE_SELECT_FPA1;
  5912. I915_WRITE(dpll_reg, dpll);
  5913. intel_wait_for_vblank(dev, pipe);
  5914. dpll = I915_READ(dpll_reg);
  5915. if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
  5916. DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
  5917. }
  5918. }
  5919. void intel_mark_busy(struct drm_device *dev)
  5920. {
  5921. i915_update_gfx_val(dev->dev_private);
  5922. }
  5923. void intel_mark_idle(struct drm_device *dev)
  5924. {
  5925. struct drm_crtc *crtc;
  5926. if (!i915_powersave)
  5927. return;
  5928. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  5929. if (!crtc->fb)
  5930. continue;
  5931. intel_decrease_pllclock(crtc);
  5932. }
  5933. }
  5934. void intel_mark_fb_busy(struct drm_i915_gem_object *obj)
  5935. {
  5936. struct drm_device *dev = obj->base.dev;
  5937. struct drm_crtc *crtc;
  5938. if (!i915_powersave)
  5939. return;
  5940. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  5941. if (!crtc->fb)
  5942. continue;
  5943. if (to_intel_framebuffer(crtc->fb)->obj == obj)
  5944. intel_increase_pllclock(crtc);
  5945. }
  5946. }
  5947. static void intel_crtc_destroy(struct drm_crtc *crtc)
  5948. {
  5949. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5950. struct drm_device *dev = crtc->dev;
  5951. struct intel_unpin_work *work;
  5952. unsigned long flags;
  5953. spin_lock_irqsave(&dev->event_lock, flags);
  5954. work = intel_crtc->unpin_work;
  5955. intel_crtc->unpin_work = NULL;
  5956. spin_unlock_irqrestore(&dev->event_lock, flags);
  5957. if (work) {
  5958. cancel_work_sync(&work->work);
  5959. kfree(work);
  5960. }
  5961. intel_crtc_cursor_set(crtc, NULL, 0, 0, 0);
  5962. drm_crtc_cleanup(crtc);
  5963. kfree(intel_crtc);
  5964. }
  5965. static void intel_unpin_work_fn(struct work_struct *__work)
  5966. {
  5967. struct intel_unpin_work *work =
  5968. container_of(__work, struct intel_unpin_work, work);
  5969. struct drm_device *dev = work->crtc->dev;
  5970. mutex_lock(&dev->struct_mutex);
  5971. intel_unpin_fb_obj(work->old_fb_obj);
  5972. drm_gem_object_unreference(&work->pending_flip_obj->base);
  5973. drm_gem_object_unreference(&work->old_fb_obj->base);
  5974. intel_update_fbc(dev);
  5975. mutex_unlock(&dev->struct_mutex);
  5976. BUG_ON(atomic_read(&to_intel_crtc(work->crtc)->unpin_work_count) == 0);
  5977. atomic_dec(&to_intel_crtc(work->crtc)->unpin_work_count);
  5978. kfree(work);
  5979. }
  5980. static void do_intel_finish_page_flip(struct drm_device *dev,
  5981. struct drm_crtc *crtc)
  5982. {
  5983. drm_i915_private_t *dev_priv = dev->dev_private;
  5984. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5985. struct intel_unpin_work *work;
  5986. unsigned long flags;
  5987. /* Ignore early vblank irqs */
  5988. if (intel_crtc == NULL)
  5989. return;
  5990. spin_lock_irqsave(&dev->event_lock, flags);
  5991. work = intel_crtc->unpin_work;
  5992. /* Ensure we don't miss a work->pending update ... */
  5993. smp_rmb();
  5994. if (work == NULL || atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
  5995. spin_unlock_irqrestore(&dev->event_lock, flags);
  5996. return;
  5997. }
  5998. /* and that the unpin work is consistent wrt ->pending. */
  5999. smp_rmb();
  6000. intel_crtc->unpin_work = NULL;
  6001. if (work->event)
  6002. drm_send_vblank_event(dev, intel_crtc->pipe, work->event);
  6003. drm_vblank_put(dev, intel_crtc->pipe);
  6004. spin_unlock_irqrestore(&dev->event_lock, flags);
  6005. wake_up_all(&dev_priv->pending_flip_queue);
  6006. queue_work(dev_priv->wq, &work->work);
  6007. trace_i915_flip_complete(intel_crtc->plane, work->pending_flip_obj);
  6008. }
  6009. void intel_finish_page_flip(struct drm_device *dev, int pipe)
  6010. {
  6011. drm_i915_private_t *dev_priv = dev->dev_private;
  6012. struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
  6013. do_intel_finish_page_flip(dev, crtc);
  6014. }
  6015. void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
  6016. {
  6017. drm_i915_private_t *dev_priv = dev->dev_private;
  6018. struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
  6019. do_intel_finish_page_flip(dev, crtc);
  6020. }
  6021. void intel_prepare_page_flip(struct drm_device *dev, int plane)
  6022. {
  6023. drm_i915_private_t *dev_priv = dev->dev_private;
  6024. struct intel_crtc *intel_crtc =
  6025. to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
  6026. unsigned long flags;
  6027. /* NB: An MMIO update of the plane base pointer will also
  6028. * generate a page-flip completion irq, i.e. every modeset
  6029. * is also accompanied by a spurious intel_prepare_page_flip().
  6030. */
  6031. spin_lock_irqsave(&dev->event_lock, flags);
  6032. if (intel_crtc->unpin_work)
  6033. atomic_inc_not_zero(&intel_crtc->unpin_work->pending);
  6034. spin_unlock_irqrestore(&dev->event_lock, flags);
  6035. }
  6036. inline static void intel_mark_page_flip_active(struct intel_crtc *intel_crtc)
  6037. {
  6038. /* Ensure that the work item is consistent when activating it ... */
  6039. smp_wmb();
  6040. atomic_set(&intel_crtc->unpin_work->pending, INTEL_FLIP_PENDING);
  6041. /* and that it is marked active as soon as the irq could fire. */
  6042. smp_wmb();
  6043. }
  6044. static int intel_gen2_queue_flip(struct drm_device *dev,
  6045. struct drm_crtc *crtc,
  6046. struct drm_framebuffer *fb,
  6047. struct drm_i915_gem_object *obj)
  6048. {
  6049. struct drm_i915_private *dev_priv = dev->dev_private;
  6050. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6051. u32 flip_mask;
  6052. struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
  6053. int ret;
  6054. ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
  6055. if (ret)
  6056. goto err;
  6057. ret = intel_ring_begin(ring, 6);
  6058. if (ret)
  6059. goto err_unpin;
  6060. /* Can't queue multiple flips, so wait for the previous
  6061. * one to finish before executing the next.
  6062. */
  6063. if (intel_crtc->plane)
  6064. flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
  6065. else
  6066. flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
  6067. intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
  6068. intel_ring_emit(ring, MI_NOOP);
  6069. intel_ring_emit(ring, MI_DISPLAY_FLIP |
  6070. MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
  6071. intel_ring_emit(ring, fb->pitches[0]);
  6072. intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
  6073. intel_ring_emit(ring, 0); /* aux display base address, unused */
  6074. intel_mark_page_flip_active(intel_crtc);
  6075. intel_ring_advance(ring);
  6076. return 0;
  6077. err_unpin:
  6078. intel_unpin_fb_obj(obj);
  6079. err:
  6080. return ret;
  6081. }
  6082. static int intel_gen3_queue_flip(struct drm_device *dev,
  6083. struct drm_crtc *crtc,
  6084. struct drm_framebuffer *fb,
  6085. struct drm_i915_gem_object *obj)
  6086. {
  6087. struct drm_i915_private *dev_priv = dev->dev_private;
  6088. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6089. u32 flip_mask;
  6090. struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
  6091. int ret;
  6092. ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
  6093. if (ret)
  6094. goto err;
  6095. ret = intel_ring_begin(ring, 6);
  6096. if (ret)
  6097. goto err_unpin;
  6098. if (intel_crtc->plane)
  6099. flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
  6100. else
  6101. flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
  6102. intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
  6103. intel_ring_emit(ring, MI_NOOP);
  6104. intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
  6105. MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
  6106. intel_ring_emit(ring, fb->pitches[0]);
  6107. intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
  6108. intel_ring_emit(ring, MI_NOOP);
  6109. intel_mark_page_flip_active(intel_crtc);
  6110. intel_ring_advance(ring);
  6111. return 0;
  6112. err_unpin:
  6113. intel_unpin_fb_obj(obj);
  6114. err:
  6115. return ret;
  6116. }
  6117. static int intel_gen4_queue_flip(struct drm_device *dev,
  6118. struct drm_crtc *crtc,
  6119. struct drm_framebuffer *fb,
  6120. struct drm_i915_gem_object *obj)
  6121. {
  6122. struct drm_i915_private *dev_priv = dev->dev_private;
  6123. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6124. uint32_t pf, pipesrc;
  6125. struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
  6126. int ret;
  6127. ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
  6128. if (ret)
  6129. goto err;
  6130. ret = intel_ring_begin(ring, 4);
  6131. if (ret)
  6132. goto err_unpin;
  6133. /* i965+ uses the linear or tiled offsets from the
  6134. * Display Registers (which do not change across a page-flip)
  6135. * so we need only reprogram the base address.
  6136. */
  6137. intel_ring_emit(ring, MI_DISPLAY_FLIP |
  6138. MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
  6139. intel_ring_emit(ring, fb->pitches[0]);
  6140. intel_ring_emit(ring,
  6141. (obj->gtt_offset + intel_crtc->dspaddr_offset) |
  6142. obj->tiling_mode);
  6143. /* XXX Enabling the panel-fitter across page-flip is so far
  6144. * untested on non-native modes, so ignore it for now.
  6145. * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
  6146. */
  6147. pf = 0;
  6148. pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
  6149. intel_ring_emit(ring, pf | pipesrc);
  6150. intel_mark_page_flip_active(intel_crtc);
  6151. intel_ring_advance(ring);
  6152. return 0;
  6153. err_unpin:
  6154. intel_unpin_fb_obj(obj);
  6155. err:
  6156. return ret;
  6157. }
  6158. static int intel_gen6_queue_flip(struct drm_device *dev,
  6159. struct drm_crtc *crtc,
  6160. struct drm_framebuffer *fb,
  6161. struct drm_i915_gem_object *obj)
  6162. {
  6163. struct drm_i915_private *dev_priv = dev->dev_private;
  6164. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6165. struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
  6166. uint32_t pf, pipesrc;
  6167. int ret;
  6168. ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
  6169. if (ret)
  6170. goto err;
  6171. ret = intel_ring_begin(ring, 4);
  6172. if (ret)
  6173. goto err_unpin;
  6174. intel_ring_emit(ring, MI_DISPLAY_FLIP |
  6175. MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
  6176. intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
  6177. intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
  6178. /* Contrary to the suggestions in the documentation,
  6179. * "Enable Panel Fitter" does not seem to be required when page
  6180. * flipping with a non-native mode, and worse causes a normal
  6181. * modeset to fail.
  6182. * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
  6183. */
  6184. pf = 0;
  6185. pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
  6186. intel_ring_emit(ring, pf | pipesrc);
  6187. intel_mark_page_flip_active(intel_crtc);
  6188. intel_ring_advance(ring);
  6189. return 0;
  6190. err_unpin:
  6191. intel_unpin_fb_obj(obj);
  6192. err:
  6193. return ret;
  6194. }
  6195. /*
  6196. * On gen7 we currently use the blit ring because (in early silicon at least)
  6197. * the render ring doesn't give us interrpts for page flip completion, which
  6198. * means clients will hang after the first flip is queued. Fortunately the
  6199. * blit ring generates interrupts properly, so use it instead.
  6200. */
  6201. static int intel_gen7_queue_flip(struct drm_device *dev,
  6202. struct drm_crtc *crtc,
  6203. struct drm_framebuffer *fb,
  6204. struct drm_i915_gem_object *obj)
  6205. {
  6206. struct drm_i915_private *dev_priv = dev->dev_private;
  6207. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6208. struct intel_ring_buffer *ring = &dev_priv->ring[BCS];
  6209. uint32_t plane_bit = 0;
  6210. int ret;
  6211. ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
  6212. if (ret)
  6213. goto err;
  6214. switch(intel_crtc->plane) {
  6215. case PLANE_A:
  6216. plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
  6217. break;
  6218. case PLANE_B:
  6219. plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
  6220. break;
  6221. case PLANE_C:
  6222. plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
  6223. break;
  6224. default:
  6225. WARN_ONCE(1, "unknown plane in flip command\n");
  6226. ret = -ENODEV;
  6227. goto err_unpin;
  6228. }
  6229. ret = intel_ring_begin(ring, 4);
  6230. if (ret)
  6231. goto err_unpin;
  6232. intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
  6233. intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
  6234. intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
  6235. intel_ring_emit(ring, (MI_NOOP));
  6236. intel_mark_page_flip_active(intel_crtc);
  6237. intel_ring_advance(ring);
  6238. return 0;
  6239. err_unpin:
  6240. intel_unpin_fb_obj(obj);
  6241. err:
  6242. return ret;
  6243. }
  6244. static int intel_default_queue_flip(struct drm_device *dev,
  6245. struct drm_crtc *crtc,
  6246. struct drm_framebuffer *fb,
  6247. struct drm_i915_gem_object *obj)
  6248. {
  6249. return -ENODEV;
  6250. }
  6251. static int intel_crtc_page_flip(struct drm_crtc *crtc,
  6252. struct drm_framebuffer *fb,
  6253. struct drm_pending_vblank_event *event)
  6254. {
  6255. struct drm_device *dev = crtc->dev;
  6256. struct drm_i915_private *dev_priv = dev->dev_private;
  6257. struct drm_framebuffer *old_fb = crtc->fb;
  6258. struct drm_i915_gem_object *obj = to_intel_framebuffer(fb)->obj;
  6259. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6260. struct intel_unpin_work *work;
  6261. unsigned long flags;
  6262. int ret;
  6263. /* Can't change pixel format via MI display flips. */
  6264. if (fb->pixel_format != crtc->fb->pixel_format)
  6265. return -EINVAL;
  6266. /*
  6267. * TILEOFF/LINOFF registers can't be changed via MI display flips.
  6268. * Note that pitch changes could also affect these register.
  6269. */
  6270. if (INTEL_INFO(dev)->gen > 3 &&
  6271. (fb->offsets[0] != crtc->fb->offsets[0] ||
  6272. fb->pitches[0] != crtc->fb->pitches[0]))
  6273. return -EINVAL;
  6274. work = kzalloc(sizeof *work, GFP_KERNEL);
  6275. if (work == NULL)
  6276. return -ENOMEM;
  6277. work->event = event;
  6278. work->crtc = crtc;
  6279. work->old_fb_obj = to_intel_framebuffer(old_fb)->obj;
  6280. INIT_WORK(&work->work, intel_unpin_work_fn);
  6281. ret = drm_vblank_get(dev, intel_crtc->pipe);
  6282. if (ret)
  6283. goto free_work;
  6284. /* We borrow the event spin lock for protecting unpin_work */
  6285. spin_lock_irqsave(&dev->event_lock, flags);
  6286. if (intel_crtc->unpin_work) {
  6287. spin_unlock_irqrestore(&dev->event_lock, flags);
  6288. kfree(work);
  6289. drm_vblank_put(dev, intel_crtc->pipe);
  6290. DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
  6291. return -EBUSY;
  6292. }
  6293. intel_crtc->unpin_work = work;
  6294. spin_unlock_irqrestore(&dev->event_lock, flags);
  6295. if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
  6296. flush_workqueue(dev_priv->wq);
  6297. ret = i915_mutex_lock_interruptible(dev);
  6298. if (ret)
  6299. goto cleanup;
  6300. /* Reference the objects for the scheduled work. */
  6301. drm_gem_object_reference(&work->old_fb_obj->base);
  6302. drm_gem_object_reference(&obj->base);
  6303. crtc->fb = fb;
  6304. work->pending_flip_obj = obj;
  6305. work->enable_stall_check = true;
  6306. atomic_inc(&intel_crtc->unpin_work_count);
  6307. intel_crtc->reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
  6308. ret = dev_priv->display.queue_flip(dev, crtc, fb, obj);
  6309. if (ret)
  6310. goto cleanup_pending;
  6311. intel_disable_fbc(dev);
  6312. intel_mark_fb_busy(obj);
  6313. mutex_unlock(&dev->struct_mutex);
  6314. trace_i915_flip_request(intel_crtc->plane, obj);
  6315. return 0;
  6316. cleanup_pending:
  6317. atomic_dec(&intel_crtc->unpin_work_count);
  6318. crtc->fb = old_fb;
  6319. drm_gem_object_unreference(&work->old_fb_obj->base);
  6320. drm_gem_object_unreference(&obj->base);
  6321. mutex_unlock(&dev->struct_mutex);
  6322. cleanup:
  6323. spin_lock_irqsave(&dev->event_lock, flags);
  6324. intel_crtc->unpin_work = NULL;
  6325. spin_unlock_irqrestore(&dev->event_lock, flags);
  6326. drm_vblank_put(dev, intel_crtc->pipe);
  6327. free_work:
  6328. kfree(work);
  6329. return ret;
  6330. }
  6331. static struct drm_crtc_helper_funcs intel_helper_funcs = {
  6332. .mode_set_base_atomic = intel_pipe_set_base_atomic,
  6333. .load_lut = intel_crtc_load_lut,
  6334. };
  6335. bool intel_encoder_check_is_cloned(struct intel_encoder *encoder)
  6336. {
  6337. struct intel_encoder *other_encoder;
  6338. struct drm_crtc *crtc = &encoder->new_crtc->base;
  6339. if (WARN_ON(!crtc))
  6340. return false;
  6341. list_for_each_entry(other_encoder,
  6342. &crtc->dev->mode_config.encoder_list,
  6343. base.head) {
  6344. if (&other_encoder->new_crtc->base != crtc ||
  6345. encoder == other_encoder)
  6346. continue;
  6347. else
  6348. return true;
  6349. }
  6350. return false;
  6351. }
  6352. static bool intel_encoder_crtc_ok(struct drm_encoder *encoder,
  6353. struct drm_crtc *crtc)
  6354. {
  6355. struct drm_device *dev;
  6356. struct drm_crtc *tmp;
  6357. int crtc_mask = 1;
  6358. WARN(!crtc, "checking null crtc?\n");
  6359. dev = crtc->dev;
  6360. list_for_each_entry(tmp, &dev->mode_config.crtc_list, head) {
  6361. if (tmp == crtc)
  6362. break;
  6363. crtc_mask <<= 1;
  6364. }
  6365. if (encoder->possible_crtcs & crtc_mask)
  6366. return true;
  6367. return false;
  6368. }
  6369. /**
  6370. * intel_modeset_update_staged_output_state
  6371. *
  6372. * Updates the staged output configuration state, e.g. after we've read out the
  6373. * current hw state.
  6374. */
  6375. static void intel_modeset_update_staged_output_state(struct drm_device *dev)
  6376. {
  6377. struct intel_encoder *encoder;
  6378. struct intel_connector *connector;
  6379. list_for_each_entry(connector, &dev->mode_config.connector_list,
  6380. base.head) {
  6381. connector->new_encoder =
  6382. to_intel_encoder(connector->base.encoder);
  6383. }
  6384. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  6385. base.head) {
  6386. encoder->new_crtc =
  6387. to_intel_crtc(encoder->base.crtc);
  6388. }
  6389. }
  6390. /**
  6391. * intel_modeset_commit_output_state
  6392. *
  6393. * This function copies the stage display pipe configuration to the real one.
  6394. */
  6395. static void intel_modeset_commit_output_state(struct drm_device *dev)
  6396. {
  6397. struct intel_encoder *encoder;
  6398. struct intel_connector *connector;
  6399. list_for_each_entry(connector, &dev->mode_config.connector_list,
  6400. base.head) {
  6401. connector->base.encoder = &connector->new_encoder->base;
  6402. }
  6403. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  6404. base.head) {
  6405. encoder->base.crtc = &encoder->new_crtc->base;
  6406. }
  6407. }
  6408. static void
  6409. connected_sink_compute_bpp(struct intel_connector * connector,
  6410. struct intel_crtc_config *pipe_config)
  6411. {
  6412. int bpp = pipe_config->pipe_bpp;
  6413. DRM_DEBUG_KMS("[CONNECTOR:%d:%s] checking for sink bpp constrains\n",
  6414. connector->base.base.id,
  6415. drm_get_connector_name(&connector->base));
  6416. /* Don't use an invalid EDID bpc value */
  6417. if (connector->base.display_info.bpc &&
  6418. connector->base.display_info.bpc * 3 < bpp) {
  6419. DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
  6420. bpp, connector->base.display_info.bpc*3);
  6421. pipe_config->pipe_bpp = connector->base.display_info.bpc*3;
  6422. }
  6423. /* Clamp bpp to 8 on screens without EDID 1.4 */
  6424. if (connector->base.display_info.bpc == 0 && bpp > 24) {
  6425. DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of 24\n",
  6426. bpp);
  6427. pipe_config->pipe_bpp = 24;
  6428. }
  6429. }
  6430. static int
  6431. compute_baseline_pipe_bpp(struct intel_crtc *crtc,
  6432. struct drm_framebuffer *fb,
  6433. struct intel_crtc_config *pipe_config)
  6434. {
  6435. struct drm_device *dev = crtc->base.dev;
  6436. struct intel_connector *connector;
  6437. int bpp;
  6438. switch (fb->pixel_format) {
  6439. case DRM_FORMAT_C8:
  6440. bpp = 8*3; /* since we go through a colormap */
  6441. break;
  6442. case DRM_FORMAT_XRGB1555:
  6443. case DRM_FORMAT_ARGB1555:
  6444. /* checked in intel_framebuffer_init already */
  6445. if (WARN_ON(INTEL_INFO(dev)->gen > 3))
  6446. return -EINVAL;
  6447. case DRM_FORMAT_RGB565:
  6448. bpp = 6*3; /* min is 18bpp */
  6449. break;
  6450. case DRM_FORMAT_XBGR8888:
  6451. case DRM_FORMAT_ABGR8888:
  6452. /* checked in intel_framebuffer_init already */
  6453. if (WARN_ON(INTEL_INFO(dev)->gen < 4))
  6454. return -EINVAL;
  6455. case DRM_FORMAT_XRGB8888:
  6456. case DRM_FORMAT_ARGB8888:
  6457. bpp = 8*3;
  6458. break;
  6459. case DRM_FORMAT_XRGB2101010:
  6460. case DRM_FORMAT_ARGB2101010:
  6461. case DRM_FORMAT_XBGR2101010:
  6462. case DRM_FORMAT_ABGR2101010:
  6463. /* checked in intel_framebuffer_init already */
  6464. if (WARN_ON(INTEL_INFO(dev)->gen < 4))
  6465. return -EINVAL;
  6466. bpp = 10*3;
  6467. break;
  6468. /* TODO: gen4+ supports 16 bpc floating point, too. */
  6469. default:
  6470. DRM_DEBUG_KMS("unsupported depth\n");
  6471. return -EINVAL;
  6472. }
  6473. pipe_config->pipe_bpp = bpp;
  6474. /* Clamp display bpp to EDID value */
  6475. list_for_each_entry(connector, &dev->mode_config.connector_list,
  6476. base.head) {
  6477. if (!connector->new_encoder ||
  6478. connector->new_encoder->new_crtc != crtc)
  6479. continue;
  6480. connected_sink_compute_bpp(connector, pipe_config);
  6481. }
  6482. return bpp;
  6483. }
  6484. static void intel_dump_pipe_config(struct intel_crtc *crtc,
  6485. struct intel_crtc_config *pipe_config,
  6486. const char *context)
  6487. {
  6488. DRM_DEBUG_KMS("[CRTC:%d]%s config for pipe %c\n", crtc->base.base.id,
  6489. context, pipe_name(crtc->pipe));
  6490. DRM_DEBUG_KMS("cpu_transcoder: %c\n", transcoder_name(pipe_config->cpu_transcoder));
  6491. DRM_DEBUG_KMS("pipe bpp: %i, dithering: %i\n",
  6492. pipe_config->pipe_bpp, pipe_config->dither);
  6493. DRM_DEBUG_KMS("fdi/pch: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
  6494. pipe_config->has_pch_encoder,
  6495. pipe_config->fdi_lanes,
  6496. pipe_config->fdi_m_n.gmch_m, pipe_config->fdi_m_n.gmch_n,
  6497. pipe_config->fdi_m_n.link_m, pipe_config->fdi_m_n.link_n,
  6498. pipe_config->fdi_m_n.tu);
  6499. DRM_DEBUG_KMS("requested mode:\n");
  6500. drm_mode_debug_printmodeline(&pipe_config->requested_mode);
  6501. DRM_DEBUG_KMS("adjusted mode:\n");
  6502. drm_mode_debug_printmodeline(&pipe_config->adjusted_mode);
  6503. DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
  6504. pipe_config->gmch_pfit.control,
  6505. pipe_config->gmch_pfit.pgm_ratios,
  6506. pipe_config->gmch_pfit.lvds_border_bits);
  6507. DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x\n",
  6508. pipe_config->pch_pfit.pos,
  6509. pipe_config->pch_pfit.size);
  6510. DRM_DEBUG_KMS("ips: %i\n", pipe_config->ips_enabled);
  6511. }
  6512. static struct intel_crtc_config *
  6513. intel_modeset_pipe_config(struct drm_crtc *crtc,
  6514. struct drm_framebuffer *fb,
  6515. struct drm_display_mode *mode)
  6516. {
  6517. struct drm_device *dev = crtc->dev;
  6518. struct drm_encoder_helper_funcs *encoder_funcs;
  6519. struct intel_encoder *encoder;
  6520. struct intel_crtc_config *pipe_config;
  6521. int plane_bpp, ret = -EINVAL;
  6522. bool retry = true;
  6523. pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
  6524. if (!pipe_config)
  6525. return ERR_PTR(-ENOMEM);
  6526. drm_mode_copy(&pipe_config->adjusted_mode, mode);
  6527. drm_mode_copy(&pipe_config->requested_mode, mode);
  6528. pipe_config->cpu_transcoder = to_intel_crtc(crtc)->pipe;
  6529. /* Compute a starting value for pipe_config->pipe_bpp taking the source
  6530. * plane pixel format and any sink constraints into account. Returns the
  6531. * source plane bpp so that dithering can be selected on mismatches
  6532. * after encoders and crtc also have had their say. */
  6533. plane_bpp = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
  6534. fb, pipe_config);
  6535. if (plane_bpp < 0)
  6536. goto fail;
  6537. encoder_retry:
  6538. /* Pass our mode to the connectors and the CRTC to give them a chance to
  6539. * adjust it according to limitations or connector properties, and also
  6540. * a chance to reject the mode entirely.
  6541. */
  6542. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  6543. base.head) {
  6544. if (&encoder->new_crtc->base != crtc)
  6545. continue;
  6546. if (encoder->compute_config) {
  6547. if (!(encoder->compute_config(encoder, pipe_config))) {
  6548. DRM_DEBUG_KMS("Encoder config failure\n");
  6549. goto fail;
  6550. }
  6551. continue;
  6552. }
  6553. encoder_funcs = encoder->base.helper_private;
  6554. if (!(encoder_funcs->mode_fixup(&encoder->base,
  6555. &pipe_config->requested_mode,
  6556. &pipe_config->adjusted_mode))) {
  6557. DRM_DEBUG_KMS("Encoder fixup failed\n");
  6558. goto fail;
  6559. }
  6560. }
  6561. ret = intel_crtc_compute_config(crtc, pipe_config);
  6562. if (ret < 0) {
  6563. DRM_DEBUG_KMS("CRTC fixup failed\n");
  6564. goto fail;
  6565. }
  6566. if (ret == RETRY) {
  6567. if (WARN(!retry, "loop in pipe configuration computation\n")) {
  6568. ret = -EINVAL;
  6569. goto fail;
  6570. }
  6571. DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
  6572. retry = false;
  6573. goto encoder_retry;
  6574. }
  6575. pipe_config->dither = pipe_config->pipe_bpp != plane_bpp;
  6576. DRM_DEBUG_KMS("plane bpp: %i, pipe bpp: %i, dithering: %i\n",
  6577. plane_bpp, pipe_config->pipe_bpp, pipe_config->dither);
  6578. return pipe_config;
  6579. fail:
  6580. kfree(pipe_config);
  6581. return ERR_PTR(ret);
  6582. }
  6583. /* Computes which crtcs are affected and sets the relevant bits in the mask. For
  6584. * simplicity we use the crtc's pipe number (because it's easier to obtain). */
  6585. static void
  6586. intel_modeset_affected_pipes(struct drm_crtc *crtc, unsigned *modeset_pipes,
  6587. unsigned *prepare_pipes, unsigned *disable_pipes)
  6588. {
  6589. struct intel_crtc *intel_crtc;
  6590. struct drm_device *dev = crtc->dev;
  6591. struct intel_encoder *encoder;
  6592. struct intel_connector *connector;
  6593. struct drm_crtc *tmp_crtc;
  6594. *disable_pipes = *modeset_pipes = *prepare_pipes = 0;
  6595. /* Check which crtcs have changed outputs connected to them, these need
  6596. * to be part of the prepare_pipes mask. We don't (yet) support global
  6597. * modeset across multiple crtcs, so modeset_pipes will only have one
  6598. * bit set at most. */
  6599. list_for_each_entry(connector, &dev->mode_config.connector_list,
  6600. base.head) {
  6601. if (connector->base.encoder == &connector->new_encoder->base)
  6602. continue;
  6603. if (connector->base.encoder) {
  6604. tmp_crtc = connector->base.encoder->crtc;
  6605. *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
  6606. }
  6607. if (connector->new_encoder)
  6608. *prepare_pipes |=
  6609. 1 << connector->new_encoder->new_crtc->pipe;
  6610. }
  6611. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  6612. base.head) {
  6613. if (encoder->base.crtc == &encoder->new_crtc->base)
  6614. continue;
  6615. if (encoder->base.crtc) {
  6616. tmp_crtc = encoder->base.crtc;
  6617. *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
  6618. }
  6619. if (encoder->new_crtc)
  6620. *prepare_pipes |= 1 << encoder->new_crtc->pipe;
  6621. }
  6622. /* Check for any pipes that will be fully disabled ... */
  6623. list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
  6624. base.head) {
  6625. bool used = false;
  6626. /* Don't try to disable disabled crtcs. */
  6627. if (!intel_crtc->base.enabled)
  6628. continue;
  6629. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  6630. base.head) {
  6631. if (encoder->new_crtc == intel_crtc)
  6632. used = true;
  6633. }
  6634. if (!used)
  6635. *disable_pipes |= 1 << intel_crtc->pipe;
  6636. }
  6637. /* set_mode is also used to update properties on life display pipes. */
  6638. intel_crtc = to_intel_crtc(crtc);
  6639. if (crtc->enabled)
  6640. *prepare_pipes |= 1 << intel_crtc->pipe;
  6641. /*
  6642. * For simplicity do a full modeset on any pipe where the output routing
  6643. * changed. We could be more clever, but that would require us to be
  6644. * more careful with calling the relevant encoder->mode_set functions.
  6645. */
  6646. if (*prepare_pipes)
  6647. *modeset_pipes = *prepare_pipes;
  6648. /* ... and mask these out. */
  6649. *modeset_pipes &= ~(*disable_pipes);
  6650. *prepare_pipes &= ~(*disable_pipes);
  6651. /*
  6652. * HACK: We don't (yet) fully support global modesets. intel_set_config
  6653. * obies this rule, but the modeset restore mode of
  6654. * intel_modeset_setup_hw_state does not.
  6655. */
  6656. *modeset_pipes &= 1 << intel_crtc->pipe;
  6657. *prepare_pipes &= 1 << intel_crtc->pipe;
  6658. DRM_DEBUG_KMS("set mode pipe masks: modeset: %x, prepare: %x, disable: %x\n",
  6659. *modeset_pipes, *prepare_pipes, *disable_pipes);
  6660. }
  6661. static bool intel_crtc_in_use(struct drm_crtc *crtc)
  6662. {
  6663. struct drm_encoder *encoder;
  6664. struct drm_device *dev = crtc->dev;
  6665. list_for_each_entry(encoder, &dev->mode_config.encoder_list, head)
  6666. if (encoder->crtc == crtc)
  6667. return true;
  6668. return false;
  6669. }
  6670. static void
  6671. intel_modeset_update_state(struct drm_device *dev, unsigned prepare_pipes)
  6672. {
  6673. struct intel_encoder *intel_encoder;
  6674. struct intel_crtc *intel_crtc;
  6675. struct drm_connector *connector;
  6676. list_for_each_entry(intel_encoder, &dev->mode_config.encoder_list,
  6677. base.head) {
  6678. if (!intel_encoder->base.crtc)
  6679. continue;
  6680. intel_crtc = to_intel_crtc(intel_encoder->base.crtc);
  6681. if (prepare_pipes & (1 << intel_crtc->pipe))
  6682. intel_encoder->connectors_active = false;
  6683. }
  6684. intel_modeset_commit_output_state(dev);
  6685. /* Update computed state. */
  6686. list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
  6687. base.head) {
  6688. intel_crtc->base.enabled = intel_crtc_in_use(&intel_crtc->base);
  6689. }
  6690. list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
  6691. if (!connector->encoder || !connector->encoder->crtc)
  6692. continue;
  6693. intel_crtc = to_intel_crtc(connector->encoder->crtc);
  6694. if (prepare_pipes & (1 << intel_crtc->pipe)) {
  6695. struct drm_property *dpms_property =
  6696. dev->mode_config.dpms_property;
  6697. connector->dpms = DRM_MODE_DPMS_ON;
  6698. drm_object_property_set_value(&connector->base,
  6699. dpms_property,
  6700. DRM_MODE_DPMS_ON);
  6701. intel_encoder = to_intel_encoder(connector->encoder);
  6702. intel_encoder->connectors_active = true;
  6703. }
  6704. }
  6705. }
  6706. #define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
  6707. list_for_each_entry((intel_crtc), \
  6708. &(dev)->mode_config.crtc_list, \
  6709. base.head) \
  6710. if (mask & (1 <<(intel_crtc)->pipe))
  6711. static bool
  6712. intel_pipe_config_compare(struct drm_device *dev,
  6713. struct intel_crtc_config *current_config,
  6714. struct intel_crtc_config *pipe_config)
  6715. {
  6716. #define PIPE_CONF_CHECK_I(name) \
  6717. if (current_config->name != pipe_config->name) { \
  6718. DRM_ERROR("mismatch in " #name " " \
  6719. "(expected %i, found %i)\n", \
  6720. current_config->name, \
  6721. pipe_config->name); \
  6722. return false; \
  6723. }
  6724. #define PIPE_CONF_CHECK_FLAGS(name, mask) \
  6725. if ((current_config->name ^ pipe_config->name) & (mask)) { \
  6726. DRM_ERROR("mismatch in " #name " " \
  6727. "(expected %i, found %i)\n", \
  6728. current_config->name & (mask), \
  6729. pipe_config->name & (mask)); \
  6730. return false; \
  6731. }
  6732. PIPE_CONF_CHECK_I(cpu_transcoder);
  6733. PIPE_CONF_CHECK_I(has_pch_encoder);
  6734. PIPE_CONF_CHECK_I(fdi_lanes);
  6735. PIPE_CONF_CHECK_I(fdi_m_n.gmch_m);
  6736. PIPE_CONF_CHECK_I(fdi_m_n.gmch_n);
  6737. PIPE_CONF_CHECK_I(fdi_m_n.link_m);
  6738. PIPE_CONF_CHECK_I(fdi_m_n.link_n);
  6739. PIPE_CONF_CHECK_I(fdi_m_n.tu);
  6740. PIPE_CONF_CHECK_I(adjusted_mode.crtc_hdisplay);
  6741. PIPE_CONF_CHECK_I(adjusted_mode.crtc_htotal);
  6742. PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_start);
  6743. PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_end);
  6744. PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_start);
  6745. PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_end);
  6746. PIPE_CONF_CHECK_I(adjusted_mode.crtc_vdisplay);
  6747. PIPE_CONF_CHECK_I(adjusted_mode.crtc_vtotal);
  6748. PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_start);
  6749. PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_end);
  6750. PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_start);
  6751. PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_end);
  6752. PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
  6753. DRM_MODE_FLAG_INTERLACE);
  6754. PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
  6755. DRM_MODE_FLAG_PHSYNC);
  6756. PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
  6757. DRM_MODE_FLAG_NHSYNC);
  6758. PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
  6759. DRM_MODE_FLAG_PVSYNC);
  6760. PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
  6761. DRM_MODE_FLAG_NVSYNC);
  6762. PIPE_CONF_CHECK_I(requested_mode.hdisplay);
  6763. PIPE_CONF_CHECK_I(requested_mode.vdisplay);
  6764. PIPE_CONF_CHECK_I(gmch_pfit.control);
  6765. /* pfit ratios are autocomputed by the hw on gen4+ */
  6766. if (INTEL_INFO(dev)->gen < 4)
  6767. PIPE_CONF_CHECK_I(gmch_pfit.pgm_ratios);
  6768. PIPE_CONF_CHECK_I(gmch_pfit.lvds_border_bits);
  6769. PIPE_CONF_CHECK_I(pch_pfit.pos);
  6770. PIPE_CONF_CHECK_I(pch_pfit.size);
  6771. PIPE_CONF_CHECK_I(ips_enabled);
  6772. #undef PIPE_CONF_CHECK_I
  6773. #undef PIPE_CONF_CHECK_FLAGS
  6774. return true;
  6775. }
  6776. void
  6777. intel_modeset_check_state(struct drm_device *dev)
  6778. {
  6779. drm_i915_private_t *dev_priv = dev->dev_private;
  6780. struct intel_crtc *crtc;
  6781. struct intel_encoder *encoder;
  6782. struct intel_connector *connector;
  6783. struct intel_crtc_config pipe_config;
  6784. list_for_each_entry(connector, &dev->mode_config.connector_list,
  6785. base.head) {
  6786. /* This also checks the encoder/connector hw state with the
  6787. * ->get_hw_state callbacks. */
  6788. intel_connector_check_state(connector);
  6789. WARN(&connector->new_encoder->base != connector->base.encoder,
  6790. "connector's staged encoder doesn't match current encoder\n");
  6791. }
  6792. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  6793. base.head) {
  6794. bool enabled = false;
  6795. bool active = false;
  6796. enum pipe pipe, tracked_pipe;
  6797. DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
  6798. encoder->base.base.id,
  6799. drm_get_encoder_name(&encoder->base));
  6800. WARN(&encoder->new_crtc->base != encoder->base.crtc,
  6801. "encoder's stage crtc doesn't match current crtc\n");
  6802. WARN(encoder->connectors_active && !encoder->base.crtc,
  6803. "encoder's active_connectors set, but no crtc\n");
  6804. list_for_each_entry(connector, &dev->mode_config.connector_list,
  6805. base.head) {
  6806. if (connector->base.encoder != &encoder->base)
  6807. continue;
  6808. enabled = true;
  6809. if (connector->base.dpms != DRM_MODE_DPMS_OFF)
  6810. active = true;
  6811. }
  6812. WARN(!!encoder->base.crtc != enabled,
  6813. "encoder's enabled state mismatch "
  6814. "(expected %i, found %i)\n",
  6815. !!encoder->base.crtc, enabled);
  6816. WARN(active && !encoder->base.crtc,
  6817. "active encoder with no crtc\n");
  6818. WARN(encoder->connectors_active != active,
  6819. "encoder's computed active state doesn't match tracked active state "
  6820. "(expected %i, found %i)\n", active, encoder->connectors_active);
  6821. active = encoder->get_hw_state(encoder, &pipe);
  6822. WARN(active != encoder->connectors_active,
  6823. "encoder's hw state doesn't match sw tracking "
  6824. "(expected %i, found %i)\n",
  6825. encoder->connectors_active, active);
  6826. if (!encoder->base.crtc)
  6827. continue;
  6828. tracked_pipe = to_intel_crtc(encoder->base.crtc)->pipe;
  6829. WARN(active && pipe != tracked_pipe,
  6830. "active encoder's pipe doesn't match"
  6831. "(expected %i, found %i)\n",
  6832. tracked_pipe, pipe);
  6833. }
  6834. list_for_each_entry(crtc, &dev->mode_config.crtc_list,
  6835. base.head) {
  6836. bool enabled = false;
  6837. bool active = false;
  6838. memset(&pipe_config, 0, sizeof(pipe_config));
  6839. DRM_DEBUG_KMS("[CRTC:%d]\n",
  6840. crtc->base.base.id);
  6841. WARN(crtc->active && !crtc->base.enabled,
  6842. "active crtc, but not enabled in sw tracking\n");
  6843. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  6844. base.head) {
  6845. if (encoder->base.crtc != &crtc->base)
  6846. continue;
  6847. enabled = true;
  6848. if (encoder->connectors_active)
  6849. active = true;
  6850. if (encoder->get_config)
  6851. encoder->get_config(encoder, &pipe_config);
  6852. }
  6853. WARN(active != crtc->active,
  6854. "crtc's computed active state doesn't match tracked active state "
  6855. "(expected %i, found %i)\n", active, crtc->active);
  6856. WARN(enabled != crtc->base.enabled,
  6857. "crtc's computed enabled state doesn't match tracked enabled state "
  6858. "(expected %i, found %i)\n", enabled, crtc->base.enabled);
  6859. active = dev_priv->display.get_pipe_config(crtc,
  6860. &pipe_config);
  6861. WARN(crtc->active != active,
  6862. "crtc active state doesn't match with hw state "
  6863. "(expected %i, found %i)\n", crtc->active, active);
  6864. if (active &&
  6865. !intel_pipe_config_compare(dev, &crtc->config, &pipe_config)) {
  6866. WARN(1, "pipe state doesn't match!\n");
  6867. intel_dump_pipe_config(crtc, &pipe_config,
  6868. "[hw state]");
  6869. intel_dump_pipe_config(crtc, &crtc->config,
  6870. "[sw state]");
  6871. }
  6872. }
  6873. }
  6874. static int __intel_set_mode(struct drm_crtc *crtc,
  6875. struct drm_display_mode *mode,
  6876. int x, int y, struct drm_framebuffer *fb)
  6877. {
  6878. struct drm_device *dev = crtc->dev;
  6879. drm_i915_private_t *dev_priv = dev->dev_private;
  6880. struct drm_display_mode *saved_mode, *saved_hwmode;
  6881. struct intel_crtc_config *pipe_config = NULL;
  6882. struct intel_crtc *intel_crtc;
  6883. unsigned disable_pipes, prepare_pipes, modeset_pipes;
  6884. int ret = 0;
  6885. saved_mode = kmalloc(2 * sizeof(*saved_mode), GFP_KERNEL);
  6886. if (!saved_mode)
  6887. return -ENOMEM;
  6888. saved_hwmode = saved_mode + 1;
  6889. intel_modeset_affected_pipes(crtc, &modeset_pipes,
  6890. &prepare_pipes, &disable_pipes);
  6891. *saved_hwmode = crtc->hwmode;
  6892. *saved_mode = crtc->mode;
  6893. /* Hack: Because we don't (yet) support global modeset on multiple
  6894. * crtcs, we don't keep track of the new mode for more than one crtc.
  6895. * Hence simply check whether any bit is set in modeset_pipes in all the
  6896. * pieces of code that are not yet converted to deal with mutliple crtcs
  6897. * changing their mode at the same time. */
  6898. if (modeset_pipes) {
  6899. pipe_config = intel_modeset_pipe_config(crtc, fb, mode);
  6900. if (IS_ERR(pipe_config)) {
  6901. ret = PTR_ERR(pipe_config);
  6902. pipe_config = NULL;
  6903. goto out;
  6904. }
  6905. intel_dump_pipe_config(to_intel_crtc(crtc), pipe_config,
  6906. "[modeset]");
  6907. }
  6908. for_each_intel_crtc_masked(dev, disable_pipes, intel_crtc)
  6909. intel_crtc_disable(&intel_crtc->base);
  6910. for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
  6911. if (intel_crtc->base.enabled)
  6912. dev_priv->display.crtc_disable(&intel_crtc->base);
  6913. }
  6914. /* crtc->mode is already used by the ->mode_set callbacks, hence we need
  6915. * to set it here already despite that we pass it down the callchain.
  6916. */
  6917. if (modeset_pipes) {
  6918. crtc->mode = *mode;
  6919. /* mode_set/enable/disable functions rely on a correct pipe
  6920. * config. */
  6921. to_intel_crtc(crtc)->config = *pipe_config;
  6922. }
  6923. /* Only after disabling all output pipelines that will be changed can we
  6924. * update the the output configuration. */
  6925. intel_modeset_update_state(dev, prepare_pipes);
  6926. if (dev_priv->display.modeset_global_resources)
  6927. dev_priv->display.modeset_global_resources(dev);
  6928. /* Set up the DPLL and any encoders state that needs to adjust or depend
  6929. * on the DPLL.
  6930. */
  6931. for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
  6932. ret = intel_crtc_mode_set(&intel_crtc->base,
  6933. x, y, fb);
  6934. if (ret)
  6935. goto done;
  6936. }
  6937. /* Now enable the clocks, plane, pipe, and connectors that we set up. */
  6938. for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc)
  6939. dev_priv->display.crtc_enable(&intel_crtc->base);
  6940. if (modeset_pipes) {
  6941. /* Store real post-adjustment hardware mode. */
  6942. crtc->hwmode = pipe_config->adjusted_mode;
  6943. /* Calculate and store various constants which
  6944. * are later needed by vblank and swap-completion
  6945. * timestamping. They are derived from true hwmode.
  6946. */
  6947. drm_calc_timestamping_constants(crtc);
  6948. }
  6949. /* FIXME: add subpixel order */
  6950. done:
  6951. if (ret && crtc->enabled) {
  6952. crtc->hwmode = *saved_hwmode;
  6953. crtc->mode = *saved_mode;
  6954. }
  6955. out:
  6956. kfree(pipe_config);
  6957. kfree(saved_mode);
  6958. return ret;
  6959. }
  6960. int intel_set_mode(struct drm_crtc *crtc,
  6961. struct drm_display_mode *mode,
  6962. int x, int y, struct drm_framebuffer *fb)
  6963. {
  6964. int ret;
  6965. ret = __intel_set_mode(crtc, mode, x, y, fb);
  6966. if (ret == 0)
  6967. intel_modeset_check_state(crtc->dev);
  6968. return ret;
  6969. }
  6970. void intel_crtc_restore_mode(struct drm_crtc *crtc)
  6971. {
  6972. intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y, crtc->fb);
  6973. }
  6974. #undef for_each_intel_crtc_masked
  6975. static void intel_set_config_free(struct intel_set_config *config)
  6976. {
  6977. if (!config)
  6978. return;
  6979. kfree(config->save_connector_encoders);
  6980. kfree(config->save_encoder_crtcs);
  6981. kfree(config);
  6982. }
  6983. static int intel_set_config_save_state(struct drm_device *dev,
  6984. struct intel_set_config *config)
  6985. {
  6986. struct drm_encoder *encoder;
  6987. struct drm_connector *connector;
  6988. int count;
  6989. config->save_encoder_crtcs =
  6990. kcalloc(dev->mode_config.num_encoder,
  6991. sizeof(struct drm_crtc *), GFP_KERNEL);
  6992. if (!config->save_encoder_crtcs)
  6993. return -ENOMEM;
  6994. config->save_connector_encoders =
  6995. kcalloc(dev->mode_config.num_connector,
  6996. sizeof(struct drm_encoder *), GFP_KERNEL);
  6997. if (!config->save_connector_encoders)
  6998. return -ENOMEM;
  6999. /* Copy data. Note that driver private data is not affected.
  7000. * Should anything bad happen only the expected state is
  7001. * restored, not the drivers personal bookkeeping.
  7002. */
  7003. count = 0;
  7004. list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
  7005. config->save_encoder_crtcs[count++] = encoder->crtc;
  7006. }
  7007. count = 0;
  7008. list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
  7009. config->save_connector_encoders[count++] = connector->encoder;
  7010. }
  7011. return 0;
  7012. }
  7013. static void intel_set_config_restore_state(struct drm_device *dev,
  7014. struct intel_set_config *config)
  7015. {
  7016. struct intel_encoder *encoder;
  7017. struct intel_connector *connector;
  7018. int count;
  7019. count = 0;
  7020. list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
  7021. encoder->new_crtc =
  7022. to_intel_crtc(config->save_encoder_crtcs[count++]);
  7023. }
  7024. count = 0;
  7025. list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
  7026. connector->new_encoder =
  7027. to_intel_encoder(config->save_connector_encoders[count++]);
  7028. }
  7029. }
  7030. static void
  7031. intel_set_config_compute_mode_changes(struct drm_mode_set *set,
  7032. struct intel_set_config *config)
  7033. {
  7034. /* We should be able to check here if the fb has the same properties
  7035. * and then just flip_or_move it */
  7036. if (set->crtc->fb != set->fb) {
  7037. /* If we have no fb then treat it as a full mode set */
  7038. if (set->crtc->fb == NULL) {
  7039. DRM_DEBUG_KMS("crtc has no fb, full mode set\n");
  7040. config->mode_changed = true;
  7041. } else if (set->fb == NULL) {
  7042. config->mode_changed = true;
  7043. } else if (set->fb->pixel_format !=
  7044. set->crtc->fb->pixel_format) {
  7045. config->mode_changed = true;
  7046. } else
  7047. config->fb_changed = true;
  7048. }
  7049. if (set->fb && (set->x != set->crtc->x || set->y != set->crtc->y))
  7050. config->fb_changed = true;
  7051. if (set->mode && !drm_mode_equal(set->mode, &set->crtc->mode)) {
  7052. DRM_DEBUG_KMS("modes are different, full mode set\n");
  7053. drm_mode_debug_printmodeline(&set->crtc->mode);
  7054. drm_mode_debug_printmodeline(set->mode);
  7055. config->mode_changed = true;
  7056. }
  7057. }
  7058. static int
  7059. intel_modeset_stage_output_state(struct drm_device *dev,
  7060. struct drm_mode_set *set,
  7061. struct intel_set_config *config)
  7062. {
  7063. struct drm_crtc *new_crtc;
  7064. struct intel_connector *connector;
  7065. struct intel_encoder *encoder;
  7066. int count, ro;
  7067. /* The upper layers ensure that we either disable a crtc or have a list
  7068. * of connectors. For paranoia, double-check this. */
  7069. WARN_ON(!set->fb && (set->num_connectors != 0));
  7070. WARN_ON(set->fb && (set->num_connectors == 0));
  7071. count = 0;
  7072. list_for_each_entry(connector, &dev->mode_config.connector_list,
  7073. base.head) {
  7074. /* Otherwise traverse passed in connector list and get encoders
  7075. * for them. */
  7076. for (ro = 0; ro < set->num_connectors; ro++) {
  7077. if (set->connectors[ro] == &connector->base) {
  7078. connector->new_encoder = connector->encoder;
  7079. break;
  7080. }
  7081. }
  7082. /* If we disable the crtc, disable all its connectors. Also, if
  7083. * the connector is on the changing crtc but not on the new
  7084. * connector list, disable it. */
  7085. if ((!set->fb || ro == set->num_connectors) &&
  7086. connector->base.encoder &&
  7087. connector->base.encoder->crtc == set->crtc) {
  7088. connector->new_encoder = NULL;
  7089. DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [NOCRTC]\n",
  7090. connector->base.base.id,
  7091. drm_get_connector_name(&connector->base));
  7092. }
  7093. if (&connector->new_encoder->base != connector->base.encoder) {
  7094. DRM_DEBUG_KMS("encoder changed, full mode switch\n");
  7095. config->mode_changed = true;
  7096. }
  7097. }
  7098. /* connector->new_encoder is now updated for all connectors. */
  7099. /* Update crtc of enabled connectors. */
  7100. count = 0;
  7101. list_for_each_entry(connector, &dev->mode_config.connector_list,
  7102. base.head) {
  7103. if (!connector->new_encoder)
  7104. continue;
  7105. new_crtc = connector->new_encoder->base.crtc;
  7106. for (ro = 0; ro < set->num_connectors; ro++) {
  7107. if (set->connectors[ro] == &connector->base)
  7108. new_crtc = set->crtc;
  7109. }
  7110. /* Make sure the new CRTC will work with the encoder */
  7111. if (!intel_encoder_crtc_ok(&connector->new_encoder->base,
  7112. new_crtc)) {
  7113. return -EINVAL;
  7114. }
  7115. connector->encoder->new_crtc = to_intel_crtc(new_crtc);
  7116. DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [CRTC:%d]\n",
  7117. connector->base.base.id,
  7118. drm_get_connector_name(&connector->base),
  7119. new_crtc->base.id);
  7120. }
  7121. /* Check for any encoders that needs to be disabled. */
  7122. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  7123. base.head) {
  7124. list_for_each_entry(connector,
  7125. &dev->mode_config.connector_list,
  7126. base.head) {
  7127. if (connector->new_encoder == encoder) {
  7128. WARN_ON(!connector->new_encoder->new_crtc);
  7129. goto next_encoder;
  7130. }
  7131. }
  7132. encoder->new_crtc = NULL;
  7133. next_encoder:
  7134. /* Only now check for crtc changes so we don't miss encoders
  7135. * that will be disabled. */
  7136. if (&encoder->new_crtc->base != encoder->base.crtc) {
  7137. DRM_DEBUG_KMS("crtc changed, full mode switch\n");
  7138. config->mode_changed = true;
  7139. }
  7140. }
  7141. /* Now we've also updated encoder->new_crtc for all encoders. */
  7142. return 0;
  7143. }
  7144. static int intel_crtc_set_config(struct drm_mode_set *set)
  7145. {
  7146. struct drm_device *dev;
  7147. struct drm_mode_set save_set;
  7148. struct intel_set_config *config;
  7149. int ret;
  7150. BUG_ON(!set);
  7151. BUG_ON(!set->crtc);
  7152. BUG_ON(!set->crtc->helper_private);
  7153. /* Enforce sane interface api - has been abused by the fb helper. */
  7154. BUG_ON(!set->mode && set->fb);
  7155. BUG_ON(set->fb && set->num_connectors == 0);
  7156. if (set->fb) {
  7157. DRM_DEBUG_KMS("[CRTC:%d] [FB:%d] #connectors=%d (x y) (%i %i)\n",
  7158. set->crtc->base.id, set->fb->base.id,
  7159. (int)set->num_connectors, set->x, set->y);
  7160. } else {
  7161. DRM_DEBUG_KMS("[CRTC:%d] [NOFB]\n", set->crtc->base.id);
  7162. }
  7163. dev = set->crtc->dev;
  7164. ret = -ENOMEM;
  7165. config = kzalloc(sizeof(*config), GFP_KERNEL);
  7166. if (!config)
  7167. goto out_config;
  7168. ret = intel_set_config_save_state(dev, config);
  7169. if (ret)
  7170. goto out_config;
  7171. save_set.crtc = set->crtc;
  7172. save_set.mode = &set->crtc->mode;
  7173. save_set.x = set->crtc->x;
  7174. save_set.y = set->crtc->y;
  7175. save_set.fb = set->crtc->fb;
  7176. /* Compute whether we need a full modeset, only an fb base update or no
  7177. * change at all. In the future we might also check whether only the
  7178. * mode changed, e.g. for LVDS where we only change the panel fitter in
  7179. * such cases. */
  7180. intel_set_config_compute_mode_changes(set, config);
  7181. ret = intel_modeset_stage_output_state(dev, set, config);
  7182. if (ret)
  7183. goto fail;
  7184. if (config->mode_changed) {
  7185. ret = intel_set_mode(set->crtc, set->mode,
  7186. set->x, set->y, set->fb);
  7187. if (ret) {
  7188. DRM_ERROR("failed to set mode on [CRTC:%d], err = %d\n",
  7189. set->crtc->base.id, ret);
  7190. goto fail;
  7191. }
  7192. } else if (config->fb_changed) {
  7193. intel_crtc_wait_for_pending_flips(set->crtc);
  7194. ret = intel_pipe_set_base(set->crtc,
  7195. set->x, set->y, set->fb);
  7196. }
  7197. intel_set_config_free(config);
  7198. return 0;
  7199. fail:
  7200. intel_set_config_restore_state(dev, config);
  7201. /* Try to restore the config */
  7202. if (config->mode_changed &&
  7203. intel_set_mode(save_set.crtc, save_set.mode,
  7204. save_set.x, save_set.y, save_set.fb))
  7205. DRM_ERROR("failed to restore config after modeset failure\n");
  7206. out_config:
  7207. intel_set_config_free(config);
  7208. return ret;
  7209. }
  7210. static const struct drm_crtc_funcs intel_crtc_funcs = {
  7211. .cursor_set = intel_crtc_cursor_set,
  7212. .cursor_move = intel_crtc_cursor_move,
  7213. .gamma_set = intel_crtc_gamma_set,
  7214. .set_config = intel_crtc_set_config,
  7215. .destroy = intel_crtc_destroy,
  7216. .page_flip = intel_crtc_page_flip,
  7217. };
  7218. static void intel_cpu_pll_init(struct drm_device *dev)
  7219. {
  7220. if (HAS_DDI(dev))
  7221. intel_ddi_pll_init(dev);
  7222. }
  7223. static void intel_pch_pll_init(struct drm_device *dev)
  7224. {
  7225. drm_i915_private_t *dev_priv = dev->dev_private;
  7226. int i;
  7227. if (dev_priv->num_pch_pll == 0) {
  7228. DRM_DEBUG_KMS("No PCH PLLs on this hardware, skipping initialisation\n");
  7229. return;
  7230. }
  7231. for (i = 0; i < dev_priv->num_pch_pll; i++) {
  7232. dev_priv->pch_plls[i].pll_reg = _PCH_DPLL(i);
  7233. dev_priv->pch_plls[i].fp0_reg = _PCH_FP0(i);
  7234. dev_priv->pch_plls[i].fp1_reg = _PCH_FP1(i);
  7235. }
  7236. }
  7237. static void intel_crtc_init(struct drm_device *dev, int pipe)
  7238. {
  7239. drm_i915_private_t *dev_priv = dev->dev_private;
  7240. struct intel_crtc *intel_crtc;
  7241. int i;
  7242. intel_crtc = kzalloc(sizeof(struct intel_crtc) + (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL);
  7243. if (intel_crtc == NULL)
  7244. return;
  7245. drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
  7246. drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
  7247. for (i = 0; i < 256; i++) {
  7248. intel_crtc->lut_r[i] = i;
  7249. intel_crtc->lut_g[i] = i;
  7250. intel_crtc->lut_b[i] = i;
  7251. }
  7252. /* Swap pipes & planes for FBC on pre-965 */
  7253. intel_crtc->pipe = pipe;
  7254. intel_crtc->plane = pipe;
  7255. if (IS_MOBILE(dev) && IS_GEN3(dev)) {
  7256. DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
  7257. intel_crtc->plane = !pipe;
  7258. }
  7259. BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
  7260. dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
  7261. dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
  7262. dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
  7263. drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
  7264. }
  7265. int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
  7266. struct drm_file *file)
  7267. {
  7268. struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
  7269. struct drm_mode_object *drmmode_obj;
  7270. struct intel_crtc *crtc;
  7271. if (!drm_core_check_feature(dev, DRIVER_MODESET))
  7272. return -ENODEV;
  7273. drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
  7274. DRM_MODE_OBJECT_CRTC);
  7275. if (!drmmode_obj) {
  7276. DRM_ERROR("no such CRTC id\n");
  7277. return -EINVAL;
  7278. }
  7279. crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
  7280. pipe_from_crtc_id->pipe = crtc->pipe;
  7281. return 0;
  7282. }
  7283. static int intel_encoder_clones(struct intel_encoder *encoder)
  7284. {
  7285. struct drm_device *dev = encoder->base.dev;
  7286. struct intel_encoder *source_encoder;
  7287. int index_mask = 0;
  7288. int entry = 0;
  7289. list_for_each_entry(source_encoder,
  7290. &dev->mode_config.encoder_list, base.head) {
  7291. if (encoder == source_encoder)
  7292. index_mask |= (1 << entry);
  7293. /* Intel hw has only one MUX where enocoders could be cloned. */
  7294. if (encoder->cloneable && source_encoder->cloneable)
  7295. index_mask |= (1 << entry);
  7296. entry++;
  7297. }
  7298. return index_mask;
  7299. }
  7300. static bool has_edp_a(struct drm_device *dev)
  7301. {
  7302. struct drm_i915_private *dev_priv = dev->dev_private;
  7303. if (!IS_MOBILE(dev))
  7304. return false;
  7305. if ((I915_READ(DP_A) & DP_DETECTED) == 0)
  7306. return false;
  7307. if (IS_GEN5(dev) &&
  7308. (I915_READ(ILK_DISPLAY_CHICKEN_FUSES) & ILK_eDP_A_DISABLE))
  7309. return false;
  7310. return true;
  7311. }
  7312. static void intel_setup_outputs(struct drm_device *dev)
  7313. {
  7314. struct drm_i915_private *dev_priv = dev->dev_private;
  7315. struct intel_encoder *encoder;
  7316. bool dpd_is_edp = false;
  7317. bool has_lvds;
  7318. has_lvds = intel_lvds_init(dev);
  7319. if (!has_lvds && !HAS_PCH_SPLIT(dev)) {
  7320. /* disable the panel fitter on everything but LVDS */
  7321. I915_WRITE(PFIT_CONTROL, 0);
  7322. }
  7323. if (!IS_ULT(dev))
  7324. intel_crt_init(dev);
  7325. if (HAS_DDI(dev)) {
  7326. int found;
  7327. /* Haswell uses DDI functions to detect digital outputs */
  7328. found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED;
  7329. /* DDI A only supports eDP */
  7330. if (found)
  7331. intel_ddi_init(dev, PORT_A);
  7332. /* DDI B, C and D detection is indicated by the SFUSE_STRAP
  7333. * register */
  7334. found = I915_READ(SFUSE_STRAP);
  7335. if (found & SFUSE_STRAP_DDIB_DETECTED)
  7336. intel_ddi_init(dev, PORT_B);
  7337. if (found & SFUSE_STRAP_DDIC_DETECTED)
  7338. intel_ddi_init(dev, PORT_C);
  7339. if (found & SFUSE_STRAP_DDID_DETECTED)
  7340. intel_ddi_init(dev, PORT_D);
  7341. } else if (HAS_PCH_SPLIT(dev)) {
  7342. int found;
  7343. dpd_is_edp = intel_dpd_is_edp(dev);
  7344. if (has_edp_a(dev))
  7345. intel_dp_init(dev, DP_A, PORT_A);
  7346. if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
  7347. /* PCH SDVOB multiplex with HDMIB */
  7348. found = intel_sdvo_init(dev, PCH_SDVOB, true);
  7349. if (!found)
  7350. intel_hdmi_init(dev, PCH_HDMIB, PORT_B);
  7351. if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
  7352. intel_dp_init(dev, PCH_DP_B, PORT_B);
  7353. }
  7354. if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
  7355. intel_hdmi_init(dev, PCH_HDMIC, PORT_C);
  7356. if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
  7357. intel_hdmi_init(dev, PCH_HDMID, PORT_D);
  7358. if (I915_READ(PCH_DP_C) & DP_DETECTED)
  7359. intel_dp_init(dev, PCH_DP_C, PORT_C);
  7360. if (I915_READ(PCH_DP_D) & DP_DETECTED)
  7361. intel_dp_init(dev, PCH_DP_D, PORT_D);
  7362. } else if (IS_VALLEYVIEW(dev)) {
  7363. /* Check for built-in panel first. Shares lanes with HDMI on SDVOC */
  7364. if (I915_READ(VLV_DISPLAY_BASE + DP_C) & DP_DETECTED)
  7365. intel_dp_init(dev, VLV_DISPLAY_BASE + DP_C, PORT_C);
  7366. if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIB) & SDVO_DETECTED) {
  7367. intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIB,
  7368. PORT_B);
  7369. if (I915_READ(VLV_DISPLAY_BASE + DP_B) & DP_DETECTED)
  7370. intel_dp_init(dev, VLV_DISPLAY_BASE + DP_B, PORT_B);
  7371. }
  7372. } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
  7373. bool found = false;
  7374. if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
  7375. DRM_DEBUG_KMS("probing SDVOB\n");
  7376. found = intel_sdvo_init(dev, GEN3_SDVOB, true);
  7377. if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
  7378. DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
  7379. intel_hdmi_init(dev, GEN4_HDMIB, PORT_B);
  7380. }
  7381. if (!found && SUPPORTS_INTEGRATED_DP(dev))
  7382. intel_dp_init(dev, DP_B, PORT_B);
  7383. }
  7384. /* Before G4X SDVOC doesn't have its own detect register */
  7385. if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
  7386. DRM_DEBUG_KMS("probing SDVOC\n");
  7387. found = intel_sdvo_init(dev, GEN3_SDVOC, false);
  7388. }
  7389. if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
  7390. if (SUPPORTS_INTEGRATED_HDMI(dev)) {
  7391. DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
  7392. intel_hdmi_init(dev, GEN4_HDMIC, PORT_C);
  7393. }
  7394. if (SUPPORTS_INTEGRATED_DP(dev))
  7395. intel_dp_init(dev, DP_C, PORT_C);
  7396. }
  7397. if (SUPPORTS_INTEGRATED_DP(dev) &&
  7398. (I915_READ(DP_D) & DP_DETECTED))
  7399. intel_dp_init(dev, DP_D, PORT_D);
  7400. } else if (IS_GEN2(dev))
  7401. intel_dvo_init(dev);
  7402. if (SUPPORTS_TV(dev))
  7403. intel_tv_init(dev);
  7404. list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
  7405. encoder->base.possible_crtcs = encoder->crtc_mask;
  7406. encoder->base.possible_clones =
  7407. intel_encoder_clones(encoder);
  7408. }
  7409. intel_init_pch_refclk(dev);
  7410. drm_helper_move_panel_connectors_to_head(dev);
  7411. }
  7412. static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
  7413. {
  7414. struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
  7415. drm_framebuffer_cleanup(fb);
  7416. drm_gem_object_unreference_unlocked(&intel_fb->obj->base);
  7417. kfree(intel_fb);
  7418. }
  7419. static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
  7420. struct drm_file *file,
  7421. unsigned int *handle)
  7422. {
  7423. struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
  7424. struct drm_i915_gem_object *obj = intel_fb->obj;
  7425. return drm_gem_handle_create(file, &obj->base, handle);
  7426. }
  7427. static const struct drm_framebuffer_funcs intel_fb_funcs = {
  7428. .destroy = intel_user_framebuffer_destroy,
  7429. .create_handle = intel_user_framebuffer_create_handle,
  7430. };
  7431. int intel_framebuffer_init(struct drm_device *dev,
  7432. struct intel_framebuffer *intel_fb,
  7433. struct drm_mode_fb_cmd2 *mode_cmd,
  7434. struct drm_i915_gem_object *obj)
  7435. {
  7436. int ret;
  7437. if (obj->tiling_mode == I915_TILING_Y) {
  7438. DRM_DEBUG("hardware does not support tiling Y\n");
  7439. return -EINVAL;
  7440. }
  7441. if (mode_cmd->pitches[0] & 63) {
  7442. DRM_DEBUG("pitch (%d) must be at least 64 byte aligned\n",
  7443. mode_cmd->pitches[0]);
  7444. return -EINVAL;
  7445. }
  7446. /* FIXME <= Gen4 stride limits are bit unclear */
  7447. if (mode_cmd->pitches[0] > 32768) {
  7448. DRM_DEBUG("pitch (%d) must be at less than 32768\n",
  7449. mode_cmd->pitches[0]);
  7450. return -EINVAL;
  7451. }
  7452. if (obj->tiling_mode != I915_TILING_NONE &&
  7453. mode_cmd->pitches[0] != obj->stride) {
  7454. DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
  7455. mode_cmd->pitches[0], obj->stride);
  7456. return -EINVAL;
  7457. }
  7458. /* Reject formats not supported by any plane early. */
  7459. switch (mode_cmd->pixel_format) {
  7460. case DRM_FORMAT_C8:
  7461. case DRM_FORMAT_RGB565:
  7462. case DRM_FORMAT_XRGB8888:
  7463. case DRM_FORMAT_ARGB8888:
  7464. break;
  7465. case DRM_FORMAT_XRGB1555:
  7466. case DRM_FORMAT_ARGB1555:
  7467. if (INTEL_INFO(dev)->gen > 3) {
  7468. DRM_DEBUG("invalid format: 0x%08x\n", mode_cmd->pixel_format);
  7469. return -EINVAL;
  7470. }
  7471. break;
  7472. case DRM_FORMAT_XBGR8888:
  7473. case DRM_FORMAT_ABGR8888:
  7474. case DRM_FORMAT_XRGB2101010:
  7475. case DRM_FORMAT_ARGB2101010:
  7476. case DRM_FORMAT_XBGR2101010:
  7477. case DRM_FORMAT_ABGR2101010:
  7478. if (INTEL_INFO(dev)->gen < 4) {
  7479. DRM_DEBUG("invalid format: 0x%08x\n", mode_cmd->pixel_format);
  7480. return -EINVAL;
  7481. }
  7482. break;
  7483. case DRM_FORMAT_YUYV:
  7484. case DRM_FORMAT_UYVY:
  7485. case DRM_FORMAT_YVYU:
  7486. case DRM_FORMAT_VYUY:
  7487. if (INTEL_INFO(dev)->gen < 5) {
  7488. DRM_DEBUG("invalid format: 0x%08x\n", mode_cmd->pixel_format);
  7489. return -EINVAL;
  7490. }
  7491. break;
  7492. default:
  7493. DRM_DEBUG("unsupported pixel format 0x%08x\n", mode_cmd->pixel_format);
  7494. return -EINVAL;
  7495. }
  7496. /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
  7497. if (mode_cmd->offsets[0] != 0)
  7498. return -EINVAL;
  7499. drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
  7500. intel_fb->obj = obj;
  7501. ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
  7502. if (ret) {
  7503. DRM_ERROR("framebuffer init failed %d\n", ret);
  7504. return ret;
  7505. }
  7506. return 0;
  7507. }
  7508. static struct drm_framebuffer *
  7509. intel_user_framebuffer_create(struct drm_device *dev,
  7510. struct drm_file *filp,
  7511. struct drm_mode_fb_cmd2 *mode_cmd)
  7512. {
  7513. struct drm_i915_gem_object *obj;
  7514. obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
  7515. mode_cmd->handles[0]));
  7516. if (&obj->base == NULL)
  7517. return ERR_PTR(-ENOENT);
  7518. return intel_framebuffer_create(dev, mode_cmd, obj);
  7519. }
  7520. static const struct drm_mode_config_funcs intel_mode_funcs = {
  7521. .fb_create = intel_user_framebuffer_create,
  7522. .output_poll_changed = intel_fb_output_poll_changed,
  7523. };
  7524. /* Set up chip specific display functions */
  7525. static void intel_init_display(struct drm_device *dev)
  7526. {
  7527. struct drm_i915_private *dev_priv = dev->dev_private;
  7528. if (HAS_PCH_SPLIT(dev) || IS_G4X(dev))
  7529. dev_priv->display.find_dpll = g4x_find_best_dpll;
  7530. else if (IS_VALLEYVIEW(dev))
  7531. dev_priv->display.find_dpll = vlv_find_best_dpll;
  7532. else if (IS_PINEVIEW(dev))
  7533. dev_priv->display.find_dpll = pnv_find_best_dpll;
  7534. else
  7535. dev_priv->display.find_dpll = i9xx_find_best_dpll;
  7536. if (HAS_DDI(dev)) {
  7537. dev_priv->display.get_pipe_config = haswell_get_pipe_config;
  7538. dev_priv->display.crtc_mode_set = haswell_crtc_mode_set;
  7539. dev_priv->display.crtc_enable = haswell_crtc_enable;
  7540. dev_priv->display.crtc_disable = haswell_crtc_disable;
  7541. dev_priv->display.off = haswell_crtc_off;
  7542. dev_priv->display.update_plane = ironlake_update_plane;
  7543. } else if (HAS_PCH_SPLIT(dev)) {
  7544. dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
  7545. dev_priv->display.crtc_mode_set = ironlake_crtc_mode_set;
  7546. dev_priv->display.crtc_enable = ironlake_crtc_enable;
  7547. dev_priv->display.crtc_disable = ironlake_crtc_disable;
  7548. dev_priv->display.off = ironlake_crtc_off;
  7549. dev_priv->display.update_plane = ironlake_update_plane;
  7550. } else if (IS_VALLEYVIEW(dev)) {
  7551. dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
  7552. dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
  7553. dev_priv->display.crtc_enable = valleyview_crtc_enable;
  7554. dev_priv->display.crtc_disable = i9xx_crtc_disable;
  7555. dev_priv->display.off = i9xx_crtc_off;
  7556. dev_priv->display.update_plane = i9xx_update_plane;
  7557. } else {
  7558. dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
  7559. dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
  7560. dev_priv->display.crtc_enable = i9xx_crtc_enable;
  7561. dev_priv->display.crtc_disable = i9xx_crtc_disable;
  7562. dev_priv->display.off = i9xx_crtc_off;
  7563. dev_priv->display.update_plane = i9xx_update_plane;
  7564. }
  7565. /* Returns the core display clock speed */
  7566. if (IS_VALLEYVIEW(dev))
  7567. dev_priv->display.get_display_clock_speed =
  7568. valleyview_get_display_clock_speed;
  7569. else if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
  7570. dev_priv->display.get_display_clock_speed =
  7571. i945_get_display_clock_speed;
  7572. else if (IS_I915G(dev))
  7573. dev_priv->display.get_display_clock_speed =
  7574. i915_get_display_clock_speed;
  7575. else if (IS_I945GM(dev) || IS_845G(dev) || IS_PINEVIEW_M(dev))
  7576. dev_priv->display.get_display_clock_speed =
  7577. i9xx_misc_get_display_clock_speed;
  7578. else if (IS_I915GM(dev))
  7579. dev_priv->display.get_display_clock_speed =
  7580. i915gm_get_display_clock_speed;
  7581. else if (IS_I865G(dev))
  7582. dev_priv->display.get_display_clock_speed =
  7583. i865_get_display_clock_speed;
  7584. else if (IS_I85X(dev))
  7585. dev_priv->display.get_display_clock_speed =
  7586. i855_get_display_clock_speed;
  7587. else /* 852, 830 */
  7588. dev_priv->display.get_display_clock_speed =
  7589. i830_get_display_clock_speed;
  7590. if (HAS_PCH_SPLIT(dev)) {
  7591. if (IS_GEN5(dev)) {
  7592. dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
  7593. dev_priv->display.write_eld = ironlake_write_eld;
  7594. } else if (IS_GEN6(dev)) {
  7595. dev_priv->display.fdi_link_train = gen6_fdi_link_train;
  7596. dev_priv->display.write_eld = ironlake_write_eld;
  7597. } else if (IS_IVYBRIDGE(dev)) {
  7598. /* FIXME: detect B0+ stepping and use auto training */
  7599. dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
  7600. dev_priv->display.write_eld = ironlake_write_eld;
  7601. dev_priv->display.modeset_global_resources =
  7602. ivb_modeset_global_resources;
  7603. } else if (IS_HASWELL(dev)) {
  7604. dev_priv->display.fdi_link_train = hsw_fdi_link_train;
  7605. dev_priv->display.write_eld = haswell_write_eld;
  7606. dev_priv->display.modeset_global_resources =
  7607. haswell_modeset_global_resources;
  7608. }
  7609. } else if (IS_G4X(dev)) {
  7610. dev_priv->display.write_eld = g4x_write_eld;
  7611. }
  7612. /* Default just returns -ENODEV to indicate unsupported */
  7613. dev_priv->display.queue_flip = intel_default_queue_flip;
  7614. switch (INTEL_INFO(dev)->gen) {
  7615. case 2:
  7616. dev_priv->display.queue_flip = intel_gen2_queue_flip;
  7617. break;
  7618. case 3:
  7619. dev_priv->display.queue_flip = intel_gen3_queue_flip;
  7620. break;
  7621. case 4:
  7622. case 5:
  7623. dev_priv->display.queue_flip = intel_gen4_queue_flip;
  7624. break;
  7625. case 6:
  7626. dev_priv->display.queue_flip = intel_gen6_queue_flip;
  7627. break;
  7628. case 7:
  7629. dev_priv->display.queue_flip = intel_gen7_queue_flip;
  7630. break;
  7631. }
  7632. }
  7633. /*
  7634. * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
  7635. * resume, or other times. This quirk makes sure that's the case for
  7636. * affected systems.
  7637. */
  7638. static void quirk_pipea_force(struct drm_device *dev)
  7639. {
  7640. struct drm_i915_private *dev_priv = dev->dev_private;
  7641. dev_priv->quirks |= QUIRK_PIPEA_FORCE;
  7642. DRM_INFO("applying pipe a force quirk\n");
  7643. }
  7644. /*
  7645. * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
  7646. */
  7647. static void quirk_ssc_force_disable(struct drm_device *dev)
  7648. {
  7649. struct drm_i915_private *dev_priv = dev->dev_private;
  7650. dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
  7651. DRM_INFO("applying lvds SSC disable quirk\n");
  7652. }
  7653. /*
  7654. * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
  7655. * brightness value
  7656. */
  7657. static void quirk_invert_brightness(struct drm_device *dev)
  7658. {
  7659. struct drm_i915_private *dev_priv = dev->dev_private;
  7660. dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
  7661. DRM_INFO("applying inverted panel brightness quirk\n");
  7662. }
  7663. struct intel_quirk {
  7664. int device;
  7665. int subsystem_vendor;
  7666. int subsystem_device;
  7667. void (*hook)(struct drm_device *dev);
  7668. };
  7669. /* For systems that don't have a meaningful PCI subdevice/subvendor ID */
  7670. struct intel_dmi_quirk {
  7671. void (*hook)(struct drm_device *dev);
  7672. const struct dmi_system_id (*dmi_id_list)[];
  7673. };
  7674. static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
  7675. {
  7676. DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
  7677. return 1;
  7678. }
  7679. static const struct intel_dmi_quirk intel_dmi_quirks[] = {
  7680. {
  7681. .dmi_id_list = &(const struct dmi_system_id[]) {
  7682. {
  7683. .callback = intel_dmi_reverse_brightness,
  7684. .ident = "NCR Corporation",
  7685. .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
  7686. DMI_MATCH(DMI_PRODUCT_NAME, ""),
  7687. },
  7688. },
  7689. { } /* terminating entry */
  7690. },
  7691. .hook = quirk_invert_brightness,
  7692. },
  7693. };
  7694. static struct intel_quirk intel_quirks[] = {
  7695. /* HP Mini needs pipe A force quirk (LP: #322104) */
  7696. { 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
  7697. /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
  7698. { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
  7699. /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
  7700. { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
  7701. /* 830/845 need to leave pipe A & dpll A up */
  7702. { 0x2562, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
  7703. { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
  7704. /* Lenovo U160 cannot use SSC on LVDS */
  7705. { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
  7706. /* Sony Vaio Y cannot use SSC on LVDS */
  7707. { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
  7708. /* Acer Aspire 5734Z must invert backlight brightness */
  7709. { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
  7710. /* Acer/eMachines G725 */
  7711. { 0x2a42, 0x1025, 0x0210, quirk_invert_brightness },
  7712. /* Acer/eMachines e725 */
  7713. { 0x2a42, 0x1025, 0x0212, quirk_invert_brightness },
  7714. /* Acer/Packard Bell NCL20 */
  7715. { 0x2a42, 0x1025, 0x034b, quirk_invert_brightness },
  7716. /* Acer Aspire 4736Z */
  7717. { 0x2a42, 0x1025, 0x0260, quirk_invert_brightness },
  7718. };
  7719. static void intel_init_quirks(struct drm_device *dev)
  7720. {
  7721. struct pci_dev *d = dev->pdev;
  7722. int i;
  7723. for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
  7724. struct intel_quirk *q = &intel_quirks[i];
  7725. if (d->device == q->device &&
  7726. (d->subsystem_vendor == q->subsystem_vendor ||
  7727. q->subsystem_vendor == PCI_ANY_ID) &&
  7728. (d->subsystem_device == q->subsystem_device ||
  7729. q->subsystem_device == PCI_ANY_ID))
  7730. q->hook(dev);
  7731. }
  7732. for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
  7733. if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
  7734. intel_dmi_quirks[i].hook(dev);
  7735. }
  7736. }
  7737. /* Disable the VGA plane that we never use */
  7738. static void i915_disable_vga(struct drm_device *dev)
  7739. {
  7740. struct drm_i915_private *dev_priv = dev->dev_private;
  7741. u8 sr1;
  7742. u32 vga_reg = i915_vgacntrl_reg(dev);
  7743. vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
  7744. outb(SR01, VGA_SR_INDEX);
  7745. sr1 = inb(VGA_SR_DATA);
  7746. outb(sr1 | 1<<5, VGA_SR_DATA);
  7747. vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
  7748. udelay(300);
  7749. I915_WRITE(vga_reg, VGA_DISP_DISABLE);
  7750. POSTING_READ(vga_reg);
  7751. }
  7752. void intel_modeset_init_hw(struct drm_device *dev)
  7753. {
  7754. intel_init_power_well(dev);
  7755. intel_prepare_ddi(dev);
  7756. intel_init_clock_gating(dev);
  7757. mutex_lock(&dev->struct_mutex);
  7758. intel_enable_gt_powersave(dev);
  7759. mutex_unlock(&dev->struct_mutex);
  7760. }
  7761. void intel_modeset_suspend_hw(struct drm_device *dev)
  7762. {
  7763. intel_suspend_hw(dev);
  7764. }
  7765. void intel_modeset_init(struct drm_device *dev)
  7766. {
  7767. struct drm_i915_private *dev_priv = dev->dev_private;
  7768. int i, j, ret;
  7769. drm_mode_config_init(dev);
  7770. dev->mode_config.min_width = 0;
  7771. dev->mode_config.min_height = 0;
  7772. dev->mode_config.preferred_depth = 24;
  7773. dev->mode_config.prefer_shadow = 1;
  7774. dev->mode_config.funcs = &intel_mode_funcs;
  7775. intel_init_quirks(dev);
  7776. intel_init_pm(dev);
  7777. if (INTEL_INFO(dev)->num_pipes == 0)
  7778. return;
  7779. intel_init_display(dev);
  7780. if (IS_GEN2(dev)) {
  7781. dev->mode_config.max_width = 2048;
  7782. dev->mode_config.max_height = 2048;
  7783. } else if (IS_GEN3(dev)) {
  7784. dev->mode_config.max_width = 4096;
  7785. dev->mode_config.max_height = 4096;
  7786. } else {
  7787. dev->mode_config.max_width = 8192;
  7788. dev->mode_config.max_height = 8192;
  7789. }
  7790. dev->mode_config.fb_base = dev_priv->gtt.mappable_base;
  7791. DRM_DEBUG_KMS("%d display pipe%s available.\n",
  7792. INTEL_INFO(dev)->num_pipes,
  7793. INTEL_INFO(dev)->num_pipes > 1 ? "s" : "");
  7794. for (i = 0; i < INTEL_INFO(dev)->num_pipes; i++) {
  7795. intel_crtc_init(dev, i);
  7796. for (j = 0; j < dev_priv->num_plane; j++) {
  7797. ret = intel_plane_init(dev, i, j);
  7798. if (ret)
  7799. DRM_DEBUG_KMS("pipe %c sprite %c init failed: %d\n",
  7800. pipe_name(i), sprite_name(i, j), ret);
  7801. }
  7802. }
  7803. intel_cpu_pll_init(dev);
  7804. intel_pch_pll_init(dev);
  7805. /* Just disable it once at startup */
  7806. i915_disable_vga(dev);
  7807. intel_setup_outputs(dev);
  7808. /* Just in case the BIOS is doing something questionable. */
  7809. intel_disable_fbc(dev);
  7810. }
  7811. static void
  7812. intel_connector_break_all_links(struct intel_connector *connector)
  7813. {
  7814. connector->base.dpms = DRM_MODE_DPMS_OFF;
  7815. connector->base.encoder = NULL;
  7816. connector->encoder->connectors_active = false;
  7817. connector->encoder->base.crtc = NULL;
  7818. }
  7819. static void intel_enable_pipe_a(struct drm_device *dev)
  7820. {
  7821. struct intel_connector *connector;
  7822. struct drm_connector *crt = NULL;
  7823. struct intel_load_detect_pipe load_detect_temp;
  7824. /* We can't just switch on the pipe A, we need to set things up with a
  7825. * proper mode and output configuration. As a gross hack, enable pipe A
  7826. * by enabling the load detect pipe once. */
  7827. list_for_each_entry(connector,
  7828. &dev->mode_config.connector_list,
  7829. base.head) {
  7830. if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
  7831. crt = &connector->base;
  7832. break;
  7833. }
  7834. }
  7835. if (!crt)
  7836. return;
  7837. if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp))
  7838. intel_release_load_detect_pipe(crt, &load_detect_temp);
  7839. }
  7840. static bool
  7841. intel_check_plane_mapping(struct intel_crtc *crtc)
  7842. {
  7843. struct drm_device *dev = crtc->base.dev;
  7844. struct drm_i915_private *dev_priv = dev->dev_private;
  7845. u32 reg, val;
  7846. if (INTEL_INFO(dev)->num_pipes == 1)
  7847. return true;
  7848. reg = DSPCNTR(!crtc->plane);
  7849. val = I915_READ(reg);
  7850. if ((val & DISPLAY_PLANE_ENABLE) &&
  7851. (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
  7852. return false;
  7853. return true;
  7854. }
  7855. static void intel_sanitize_crtc(struct intel_crtc *crtc)
  7856. {
  7857. struct drm_device *dev = crtc->base.dev;
  7858. struct drm_i915_private *dev_priv = dev->dev_private;
  7859. u32 reg;
  7860. /* Clear any frame start delays used for debugging left by the BIOS */
  7861. reg = PIPECONF(crtc->config.cpu_transcoder);
  7862. I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
  7863. /* We need to sanitize the plane -> pipe mapping first because this will
  7864. * disable the crtc (and hence change the state) if it is wrong. Note
  7865. * that gen4+ has a fixed plane -> pipe mapping. */
  7866. if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
  7867. struct intel_connector *connector;
  7868. bool plane;
  7869. DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
  7870. crtc->base.base.id);
  7871. /* Pipe has the wrong plane attached and the plane is active.
  7872. * Temporarily change the plane mapping and disable everything
  7873. * ... */
  7874. plane = crtc->plane;
  7875. crtc->plane = !plane;
  7876. dev_priv->display.crtc_disable(&crtc->base);
  7877. crtc->plane = plane;
  7878. /* ... and break all links. */
  7879. list_for_each_entry(connector, &dev->mode_config.connector_list,
  7880. base.head) {
  7881. if (connector->encoder->base.crtc != &crtc->base)
  7882. continue;
  7883. intel_connector_break_all_links(connector);
  7884. }
  7885. WARN_ON(crtc->active);
  7886. crtc->base.enabled = false;
  7887. }
  7888. if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
  7889. crtc->pipe == PIPE_A && !crtc->active) {
  7890. /* BIOS forgot to enable pipe A, this mostly happens after
  7891. * resume. Force-enable the pipe to fix this, the update_dpms
  7892. * call below we restore the pipe to the right state, but leave
  7893. * the required bits on. */
  7894. intel_enable_pipe_a(dev);
  7895. }
  7896. /* Adjust the state of the output pipe according to whether we
  7897. * have active connectors/encoders. */
  7898. intel_crtc_update_dpms(&crtc->base);
  7899. if (crtc->active != crtc->base.enabled) {
  7900. struct intel_encoder *encoder;
  7901. /* This can happen either due to bugs in the get_hw_state
  7902. * functions or because the pipe is force-enabled due to the
  7903. * pipe A quirk. */
  7904. DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
  7905. crtc->base.base.id,
  7906. crtc->base.enabled ? "enabled" : "disabled",
  7907. crtc->active ? "enabled" : "disabled");
  7908. crtc->base.enabled = crtc->active;
  7909. /* Because we only establish the connector -> encoder ->
  7910. * crtc links if something is active, this means the
  7911. * crtc is now deactivated. Break the links. connector
  7912. * -> encoder links are only establish when things are
  7913. * actually up, hence no need to break them. */
  7914. WARN_ON(crtc->active);
  7915. for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
  7916. WARN_ON(encoder->connectors_active);
  7917. encoder->base.crtc = NULL;
  7918. }
  7919. }
  7920. }
  7921. static void intel_sanitize_encoder(struct intel_encoder *encoder)
  7922. {
  7923. struct intel_connector *connector;
  7924. struct drm_device *dev = encoder->base.dev;
  7925. /* We need to check both for a crtc link (meaning that the
  7926. * encoder is active and trying to read from a pipe) and the
  7927. * pipe itself being active. */
  7928. bool has_active_crtc = encoder->base.crtc &&
  7929. to_intel_crtc(encoder->base.crtc)->active;
  7930. if (encoder->connectors_active && !has_active_crtc) {
  7931. DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
  7932. encoder->base.base.id,
  7933. drm_get_encoder_name(&encoder->base));
  7934. /* Connector is active, but has no active pipe. This is
  7935. * fallout from our resume register restoring. Disable
  7936. * the encoder manually again. */
  7937. if (encoder->base.crtc) {
  7938. DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
  7939. encoder->base.base.id,
  7940. drm_get_encoder_name(&encoder->base));
  7941. encoder->disable(encoder);
  7942. }
  7943. /* Inconsistent output/port/pipe state happens presumably due to
  7944. * a bug in one of the get_hw_state functions. Or someplace else
  7945. * in our code, like the register restore mess on resume. Clamp
  7946. * things to off as a safer default. */
  7947. list_for_each_entry(connector,
  7948. &dev->mode_config.connector_list,
  7949. base.head) {
  7950. if (connector->encoder != encoder)
  7951. continue;
  7952. intel_connector_break_all_links(connector);
  7953. }
  7954. }
  7955. /* Enabled encoders without active connectors will be fixed in
  7956. * the crtc fixup. */
  7957. }
  7958. void i915_redisable_vga(struct drm_device *dev)
  7959. {
  7960. struct drm_i915_private *dev_priv = dev->dev_private;
  7961. u32 vga_reg = i915_vgacntrl_reg(dev);
  7962. if (I915_READ(vga_reg) != VGA_DISP_DISABLE) {
  7963. DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
  7964. i915_disable_vga(dev);
  7965. }
  7966. }
  7967. /* Scan out the current hw modeset state, sanitizes it and maps it into the drm
  7968. * and i915 state tracking structures. */
  7969. void intel_modeset_setup_hw_state(struct drm_device *dev,
  7970. bool force_restore)
  7971. {
  7972. struct drm_i915_private *dev_priv = dev->dev_private;
  7973. enum pipe pipe;
  7974. struct drm_plane *plane;
  7975. struct intel_crtc *crtc;
  7976. struct intel_encoder *encoder;
  7977. struct intel_connector *connector;
  7978. list_for_each_entry(crtc, &dev->mode_config.crtc_list,
  7979. base.head) {
  7980. memset(&crtc->config, 0, sizeof(crtc->config));
  7981. crtc->active = dev_priv->display.get_pipe_config(crtc,
  7982. &crtc->config);
  7983. crtc->base.enabled = crtc->active;
  7984. DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
  7985. crtc->base.base.id,
  7986. crtc->active ? "enabled" : "disabled");
  7987. }
  7988. if (HAS_DDI(dev))
  7989. intel_ddi_setup_hw_pll_state(dev);
  7990. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  7991. base.head) {
  7992. pipe = 0;
  7993. if (encoder->get_hw_state(encoder, &pipe)) {
  7994. crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
  7995. encoder->base.crtc = &crtc->base;
  7996. if (encoder->get_config)
  7997. encoder->get_config(encoder, &crtc->config);
  7998. } else {
  7999. encoder->base.crtc = NULL;
  8000. }
  8001. encoder->connectors_active = false;
  8002. DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe=%i\n",
  8003. encoder->base.base.id,
  8004. drm_get_encoder_name(&encoder->base),
  8005. encoder->base.crtc ? "enabled" : "disabled",
  8006. pipe);
  8007. }
  8008. list_for_each_entry(connector, &dev->mode_config.connector_list,
  8009. base.head) {
  8010. if (connector->get_hw_state(connector)) {
  8011. connector->base.dpms = DRM_MODE_DPMS_ON;
  8012. connector->encoder->connectors_active = true;
  8013. connector->base.encoder = &connector->encoder->base;
  8014. } else {
  8015. connector->base.dpms = DRM_MODE_DPMS_OFF;
  8016. connector->base.encoder = NULL;
  8017. }
  8018. DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
  8019. connector->base.base.id,
  8020. drm_get_connector_name(&connector->base),
  8021. connector->base.encoder ? "enabled" : "disabled");
  8022. }
  8023. /* HW state is read out, now we need to sanitize this mess. */
  8024. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  8025. base.head) {
  8026. intel_sanitize_encoder(encoder);
  8027. }
  8028. for_each_pipe(pipe) {
  8029. crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
  8030. intel_sanitize_crtc(crtc);
  8031. intel_dump_pipe_config(crtc, &crtc->config, "[setup_hw_state]");
  8032. }
  8033. if (force_restore) {
  8034. /*
  8035. * We need to use raw interfaces for restoring state to avoid
  8036. * checking (bogus) intermediate states.
  8037. */
  8038. for_each_pipe(pipe) {
  8039. struct drm_crtc *crtc =
  8040. dev_priv->pipe_to_crtc_mapping[pipe];
  8041. __intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y,
  8042. crtc->fb);
  8043. }
  8044. list_for_each_entry(plane, &dev->mode_config.plane_list, head)
  8045. intel_plane_restore(plane);
  8046. i915_redisable_vga(dev);
  8047. } else {
  8048. intel_modeset_update_staged_output_state(dev);
  8049. }
  8050. intel_modeset_check_state(dev);
  8051. drm_mode_config_reset(dev);
  8052. }
  8053. void intel_modeset_gem_init(struct drm_device *dev)
  8054. {
  8055. intel_modeset_init_hw(dev);
  8056. intel_setup_overlay(dev);
  8057. intel_modeset_setup_hw_state(dev, false);
  8058. }
  8059. void intel_modeset_cleanup(struct drm_device *dev)
  8060. {
  8061. struct drm_i915_private *dev_priv = dev->dev_private;
  8062. struct drm_crtc *crtc;
  8063. struct intel_crtc *intel_crtc;
  8064. /*
  8065. * Interrupts and polling as the first thing to avoid creating havoc.
  8066. * Too much stuff here (turning of rps, connectors, ...) would
  8067. * experience fancy races otherwise.
  8068. */
  8069. drm_irq_uninstall(dev);
  8070. cancel_work_sync(&dev_priv->hotplug_work);
  8071. /*
  8072. * Due to the hpd irq storm handling the hotplug work can re-arm the
  8073. * poll handlers. Hence disable polling after hpd handling is shut down.
  8074. */
  8075. drm_kms_helper_poll_fini(dev);
  8076. mutex_lock(&dev->struct_mutex);
  8077. intel_unregister_dsm_handler();
  8078. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  8079. /* Skip inactive CRTCs */
  8080. if (!crtc->fb)
  8081. continue;
  8082. intel_crtc = to_intel_crtc(crtc);
  8083. intel_increase_pllclock(crtc);
  8084. }
  8085. intel_disable_fbc(dev);
  8086. intel_disable_gt_powersave(dev);
  8087. ironlake_teardown_rc6(dev);
  8088. mutex_unlock(&dev->struct_mutex);
  8089. /* flush any delayed tasks or pending work */
  8090. flush_scheduled_work();
  8091. /* destroy backlight, if any, before the connectors */
  8092. intel_panel_destroy_backlight(dev);
  8093. drm_mode_config_cleanup(dev);
  8094. intel_cleanup_overlay(dev);
  8095. }
  8096. /*
  8097. * Return which encoder is currently attached for connector.
  8098. */
  8099. struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
  8100. {
  8101. return &intel_attached_encoder(connector)->base;
  8102. }
  8103. void intel_connector_attach_encoder(struct intel_connector *connector,
  8104. struct intel_encoder *encoder)
  8105. {
  8106. connector->encoder = encoder;
  8107. drm_mode_connector_attach_encoder(&connector->base,
  8108. &encoder->base);
  8109. }
  8110. /*
  8111. * set vga decode state - true == enable VGA decode
  8112. */
  8113. int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
  8114. {
  8115. struct drm_i915_private *dev_priv = dev->dev_private;
  8116. u16 gmch_ctrl;
  8117. pci_read_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, &gmch_ctrl);
  8118. if (state)
  8119. gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
  8120. else
  8121. gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
  8122. pci_write_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, gmch_ctrl);
  8123. return 0;
  8124. }
  8125. #ifdef CONFIG_DEBUG_FS
  8126. #include <linux/seq_file.h>
  8127. struct intel_display_error_state {
  8128. u32 power_well_driver;
  8129. struct intel_cursor_error_state {
  8130. u32 control;
  8131. u32 position;
  8132. u32 base;
  8133. u32 size;
  8134. } cursor[I915_MAX_PIPES];
  8135. struct intel_pipe_error_state {
  8136. enum transcoder cpu_transcoder;
  8137. u32 conf;
  8138. u32 source;
  8139. u32 htotal;
  8140. u32 hblank;
  8141. u32 hsync;
  8142. u32 vtotal;
  8143. u32 vblank;
  8144. u32 vsync;
  8145. } pipe[I915_MAX_PIPES];
  8146. struct intel_plane_error_state {
  8147. u32 control;
  8148. u32 stride;
  8149. u32 size;
  8150. u32 pos;
  8151. u32 addr;
  8152. u32 surface;
  8153. u32 tile_offset;
  8154. } plane[I915_MAX_PIPES];
  8155. };
  8156. struct intel_display_error_state *
  8157. intel_display_capture_error_state(struct drm_device *dev)
  8158. {
  8159. drm_i915_private_t *dev_priv = dev->dev_private;
  8160. struct intel_display_error_state *error;
  8161. enum transcoder cpu_transcoder;
  8162. int i;
  8163. error = kmalloc(sizeof(*error), GFP_ATOMIC);
  8164. if (error == NULL)
  8165. return NULL;
  8166. if (HAS_POWER_WELL(dev))
  8167. error->power_well_driver = I915_READ(HSW_PWR_WELL_DRIVER);
  8168. for_each_pipe(i) {
  8169. cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv, i);
  8170. error->pipe[i].cpu_transcoder = cpu_transcoder;
  8171. if (INTEL_INFO(dev)->gen <= 6 || IS_VALLEYVIEW(dev)) {
  8172. error->cursor[i].control = I915_READ(CURCNTR(i));
  8173. error->cursor[i].position = I915_READ(CURPOS(i));
  8174. error->cursor[i].base = I915_READ(CURBASE(i));
  8175. } else {
  8176. error->cursor[i].control = I915_READ(CURCNTR_IVB(i));
  8177. error->cursor[i].position = I915_READ(CURPOS_IVB(i));
  8178. error->cursor[i].base = I915_READ(CURBASE_IVB(i));
  8179. }
  8180. error->plane[i].control = I915_READ(DSPCNTR(i));
  8181. error->plane[i].stride = I915_READ(DSPSTRIDE(i));
  8182. if (INTEL_INFO(dev)->gen <= 3) {
  8183. error->plane[i].size = I915_READ(DSPSIZE(i));
  8184. error->plane[i].pos = I915_READ(DSPPOS(i));
  8185. }
  8186. if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
  8187. error->plane[i].addr = I915_READ(DSPADDR(i));
  8188. if (INTEL_INFO(dev)->gen >= 4) {
  8189. error->plane[i].surface = I915_READ(DSPSURF(i));
  8190. error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
  8191. }
  8192. error->pipe[i].conf = I915_READ(PIPECONF(cpu_transcoder));
  8193. error->pipe[i].source = I915_READ(PIPESRC(i));
  8194. error->pipe[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
  8195. error->pipe[i].hblank = I915_READ(HBLANK(cpu_transcoder));
  8196. error->pipe[i].hsync = I915_READ(HSYNC(cpu_transcoder));
  8197. error->pipe[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
  8198. error->pipe[i].vblank = I915_READ(VBLANK(cpu_transcoder));
  8199. error->pipe[i].vsync = I915_READ(VSYNC(cpu_transcoder));
  8200. }
  8201. /* In the code above we read the registers without checking if the power
  8202. * well was on, so here we have to clear the FPGA_DBG_RM_NOCLAIM bit to
  8203. * prevent the next I915_WRITE from detecting it and printing an error
  8204. * message. */
  8205. if (HAS_POWER_WELL(dev))
  8206. I915_WRITE_NOTRACE(FPGA_DBG, FPGA_DBG_RM_NOCLAIM);
  8207. return error;
  8208. }
  8209. #define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
  8210. void
  8211. intel_display_print_error_state(struct drm_i915_error_state_buf *m,
  8212. struct drm_device *dev,
  8213. struct intel_display_error_state *error)
  8214. {
  8215. int i;
  8216. err_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev)->num_pipes);
  8217. if (HAS_POWER_WELL(dev))
  8218. err_printf(m, "PWR_WELL_CTL2: %08x\n",
  8219. error->power_well_driver);
  8220. for_each_pipe(i) {
  8221. err_printf(m, "Pipe [%d]:\n", i);
  8222. err_printf(m, " CPU transcoder: %c\n",
  8223. transcoder_name(error->pipe[i].cpu_transcoder));
  8224. err_printf(m, " CONF: %08x\n", error->pipe[i].conf);
  8225. err_printf(m, " SRC: %08x\n", error->pipe[i].source);
  8226. err_printf(m, " HTOTAL: %08x\n", error->pipe[i].htotal);
  8227. err_printf(m, " HBLANK: %08x\n", error->pipe[i].hblank);
  8228. err_printf(m, " HSYNC: %08x\n", error->pipe[i].hsync);
  8229. err_printf(m, " VTOTAL: %08x\n", error->pipe[i].vtotal);
  8230. err_printf(m, " VBLANK: %08x\n", error->pipe[i].vblank);
  8231. err_printf(m, " VSYNC: %08x\n", error->pipe[i].vsync);
  8232. err_printf(m, "Plane [%d]:\n", i);
  8233. err_printf(m, " CNTR: %08x\n", error->plane[i].control);
  8234. err_printf(m, " STRIDE: %08x\n", error->plane[i].stride);
  8235. if (INTEL_INFO(dev)->gen <= 3) {
  8236. err_printf(m, " SIZE: %08x\n", error->plane[i].size);
  8237. err_printf(m, " POS: %08x\n", error->plane[i].pos);
  8238. }
  8239. if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
  8240. err_printf(m, " ADDR: %08x\n", error->plane[i].addr);
  8241. if (INTEL_INFO(dev)->gen >= 4) {
  8242. err_printf(m, " SURF: %08x\n", error->plane[i].surface);
  8243. err_printf(m, " TILEOFF: %08x\n", error->plane[i].tile_offset);
  8244. }
  8245. err_printf(m, "Cursor [%d]:\n", i);
  8246. err_printf(m, " CNTR: %08x\n", error->cursor[i].control);
  8247. err_printf(m, " POS: %08x\n", error->cursor[i].position);
  8248. err_printf(m, " BASE: %08x\n", error->cursor[i].base);
  8249. }
  8250. }
  8251. #endif