ehci-q.c 30 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122
  1. /*
  2. * Copyright (C) 2001-2004 by David Brownell
  3. *
  4. * This program is free software; you can redistribute it and/or modify it
  5. * under the terms of the GNU General Public License as published by the
  6. * Free Software Foundation; either version 2 of the License, or (at your
  7. * option) any later version.
  8. *
  9. * This program is distributed in the hope that it will be useful, but
  10. * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
  11. * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
  12. * for more details.
  13. *
  14. * You should have received a copy of the GNU General Public License
  15. * along with this program; if not, write to the Free Software Foundation,
  16. * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  17. */
  18. /* this file is part of ehci-hcd.c */
  19. /*-------------------------------------------------------------------------*/
  20. /*
  21. * EHCI hardware queue manipulation ... the core. QH/QTD manipulation.
  22. *
  23. * Control, bulk, and interrupt traffic all use "qh" lists. They list "qtd"
  24. * entries describing USB transactions, max 16-20kB/entry (with 4kB-aligned
  25. * buffers needed for the larger number). We use one QH per endpoint, queue
  26. * multiple urbs (all three types) per endpoint. URBs may need several qtds.
  27. *
  28. * ISO traffic uses "ISO TD" (itd, and sitd) records, and (along with
  29. * interrupts) needs careful scheduling. Performance improvements can be
  30. * an ongoing challenge. That's in "ehci-sched.c".
  31. *
  32. * USB 1.1 devices are handled (a) by "companion" OHCI or UHCI root hubs,
  33. * or otherwise through transaction translators (TTs) in USB 2.0 hubs using
  34. * (b) special fields in qh entries or (c) split iso entries. TTs will
  35. * buffer low/full speed data so the host collects it at high speed.
  36. */
  37. /*-------------------------------------------------------------------------*/
  38. /* fill a qtd, returning how much of the buffer we were able to queue up */
  39. static int
  40. qtd_fill(struct ehci_hcd *ehci, struct ehci_qtd *qtd, dma_addr_t buf,
  41. size_t len, int token, int maxpacket)
  42. {
  43. int i, count;
  44. u64 addr = buf;
  45. /* one buffer entry per 4K ... first might be short or unaligned */
  46. qtd->hw_buf[0] = cpu_to_hc32(ehci, (u32)addr);
  47. qtd->hw_buf_hi[0] = cpu_to_hc32(ehci, (u32)(addr >> 32));
  48. count = 0x1000 - (buf & 0x0fff); /* rest of that page */
  49. if (likely (len < count)) /* ... iff needed */
  50. count = len;
  51. else {
  52. buf += 0x1000;
  53. buf &= ~0x0fff;
  54. /* per-qtd limit: from 16K to 20K (best alignment) */
  55. for (i = 1; count < len && i < 5; i++) {
  56. addr = buf;
  57. qtd->hw_buf[i] = cpu_to_hc32(ehci, (u32)addr);
  58. qtd->hw_buf_hi[i] = cpu_to_hc32(ehci,
  59. (u32)(addr >> 32));
  60. buf += 0x1000;
  61. if ((count + 0x1000) < len)
  62. count += 0x1000;
  63. else
  64. count = len;
  65. }
  66. /* short packets may only terminate transfers */
  67. if (count != len)
  68. count -= (count % maxpacket);
  69. }
  70. qtd->hw_token = cpu_to_hc32(ehci, (count << 16) | token);
  71. qtd->length = count;
  72. return count;
  73. }
  74. /*-------------------------------------------------------------------------*/
  75. static inline void
  76. qh_update (struct ehci_hcd *ehci, struct ehci_qh *qh, struct ehci_qtd *qtd)
  77. {
  78. /* writes to an active overlay are unsafe */
  79. BUG_ON(qh->qh_state != QH_STATE_IDLE);
  80. qh->hw_qtd_next = QTD_NEXT(ehci, qtd->qtd_dma);
  81. qh->hw_alt_next = EHCI_LIST_END(ehci);
  82. /* Except for control endpoints, we make hardware maintain data
  83. * toggle (like OHCI) ... here (re)initialize the toggle in the QH,
  84. * and set the pseudo-toggle in udev. Only usb_clear_halt() will
  85. * ever clear it.
  86. */
  87. if (!(qh->hw_info1 & cpu_to_hc32(ehci, 1 << 14))) {
  88. unsigned is_out, epnum;
  89. is_out = !(qtd->hw_token & cpu_to_hc32(ehci, 1 << 8));
  90. epnum = (hc32_to_cpup(ehci, &qh->hw_info1) >> 8) & 0x0f;
  91. if (unlikely (!usb_gettoggle (qh->dev, epnum, is_out))) {
  92. qh->hw_token &= ~cpu_to_hc32(ehci, QTD_TOGGLE);
  93. usb_settoggle (qh->dev, epnum, is_out, 1);
  94. }
  95. }
  96. /* HC must see latest qtd and qh data before we clear ACTIVE+HALT */
  97. wmb ();
  98. qh->hw_token &= cpu_to_hc32(ehci, QTD_TOGGLE | QTD_STS_PING);
  99. }
  100. /* if it weren't for a common silicon quirk (writing the dummy into the qh
  101. * overlay, so qh->hw_token wrongly becomes inactive/halted), only fault
  102. * recovery (including urb dequeue) would need software changes to a QH...
  103. */
  104. static void
  105. qh_refresh (struct ehci_hcd *ehci, struct ehci_qh *qh)
  106. {
  107. struct ehci_qtd *qtd;
  108. if (list_empty (&qh->qtd_list))
  109. qtd = qh->dummy;
  110. else {
  111. qtd = list_entry (qh->qtd_list.next,
  112. struct ehci_qtd, qtd_list);
  113. /* first qtd may already be partially processed */
  114. if (cpu_to_hc32(ehci, qtd->qtd_dma) == qh->hw_current)
  115. qtd = NULL;
  116. }
  117. if (qtd)
  118. qh_update (ehci, qh, qtd);
  119. }
  120. /*-------------------------------------------------------------------------*/
  121. static int qtd_copy_status (
  122. struct ehci_hcd *ehci,
  123. struct urb *urb,
  124. size_t length,
  125. u32 token
  126. )
  127. {
  128. int status = -EINPROGRESS;
  129. /* count IN/OUT bytes, not SETUP (even short packets) */
  130. if (likely (QTD_PID (token) != 2))
  131. urb->actual_length += length - QTD_LENGTH (token);
  132. /* don't modify error codes */
  133. if (unlikely(urb->unlinked))
  134. return status;
  135. /* force cleanup after short read; not always an error */
  136. if (unlikely (IS_SHORT_READ (token)))
  137. status = -EREMOTEIO;
  138. /* serious "can't proceed" faults reported by the hardware */
  139. if (token & QTD_STS_HALT) {
  140. if (token & QTD_STS_BABBLE) {
  141. /* FIXME "must" disable babbling device's port too */
  142. status = -EOVERFLOW;
  143. } else if (token & QTD_STS_MMF) {
  144. /* fs/ls interrupt xfer missed the complete-split */
  145. status = -EPROTO;
  146. } else if (token & QTD_STS_DBE) {
  147. status = (QTD_PID (token) == 1) /* IN ? */
  148. ? -ENOSR /* hc couldn't read data */
  149. : -ECOMM; /* hc couldn't write data */
  150. } else if (token & QTD_STS_XACT) {
  151. /* timeout, bad crc, wrong PID, etc; retried */
  152. if (QTD_CERR (token))
  153. status = -EPIPE;
  154. else {
  155. ehci_dbg (ehci, "devpath %s ep%d%s 3strikes\n",
  156. urb->dev->devpath,
  157. usb_pipeendpoint (urb->pipe),
  158. usb_pipein (urb->pipe) ? "in" : "out");
  159. status = -EPROTO;
  160. }
  161. /* CERR nonzero + no errors + halt --> stall */
  162. } else if (QTD_CERR (token))
  163. status = -EPIPE;
  164. else /* unknown */
  165. status = -EPROTO;
  166. ehci_vdbg (ehci,
  167. "dev%d ep%d%s qtd token %08x --> status %d\n",
  168. usb_pipedevice (urb->pipe),
  169. usb_pipeendpoint (urb->pipe),
  170. usb_pipein (urb->pipe) ? "in" : "out",
  171. token, status);
  172. /* if async CSPLIT failed, try cleaning out the TT buffer */
  173. if (status != -EPIPE
  174. && urb->dev->tt
  175. && !usb_pipeint(urb->pipe)
  176. && ((token & QTD_STS_MMF) != 0
  177. || QTD_CERR(token) == 0)
  178. && (!ehci_is_TDI(ehci)
  179. || urb->dev->tt->hub !=
  180. ehci_to_hcd(ehci)->self.root_hub)) {
  181. #ifdef DEBUG
  182. struct usb_device *tt = urb->dev->tt->hub;
  183. dev_dbg (&tt->dev,
  184. "clear tt buffer port %d, a%d ep%d t%08x\n",
  185. urb->dev->ttport, urb->dev->devnum,
  186. usb_pipeendpoint (urb->pipe), token);
  187. #endif /* DEBUG */
  188. /* REVISIT ARC-derived cores don't clear the root
  189. * hub TT buffer in this way...
  190. */
  191. usb_hub_tt_clear_buffer (urb->dev, urb->pipe);
  192. }
  193. }
  194. return status;
  195. }
  196. static void
  197. ehci_urb_done(struct ehci_hcd *ehci, struct urb *urb, int status)
  198. __releases(ehci->lock)
  199. __acquires(ehci->lock)
  200. {
  201. if (likely (urb->hcpriv != NULL)) {
  202. struct ehci_qh *qh = (struct ehci_qh *) urb->hcpriv;
  203. /* S-mask in a QH means it's an interrupt urb */
  204. if ((qh->hw_info2 & cpu_to_hc32(ehci, QH_SMASK)) != 0) {
  205. /* ... update hc-wide periodic stats (for usbfs) */
  206. ehci_to_hcd(ehci)->self.bandwidth_int_reqs--;
  207. }
  208. qh_put (qh);
  209. }
  210. if (unlikely(urb->unlinked)) {
  211. COUNT(ehci->stats.unlink);
  212. } else {
  213. if (likely(status == -EINPROGRESS))
  214. status = 0;
  215. COUNT(ehci->stats.complete);
  216. }
  217. #ifdef EHCI_URB_TRACE
  218. ehci_dbg (ehci,
  219. "%s %s urb %p ep%d%s status %d len %d/%d\n",
  220. __FUNCTION__, urb->dev->devpath, urb,
  221. usb_pipeendpoint (urb->pipe),
  222. usb_pipein (urb->pipe) ? "in" : "out",
  223. status,
  224. urb->actual_length, urb->transfer_buffer_length);
  225. #endif
  226. /* complete() can reenter this HCD */
  227. usb_hcd_unlink_urb_from_ep(ehci_to_hcd(ehci), urb);
  228. spin_unlock (&ehci->lock);
  229. usb_hcd_giveback_urb(ehci_to_hcd(ehci), urb, status);
  230. spin_lock (&ehci->lock);
  231. }
  232. static void start_unlink_async (struct ehci_hcd *ehci, struct ehci_qh *qh);
  233. static void unlink_async (struct ehci_hcd *ehci, struct ehci_qh *qh);
  234. static void intr_deschedule (struct ehci_hcd *ehci, struct ehci_qh *qh);
  235. static int qh_schedule (struct ehci_hcd *ehci, struct ehci_qh *qh);
  236. /*
  237. * Process and free completed qtds for a qh, returning URBs to drivers.
  238. * Chases up to qh->hw_current. Returns number of completions called,
  239. * indicating how much "real" work we did.
  240. */
  241. static unsigned
  242. qh_completions (struct ehci_hcd *ehci, struct ehci_qh *qh)
  243. {
  244. struct ehci_qtd *last = NULL, *end = qh->dummy;
  245. struct list_head *entry, *tmp;
  246. int last_status = -EINPROGRESS;
  247. int stopped;
  248. unsigned count = 0;
  249. int do_status = 0;
  250. u8 state;
  251. u32 halt = HALT_BIT(ehci);
  252. if (unlikely (list_empty (&qh->qtd_list)))
  253. return count;
  254. /* completions (or tasks on other cpus) must never clobber HALT
  255. * till we've gone through and cleaned everything up, even when
  256. * they add urbs to this qh's queue or mark them for unlinking.
  257. *
  258. * NOTE: unlinking expects to be done in queue order.
  259. */
  260. state = qh->qh_state;
  261. qh->qh_state = QH_STATE_COMPLETING;
  262. stopped = (state == QH_STATE_IDLE);
  263. /* remove de-activated QTDs from front of queue.
  264. * after faults (including short reads), cleanup this urb
  265. * then let the queue advance.
  266. * if queue is stopped, handles unlinks.
  267. */
  268. list_for_each_safe (entry, tmp, &qh->qtd_list) {
  269. struct ehci_qtd *qtd;
  270. struct urb *urb;
  271. u32 token = 0;
  272. int qtd_status;
  273. qtd = list_entry (entry, struct ehci_qtd, qtd_list);
  274. urb = qtd->urb;
  275. /* clean up any state from previous QTD ...*/
  276. if (last) {
  277. if (likely (last->urb != urb)) {
  278. ehci_urb_done(ehci, last->urb, last_status);
  279. count++;
  280. last_status = -EINPROGRESS;
  281. }
  282. ehci_qtd_free (ehci, last);
  283. last = NULL;
  284. }
  285. /* ignore urbs submitted during completions we reported */
  286. if (qtd == end)
  287. break;
  288. /* hardware copies qtd out of qh overlay */
  289. rmb ();
  290. token = hc32_to_cpu(ehci, qtd->hw_token);
  291. /* always clean up qtds the hc de-activated */
  292. if ((token & QTD_STS_ACTIVE) == 0) {
  293. if ((token & QTD_STS_HALT) != 0) {
  294. stopped = 1;
  295. /* magic dummy for some short reads; qh won't advance.
  296. * that silicon quirk can kick in with this dummy too.
  297. */
  298. } else if (IS_SHORT_READ (token)
  299. && !(qtd->hw_alt_next
  300. & EHCI_LIST_END(ehci))) {
  301. stopped = 1;
  302. goto halt;
  303. }
  304. /* stop scanning when we reach qtds the hc is using */
  305. } else if (likely (!stopped
  306. && HC_IS_RUNNING (ehci_to_hcd(ehci)->state))) {
  307. break;
  308. } else {
  309. stopped = 1;
  310. if (unlikely (!HC_IS_RUNNING (ehci_to_hcd(ehci)->state)))
  311. last_status = -ESHUTDOWN;
  312. /* ignore active urbs unless some previous qtd
  313. * for the urb faulted (including short read) or
  314. * its urb was canceled. we may patch qh or qtds.
  315. */
  316. if (likely(last_status == -EINPROGRESS &&
  317. !urb->unlinked))
  318. continue;
  319. /* issue status after short control reads */
  320. if (unlikely (do_status != 0)
  321. && QTD_PID (token) == 0 /* OUT */) {
  322. do_status = 0;
  323. continue;
  324. }
  325. /* token in overlay may be most current */
  326. if (state == QH_STATE_IDLE
  327. && cpu_to_hc32(ehci, qtd->qtd_dma)
  328. == qh->hw_current)
  329. token = hc32_to_cpu(ehci, qh->hw_token);
  330. /* force halt for unlinked or blocked qh, so we'll
  331. * patch the qh later and so that completions can't
  332. * activate it while we "know" it's stopped.
  333. */
  334. if ((halt & qh->hw_token) == 0) {
  335. halt:
  336. qh->hw_token |= halt;
  337. wmb ();
  338. }
  339. }
  340. /* remove it from the queue */
  341. qtd_status = qtd_copy_status(ehci, urb, qtd->length, token);
  342. if (unlikely(qtd_status == -EREMOTEIO)) {
  343. do_status = (!urb->unlinked &&
  344. usb_pipecontrol(urb->pipe));
  345. qtd_status = 0;
  346. }
  347. if (likely(last_status == -EINPROGRESS))
  348. last_status = qtd_status;
  349. if (stopped && qtd->qtd_list.prev != &qh->qtd_list) {
  350. last = list_entry (qtd->qtd_list.prev,
  351. struct ehci_qtd, qtd_list);
  352. last->hw_next = qtd->hw_next;
  353. }
  354. list_del (&qtd->qtd_list);
  355. last = qtd;
  356. }
  357. /* last urb's completion might still need calling */
  358. if (likely (last != NULL)) {
  359. ehci_urb_done(ehci, last->urb, last_status);
  360. count++;
  361. ehci_qtd_free (ehci, last);
  362. }
  363. /* restore original state; caller must unlink or relink */
  364. qh->qh_state = state;
  365. /* be sure the hardware's done with the qh before refreshing
  366. * it after fault cleanup, or recovering from silicon wrongly
  367. * overlaying the dummy qtd (which reduces DMA chatter).
  368. */
  369. if (stopped != 0 || qh->hw_qtd_next == EHCI_LIST_END(ehci)) {
  370. switch (state) {
  371. case QH_STATE_IDLE:
  372. qh_refresh(ehci, qh);
  373. break;
  374. case QH_STATE_LINKED:
  375. /* should be rare for periodic transfers,
  376. * except maybe high bandwidth ...
  377. */
  378. if ((cpu_to_hc32(ehci, QH_SMASK)
  379. & qh->hw_info2) != 0) {
  380. intr_deschedule (ehci, qh);
  381. (void) qh_schedule (ehci, qh);
  382. } else
  383. unlink_async (ehci, qh);
  384. break;
  385. /* otherwise, unlink already started */
  386. }
  387. }
  388. return count;
  389. }
  390. /*-------------------------------------------------------------------------*/
  391. // high bandwidth multiplier, as encoded in highspeed endpoint descriptors
  392. #define hb_mult(wMaxPacketSize) (1 + (((wMaxPacketSize) >> 11) & 0x03))
  393. // ... and packet size, for any kind of endpoint descriptor
  394. #define max_packet(wMaxPacketSize) ((wMaxPacketSize) & 0x07ff)
  395. /*
  396. * reverse of qh_urb_transaction: free a list of TDs.
  397. * used for cleanup after errors, before HC sees an URB's TDs.
  398. */
  399. static void qtd_list_free (
  400. struct ehci_hcd *ehci,
  401. struct urb *urb,
  402. struct list_head *qtd_list
  403. ) {
  404. struct list_head *entry, *temp;
  405. list_for_each_safe (entry, temp, qtd_list) {
  406. struct ehci_qtd *qtd;
  407. qtd = list_entry (entry, struct ehci_qtd, qtd_list);
  408. list_del (&qtd->qtd_list);
  409. ehci_qtd_free (ehci, qtd);
  410. }
  411. }
  412. /*
  413. * create a list of filled qtds for this URB; won't link into qh.
  414. */
  415. static struct list_head *
  416. qh_urb_transaction (
  417. struct ehci_hcd *ehci,
  418. struct urb *urb,
  419. struct list_head *head,
  420. gfp_t flags
  421. ) {
  422. struct ehci_qtd *qtd, *qtd_prev;
  423. dma_addr_t buf;
  424. int len, maxpacket;
  425. int is_input;
  426. u32 token;
  427. /*
  428. * URBs map to sequences of QTDs: one logical transaction
  429. */
  430. qtd = ehci_qtd_alloc (ehci, flags);
  431. if (unlikely (!qtd))
  432. return NULL;
  433. list_add_tail (&qtd->qtd_list, head);
  434. qtd->urb = urb;
  435. token = QTD_STS_ACTIVE;
  436. token |= (EHCI_TUNE_CERR << 10);
  437. /* for split transactions, SplitXState initialized to zero */
  438. len = urb->transfer_buffer_length;
  439. is_input = usb_pipein (urb->pipe);
  440. if (usb_pipecontrol (urb->pipe)) {
  441. /* SETUP pid */
  442. qtd_fill(ehci, qtd, urb->setup_dma,
  443. sizeof (struct usb_ctrlrequest),
  444. token | (2 /* "setup" */ << 8), 8);
  445. /* ... and always at least one more pid */
  446. token ^= QTD_TOGGLE;
  447. qtd_prev = qtd;
  448. qtd = ehci_qtd_alloc (ehci, flags);
  449. if (unlikely (!qtd))
  450. goto cleanup;
  451. qtd->urb = urb;
  452. qtd_prev->hw_next = QTD_NEXT(ehci, qtd->qtd_dma);
  453. list_add_tail (&qtd->qtd_list, head);
  454. /* for zero length DATA stages, STATUS is always IN */
  455. if (len == 0)
  456. token |= (1 /* "in" */ << 8);
  457. }
  458. /*
  459. * data transfer stage: buffer setup
  460. */
  461. buf = urb->transfer_dma;
  462. if (is_input)
  463. token |= (1 /* "in" */ << 8);
  464. /* else it's already initted to "out" pid (0 << 8) */
  465. maxpacket = max_packet(usb_maxpacket(urb->dev, urb->pipe, !is_input));
  466. /*
  467. * buffer gets wrapped in one or more qtds;
  468. * last one may be "short" (including zero len)
  469. * and may serve as a control status ack
  470. */
  471. for (;;) {
  472. int this_qtd_len;
  473. this_qtd_len = qtd_fill(ehci, qtd, buf, len, token, maxpacket);
  474. len -= this_qtd_len;
  475. buf += this_qtd_len;
  476. if (is_input)
  477. qtd->hw_alt_next = ehci->async->hw_alt_next;
  478. /* qh makes control packets use qtd toggle; maybe switch it */
  479. if ((maxpacket & (this_qtd_len + (maxpacket - 1))) == 0)
  480. token ^= QTD_TOGGLE;
  481. if (likely (len <= 0))
  482. break;
  483. qtd_prev = qtd;
  484. qtd = ehci_qtd_alloc (ehci, flags);
  485. if (unlikely (!qtd))
  486. goto cleanup;
  487. qtd->urb = urb;
  488. qtd_prev->hw_next = QTD_NEXT(ehci, qtd->qtd_dma);
  489. list_add_tail (&qtd->qtd_list, head);
  490. }
  491. /* unless the bulk/interrupt caller wants a chance to clean
  492. * up after short reads, hc should advance qh past this urb
  493. */
  494. if (likely ((urb->transfer_flags & URB_SHORT_NOT_OK) == 0
  495. || usb_pipecontrol (urb->pipe)))
  496. qtd->hw_alt_next = EHCI_LIST_END(ehci);
  497. /*
  498. * control requests may need a terminating data "status" ack;
  499. * bulk ones may need a terminating short packet (zero length).
  500. */
  501. if (likely (urb->transfer_buffer_length != 0)) {
  502. int one_more = 0;
  503. if (usb_pipecontrol (urb->pipe)) {
  504. one_more = 1;
  505. token ^= 0x0100; /* "in" <--> "out" */
  506. token |= QTD_TOGGLE; /* force DATA1 */
  507. } else if (usb_pipebulk (urb->pipe)
  508. && (urb->transfer_flags & URB_ZERO_PACKET)
  509. && !(urb->transfer_buffer_length % maxpacket)) {
  510. one_more = 1;
  511. }
  512. if (one_more) {
  513. qtd_prev = qtd;
  514. qtd = ehci_qtd_alloc (ehci, flags);
  515. if (unlikely (!qtd))
  516. goto cleanup;
  517. qtd->urb = urb;
  518. qtd_prev->hw_next = QTD_NEXT(ehci, qtd->qtd_dma);
  519. list_add_tail (&qtd->qtd_list, head);
  520. /* never any data in such packets */
  521. qtd_fill(ehci, qtd, 0, 0, token, 0);
  522. }
  523. }
  524. /* by default, enable interrupt on urb completion */
  525. if (likely (!(urb->transfer_flags & URB_NO_INTERRUPT)))
  526. qtd->hw_token |= cpu_to_hc32(ehci, QTD_IOC);
  527. return head;
  528. cleanup:
  529. qtd_list_free (ehci, urb, head);
  530. return NULL;
  531. }
  532. /*-------------------------------------------------------------------------*/
  533. // Would be best to create all qh's from config descriptors,
  534. // when each interface/altsetting is established. Unlink
  535. // any previous qh and cancel its urbs first; endpoints are
  536. // implicitly reset then (data toggle too).
  537. // That'd mean updating how usbcore talks to HCDs. (2.7?)
  538. /*
  539. * Each QH holds a qtd list; a QH is used for everything except iso.
  540. *
  541. * For interrupt urbs, the scheduler must set the microframe scheduling
  542. * mask(s) each time the QH gets scheduled. For highspeed, that's
  543. * just one microframe in the s-mask. For split interrupt transactions
  544. * there are additional complications: c-mask, maybe FSTNs.
  545. */
  546. static struct ehci_qh *
  547. qh_make (
  548. struct ehci_hcd *ehci,
  549. struct urb *urb,
  550. gfp_t flags
  551. ) {
  552. struct ehci_qh *qh = ehci_qh_alloc (ehci, flags);
  553. u32 info1 = 0, info2 = 0;
  554. int is_input, type;
  555. int maxp = 0;
  556. struct usb_tt *tt = urb->dev->tt;
  557. if (!qh)
  558. return qh;
  559. /*
  560. * init endpoint/device data for this QH
  561. */
  562. info1 |= usb_pipeendpoint (urb->pipe) << 8;
  563. info1 |= usb_pipedevice (urb->pipe) << 0;
  564. is_input = usb_pipein (urb->pipe);
  565. type = usb_pipetype (urb->pipe);
  566. maxp = usb_maxpacket (urb->dev, urb->pipe, !is_input);
  567. /* Compute interrupt scheduling parameters just once, and save.
  568. * - allowing for high bandwidth, how many nsec/uframe are used?
  569. * - split transactions need a second CSPLIT uframe; same question
  570. * - splits also need a schedule gap (for full/low speed I/O)
  571. * - qh has a polling interval
  572. *
  573. * For control/bulk requests, the HC or TT handles these.
  574. */
  575. if (type == PIPE_INTERRUPT) {
  576. qh->usecs = NS_TO_US(usb_calc_bus_time(USB_SPEED_HIGH,
  577. is_input, 0,
  578. hb_mult(maxp) * max_packet(maxp)));
  579. qh->start = NO_FRAME;
  580. if (urb->dev->speed == USB_SPEED_HIGH) {
  581. qh->c_usecs = 0;
  582. qh->gap_uf = 0;
  583. qh->period = urb->interval >> 3;
  584. if (qh->period == 0 && urb->interval != 1) {
  585. /* NOTE interval 2 or 4 uframes could work.
  586. * But interval 1 scheduling is simpler, and
  587. * includes high bandwidth.
  588. */
  589. dbg ("intr period %d uframes, NYET!",
  590. urb->interval);
  591. goto done;
  592. }
  593. } else {
  594. int think_time;
  595. /* gap is f(FS/LS transfer times) */
  596. qh->gap_uf = 1 + usb_calc_bus_time (urb->dev->speed,
  597. is_input, 0, maxp) / (125 * 1000);
  598. /* FIXME this just approximates SPLIT/CSPLIT times */
  599. if (is_input) { // SPLIT, gap, CSPLIT+DATA
  600. qh->c_usecs = qh->usecs + HS_USECS (0);
  601. qh->usecs = HS_USECS (1);
  602. } else { // SPLIT+DATA, gap, CSPLIT
  603. qh->usecs += HS_USECS (1);
  604. qh->c_usecs = HS_USECS (0);
  605. }
  606. think_time = tt ? tt->think_time : 0;
  607. qh->tt_usecs = NS_TO_US (think_time +
  608. usb_calc_bus_time (urb->dev->speed,
  609. is_input, 0, max_packet (maxp)));
  610. qh->period = urb->interval;
  611. }
  612. }
  613. /* support for tt scheduling, and access to toggles */
  614. qh->dev = urb->dev;
  615. /* using TT? */
  616. switch (urb->dev->speed) {
  617. case USB_SPEED_LOW:
  618. info1 |= (1 << 12); /* EPS "low" */
  619. /* FALL THROUGH */
  620. case USB_SPEED_FULL:
  621. /* EPS 0 means "full" */
  622. if (type != PIPE_INTERRUPT)
  623. info1 |= (EHCI_TUNE_RL_TT << 28);
  624. if (type == PIPE_CONTROL) {
  625. info1 |= (1 << 27); /* for TT */
  626. info1 |= 1 << 14; /* toggle from qtd */
  627. }
  628. info1 |= maxp << 16;
  629. info2 |= (EHCI_TUNE_MULT_TT << 30);
  630. /* Some Freescale processors have an erratum in which the
  631. * port number in the queue head was 0..N-1 instead of 1..N.
  632. */
  633. if (ehci_has_fsl_portno_bug(ehci))
  634. info2 |= (urb->dev->ttport-1) << 23;
  635. else
  636. info2 |= urb->dev->ttport << 23;
  637. /* set the address of the TT; for TDI's integrated
  638. * root hub tt, leave it zeroed.
  639. */
  640. if (tt && tt->hub != ehci_to_hcd(ehci)->self.root_hub)
  641. info2 |= tt->hub->devnum << 16;
  642. /* NOTE: if (PIPE_INTERRUPT) { scheduler sets c-mask } */
  643. break;
  644. case USB_SPEED_HIGH: /* no TT involved */
  645. info1 |= (2 << 12); /* EPS "high" */
  646. if (type == PIPE_CONTROL) {
  647. info1 |= (EHCI_TUNE_RL_HS << 28);
  648. info1 |= 64 << 16; /* usb2 fixed maxpacket */
  649. info1 |= 1 << 14; /* toggle from qtd */
  650. info2 |= (EHCI_TUNE_MULT_HS << 30);
  651. } else if (type == PIPE_BULK) {
  652. info1 |= (EHCI_TUNE_RL_HS << 28);
  653. info1 |= 512 << 16; /* usb2 fixed maxpacket */
  654. info2 |= (EHCI_TUNE_MULT_HS << 30);
  655. } else { /* PIPE_INTERRUPT */
  656. info1 |= max_packet (maxp) << 16;
  657. info2 |= hb_mult (maxp) << 30;
  658. }
  659. break;
  660. default:
  661. dbg ("bogus dev %p speed %d", urb->dev, urb->dev->speed);
  662. done:
  663. qh_put (qh);
  664. return NULL;
  665. }
  666. /* NOTE: if (PIPE_INTERRUPT) { scheduler sets s-mask } */
  667. /* init as live, toggle clear, advance to dummy */
  668. qh->qh_state = QH_STATE_IDLE;
  669. qh->hw_info1 = cpu_to_hc32(ehci, info1);
  670. qh->hw_info2 = cpu_to_hc32(ehci, info2);
  671. usb_settoggle (urb->dev, usb_pipeendpoint (urb->pipe), !is_input, 1);
  672. qh_refresh (ehci, qh);
  673. return qh;
  674. }
  675. /*-------------------------------------------------------------------------*/
  676. /* move qh (and its qtds) onto async queue; maybe enable queue. */
  677. static void qh_link_async (struct ehci_hcd *ehci, struct ehci_qh *qh)
  678. {
  679. __hc32 dma = QH_NEXT(ehci, qh->qh_dma);
  680. struct ehci_qh *head;
  681. /* (re)start the async schedule? */
  682. head = ehci->async;
  683. timer_action_done (ehci, TIMER_ASYNC_OFF);
  684. if (!head->qh_next.qh) {
  685. u32 cmd = ehci_readl(ehci, &ehci->regs->command);
  686. if (!(cmd & CMD_ASE)) {
  687. /* in case a clear of CMD_ASE didn't take yet */
  688. (void)handshake(ehci, &ehci->regs->status,
  689. STS_ASS, 0, 150);
  690. cmd |= CMD_ASE | CMD_RUN;
  691. ehci_writel(ehci, cmd, &ehci->regs->command);
  692. ehci_to_hcd(ehci)->state = HC_STATE_RUNNING;
  693. /* posted write need not be known to HC yet ... */
  694. }
  695. }
  696. /* clear halt and/or toggle; and maybe recover from silicon quirk */
  697. if (qh->qh_state == QH_STATE_IDLE)
  698. qh_refresh (ehci, qh);
  699. /* splice right after start */
  700. qh->qh_next = head->qh_next;
  701. qh->hw_next = head->hw_next;
  702. wmb ();
  703. head->qh_next.qh = qh;
  704. head->hw_next = dma;
  705. qh->qh_state = QH_STATE_LINKED;
  706. /* qtd completions reported later by interrupt */
  707. }
  708. /*-------------------------------------------------------------------------*/
  709. /*
  710. * For control/bulk/interrupt, return QH with these TDs appended.
  711. * Allocates and initializes the QH if necessary.
  712. * Returns null if it can't allocate a QH it needs to.
  713. * If the QH has TDs (urbs) already, that's great.
  714. */
  715. static struct ehci_qh *qh_append_tds (
  716. struct ehci_hcd *ehci,
  717. struct urb *urb,
  718. struct list_head *qtd_list,
  719. int epnum,
  720. void **ptr
  721. )
  722. {
  723. struct ehci_qh *qh = NULL;
  724. u32 qh_addr_mask = cpu_to_hc32(ehci, 0x7f);
  725. qh = (struct ehci_qh *) *ptr;
  726. if (unlikely (qh == NULL)) {
  727. /* can't sleep here, we have ehci->lock... */
  728. qh = qh_make (ehci, urb, GFP_ATOMIC);
  729. *ptr = qh;
  730. }
  731. if (likely (qh != NULL)) {
  732. struct ehci_qtd *qtd;
  733. if (unlikely (list_empty (qtd_list)))
  734. qtd = NULL;
  735. else
  736. qtd = list_entry (qtd_list->next, struct ehci_qtd,
  737. qtd_list);
  738. /* control qh may need patching ... */
  739. if (unlikely (epnum == 0)) {
  740. /* usb_reset_device() briefly reverts to address 0 */
  741. if (usb_pipedevice (urb->pipe) == 0)
  742. qh->hw_info1 &= ~qh_addr_mask;
  743. }
  744. /* just one way to queue requests: swap with the dummy qtd.
  745. * only hc or qh_refresh() ever modify the overlay.
  746. */
  747. if (likely (qtd != NULL)) {
  748. struct ehci_qtd *dummy;
  749. dma_addr_t dma;
  750. __hc32 token;
  751. /* to avoid racing the HC, use the dummy td instead of
  752. * the first td of our list (becomes new dummy). both
  753. * tds stay deactivated until we're done, when the
  754. * HC is allowed to fetch the old dummy (4.10.2).
  755. */
  756. token = qtd->hw_token;
  757. qtd->hw_token = HALT_BIT(ehci);
  758. wmb ();
  759. dummy = qh->dummy;
  760. dma = dummy->qtd_dma;
  761. *dummy = *qtd;
  762. dummy->qtd_dma = dma;
  763. list_del (&qtd->qtd_list);
  764. list_add (&dummy->qtd_list, qtd_list);
  765. __list_splice (qtd_list, qh->qtd_list.prev);
  766. ehci_qtd_init(ehci, qtd, qtd->qtd_dma);
  767. qh->dummy = qtd;
  768. /* hc must see the new dummy at list end */
  769. dma = qtd->qtd_dma;
  770. qtd = list_entry (qh->qtd_list.prev,
  771. struct ehci_qtd, qtd_list);
  772. qtd->hw_next = QTD_NEXT(ehci, dma);
  773. /* let the hc process these next qtds */
  774. wmb ();
  775. dummy->hw_token = token;
  776. urb->hcpriv = qh_get (qh);
  777. }
  778. }
  779. return qh;
  780. }
  781. /*-------------------------------------------------------------------------*/
  782. static int
  783. submit_async (
  784. struct ehci_hcd *ehci,
  785. struct urb *urb,
  786. struct list_head *qtd_list,
  787. gfp_t mem_flags
  788. ) {
  789. struct ehci_qtd *qtd;
  790. int epnum;
  791. unsigned long flags;
  792. struct ehci_qh *qh = NULL;
  793. int rc;
  794. qtd = list_entry (qtd_list->next, struct ehci_qtd, qtd_list);
  795. epnum = urb->ep->desc.bEndpointAddress;
  796. #ifdef EHCI_URB_TRACE
  797. ehci_dbg (ehci,
  798. "%s %s urb %p ep%d%s len %d, qtd %p [qh %p]\n",
  799. __FUNCTION__, urb->dev->devpath, urb,
  800. epnum & 0x0f, (epnum & USB_DIR_IN) ? "in" : "out",
  801. urb->transfer_buffer_length,
  802. qtd, urb->ep->hcpriv);
  803. #endif
  804. spin_lock_irqsave (&ehci->lock, flags);
  805. if (unlikely(!test_bit(HCD_FLAG_HW_ACCESSIBLE,
  806. &ehci_to_hcd(ehci)->flags))) {
  807. rc = -ESHUTDOWN;
  808. goto done;
  809. }
  810. rc = usb_hcd_link_urb_to_ep(ehci_to_hcd(ehci), urb);
  811. if (unlikely(rc))
  812. goto done;
  813. qh = qh_append_tds(ehci, urb, qtd_list, epnum, &urb->ep->hcpriv);
  814. if (unlikely(qh == NULL)) {
  815. usb_hcd_unlink_urb_from_ep(ehci_to_hcd(ehci), urb);
  816. rc = -ENOMEM;
  817. goto done;
  818. }
  819. /* Control/bulk operations through TTs don't need scheduling,
  820. * the HC and TT handle it when the TT has a buffer ready.
  821. */
  822. if (likely (qh->qh_state == QH_STATE_IDLE))
  823. qh_link_async (ehci, qh_get (qh));
  824. done:
  825. spin_unlock_irqrestore (&ehci->lock, flags);
  826. if (unlikely (qh == NULL))
  827. qtd_list_free (ehci, urb, qtd_list);
  828. return rc;
  829. }
  830. /*-------------------------------------------------------------------------*/
  831. /* the async qh for the qtds being reclaimed are now unlinked from the HC */
  832. static void end_unlink_async (struct ehci_hcd *ehci)
  833. {
  834. struct ehci_qh *qh = ehci->reclaim;
  835. struct ehci_qh *next;
  836. iaa_watchdog_done(ehci);
  837. // qh->hw_next = cpu_to_hc32(qh->qh_dma);
  838. qh->qh_state = QH_STATE_IDLE;
  839. qh->qh_next.qh = NULL;
  840. qh_put (qh); // refcount from reclaim
  841. /* other unlink(s) may be pending (in QH_STATE_UNLINK_WAIT) */
  842. next = qh->reclaim;
  843. ehci->reclaim = next;
  844. qh->reclaim = NULL;
  845. qh_completions (ehci, qh);
  846. if (!list_empty (&qh->qtd_list)
  847. && HC_IS_RUNNING (ehci_to_hcd(ehci)->state))
  848. qh_link_async (ehci, qh);
  849. else {
  850. qh_put (qh); // refcount from async list
  851. /* it's not free to turn the async schedule on/off; leave it
  852. * active but idle for a while once it empties.
  853. */
  854. if (HC_IS_RUNNING (ehci_to_hcd(ehci)->state)
  855. && ehci->async->qh_next.qh == NULL)
  856. timer_action (ehci, TIMER_ASYNC_OFF);
  857. }
  858. if (next) {
  859. ehci->reclaim = NULL;
  860. start_unlink_async (ehci, next);
  861. }
  862. }
  863. /* makes sure the async qh will become idle */
  864. /* caller must own ehci->lock */
  865. static void start_unlink_async (struct ehci_hcd *ehci, struct ehci_qh *qh)
  866. {
  867. int cmd = ehci_readl(ehci, &ehci->regs->command);
  868. struct ehci_qh *prev;
  869. #ifdef DEBUG
  870. assert_spin_locked(&ehci->lock);
  871. if (ehci->reclaim
  872. || (qh->qh_state != QH_STATE_LINKED
  873. && qh->qh_state != QH_STATE_UNLINK_WAIT)
  874. )
  875. BUG ();
  876. #endif
  877. /* stop async schedule right now? */
  878. if (unlikely (qh == ehci->async)) {
  879. /* can't get here without STS_ASS set */
  880. if (ehci_to_hcd(ehci)->state != HC_STATE_HALT
  881. && !ehci->reclaim) {
  882. /* ... and CMD_IAAD clear */
  883. ehci_writel(ehci, cmd & ~CMD_ASE,
  884. &ehci->regs->command);
  885. wmb ();
  886. // handshake later, if we need to
  887. timer_action_done (ehci, TIMER_ASYNC_OFF);
  888. }
  889. return;
  890. }
  891. qh->qh_state = QH_STATE_UNLINK;
  892. ehci->reclaim = qh = qh_get (qh);
  893. prev = ehci->async;
  894. while (prev->qh_next.qh != qh)
  895. prev = prev->qh_next.qh;
  896. prev->hw_next = qh->hw_next;
  897. prev->qh_next = qh->qh_next;
  898. wmb ();
  899. if (unlikely (ehci_to_hcd(ehci)->state == HC_STATE_HALT)) {
  900. /* if (unlikely (qh->reclaim != 0))
  901. * this will recurse, probably not much
  902. */
  903. end_unlink_async (ehci);
  904. return;
  905. }
  906. cmd |= CMD_IAAD;
  907. ehci_writel(ehci, cmd, &ehci->regs->command);
  908. (void)ehci_readl(ehci, &ehci->regs->command);
  909. iaa_watchdog_start(ehci);
  910. }
  911. /*-------------------------------------------------------------------------*/
  912. static void scan_async (struct ehci_hcd *ehci)
  913. {
  914. struct ehci_qh *qh;
  915. enum ehci_timer_action action = TIMER_IO_WATCHDOG;
  916. if (!++(ehci->stamp))
  917. ehci->stamp++;
  918. timer_action_done (ehci, TIMER_ASYNC_SHRINK);
  919. rescan:
  920. qh = ehci->async->qh_next.qh;
  921. if (likely (qh != NULL)) {
  922. do {
  923. /* clean any finished work for this qh */
  924. if (!list_empty (&qh->qtd_list)
  925. && qh->stamp != ehci->stamp) {
  926. int temp;
  927. /* unlinks could happen here; completion
  928. * reporting drops the lock. rescan using
  929. * the latest schedule, but don't rescan
  930. * qhs we already finished (no looping).
  931. */
  932. qh = qh_get (qh);
  933. qh->stamp = ehci->stamp;
  934. temp = qh_completions (ehci, qh);
  935. qh_put (qh);
  936. if (temp != 0) {
  937. goto rescan;
  938. }
  939. }
  940. /* unlink idle entries, reducing HC PCI usage as well
  941. * as HCD schedule-scanning costs. delay for any qh
  942. * we just scanned, there's a not-unusual case that it
  943. * doesn't stay idle for long.
  944. * (plus, avoids some kind of re-activation race.)
  945. */
  946. if (list_empty (&qh->qtd_list)) {
  947. if (qh->stamp == ehci->stamp)
  948. action = TIMER_ASYNC_SHRINK;
  949. else if (!ehci->reclaim
  950. && qh->qh_state == QH_STATE_LINKED)
  951. start_unlink_async (ehci, qh);
  952. }
  953. qh = qh->qh_next.qh;
  954. } while (qh);
  955. }
  956. if (action == TIMER_ASYNC_SHRINK)
  957. timer_action (ehci, TIMER_ASYNC_SHRINK);
  958. }