hugetlb.c 76 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967
  1. /*
  2. * Generic hugetlb support.
  3. * (C) William Irwin, April 2004
  4. */
  5. #include <linux/list.h>
  6. #include <linux/init.h>
  7. #include <linux/module.h>
  8. #include <linux/mm.h>
  9. #include <linux/seq_file.h>
  10. #include <linux/sysctl.h>
  11. #include <linux/highmem.h>
  12. #include <linux/mmu_notifier.h>
  13. #include <linux/nodemask.h>
  14. #include <linux/pagemap.h>
  15. #include <linux/mempolicy.h>
  16. #include <linux/cpuset.h>
  17. #include <linux/mutex.h>
  18. #include <linux/bootmem.h>
  19. #include <linux/sysfs.h>
  20. #include <linux/slab.h>
  21. #include <linux/rmap.h>
  22. #include <linux/swap.h>
  23. #include <linux/swapops.h>
  24. #include <asm/page.h>
  25. #include <asm/pgtable.h>
  26. #include <asm/io.h>
  27. #include <linux/hugetlb.h>
  28. #include <linux/node.h>
  29. #include "internal.h"
  30. const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
  31. static gfp_t htlb_alloc_mask = GFP_HIGHUSER;
  32. unsigned long hugepages_treat_as_movable;
  33. static int max_hstate;
  34. unsigned int default_hstate_idx;
  35. struct hstate hstates[HUGE_MAX_HSTATE];
  36. __initdata LIST_HEAD(huge_boot_pages);
  37. /* for command line parsing */
  38. static struct hstate * __initdata parsed_hstate;
  39. static unsigned long __initdata default_hstate_max_huge_pages;
  40. static unsigned long __initdata default_hstate_size;
  41. #define for_each_hstate(h) \
  42. for ((h) = hstates; (h) < &hstates[max_hstate]; (h)++)
  43. /*
  44. * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
  45. */
  46. static DEFINE_SPINLOCK(hugetlb_lock);
  47. /*
  48. * Region tracking -- allows tracking of reservations and instantiated pages
  49. * across the pages in a mapping.
  50. *
  51. * The region data structures are protected by a combination of the mmap_sem
  52. * and the hugetlb_instantion_mutex. To access or modify a region the caller
  53. * must either hold the mmap_sem for write, or the mmap_sem for read and
  54. * the hugetlb_instantiation mutex:
  55. *
  56. * down_write(&mm->mmap_sem);
  57. * or
  58. * down_read(&mm->mmap_sem);
  59. * mutex_lock(&hugetlb_instantiation_mutex);
  60. */
  61. struct file_region {
  62. struct list_head link;
  63. long from;
  64. long to;
  65. };
  66. static long region_add(struct list_head *head, long f, long t)
  67. {
  68. struct file_region *rg, *nrg, *trg;
  69. /* Locate the region we are either in or before. */
  70. list_for_each_entry(rg, head, link)
  71. if (f <= rg->to)
  72. break;
  73. /* Round our left edge to the current segment if it encloses us. */
  74. if (f > rg->from)
  75. f = rg->from;
  76. /* Check for and consume any regions we now overlap with. */
  77. nrg = rg;
  78. list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
  79. if (&rg->link == head)
  80. break;
  81. if (rg->from > t)
  82. break;
  83. /* If this area reaches higher then extend our area to
  84. * include it completely. If this is not the first area
  85. * which we intend to reuse, free it. */
  86. if (rg->to > t)
  87. t = rg->to;
  88. if (rg != nrg) {
  89. list_del(&rg->link);
  90. kfree(rg);
  91. }
  92. }
  93. nrg->from = f;
  94. nrg->to = t;
  95. return 0;
  96. }
  97. static long region_chg(struct list_head *head, long f, long t)
  98. {
  99. struct file_region *rg, *nrg;
  100. long chg = 0;
  101. /* Locate the region we are before or in. */
  102. list_for_each_entry(rg, head, link)
  103. if (f <= rg->to)
  104. break;
  105. /* If we are below the current region then a new region is required.
  106. * Subtle, allocate a new region at the position but make it zero
  107. * size such that we can guarantee to record the reservation. */
  108. if (&rg->link == head || t < rg->from) {
  109. nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
  110. if (!nrg)
  111. return -ENOMEM;
  112. nrg->from = f;
  113. nrg->to = f;
  114. INIT_LIST_HEAD(&nrg->link);
  115. list_add(&nrg->link, rg->link.prev);
  116. return t - f;
  117. }
  118. /* Round our left edge to the current segment if it encloses us. */
  119. if (f > rg->from)
  120. f = rg->from;
  121. chg = t - f;
  122. /* Check for and consume any regions we now overlap with. */
  123. list_for_each_entry(rg, rg->link.prev, link) {
  124. if (&rg->link == head)
  125. break;
  126. if (rg->from > t)
  127. return chg;
  128. /* We overlap with this area, if it extends further than
  129. * us then we must extend ourselves. Account for its
  130. * existing reservation. */
  131. if (rg->to > t) {
  132. chg += rg->to - t;
  133. t = rg->to;
  134. }
  135. chg -= rg->to - rg->from;
  136. }
  137. return chg;
  138. }
  139. static long region_truncate(struct list_head *head, long end)
  140. {
  141. struct file_region *rg, *trg;
  142. long chg = 0;
  143. /* Locate the region we are either in or before. */
  144. list_for_each_entry(rg, head, link)
  145. if (end <= rg->to)
  146. break;
  147. if (&rg->link == head)
  148. return 0;
  149. /* If we are in the middle of a region then adjust it. */
  150. if (end > rg->from) {
  151. chg = rg->to - end;
  152. rg->to = end;
  153. rg = list_entry(rg->link.next, typeof(*rg), link);
  154. }
  155. /* Drop any remaining regions. */
  156. list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
  157. if (&rg->link == head)
  158. break;
  159. chg += rg->to - rg->from;
  160. list_del(&rg->link);
  161. kfree(rg);
  162. }
  163. return chg;
  164. }
  165. static long region_count(struct list_head *head, long f, long t)
  166. {
  167. struct file_region *rg;
  168. long chg = 0;
  169. /* Locate each segment we overlap with, and count that overlap. */
  170. list_for_each_entry(rg, head, link) {
  171. int seg_from;
  172. int seg_to;
  173. if (rg->to <= f)
  174. continue;
  175. if (rg->from >= t)
  176. break;
  177. seg_from = max(rg->from, f);
  178. seg_to = min(rg->to, t);
  179. chg += seg_to - seg_from;
  180. }
  181. return chg;
  182. }
  183. /*
  184. * Convert the address within this vma to the page offset within
  185. * the mapping, in pagecache page units; huge pages here.
  186. */
  187. static pgoff_t vma_hugecache_offset(struct hstate *h,
  188. struct vm_area_struct *vma, unsigned long address)
  189. {
  190. return ((address - vma->vm_start) >> huge_page_shift(h)) +
  191. (vma->vm_pgoff >> huge_page_order(h));
  192. }
  193. pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
  194. unsigned long address)
  195. {
  196. return vma_hugecache_offset(hstate_vma(vma), vma, address);
  197. }
  198. /*
  199. * Return the size of the pages allocated when backing a VMA. In the majority
  200. * cases this will be same size as used by the page table entries.
  201. */
  202. unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
  203. {
  204. struct hstate *hstate;
  205. if (!is_vm_hugetlb_page(vma))
  206. return PAGE_SIZE;
  207. hstate = hstate_vma(vma);
  208. return 1UL << (hstate->order + PAGE_SHIFT);
  209. }
  210. EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
  211. /*
  212. * Return the page size being used by the MMU to back a VMA. In the majority
  213. * of cases, the page size used by the kernel matches the MMU size. On
  214. * architectures where it differs, an architecture-specific version of this
  215. * function is required.
  216. */
  217. #ifndef vma_mmu_pagesize
  218. unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
  219. {
  220. return vma_kernel_pagesize(vma);
  221. }
  222. #endif
  223. /*
  224. * Flags for MAP_PRIVATE reservations. These are stored in the bottom
  225. * bits of the reservation map pointer, which are always clear due to
  226. * alignment.
  227. */
  228. #define HPAGE_RESV_OWNER (1UL << 0)
  229. #define HPAGE_RESV_UNMAPPED (1UL << 1)
  230. #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
  231. /*
  232. * These helpers are used to track how many pages are reserved for
  233. * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
  234. * is guaranteed to have their future faults succeed.
  235. *
  236. * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
  237. * the reserve counters are updated with the hugetlb_lock held. It is safe
  238. * to reset the VMA at fork() time as it is not in use yet and there is no
  239. * chance of the global counters getting corrupted as a result of the values.
  240. *
  241. * The private mapping reservation is represented in a subtly different
  242. * manner to a shared mapping. A shared mapping has a region map associated
  243. * with the underlying file, this region map represents the backing file
  244. * pages which have ever had a reservation assigned which this persists even
  245. * after the page is instantiated. A private mapping has a region map
  246. * associated with the original mmap which is attached to all VMAs which
  247. * reference it, this region map represents those offsets which have consumed
  248. * reservation ie. where pages have been instantiated.
  249. */
  250. static unsigned long get_vma_private_data(struct vm_area_struct *vma)
  251. {
  252. return (unsigned long)vma->vm_private_data;
  253. }
  254. static void set_vma_private_data(struct vm_area_struct *vma,
  255. unsigned long value)
  256. {
  257. vma->vm_private_data = (void *)value;
  258. }
  259. struct resv_map {
  260. struct kref refs;
  261. struct list_head regions;
  262. };
  263. static struct resv_map *resv_map_alloc(void)
  264. {
  265. struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
  266. if (!resv_map)
  267. return NULL;
  268. kref_init(&resv_map->refs);
  269. INIT_LIST_HEAD(&resv_map->regions);
  270. return resv_map;
  271. }
  272. static void resv_map_release(struct kref *ref)
  273. {
  274. struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
  275. /* Clear out any active regions before we release the map. */
  276. region_truncate(&resv_map->regions, 0);
  277. kfree(resv_map);
  278. }
  279. static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
  280. {
  281. VM_BUG_ON(!is_vm_hugetlb_page(vma));
  282. if (!(vma->vm_flags & VM_MAYSHARE))
  283. return (struct resv_map *)(get_vma_private_data(vma) &
  284. ~HPAGE_RESV_MASK);
  285. return NULL;
  286. }
  287. static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
  288. {
  289. VM_BUG_ON(!is_vm_hugetlb_page(vma));
  290. VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
  291. set_vma_private_data(vma, (get_vma_private_data(vma) &
  292. HPAGE_RESV_MASK) | (unsigned long)map);
  293. }
  294. static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
  295. {
  296. VM_BUG_ON(!is_vm_hugetlb_page(vma));
  297. VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
  298. set_vma_private_data(vma, get_vma_private_data(vma) | flags);
  299. }
  300. static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
  301. {
  302. VM_BUG_ON(!is_vm_hugetlb_page(vma));
  303. return (get_vma_private_data(vma) & flag) != 0;
  304. }
  305. /* Decrement the reserved pages in the hugepage pool by one */
  306. static void decrement_hugepage_resv_vma(struct hstate *h,
  307. struct vm_area_struct *vma)
  308. {
  309. if (vma->vm_flags & VM_NORESERVE)
  310. return;
  311. if (vma->vm_flags & VM_MAYSHARE) {
  312. /* Shared mappings always use reserves */
  313. h->resv_huge_pages--;
  314. } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
  315. /*
  316. * Only the process that called mmap() has reserves for
  317. * private mappings.
  318. */
  319. h->resv_huge_pages--;
  320. }
  321. }
  322. /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
  323. void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
  324. {
  325. VM_BUG_ON(!is_vm_hugetlb_page(vma));
  326. if (!(vma->vm_flags & VM_MAYSHARE))
  327. vma->vm_private_data = (void *)0;
  328. }
  329. /* Returns true if the VMA has associated reserve pages */
  330. static int vma_has_reserves(struct vm_area_struct *vma)
  331. {
  332. if (vma->vm_flags & VM_MAYSHARE)
  333. return 1;
  334. if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
  335. return 1;
  336. return 0;
  337. }
  338. static void copy_gigantic_page(struct page *dst, struct page *src)
  339. {
  340. int i;
  341. struct hstate *h = page_hstate(src);
  342. struct page *dst_base = dst;
  343. struct page *src_base = src;
  344. for (i = 0; i < pages_per_huge_page(h); ) {
  345. cond_resched();
  346. copy_highpage(dst, src);
  347. i++;
  348. dst = mem_map_next(dst, dst_base, i);
  349. src = mem_map_next(src, src_base, i);
  350. }
  351. }
  352. void copy_huge_page(struct page *dst, struct page *src)
  353. {
  354. int i;
  355. struct hstate *h = page_hstate(src);
  356. if (unlikely(pages_per_huge_page(h) > MAX_ORDER_NR_PAGES)) {
  357. copy_gigantic_page(dst, src);
  358. return;
  359. }
  360. might_sleep();
  361. for (i = 0; i < pages_per_huge_page(h); i++) {
  362. cond_resched();
  363. copy_highpage(dst + i, src + i);
  364. }
  365. }
  366. static void enqueue_huge_page(struct hstate *h, struct page *page)
  367. {
  368. int nid = page_to_nid(page);
  369. list_add(&page->lru, &h->hugepage_freelists[nid]);
  370. h->free_huge_pages++;
  371. h->free_huge_pages_node[nid]++;
  372. }
  373. static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
  374. {
  375. struct page *page;
  376. if (list_empty(&h->hugepage_freelists[nid]))
  377. return NULL;
  378. page = list_entry(h->hugepage_freelists[nid].next, struct page, lru);
  379. list_del(&page->lru);
  380. set_page_refcounted(page);
  381. h->free_huge_pages--;
  382. h->free_huge_pages_node[nid]--;
  383. return page;
  384. }
  385. static struct page *dequeue_huge_page_vma(struct hstate *h,
  386. struct vm_area_struct *vma,
  387. unsigned long address, int avoid_reserve)
  388. {
  389. struct page *page = NULL;
  390. struct mempolicy *mpol;
  391. nodemask_t *nodemask;
  392. struct zonelist *zonelist;
  393. struct zone *zone;
  394. struct zoneref *z;
  395. get_mems_allowed();
  396. zonelist = huge_zonelist(vma, address,
  397. htlb_alloc_mask, &mpol, &nodemask);
  398. /*
  399. * A child process with MAP_PRIVATE mappings created by their parent
  400. * have no page reserves. This check ensures that reservations are
  401. * not "stolen". The child may still get SIGKILLed
  402. */
  403. if (!vma_has_reserves(vma) &&
  404. h->free_huge_pages - h->resv_huge_pages == 0)
  405. goto err;
  406. /* If reserves cannot be used, ensure enough pages are in the pool */
  407. if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
  408. goto err;
  409. for_each_zone_zonelist_nodemask(zone, z, zonelist,
  410. MAX_NR_ZONES - 1, nodemask) {
  411. if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask)) {
  412. page = dequeue_huge_page_node(h, zone_to_nid(zone));
  413. if (page) {
  414. if (!avoid_reserve)
  415. decrement_hugepage_resv_vma(h, vma);
  416. break;
  417. }
  418. }
  419. }
  420. err:
  421. mpol_cond_put(mpol);
  422. put_mems_allowed();
  423. return page;
  424. }
  425. static void update_and_free_page(struct hstate *h, struct page *page)
  426. {
  427. int i;
  428. VM_BUG_ON(h->order >= MAX_ORDER);
  429. h->nr_huge_pages--;
  430. h->nr_huge_pages_node[page_to_nid(page)]--;
  431. for (i = 0; i < pages_per_huge_page(h); i++) {
  432. page[i].flags &= ~(1 << PG_locked | 1 << PG_error | 1 << PG_referenced |
  433. 1 << PG_dirty | 1 << PG_active | 1 << PG_reserved |
  434. 1 << PG_private | 1<< PG_writeback);
  435. }
  436. set_compound_page_dtor(page, NULL);
  437. set_page_refcounted(page);
  438. arch_release_hugepage(page);
  439. __free_pages(page, huge_page_order(h));
  440. }
  441. struct hstate *size_to_hstate(unsigned long size)
  442. {
  443. struct hstate *h;
  444. for_each_hstate(h) {
  445. if (huge_page_size(h) == size)
  446. return h;
  447. }
  448. return NULL;
  449. }
  450. static void free_huge_page(struct page *page)
  451. {
  452. /*
  453. * Can't pass hstate in here because it is called from the
  454. * compound page destructor.
  455. */
  456. struct hstate *h = page_hstate(page);
  457. int nid = page_to_nid(page);
  458. struct address_space *mapping;
  459. mapping = (struct address_space *) page_private(page);
  460. set_page_private(page, 0);
  461. page->mapping = NULL;
  462. BUG_ON(page_count(page));
  463. BUG_ON(page_mapcount(page));
  464. INIT_LIST_HEAD(&page->lru);
  465. spin_lock(&hugetlb_lock);
  466. if (h->surplus_huge_pages_node[nid] && huge_page_order(h) < MAX_ORDER) {
  467. update_and_free_page(h, page);
  468. h->surplus_huge_pages--;
  469. h->surplus_huge_pages_node[nid]--;
  470. } else {
  471. enqueue_huge_page(h, page);
  472. }
  473. spin_unlock(&hugetlb_lock);
  474. if (mapping)
  475. hugetlb_put_quota(mapping, 1);
  476. }
  477. static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
  478. {
  479. set_compound_page_dtor(page, free_huge_page);
  480. spin_lock(&hugetlb_lock);
  481. h->nr_huge_pages++;
  482. h->nr_huge_pages_node[nid]++;
  483. spin_unlock(&hugetlb_lock);
  484. put_page(page); /* free it into the hugepage allocator */
  485. }
  486. static void prep_compound_gigantic_page(struct page *page, unsigned long order)
  487. {
  488. int i;
  489. int nr_pages = 1 << order;
  490. struct page *p = page + 1;
  491. /* we rely on prep_new_huge_page to set the destructor */
  492. set_compound_order(page, order);
  493. __SetPageHead(page);
  494. for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
  495. __SetPageTail(p);
  496. p->first_page = page;
  497. }
  498. }
  499. int PageHuge(struct page *page)
  500. {
  501. compound_page_dtor *dtor;
  502. if (!PageCompound(page))
  503. return 0;
  504. page = compound_head(page);
  505. dtor = get_compound_page_dtor(page);
  506. return dtor == free_huge_page;
  507. }
  508. EXPORT_SYMBOL_GPL(PageHuge);
  509. static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
  510. {
  511. struct page *page;
  512. if (h->order >= MAX_ORDER)
  513. return NULL;
  514. page = alloc_pages_exact_node(nid,
  515. htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
  516. __GFP_REPEAT|__GFP_NOWARN,
  517. huge_page_order(h));
  518. if (page) {
  519. if (arch_prepare_hugepage(page)) {
  520. __free_pages(page, huge_page_order(h));
  521. return NULL;
  522. }
  523. prep_new_huge_page(h, page, nid);
  524. }
  525. return page;
  526. }
  527. /*
  528. * common helper functions for hstate_next_node_to_{alloc|free}.
  529. * We may have allocated or freed a huge page based on a different
  530. * nodes_allowed previously, so h->next_node_to_{alloc|free} might
  531. * be outside of *nodes_allowed. Ensure that we use an allowed
  532. * node for alloc or free.
  533. */
  534. static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
  535. {
  536. nid = next_node(nid, *nodes_allowed);
  537. if (nid == MAX_NUMNODES)
  538. nid = first_node(*nodes_allowed);
  539. VM_BUG_ON(nid >= MAX_NUMNODES);
  540. return nid;
  541. }
  542. static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
  543. {
  544. if (!node_isset(nid, *nodes_allowed))
  545. nid = next_node_allowed(nid, nodes_allowed);
  546. return nid;
  547. }
  548. /*
  549. * returns the previously saved node ["this node"] from which to
  550. * allocate a persistent huge page for the pool and advance the
  551. * next node from which to allocate, handling wrap at end of node
  552. * mask.
  553. */
  554. static int hstate_next_node_to_alloc(struct hstate *h,
  555. nodemask_t *nodes_allowed)
  556. {
  557. int nid;
  558. VM_BUG_ON(!nodes_allowed);
  559. nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
  560. h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
  561. return nid;
  562. }
  563. static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
  564. {
  565. struct page *page;
  566. int start_nid;
  567. int next_nid;
  568. int ret = 0;
  569. start_nid = hstate_next_node_to_alloc(h, nodes_allowed);
  570. next_nid = start_nid;
  571. do {
  572. page = alloc_fresh_huge_page_node(h, next_nid);
  573. if (page) {
  574. ret = 1;
  575. break;
  576. }
  577. next_nid = hstate_next_node_to_alloc(h, nodes_allowed);
  578. } while (next_nid != start_nid);
  579. if (ret)
  580. count_vm_event(HTLB_BUDDY_PGALLOC);
  581. else
  582. count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
  583. return ret;
  584. }
  585. /*
  586. * helper for free_pool_huge_page() - return the previously saved
  587. * node ["this node"] from which to free a huge page. Advance the
  588. * next node id whether or not we find a free huge page to free so
  589. * that the next attempt to free addresses the next node.
  590. */
  591. static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
  592. {
  593. int nid;
  594. VM_BUG_ON(!nodes_allowed);
  595. nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
  596. h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
  597. return nid;
  598. }
  599. /*
  600. * Free huge page from pool from next node to free.
  601. * Attempt to keep persistent huge pages more or less
  602. * balanced over allowed nodes.
  603. * Called with hugetlb_lock locked.
  604. */
  605. static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
  606. bool acct_surplus)
  607. {
  608. int start_nid;
  609. int next_nid;
  610. int ret = 0;
  611. start_nid = hstate_next_node_to_free(h, nodes_allowed);
  612. next_nid = start_nid;
  613. do {
  614. /*
  615. * If we're returning unused surplus pages, only examine
  616. * nodes with surplus pages.
  617. */
  618. if ((!acct_surplus || h->surplus_huge_pages_node[next_nid]) &&
  619. !list_empty(&h->hugepage_freelists[next_nid])) {
  620. struct page *page =
  621. list_entry(h->hugepage_freelists[next_nid].next,
  622. struct page, lru);
  623. list_del(&page->lru);
  624. h->free_huge_pages--;
  625. h->free_huge_pages_node[next_nid]--;
  626. if (acct_surplus) {
  627. h->surplus_huge_pages--;
  628. h->surplus_huge_pages_node[next_nid]--;
  629. }
  630. update_and_free_page(h, page);
  631. ret = 1;
  632. break;
  633. }
  634. next_nid = hstate_next_node_to_free(h, nodes_allowed);
  635. } while (next_nid != start_nid);
  636. return ret;
  637. }
  638. static struct page *alloc_buddy_huge_page(struct hstate *h, int nid)
  639. {
  640. struct page *page;
  641. unsigned int r_nid;
  642. if (h->order >= MAX_ORDER)
  643. return NULL;
  644. /*
  645. * Assume we will successfully allocate the surplus page to
  646. * prevent racing processes from causing the surplus to exceed
  647. * overcommit
  648. *
  649. * This however introduces a different race, where a process B
  650. * tries to grow the static hugepage pool while alloc_pages() is
  651. * called by process A. B will only examine the per-node
  652. * counters in determining if surplus huge pages can be
  653. * converted to normal huge pages in adjust_pool_surplus(). A
  654. * won't be able to increment the per-node counter, until the
  655. * lock is dropped by B, but B doesn't drop hugetlb_lock until
  656. * no more huge pages can be converted from surplus to normal
  657. * state (and doesn't try to convert again). Thus, we have a
  658. * case where a surplus huge page exists, the pool is grown, and
  659. * the surplus huge page still exists after, even though it
  660. * should just have been converted to a normal huge page. This
  661. * does not leak memory, though, as the hugepage will be freed
  662. * once it is out of use. It also does not allow the counters to
  663. * go out of whack in adjust_pool_surplus() as we don't modify
  664. * the node values until we've gotten the hugepage and only the
  665. * per-node value is checked there.
  666. */
  667. spin_lock(&hugetlb_lock);
  668. if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
  669. spin_unlock(&hugetlb_lock);
  670. return NULL;
  671. } else {
  672. h->nr_huge_pages++;
  673. h->surplus_huge_pages++;
  674. }
  675. spin_unlock(&hugetlb_lock);
  676. if (nid == NUMA_NO_NODE)
  677. page = alloc_pages(htlb_alloc_mask|__GFP_COMP|
  678. __GFP_REPEAT|__GFP_NOWARN,
  679. huge_page_order(h));
  680. else
  681. page = alloc_pages_exact_node(nid,
  682. htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
  683. __GFP_REPEAT|__GFP_NOWARN, huge_page_order(h));
  684. if (page && arch_prepare_hugepage(page)) {
  685. __free_pages(page, huge_page_order(h));
  686. return NULL;
  687. }
  688. spin_lock(&hugetlb_lock);
  689. if (page) {
  690. r_nid = page_to_nid(page);
  691. set_compound_page_dtor(page, free_huge_page);
  692. /*
  693. * We incremented the global counters already
  694. */
  695. h->nr_huge_pages_node[r_nid]++;
  696. h->surplus_huge_pages_node[r_nid]++;
  697. __count_vm_event(HTLB_BUDDY_PGALLOC);
  698. } else {
  699. h->nr_huge_pages--;
  700. h->surplus_huge_pages--;
  701. __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
  702. }
  703. spin_unlock(&hugetlb_lock);
  704. return page;
  705. }
  706. /*
  707. * This allocation function is useful in the context where vma is irrelevant.
  708. * E.g. soft-offlining uses this function because it only cares physical
  709. * address of error page.
  710. */
  711. struct page *alloc_huge_page_node(struct hstate *h, int nid)
  712. {
  713. struct page *page;
  714. spin_lock(&hugetlb_lock);
  715. page = dequeue_huge_page_node(h, nid);
  716. spin_unlock(&hugetlb_lock);
  717. if (!page)
  718. page = alloc_buddy_huge_page(h, nid);
  719. return page;
  720. }
  721. /*
  722. * Increase the hugetlb pool such that it can accommodate a reservation
  723. * of size 'delta'.
  724. */
  725. static int gather_surplus_pages(struct hstate *h, int delta)
  726. {
  727. struct list_head surplus_list;
  728. struct page *page, *tmp;
  729. int ret, i;
  730. int needed, allocated;
  731. needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
  732. if (needed <= 0) {
  733. h->resv_huge_pages += delta;
  734. return 0;
  735. }
  736. allocated = 0;
  737. INIT_LIST_HEAD(&surplus_list);
  738. ret = -ENOMEM;
  739. retry:
  740. spin_unlock(&hugetlb_lock);
  741. for (i = 0; i < needed; i++) {
  742. page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
  743. if (!page)
  744. /*
  745. * We were not able to allocate enough pages to
  746. * satisfy the entire reservation so we free what
  747. * we've allocated so far.
  748. */
  749. goto free;
  750. list_add(&page->lru, &surplus_list);
  751. }
  752. allocated += needed;
  753. /*
  754. * After retaking hugetlb_lock, we need to recalculate 'needed'
  755. * because either resv_huge_pages or free_huge_pages may have changed.
  756. */
  757. spin_lock(&hugetlb_lock);
  758. needed = (h->resv_huge_pages + delta) -
  759. (h->free_huge_pages + allocated);
  760. if (needed > 0)
  761. goto retry;
  762. /*
  763. * The surplus_list now contains _at_least_ the number of extra pages
  764. * needed to accommodate the reservation. Add the appropriate number
  765. * of pages to the hugetlb pool and free the extras back to the buddy
  766. * allocator. Commit the entire reservation here to prevent another
  767. * process from stealing the pages as they are added to the pool but
  768. * before they are reserved.
  769. */
  770. needed += allocated;
  771. h->resv_huge_pages += delta;
  772. ret = 0;
  773. spin_unlock(&hugetlb_lock);
  774. /* Free the needed pages to the hugetlb pool */
  775. list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
  776. if ((--needed) < 0)
  777. break;
  778. list_del(&page->lru);
  779. /*
  780. * This page is now managed by the hugetlb allocator and has
  781. * no users -- drop the buddy allocator's reference.
  782. */
  783. put_page_testzero(page);
  784. VM_BUG_ON(page_count(page));
  785. enqueue_huge_page(h, page);
  786. }
  787. /* Free unnecessary surplus pages to the buddy allocator */
  788. free:
  789. if (!list_empty(&surplus_list)) {
  790. list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
  791. list_del(&page->lru);
  792. put_page(page);
  793. }
  794. }
  795. spin_lock(&hugetlb_lock);
  796. return ret;
  797. }
  798. /*
  799. * When releasing a hugetlb pool reservation, any surplus pages that were
  800. * allocated to satisfy the reservation must be explicitly freed if they were
  801. * never used.
  802. * Called with hugetlb_lock held.
  803. */
  804. static void return_unused_surplus_pages(struct hstate *h,
  805. unsigned long unused_resv_pages)
  806. {
  807. unsigned long nr_pages;
  808. /* Uncommit the reservation */
  809. h->resv_huge_pages -= unused_resv_pages;
  810. /* Cannot return gigantic pages currently */
  811. if (h->order >= MAX_ORDER)
  812. return;
  813. nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
  814. /*
  815. * We want to release as many surplus pages as possible, spread
  816. * evenly across all nodes with memory. Iterate across these nodes
  817. * until we can no longer free unreserved surplus pages. This occurs
  818. * when the nodes with surplus pages have no free pages.
  819. * free_pool_huge_page() will balance the the freed pages across the
  820. * on-line nodes with memory and will handle the hstate accounting.
  821. */
  822. while (nr_pages--) {
  823. if (!free_pool_huge_page(h, &node_states[N_HIGH_MEMORY], 1))
  824. break;
  825. }
  826. }
  827. /*
  828. * Determine if the huge page at addr within the vma has an associated
  829. * reservation. Where it does not we will need to logically increase
  830. * reservation and actually increase quota before an allocation can occur.
  831. * Where any new reservation would be required the reservation change is
  832. * prepared, but not committed. Once the page has been quota'd allocated
  833. * an instantiated the change should be committed via vma_commit_reservation.
  834. * No action is required on failure.
  835. */
  836. static long vma_needs_reservation(struct hstate *h,
  837. struct vm_area_struct *vma, unsigned long addr)
  838. {
  839. struct address_space *mapping = vma->vm_file->f_mapping;
  840. struct inode *inode = mapping->host;
  841. if (vma->vm_flags & VM_MAYSHARE) {
  842. pgoff_t idx = vma_hugecache_offset(h, vma, addr);
  843. return region_chg(&inode->i_mapping->private_list,
  844. idx, idx + 1);
  845. } else if (!is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
  846. return 1;
  847. } else {
  848. long err;
  849. pgoff_t idx = vma_hugecache_offset(h, vma, addr);
  850. struct resv_map *reservations = vma_resv_map(vma);
  851. err = region_chg(&reservations->regions, idx, idx + 1);
  852. if (err < 0)
  853. return err;
  854. return 0;
  855. }
  856. }
  857. static void vma_commit_reservation(struct hstate *h,
  858. struct vm_area_struct *vma, unsigned long addr)
  859. {
  860. struct address_space *mapping = vma->vm_file->f_mapping;
  861. struct inode *inode = mapping->host;
  862. if (vma->vm_flags & VM_MAYSHARE) {
  863. pgoff_t idx = vma_hugecache_offset(h, vma, addr);
  864. region_add(&inode->i_mapping->private_list, idx, idx + 1);
  865. } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
  866. pgoff_t idx = vma_hugecache_offset(h, vma, addr);
  867. struct resv_map *reservations = vma_resv_map(vma);
  868. /* Mark this page used in the map. */
  869. region_add(&reservations->regions, idx, idx + 1);
  870. }
  871. }
  872. static struct page *alloc_huge_page(struct vm_area_struct *vma,
  873. unsigned long addr, int avoid_reserve)
  874. {
  875. struct hstate *h = hstate_vma(vma);
  876. struct page *page;
  877. struct address_space *mapping = vma->vm_file->f_mapping;
  878. struct inode *inode = mapping->host;
  879. long chg;
  880. /*
  881. * Processes that did not create the mapping will have no reserves and
  882. * will not have accounted against quota. Check that the quota can be
  883. * made before satisfying the allocation
  884. * MAP_NORESERVE mappings may also need pages and quota allocated
  885. * if no reserve mapping overlaps.
  886. */
  887. chg = vma_needs_reservation(h, vma, addr);
  888. if (chg < 0)
  889. return ERR_PTR(-VM_FAULT_OOM);
  890. if (chg)
  891. if (hugetlb_get_quota(inode->i_mapping, chg))
  892. return ERR_PTR(-VM_FAULT_SIGBUS);
  893. spin_lock(&hugetlb_lock);
  894. page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve);
  895. spin_unlock(&hugetlb_lock);
  896. if (!page) {
  897. page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
  898. if (!page) {
  899. hugetlb_put_quota(inode->i_mapping, chg);
  900. return ERR_PTR(-VM_FAULT_SIGBUS);
  901. }
  902. }
  903. set_page_private(page, (unsigned long) mapping);
  904. vma_commit_reservation(h, vma, addr);
  905. return page;
  906. }
  907. int __weak alloc_bootmem_huge_page(struct hstate *h)
  908. {
  909. struct huge_bootmem_page *m;
  910. int nr_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
  911. while (nr_nodes) {
  912. void *addr;
  913. addr = __alloc_bootmem_node_nopanic(
  914. NODE_DATA(hstate_next_node_to_alloc(h,
  915. &node_states[N_HIGH_MEMORY])),
  916. huge_page_size(h), huge_page_size(h), 0);
  917. if (addr) {
  918. /*
  919. * Use the beginning of the huge page to store the
  920. * huge_bootmem_page struct (until gather_bootmem
  921. * puts them into the mem_map).
  922. */
  923. m = addr;
  924. goto found;
  925. }
  926. nr_nodes--;
  927. }
  928. return 0;
  929. found:
  930. BUG_ON((unsigned long)virt_to_phys(m) & (huge_page_size(h) - 1));
  931. /* Put them into a private list first because mem_map is not up yet */
  932. list_add(&m->list, &huge_boot_pages);
  933. m->hstate = h;
  934. return 1;
  935. }
  936. static void prep_compound_huge_page(struct page *page, int order)
  937. {
  938. if (unlikely(order > (MAX_ORDER - 1)))
  939. prep_compound_gigantic_page(page, order);
  940. else
  941. prep_compound_page(page, order);
  942. }
  943. /* Put bootmem huge pages into the standard lists after mem_map is up */
  944. static void __init gather_bootmem_prealloc(void)
  945. {
  946. struct huge_bootmem_page *m;
  947. list_for_each_entry(m, &huge_boot_pages, list) {
  948. struct hstate *h = m->hstate;
  949. struct page *page;
  950. #ifdef CONFIG_HIGHMEM
  951. page = pfn_to_page(m->phys >> PAGE_SHIFT);
  952. free_bootmem_late((unsigned long)m,
  953. sizeof(struct huge_bootmem_page));
  954. #else
  955. page = virt_to_page(m);
  956. #endif
  957. __ClearPageReserved(page);
  958. WARN_ON(page_count(page) != 1);
  959. prep_compound_huge_page(page, h->order);
  960. prep_new_huge_page(h, page, page_to_nid(page));
  961. /*
  962. * If we had gigantic hugepages allocated at boot time, we need
  963. * to restore the 'stolen' pages to totalram_pages in order to
  964. * fix confusing memory reports from free(1) and another
  965. * side-effects, like CommitLimit going negative.
  966. */
  967. if (h->order > (MAX_ORDER - 1))
  968. totalram_pages += 1 << h->order;
  969. }
  970. }
  971. static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
  972. {
  973. unsigned long i;
  974. for (i = 0; i < h->max_huge_pages; ++i) {
  975. if (h->order >= MAX_ORDER) {
  976. if (!alloc_bootmem_huge_page(h))
  977. break;
  978. } else if (!alloc_fresh_huge_page(h,
  979. &node_states[N_HIGH_MEMORY]))
  980. break;
  981. }
  982. h->max_huge_pages = i;
  983. }
  984. static void __init hugetlb_init_hstates(void)
  985. {
  986. struct hstate *h;
  987. for_each_hstate(h) {
  988. /* oversize hugepages were init'ed in early boot */
  989. if (h->order < MAX_ORDER)
  990. hugetlb_hstate_alloc_pages(h);
  991. }
  992. }
  993. static char * __init memfmt(char *buf, unsigned long n)
  994. {
  995. if (n >= (1UL << 30))
  996. sprintf(buf, "%lu GB", n >> 30);
  997. else if (n >= (1UL << 20))
  998. sprintf(buf, "%lu MB", n >> 20);
  999. else
  1000. sprintf(buf, "%lu KB", n >> 10);
  1001. return buf;
  1002. }
  1003. static void __init report_hugepages(void)
  1004. {
  1005. struct hstate *h;
  1006. for_each_hstate(h) {
  1007. char buf[32];
  1008. printk(KERN_INFO "HugeTLB registered %s page size, "
  1009. "pre-allocated %ld pages\n",
  1010. memfmt(buf, huge_page_size(h)),
  1011. h->free_huge_pages);
  1012. }
  1013. }
  1014. #ifdef CONFIG_HIGHMEM
  1015. static void try_to_free_low(struct hstate *h, unsigned long count,
  1016. nodemask_t *nodes_allowed)
  1017. {
  1018. int i;
  1019. if (h->order >= MAX_ORDER)
  1020. return;
  1021. for_each_node_mask(i, *nodes_allowed) {
  1022. struct page *page, *next;
  1023. struct list_head *freel = &h->hugepage_freelists[i];
  1024. list_for_each_entry_safe(page, next, freel, lru) {
  1025. if (count >= h->nr_huge_pages)
  1026. return;
  1027. if (PageHighMem(page))
  1028. continue;
  1029. list_del(&page->lru);
  1030. update_and_free_page(h, page);
  1031. h->free_huge_pages--;
  1032. h->free_huge_pages_node[page_to_nid(page)]--;
  1033. }
  1034. }
  1035. }
  1036. #else
  1037. static inline void try_to_free_low(struct hstate *h, unsigned long count,
  1038. nodemask_t *nodes_allowed)
  1039. {
  1040. }
  1041. #endif
  1042. /*
  1043. * Increment or decrement surplus_huge_pages. Keep node-specific counters
  1044. * balanced by operating on them in a round-robin fashion.
  1045. * Returns 1 if an adjustment was made.
  1046. */
  1047. static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
  1048. int delta)
  1049. {
  1050. int start_nid, next_nid;
  1051. int ret = 0;
  1052. VM_BUG_ON(delta != -1 && delta != 1);
  1053. if (delta < 0)
  1054. start_nid = hstate_next_node_to_alloc(h, nodes_allowed);
  1055. else
  1056. start_nid = hstate_next_node_to_free(h, nodes_allowed);
  1057. next_nid = start_nid;
  1058. do {
  1059. int nid = next_nid;
  1060. if (delta < 0) {
  1061. /*
  1062. * To shrink on this node, there must be a surplus page
  1063. */
  1064. if (!h->surplus_huge_pages_node[nid]) {
  1065. next_nid = hstate_next_node_to_alloc(h,
  1066. nodes_allowed);
  1067. continue;
  1068. }
  1069. }
  1070. if (delta > 0) {
  1071. /*
  1072. * Surplus cannot exceed the total number of pages
  1073. */
  1074. if (h->surplus_huge_pages_node[nid] >=
  1075. h->nr_huge_pages_node[nid]) {
  1076. next_nid = hstate_next_node_to_free(h,
  1077. nodes_allowed);
  1078. continue;
  1079. }
  1080. }
  1081. h->surplus_huge_pages += delta;
  1082. h->surplus_huge_pages_node[nid] += delta;
  1083. ret = 1;
  1084. break;
  1085. } while (next_nid != start_nid);
  1086. return ret;
  1087. }
  1088. #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
  1089. static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
  1090. nodemask_t *nodes_allowed)
  1091. {
  1092. unsigned long min_count, ret;
  1093. if (h->order >= MAX_ORDER)
  1094. return h->max_huge_pages;
  1095. /*
  1096. * Increase the pool size
  1097. * First take pages out of surplus state. Then make up the
  1098. * remaining difference by allocating fresh huge pages.
  1099. *
  1100. * We might race with alloc_buddy_huge_page() here and be unable
  1101. * to convert a surplus huge page to a normal huge page. That is
  1102. * not critical, though, it just means the overall size of the
  1103. * pool might be one hugepage larger than it needs to be, but
  1104. * within all the constraints specified by the sysctls.
  1105. */
  1106. spin_lock(&hugetlb_lock);
  1107. while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
  1108. if (!adjust_pool_surplus(h, nodes_allowed, -1))
  1109. break;
  1110. }
  1111. while (count > persistent_huge_pages(h)) {
  1112. /*
  1113. * If this allocation races such that we no longer need the
  1114. * page, free_huge_page will handle it by freeing the page
  1115. * and reducing the surplus.
  1116. */
  1117. spin_unlock(&hugetlb_lock);
  1118. ret = alloc_fresh_huge_page(h, nodes_allowed);
  1119. spin_lock(&hugetlb_lock);
  1120. if (!ret)
  1121. goto out;
  1122. /* Bail for signals. Probably ctrl-c from user */
  1123. if (signal_pending(current))
  1124. goto out;
  1125. }
  1126. /*
  1127. * Decrease the pool size
  1128. * First return free pages to the buddy allocator (being careful
  1129. * to keep enough around to satisfy reservations). Then place
  1130. * pages into surplus state as needed so the pool will shrink
  1131. * to the desired size as pages become free.
  1132. *
  1133. * By placing pages into the surplus state independent of the
  1134. * overcommit value, we are allowing the surplus pool size to
  1135. * exceed overcommit. There are few sane options here. Since
  1136. * alloc_buddy_huge_page() is checking the global counter,
  1137. * though, we'll note that we're not allowed to exceed surplus
  1138. * and won't grow the pool anywhere else. Not until one of the
  1139. * sysctls are changed, or the surplus pages go out of use.
  1140. */
  1141. min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
  1142. min_count = max(count, min_count);
  1143. try_to_free_low(h, min_count, nodes_allowed);
  1144. while (min_count < persistent_huge_pages(h)) {
  1145. if (!free_pool_huge_page(h, nodes_allowed, 0))
  1146. break;
  1147. }
  1148. while (count < persistent_huge_pages(h)) {
  1149. if (!adjust_pool_surplus(h, nodes_allowed, 1))
  1150. break;
  1151. }
  1152. out:
  1153. ret = persistent_huge_pages(h);
  1154. spin_unlock(&hugetlb_lock);
  1155. return ret;
  1156. }
  1157. #define HSTATE_ATTR_RO(_name) \
  1158. static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
  1159. #define HSTATE_ATTR(_name) \
  1160. static struct kobj_attribute _name##_attr = \
  1161. __ATTR(_name, 0644, _name##_show, _name##_store)
  1162. static struct kobject *hugepages_kobj;
  1163. static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
  1164. static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
  1165. static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
  1166. {
  1167. int i;
  1168. for (i = 0; i < HUGE_MAX_HSTATE; i++)
  1169. if (hstate_kobjs[i] == kobj) {
  1170. if (nidp)
  1171. *nidp = NUMA_NO_NODE;
  1172. return &hstates[i];
  1173. }
  1174. return kobj_to_node_hstate(kobj, nidp);
  1175. }
  1176. static ssize_t nr_hugepages_show_common(struct kobject *kobj,
  1177. struct kobj_attribute *attr, char *buf)
  1178. {
  1179. struct hstate *h;
  1180. unsigned long nr_huge_pages;
  1181. int nid;
  1182. h = kobj_to_hstate(kobj, &nid);
  1183. if (nid == NUMA_NO_NODE)
  1184. nr_huge_pages = h->nr_huge_pages;
  1185. else
  1186. nr_huge_pages = h->nr_huge_pages_node[nid];
  1187. return sprintf(buf, "%lu\n", nr_huge_pages);
  1188. }
  1189. static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
  1190. struct kobject *kobj, struct kobj_attribute *attr,
  1191. const char *buf, size_t len)
  1192. {
  1193. int err;
  1194. int nid;
  1195. unsigned long count;
  1196. struct hstate *h;
  1197. NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
  1198. err = strict_strtoul(buf, 10, &count);
  1199. if (err)
  1200. goto out;
  1201. h = kobj_to_hstate(kobj, &nid);
  1202. if (h->order >= MAX_ORDER) {
  1203. err = -EINVAL;
  1204. goto out;
  1205. }
  1206. if (nid == NUMA_NO_NODE) {
  1207. /*
  1208. * global hstate attribute
  1209. */
  1210. if (!(obey_mempolicy &&
  1211. init_nodemask_of_mempolicy(nodes_allowed))) {
  1212. NODEMASK_FREE(nodes_allowed);
  1213. nodes_allowed = &node_states[N_HIGH_MEMORY];
  1214. }
  1215. } else if (nodes_allowed) {
  1216. /*
  1217. * per node hstate attribute: adjust count to global,
  1218. * but restrict alloc/free to the specified node.
  1219. */
  1220. count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
  1221. init_nodemask_of_node(nodes_allowed, nid);
  1222. } else
  1223. nodes_allowed = &node_states[N_HIGH_MEMORY];
  1224. h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
  1225. if (nodes_allowed != &node_states[N_HIGH_MEMORY])
  1226. NODEMASK_FREE(nodes_allowed);
  1227. return len;
  1228. out:
  1229. NODEMASK_FREE(nodes_allowed);
  1230. return err;
  1231. }
  1232. static ssize_t nr_hugepages_show(struct kobject *kobj,
  1233. struct kobj_attribute *attr, char *buf)
  1234. {
  1235. return nr_hugepages_show_common(kobj, attr, buf);
  1236. }
  1237. static ssize_t nr_hugepages_store(struct kobject *kobj,
  1238. struct kobj_attribute *attr, const char *buf, size_t len)
  1239. {
  1240. return nr_hugepages_store_common(false, kobj, attr, buf, len);
  1241. }
  1242. HSTATE_ATTR(nr_hugepages);
  1243. #ifdef CONFIG_NUMA
  1244. /*
  1245. * hstate attribute for optionally mempolicy-based constraint on persistent
  1246. * huge page alloc/free.
  1247. */
  1248. static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
  1249. struct kobj_attribute *attr, char *buf)
  1250. {
  1251. return nr_hugepages_show_common(kobj, attr, buf);
  1252. }
  1253. static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
  1254. struct kobj_attribute *attr, const char *buf, size_t len)
  1255. {
  1256. return nr_hugepages_store_common(true, kobj, attr, buf, len);
  1257. }
  1258. HSTATE_ATTR(nr_hugepages_mempolicy);
  1259. #endif
  1260. static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
  1261. struct kobj_attribute *attr, char *buf)
  1262. {
  1263. struct hstate *h = kobj_to_hstate(kobj, NULL);
  1264. return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
  1265. }
  1266. static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
  1267. struct kobj_attribute *attr, const char *buf, size_t count)
  1268. {
  1269. int err;
  1270. unsigned long input;
  1271. struct hstate *h = kobj_to_hstate(kobj, NULL);
  1272. if (h->order >= MAX_ORDER)
  1273. return -EINVAL;
  1274. err = strict_strtoul(buf, 10, &input);
  1275. if (err)
  1276. return err;
  1277. spin_lock(&hugetlb_lock);
  1278. h->nr_overcommit_huge_pages = input;
  1279. spin_unlock(&hugetlb_lock);
  1280. return count;
  1281. }
  1282. HSTATE_ATTR(nr_overcommit_hugepages);
  1283. static ssize_t free_hugepages_show(struct kobject *kobj,
  1284. struct kobj_attribute *attr, char *buf)
  1285. {
  1286. struct hstate *h;
  1287. unsigned long free_huge_pages;
  1288. int nid;
  1289. h = kobj_to_hstate(kobj, &nid);
  1290. if (nid == NUMA_NO_NODE)
  1291. free_huge_pages = h->free_huge_pages;
  1292. else
  1293. free_huge_pages = h->free_huge_pages_node[nid];
  1294. return sprintf(buf, "%lu\n", free_huge_pages);
  1295. }
  1296. HSTATE_ATTR_RO(free_hugepages);
  1297. static ssize_t resv_hugepages_show(struct kobject *kobj,
  1298. struct kobj_attribute *attr, char *buf)
  1299. {
  1300. struct hstate *h = kobj_to_hstate(kobj, NULL);
  1301. return sprintf(buf, "%lu\n", h->resv_huge_pages);
  1302. }
  1303. HSTATE_ATTR_RO(resv_hugepages);
  1304. static ssize_t surplus_hugepages_show(struct kobject *kobj,
  1305. struct kobj_attribute *attr, char *buf)
  1306. {
  1307. struct hstate *h;
  1308. unsigned long surplus_huge_pages;
  1309. int nid;
  1310. h = kobj_to_hstate(kobj, &nid);
  1311. if (nid == NUMA_NO_NODE)
  1312. surplus_huge_pages = h->surplus_huge_pages;
  1313. else
  1314. surplus_huge_pages = h->surplus_huge_pages_node[nid];
  1315. return sprintf(buf, "%lu\n", surplus_huge_pages);
  1316. }
  1317. HSTATE_ATTR_RO(surplus_hugepages);
  1318. static struct attribute *hstate_attrs[] = {
  1319. &nr_hugepages_attr.attr,
  1320. &nr_overcommit_hugepages_attr.attr,
  1321. &free_hugepages_attr.attr,
  1322. &resv_hugepages_attr.attr,
  1323. &surplus_hugepages_attr.attr,
  1324. #ifdef CONFIG_NUMA
  1325. &nr_hugepages_mempolicy_attr.attr,
  1326. #endif
  1327. NULL,
  1328. };
  1329. static struct attribute_group hstate_attr_group = {
  1330. .attrs = hstate_attrs,
  1331. };
  1332. static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
  1333. struct kobject **hstate_kobjs,
  1334. struct attribute_group *hstate_attr_group)
  1335. {
  1336. int retval;
  1337. int hi = h - hstates;
  1338. hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
  1339. if (!hstate_kobjs[hi])
  1340. return -ENOMEM;
  1341. retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
  1342. if (retval)
  1343. kobject_put(hstate_kobjs[hi]);
  1344. return retval;
  1345. }
  1346. static void __init hugetlb_sysfs_init(void)
  1347. {
  1348. struct hstate *h;
  1349. int err;
  1350. hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
  1351. if (!hugepages_kobj)
  1352. return;
  1353. for_each_hstate(h) {
  1354. err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
  1355. hstate_kobjs, &hstate_attr_group);
  1356. if (err)
  1357. printk(KERN_ERR "Hugetlb: Unable to add hstate %s",
  1358. h->name);
  1359. }
  1360. }
  1361. #ifdef CONFIG_NUMA
  1362. /*
  1363. * node_hstate/s - associate per node hstate attributes, via their kobjects,
  1364. * with node sysdevs in node_devices[] using a parallel array. The array
  1365. * index of a node sysdev or _hstate == node id.
  1366. * This is here to avoid any static dependency of the node sysdev driver, in
  1367. * the base kernel, on the hugetlb module.
  1368. */
  1369. struct node_hstate {
  1370. struct kobject *hugepages_kobj;
  1371. struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
  1372. };
  1373. struct node_hstate node_hstates[MAX_NUMNODES];
  1374. /*
  1375. * A subset of global hstate attributes for node sysdevs
  1376. */
  1377. static struct attribute *per_node_hstate_attrs[] = {
  1378. &nr_hugepages_attr.attr,
  1379. &free_hugepages_attr.attr,
  1380. &surplus_hugepages_attr.attr,
  1381. NULL,
  1382. };
  1383. static struct attribute_group per_node_hstate_attr_group = {
  1384. .attrs = per_node_hstate_attrs,
  1385. };
  1386. /*
  1387. * kobj_to_node_hstate - lookup global hstate for node sysdev hstate attr kobj.
  1388. * Returns node id via non-NULL nidp.
  1389. */
  1390. static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
  1391. {
  1392. int nid;
  1393. for (nid = 0; nid < nr_node_ids; nid++) {
  1394. struct node_hstate *nhs = &node_hstates[nid];
  1395. int i;
  1396. for (i = 0; i < HUGE_MAX_HSTATE; i++)
  1397. if (nhs->hstate_kobjs[i] == kobj) {
  1398. if (nidp)
  1399. *nidp = nid;
  1400. return &hstates[i];
  1401. }
  1402. }
  1403. BUG();
  1404. return NULL;
  1405. }
  1406. /*
  1407. * Unregister hstate attributes from a single node sysdev.
  1408. * No-op if no hstate attributes attached.
  1409. */
  1410. void hugetlb_unregister_node(struct node *node)
  1411. {
  1412. struct hstate *h;
  1413. struct node_hstate *nhs = &node_hstates[node->sysdev.id];
  1414. if (!nhs->hugepages_kobj)
  1415. return; /* no hstate attributes */
  1416. for_each_hstate(h)
  1417. if (nhs->hstate_kobjs[h - hstates]) {
  1418. kobject_put(nhs->hstate_kobjs[h - hstates]);
  1419. nhs->hstate_kobjs[h - hstates] = NULL;
  1420. }
  1421. kobject_put(nhs->hugepages_kobj);
  1422. nhs->hugepages_kobj = NULL;
  1423. }
  1424. /*
  1425. * hugetlb module exit: unregister hstate attributes from node sysdevs
  1426. * that have them.
  1427. */
  1428. static void hugetlb_unregister_all_nodes(void)
  1429. {
  1430. int nid;
  1431. /*
  1432. * disable node sysdev registrations.
  1433. */
  1434. register_hugetlbfs_with_node(NULL, NULL);
  1435. /*
  1436. * remove hstate attributes from any nodes that have them.
  1437. */
  1438. for (nid = 0; nid < nr_node_ids; nid++)
  1439. hugetlb_unregister_node(&node_devices[nid]);
  1440. }
  1441. /*
  1442. * Register hstate attributes for a single node sysdev.
  1443. * No-op if attributes already registered.
  1444. */
  1445. void hugetlb_register_node(struct node *node)
  1446. {
  1447. struct hstate *h;
  1448. struct node_hstate *nhs = &node_hstates[node->sysdev.id];
  1449. int err;
  1450. if (nhs->hugepages_kobj)
  1451. return; /* already allocated */
  1452. nhs->hugepages_kobj = kobject_create_and_add("hugepages",
  1453. &node->sysdev.kobj);
  1454. if (!nhs->hugepages_kobj)
  1455. return;
  1456. for_each_hstate(h) {
  1457. err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
  1458. nhs->hstate_kobjs,
  1459. &per_node_hstate_attr_group);
  1460. if (err) {
  1461. printk(KERN_ERR "Hugetlb: Unable to add hstate %s"
  1462. " for node %d\n",
  1463. h->name, node->sysdev.id);
  1464. hugetlb_unregister_node(node);
  1465. break;
  1466. }
  1467. }
  1468. }
  1469. /*
  1470. * hugetlb init time: register hstate attributes for all registered node
  1471. * sysdevs of nodes that have memory. All on-line nodes should have
  1472. * registered their associated sysdev by this time.
  1473. */
  1474. static void hugetlb_register_all_nodes(void)
  1475. {
  1476. int nid;
  1477. for_each_node_state(nid, N_HIGH_MEMORY) {
  1478. struct node *node = &node_devices[nid];
  1479. if (node->sysdev.id == nid)
  1480. hugetlb_register_node(node);
  1481. }
  1482. /*
  1483. * Let the node sysdev driver know we're here so it can
  1484. * [un]register hstate attributes on node hotplug.
  1485. */
  1486. register_hugetlbfs_with_node(hugetlb_register_node,
  1487. hugetlb_unregister_node);
  1488. }
  1489. #else /* !CONFIG_NUMA */
  1490. static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
  1491. {
  1492. BUG();
  1493. if (nidp)
  1494. *nidp = -1;
  1495. return NULL;
  1496. }
  1497. static void hugetlb_unregister_all_nodes(void) { }
  1498. static void hugetlb_register_all_nodes(void) { }
  1499. #endif
  1500. static void __exit hugetlb_exit(void)
  1501. {
  1502. struct hstate *h;
  1503. hugetlb_unregister_all_nodes();
  1504. for_each_hstate(h) {
  1505. kobject_put(hstate_kobjs[h - hstates]);
  1506. }
  1507. kobject_put(hugepages_kobj);
  1508. }
  1509. module_exit(hugetlb_exit);
  1510. static int __init hugetlb_init(void)
  1511. {
  1512. /* Some platform decide whether they support huge pages at boot
  1513. * time. On these, such as powerpc, HPAGE_SHIFT is set to 0 when
  1514. * there is no such support
  1515. */
  1516. if (HPAGE_SHIFT == 0)
  1517. return 0;
  1518. if (!size_to_hstate(default_hstate_size)) {
  1519. default_hstate_size = HPAGE_SIZE;
  1520. if (!size_to_hstate(default_hstate_size))
  1521. hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
  1522. }
  1523. default_hstate_idx = size_to_hstate(default_hstate_size) - hstates;
  1524. if (default_hstate_max_huge_pages)
  1525. default_hstate.max_huge_pages = default_hstate_max_huge_pages;
  1526. hugetlb_init_hstates();
  1527. gather_bootmem_prealloc();
  1528. report_hugepages();
  1529. hugetlb_sysfs_init();
  1530. hugetlb_register_all_nodes();
  1531. return 0;
  1532. }
  1533. module_init(hugetlb_init);
  1534. /* Should be called on processing a hugepagesz=... option */
  1535. void __init hugetlb_add_hstate(unsigned order)
  1536. {
  1537. struct hstate *h;
  1538. unsigned long i;
  1539. if (size_to_hstate(PAGE_SIZE << order)) {
  1540. printk(KERN_WARNING "hugepagesz= specified twice, ignoring\n");
  1541. return;
  1542. }
  1543. BUG_ON(max_hstate >= HUGE_MAX_HSTATE);
  1544. BUG_ON(order == 0);
  1545. h = &hstates[max_hstate++];
  1546. h->order = order;
  1547. h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
  1548. h->nr_huge_pages = 0;
  1549. h->free_huge_pages = 0;
  1550. for (i = 0; i < MAX_NUMNODES; ++i)
  1551. INIT_LIST_HEAD(&h->hugepage_freelists[i]);
  1552. h->next_nid_to_alloc = first_node(node_states[N_HIGH_MEMORY]);
  1553. h->next_nid_to_free = first_node(node_states[N_HIGH_MEMORY]);
  1554. snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
  1555. huge_page_size(h)/1024);
  1556. parsed_hstate = h;
  1557. }
  1558. static int __init hugetlb_nrpages_setup(char *s)
  1559. {
  1560. unsigned long *mhp;
  1561. static unsigned long *last_mhp;
  1562. /*
  1563. * !max_hstate means we haven't parsed a hugepagesz= parameter yet,
  1564. * so this hugepages= parameter goes to the "default hstate".
  1565. */
  1566. if (!max_hstate)
  1567. mhp = &default_hstate_max_huge_pages;
  1568. else
  1569. mhp = &parsed_hstate->max_huge_pages;
  1570. if (mhp == last_mhp) {
  1571. printk(KERN_WARNING "hugepages= specified twice without "
  1572. "interleaving hugepagesz=, ignoring\n");
  1573. return 1;
  1574. }
  1575. if (sscanf(s, "%lu", mhp) <= 0)
  1576. *mhp = 0;
  1577. /*
  1578. * Global state is always initialized later in hugetlb_init.
  1579. * But we need to allocate >= MAX_ORDER hstates here early to still
  1580. * use the bootmem allocator.
  1581. */
  1582. if (max_hstate && parsed_hstate->order >= MAX_ORDER)
  1583. hugetlb_hstate_alloc_pages(parsed_hstate);
  1584. last_mhp = mhp;
  1585. return 1;
  1586. }
  1587. __setup("hugepages=", hugetlb_nrpages_setup);
  1588. static int __init hugetlb_default_setup(char *s)
  1589. {
  1590. default_hstate_size = memparse(s, &s);
  1591. return 1;
  1592. }
  1593. __setup("default_hugepagesz=", hugetlb_default_setup);
  1594. static unsigned int cpuset_mems_nr(unsigned int *array)
  1595. {
  1596. int node;
  1597. unsigned int nr = 0;
  1598. for_each_node_mask(node, cpuset_current_mems_allowed)
  1599. nr += array[node];
  1600. return nr;
  1601. }
  1602. #ifdef CONFIG_SYSCTL
  1603. static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
  1604. struct ctl_table *table, int write,
  1605. void __user *buffer, size_t *length, loff_t *ppos)
  1606. {
  1607. struct hstate *h = &default_hstate;
  1608. unsigned long tmp;
  1609. int ret;
  1610. tmp = h->max_huge_pages;
  1611. if (write && h->order >= MAX_ORDER)
  1612. return -EINVAL;
  1613. table->data = &tmp;
  1614. table->maxlen = sizeof(unsigned long);
  1615. ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
  1616. if (ret)
  1617. goto out;
  1618. if (write) {
  1619. NODEMASK_ALLOC(nodemask_t, nodes_allowed,
  1620. GFP_KERNEL | __GFP_NORETRY);
  1621. if (!(obey_mempolicy &&
  1622. init_nodemask_of_mempolicy(nodes_allowed))) {
  1623. NODEMASK_FREE(nodes_allowed);
  1624. nodes_allowed = &node_states[N_HIGH_MEMORY];
  1625. }
  1626. h->max_huge_pages = set_max_huge_pages(h, tmp, nodes_allowed);
  1627. if (nodes_allowed != &node_states[N_HIGH_MEMORY])
  1628. NODEMASK_FREE(nodes_allowed);
  1629. }
  1630. out:
  1631. return ret;
  1632. }
  1633. int hugetlb_sysctl_handler(struct ctl_table *table, int write,
  1634. void __user *buffer, size_t *length, loff_t *ppos)
  1635. {
  1636. return hugetlb_sysctl_handler_common(false, table, write,
  1637. buffer, length, ppos);
  1638. }
  1639. #ifdef CONFIG_NUMA
  1640. int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
  1641. void __user *buffer, size_t *length, loff_t *ppos)
  1642. {
  1643. return hugetlb_sysctl_handler_common(true, table, write,
  1644. buffer, length, ppos);
  1645. }
  1646. #endif /* CONFIG_NUMA */
  1647. int hugetlb_treat_movable_handler(struct ctl_table *table, int write,
  1648. void __user *buffer,
  1649. size_t *length, loff_t *ppos)
  1650. {
  1651. proc_dointvec(table, write, buffer, length, ppos);
  1652. if (hugepages_treat_as_movable)
  1653. htlb_alloc_mask = GFP_HIGHUSER_MOVABLE;
  1654. else
  1655. htlb_alloc_mask = GFP_HIGHUSER;
  1656. return 0;
  1657. }
  1658. int hugetlb_overcommit_handler(struct ctl_table *table, int write,
  1659. void __user *buffer,
  1660. size_t *length, loff_t *ppos)
  1661. {
  1662. struct hstate *h = &default_hstate;
  1663. unsigned long tmp;
  1664. int ret;
  1665. tmp = h->nr_overcommit_huge_pages;
  1666. if (write && h->order >= MAX_ORDER)
  1667. return -EINVAL;
  1668. table->data = &tmp;
  1669. table->maxlen = sizeof(unsigned long);
  1670. ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
  1671. if (ret)
  1672. goto out;
  1673. if (write) {
  1674. spin_lock(&hugetlb_lock);
  1675. h->nr_overcommit_huge_pages = tmp;
  1676. spin_unlock(&hugetlb_lock);
  1677. }
  1678. out:
  1679. return ret;
  1680. }
  1681. #endif /* CONFIG_SYSCTL */
  1682. void hugetlb_report_meminfo(struct seq_file *m)
  1683. {
  1684. struct hstate *h = &default_hstate;
  1685. seq_printf(m,
  1686. "HugePages_Total: %5lu\n"
  1687. "HugePages_Free: %5lu\n"
  1688. "HugePages_Rsvd: %5lu\n"
  1689. "HugePages_Surp: %5lu\n"
  1690. "Hugepagesize: %8lu kB\n",
  1691. h->nr_huge_pages,
  1692. h->free_huge_pages,
  1693. h->resv_huge_pages,
  1694. h->surplus_huge_pages,
  1695. 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
  1696. }
  1697. int hugetlb_report_node_meminfo(int nid, char *buf)
  1698. {
  1699. struct hstate *h = &default_hstate;
  1700. return sprintf(buf,
  1701. "Node %d HugePages_Total: %5u\n"
  1702. "Node %d HugePages_Free: %5u\n"
  1703. "Node %d HugePages_Surp: %5u\n",
  1704. nid, h->nr_huge_pages_node[nid],
  1705. nid, h->free_huge_pages_node[nid],
  1706. nid, h->surplus_huge_pages_node[nid]);
  1707. }
  1708. /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
  1709. unsigned long hugetlb_total_pages(void)
  1710. {
  1711. struct hstate *h = &default_hstate;
  1712. return h->nr_huge_pages * pages_per_huge_page(h);
  1713. }
  1714. static int hugetlb_acct_memory(struct hstate *h, long delta)
  1715. {
  1716. int ret = -ENOMEM;
  1717. spin_lock(&hugetlb_lock);
  1718. /*
  1719. * When cpuset is configured, it breaks the strict hugetlb page
  1720. * reservation as the accounting is done on a global variable. Such
  1721. * reservation is completely rubbish in the presence of cpuset because
  1722. * the reservation is not checked against page availability for the
  1723. * current cpuset. Application can still potentially OOM'ed by kernel
  1724. * with lack of free htlb page in cpuset that the task is in.
  1725. * Attempt to enforce strict accounting with cpuset is almost
  1726. * impossible (or too ugly) because cpuset is too fluid that
  1727. * task or memory node can be dynamically moved between cpusets.
  1728. *
  1729. * The change of semantics for shared hugetlb mapping with cpuset is
  1730. * undesirable. However, in order to preserve some of the semantics,
  1731. * we fall back to check against current free page availability as
  1732. * a best attempt and hopefully to minimize the impact of changing
  1733. * semantics that cpuset has.
  1734. */
  1735. if (delta > 0) {
  1736. if (gather_surplus_pages(h, delta) < 0)
  1737. goto out;
  1738. if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
  1739. return_unused_surplus_pages(h, delta);
  1740. goto out;
  1741. }
  1742. }
  1743. ret = 0;
  1744. if (delta < 0)
  1745. return_unused_surplus_pages(h, (unsigned long) -delta);
  1746. out:
  1747. spin_unlock(&hugetlb_lock);
  1748. return ret;
  1749. }
  1750. static void hugetlb_vm_op_open(struct vm_area_struct *vma)
  1751. {
  1752. struct resv_map *reservations = vma_resv_map(vma);
  1753. /*
  1754. * This new VMA should share its siblings reservation map if present.
  1755. * The VMA will only ever have a valid reservation map pointer where
  1756. * it is being copied for another still existing VMA. As that VMA
  1757. * has a reference to the reservation map it cannot disappear until
  1758. * after this open call completes. It is therefore safe to take a
  1759. * new reference here without additional locking.
  1760. */
  1761. if (reservations)
  1762. kref_get(&reservations->refs);
  1763. }
  1764. static void hugetlb_vm_op_close(struct vm_area_struct *vma)
  1765. {
  1766. struct hstate *h = hstate_vma(vma);
  1767. struct resv_map *reservations = vma_resv_map(vma);
  1768. unsigned long reserve;
  1769. unsigned long start;
  1770. unsigned long end;
  1771. if (reservations) {
  1772. start = vma_hugecache_offset(h, vma, vma->vm_start);
  1773. end = vma_hugecache_offset(h, vma, vma->vm_end);
  1774. reserve = (end - start) -
  1775. region_count(&reservations->regions, start, end);
  1776. kref_put(&reservations->refs, resv_map_release);
  1777. if (reserve) {
  1778. hugetlb_acct_memory(h, -reserve);
  1779. hugetlb_put_quota(vma->vm_file->f_mapping, reserve);
  1780. }
  1781. }
  1782. }
  1783. /*
  1784. * We cannot handle pagefaults against hugetlb pages at all. They cause
  1785. * handle_mm_fault() to try to instantiate regular-sized pages in the
  1786. * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
  1787. * this far.
  1788. */
  1789. static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
  1790. {
  1791. BUG();
  1792. return 0;
  1793. }
  1794. const struct vm_operations_struct hugetlb_vm_ops = {
  1795. .fault = hugetlb_vm_op_fault,
  1796. .open = hugetlb_vm_op_open,
  1797. .close = hugetlb_vm_op_close,
  1798. };
  1799. static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
  1800. int writable)
  1801. {
  1802. pte_t entry;
  1803. if (writable) {
  1804. entry =
  1805. pte_mkwrite(pte_mkdirty(mk_pte(page, vma->vm_page_prot)));
  1806. } else {
  1807. entry = huge_pte_wrprotect(mk_pte(page, vma->vm_page_prot));
  1808. }
  1809. entry = pte_mkyoung(entry);
  1810. entry = pte_mkhuge(entry);
  1811. return entry;
  1812. }
  1813. static void set_huge_ptep_writable(struct vm_area_struct *vma,
  1814. unsigned long address, pte_t *ptep)
  1815. {
  1816. pte_t entry;
  1817. entry = pte_mkwrite(pte_mkdirty(huge_ptep_get(ptep)));
  1818. if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1)) {
  1819. update_mmu_cache(vma, address, ptep);
  1820. }
  1821. }
  1822. int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
  1823. struct vm_area_struct *vma)
  1824. {
  1825. pte_t *src_pte, *dst_pte, entry;
  1826. struct page *ptepage;
  1827. unsigned long addr;
  1828. int cow;
  1829. struct hstate *h = hstate_vma(vma);
  1830. unsigned long sz = huge_page_size(h);
  1831. cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
  1832. for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
  1833. src_pte = huge_pte_offset(src, addr);
  1834. if (!src_pte)
  1835. continue;
  1836. dst_pte = huge_pte_alloc(dst, addr, sz);
  1837. if (!dst_pte)
  1838. goto nomem;
  1839. /* If the pagetables are shared don't copy or take references */
  1840. if (dst_pte == src_pte)
  1841. continue;
  1842. spin_lock(&dst->page_table_lock);
  1843. spin_lock_nested(&src->page_table_lock, SINGLE_DEPTH_NESTING);
  1844. if (!huge_pte_none(huge_ptep_get(src_pte))) {
  1845. if (cow)
  1846. huge_ptep_set_wrprotect(src, addr, src_pte);
  1847. entry = huge_ptep_get(src_pte);
  1848. ptepage = pte_page(entry);
  1849. get_page(ptepage);
  1850. page_dup_rmap(ptepage);
  1851. set_huge_pte_at(dst, addr, dst_pte, entry);
  1852. }
  1853. spin_unlock(&src->page_table_lock);
  1854. spin_unlock(&dst->page_table_lock);
  1855. }
  1856. return 0;
  1857. nomem:
  1858. return -ENOMEM;
  1859. }
  1860. static int is_hugetlb_entry_migration(pte_t pte)
  1861. {
  1862. swp_entry_t swp;
  1863. if (huge_pte_none(pte) || pte_present(pte))
  1864. return 0;
  1865. swp = pte_to_swp_entry(pte);
  1866. if (non_swap_entry(swp) && is_migration_entry(swp)) {
  1867. return 1;
  1868. } else
  1869. return 0;
  1870. }
  1871. static int is_hugetlb_entry_hwpoisoned(pte_t pte)
  1872. {
  1873. swp_entry_t swp;
  1874. if (huge_pte_none(pte) || pte_present(pte))
  1875. return 0;
  1876. swp = pte_to_swp_entry(pte);
  1877. if (non_swap_entry(swp) && is_hwpoison_entry(swp)) {
  1878. return 1;
  1879. } else
  1880. return 0;
  1881. }
  1882. void __unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
  1883. unsigned long end, struct page *ref_page)
  1884. {
  1885. struct mm_struct *mm = vma->vm_mm;
  1886. unsigned long address;
  1887. pte_t *ptep;
  1888. pte_t pte;
  1889. struct page *page;
  1890. struct page *tmp;
  1891. struct hstate *h = hstate_vma(vma);
  1892. unsigned long sz = huge_page_size(h);
  1893. /*
  1894. * A page gathering list, protected by per file i_mmap_mutex. The
  1895. * lock is used to avoid list corruption from multiple unmapping
  1896. * of the same page since we are using page->lru.
  1897. */
  1898. LIST_HEAD(page_list);
  1899. WARN_ON(!is_vm_hugetlb_page(vma));
  1900. BUG_ON(start & ~huge_page_mask(h));
  1901. BUG_ON(end & ~huge_page_mask(h));
  1902. mmu_notifier_invalidate_range_start(mm, start, end);
  1903. spin_lock(&mm->page_table_lock);
  1904. for (address = start; address < end; address += sz) {
  1905. ptep = huge_pte_offset(mm, address);
  1906. if (!ptep)
  1907. continue;
  1908. if (huge_pmd_unshare(mm, &address, ptep))
  1909. continue;
  1910. /*
  1911. * If a reference page is supplied, it is because a specific
  1912. * page is being unmapped, not a range. Ensure the page we
  1913. * are about to unmap is the actual page of interest.
  1914. */
  1915. if (ref_page) {
  1916. pte = huge_ptep_get(ptep);
  1917. if (huge_pte_none(pte))
  1918. continue;
  1919. page = pte_page(pte);
  1920. if (page != ref_page)
  1921. continue;
  1922. /*
  1923. * Mark the VMA as having unmapped its page so that
  1924. * future faults in this VMA will fail rather than
  1925. * looking like data was lost
  1926. */
  1927. set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
  1928. }
  1929. pte = huge_ptep_get_and_clear(mm, address, ptep);
  1930. if (huge_pte_none(pte))
  1931. continue;
  1932. /*
  1933. * HWPoisoned hugepage is already unmapped and dropped reference
  1934. */
  1935. if (unlikely(is_hugetlb_entry_hwpoisoned(pte)))
  1936. continue;
  1937. page = pte_page(pte);
  1938. if (pte_dirty(pte))
  1939. set_page_dirty(page);
  1940. list_add(&page->lru, &page_list);
  1941. }
  1942. spin_unlock(&mm->page_table_lock);
  1943. flush_tlb_range(vma, start, end);
  1944. mmu_notifier_invalidate_range_end(mm, start, end);
  1945. list_for_each_entry_safe(page, tmp, &page_list, lru) {
  1946. page_remove_rmap(page);
  1947. list_del(&page->lru);
  1948. put_page(page);
  1949. }
  1950. }
  1951. void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
  1952. unsigned long end, struct page *ref_page)
  1953. {
  1954. mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
  1955. __unmap_hugepage_range(vma, start, end, ref_page);
  1956. mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
  1957. }
  1958. /*
  1959. * This is called when the original mapper is failing to COW a MAP_PRIVATE
  1960. * mappping it owns the reserve page for. The intention is to unmap the page
  1961. * from other VMAs and let the children be SIGKILLed if they are faulting the
  1962. * same region.
  1963. */
  1964. static int unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
  1965. struct page *page, unsigned long address)
  1966. {
  1967. struct hstate *h = hstate_vma(vma);
  1968. struct vm_area_struct *iter_vma;
  1969. struct address_space *mapping;
  1970. struct prio_tree_iter iter;
  1971. pgoff_t pgoff;
  1972. /*
  1973. * vm_pgoff is in PAGE_SIZE units, hence the different calculation
  1974. * from page cache lookup which is in HPAGE_SIZE units.
  1975. */
  1976. address = address & huge_page_mask(h);
  1977. pgoff = ((address - vma->vm_start) >> PAGE_SHIFT)
  1978. + (vma->vm_pgoff >> PAGE_SHIFT);
  1979. mapping = (struct address_space *)page_private(page);
  1980. /*
  1981. * Take the mapping lock for the duration of the table walk. As
  1982. * this mapping should be shared between all the VMAs,
  1983. * __unmap_hugepage_range() is called as the lock is already held
  1984. */
  1985. mutex_lock(&mapping->i_mmap_mutex);
  1986. vma_prio_tree_foreach(iter_vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
  1987. /* Do not unmap the current VMA */
  1988. if (iter_vma == vma)
  1989. continue;
  1990. /*
  1991. * Unmap the page from other VMAs without their own reserves.
  1992. * They get marked to be SIGKILLed if they fault in these
  1993. * areas. This is because a future no-page fault on this VMA
  1994. * could insert a zeroed page instead of the data existing
  1995. * from the time of fork. This would look like data corruption
  1996. */
  1997. if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
  1998. __unmap_hugepage_range(iter_vma,
  1999. address, address + huge_page_size(h),
  2000. page);
  2001. }
  2002. mutex_unlock(&mapping->i_mmap_mutex);
  2003. return 1;
  2004. }
  2005. /*
  2006. * Hugetlb_cow() should be called with page lock of the original hugepage held.
  2007. */
  2008. static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
  2009. unsigned long address, pte_t *ptep, pte_t pte,
  2010. struct page *pagecache_page)
  2011. {
  2012. struct hstate *h = hstate_vma(vma);
  2013. struct page *old_page, *new_page;
  2014. int avoidcopy;
  2015. int outside_reserve = 0;
  2016. old_page = pte_page(pte);
  2017. retry_avoidcopy:
  2018. /* If no-one else is actually using this page, avoid the copy
  2019. * and just make the page writable */
  2020. avoidcopy = (page_mapcount(old_page) == 1);
  2021. if (avoidcopy) {
  2022. if (PageAnon(old_page))
  2023. page_move_anon_rmap(old_page, vma, address);
  2024. set_huge_ptep_writable(vma, address, ptep);
  2025. return 0;
  2026. }
  2027. /*
  2028. * If the process that created a MAP_PRIVATE mapping is about to
  2029. * perform a COW due to a shared page count, attempt to satisfy
  2030. * the allocation without using the existing reserves. The pagecache
  2031. * page is used to determine if the reserve at this address was
  2032. * consumed or not. If reserves were used, a partial faulted mapping
  2033. * at the time of fork() could consume its reserves on COW instead
  2034. * of the full address range.
  2035. */
  2036. if (!(vma->vm_flags & VM_MAYSHARE) &&
  2037. is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
  2038. old_page != pagecache_page)
  2039. outside_reserve = 1;
  2040. page_cache_get(old_page);
  2041. /* Drop page_table_lock as buddy allocator may be called */
  2042. spin_unlock(&mm->page_table_lock);
  2043. new_page = alloc_huge_page(vma, address, outside_reserve);
  2044. if (IS_ERR(new_page)) {
  2045. page_cache_release(old_page);
  2046. /*
  2047. * If a process owning a MAP_PRIVATE mapping fails to COW,
  2048. * it is due to references held by a child and an insufficient
  2049. * huge page pool. To guarantee the original mappers
  2050. * reliability, unmap the page from child processes. The child
  2051. * may get SIGKILLed if it later faults.
  2052. */
  2053. if (outside_reserve) {
  2054. BUG_ON(huge_pte_none(pte));
  2055. if (unmap_ref_private(mm, vma, old_page, address)) {
  2056. BUG_ON(page_count(old_page) != 1);
  2057. BUG_ON(huge_pte_none(pte));
  2058. spin_lock(&mm->page_table_lock);
  2059. goto retry_avoidcopy;
  2060. }
  2061. WARN_ON_ONCE(1);
  2062. }
  2063. /* Caller expects lock to be held */
  2064. spin_lock(&mm->page_table_lock);
  2065. return -PTR_ERR(new_page);
  2066. }
  2067. /*
  2068. * When the original hugepage is shared one, it does not have
  2069. * anon_vma prepared.
  2070. */
  2071. if (unlikely(anon_vma_prepare(vma))) {
  2072. /* Caller expects lock to be held */
  2073. spin_lock(&mm->page_table_lock);
  2074. return VM_FAULT_OOM;
  2075. }
  2076. copy_user_huge_page(new_page, old_page, address, vma,
  2077. pages_per_huge_page(h));
  2078. __SetPageUptodate(new_page);
  2079. /*
  2080. * Retake the page_table_lock to check for racing updates
  2081. * before the page tables are altered
  2082. */
  2083. spin_lock(&mm->page_table_lock);
  2084. ptep = huge_pte_offset(mm, address & huge_page_mask(h));
  2085. if (likely(pte_same(huge_ptep_get(ptep), pte))) {
  2086. /* Break COW */
  2087. mmu_notifier_invalidate_range_start(mm,
  2088. address & huge_page_mask(h),
  2089. (address & huge_page_mask(h)) + huge_page_size(h));
  2090. huge_ptep_clear_flush(vma, address, ptep);
  2091. set_huge_pte_at(mm, address, ptep,
  2092. make_huge_pte(vma, new_page, 1));
  2093. page_remove_rmap(old_page);
  2094. hugepage_add_new_anon_rmap(new_page, vma, address);
  2095. /* Make the old page be freed below */
  2096. new_page = old_page;
  2097. mmu_notifier_invalidate_range_end(mm,
  2098. address & huge_page_mask(h),
  2099. (address & huge_page_mask(h)) + huge_page_size(h));
  2100. }
  2101. page_cache_release(new_page);
  2102. page_cache_release(old_page);
  2103. return 0;
  2104. }
  2105. /* Return the pagecache page at a given address within a VMA */
  2106. static struct page *hugetlbfs_pagecache_page(struct hstate *h,
  2107. struct vm_area_struct *vma, unsigned long address)
  2108. {
  2109. struct address_space *mapping;
  2110. pgoff_t idx;
  2111. mapping = vma->vm_file->f_mapping;
  2112. idx = vma_hugecache_offset(h, vma, address);
  2113. return find_lock_page(mapping, idx);
  2114. }
  2115. /*
  2116. * Return whether there is a pagecache page to back given address within VMA.
  2117. * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
  2118. */
  2119. static bool hugetlbfs_pagecache_present(struct hstate *h,
  2120. struct vm_area_struct *vma, unsigned long address)
  2121. {
  2122. struct address_space *mapping;
  2123. pgoff_t idx;
  2124. struct page *page;
  2125. mapping = vma->vm_file->f_mapping;
  2126. idx = vma_hugecache_offset(h, vma, address);
  2127. page = find_get_page(mapping, idx);
  2128. if (page)
  2129. put_page(page);
  2130. return page != NULL;
  2131. }
  2132. static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
  2133. unsigned long address, pte_t *ptep, unsigned int flags)
  2134. {
  2135. struct hstate *h = hstate_vma(vma);
  2136. int ret = VM_FAULT_SIGBUS;
  2137. pgoff_t idx;
  2138. unsigned long size;
  2139. struct page *page;
  2140. struct address_space *mapping;
  2141. pte_t new_pte;
  2142. /*
  2143. * Currently, we are forced to kill the process in the event the
  2144. * original mapper has unmapped pages from the child due to a failed
  2145. * COW. Warn that such a situation has occurred as it may not be obvious
  2146. */
  2147. if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
  2148. printk(KERN_WARNING
  2149. "PID %d killed due to inadequate hugepage pool\n",
  2150. current->pid);
  2151. return ret;
  2152. }
  2153. mapping = vma->vm_file->f_mapping;
  2154. idx = vma_hugecache_offset(h, vma, address);
  2155. /*
  2156. * Use page lock to guard against racing truncation
  2157. * before we get page_table_lock.
  2158. */
  2159. retry:
  2160. page = find_lock_page(mapping, idx);
  2161. if (!page) {
  2162. size = i_size_read(mapping->host) >> huge_page_shift(h);
  2163. if (idx >= size)
  2164. goto out;
  2165. page = alloc_huge_page(vma, address, 0);
  2166. if (IS_ERR(page)) {
  2167. ret = -PTR_ERR(page);
  2168. goto out;
  2169. }
  2170. clear_huge_page(page, address, pages_per_huge_page(h));
  2171. __SetPageUptodate(page);
  2172. if (vma->vm_flags & VM_MAYSHARE) {
  2173. int err;
  2174. struct inode *inode = mapping->host;
  2175. err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
  2176. if (err) {
  2177. put_page(page);
  2178. if (err == -EEXIST)
  2179. goto retry;
  2180. goto out;
  2181. }
  2182. spin_lock(&inode->i_lock);
  2183. inode->i_blocks += blocks_per_huge_page(h);
  2184. spin_unlock(&inode->i_lock);
  2185. page_dup_rmap(page);
  2186. } else {
  2187. lock_page(page);
  2188. if (unlikely(anon_vma_prepare(vma))) {
  2189. ret = VM_FAULT_OOM;
  2190. goto backout_unlocked;
  2191. }
  2192. hugepage_add_new_anon_rmap(page, vma, address);
  2193. }
  2194. } else {
  2195. /*
  2196. * If memory error occurs between mmap() and fault, some process
  2197. * don't have hwpoisoned swap entry for errored virtual address.
  2198. * So we need to block hugepage fault by PG_hwpoison bit check.
  2199. */
  2200. if (unlikely(PageHWPoison(page))) {
  2201. ret = VM_FAULT_HWPOISON |
  2202. VM_FAULT_SET_HINDEX(h - hstates);
  2203. goto backout_unlocked;
  2204. }
  2205. page_dup_rmap(page);
  2206. }
  2207. /*
  2208. * If we are going to COW a private mapping later, we examine the
  2209. * pending reservations for this page now. This will ensure that
  2210. * any allocations necessary to record that reservation occur outside
  2211. * the spinlock.
  2212. */
  2213. if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
  2214. if (vma_needs_reservation(h, vma, address) < 0) {
  2215. ret = VM_FAULT_OOM;
  2216. goto backout_unlocked;
  2217. }
  2218. spin_lock(&mm->page_table_lock);
  2219. size = i_size_read(mapping->host) >> huge_page_shift(h);
  2220. if (idx >= size)
  2221. goto backout;
  2222. ret = 0;
  2223. if (!huge_pte_none(huge_ptep_get(ptep)))
  2224. goto backout;
  2225. new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
  2226. && (vma->vm_flags & VM_SHARED)));
  2227. set_huge_pte_at(mm, address, ptep, new_pte);
  2228. if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
  2229. /* Optimization, do the COW without a second fault */
  2230. ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page);
  2231. }
  2232. spin_unlock(&mm->page_table_lock);
  2233. unlock_page(page);
  2234. out:
  2235. return ret;
  2236. backout:
  2237. spin_unlock(&mm->page_table_lock);
  2238. backout_unlocked:
  2239. unlock_page(page);
  2240. put_page(page);
  2241. goto out;
  2242. }
  2243. int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
  2244. unsigned long address, unsigned int flags)
  2245. {
  2246. pte_t *ptep;
  2247. pte_t entry;
  2248. int ret;
  2249. struct page *page = NULL;
  2250. struct page *pagecache_page = NULL;
  2251. static DEFINE_MUTEX(hugetlb_instantiation_mutex);
  2252. struct hstate *h = hstate_vma(vma);
  2253. ptep = huge_pte_offset(mm, address);
  2254. if (ptep) {
  2255. entry = huge_ptep_get(ptep);
  2256. if (unlikely(is_hugetlb_entry_migration(entry))) {
  2257. migration_entry_wait(mm, (pmd_t *)ptep, address);
  2258. return 0;
  2259. } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
  2260. return VM_FAULT_HWPOISON_LARGE |
  2261. VM_FAULT_SET_HINDEX(h - hstates);
  2262. }
  2263. ptep = huge_pte_alloc(mm, address, huge_page_size(h));
  2264. if (!ptep)
  2265. return VM_FAULT_OOM;
  2266. /*
  2267. * Serialize hugepage allocation and instantiation, so that we don't
  2268. * get spurious allocation failures if two CPUs race to instantiate
  2269. * the same page in the page cache.
  2270. */
  2271. mutex_lock(&hugetlb_instantiation_mutex);
  2272. entry = huge_ptep_get(ptep);
  2273. if (huge_pte_none(entry)) {
  2274. ret = hugetlb_no_page(mm, vma, address, ptep, flags);
  2275. goto out_mutex;
  2276. }
  2277. ret = 0;
  2278. /*
  2279. * If we are going to COW the mapping later, we examine the pending
  2280. * reservations for this page now. This will ensure that any
  2281. * allocations necessary to record that reservation occur outside the
  2282. * spinlock. For private mappings, we also lookup the pagecache
  2283. * page now as it is used to determine if a reservation has been
  2284. * consumed.
  2285. */
  2286. if ((flags & FAULT_FLAG_WRITE) && !pte_write(entry)) {
  2287. if (vma_needs_reservation(h, vma, address) < 0) {
  2288. ret = VM_FAULT_OOM;
  2289. goto out_mutex;
  2290. }
  2291. if (!(vma->vm_flags & VM_MAYSHARE))
  2292. pagecache_page = hugetlbfs_pagecache_page(h,
  2293. vma, address);
  2294. }
  2295. /*
  2296. * hugetlb_cow() requires page locks of pte_page(entry) and
  2297. * pagecache_page, so here we need take the former one
  2298. * when page != pagecache_page or !pagecache_page.
  2299. * Note that locking order is always pagecache_page -> page,
  2300. * so no worry about deadlock.
  2301. */
  2302. page = pte_page(entry);
  2303. if (page != pagecache_page)
  2304. lock_page(page);
  2305. spin_lock(&mm->page_table_lock);
  2306. /* Check for a racing update before calling hugetlb_cow */
  2307. if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
  2308. goto out_page_table_lock;
  2309. if (flags & FAULT_FLAG_WRITE) {
  2310. if (!pte_write(entry)) {
  2311. ret = hugetlb_cow(mm, vma, address, ptep, entry,
  2312. pagecache_page);
  2313. goto out_page_table_lock;
  2314. }
  2315. entry = pte_mkdirty(entry);
  2316. }
  2317. entry = pte_mkyoung(entry);
  2318. if (huge_ptep_set_access_flags(vma, address, ptep, entry,
  2319. flags & FAULT_FLAG_WRITE))
  2320. update_mmu_cache(vma, address, ptep);
  2321. out_page_table_lock:
  2322. spin_unlock(&mm->page_table_lock);
  2323. if (pagecache_page) {
  2324. unlock_page(pagecache_page);
  2325. put_page(pagecache_page);
  2326. }
  2327. if (page != pagecache_page)
  2328. unlock_page(page);
  2329. out_mutex:
  2330. mutex_unlock(&hugetlb_instantiation_mutex);
  2331. return ret;
  2332. }
  2333. /* Can be overriden by architectures */
  2334. __attribute__((weak)) struct page *
  2335. follow_huge_pud(struct mm_struct *mm, unsigned long address,
  2336. pud_t *pud, int write)
  2337. {
  2338. BUG();
  2339. return NULL;
  2340. }
  2341. int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
  2342. struct page **pages, struct vm_area_struct **vmas,
  2343. unsigned long *position, int *length, int i,
  2344. unsigned int flags)
  2345. {
  2346. unsigned long pfn_offset;
  2347. unsigned long vaddr = *position;
  2348. int remainder = *length;
  2349. struct hstate *h = hstate_vma(vma);
  2350. spin_lock(&mm->page_table_lock);
  2351. while (vaddr < vma->vm_end && remainder) {
  2352. pte_t *pte;
  2353. int absent;
  2354. struct page *page;
  2355. /*
  2356. * Some archs (sparc64, sh*) have multiple pte_ts to
  2357. * each hugepage. We have to make sure we get the
  2358. * first, for the page indexing below to work.
  2359. */
  2360. pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
  2361. absent = !pte || huge_pte_none(huge_ptep_get(pte));
  2362. /*
  2363. * When coredumping, it suits get_dump_page if we just return
  2364. * an error where there's an empty slot with no huge pagecache
  2365. * to back it. This way, we avoid allocating a hugepage, and
  2366. * the sparse dumpfile avoids allocating disk blocks, but its
  2367. * huge holes still show up with zeroes where they need to be.
  2368. */
  2369. if (absent && (flags & FOLL_DUMP) &&
  2370. !hugetlbfs_pagecache_present(h, vma, vaddr)) {
  2371. remainder = 0;
  2372. break;
  2373. }
  2374. if (absent ||
  2375. ((flags & FOLL_WRITE) && !pte_write(huge_ptep_get(pte)))) {
  2376. int ret;
  2377. spin_unlock(&mm->page_table_lock);
  2378. ret = hugetlb_fault(mm, vma, vaddr,
  2379. (flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
  2380. spin_lock(&mm->page_table_lock);
  2381. if (!(ret & VM_FAULT_ERROR))
  2382. continue;
  2383. remainder = 0;
  2384. break;
  2385. }
  2386. pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
  2387. page = pte_page(huge_ptep_get(pte));
  2388. same_page:
  2389. if (pages) {
  2390. pages[i] = mem_map_offset(page, pfn_offset);
  2391. get_page(pages[i]);
  2392. }
  2393. if (vmas)
  2394. vmas[i] = vma;
  2395. vaddr += PAGE_SIZE;
  2396. ++pfn_offset;
  2397. --remainder;
  2398. ++i;
  2399. if (vaddr < vma->vm_end && remainder &&
  2400. pfn_offset < pages_per_huge_page(h)) {
  2401. /*
  2402. * We use pfn_offset to avoid touching the pageframes
  2403. * of this compound page.
  2404. */
  2405. goto same_page;
  2406. }
  2407. }
  2408. spin_unlock(&mm->page_table_lock);
  2409. *length = remainder;
  2410. *position = vaddr;
  2411. return i ? i : -EFAULT;
  2412. }
  2413. void hugetlb_change_protection(struct vm_area_struct *vma,
  2414. unsigned long address, unsigned long end, pgprot_t newprot)
  2415. {
  2416. struct mm_struct *mm = vma->vm_mm;
  2417. unsigned long start = address;
  2418. pte_t *ptep;
  2419. pte_t pte;
  2420. struct hstate *h = hstate_vma(vma);
  2421. BUG_ON(address >= end);
  2422. flush_cache_range(vma, address, end);
  2423. mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
  2424. spin_lock(&mm->page_table_lock);
  2425. for (; address < end; address += huge_page_size(h)) {
  2426. ptep = huge_pte_offset(mm, address);
  2427. if (!ptep)
  2428. continue;
  2429. if (huge_pmd_unshare(mm, &address, ptep))
  2430. continue;
  2431. if (!huge_pte_none(huge_ptep_get(ptep))) {
  2432. pte = huge_ptep_get_and_clear(mm, address, ptep);
  2433. pte = pte_mkhuge(pte_modify(pte, newprot));
  2434. set_huge_pte_at(mm, address, ptep, pte);
  2435. }
  2436. }
  2437. spin_unlock(&mm->page_table_lock);
  2438. mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
  2439. flush_tlb_range(vma, start, end);
  2440. }
  2441. int hugetlb_reserve_pages(struct inode *inode,
  2442. long from, long to,
  2443. struct vm_area_struct *vma,
  2444. vm_flags_t vm_flags)
  2445. {
  2446. long ret, chg;
  2447. struct hstate *h = hstate_inode(inode);
  2448. /*
  2449. * Only apply hugepage reservation if asked. At fault time, an
  2450. * attempt will be made for VM_NORESERVE to allocate a page
  2451. * and filesystem quota without using reserves
  2452. */
  2453. if (vm_flags & VM_NORESERVE)
  2454. return 0;
  2455. /*
  2456. * Shared mappings base their reservation on the number of pages that
  2457. * are already allocated on behalf of the file. Private mappings need
  2458. * to reserve the full area even if read-only as mprotect() may be
  2459. * called to make the mapping read-write. Assume !vma is a shm mapping
  2460. */
  2461. if (!vma || vma->vm_flags & VM_MAYSHARE)
  2462. chg = region_chg(&inode->i_mapping->private_list, from, to);
  2463. else {
  2464. struct resv_map *resv_map = resv_map_alloc();
  2465. if (!resv_map)
  2466. return -ENOMEM;
  2467. chg = to - from;
  2468. set_vma_resv_map(vma, resv_map);
  2469. set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
  2470. }
  2471. if (chg < 0)
  2472. return chg;
  2473. /* There must be enough filesystem quota for the mapping */
  2474. if (hugetlb_get_quota(inode->i_mapping, chg))
  2475. return -ENOSPC;
  2476. /*
  2477. * Check enough hugepages are available for the reservation.
  2478. * Hand back the quota if there are not
  2479. */
  2480. ret = hugetlb_acct_memory(h, chg);
  2481. if (ret < 0) {
  2482. hugetlb_put_quota(inode->i_mapping, chg);
  2483. return ret;
  2484. }
  2485. /*
  2486. * Account for the reservations made. Shared mappings record regions
  2487. * that have reservations as they are shared by multiple VMAs.
  2488. * When the last VMA disappears, the region map says how much
  2489. * the reservation was and the page cache tells how much of
  2490. * the reservation was consumed. Private mappings are per-VMA and
  2491. * only the consumed reservations are tracked. When the VMA
  2492. * disappears, the original reservation is the VMA size and the
  2493. * consumed reservations are stored in the map. Hence, nothing
  2494. * else has to be done for private mappings here
  2495. */
  2496. if (!vma || vma->vm_flags & VM_MAYSHARE)
  2497. region_add(&inode->i_mapping->private_list, from, to);
  2498. return 0;
  2499. }
  2500. void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
  2501. {
  2502. struct hstate *h = hstate_inode(inode);
  2503. long chg = region_truncate(&inode->i_mapping->private_list, offset);
  2504. spin_lock(&inode->i_lock);
  2505. inode->i_blocks -= (blocks_per_huge_page(h) * freed);
  2506. spin_unlock(&inode->i_lock);
  2507. hugetlb_put_quota(inode->i_mapping, (chg - freed));
  2508. hugetlb_acct_memory(h, -(chg - freed));
  2509. }
  2510. #ifdef CONFIG_MEMORY_FAILURE
  2511. /* Should be called in hugetlb_lock */
  2512. static int is_hugepage_on_freelist(struct page *hpage)
  2513. {
  2514. struct page *page;
  2515. struct page *tmp;
  2516. struct hstate *h = page_hstate(hpage);
  2517. int nid = page_to_nid(hpage);
  2518. list_for_each_entry_safe(page, tmp, &h->hugepage_freelists[nid], lru)
  2519. if (page == hpage)
  2520. return 1;
  2521. return 0;
  2522. }
  2523. /*
  2524. * This function is called from memory failure code.
  2525. * Assume the caller holds page lock of the head page.
  2526. */
  2527. int dequeue_hwpoisoned_huge_page(struct page *hpage)
  2528. {
  2529. struct hstate *h = page_hstate(hpage);
  2530. int nid = page_to_nid(hpage);
  2531. int ret = -EBUSY;
  2532. spin_lock(&hugetlb_lock);
  2533. if (is_hugepage_on_freelist(hpage)) {
  2534. list_del(&hpage->lru);
  2535. set_page_refcounted(hpage);
  2536. h->free_huge_pages--;
  2537. h->free_huge_pages_node[nid]--;
  2538. ret = 0;
  2539. }
  2540. spin_unlock(&hugetlb_lock);
  2541. return ret;
  2542. }
  2543. #endif