kvm_main.c 28 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * Copyright (C) 2006 Qumranet, Inc.
  8. *
  9. * Authors:
  10. * Avi Kivity <avi@qumranet.com>
  11. * Yaniv Kamay <yaniv@qumranet.com>
  12. *
  13. * This work is licensed under the terms of the GNU GPL, version 2. See
  14. * the COPYING file in the top-level directory.
  15. *
  16. */
  17. #include "iodev.h"
  18. #include <linux/kvm_host.h>
  19. #include <linux/kvm.h>
  20. #include <linux/module.h>
  21. #include <linux/errno.h>
  22. #include <linux/percpu.h>
  23. #include <linux/gfp.h>
  24. #include <linux/mm.h>
  25. #include <linux/miscdevice.h>
  26. #include <linux/vmalloc.h>
  27. #include <linux/reboot.h>
  28. #include <linux/debugfs.h>
  29. #include <linux/highmem.h>
  30. #include <linux/file.h>
  31. #include <linux/sysdev.h>
  32. #include <linux/cpu.h>
  33. #include <linux/sched.h>
  34. #include <linux/cpumask.h>
  35. #include <linux/smp.h>
  36. #include <linux/anon_inodes.h>
  37. #include <linux/profile.h>
  38. #include <linux/kvm_para.h>
  39. #include <linux/pagemap.h>
  40. #include <linux/mman.h>
  41. #include <asm/processor.h>
  42. #include <asm/io.h>
  43. #include <asm/uaccess.h>
  44. #include <asm/pgtable.h>
  45. MODULE_AUTHOR("Qumranet");
  46. MODULE_LICENSE("GPL");
  47. DEFINE_SPINLOCK(kvm_lock);
  48. LIST_HEAD(vm_list);
  49. static cpumask_t cpus_hardware_enabled;
  50. struct kmem_cache *kvm_vcpu_cache;
  51. EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
  52. static __read_mostly struct preempt_ops kvm_preempt_ops;
  53. static struct dentry *debugfs_dir;
  54. static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
  55. unsigned long arg);
  56. static inline int valid_vcpu(int n)
  57. {
  58. return likely(n >= 0 && n < KVM_MAX_VCPUS);
  59. }
  60. /*
  61. * Switches to specified vcpu, until a matching vcpu_put()
  62. */
  63. void vcpu_load(struct kvm_vcpu *vcpu)
  64. {
  65. int cpu;
  66. mutex_lock(&vcpu->mutex);
  67. cpu = get_cpu();
  68. preempt_notifier_register(&vcpu->preempt_notifier);
  69. kvm_arch_vcpu_load(vcpu, cpu);
  70. put_cpu();
  71. }
  72. void vcpu_put(struct kvm_vcpu *vcpu)
  73. {
  74. preempt_disable();
  75. kvm_arch_vcpu_put(vcpu);
  76. preempt_notifier_unregister(&vcpu->preempt_notifier);
  77. preempt_enable();
  78. mutex_unlock(&vcpu->mutex);
  79. }
  80. static void ack_flush(void *_completed)
  81. {
  82. }
  83. void kvm_flush_remote_tlbs(struct kvm *kvm)
  84. {
  85. int i, cpu;
  86. cpumask_t cpus;
  87. struct kvm_vcpu *vcpu;
  88. cpus_clear(cpus);
  89. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  90. vcpu = kvm->vcpus[i];
  91. if (!vcpu)
  92. continue;
  93. if (test_and_set_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests))
  94. continue;
  95. cpu = vcpu->cpu;
  96. if (cpu != -1 && cpu != raw_smp_processor_id())
  97. cpu_set(cpu, cpus);
  98. }
  99. if (cpus_empty(cpus))
  100. return;
  101. ++kvm->stat.remote_tlb_flush;
  102. smp_call_function_mask(cpus, ack_flush, NULL, 1);
  103. }
  104. int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
  105. {
  106. struct page *page;
  107. int r;
  108. mutex_init(&vcpu->mutex);
  109. vcpu->cpu = -1;
  110. vcpu->kvm = kvm;
  111. vcpu->vcpu_id = id;
  112. init_waitqueue_head(&vcpu->wq);
  113. page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  114. if (!page) {
  115. r = -ENOMEM;
  116. goto fail;
  117. }
  118. vcpu->run = page_address(page);
  119. r = kvm_arch_vcpu_init(vcpu);
  120. if (r < 0)
  121. goto fail_free_run;
  122. return 0;
  123. fail_free_run:
  124. free_page((unsigned long)vcpu->run);
  125. fail:
  126. return r;
  127. }
  128. EXPORT_SYMBOL_GPL(kvm_vcpu_init);
  129. void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
  130. {
  131. kvm_arch_vcpu_uninit(vcpu);
  132. free_page((unsigned long)vcpu->run);
  133. }
  134. EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
  135. static struct kvm *kvm_create_vm(void)
  136. {
  137. struct kvm *kvm = kvm_arch_create_vm();
  138. if (IS_ERR(kvm))
  139. goto out;
  140. kvm->mm = current->mm;
  141. atomic_inc(&kvm->mm->mm_count);
  142. spin_lock_init(&kvm->mmu_lock);
  143. kvm_io_bus_init(&kvm->pio_bus);
  144. mutex_init(&kvm->lock);
  145. kvm_io_bus_init(&kvm->mmio_bus);
  146. init_rwsem(&kvm->slots_lock);
  147. spin_lock(&kvm_lock);
  148. list_add(&kvm->vm_list, &vm_list);
  149. spin_unlock(&kvm_lock);
  150. out:
  151. return kvm;
  152. }
  153. /*
  154. * Free any memory in @free but not in @dont.
  155. */
  156. static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
  157. struct kvm_memory_slot *dont)
  158. {
  159. if (!dont || free->rmap != dont->rmap)
  160. vfree(free->rmap);
  161. if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
  162. vfree(free->dirty_bitmap);
  163. free->npages = 0;
  164. free->dirty_bitmap = NULL;
  165. free->rmap = NULL;
  166. }
  167. void kvm_free_physmem(struct kvm *kvm)
  168. {
  169. int i;
  170. for (i = 0; i < kvm->nmemslots; ++i)
  171. kvm_free_physmem_slot(&kvm->memslots[i], NULL);
  172. }
  173. static void kvm_destroy_vm(struct kvm *kvm)
  174. {
  175. struct mm_struct *mm = kvm->mm;
  176. spin_lock(&kvm_lock);
  177. list_del(&kvm->vm_list);
  178. spin_unlock(&kvm_lock);
  179. kvm_io_bus_destroy(&kvm->pio_bus);
  180. kvm_io_bus_destroy(&kvm->mmio_bus);
  181. kvm_arch_destroy_vm(kvm);
  182. mmdrop(mm);
  183. }
  184. static int kvm_vm_release(struct inode *inode, struct file *filp)
  185. {
  186. struct kvm *kvm = filp->private_data;
  187. kvm_destroy_vm(kvm);
  188. return 0;
  189. }
  190. /*
  191. * Allocate some memory and give it an address in the guest physical address
  192. * space.
  193. *
  194. * Discontiguous memory is allowed, mostly for framebuffers.
  195. *
  196. * Must be called holding mmap_sem for write.
  197. */
  198. int __kvm_set_memory_region(struct kvm *kvm,
  199. struct kvm_userspace_memory_region *mem,
  200. int user_alloc)
  201. {
  202. int r;
  203. gfn_t base_gfn;
  204. unsigned long npages;
  205. unsigned long i;
  206. struct kvm_memory_slot *memslot;
  207. struct kvm_memory_slot old, new;
  208. r = -EINVAL;
  209. /* General sanity checks */
  210. if (mem->memory_size & (PAGE_SIZE - 1))
  211. goto out;
  212. if (mem->guest_phys_addr & (PAGE_SIZE - 1))
  213. goto out;
  214. if (mem->slot >= KVM_MEMORY_SLOTS + KVM_PRIVATE_MEM_SLOTS)
  215. goto out;
  216. if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
  217. goto out;
  218. memslot = &kvm->memslots[mem->slot];
  219. base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
  220. npages = mem->memory_size >> PAGE_SHIFT;
  221. if (!npages)
  222. mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
  223. new = old = *memslot;
  224. new.base_gfn = base_gfn;
  225. new.npages = npages;
  226. new.flags = mem->flags;
  227. /* Disallow changing a memory slot's size. */
  228. r = -EINVAL;
  229. if (npages && old.npages && npages != old.npages)
  230. goto out_free;
  231. /* Check for overlaps */
  232. r = -EEXIST;
  233. for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
  234. struct kvm_memory_slot *s = &kvm->memslots[i];
  235. if (s == memslot)
  236. continue;
  237. if (!((base_gfn + npages <= s->base_gfn) ||
  238. (base_gfn >= s->base_gfn + s->npages)))
  239. goto out_free;
  240. }
  241. /* Free page dirty bitmap if unneeded */
  242. if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
  243. new.dirty_bitmap = NULL;
  244. r = -ENOMEM;
  245. /* Allocate if a slot is being created */
  246. if (npages && !new.rmap) {
  247. new.rmap = vmalloc(npages * sizeof(struct page *));
  248. if (!new.rmap)
  249. goto out_free;
  250. memset(new.rmap, 0, npages * sizeof(*new.rmap));
  251. new.user_alloc = user_alloc;
  252. new.userspace_addr = mem->userspace_addr;
  253. }
  254. /* Allocate page dirty bitmap if needed */
  255. if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
  256. unsigned dirty_bytes = ALIGN(npages, BITS_PER_LONG) / 8;
  257. new.dirty_bitmap = vmalloc(dirty_bytes);
  258. if (!new.dirty_bitmap)
  259. goto out_free;
  260. memset(new.dirty_bitmap, 0, dirty_bytes);
  261. }
  262. if (mem->slot >= kvm->nmemslots)
  263. kvm->nmemslots = mem->slot + 1;
  264. *memslot = new;
  265. r = kvm_arch_set_memory_region(kvm, mem, old, user_alloc);
  266. if (r) {
  267. *memslot = old;
  268. goto out_free;
  269. }
  270. kvm_free_physmem_slot(&old, &new);
  271. return 0;
  272. out_free:
  273. kvm_free_physmem_slot(&new, &old);
  274. out:
  275. return r;
  276. }
  277. EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
  278. int kvm_set_memory_region(struct kvm *kvm,
  279. struct kvm_userspace_memory_region *mem,
  280. int user_alloc)
  281. {
  282. int r;
  283. down_write(&kvm->slots_lock);
  284. r = __kvm_set_memory_region(kvm, mem, user_alloc);
  285. up_write(&kvm->slots_lock);
  286. return r;
  287. }
  288. EXPORT_SYMBOL_GPL(kvm_set_memory_region);
  289. int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
  290. struct
  291. kvm_userspace_memory_region *mem,
  292. int user_alloc)
  293. {
  294. if (mem->slot >= KVM_MEMORY_SLOTS)
  295. return -EINVAL;
  296. return kvm_set_memory_region(kvm, mem, user_alloc);
  297. }
  298. int kvm_get_dirty_log(struct kvm *kvm,
  299. struct kvm_dirty_log *log, int *is_dirty)
  300. {
  301. struct kvm_memory_slot *memslot;
  302. int r, i;
  303. int n;
  304. unsigned long any = 0;
  305. r = -EINVAL;
  306. if (log->slot >= KVM_MEMORY_SLOTS)
  307. goto out;
  308. memslot = &kvm->memslots[log->slot];
  309. r = -ENOENT;
  310. if (!memslot->dirty_bitmap)
  311. goto out;
  312. n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
  313. for (i = 0; !any && i < n/sizeof(long); ++i)
  314. any = memslot->dirty_bitmap[i];
  315. r = -EFAULT;
  316. if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
  317. goto out;
  318. if (any)
  319. *is_dirty = 1;
  320. r = 0;
  321. out:
  322. return r;
  323. }
  324. int is_error_page(struct page *page)
  325. {
  326. return page == bad_page;
  327. }
  328. EXPORT_SYMBOL_GPL(is_error_page);
  329. static inline unsigned long bad_hva(void)
  330. {
  331. return PAGE_OFFSET;
  332. }
  333. int kvm_is_error_hva(unsigned long addr)
  334. {
  335. return addr == bad_hva();
  336. }
  337. EXPORT_SYMBOL_GPL(kvm_is_error_hva);
  338. static struct kvm_memory_slot *__gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
  339. {
  340. int i;
  341. for (i = 0; i < kvm->nmemslots; ++i) {
  342. struct kvm_memory_slot *memslot = &kvm->memslots[i];
  343. if (gfn >= memslot->base_gfn
  344. && gfn < memslot->base_gfn + memslot->npages)
  345. return memslot;
  346. }
  347. return NULL;
  348. }
  349. struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
  350. {
  351. gfn = unalias_gfn(kvm, gfn);
  352. return __gfn_to_memslot(kvm, gfn);
  353. }
  354. int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
  355. {
  356. int i;
  357. gfn = unalias_gfn(kvm, gfn);
  358. for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
  359. struct kvm_memory_slot *memslot = &kvm->memslots[i];
  360. if (gfn >= memslot->base_gfn
  361. && gfn < memslot->base_gfn + memslot->npages)
  362. return 1;
  363. }
  364. return 0;
  365. }
  366. EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
  367. static unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
  368. {
  369. struct kvm_memory_slot *slot;
  370. gfn = unalias_gfn(kvm, gfn);
  371. slot = __gfn_to_memslot(kvm, gfn);
  372. if (!slot)
  373. return bad_hva();
  374. return (slot->userspace_addr + (gfn - slot->base_gfn) * PAGE_SIZE);
  375. }
  376. /*
  377. * Requires current->mm->mmap_sem to be held
  378. */
  379. struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
  380. {
  381. struct page *page[1];
  382. unsigned long addr;
  383. int npages;
  384. might_sleep();
  385. addr = gfn_to_hva(kvm, gfn);
  386. if (kvm_is_error_hva(addr)) {
  387. get_page(bad_page);
  388. return bad_page;
  389. }
  390. npages = get_user_pages(current, current->mm, addr, 1, 1, 1, page,
  391. NULL);
  392. if (npages != 1) {
  393. get_page(bad_page);
  394. return bad_page;
  395. }
  396. return page[0];
  397. }
  398. EXPORT_SYMBOL_GPL(gfn_to_page);
  399. void kvm_release_page_clean(struct page *page)
  400. {
  401. put_page(page);
  402. }
  403. EXPORT_SYMBOL_GPL(kvm_release_page_clean);
  404. void kvm_release_page_dirty(struct page *page)
  405. {
  406. if (!PageReserved(page))
  407. SetPageDirty(page);
  408. put_page(page);
  409. }
  410. EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
  411. static int next_segment(unsigned long len, int offset)
  412. {
  413. if (len > PAGE_SIZE - offset)
  414. return PAGE_SIZE - offset;
  415. else
  416. return len;
  417. }
  418. int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
  419. int len)
  420. {
  421. int r;
  422. unsigned long addr;
  423. addr = gfn_to_hva(kvm, gfn);
  424. if (kvm_is_error_hva(addr))
  425. return -EFAULT;
  426. r = copy_from_user(data, (void __user *)addr + offset, len);
  427. if (r)
  428. return -EFAULT;
  429. return 0;
  430. }
  431. EXPORT_SYMBOL_GPL(kvm_read_guest_page);
  432. int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
  433. {
  434. gfn_t gfn = gpa >> PAGE_SHIFT;
  435. int seg;
  436. int offset = offset_in_page(gpa);
  437. int ret;
  438. while ((seg = next_segment(len, offset)) != 0) {
  439. ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
  440. if (ret < 0)
  441. return ret;
  442. offset = 0;
  443. len -= seg;
  444. data += seg;
  445. ++gfn;
  446. }
  447. return 0;
  448. }
  449. EXPORT_SYMBOL_GPL(kvm_read_guest);
  450. int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
  451. unsigned long len)
  452. {
  453. int r;
  454. unsigned long addr;
  455. gfn_t gfn = gpa >> PAGE_SHIFT;
  456. int offset = offset_in_page(gpa);
  457. addr = gfn_to_hva(kvm, gfn);
  458. if (kvm_is_error_hva(addr))
  459. return -EFAULT;
  460. r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
  461. if (r)
  462. return -EFAULT;
  463. return 0;
  464. }
  465. EXPORT_SYMBOL(kvm_read_guest_atomic);
  466. int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
  467. int offset, int len)
  468. {
  469. int r;
  470. unsigned long addr;
  471. addr = gfn_to_hva(kvm, gfn);
  472. if (kvm_is_error_hva(addr))
  473. return -EFAULT;
  474. r = copy_to_user((void __user *)addr + offset, data, len);
  475. if (r)
  476. return -EFAULT;
  477. mark_page_dirty(kvm, gfn);
  478. return 0;
  479. }
  480. EXPORT_SYMBOL_GPL(kvm_write_guest_page);
  481. int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
  482. unsigned long len)
  483. {
  484. gfn_t gfn = gpa >> PAGE_SHIFT;
  485. int seg;
  486. int offset = offset_in_page(gpa);
  487. int ret;
  488. while ((seg = next_segment(len, offset)) != 0) {
  489. ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
  490. if (ret < 0)
  491. return ret;
  492. offset = 0;
  493. len -= seg;
  494. data += seg;
  495. ++gfn;
  496. }
  497. return 0;
  498. }
  499. int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
  500. {
  501. return kvm_write_guest_page(kvm, gfn, empty_zero_page, offset, len);
  502. }
  503. EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
  504. int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
  505. {
  506. gfn_t gfn = gpa >> PAGE_SHIFT;
  507. int seg;
  508. int offset = offset_in_page(gpa);
  509. int ret;
  510. while ((seg = next_segment(len, offset)) != 0) {
  511. ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
  512. if (ret < 0)
  513. return ret;
  514. offset = 0;
  515. len -= seg;
  516. ++gfn;
  517. }
  518. return 0;
  519. }
  520. EXPORT_SYMBOL_GPL(kvm_clear_guest);
  521. void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
  522. {
  523. struct kvm_memory_slot *memslot;
  524. gfn = unalias_gfn(kvm, gfn);
  525. memslot = __gfn_to_memslot(kvm, gfn);
  526. if (memslot && memslot->dirty_bitmap) {
  527. unsigned long rel_gfn = gfn - memslot->base_gfn;
  528. /* avoid RMW */
  529. if (!test_bit(rel_gfn, memslot->dirty_bitmap))
  530. set_bit(rel_gfn, memslot->dirty_bitmap);
  531. }
  532. }
  533. /*
  534. * The vCPU has executed a HLT instruction with in-kernel mode enabled.
  535. */
  536. void kvm_vcpu_block(struct kvm_vcpu *vcpu)
  537. {
  538. DECLARE_WAITQUEUE(wait, current);
  539. add_wait_queue(&vcpu->wq, &wait);
  540. /*
  541. * We will block until either an interrupt or a signal wakes us up
  542. */
  543. while (!kvm_cpu_has_interrupt(vcpu)
  544. && !signal_pending(current)
  545. && !kvm_arch_vcpu_runnable(vcpu)) {
  546. set_current_state(TASK_INTERRUPTIBLE);
  547. vcpu_put(vcpu);
  548. schedule();
  549. vcpu_load(vcpu);
  550. }
  551. __set_current_state(TASK_RUNNING);
  552. remove_wait_queue(&vcpu->wq, &wait);
  553. }
  554. void kvm_resched(struct kvm_vcpu *vcpu)
  555. {
  556. if (!need_resched())
  557. return;
  558. cond_resched();
  559. }
  560. EXPORT_SYMBOL_GPL(kvm_resched);
  561. static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
  562. {
  563. struct kvm_vcpu *vcpu = vma->vm_file->private_data;
  564. struct page *page;
  565. if (vmf->pgoff == 0)
  566. page = virt_to_page(vcpu->run);
  567. else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
  568. page = virt_to_page(vcpu->arch.pio_data);
  569. else
  570. return VM_FAULT_SIGBUS;
  571. get_page(page);
  572. vmf->page = page;
  573. return 0;
  574. }
  575. static struct vm_operations_struct kvm_vcpu_vm_ops = {
  576. .fault = kvm_vcpu_fault,
  577. };
  578. static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
  579. {
  580. vma->vm_ops = &kvm_vcpu_vm_ops;
  581. return 0;
  582. }
  583. static int kvm_vcpu_release(struct inode *inode, struct file *filp)
  584. {
  585. struct kvm_vcpu *vcpu = filp->private_data;
  586. fput(vcpu->kvm->filp);
  587. return 0;
  588. }
  589. static struct file_operations kvm_vcpu_fops = {
  590. .release = kvm_vcpu_release,
  591. .unlocked_ioctl = kvm_vcpu_ioctl,
  592. .compat_ioctl = kvm_vcpu_ioctl,
  593. .mmap = kvm_vcpu_mmap,
  594. };
  595. /*
  596. * Allocates an inode for the vcpu.
  597. */
  598. static int create_vcpu_fd(struct kvm_vcpu *vcpu)
  599. {
  600. int fd, r;
  601. struct inode *inode;
  602. struct file *file;
  603. r = anon_inode_getfd(&fd, &inode, &file,
  604. "kvm-vcpu", &kvm_vcpu_fops, vcpu);
  605. if (r)
  606. return r;
  607. atomic_inc(&vcpu->kvm->filp->f_count);
  608. return fd;
  609. }
  610. /*
  611. * Creates some virtual cpus. Good luck creating more than one.
  612. */
  613. static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, int n)
  614. {
  615. int r;
  616. struct kvm_vcpu *vcpu;
  617. if (!valid_vcpu(n))
  618. return -EINVAL;
  619. vcpu = kvm_arch_vcpu_create(kvm, n);
  620. if (IS_ERR(vcpu))
  621. return PTR_ERR(vcpu);
  622. preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
  623. r = kvm_arch_vcpu_setup(vcpu);
  624. if (r)
  625. goto vcpu_destroy;
  626. mutex_lock(&kvm->lock);
  627. if (kvm->vcpus[n]) {
  628. r = -EEXIST;
  629. mutex_unlock(&kvm->lock);
  630. goto vcpu_destroy;
  631. }
  632. kvm->vcpus[n] = vcpu;
  633. mutex_unlock(&kvm->lock);
  634. /* Now it's all set up, let userspace reach it */
  635. r = create_vcpu_fd(vcpu);
  636. if (r < 0)
  637. goto unlink;
  638. return r;
  639. unlink:
  640. mutex_lock(&kvm->lock);
  641. kvm->vcpus[n] = NULL;
  642. mutex_unlock(&kvm->lock);
  643. vcpu_destroy:
  644. kvm_arch_vcpu_destroy(vcpu);
  645. return r;
  646. }
  647. static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
  648. {
  649. if (sigset) {
  650. sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
  651. vcpu->sigset_active = 1;
  652. vcpu->sigset = *sigset;
  653. } else
  654. vcpu->sigset_active = 0;
  655. return 0;
  656. }
  657. static long kvm_vcpu_ioctl(struct file *filp,
  658. unsigned int ioctl, unsigned long arg)
  659. {
  660. struct kvm_vcpu *vcpu = filp->private_data;
  661. void __user *argp = (void __user *)arg;
  662. int r;
  663. if (vcpu->kvm->mm != current->mm)
  664. return -EIO;
  665. switch (ioctl) {
  666. case KVM_RUN:
  667. r = -EINVAL;
  668. if (arg)
  669. goto out;
  670. r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
  671. break;
  672. case KVM_GET_REGS: {
  673. struct kvm_regs kvm_regs;
  674. memset(&kvm_regs, 0, sizeof kvm_regs);
  675. r = kvm_arch_vcpu_ioctl_get_regs(vcpu, &kvm_regs);
  676. if (r)
  677. goto out;
  678. r = -EFAULT;
  679. if (copy_to_user(argp, &kvm_regs, sizeof kvm_regs))
  680. goto out;
  681. r = 0;
  682. break;
  683. }
  684. case KVM_SET_REGS: {
  685. struct kvm_regs kvm_regs;
  686. r = -EFAULT;
  687. if (copy_from_user(&kvm_regs, argp, sizeof kvm_regs))
  688. goto out;
  689. r = kvm_arch_vcpu_ioctl_set_regs(vcpu, &kvm_regs);
  690. if (r)
  691. goto out;
  692. r = 0;
  693. break;
  694. }
  695. case KVM_GET_SREGS: {
  696. struct kvm_sregs kvm_sregs;
  697. memset(&kvm_sregs, 0, sizeof kvm_sregs);
  698. r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, &kvm_sregs);
  699. if (r)
  700. goto out;
  701. r = -EFAULT;
  702. if (copy_to_user(argp, &kvm_sregs, sizeof kvm_sregs))
  703. goto out;
  704. r = 0;
  705. break;
  706. }
  707. case KVM_SET_SREGS: {
  708. struct kvm_sregs kvm_sregs;
  709. r = -EFAULT;
  710. if (copy_from_user(&kvm_sregs, argp, sizeof kvm_sregs))
  711. goto out;
  712. r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, &kvm_sregs);
  713. if (r)
  714. goto out;
  715. r = 0;
  716. break;
  717. }
  718. case KVM_TRANSLATE: {
  719. struct kvm_translation tr;
  720. r = -EFAULT;
  721. if (copy_from_user(&tr, argp, sizeof tr))
  722. goto out;
  723. r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
  724. if (r)
  725. goto out;
  726. r = -EFAULT;
  727. if (copy_to_user(argp, &tr, sizeof tr))
  728. goto out;
  729. r = 0;
  730. break;
  731. }
  732. case KVM_DEBUG_GUEST: {
  733. struct kvm_debug_guest dbg;
  734. r = -EFAULT;
  735. if (copy_from_user(&dbg, argp, sizeof dbg))
  736. goto out;
  737. r = kvm_arch_vcpu_ioctl_debug_guest(vcpu, &dbg);
  738. if (r)
  739. goto out;
  740. r = 0;
  741. break;
  742. }
  743. case KVM_SET_SIGNAL_MASK: {
  744. struct kvm_signal_mask __user *sigmask_arg = argp;
  745. struct kvm_signal_mask kvm_sigmask;
  746. sigset_t sigset, *p;
  747. p = NULL;
  748. if (argp) {
  749. r = -EFAULT;
  750. if (copy_from_user(&kvm_sigmask, argp,
  751. sizeof kvm_sigmask))
  752. goto out;
  753. r = -EINVAL;
  754. if (kvm_sigmask.len != sizeof sigset)
  755. goto out;
  756. r = -EFAULT;
  757. if (copy_from_user(&sigset, sigmask_arg->sigset,
  758. sizeof sigset))
  759. goto out;
  760. p = &sigset;
  761. }
  762. r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
  763. break;
  764. }
  765. case KVM_GET_FPU: {
  766. struct kvm_fpu fpu;
  767. memset(&fpu, 0, sizeof fpu);
  768. r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, &fpu);
  769. if (r)
  770. goto out;
  771. r = -EFAULT;
  772. if (copy_to_user(argp, &fpu, sizeof fpu))
  773. goto out;
  774. r = 0;
  775. break;
  776. }
  777. case KVM_SET_FPU: {
  778. struct kvm_fpu fpu;
  779. r = -EFAULT;
  780. if (copy_from_user(&fpu, argp, sizeof fpu))
  781. goto out;
  782. r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, &fpu);
  783. if (r)
  784. goto out;
  785. r = 0;
  786. break;
  787. }
  788. default:
  789. r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
  790. }
  791. out:
  792. return r;
  793. }
  794. static long kvm_vm_ioctl(struct file *filp,
  795. unsigned int ioctl, unsigned long arg)
  796. {
  797. struct kvm *kvm = filp->private_data;
  798. void __user *argp = (void __user *)arg;
  799. int r;
  800. if (kvm->mm != current->mm)
  801. return -EIO;
  802. switch (ioctl) {
  803. case KVM_CREATE_VCPU:
  804. r = kvm_vm_ioctl_create_vcpu(kvm, arg);
  805. if (r < 0)
  806. goto out;
  807. break;
  808. case KVM_SET_USER_MEMORY_REGION: {
  809. struct kvm_userspace_memory_region kvm_userspace_mem;
  810. r = -EFAULT;
  811. if (copy_from_user(&kvm_userspace_mem, argp,
  812. sizeof kvm_userspace_mem))
  813. goto out;
  814. r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 1);
  815. if (r)
  816. goto out;
  817. break;
  818. }
  819. case KVM_GET_DIRTY_LOG: {
  820. struct kvm_dirty_log log;
  821. r = -EFAULT;
  822. if (copy_from_user(&log, argp, sizeof log))
  823. goto out;
  824. r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
  825. if (r)
  826. goto out;
  827. break;
  828. }
  829. default:
  830. r = kvm_arch_vm_ioctl(filp, ioctl, arg);
  831. }
  832. out:
  833. return r;
  834. }
  835. static int kvm_vm_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
  836. {
  837. struct kvm *kvm = vma->vm_file->private_data;
  838. struct page *page;
  839. if (!kvm_is_visible_gfn(kvm, vmf->pgoff))
  840. return VM_FAULT_SIGBUS;
  841. page = gfn_to_page(kvm, vmf->pgoff);
  842. if (is_error_page(page)) {
  843. kvm_release_page_clean(page);
  844. return VM_FAULT_SIGBUS;
  845. }
  846. vmf->page = page;
  847. return 0;
  848. }
  849. static struct vm_operations_struct kvm_vm_vm_ops = {
  850. .fault = kvm_vm_fault,
  851. };
  852. static int kvm_vm_mmap(struct file *file, struct vm_area_struct *vma)
  853. {
  854. vma->vm_ops = &kvm_vm_vm_ops;
  855. return 0;
  856. }
  857. static struct file_operations kvm_vm_fops = {
  858. .release = kvm_vm_release,
  859. .unlocked_ioctl = kvm_vm_ioctl,
  860. .compat_ioctl = kvm_vm_ioctl,
  861. .mmap = kvm_vm_mmap,
  862. };
  863. static int kvm_dev_ioctl_create_vm(void)
  864. {
  865. int fd, r;
  866. struct inode *inode;
  867. struct file *file;
  868. struct kvm *kvm;
  869. kvm = kvm_create_vm();
  870. if (IS_ERR(kvm))
  871. return PTR_ERR(kvm);
  872. r = anon_inode_getfd(&fd, &inode, &file, "kvm-vm", &kvm_vm_fops, kvm);
  873. if (r) {
  874. kvm_destroy_vm(kvm);
  875. return r;
  876. }
  877. kvm->filp = file;
  878. return fd;
  879. }
  880. static long kvm_dev_ioctl(struct file *filp,
  881. unsigned int ioctl, unsigned long arg)
  882. {
  883. void __user *argp = (void __user *)arg;
  884. long r = -EINVAL;
  885. switch (ioctl) {
  886. case KVM_GET_API_VERSION:
  887. r = -EINVAL;
  888. if (arg)
  889. goto out;
  890. r = KVM_API_VERSION;
  891. break;
  892. case KVM_CREATE_VM:
  893. r = -EINVAL;
  894. if (arg)
  895. goto out;
  896. r = kvm_dev_ioctl_create_vm();
  897. break;
  898. case KVM_CHECK_EXTENSION:
  899. r = kvm_dev_ioctl_check_extension((long)argp);
  900. break;
  901. case KVM_GET_VCPU_MMAP_SIZE:
  902. r = -EINVAL;
  903. if (arg)
  904. goto out;
  905. r = 2 * PAGE_SIZE;
  906. break;
  907. default:
  908. return kvm_arch_dev_ioctl(filp, ioctl, arg);
  909. }
  910. out:
  911. return r;
  912. }
  913. static struct file_operations kvm_chardev_ops = {
  914. .unlocked_ioctl = kvm_dev_ioctl,
  915. .compat_ioctl = kvm_dev_ioctl,
  916. };
  917. static struct miscdevice kvm_dev = {
  918. KVM_MINOR,
  919. "kvm",
  920. &kvm_chardev_ops,
  921. };
  922. static void hardware_enable(void *junk)
  923. {
  924. int cpu = raw_smp_processor_id();
  925. if (cpu_isset(cpu, cpus_hardware_enabled))
  926. return;
  927. cpu_set(cpu, cpus_hardware_enabled);
  928. kvm_arch_hardware_enable(NULL);
  929. }
  930. static void hardware_disable(void *junk)
  931. {
  932. int cpu = raw_smp_processor_id();
  933. if (!cpu_isset(cpu, cpus_hardware_enabled))
  934. return;
  935. cpu_clear(cpu, cpus_hardware_enabled);
  936. decache_vcpus_on_cpu(cpu);
  937. kvm_arch_hardware_disable(NULL);
  938. }
  939. static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
  940. void *v)
  941. {
  942. int cpu = (long)v;
  943. val &= ~CPU_TASKS_FROZEN;
  944. switch (val) {
  945. case CPU_DYING:
  946. printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
  947. cpu);
  948. hardware_disable(NULL);
  949. break;
  950. case CPU_UP_CANCELED:
  951. printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
  952. cpu);
  953. smp_call_function_single(cpu, hardware_disable, NULL, 0, 1);
  954. break;
  955. case CPU_ONLINE:
  956. printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
  957. cpu);
  958. smp_call_function_single(cpu, hardware_enable, NULL, 0, 1);
  959. break;
  960. }
  961. return NOTIFY_OK;
  962. }
  963. static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
  964. void *v)
  965. {
  966. if (val == SYS_RESTART) {
  967. /*
  968. * Some (well, at least mine) BIOSes hang on reboot if
  969. * in vmx root mode.
  970. */
  971. printk(KERN_INFO "kvm: exiting hardware virtualization\n");
  972. on_each_cpu(hardware_disable, NULL, 0, 1);
  973. }
  974. return NOTIFY_OK;
  975. }
  976. static struct notifier_block kvm_reboot_notifier = {
  977. .notifier_call = kvm_reboot,
  978. .priority = 0,
  979. };
  980. void kvm_io_bus_init(struct kvm_io_bus *bus)
  981. {
  982. memset(bus, 0, sizeof(*bus));
  983. }
  984. void kvm_io_bus_destroy(struct kvm_io_bus *bus)
  985. {
  986. int i;
  987. for (i = 0; i < bus->dev_count; i++) {
  988. struct kvm_io_device *pos = bus->devs[i];
  989. kvm_iodevice_destructor(pos);
  990. }
  991. }
  992. struct kvm_io_device *kvm_io_bus_find_dev(struct kvm_io_bus *bus, gpa_t addr)
  993. {
  994. int i;
  995. for (i = 0; i < bus->dev_count; i++) {
  996. struct kvm_io_device *pos = bus->devs[i];
  997. if (pos->in_range(pos, addr))
  998. return pos;
  999. }
  1000. return NULL;
  1001. }
  1002. void kvm_io_bus_register_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev)
  1003. {
  1004. BUG_ON(bus->dev_count > (NR_IOBUS_DEVS-1));
  1005. bus->devs[bus->dev_count++] = dev;
  1006. }
  1007. static struct notifier_block kvm_cpu_notifier = {
  1008. .notifier_call = kvm_cpu_hotplug,
  1009. .priority = 20, /* must be > scheduler priority */
  1010. };
  1011. static int vm_stat_get(void *_offset, u64 *val)
  1012. {
  1013. unsigned offset = (long)_offset;
  1014. struct kvm *kvm;
  1015. *val = 0;
  1016. spin_lock(&kvm_lock);
  1017. list_for_each_entry(kvm, &vm_list, vm_list)
  1018. *val += *(u32 *)((void *)kvm + offset);
  1019. spin_unlock(&kvm_lock);
  1020. return 0;
  1021. }
  1022. DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n");
  1023. static int vcpu_stat_get(void *_offset, u64 *val)
  1024. {
  1025. unsigned offset = (long)_offset;
  1026. struct kvm *kvm;
  1027. struct kvm_vcpu *vcpu;
  1028. int i;
  1029. *val = 0;
  1030. spin_lock(&kvm_lock);
  1031. list_for_each_entry(kvm, &vm_list, vm_list)
  1032. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  1033. vcpu = kvm->vcpus[i];
  1034. if (vcpu)
  1035. *val += *(u32 *)((void *)vcpu + offset);
  1036. }
  1037. spin_unlock(&kvm_lock);
  1038. return 0;
  1039. }
  1040. DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n");
  1041. static struct file_operations *stat_fops[] = {
  1042. [KVM_STAT_VCPU] = &vcpu_stat_fops,
  1043. [KVM_STAT_VM] = &vm_stat_fops,
  1044. };
  1045. static void kvm_init_debug(void)
  1046. {
  1047. struct kvm_stats_debugfs_item *p;
  1048. debugfs_dir = debugfs_create_dir("kvm", NULL);
  1049. for (p = debugfs_entries; p->name; ++p)
  1050. p->dentry = debugfs_create_file(p->name, 0444, debugfs_dir,
  1051. (void *)(long)p->offset,
  1052. stat_fops[p->kind]);
  1053. }
  1054. static void kvm_exit_debug(void)
  1055. {
  1056. struct kvm_stats_debugfs_item *p;
  1057. for (p = debugfs_entries; p->name; ++p)
  1058. debugfs_remove(p->dentry);
  1059. debugfs_remove(debugfs_dir);
  1060. }
  1061. static int kvm_suspend(struct sys_device *dev, pm_message_t state)
  1062. {
  1063. hardware_disable(NULL);
  1064. return 0;
  1065. }
  1066. static int kvm_resume(struct sys_device *dev)
  1067. {
  1068. hardware_enable(NULL);
  1069. return 0;
  1070. }
  1071. static struct sysdev_class kvm_sysdev_class = {
  1072. .name = "kvm",
  1073. .suspend = kvm_suspend,
  1074. .resume = kvm_resume,
  1075. };
  1076. static struct sys_device kvm_sysdev = {
  1077. .id = 0,
  1078. .cls = &kvm_sysdev_class,
  1079. };
  1080. struct page *bad_page;
  1081. static inline
  1082. struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
  1083. {
  1084. return container_of(pn, struct kvm_vcpu, preempt_notifier);
  1085. }
  1086. static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
  1087. {
  1088. struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
  1089. kvm_arch_vcpu_load(vcpu, cpu);
  1090. }
  1091. static void kvm_sched_out(struct preempt_notifier *pn,
  1092. struct task_struct *next)
  1093. {
  1094. struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
  1095. kvm_arch_vcpu_put(vcpu);
  1096. }
  1097. int kvm_init(void *opaque, unsigned int vcpu_size,
  1098. struct module *module)
  1099. {
  1100. int r;
  1101. int cpu;
  1102. kvm_init_debug();
  1103. r = kvm_arch_init(opaque);
  1104. if (r)
  1105. goto out_fail;
  1106. bad_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  1107. if (bad_page == NULL) {
  1108. r = -ENOMEM;
  1109. goto out;
  1110. }
  1111. r = kvm_arch_hardware_setup();
  1112. if (r < 0)
  1113. goto out_free_0;
  1114. for_each_online_cpu(cpu) {
  1115. smp_call_function_single(cpu,
  1116. kvm_arch_check_processor_compat,
  1117. &r, 0, 1);
  1118. if (r < 0)
  1119. goto out_free_1;
  1120. }
  1121. on_each_cpu(hardware_enable, NULL, 0, 1);
  1122. r = register_cpu_notifier(&kvm_cpu_notifier);
  1123. if (r)
  1124. goto out_free_2;
  1125. register_reboot_notifier(&kvm_reboot_notifier);
  1126. r = sysdev_class_register(&kvm_sysdev_class);
  1127. if (r)
  1128. goto out_free_3;
  1129. r = sysdev_register(&kvm_sysdev);
  1130. if (r)
  1131. goto out_free_4;
  1132. /* A kmem cache lets us meet the alignment requirements of fx_save. */
  1133. kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size,
  1134. __alignof__(struct kvm_vcpu),
  1135. 0, NULL);
  1136. if (!kvm_vcpu_cache) {
  1137. r = -ENOMEM;
  1138. goto out_free_5;
  1139. }
  1140. kvm_chardev_ops.owner = module;
  1141. r = misc_register(&kvm_dev);
  1142. if (r) {
  1143. printk(KERN_ERR "kvm: misc device register failed\n");
  1144. goto out_free;
  1145. }
  1146. kvm_preempt_ops.sched_in = kvm_sched_in;
  1147. kvm_preempt_ops.sched_out = kvm_sched_out;
  1148. return 0;
  1149. out_free:
  1150. kmem_cache_destroy(kvm_vcpu_cache);
  1151. out_free_5:
  1152. sysdev_unregister(&kvm_sysdev);
  1153. out_free_4:
  1154. sysdev_class_unregister(&kvm_sysdev_class);
  1155. out_free_3:
  1156. unregister_reboot_notifier(&kvm_reboot_notifier);
  1157. unregister_cpu_notifier(&kvm_cpu_notifier);
  1158. out_free_2:
  1159. on_each_cpu(hardware_disable, NULL, 0, 1);
  1160. out_free_1:
  1161. kvm_arch_hardware_unsetup();
  1162. out_free_0:
  1163. __free_page(bad_page);
  1164. out:
  1165. kvm_arch_exit();
  1166. kvm_exit_debug();
  1167. out_fail:
  1168. return r;
  1169. }
  1170. EXPORT_SYMBOL_GPL(kvm_init);
  1171. void kvm_exit(void)
  1172. {
  1173. misc_deregister(&kvm_dev);
  1174. kmem_cache_destroy(kvm_vcpu_cache);
  1175. sysdev_unregister(&kvm_sysdev);
  1176. sysdev_class_unregister(&kvm_sysdev_class);
  1177. unregister_reboot_notifier(&kvm_reboot_notifier);
  1178. unregister_cpu_notifier(&kvm_cpu_notifier);
  1179. on_each_cpu(hardware_disable, NULL, 0, 1);
  1180. kvm_arch_hardware_unsetup();
  1181. kvm_arch_exit();
  1182. kvm_exit_debug();
  1183. __free_page(bad_page);
  1184. }
  1185. EXPORT_SYMBOL_GPL(kvm_exit);