fsl_dma.c 27 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841
  1. /*
  2. * Freescale DMA ALSA SoC PCM driver
  3. *
  4. * Author: Timur Tabi <timur@freescale.com>
  5. *
  6. * Copyright 2007-2008 Freescale Semiconductor, Inc. This file is licensed
  7. * under the terms of the GNU General Public License version 2. This
  8. * program is licensed "as is" without any warranty of any kind, whether
  9. * express or implied.
  10. *
  11. * This driver implements ASoC support for the Elo DMA controller, which is
  12. * the DMA controller on Freescale 83xx, 85xx, and 86xx SOCs. In ALSA terms,
  13. * the PCM driver is what handles the DMA buffer.
  14. */
  15. #include <linux/module.h>
  16. #include <linux/init.h>
  17. #include <linux/platform_device.h>
  18. #include <linux/dma-mapping.h>
  19. #include <linux/interrupt.h>
  20. #include <linux/delay.h>
  21. #include <sound/driver.h>
  22. #include <sound/core.h>
  23. #include <sound/pcm.h>
  24. #include <sound/pcm_params.h>
  25. #include <sound/soc.h>
  26. #include <asm/io.h>
  27. #include "fsl_dma.h"
  28. /*
  29. * The formats that the DMA controller supports, which is anything
  30. * that is 8, 16, or 32 bits.
  31. */
  32. #define FSLDMA_PCM_FORMATS (SNDRV_PCM_FMTBIT_S8 | \
  33. SNDRV_PCM_FMTBIT_U8 | \
  34. SNDRV_PCM_FMTBIT_S16_LE | \
  35. SNDRV_PCM_FMTBIT_S16_BE | \
  36. SNDRV_PCM_FMTBIT_U16_LE | \
  37. SNDRV_PCM_FMTBIT_U16_BE | \
  38. SNDRV_PCM_FMTBIT_S24_LE | \
  39. SNDRV_PCM_FMTBIT_S24_BE | \
  40. SNDRV_PCM_FMTBIT_U24_LE | \
  41. SNDRV_PCM_FMTBIT_U24_BE | \
  42. SNDRV_PCM_FMTBIT_S32_LE | \
  43. SNDRV_PCM_FMTBIT_S32_BE | \
  44. SNDRV_PCM_FMTBIT_U32_LE | \
  45. SNDRV_PCM_FMTBIT_U32_BE)
  46. #define FSLDMA_PCM_RATES (SNDRV_PCM_RATE_5512 | SNDRV_PCM_RATE_8000_192000 | \
  47. SNDRV_PCM_RATE_CONTINUOUS)
  48. /* DMA global data. This structure is used by fsl_dma_open() to determine
  49. * which DMA channels to assign to a substream. Unfortunately, ASoC V1 does
  50. * not allow the machine driver to provide this information to the PCM
  51. * driver in advance, and there's no way to differentiate between the two
  52. * DMA controllers. So for now, this driver only supports one SSI device
  53. * using two DMA channels. We cannot support multiple DMA devices.
  54. *
  55. * ssi_stx_phys: bus address of SSI STX register
  56. * ssi_srx_phys: bus address of SSI SRX register
  57. * dma_channel: pointer to the DMA channel's registers
  58. * irq: IRQ for this DMA channel
  59. * assigned: set to 1 if that DMA channel is assigned to a substream
  60. */
  61. static struct {
  62. dma_addr_t ssi_stx_phys;
  63. dma_addr_t ssi_srx_phys;
  64. struct ccsr_dma_channel __iomem *dma_channel[2];
  65. unsigned int irq[2];
  66. unsigned int assigned[2];
  67. } dma_global_data;
  68. /*
  69. * The number of DMA links to use. Two is the bare minimum, but if you
  70. * have really small links you might need more.
  71. */
  72. #define NUM_DMA_LINKS 2
  73. /** fsl_dma_private: p-substream DMA data
  74. *
  75. * Each substream has a 1-to-1 association with a DMA channel.
  76. *
  77. * The link[] array is first because it needs to be aligned on a 32-byte
  78. * boundary, so putting it first will ensure alignment without padding the
  79. * structure.
  80. *
  81. * @link[]: array of link descriptors
  82. * @controller_id: which DMA controller (0, 1, ...)
  83. * @channel_id: which DMA channel on the controller (0, 1, 2, ...)
  84. * @dma_channel: pointer to the DMA channel's registers
  85. * @irq: IRQ for this DMA channel
  86. * @substream: pointer to the substream object, needed by the ISR
  87. * @ssi_sxx_phys: bus address of the STX or SRX register to use
  88. * @ld_buf_phys: physical address of the LD buffer
  89. * @current_link: index into link[] of the link currently being processed
  90. * @dma_buf_phys: physical address of the DMA buffer
  91. * @dma_buf_next: physical address of the next period to process
  92. * @dma_buf_end: physical address of the byte after the end of the DMA
  93. * @buffer period_size: the size of a single period
  94. * @num_periods: the number of periods in the DMA buffer
  95. */
  96. struct fsl_dma_private {
  97. struct fsl_dma_link_descriptor link[NUM_DMA_LINKS];
  98. unsigned int controller_id;
  99. unsigned int channel_id;
  100. struct ccsr_dma_channel __iomem *dma_channel;
  101. unsigned int irq;
  102. struct snd_pcm_substream *substream;
  103. dma_addr_t ssi_sxx_phys;
  104. dma_addr_t ld_buf_phys;
  105. unsigned int current_link;
  106. dma_addr_t dma_buf_phys;
  107. dma_addr_t dma_buf_next;
  108. dma_addr_t dma_buf_end;
  109. size_t period_size;
  110. unsigned int num_periods;
  111. };
  112. /**
  113. * fsl_dma_hardare: define characteristics of the PCM hardware.
  114. *
  115. * The PCM hardware is the Freescale DMA controller. This structure defines
  116. * the capabilities of that hardware.
  117. *
  118. * Since the sampling rate and data format are not controlled by the DMA
  119. * controller, we specify no limits for those values. The only exception is
  120. * period_bytes_min, which is set to a reasonably low value to prevent the
  121. * DMA controller from generating too many interrupts per second.
  122. *
  123. * Since each link descriptor has a 32-bit byte count field, we set
  124. * period_bytes_max to the largest 32-bit number. We also have no maximum
  125. * number of periods.
  126. */
  127. static const struct snd_pcm_hardware fsl_dma_hardware = {
  128. .info = SNDRV_PCM_INFO_INTERLEAVED |
  129. SNDRV_PCM_INFO_MMAP |
  130. SNDRV_PCM_INFO_MMAP_VALID,
  131. .formats = FSLDMA_PCM_FORMATS,
  132. .rates = FSLDMA_PCM_RATES,
  133. .rate_min = 5512,
  134. .rate_max = 192000,
  135. .period_bytes_min = 512, /* A reasonable limit */
  136. .period_bytes_max = (u32) -1,
  137. .periods_min = NUM_DMA_LINKS,
  138. .periods_max = (unsigned int) -1,
  139. .buffer_bytes_max = 128 * 1024, /* A reasonable limit */
  140. };
  141. /**
  142. * fsl_dma_abort_stream: tell ALSA that the DMA transfer has aborted
  143. *
  144. * This function should be called by the ISR whenever the DMA controller
  145. * halts data transfer.
  146. */
  147. static void fsl_dma_abort_stream(struct snd_pcm_substream *substream)
  148. {
  149. unsigned long flags;
  150. snd_pcm_stream_lock_irqsave(substream, flags);
  151. if (snd_pcm_running(substream))
  152. snd_pcm_stop(substream, SNDRV_PCM_STATE_XRUN);
  153. snd_pcm_stream_unlock_irqrestore(substream, flags);
  154. }
  155. /**
  156. * fsl_dma_update_pointers - update LD pointers to point to the next period
  157. *
  158. * As each period is completed, this function changes the the link
  159. * descriptor pointers for that period to point to the next period.
  160. */
  161. static void fsl_dma_update_pointers(struct fsl_dma_private *dma_private)
  162. {
  163. struct fsl_dma_link_descriptor *link =
  164. &dma_private->link[dma_private->current_link];
  165. /* Update our link descriptors to point to the next period */
  166. if (dma_private->substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
  167. link->source_addr =
  168. cpu_to_be32(dma_private->dma_buf_next);
  169. else
  170. link->dest_addr =
  171. cpu_to_be32(dma_private->dma_buf_next);
  172. /* Update our variables for next time */
  173. dma_private->dma_buf_next += dma_private->period_size;
  174. if (dma_private->dma_buf_next >= dma_private->dma_buf_end)
  175. dma_private->dma_buf_next = dma_private->dma_buf_phys;
  176. if (++dma_private->current_link >= NUM_DMA_LINKS)
  177. dma_private->current_link = 0;
  178. }
  179. /**
  180. * fsl_dma_isr: interrupt handler for the DMA controller
  181. *
  182. * @irq: IRQ of the DMA channel
  183. * @dev_id: pointer to the dma_private structure for this DMA channel
  184. */
  185. static irqreturn_t fsl_dma_isr(int irq, void *dev_id)
  186. {
  187. struct fsl_dma_private *dma_private = dev_id;
  188. struct ccsr_dma_channel __iomem *dma_channel = dma_private->dma_channel;
  189. irqreturn_t ret = IRQ_NONE;
  190. u32 sr, sr2 = 0;
  191. /* We got an interrupt, so read the status register to see what we
  192. were interrupted for.
  193. */
  194. sr = in_be32(&dma_channel->sr);
  195. if (sr & CCSR_DMA_SR_TE) {
  196. dev_err(dma_private->substream->pcm->card->dev,
  197. "DMA transmit error (controller=%u channel=%u irq=%u\n",
  198. dma_private->controller_id,
  199. dma_private->channel_id, irq);
  200. fsl_dma_abort_stream(dma_private->substream);
  201. sr2 |= CCSR_DMA_SR_TE;
  202. ret = IRQ_HANDLED;
  203. }
  204. if (sr & CCSR_DMA_SR_CH)
  205. ret = IRQ_HANDLED;
  206. if (sr & CCSR_DMA_SR_PE) {
  207. dev_err(dma_private->substream->pcm->card->dev,
  208. "DMA%u programming error (channel=%u irq=%u)\n",
  209. dma_private->controller_id,
  210. dma_private->channel_id, irq);
  211. fsl_dma_abort_stream(dma_private->substream);
  212. sr2 |= CCSR_DMA_SR_PE;
  213. ret = IRQ_HANDLED;
  214. }
  215. if (sr & CCSR_DMA_SR_EOLNI) {
  216. sr2 |= CCSR_DMA_SR_EOLNI;
  217. ret = IRQ_HANDLED;
  218. }
  219. if (sr & CCSR_DMA_SR_CB)
  220. ret = IRQ_HANDLED;
  221. if (sr & CCSR_DMA_SR_EOSI) {
  222. struct snd_pcm_substream *substream = dma_private->substream;
  223. /* Tell ALSA we completed a period. */
  224. snd_pcm_period_elapsed(substream);
  225. /*
  226. * Update our link descriptors to point to the next period. We
  227. * only need to do this if the number of periods is not equal to
  228. * the number of links.
  229. */
  230. if (dma_private->num_periods != NUM_DMA_LINKS)
  231. fsl_dma_update_pointers(dma_private);
  232. sr2 |= CCSR_DMA_SR_EOSI;
  233. ret = IRQ_HANDLED;
  234. }
  235. if (sr & CCSR_DMA_SR_EOLSI) {
  236. sr2 |= CCSR_DMA_SR_EOLSI;
  237. ret = IRQ_HANDLED;
  238. }
  239. /* Clear the bits that we set */
  240. if (sr2)
  241. out_be32(&dma_channel->sr, sr2);
  242. return ret;
  243. }
  244. /**
  245. * fsl_dma_new: initialize this PCM driver.
  246. *
  247. * This function is called when the codec driver calls snd_soc_new_pcms(),
  248. * once for each .dai_link in the machine driver's snd_soc_machine
  249. * structure.
  250. */
  251. static int fsl_dma_new(struct snd_card *card, struct snd_soc_codec_dai *dai,
  252. struct snd_pcm *pcm)
  253. {
  254. static u64 fsl_dma_dmamask = DMA_BIT_MASK(32);
  255. int ret;
  256. if (!card->dev->dma_mask)
  257. card->dev->dma_mask = &fsl_dma_dmamask;
  258. if (!card->dev->coherent_dma_mask)
  259. card->dev->coherent_dma_mask = fsl_dma_dmamask;
  260. ret = snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, pcm->dev,
  261. fsl_dma_hardware.buffer_bytes_max,
  262. &pcm->streams[0].substream->dma_buffer);
  263. if (ret) {
  264. dev_err(card->dev,
  265. "Can't allocate playback DMA buffer (size=%u)\n",
  266. fsl_dma_hardware.buffer_bytes_max);
  267. return -ENOMEM;
  268. }
  269. ret = snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, pcm->dev,
  270. fsl_dma_hardware.buffer_bytes_max,
  271. &pcm->streams[1].substream->dma_buffer);
  272. if (ret) {
  273. snd_dma_free_pages(&pcm->streams[0].substream->dma_buffer);
  274. dev_err(card->dev,
  275. "Can't allocate capture DMA buffer (size=%u)\n",
  276. fsl_dma_hardware.buffer_bytes_max);
  277. return -ENOMEM;
  278. }
  279. return 0;
  280. }
  281. /**
  282. * fsl_dma_open: open a new substream.
  283. *
  284. * Each substream has its own DMA buffer.
  285. */
  286. static int fsl_dma_open(struct snd_pcm_substream *substream)
  287. {
  288. struct snd_pcm_runtime *runtime = substream->runtime;
  289. struct fsl_dma_private *dma_private;
  290. dma_addr_t ld_buf_phys;
  291. unsigned int channel;
  292. int ret = 0;
  293. /*
  294. * Reject any DMA buffer whose size is not a multiple of the period
  295. * size. We need to make sure that the DMA buffer can be evenly divided
  296. * into periods.
  297. */
  298. ret = snd_pcm_hw_constraint_integer(runtime,
  299. SNDRV_PCM_HW_PARAM_PERIODS);
  300. if (ret < 0) {
  301. dev_err(substream->pcm->card->dev, "invalid buffer size\n");
  302. return ret;
  303. }
  304. channel = substream->stream == SNDRV_PCM_STREAM_PLAYBACK ? 0 : 1;
  305. if (dma_global_data.assigned[channel]) {
  306. dev_err(substream->pcm->card->dev,
  307. "DMA channel already assigned\n");
  308. return -EBUSY;
  309. }
  310. dma_private = dma_alloc_coherent(substream->pcm->dev,
  311. sizeof(struct fsl_dma_private), &ld_buf_phys, GFP_KERNEL);
  312. if (!dma_private) {
  313. dev_err(substream->pcm->card->dev,
  314. "can't allocate DMA private data\n");
  315. return -ENOMEM;
  316. }
  317. if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
  318. dma_private->ssi_sxx_phys = dma_global_data.ssi_stx_phys;
  319. else
  320. dma_private->ssi_sxx_phys = dma_global_data.ssi_srx_phys;
  321. dma_private->dma_channel = dma_global_data.dma_channel[channel];
  322. dma_private->irq = dma_global_data.irq[channel];
  323. dma_private->substream = substream;
  324. dma_private->ld_buf_phys = ld_buf_phys;
  325. dma_private->dma_buf_phys = substream->dma_buffer.addr;
  326. /* We only support one DMA controller for now */
  327. dma_private->controller_id = 0;
  328. dma_private->channel_id = channel;
  329. ret = request_irq(dma_private->irq, fsl_dma_isr, 0, "DMA", dma_private);
  330. if (ret) {
  331. dev_err(substream->pcm->card->dev,
  332. "can't register ISR for IRQ %u (ret=%i)\n",
  333. dma_private->irq, ret);
  334. dma_free_coherent(substream->pcm->dev,
  335. sizeof(struct fsl_dma_private),
  336. dma_private, dma_private->ld_buf_phys);
  337. return ret;
  338. }
  339. dma_global_data.assigned[channel] = 1;
  340. snd_pcm_set_runtime_buffer(substream, &substream->dma_buffer);
  341. snd_soc_set_runtime_hwparams(substream, &fsl_dma_hardware);
  342. runtime->private_data = dma_private;
  343. return 0;
  344. }
  345. /**
  346. * fsl_dma_hw_params: allocate the DMA buffer and the DMA link descriptors.
  347. *
  348. * ALSA divides the DMA buffer into N periods. We create NUM_DMA_LINKS link
  349. * descriptors that ping-pong from one period to the next. For example, if
  350. * there are six periods and two link descriptors, this is how they look
  351. * before playback starts:
  352. *
  353. * The last link descriptor
  354. * ____________ points back to the first
  355. * | |
  356. * V |
  357. * ___ ___ |
  358. * | |->| |->|
  359. * |___| |___|
  360. * | |
  361. * | |
  362. * V V
  363. * _________________________________________
  364. * | | | | | | | The DMA buffer is
  365. * | | | | | | | divided into 6 parts
  366. * |______|______|______|______|______|______|
  367. *
  368. * and here's how they look after the first period is finished playing:
  369. *
  370. * ____________
  371. * | |
  372. * V |
  373. * ___ ___ |
  374. * | |->| |->|
  375. * |___| |___|
  376. * | |
  377. * |______________
  378. * | |
  379. * V V
  380. * _________________________________________
  381. * | | | | | | |
  382. * | | | | | | |
  383. * |______|______|______|______|______|______|
  384. *
  385. * The first link descriptor now points to the third period. The DMA
  386. * controller is currently playing the second period. When it finishes, it
  387. * will jump back to the first descriptor and play the third period.
  388. *
  389. * There are four reasons we do this:
  390. *
  391. * 1. The only way to get the DMA controller to automatically restart the
  392. * transfer when it gets to the end of the buffer is to use chaining
  393. * mode. Basic direct mode doesn't offer that feature.
  394. * 2. We need to receive an interrupt at the end of every period. The DMA
  395. * controller can generate an interrupt at the end of every link transfer
  396. * (aka segment). Making each period into a DMA segment will give us the
  397. * interrupts we need.
  398. * 3. By creating only two link descriptors, regardless of the number of
  399. * periods, we do not need to reallocate the link descriptors if the
  400. * number of periods changes.
  401. * 4. All of the audio data is still stored in a single, contiguous DMA
  402. * buffer, which is what ALSA expects. We're just dividing it into
  403. * contiguous parts, and creating a link descriptor for each one.
  404. *
  405. * Note that due to a quirk of the SSI's STX register, the target address
  406. * for the DMA operations depends on the sample size. So we don't program
  407. * the dest_addr (for playback -- source_addr for capture) fields in the
  408. * link descriptors here. We do that in fsl_dma_prepare()
  409. */
  410. static int fsl_dma_hw_params(struct snd_pcm_substream *substream,
  411. struct snd_pcm_hw_params *hw_params)
  412. {
  413. struct snd_pcm_runtime *runtime = substream->runtime;
  414. struct fsl_dma_private *dma_private = runtime->private_data;
  415. struct ccsr_dma_channel __iomem *dma_channel = dma_private->dma_channel;
  416. dma_addr_t temp_addr; /* Pointer to next period */
  417. u64 temp_link; /* Pointer to next link descriptor */
  418. u32 mr; /* Temporary variable for MR register */
  419. unsigned int i;
  420. /* Get all the parameters we need */
  421. size_t buffer_size = params_buffer_bytes(hw_params);
  422. size_t period_size = params_period_bytes(hw_params);
  423. /* Initialize our DMA tracking variables */
  424. dma_private->period_size = period_size;
  425. dma_private->num_periods = params_periods(hw_params);
  426. dma_private->dma_buf_end = dma_private->dma_buf_phys + buffer_size;
  427. dma_private->dma_buf_next = dma_private->dma_buf_phys +
  428. (NUM_DMA_LINKS * period_size);
  429. if (dma_private->dma_buf_next >= dma_private->dma_buf_end)
  430. dma_private->dma_buf_next = dma_private->dma_buf_phys;
  431. /*
  432. * Initialize each link descriptor.
  433. *
  434. * The actual address in STX0 (destination for playback, source for
  435. * capture) is based on the sample size, but we don't know the sample
  436. * size in this function, so we'll have to adjust that later. See
  437. * comments in fsl_dma_prepare().
  438. *
  439. * The DMA controller does not have a cache, so the CPU does not
  440. * need to tell it to flush its cache. However, the DMA
  441. * controller does need to tell the CPU to flush its cache.
  442. * That's what the SNOOP bit does.
  443. *
  444. * Also, even though the DMA controller supports 36-bit addressing, for
  445. * simplicity we currently support only 32-bit addresses for the audio
  446. * buffer itself.
  447. */
  448. temp_addr = substream->dma_buffer.addr;
  449. temp_link = dma_private->ld_buf_phys +
  450. sizeof(struct fsl_dma_link_descriptor);
  451. for (i = 0; i < NUM_DMA_LINKS; i++) {
  452. struct fsl_dma_link_descriptor *link = &dma_private->link[i];
  453. link->count = cpu_to_be32(period_size);
  454. link->source_attr = cpu_to_be32(CCSR_DMA_ATR_SNOOP);
  455. link->dest_attr = cpu_to_be32(CCSR_DMA_ATR_SNOOP);
  456. link->next = cpu_to_be64(temp_link);
  457. if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
  458. link->source_addr = cpu_to_be32(temp_addr);
  459. else
  460. link->dest_addr = cpu_to_be32(temp_addr);
  461. temp_addr += period_size;
  462. temp_link += sizeof(struct fsl_dma_link_descriptor);
  463. }
  464. /* The last link descriptor points to the first */
  465. dma_private->link[i - 1].next = cpu_to_be64(dma_private->ld_buf_phys);
  466. /* Tell the DMA controller where the first link descriptor is */
  467. out_be32(&dma_channel->clndar,
  468. CCSR_DMA_CLNDAR_ADDR(dma_private->ld_buf_phys));
  469. out_be32(&dma_channel->eclndar,
  470. CCSR_DMA_ECLNDAR_ADDR(dma_private->ld_buf_phys));
  471. /* The manual says the BCR must be clear before enabling EMP */
  472. out_be32(&dma_channel->bcr, 0);
  473. /*
  474. * Program the mode register for interrupts, external master control,
  475. * and source/destination hold. Also clear the Channel Abort bit.
  476. */
  477. mr = in_be32(&dma_channel->mr) &
  478. ~(CCSR_DMA_MR_CA | CCSR_DMA_MR_DAHE | CCSR_DMA_MR_SAHE);
  479. /*
  480. * We want External Master Start and External Master Pause enabled,
  481. * because the SSI is controlling the DMA controller. We want the DMA
  482. * controller to be set up in advance, and then we signal only the SSI
  483. * to start transfering.
  484. *
  485. * We want End-Of-Segment Interrupts enabled, because this will generate
  486. * an interrupt at the end of each segment (each link descriptor
  487. * represents one segment). Each DMA segment is the same thing as an
  488. * ALSA period, so this is how we get an interrupt at the end of every
  489. * period.
  490. *
  491. * We want Error Interrupt enabled, so that we can get an error if
  492. * the DMA controller is mis-programmed somehow.
  493. */
  494. mr |= CCSR_DMA_MR_EOSIE | CCSR_DMA_MR_EIE | CCSR_DMA_MR_EMP_EN |
  495. CCSR_DMA_MR_EMS_EN;
  496. /* For playback, we want the destination address to be held. For
  497. capture, set the source address to be held. */
  498. mr |= (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) ?
  499. CCSR_DMA_MR_DAHE : CCSR_DMA_MR_SAHE;
  500. out_be32(&dma_channel->mr, mr);
  501. return 0;
  502. }
  503. /**
  504. * fsl_dma_prepare - prepare the DMA registers for playback.
  505. *
  506. * This function is called after the specifics of the audio data are known,
  507. * i.e. snd_pcm_runtime is initialized.
  508. *
  509. * In this function, we finish programming the registers of the DMA
  510. * controller that are dependent on the sample size.
  511. *
  512. * One of the drawbacks with big-endian is that when copying integers of
  513. * different sizes to a fixed-sized register, the address to which the
  514. * integer must be copied is dependent on the size of the integer.
  515. *
  516. * For example, if P is the address of a 32-bit register, and X is a 32-bit
  517. * integer, then X should be copied to address P. However, if X is a 16-bit
  518. * integer, then it should be copied to P+2. If X is an 8-bit register,
  519. * then it should be copied to P+3.
  520. *
  521. * So for playback of 8-bit samples, the DMA controller must transfer single
  522. * bytes from the DMA buffer to the last byte of the STX0 register, i.e.
  523. * offset by 3 bytes. For 16-bit samples, the offset is two bytes.
  524. *
  525. * For 24-bit samples, the offset is 1 byte. However, the DMA controller
  526. * does not support 3-byte copies (the DAHTS register supports only 1, 2, 4,
  527. * and 8 bytes at a time). So we do not support packed 24-bit samples.
  528. * 24-bit data must be padded to 32 bits.
  529. */
  530. static int fsl_dma_prepare(struct snd_pcm_substream *substream)
  531. {
  532. struct snd_pcm_runtime *runtime = substream->runtime;
  533. struct fsl_dma_private *dma_private = runtime->private_data;
  534. struct ccsr_dma_channel __iomem *dma_channel = dma_private->dma_channel;
  535. u32 mr;
  536. unsigned int i;
  537. dma_addr_t ssi_sxx_phys; /* Bus address of SSI STX register */
  538. unsigned int frame_size; /* Number of bytes per frame */
  539. ssi_sxx_phys = dma_private->ssi_sxx_phys;
  540. mr = in_be32(&dma_channel->mr) & ~(CCSR_DMA_MR_BWC_MASK |
  541. CCSR_DMA_MR_SAHTS_MASK | CCSR_DMA_MR_DAHTS_MASK);
  542. switch (runtime->sample_bits) {
  543. case 8:
  544. mr |= CCSR_DMA_MR_DAHTS_1 | CCSR_DMA_MR_SAHTS_1;
  545. ssi_sxx_phys += 3;
  546. break;
  547. case 16:
  548. mr |= CCSR_DMA_MR_DAHTS_2 | CCSR_DMA_MR_SAHTS_2;
  549. ssi_sxx_phys += 2;
  550. break;
  551. case 32:
  552. mr |= CCSR_DMA_MR_DAHTS_4 | CCSR_DMA_MR_SAHTS_4;
  553. break;
  554. default:
  555. dev_err(substream->pcm->card->dev,
  556. "unsupported sample size %u\n", runtime->sample_bits);
  557. return -EINVAL;
  558. }
  559. frame_size = runtime->frame_bits / 8;
  560. /*
  561. * BWC should always be a multiple of the frame size. BWC determines
  562. * how many bytes are sent/received before the DMA controller checks the
  563. * SSI to see if it needs to stop. For playback, the transmit FIFO can
  564. * hold three frames, so we want to send two frames at a time. For
  565. * capture, the receive FIFO is triggered when it contains one frame, so
  566. * we want to receive one frame at a time.
  567. */
  568. if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
  569. mr |= CCSR_DMA_MR_BWC(2 * frame_size);
  570. else
  571. mr |= CCSR_DMA_MR_BWC(frame_size);
  572. out_be32(&dma_channel->mr, mr);
  573. /*
  574. * Program the address of the DMA transfer to/from the SSI.
  575. */
  576. for (i = 0; i < NUM_DMA_LINKS; i++) {
  577. struct fsl_dma_link_descriptor *link = &dma_private->link[i];
  578. if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
  579. link->dest_addr = cpu_to_be32(ssi_sxx_phys);
  580. else
  581. link->source_addr = cpu_to_be32(ssi_sxx_phys);
  582. }
  583. return 0;
  584. }
  585. /**
  586. * fsl_dma_pointer: determine the current position of the DMA transfer
  587. *
  588. * This function is called by ALSA when ALSA wants to know where in the
  589. * stream buffer the hardware currently is.
  590. *
  591. * For playback, the SAR register contains the physical address of the most
  592. * recent DMA transfer. For capture, the value is in the DAR register.
  593. *
  594. * The base address of the buffer is stored in the source_addr field of the
  595. * first link descriptor.
  596. */
  597. static snd_pcm_uframes_t fsl_dma_pointer(struct snd_pcm_substream *substream)
  598. {
  599. struct snd_pcm_runtime *runtime = substream->runtime;
  600. struct fsl_dma_private *dma_private = runtime->private_data;
  601. struct ccsr_dma_channel __iomem *dma_channel = dma_private->dma_channel;
  602. dma_addr_t position;
  603. snd_pcm_uframes_t frames;
  604. if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
  605. position = in_be32(&dma_channel->sar);
  606. else
  607. position = in_be32(&dma_channel->dar);
  608. frames = bytes_to_frames(runtime, position - dma_private->dma_buf_phys);
  609. /*
  610. * If the current address is just past the end of the buffer, wrap it
  611. * around.
  612. */
  613. if (frames == runtime->buffer_size)
  614. frames = 0;
  615. return frames;
  616. }
  617. /**
  618. * fsl_dma_hw_free: release resources allocated in fsl_dma_hw_params()
  619. *
  620. * Release the resources allocated in fsl_dma_hw_params() and de-program the
  621. * registers.
  622. *
  623. * This function can be called multiple times.
  624. */
  625. static int fsl_dma_hw_free(struct snd_pcm_substream *substream)
  626. {
  627. struct snd_pcm_runtime *runtime = substream->runtime;
  628. struct fsl_dma_private *dma_private = runtime->private_data;
  629. if (dma_private) {
  630. struct ccsr_dma_channel __iomem *dma_channel;
  631. dma_channel = dma_private->dma_channel;
  632. /* Stop the DMA */
  633. out_be32(&dma_channel->mr, CCSR_DMA_MR_CA);
  634. out_be32(&dma_channel->mr, 0);
  635. /* Reset all the other registers */
  636. out_be32(&dma_channel->sr, -1);
  637. out_be32(&dma_channel->clndar, 0);
  638. out_be32(&dma_channel->eclndar, 0);
  639. out_be32(&dma_channel->satr, 0);
  640. out_be32(&dma_channel->sar, 0);
  641. out_be32(&dma_channel->datr, 0);
  642. out_be32(&dma_channel->dar, 0);
  643. out_be32(&dma_channel->bcr, 0);
  644. out_be32(&dma_channel->nlndar, 0);
  645. out_be32(&dma_channel->enlndar, 0);
  646. }
  647. return 0;
  648. }
  649. /**
  650. * fsl_dma_close: close the stream.
  651. */
  652. static int fsl_dma_close(struct snd_pcm_substream *substream)
  653. {
  654. struct snd_pcm_runtime *runtime = substream->runtime;
  655. struct fsl_dma_private *dma_private = runtime->private_data;
  656. int dir = substream->stream == SNDRV_PCM_STREAM_PLAYBACK ? 0 : 1;
  657. if (dma_private) {
  658. if (dma_private->irq)
  659. free_irq(dma_private->irq, dma_private);
  660. if (dma_private->ld_buf_phys) {
  661. dma_unmap_single(substream->pcm->dev,
  662. dma_private->ld_buf_phys,
  663. sizeof(dma_private->link), DMA_TO_DEVICE);
  664. }
  665. /* Deallocate the fsl_dma_private structure */
  666. dma_free_coherent(substream->pcm->dev,
  667. sizeof(struct fsl_dma_private),
  668. dma_private, dma_private->ld_buf_phys);
  669. substream->runtime->private_data = NULL;
  670. }
  671. dma_global_data.assigned[dir] = 0;
  672. return 0;
  673. }
  674. /*
  675. * Remove this PCM driver.
  676. */
  677. static void fsl_dma_free_dma_buffers(struct snd_pcm *pcm)
  678. {
  679. struct snd_pcm_substream *substream;
  680. unsigned int i;
  681. for (i = 0; i < ARRAY_SIZE(pcm->streams); i++) {
  682. substream = pcm->streams[i].substream;
  683. if (substream) {
  684. snd_dma_free_pages(&substream->dma_buffer);
  685. substream->dma_buffer.area = NULL;
  686. substream->dma_buffer.addr = 0;
  687. }
  688. }
  689. }
  690. static struct snd_pcm_ops fsl_dma_ops = {
  691. .open = fsl_dma_open,
  692. .close = fsl_dma_close,
  693. .ioctl = snd_pcm_lib_ioctl,
  694. .hw_params = fsl_dma_hw_params,
  695. .hw_free = fsl_dma_hw_free,
  696. .prepare = fsl_dma_prepare,
  697. .pointer = fsl_dma_pointer,
  698. };
  699. struct snd_soc_platform fsl_soc_platform = {
  700. .name = "fsl-dma",
  701. .pcm_ops = &fsl_dma_ops,
  702. .pcm_new = fsl_dma_new,
  703. .pcm_free = fsl_dma_free_dma_buffers,
  704. };
  705. EXPORT_SYMBOL_GPL(fsl_soc_platform);
  706. /**
  707. * fsl_dma_configure: store the DMA parameters from the fabric driver.
  708. *
  709. * This function is called by the ASoC fabric driver to give us the DMA and
  710. * SSI channel information.
  711. *
  712. * Unfortunately, ASoC V1 does make it possible to determine the DMA/SSI
  713. * data when a substream is created, so for now we need to store this data
  714. * into a global variable. This means that we can only support one DMA
  715. * controller, and hence only one SSI.
  716. */
  717. int fsl_dma_configure(struct fsl_dma_info *dma_info)
  718. {
  719. static int initialized;
  720. /* We only support one DMA controller for now */
  721. if (initialized)
  722. return 0;
  723. dma_global_data.ssi_stx_phys = dma_info->ssi_stx_phys;
  724. dma_global_data.ssi_srx_phys = dma_info->ssi_srx_phys;
  725. dma_global_data.dma_channel[0] = dma_info->dma_channel[0];
  726. dma_global_data.dma_channel[1] = dma_info->dma_channel[1];
  727. dma_global_data.irq[0] = dma_info->dma_irq[0];
  728. dma_global_data.irq[1] = dma_info->dma_irq[1];
  729. dma_global_data.assigned[0] = 0;
  730. dma_global_data.assigned[1] = 0;
  731. initialized = 1;
  732. return 1;
  733. }
  734. EXPORT_SYMBOL_GPL(fsl_dma_configure);
  735. MODULE_AUTHOR("Timur Tabi <timur@freescale.com>");
  736. MODULE_DESCRIPTION("Freescale Elo DMA ASoC PCM module");
  737. MODULE_LICENSE("GPL");