fork.c 44 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874
  1. /*
  2. * linux/kernel/fork.c
  3. *
  4. * Copyright (C) 1991, 1992 Linus Torvalds
  5. */
  6. /*
  7. * 'fork.c' contains the help-routines for the 'fork' system call
  8. * (see also entry.S and others).
  9. * Fork is rather simple, once you get the hang of it, but the memory
  10. * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
  11. */
  12. #include <linux/slab.h>
  13. #include <linux/init.h>
  14. #include <linux/unistd.h>
  15. #include <linux/module.h>
  16. #include <linux/vmalloc.h>
  17. #include <linux/completion.h>
  18. #include <linux/personality.h>
  19. #include <linux/mempolicy.h>
  20. #include <linux/sem.h>
  21. #include <linux/file.h>
  22. #include <linux/fdtable.h>
  23. #include <linux/iocontext.h>
  24. #include <linux/key.h>
  25. #include <linux/binfmts.h>
  26. #include <linux/mman.h>
  27. #include <linux/mmu_notifier.h>
  28. #include <linux/fs.h>
  29. #include <linux/nsproxy.h>
  30. #include <linux/capability.h>
  31. #include <linux/cpu.h>
  32. #include <linux/cgroup.h>
  33. #include <linux/security.h>
  34. #include <linux/hugetlb.h>
  35. #include <linux/seccomp.h>
  36. #include <linux/swap.h>
  37. #include <linux/syscalls.h>
  38. #include <linux/jiffies.h>
  39. #include <linux/futex.h>
  40. #include <linux/compat.h>
  41. #include <linux/kthread.h>
  42. #include <linux/task_io_accounting_ops.h>
  43. #include <linux/rcupdate.h>
  44. #include <linux/ptrace.h>
  45. #include <linux/mount.h>
  46. #include <linux/audit.h>
  47. #include <linux/memcontrol.h>
  48. #include <linux/ftrace.h>
  49. #include <linux/proc_fs.h>
  50. #include <linux/profile.h>
  51. #include <linux/rmap.h>
  52. #include <linux/ksm.h>
  53. #include <linux/acct.h>
  54. #include <linux/tsacct_kern.h>
  55. #include <linux/cn_proc.h>
  56. #include <linux/freezer.h>
  57. #include <linux/delayacct.h>
  58. #include <linux/taskstats_kern.h>
  59. #include <linux/random.h>
  60. #include <linux/tty.h>
  61. #include <linux/blkdev.h>
  62. #include <linux/fs_struct.h>
  63. #include <linux/magic.h>
  64. #include <linux/perf_event.h>
  65. #include <linux/posix-timers.h>
  66. #include <linux/user-return-notifier.h>
  67. #include <linux/oom.h>
  68. #include <linux/khugepaged.h>
  69. #include <linux/signalfd.h>
  70. #include <asm/pgtable.h>
  71. #include <asm/pgalloc.h>
  72. #include <asm/uaccess.h>
  73. #include <asm/mmu_context.h>
  74. #include <asm/cacheflush.h>
  75. #include <asm/tlbflush.h>
  76. #include <trace/events/sched.h>
  77. #define CREATE_TRACE_POINTS
  78. #include <trace/events/task.h>
  79. /*
  80. * Protected counters by write_lock_irq(&tasklist_lock)
  81. */
  82. unsigned long total_forks; /* Handle normal Linux uptimes. */
  83. int nr_threads; /* The idle threads do not count.. */
  84. int max_threads; /* tunable limit on nr_threads */
  85. DEFINE_PER_CPU(unsigned long, process_counts) = 0;
  86. __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
  87. #ifdef CONFIG_PROVE_RCU
  88. int lockdep_tasklist_lock_is_held(void)
  89. {
  90. return lockdep_is_held(&tasklist_lock);
  91. }
  92. EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
  93. #endif /* #ifdef CONFIG_PROVE_RCU */
  94. int nr_processes(void)
  95. {
  96. int cpu;
  97. int total = 0;
  98. for_each_possible_cpu(cpu)
  99. total += per_cpu(process_counts, cpu);
  100. return total;
  101. }
  102. #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
  103. static struct kmem_cache *task_struct_cachep;
  104. static inline struct task_struct *alloc_task_struct_node(int node)
  105. {
  106. return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
  107. }
  108. void __weak arch_release_task_struct(struct task_struct *tsk) { }
  109. static inline void free_task_struct(struct task_struct *tsk)
  110. {
  111. arch_release_task_struct(tsk);
  112. kmem_cache_free(task_struct_cachep, tsk);
  113. }
  114. #endif
  115. #ifndef CONFIG_ARCH_THREAD_INFO_ALLOCATOR
  116. void __weak arch_release_thread_info(struct thread_info *ti) { }
  117. /*
  118. * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
  119. * kmemcache based allocator.
  120. */
  121. # if THREAD_SIZE >= PAGE_SIZE
  122. static struct thread_info *alloc_thread_info_node(struct task_struct *tsk,
  123. int node)
  124. {
  125. struct page *page = alloc_pages_node(node, THREADINFO_GFP,
  126. THREAD_SIZE_ORDER);
  127. return page ? page_address(page) : NULL;
  128. }
  129. static inline void free_thread_info(struct thread_info *ti)
  130. {
  131. arch_release_thread_info(ti);
  132. free_pages((unsigned long)ti, THREAD_SIZE_ORDER);
  133. }
  134. # else
  135. static struct kmem_cache *thread_info_cache;
  136. static struct thread_info *alloc_thread_info_node(struct task_struct *tsk,
  137. int node)
  138. {
  139. return kmem_cache_alloc_node(thread_info_cache, THREADINFO_GFP, node);
  140. }
  141. static void free_thread_info(struct thread_info *ti)
  142. {
  143. arch_release_thread_info(ti);
  144. kmem_cache_free(thread_info_cache, ti);
  145. }
  146. void thread_info_cache_init(void)
  147. {
  148. thread_info_cache = kmem_cache_create("thread_info", THREAD_SIZE,
  149. THREAD_SIZE, 0, NULL);
  150. BUG_ON(thread_info_cache == NULL);
  151. }
  152. # endif
  153. #endif
  154. /* SLAB cache for signal_struct structures (tsk->signal) */
  155. static struct kmem_cache *signal_cachep;
  156. /* SLAB cache for sighand_struct structures (tsk->sighand) */
  157. struct kmem_cache *sighand_cachep;
  158. /* SLAB cache for files_struct structures (tsk->files) */
  159. struct kmem_cache *files_cachep;
  160. /* SLAB cache for fs_struct structures (tsk->fs) */
  161. struct kmem_cache *fs_cachep;
  162. /* SLAB cache for vm_area_struct structures */
  163. struct kmem_cache *vm_area_cachep;
  164. /* SLAB cache for mm_struct structures (tsk->mm) */
  165. static struct kmem_cache *mm_cachep;
  166. static void account_kernel_stack(struct thread_info *ti, int account)
  167. {
  168. struct zone *zone = page_zone(virt_to_page(ti));
  169. mod_zone_page_state(zone, NR_KERNEL_STACK, account);
  170. }
  171. void free_task(struct task_struct *tsk)
  172. {
  173. account_kernel_stack(tsk->stack, -1);
  174. free_thread_info(tsk->stack);
  175. rt_mutex_debug_task_free(tsk);
  176. ftrace_graph_exit_task(tsk);
  177. put_seccomp_filter(tsk);
  178. free_task_struct(tsk);
  179. }
  180. EXPORT_SYMBOL(free_task);
  181. static inline void free_signal_struct(struct signal_struct *sig)
  182. {
  183. taskstats_tgid_free(sig);
  184. sched_autogroup_exit(sig);
  185. kmem_cache_free(signal_cachep, sig);
  186. }
  187. static inline void put_signal_struct(struct signal_struct *sig)
  188. {
  189. if (atomic_dec_and_test(&sig->sigcnt))
  190. free_signal_struct(sig);
  191. }
  192. void __put_task_struct(struct task_struct *tsk)
  193. {
  194. WARN_ON(!tsk->exit_state);
  195. WARN_ON(atomic_read(&tsk->usage));
  196. WARN_ON(tsk == current);
  197. security_task_free(tsk);
  198. exit_creds(tsk);
  199. delayacct_tsk_free(tsk);
  200. put_signal_struct(tsk->signal);
  201. if (!profile_handoff_task(tsk))
  202. free_task(tsk);
  203. }
  204. EXPORT_SYMBOL_GPL(__put_task_struct);
  205. void __init __weak arch_task_cache_init(void) { }
  206. void __init fork_init(unsigned long mempages)
  207. {
  208. #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
  209. #ifndef ARCH_MIN_TASKALIGN
  210. #define ARCH_MIN_TASKALIGN L1_CACHE_BYTES
  211. #endif
  212. /* create a slab on which task_structs can be allocated */
  213. task_struct_cachep =
  214. kmem_cache_create("task_struct", sizeof(struct task_struct),
  215. ARCH_MIN_TASKALIGN, SLAB_PANIC | SLAB_NOTRACK, NULL);
  216. #endif
  217. /* do the arch specific task caches init */
  218. arch_task_cache_init();
  219. /*
  220. * The default maximum number of threads is set to a safe
  221. * value: the thread structures can take up at most half
  222. * of memory.
  223. */
  224. max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE);
  225. /*
  226. * we need to allow at least 20 threads to boot a system
  227. */
  228. if (max_threads < 20)
  229. max_threads = 20;
  230. init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
  231. init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
  232. init_task.signal->rlim[RLIMIT_SIGPENDING] =
  233. init_task.signal->rlim[RLIMIT_NPROC];
  234. }
  235. int __attribute__((weak)) arch_dup_task_struct(struct task_struct *dst,
  236. struct task_struct *src)
  237. {
  238. *dst = *src;
  239. return 0;
  240. }
  241. static struct task_struct *dup_task_struct(struct task_struct *orig)
  242. {
  243. struct task_struct *tsk;
  244. struct thread_info *ti;
  245. unsigned long *stackend;
  246. int node = tsk_fork_get_node(orig);
  247. int err;
  248. tsk = alloc_task_struct_node(node);
  249. if (!tsk)
  250. return NULL;
  251. ti = alloc_thread_info_node(tsk, node);
  252. if (!ti) {
  253. free_task_struct(tsk);
  254. return NULL;
  255. }
  256. err = arch_dup_task_struct(tsk, orig);
  257. if (err)
  258. goto out;
  259. tsk->stack = ti;
  260. setup_thread_stack(tsk, orig);
  261. clear_user_return_notifier(tsk);
  262. clear_tsk_need_resched(tsk);
  263. stackend = end_of_stack(tsk);
  264. *stackend = STACK_END_MAGIC; /* for overflow detection */
  265. #ifdef CONFIG_CC_STACKPROTECTOR
  266. tsk->stack_canary = get_random_int();
  267. #endif
  268. /*
  269. * One for us, one for whoever does the "release_task()" (usually
  270. * parent)
  271. */
  272. atomic_set(&tsk->usage, 2);
  273. #ifdef CONFIG_BLK_DEV_IO_TRACE
  274. tsk->btrace_seq = 0;
  275. #endif
  276. tsk->splice_pipe = NULL;
  277. account_kernel_stack(ti, 1);
  278. return tsk;
  279. out:
  280. free_thread_info(ti);
  281. free_task_struct(tsk);
  282. return NULL;
  283. }
  284. #ifdef CONFIG_MMU
  285. static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
  286. {
  287. struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
  288. struct rb_node **rb_link, *rb_parent;
  289. int retval;
  290. unsigned long charge;
  291. struct mempolicy *pol;
  292. down_write(&oldmm->mmap_sem);
  293. flush_cache_dup_mm(oldmm);
  294. /*
  295. * Not linked in yet - no deadlock potential:
  296. */
  297. down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
  298. mm->locked_vm = 0;
  299. mm->mmap = NULL;
  300. mm->mmap_cache = NULL;
  301. mm->free_area_cache = oldmm->mmap_base;
  302. mm->cached_hole_size = ~0UL;
  303. mm->map_count = 0;
  304. cpumask_clear(mm_cpumask(mm));
  305. mm->mm_rb = RB_ROOT;
  306. rb_link = &mm->mm_rb.rb_node;
  307. rb_parent = NULL;
  308. pprev = &mm->mmap;
  309. retval = ksm_fork(mm, oldmm);
  310. if (retval)
  311. goto out;
  312. retval = khugepaged_fork(mm, oldmm);
  313. if (retval)
  314. goto out;
  315. prev = NULL;
  316. for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
  317. struct file *file;
  318. if (mpnt->vm_flags & VM_DONTCOPY) {
  319. long pages = vma_pages(mpnt);
  320. mm->total_vm -= pages;
  321. vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
  322. -pages);
  323. continue;
  324. }
  325. charge = 0;
  326. if (mpnt->vm_flags & VM_ACCOUNT) {
  327. unsigned int len = (mpnt->vm_end - mpnt->vm_start) >> PAGE_SHIFT;
  328. if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
  329. goto fail_nomem;
  330. charge = len;
  331. }
  332. tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
  333. if (!tmp)
  334. goto fail_nomem;
  335. *tmp = *mpnt;
  336. INIT_LIST_HEAD(&tmp->anon_vma_chain);
  337. pol = mpol_dup(vma_policy(mpnt));
  338. retval = PTR_ERR(pol);
  339. if (IS_ERR(pol))
  340. goto fail_nomem_policy;
  341. vma_set_policy(tmp, pol);
  342. tmp->vm_mm = mm;
  343. if (anon_vma_fork(tmp, mpnt))
  344. goto fail_nomem_anon_vma_fork;
  345. tmp->vm_flags &= ~VM_LOCKED;
  346. tmp->vm_next = tmp->vm_prev = NULL;
  347. file = tmp->vm_file;
  348. if (file) {
  349. struct inode *inode = file->f_path.dentry->d_inode;
  350. struct address_space *mapping = file->f_mapping;
  351. get_file(file);
  352. if (tmp->vm_flags & VM_DENYWRITE)
  353. atomic_dec(&inode->i_writecount);
  354. mutex_lock(&mapping->i_mmap_mutex);
  355. if (tmp->vm_flags & VM_SHARED)
  356. mapping->i_mmap_writable++;
  357. flush_dcache_mmap_lock(mapping);
  358. /* insert tmp into the share list, just after mpnt */
  359. vma_prio_tree_add(tmp, mpnt);
  360. flush_dcache_mmap_unlock(mapping);
  361. mutex_unlock(&mapping->i_mmap_mutex);
  362. }
  363. /*
  364. * Clear hugetlb-related page reserves for children. This only
  365. * affects MAP_PRIVATE mappings. Faults generated by the child
  366. * are not guaranteed to succeed, even if read-only
  367. */
  368. if (is_vm_hugetlb_page(tmp))
  369. reset_vma_resv_huge_pages(tmp);
  370. /*
  371. * Link in the new vma and copy the page table entries.
  372. */
  373. *pprev = tmp;
  374. pprev = &tmp->vm_next;
  375. tmp->vm_prev = prev;
  376. prev = tmp;
  377. __vma_link_rb(mm, tmp, rb_link, rb_parent);
  378. rb_link = &tmp->vm_rb.rb_right;
  379. rb_parent = &tmp->vm_rb;
  380. mm->map_count++;
  381. retval = copy_page_range(mm, oldmm, mpnt);
  382. if (tmp->vm_ops && tmp->vm_ops->open)
  383. tmp->vm_ops->open(tmp);
  384. if (retval)
  385. goto out;
  386. }
  387. /* a new mm has just been created */
  388. arch_dup_mmap(oldmm, mm);
  389. retval = 0;
  390. out:
  391. up_write(&mm->mmap_sem);
  392. flush_tlb_mm(oldmm);
  393. up_write(&oldmm->mmap_sem);
  394. return retval;
  395. fail_nomem_anon_vma_fork:
  396. mpol_put(pol);
  397. fail_nomem_policy:
  398. kmem_cache_free(vm_area_cachep, tmp);
  399. fail_nomem:
  400. retval = -ENOMEM;
  401. vm_unacct_memory(charge);
  402. goto out;
  403. }
  404. static inline int mm_alloc_pgd(struct mm_struct *mm)
  405. {
  406. mm->pgd = pgd_alloc(mm);
  407. if (unlikely(!mm->pgd))
  408. return -ENOMEM;
  409. return 0;
  410. }
  411. static inline void mm_free_pgd(struct mm_struct *mm)
  412. {
  413. pgd_free(mm, mm->pgd);
  414. }
  415. #else
  416. #define dup_mmap(mm, oldmm) (0)
  417. #define mm_alloc_pgd(mm) (0)
  418. #define mm_free_pgd(mm)
  419. #endif /* CONFIG_MMU */
  420. __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
  421. #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
  422. #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
  423. static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
  424. static int __init coredump_filter_setup(char *s)
  425. {
  426. default_dump_filter =
  427. (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
  428. MMF_DUMP_FILTER_MASK;
  429. return 1;
  430. }
  431. __setup("coredump_filter=", coredump_filter_setup);
  432. #include <linux/init_task.h>
  433. static void mm_init_aio(struct mm_struct *mm)
  434. {
  435. #ifdef CONFIG_AIO
  436. spin_lock_init(&mm->ioctx_lock);
  437. INIT_HLIST_HEAD(&mm->ioctx_list);
  438. #endif
  439. }
  440. static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p)
  441. {
  442. atomic_set(&mm->mm_users, 1);
  443. atomic_set(&mm->mm_count, 1);
  444. init_rwsem(&mm->mmap_sem);
  445. INIT_LIST_HEAD(&mm->mmlist);
  446. mm->flags = (current->mm) ?
  447. (current->mm->flags & MMF_INIT_MASK) : default_dump_filter;
  448. mm->core_state = NULL;
  449. mm->nr_ptes = 0;
  450. memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
  451. spin_lock_init(&mm->page_table_lock);
  452. mm->free_area_cache = TASK_UNMAPPED_BASE;
  453. mm->cached_hole_size = ~0UL;
  454. mm_init_aio(mm);
  455. mm_init_owner(mm, p);
  456. if (likely(!mm_alloc_pgd(mm))) {
  457. mm->def_flags = 0;
  458. mmu_notifier_mm_init(mm);
  459. return mm;
  460. }
  461. free_mm(mm);
  462. return NULL;
  463. }
  464. static void check_mm(struct mm_struct *mm)
  465. {
  466. int i;
  467. for (i = 0; i < NR_MM_COUNTERS; i++) {
  468. long x = atomic_long_read(&mm->rss_stat.count[i]);
  469. if (unlikely(x))
  470. printk(KERN_ALERT "BUG: Bad rss-counter state "
  471. "mm:%p idx:%d val:%ld\n", mm, i, x);
  472. }
  473. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  474. VM_BUG_ON(mm->pmd_huge_pte);
  475. #endif
  476. }
  477. /*
  478. * Allocate and initialize an mm_struct.
  479. */
  480. struct mm_struct *mm_alloc(void)
  481. {
  482. struct mm_struct *mm;
  483. mm = allocate_mm();
  484. if (!mm)
  485. return NULL;
  486. memset(mm, 0, sizeof(*mm));
  487. mm_init_cpumask(mm);
  488. return mm_init(mm, current);
  489. }
  490. /*
  491. * Called when the last reference to the mm
  492. * is dropped: either by a lazy thread or by
  493. * mmput. Free the page directory and the mm.
  494. */
  495. void __mmdrop(struct mm_struct *mm)
  496. {
  497. BUG_ON(mm == &init_mm);
  498. mm_free_pgd(mm);
  499. destroy_context(mm);
  500. mmu_notifier_mm_destroy(mm);
  501. check_mm(mm);
  502. free_mm(mm);
  503. }
  504. EXPORT_SYMBOL_GPL(__mmdrop);
  505. /*
  506. * Decrement the use count and release all resources for an mm.
  507. */
  508. void mmput(struct mm_struct *mm)
  509. {
  510. might_sleep();
  511. if (atomic_dec_and_test(&mm->mm_users)) {
  512. exit_aio(mm);
  513. ksm_exit(mm);
  514. khugepaged_exit(mm); /* must run before exit_mmap */
  515. exit_mmap(mm);
  516. set_mm_exe_file(mm, NULL);
  517. if (!list_empty(&mm->mmlist)) {
  518. spin_lock(&mmlist_lock);
  519. list_del(&mm->mmlist);
  520. spin_unlock(&mmlist_lock);
  521. }
  522. put_swap_token(mm);
  523. if (mm->binfmt)
  524. module_put(mm->binfmt->module);
  525. mmdrop(mm);
  526. }
  527. }
  528. EXPORT_SYMBOL_GPL(mmput);
  529. /*
  530. * We added or removed a vma mapping the executable. The vmas are only mapped
  531. * during exec and are not mapped with the mmap system call.
  532. * Callers must hold down_write() on the mm's mmap_sem for these
  533. */
  534. void added_exe_file_vma(struct mm_struct *mm)
  535. {
  536. mm->num_exe_file_vmas++;
  537. }
  538. void removed_exe_file_vma(struct mm_struct *mm)
  539. {
  540. mm->num_exe_file_vmas--;
  541. if ((mm->num_exe_file_vmas == 0) && mm->exe_file) {
  542. fput(mm->exe_file);
  543. mm->exe_file = NULL;
  544. }
  545. }
  546. void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
  547. {
  548. if (new_exe_file)
  549. get_file(new_exe_file);
  550. if (mm->exe_file)
  551. fput(mm->exe_file);
  552. mm->exe_file = new_exe_file;
  553. mm->num_exe_file_vmas = 0;
  554. }
  555. struct file *get_mm_exe_file(struct mm_struct *mm)
  556. {
  557. struct file *exe_file;
  558. /* We need mmap_sem to protect against races with removal of
  559. * VM_EXECUTABLE vmas */
  560. down_read(&mm->mmap_sem);
  561. exe_file = mm->exe_file;
  562. if (exe_file)
  563. get_file(exe_file);
  564. up_read(&mm->mmap_sem);
  565. return exe_file;
  566. }
  567. static void dup_mm_exe_file(struct mm_struct *oldmm, struct mm_struct *newmm)
  568. {
  569. /* It's safe to write the exe_file pointer without exe_file_lock because
  570. * this is called during fork when the task is not yet in /proc */
  571. newmm->exe_file = get_mm_exe_file(oldmm);
  572. }
  573. /**
  574. * get_task_mm - acquire a reference to the task's mm
  575. *
  576. * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning
  577. * this kernel workthread has transiently adopted a user mm with use_mm,
  578. * to do its AIO) is not set and if so returns a reference to it, after
  579. * bumping up the use count. User must release the mm via mmput()
  580. * after use. Typically used by /proc and ptrace.
  581. */
  582. struct mm_struct *get_task_mm(struct task_struct *task)
  583. {
  584. struct mm_struct *mm;
  585. task_lock(task);
  586. mm = task->mm;
  587. if (mm) {
  588. if (task->flags & PF_KTHREAD)
  589. mm = NULL;
  590. else
  591. atomic_inc(&mm->mm_users);
  592. }
  593. task_unlock(task);
  594. return mm;
  595. }
  596. EXPORT_SYMBOL_GPL(get_task_mm);
  597. struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
  598. {
  599. struct mm_struct *mm;
  600. int err;
  601. err = mutex_lock_killable(&task->signal->cred_guard_mutex);
  602. if (err)
  603. return ERR_PTR(err);
  604. mm = get_task_mm(task);
  605. if (mm && mm != current->mm &&
  606. !ptrace_may_access(task, mode)) {
  607. mmput(mm);
  608. mm = ERR_PTR(-EACCES);
  609. }
  610. mutex_unlock(&task->signal->cred_guard_mutex);
  611. return mm;
  612. }
  613. static void complete_vfork_done(struct task_struct *tsk)
  614. {
  615. struct completion *vfork;
  616. task_lock(tsk);
  617. vfork = tsk->vfork_done;
  618. if (likely(vfork)) {
  619. tsk->vfork_done = NULL;
  620. complete(vfork);
  621. }
  622. task_unlock(tsk);
  623. }
  624. static int wait_for_vfork_done(struct task_struct *child,
  625. struct completion *vfork)
  626. {
  627. int killed;
  628. freezer_do_not_count();
  629. killed = wait_for_completion_killable(vfork);
  630. freezer_count();
  631. if (killed) {
  632. task_lock(child);
  633. child->vfork_done = NULL;
  634. task_unlock(child);
  635. }
  636. put_task_struct(child);
  637. return killed;
  638. }
  639. /* Please note the differences between mmput and mm_release.
  640. * mmput is called whenever we stop holding onto a mm_struct,
  641. * error success whatever.
  642. *
  643. * mm_release is called after a mm_struct has been removed
  644. * from the current process.
  645. *
  646. * This difference is important for error handling, when we
  647. * only half set up a mm_struct for a new process and need to restore
  648. * the old one. Because we mmput the new mm_struct before
  649. * restoring the old one. . .
  650. * Eric Biederman 10 January 1998
  651. */
  652. void mm_release(struct task_struct *tsk, struct mm_struct *mm)
  653. {
  654. /* Get rid of any futexes when releasing the mm */
  655. #ifdef CONFIG_FUTEX
  656. if (unlikely(tsk->robust_list)) {
  657. exit_robust_list(tsk);
  658. tsk->robust_list = NULL;
  659. }
  660. #ifdef CONFIG_COMPAT
  661. if (unlikely(tsk->compat_robust_list)) {
  662. compat_exit_robust_list(tsk);
  663. tsk->compat_robust_list = NULL;
  664. }
  665. #endif
  666. if (unlikely(!list_empty(&tsk->pi_state_list)))
  667. exit_pi_state_list(tsk);
  668. #endif
  669. /* Get rid of any cached register state */
  670. deactivate_mm(tsk, mm);
  671. if (tsk->vfork_done)
  672. complete_vfork_done(tsk);
  673. /*
  674. * If we're exiting normally, clear a user-space tid field if
  675. * requested. We leave this alone when dying by signal, to leave
  676. * the value intact in a core dump, and to save the unnecessary
  677. * trouble, say, a killed vfork parent shouldn't touch this mm.
  678. * Userland only wants this done for a sys_exit.
  679. */
  680. if (tsk->clear_child_tid) {
  681. if (!(tsk->flags & PF_SIGNALED) &&
  682. atomic_read(&mm->mm_users) > 1) {
  683. /*
  684. * We don't check the error code - if userspace has
  685. * not set up a proper pointer then tough luck.
  686. */
  687. put_user(0, tsk->clear_child_tid);
  688. sys_futex(tsk->clear_child_tid, FUTEX_WAKE,
  689. 1, NULL, NULL, 0);
  690. }
  691. tsk->clear_child_tid = NULL;
  692. }
  693. }
  694. /*
  695. * Allocate a new mm structure and copy contents from the
  696. * mm structure of the passed in task structure.
  697. */
  698. struct mm_struct *dup_mm(struct task_struct *tsk)
  699. {
  700. struct mm_struct *mm, *oldmm = current->mm;
  701. int err;
  702. if (!oldmm)
  703. return NULL;
  704. mm = allocate_mm();
  705. if (!mm)
  706. goto fail_nomem;
  707. memcpy(mm, oldmm, sizeof(*mm));
  708. mm_init_cpumask(mm);
  709. /* Initializing for Swap token stuff */
  710. mm->token_priority = 0;
  711. mm->last_interval = 0;
  712. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  713. mm->pmd_huge_pte = NULL;
  714. #endif
  715. if (!mm_init(mm, tsk))
  716. goto fail_nomem;
  717. if (init_new_context(tsk, mm))
  718. goto fail_nocontext;
  719. dup_mm_exe_file(oldmm, mm);
  720. err = dup_mmap(mm, oldmm);
  721. if (err)
  722. goto free_pt;
  723. mm->hiwater_rss = get_mm_rss(mm);
  724. mm->hiwater_vm = mm->total_vm;
  725. if (mm->binfmt && !try_module_get(mm->binfmt->module))
  726. goto free_pt;
  727. return mm;
  728. free_pt:
  729. /* don't put binfmt in mmput, we haven't got module yet */
  730. mm->binfmt = NULL;
  731. mmput(mm);
  732. fail_nomem:
  733. return NULL;
  734. fail_nocontext:
  735. /*
  736. * If init_new_context() failed, we cannot use mmput() to free the mm
  737. * because it calls destroy_context()
  738. */
  739. mm_free_pgd(mm);
  740. free_mm(mm);
  741. return NULL;
  742. }
  743. static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
  744. {
  745. struct mm_struct *mm, *oldmm;
  746. int retval;
  747. tsk->min_flt = tsk->maj_flt = 0;
  748. tsk->nvcsw = tsk->nivcsw = 0;
  749. #ifdef CONFIG_DETECT_HUNG_TASK
  750. tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
  751. #endif
  752. tsk->mm = NULL;
  753. tsk->active_mm = NULL;
  754. /*
  755. * Are we cloning a kernel thread?
  756. *
  757. * We need to steal a active VM for that..
  758. */
  759. oldmm = current->mm;
  760. if (!oldmm)
  761. return 0;
  762. if (clone_flags & CLONE_VM) {
  763. atomic_inc(&oldmm->mm_users);
  764. mm = oldmm;
  765. goto good_mm;
  766. }
  767. retval = -ENOMEM;
  768. mm = dup_mm(tsk);
  769. if (!mm)
  770. goto fail_nomem;
  771. good_mm:
  772. /* Initializing for Swap token stuff */
  773. mm->token_priority = 0;
  774. mm->last_interval = 0;
  775. tsk->mm = mm;
  776. tsk->active_mm = mm;
  777. return 0;
  778. fail_nomem:
  779. return retval;
  780. }
  781. static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
  782. {
  783. struct fs_struct *fs = current->fs;
  784. if (clone_flags & CLONE_FS) {
  785. /* tsk->fs is already what we want */
  786. spin_lock(&fs->lock);
  787. if (fs->in_exec) {
  788. spin_unlock(&fs->lock);
  789. return -EAGAIN;
  790. }
  791. fs->users++;
  792. spin_unlock(&fs->lock);
  793. return 0;
  794. }
  795. tsk->fs = copy_fs_struct(fs);
  796. if (!tsk->fs)
  797. return -ENOMEM;
  798. return 0;
  799. }
  800. static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
  801. {
  802. struct files_struct *oldf, *newf;
  803. int error = 0;
  804. /*
  805. * A background process may not have any files ...
  806. */
  807. oldf = current->files;
  808. if (!oldf)
  809. goto out;
  810. if (clone_flags & CLONE_FILES) {
  811. atomic_inc(&oldf->count);
  812. goto out;
  813. }
  814. newf = dup_fd(oldf, &error);
  815. if (!newf)
  816. goto out;
  817. tsk->files = newf;
  818. error = 0;
  819. out:
  820. return error;
  821. }
  822. static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
  823. {
  824. #ifdef CONFIG_BLOCK
  825. struct io_context *ioc = current->io_context;
  826. struct io_context *new_ioc;
  827. if (!ioc)
  828. return 0;
  829. /*
  830. * Share io context with parent, if CLONE_IO is set
  831. */
  832. if (clone_flags & CLONE_IO) {
  833. tsk->io_context = ioc_task_link(ioc);
  834. if (unlikely(!tsk->io_context))
  835. return -ENOMEM;
  836. } else if (ioprio_valid(ioc->ioprio)) {
  837. new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
  838. if (unlikely(!new_ioc))
  839. return -ENOMEM;
  840. new_ioc->ioprio = ioc->ioprio;
  841. put_io_context(new_ioc);
  842. }
  843. #endif
  844. return 0;
  845. }
  846. static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
  847. {
  848. struct sighand_struct *sig;
  849. if (clone_flags & CLONE_SIGHAND) {
  850. atomic_inc(&current->sighand->count);
  851. return 0;
  852. }
  853. sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
  854. rcu_assign_pointer(tsk->sighand, sig);
  855. if (!sig)
  856. return -ENOMEM;
  857. atomic_set(&sig->count, 1);
  858. memcpy(sig->action, current->sighand->action, sizeof(sig->action));
  859. return 0;
  860. }
  861. void __cleanup_sighand(struct sighand_struct *sighand)
  862. {
  863. if (atomic_dec_and_test(&sighand->count)) {
  864. signalfd_cleanup(sighand);
  865. kmem_cache_free(sighand_cachep, sighand);
  866. }
  867. }
  868. /*
  869. * Initialize POSIX timer handling for a thread group.
  870. */
  871. static void posix_cpu_timers_init_group(struct signal_struct *sig)
  872. {
  873. unsigned long cpu_limit;
  874. /* Thread group counters. */
  875. thread_group_cputime_init(sig);
  876. cpu_limit = ACCESS_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
  877. if (cpu_limit != RLIM_INFINITY) {
  878. sig->cputime_expires.prof_exp = secs_to_cputime(cpu_limit);
  879. sig->cputimer.running = 1;
  880. }
  881. /* The timer lists. */
  882. INIT_LIST_HEAD(&sig->cpu_timers[0]);
  883. INIT_LIST_HEAD(&sig->cpu_timers[1]);
  884. INIT_LIST_HEAD(&sig->cpu_timers[2]);
  885. }
  886. static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
  887. {
  888. struct signal_struct *sig;
  889. if (clone_flags & CLONE_THREAD)
  890. return 0;
  891. sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
  892. tsk->signal = sig;
  893. if (!sig)
  894. return -ENOMEM;
  895. sig->nr_threads = 1;
  896. atomic_set(&sig->live, 1);
  897. atomic_set(&sig->sigcnt, 1);
  898. init_waitqueue_head(&sig->wait_chldexit);
  899. if (clone_flags & CLONE_NEWPID)
  900. sig->flags |= SIGNAL_UNKILLABLE;
  901. sig->curr_target = tsk;
  902. init_sigpending(&sig->shared_pending);
  903. INIT_LIST_HEAD(&sig->posix_timers);
  904. hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  905. sig->real_timer.function = it_real_fn;
  906. task_lock(current->group_leader);
  907. memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
  908. task_unlock(current->group_leader);
  909. posix_cpu_timers_init_group(sig);
  910. tty_audit_fork(sig);
  911. sched_autogroup_fork(sig);
  912. #ifdef CONFIG_CGROUPS
  913. init_rwsem(&sig->group_rwsem);
  914. #endif
  915. sig->oom_adj = current->signal->oom_adj;
  916. sig->oom_score_adj = current->signal->oom_score_adj;
  917. sig->oom_score_adj_min = current->signal->oom_score_adj_min;
  918. sig->has_child_subreaper = current->signal->has_child_subreaper ||
  919. current->signal->is_child_subreaper;
  920. mutex_init(&sig->cred_guard_mutex);
  921. return 0;
  922. }
  923. static void copy_flags(unsigned long clone_flags, struct task_struct *p)
  924. {
  925. unsigned long new_flags = p->flags;
  926. new_flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER);
  927. new_flags |= PF_FORKNOEXEC;
  928. p->flags = new_flags;
  929. }
  930. SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
  931. {
  932. current->clear_child_tid = tidptr;
  933. return task_pid_vnr(current);
  934. }
  935. static void rt_mutex_init_task(struct task_struct *p)
  936. {
  937. raw_spin_lock_init(&p->pi_lock);
  938. #ifdef CONFIG_RT_MUTEXES
  939. plist_head_init(&p->pi_waiters);
  940. p->pi_blocked_on = NULL;
  941. #endif
  942. }
  943. #ifdef CONFIG_MM_OWNER
  944. void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
  945. {
  946. mm->owner = p;
  947. }
  948. #endif /* CONFIG_MM_OWNER */
  949. /*
  950. * Initialize POSIX timer handling for a single task.
  951. */
  952. static void posix_cpu_timers_init(struct task_struct *tsk)
  953. {
  954. tsk->cputime_expires.prof_exp = 0;
  955. tsk->cputime_expires.virt_exp = 0;
  956. tsk->cputime_expires.sched_exp = 0;
  957. INIT_LIST_HEAD(&tsk->cpu_timers[0]);
  958. INIT_LIST_HEAD(&tsk->cpu_timers[1]);
  959. INIT_LIST_HEAD(&tsk->cpu_timers[2]);
  960. }
  961. /*
  962. * This creates a new process as a copy of the old one,
  963. * but does not actually start it yet.
  964. *
  965. * It copies the registers, and all the appropriate
  966. * parts of the process environment (as per the clone
  967. * flags). The actual kick-off is left to the caller.
  968. */
  969. static struct task_struct *copy_process(unsigned long clone_flags,
  970. unsigned long stack_start,
  971. struct pt_regs *regs,
  972. unsigned long stack_size,
  973. int __user *child_tidptr,
  974. struct pid *pid,
  975. int trace)
  976. {
  977. int retval;
  978. struct task_struct *p;
  979. int cgroup_callbacks_done = 0;
  980. if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
  981. return ERR_PTR(-EINVAL);
  982. /*
  983. * Thread groups must share signals as well, and detached threads
  984. * can only be started up within the thread group.
  985. */
  986. if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
  987. return ERR_PTR(-EINVAL);
  988. /*
  989. * Shared signal handlers imply shared VM. By way of the above,
  990. * thread groups also imply shared VM. Blocking this case allows
  991. * for various simplifications in other code.
  992. */
  993. if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
  994. return ERR_PTR(-EINVAL);
  995. /*
  996. * Siblings of global init remain as zombies on exit since they are
  997. * not reaped by their parent (swapper). To solve this and to avoid
  998. * multi-rooted process trees, prevent global and container-inits
  999. * from creating siblings.
  1000. */
  1001. if ((clone_flags & CLONE_PARENT) &&
  1002. current->signal->flags & SIGNAL_UNKILLABLE)
  1003. return ERR_PTR(-EINVAL);
  1004. retval = security_task_create(clone_flags);
  1005. if (retval)
  1006. goto fork_out;
  1007. retval = -ENOMEM;
  1008. p = dup_task_struct(current);
  1009. if (!p)
  1010. goto fork_out;
  1011. ftrace_graph_init_task(p);
  1012. get_seccomp_filter(p);
  1013. rt_mutex_init_task(p);
  1014. #ifdef CONFIG_PROVE_LOCKING
  1015. DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
  1016. DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
  1017. #endif
  1018. retval = -EAGAIN;
  1019. if (atomic_read(&p->real_cred->user->processes) >=
  1020. task_rlimit(p, RLIMIT_NPROC)) {
  1021. if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_RESOURCE) &&
  1022. p->real_cred->user != INIT_USER)
  1023. goto bad_fork_free;
  1024. }
  1025. current->flags &= ~PF_NPROC_EXCEEDED;
  1026. retval = copy_creds(p, clone_flags);
  1027. if (retval < 0)
  1028. goto bad_fork_free;
  1029. /*
  1030. * If multiple threads are within copy_process(), then this check
  1031. * triggers too late. This doesn't hurt, the check is only there
  1032. * to stop root fork bombs.
  1033. */
  1034. retval = -EAGAIN;
  1035. if (nr_threads >= max_threads)
  1036. goto bad_fork_cleanup_count;
  1037. if (!try_module_get(task_thread_info(p)->exec_domain->module))
  1038. goto bad_fork_cleanup_count;
  1039. p->did_exec = 0;
  1040. delayacct_tsk_init(p); /* Must remain after dup_task_struct() */
  1041. copy_flags(clone_flags, p);
  1042. INIT_LIST_HEAD(&p->children);
  1043. INIT_LIST_HEAD(&p->sibling);
  1044. rcu_copy_process(p);
  1045. p->vfork_done = NULL;
  1046. spin_lock_init(&p->alloc_lock);
  1047. init_sigpending(&p->pending);
  1048. p->utime = p->stime = p->gtime = 0;
  1049. p->utimescaled = p->stimescaled = 0;
  1050. #ifndef CONFIG_VIRT_CPU_ACCOUNTING
  1051. p->prev_utime = p->prev_stime = 0;
  1052. #endif
  1053. #if defined(SPLIT_RSS_COUNTING)
  1054. memset(&p->rss_stat, 0, sizeof(p->rss_stat));
  1055. #endif
  1056. p->default_timer_slack_ns = current->timer_slack_ns;
  1057. task_io_accounting_init(&p->ioac);
  1058. acct_clear_integrals(p);
  1059. posix_cpu_timers_init(p);
  1060. do_posix_clock_monotonic_gettime(&p->start_time);
  1061. p->real_start_time = p->start_time;
  1062. monotonic_to_bootbased(&p->real_start_time);
  1063. p->io_context = NULL;
  1064. p->audit_context = NULL;
  1065. if (clone_flags & CLONE_THREAD)
  1066. threadgroup_change_begin(current);
  1067. cgroup_fork(p);
  1068. #ifdef CONFIG_NUMA
  1069. p->mempolicy = mpol_dup(p->mempolicy);
  1070. if (IS_ERR(p->mempolicy)) {
  1071. retval = PTR_ERR(p->mempolicy);
  1072. p->mempolicy = NULL;
  1073. goto bad_fork_cleanup_cgroup;
  1074. }
  1075. mpol_fix_fork_child_flag(p);
  1076. #endif
  1077. #ifdef CONFIG_CPUSETS
  1078. p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
  1079. p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
  1080. seqcount_init(&p->mems_allowed_seq);
  1081. #endif
  1082. #ifdef CONFIG_TRACE_IRQFLAGS
  1083. p->irq_events = 0;
  1084. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  1085. p->hardirqs_enabled = 1;
  1086. #else
  1087. p->hardirqs_enabled = 0;
  1088. #endif
  1089. p->hardirq_enable_ip = 0;
  1090. p->hardirq_enable_event = 0;
  1091. p->hardirq_disable_ip = _THIS_IP_;
  1092. p->hardirq_disable_event = 0;
  1093. p->softirqs_enabled = 1;
  1094. p->softirq_enable_ip = _THIS_IP_;
  1095. p->softirq_enable_event = 0;
  1096. p->softirq_disable_ip = 0;
  1097. p->softirq_disable_event = 0;
  1098. p->hardirq_context = 0;
  1099. p->softirq_context = 0;
  1100. #endif
  1101. #ifdef CONFIG_LOCKDEP
  1102. p->lockdep_depth = 0; /* no locks held yet */
  1103. p->curr_chain_key = 0;
  1104. p->lockdep_recursion = 0;
  1105. #endif
  1106. #ifdef CONFIG_DEBUG_MUTEXES
  1107. p->blocked_on = NULL; /* not blocked yet */
  1108. #endif
  1109. #ifdef CONFIG_CGROUP_MEM_RES_CTLR
  1110. p->memcg_batch.do_batch = 0;
  1111. p->memcg_batch.memcg = NULL;
  1112. #endif
  1113. /* Perform scheduler related setup. Assign this task to a CPU. */
  1114. sched_fork(p);
  1115. retval = perf_event_init_task(p);
  1116. if (retval)
  1117. goto bad_fork_cleanup_policy;
  1118. retval = audit_alloc(p);
  1119. if (retval)
  1120. goto bad_fork_cleanup_policy;
  1121. /* copy all the process information */
  1122. retval = copy_semundo(clone_flags, p);
  1123. if (retval)
  1124. goto bad_fork_cleanup_audit;
  1125. retval = copy_files(clone_flags, p);
  1126. if (retval)
  1127. goto bad_fork_cleanup_semundo;
  1128. retval = copy_fs(clone_flags, p);
  1129. if (retval)
  1130. goto bad_fork_cleanup_files;
  1131. retval = copy_sighand(clone_flags, p);
  1132. if (retval)
  1133. goto bad_fork_cleanup_fs;
  1134. retval = copy_signal(clone_flags, p);
  1135. if (retval)
  1136. goto bad_fork_cleanup_sighand;
  1137. retval = copy_mm(clone_flags, p);
  1138. if (retval)
  1139. goto bad_fork_cleanup_signal;
  1140. retval = copy_namespaces(clone_flags, p);
  1141. if (retval)
  1142. goto bad_fork_cleanup_mm;
  1143. retval = copy_io(clone_flags, p);
  1144. if (retval)
  1145. goto bad_fork_cleanup_namespaces;
  1146. retval = copy_thread(clone_flags, stack_start, stack_size, p, regs);
  1147. if (retval)
  1148. goto bad_fork_cleanup_io;
  1149. if (pid != &init_struct_pid) {
  1150. retval = -ENOMEM;
  1151. pid = alloc_pid(p->nsproxy->pid_ns);
  1152. if (!pid)
  1153. goto bad_fork_cleanup_io;
  1154. }
  1155. p->pid = pid_nr(pid);
  1156. p->tgid = p->pid;
  1157. if (clone_flags & CLONE_THREAD)
  1158. p->tgid = current->tgid;
  1159. p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
  1160. /*
  1161. * Clear TID on mm_release()?
  1162. */
  1163. p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr : NULL;
  1164. #ifdef CONFIG_BLOCK
  1165. p->plug = NULL;
  1166. #endif
  1167. #ifdef CONFIG_FUTEX
  1168. p->robust_list = NULL;
  1169. #ifdef CONFIG_COMPAT
  1170. p->compat_robust_list = NULL;
  1171. #endif
  1172. INIT_LIST_HEAD(&p->pi_state_list);
  1173. p->pi_state_cache = NULL;
  1174. #endif
  1175. /*
  1176. * sigaltstack should be cleared when sharing the same VM
  1177. */
  1178. if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
  1179. p->sas_ss_sp = p->sas_ss_size = 0;
  1180. /*
  1181. * Syscall tracing and stepping should be turned off in the
  1182. * child regardless of CLONE_PTRACE.
  1183. */
  1184. user_disable_single_step(p);
  1185. clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
  1186. #ifdef TIF_SYSCALL_EMU
  1187. clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
  1188. #endif
  1189. clear_all_latency_tracing(p);
  1190. /* ok, now we should be set up.. */
  1191. if (clone_flags & CLONE_THREAD)
  1192. p->exit_signal = -1;
  1193. else if (clone_flags & CLONE_PARENT)
  1194. p->exit_signal = current->group_leader->exit_signal;
  1195. else
  1196. p->exit_signal = (clone_flags & CSIGNAL);
  1197. p->pdeath_signal = 0;
  1198. p->exit_state = 0;
  1199. p->nr_dirtied = 0;
  1200. p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
  1201. p->dirty_paused_when = 0;
  1202. /*
  1203. * Ok, make it visible to the rest of the system.
  1204. * We dont wake it up yet.
  1205. */
  1206. p->group_leader = p;
  1207. INIT_LIST_HEAD(&p->thread_group);
  1208. /* Now that the task is set up, run cgroup callbacks if
  1209. * necessary. We need to run them before the task is visible
  1210. * on the tasklist. */
  1211. cgroup_fork_callbacks(p);
  1212. cgroup_callbacks_done = 1;
  1213. /* Need tasklist lock for parent etc handling! */
  1214. write_lock_irq(&tasklist_lock);
  1215. /* CLONE_PARENT re-uses the old parent */
  1216. if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
  1217. p->real_parent = current->real_parent;
  1218. p->parent_exec_id = current->parent_exec_id;
  1219. } else {
  1220. p->real_parent = current;
  1221. p->parent_exec_id = current->self_exec_id;
  1222. }
  1223. spin_lock(&current->sighand->siglock);
  1224. /*
  1225. * Process group and session signals need to be delivered to just the
  1226. * parent before the fork or both the parent and the child after the
  1227. * fork. Restart if a signal comes in before we add the new process to
  1228. * it's process group.
  1229. * A fatal signal pending means that current will exit, so the new
  1230. * thread can't slip out of an OOM kill (or normal SIGKILL).
  1231. */
  1232. recalc_sigpending();
  1233. if (signal_pending(current)) {
  1234. spin_unlock(&current->sighand->siglock);
  1235. write_unlock_irq(&tasklist_lock);
  1236. retval = -ERESTARTNOINTR;
  1237. goto bad_fork_free_pid;
  1238. }
  1239. if (clone_flags & CLONE_THREAD) {
  1240. current->signal->nr_threads++;
  1241. atomic_inc(&current->signal->live);
  1242. atomic_inc(&current->signal->sigcnt);
  1243. p->group_leader = current->group_leader;
  1244. list_add_tail_rcu(&p->thread_group, &p->group_leader->thread_group);
  1245. }
  1246. if (likely(p->pid)) {
  1247. ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
  1248. if (thread_group_leader(p)) {
  1249. if (is_child_reaper(pid))
  1250. p->nsproxy->pid_ns->child_reaper = p;
  1251. p->signal->leader_pid = pid;
  1252. p->signal->tty = tty_kref_get(current->signal->tty);
  1253. attach_pid(p, PIDTYPE_PGID, task_pgrp(current));
  1254. attach_pid(p, PIDTYPE_SID, task_session(current));
  1255. list_add_tail(&p->sibling, &p->real_parent->children);
  1256. list_add_tail_rcu(&p->tasks, &init_task.tasks);
  1257. __this_cpu_inc(process_counts);
  1258. }
  1259. attach_pid(p, PIDTYPE_PID, pid);
  1260. nr_threads++;
  1261. }
  1262. total_forks++;
  1263. spin_unlock(&current->sighand->siglock);
  1264. write_unlock_irq(&tasklist_lock);
  1265. proc_fork_connector(p);
  1266. cgroup_post_fork(p);
  1267. if (clone_flags & CLONE_THREAD)
  1268. threadgroup_change_end(current);
  1269. perf_event_fork(p);
  1270. trace_task_newtask(p, clone_flags);
  1271. return p;
  1272. bad_fork_free_pid:
  1273. if (pid != &init_struct_pid)
  1274. free_pid(pid);
  1275. bad_fork_cleanup_io:
  1276. if (p->io_context)
  1277. exit_io_context(p);
  1278. bad_fork_cleanup_namespaces:
  1279. if (unlikely(clone_flags & CLONE_NEWPID))
  1280. pid_ns_release_proc(p->nsproxy->pid_ns);
  1281. exit_task_namespaces(p);
  1282. bad_fork_cleanup_mm:
  1283. if (p->mm)
  1284. mmput(p->mm);
  1285. bad_fork_cleanup_signal:
  1286. if (!(clone_flags & CLONE_THREAD))
  1287. free_signal_struct(p->signal);
  1288. bad_fork_cleanup_sighand:
  1289. __cleanup_sighand(p->sighand);
  1290. bad_fork_cleanup_fs:
  1291. exit_fs(p); /* blocking */
  1292. bad_fork_cleanup_files:
  1293. exit_files(p); /* blocking */
  1294. bad_fork_cleanup_semundo:
  1295. exit_sem(p);
  1296. bad_fork_cleanup_audit:
  1297. audit_free(p);
  1298. bad_fork_cleanup_policy:
  1299. perf_event_free_task(p);
  1300. #ifdef CONFIG_NUMA
  1301. mpol_put(p->mempolicy);
  1302. bad_fork_cleanup_cgroup:
  1303. #endif
  1304. if (clone_flags & CLONE_THREAD)
  1305. threadgroup_change_end(current);
  1306. cgroup_exit(p, cgroup_callbacks_done);
  1307. delayacct_tsk_free(p);
  1308. module_put(task_thread_info(p)->exec_domain->module);
  1309. bad_fork_cleanup_count:
  1310. atomic_dec(&p->cred->user->processes);
  1311. exit_creds(p);
  1312. bad_fork_free:
  1313. free_task(p);
  1314. fork_out:
  1315. return ERR_PTR(retval);
  1316. }
  1317. noinline struct pt_regs * __cpuinit __attribute__((weak)) idle_regs(struct pt_regs *regs)
  1318. {
  1319. memset(regs, 0, sizeof(struct pt_regs));
  1320. return regs;
  1321. }
  1322. static inline void init_idle_pids(struct pid_link *links)
  1323. {
  1324. enum pid_type type;
  1325. for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
  1326. INIT_HLIST_NODE(&links[type].node); /* not really needed */
  1327. links[type].pid = &init_struct_pid;
  1328. }
  1329. }
  1330. struct task_struct * __cpuinit fork_idle(int cpu)
  1331. {
  1332. struct task_struct *task;
  1333. struct pt_regs regs;
  1334. task = copy_process(CLONE_VM, 0, idle_regs(&regs), 0, NULL,
  1335. &init_struct_pid, 0);
  1336. if (!IS_ERR(task)) {
  1337. init_idle_pids(task->pids);
  1338. init_idle(task, cpu);
  1339. }
  1340. return task;
  1341. }
  1342. /*
  1343. * Ok, this is the main fork-routine.
  1344. *
  1345. * It copies the process, and if successful kick-starts
  1346. * it and waits for it to finish using the VM if required.
  1347. */
  1348. long do_fork(unsigned long clone_flags,
  1349. unsigned long stack_start,
  1350. struct pt_regs *regs,
  1351. unsigned long stack_size,
  1352. int __user *parent_tidptr,
  1353. int __user *child_tidptr)
  1354. {
  1355. struct task_struct *p;
  1356. int trace = 0;
  1357. long nr;
  1358. /*
  1359. * Do some preliminary argument and permissions checking before we
  1360. * actually start allocating stuff
  1361. */
  1362. if (clone_flags & CLONE_NEWUSER) {
  1363. if (clone_flags & CLONE_THREAD)
  1364. return -EINVAL;
  1365. /* hopefully this check will go away when userns support is
  1366. * complete
  1367. */
  1368. if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SETUID) ||
  1369. !capable(CAP_SETGID))
  1370. return -EPERM;
  1371. }
  1372. /*
  1373. * Determine whether and which event to report to ptracer. When
  1374. * called from kernel_thread or CLONE_UNTRACED is explicitly
  1375. * requested, no event is reported; otherwise, report if the event
  1376. * for the type of forking is enabled.
  1377. */
  1378. if (likely(user_mode(regs)) && !(clone_flags & CLONE_UNTRACED)) {
  1379. if (clone_flags & CLONE_VFORK)
  1380. trace = PTRACE_EVENT_VFORK;
  1381. else if ((clone_flags & CSIGNAL) != SIGCHLD)
  1382. trace = PTRACE_EVENT_CLONE;
  1383. else
  1384. trace = PTRACE_EVENT_FORK;
  1385. if (likely(!ptrace_event_enabled(current, trace)))
  1386. trace = 0;
  1387. }
  1388. p = copy_process(clone_flags, stack_start, regs, stack_size,
  1389. child_tidptr, NULL, trace);
  1390. /*
  1391. * Do this prior waking up the new thread - the thread pointer
  1392. * might get invalid after that point, if the thread exits quickly.
  1393. */
  1394. if (!IS_ERR(p)) {
  1395. struct completion vfork;
  1396. trace_sched_process_fork(current, p);
  1397. nr = task_pid_vnr(p);
  1398. if (clone_flags & CLONE_PARENT_SETTID)
  1399. put_user(nr, parent_tidptr);
  1400. if (clone_flags & CLONE_VFORK) {
  1401. p->vfork_done = &vfork;
  1402. init_completion(&vfork);
  1403. get_task_struct(p);
  1404. }
  1405. wake_up_new_task(p);
  1406. /* forking complete and child started to run, tell ptracer */
  1407. if (unlikely(trace))
  1408. ptrace_event(trace, nr);
  1409. if (clone_flags & CLONE_VFORK) {
  1410. if (!wait_for_vfork_done(p, &vfork))
  1411. ptrace_event(PTRACE_EVENT_VFORK_DONE, nr);
  1412. }
  1413. } else {
  1414. nr = PTR_ERR(p);
  1415. }
  1416. return nr;
  1417. }
  1418. #ifndef ARCH_MIN_MMSTRUCT_ALIGN
  1419. #define ARCH_MIN_MMSTRUCT_ALIGN 0
  1420. #endif
  1421. static void sighand_ctor(void *data)
  1422. {
  1423. struct sighand_struct *sighand = data;
  1424. spin_lock_init(&sighand->siglock);
  1425. init_waitqueue_head(&sighand->signalfd_wqh);
  1426. }
  1427. void __init proc_caches_init(void)
  1428. {
  1429. sighand_cachep = kmem_cache_create("sighand_cache",
  1430. sizeof(struct sighand_struct), 0,
  1431. SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU|
  1432. SLAB_NOTRACK, sighand_ctor);
  1433. signal_cachep = kmem_cache_create("signal_cache",
  1434. sizeof(struct signal_struct), 0,
  1435. SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
  1436. files_cachep = kmem_cache_create("files_cache",
  1437. sizeof(struct files_struct), 0,
  1438. SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
  1439. fs_cachep = kmem_cache_create("fs_cache",
  1440. sizeof(struct fs_struct), 0,
  1441. SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
  1442. /*
  1443. * FIXME! The "sizeof(struct mm_struct)" currently includes the
  1444. * whole struct cpumask for the OFFSTACK case. We could change
  1445. * this to *only* allocate as much of it as required by the
  1446. * maximum number of CPU's we can ever have. The cpumask_allocation
  1447. * is at the end of the structure, exactly for that reason.
  1448. */
  1449. mm_cachep = kmem_cache_create("mm_struct",
  1450. sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
  1451. SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
  1452. vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC);
  1453. mmap_init();
  1454. nsproxy_cache_init();
  1455. }
  1456. /*
  1457. * Check constraints on flags passed to the unshare system call.
  1458. */
  1459. static int check_unshare_flags(unsigned long unshare_flags)
  1460. {
  1461. if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
  1462. CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
  1463. CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET))
  1464. return -EINVAL;
  1465. /*
  1466. * Not implemented, but pretend it works if there is nothing to
  1467. * unshare. Note that unsharing CLONE_THREAD or CLONE_SIGHAND
  1468. * needs to unshare vm.
  1469. */
  1470. if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
  1471. /* FIXME: get_task_mm() increments ->mm_users */
  1472. if (atomic_read(&current->mm->mm_users) > 1)
  1473. return -EINVAL;
  1474. }
  1475. return 0;
  1476. }
  1477. /*
  1478. * Unshare the filesystem structure if it is being shared
  1479. */
  1480. static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
  1481. {
  1482. struct fs_struct *fs = current->fs;
  1483. if (!(unshare_flags & CLONE_FS) || !fs)
  1484. return 0;
  1485. /* don't need lock here; in the worst case we'll do useless copy */
  1486. if (fs->users == 1)
  1487. return 0;
  1488. *new_fsp = copy_fs_struct(fs);
  1489. if (!*new_fsp)
  1490. return -ENOMEM;
  1491. return 0;
  1492. }
  1493. /*
  1494. * Unshare file descriptor table if it is being shared
  1495. */
  1496. static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
  1497. {
  1498. struct files_struct *fd = current->files;
  1499. int error = 0;
  1500. if ((unshare_flags & CLONE_FILES) &&
  1501. (fd && atomic_read(&fd->count) > 1)) {
  1502. *new_fdp = dup_fd(fd, &error);
  1503. if (!*new_fdp)
  1504. return error;
  1505. }
  1506. return 0;
  1507. }
  1508. /*
  1509. * unshare allows a process to 'unshare' part of the process
  1510. * context which was originally shared using clone. copy_*
  1511. * functions used by do_fork() cannot be used here directly
  1512. * because they modify an inactive task_struct that is being
  1513. * constructed. Here we are modifying the current, active,
  1514. * task_struct.
  1515. */
  1516. SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
  1517. {
  1518. struct fs_struct *fs, *new_fs = NULL;
  1519. struct files_struct *fd, *new_fd = NULL;
  1520. struct nsproxy *new_nsproxy = NULL;
  1521. int do_sysvsem = 0;
  1522. int err;
  1523. err = check_unshare_flags(unshare_flags);
  1524. if (err)
  1525. goto bad_unshare_out;
  1526. /*
  1527. * If unsharing namespace, must also unshare filesystem information.
  1528. */
  1529. if (unshare_flags & CLONE_NEWNS)
  1530. unshare_flags |= CLONE_FS;
  1531. /*
  1532. * CLONE_NEWIPC must also detach from the undolist: after switching
  1533. * to a new ipc namespace, the semaphore arrays from the old
  1534. * namespace are unreachable.
  1535. */
  1536. if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
  1537. do_sysvsem = 1;
  1538. err = unshare_fs(unshare_flags, &new_fs);
  1539. if (err)
  1540. goto bad_unshare_out;
  1541. err = unshare_fd(unshare_flags, &new_fd);
  1542. if (err)
  1543. goto bad_unshare_cleanup_fs;
  1544. err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy, new_fs);
  1545. if (err)
  1546. goto bad_unshare_cleanup_fd;
  1547. if (new_fs || new_fd || do_sysvsem || new_nsproxy) {
  1548. if (do_sysvsem) {
  1549. /*
  1550. * CLONE_SYSVSEM is equivalent to sys_exit().
  1551. */
  1552. exit_sem(current);
  1553. }
  1554. if (new_nsproxy) {
  1555. switch_task_namespaces(current, new_nsproxy);
  1556. new_nsproxy = NULL;
  1557. }
  1558. task_lock(current);
  1559. if (new_fs) {
  1560. fs = current->fs;
  1561. spin_lock(&fs->lock);
  1562. current->fs = new_fs;
  1563. if (--fs->users)
  1564. new_fs = NULL;
  1565. else
  1566. new_fs = fs;
  1567. spin_unlock(&fs->lock);
  1568. }
  1569. if (new_fd) {
  1570. fd = current->files;
  1571. current->files = new_fd;
  1572. new_fd = fd;
  1573. }
  1574. task_unlock(current);
  1575. }
  1576. if (new_nsproxy)
  1577. put_nsproxy(new_nsproxy);
  1578. bad_unshare_cleanup_fd:
  1579. if (new_fd)
  1580. put_files_struct(new_fd);
  1581. bad_unshare_cleanup_fs:
  1582. if (new_fs)
  1583. free_fs_struct(new_fs);
  1584. bad_unshare_out:
  1585. return err;
  1586. }
  1587. /*
  1588. * Helper to unshare the files of the current task.
  1589. * We don't want to expose copy_files internals to
  1590. * the exec layer of the kernel.
  1591. */
  1592. int unshare_files(struct files_struct **displaced)
  1593. {
  1594. struct task_struct *task = current;
  1595. struct files_struct *copy = NULL;
  1596. int error;
  1597. error = unshare_fd(CLONE_FILES, &copy);
  1598. if (error || !copy) {
  1599. *displaced = NULL;
  1600. return error;
  1601. }
  1602. *displaced = task->files;
  1603. task_lock(task);
  1604. task->files = copy;
  1605. task_unlock(task);
  1606. return 0;
  1607. }