forcedeth.c 172 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755
  1. /*
  2. * forcedeth: Ethernet driver for NVIDIA nForce media access controllers.
  3. *
  4. * Note: This driver is a cleanroom reimplementation based on reverse
  5. * engineered documentation written by Carl-Daniel Hailfinger
  6. * and Andrew de Quincey.
  7. *
  8. * NVIDIA, nForce and other NVIDIA marks are trademarks or registered
  9. * trademarks of NVIDIA Corporation in the United States and other
  10. * countries.
  11. *
  12. * Copyright (C) 2003,4,5 Manfred Spraul
  13. * Copyright (C) 2004 Andrew de Quincey (wol support)
  14. * Copyright (C) 2004 Carl-Daniel Hailfinger (invalid MAC handling, insane
  15. * IRQ rate fixes, bigendian fixes, cleanups, verification)
  16. * Copyright (c) 2004,2005,2006,2007,2008 NVIDIA Corporation
  17. *
  18. * This program is free software; you can redistribute it and/or modify
  19. * it under the terms of the GNU General Public License as published by
  20. * the Free Software Foundation; either version 2 of the License, or
  21. * (at your option) any later version.
  22. *
  23. * This program is distributed in the hope that it will be useful,
  24. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  25. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  26. * GNU General Public License for more details.
  27. *
  28. * You should have received a copy of the GNU General Public License
  29. * along with this program; if not, write to the Free Software
  30. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  31. *
  32. * Known bugs:
  33. * We suspect that on some hardware no TX done interrupts are generated.
  34. * This means recovery from netif_stop_queue only happens if the hw timer
  35. * interrupt fires (100 times/second, configurable with NVREG_POLL_DEFAULT)
  36. * and the timer is active in the IRQMask, or if a rx packet arrives by chance.
  37. * If your hardware reliably generates tx done interrupts, then you can remove
  38. * DEV_NEED_TIMERIRQ from the driver_data flags.
  39. * DEV_NEED_TIMERIRQ will not harm you on sane hardware, only generating a few
  40. * superfluous timer interrupts from the nic.
  41. */
  42. #define FORCEDETH_VERSION "0.61"
  43. #define DRV_NAME "forcedeth"
  44. #include <linux/module.h>
  45. #include <linux/types.h>
  46. #include <linux/pci.h>
  47. #include <linux/interrupt.h>
  48. #include <linux/netdevice.h>
  49. #include <linux/etherdevice.h>
  50. #include <linux/delay.h>
  51. #include <linux/spinlock.h>
  52. #include <linux/ethtool.h>
  53. #include <linux/timer.h>
  54. #include <linux/skbuff.h>
  55. #include <linux/mii.h>
  56. #include <linux/random.h>
  57. #include <linux/init.h>
  58. #include <linux/if_vlan.h>
  59. #include <linux/dma-mapping.h>
  60. #include <asm/irq.h>
  61. #include <asm/io.h>
  62. #include <asm/uaccess.h>
  63. #include <asm/system.h>
  64. #if 0
  65. #define dprintk printk
  66. #else
  67. #define dprintk(x...) do { } while (0)
  68. #endif
  69. #define TX_WORK_PER_LOOP 64
  70. #define RX_WORK_PER_LOOP 64
  71. /*
  72. * Hardware access:
  73. */
  74. #define DEV_NEED_TIMERIRQ 0x00001 /* set the timer irq flag in the irq mask */
  75. #define DEV_NEED_LINKTIMER 0x00002 /* poll link settings. Relies on the timer irq */
  76. #define DEV_HAS_LARGEDESC 0x00004 /* device supports jumbo frames and needs packet format 2 */
  77. #define DEV_HAS_HIGH_DMA 0x00008 /* device supports 64bit dma */
  78. #define DEV_HAS_CHECKSUM 0x00010 /* device supports tx and rx checksum offloads */
  79. #define DEV_HAS_VLAN 0x00020 /* device supports vlan tagging and striping */
  80. #define DEV_HAS_MSI 0x00040 /* device supports MSI */
  81. #define DEV_HAS_MSI_X 0x00080 /* device supports MSI-X */
  82. #define DEV_HAS_POWER_CNTRL 0x00100 /* device supports power savings */
  83. #define DEV_HAS_STATISTICS_V1 0x00200 /* device supports hw statistics version 1 */
  84. #define DEV_HAS_STATISTICS_V2 0x00400 /* device supports hw statistics version 2 */
  85. #define DEV_HAS_TEST_EXTENDED 0x00800 /* device supports extended diagnostic test */
  86. #define DEV_HAS_MGMT_UNIT 0x01000 /* device supports management unit */
  87. #define DEV_HAS_CORRECT_MACADDR 0x02000 /* device supports correct mac address order */
  88. #define DEV_HAS_COLLISION_FIX 0x04000 /* device supports tx collision fix */
  89. #define DEV_HAS_PAUSEFRAME_TX_V1 0x08000 /* device supports tx pause frames version 1 */
  90. #define DEV_HAS_PAUSEFRAME_TX_V2 0x10000 /* device supports tx pause frames version 2 */
  91. #define DEV_HAS_PAUSEFRAME_TX_V3 0x20000 /* device supports tx pause frames version 3 */
  92. #define DEV_NEED_TX_LIMIT 0x40000 /* device needs to limit tx */
  93. enum {
  94. NvRegIrqStatus = 0x000,
  95. #define NVREG_IRQSTAT_MIIEVENT 0x040
  96. #define NVREG_IRQSTAT_MASK 0x81ff
  97. NvRegIrqMask = 0x004,
  98. #define NVREG_IRQ_RX_ERROR 0x0001
  99. #define NVREG_IRQ_RX 0x0002
  100. #define NVREG_IRQ_RX_NOBUF 0x0004
  101. #define NVREG_IRQ_TX_ERR 0x0008
  102. #define NVREG_IRQ_TX_OK 0x0010
  103. #define NVREG_IRQ_TIMER 0x0020
  104. #define NVREG_IRQ_LINK 0x0040
  105. #define NVREG_IRQ_RX_FORCED 0x0080
  106. #define NVREG_IRQ_TX_FORCED 0x0100
  107. #define NVREG_IRQ_RECOVER_ERROR 0x8000
  108. #define NVREG_IRQMASK_THROUGHPUT 0x00df
  109. #define NVREG_IRQMASK_CPU 0x0060
  110. #define NVREG_IRQ_TX_ALL (NVREG_IRQ_TX_ERR|NVREG_IRQ_TX_OK|NVREG_IRQ_TX_FORCED)
  111. #define NVREG_IRQ_RX_ALL (NVREG_IRQ_RX_ERROR|NVREG_IRQ_RX|NVREG_IRQ_RX_NOBUF|NVREG_IRQ_RX_FORCED)
  112. #define NVREG_IRQ_OTHER (NVREG_IRQ_TIMER|NVREG_IRQ_LINK|NVREG_IRQ_RECOVER_ERROR)
  113. #define NVREG_IRQ_UNKNOWN (~(NVREG_IRQ_RX_ERROR|NVREG_IRQ_RX|NVREG_IRQ_RX_NOBUF|NVREG_IRQ_TX_ERR| \
  114. NVREG_IRQ_TX_OK|NVREG_IRQ_TIMER|NVREG_IRQ_LINK|NVREG_IRQ_RX_FORCED| \
  115. NVREG_IRQ_TX_FORCED|NVREG_IRQ_RECOVER_ERROR))
  116. NvRegUnknownSetupReg6 = 0x008,
  117. #define NVREG_UNKSETUP6_VAL 3
  118. /*
  119. * NVREG_POLL_DEFAULT is the interval length of the timer source on the nic
  120. * NVREG_POLL_DEFAULT=97 would result in an interval length of 1 ms
  121. */
  122. NvRegPollingInterval = 0x00c,
  123. #define NVREG_POLL_DEFAULT_THROUGHPUT 970 /* backup tx cleanup if loop max reached */
  124. #define NVREG_POLL_DEFAULT_CPU 13
  125. NvRegMSIMap0 = 0x020,
  126. NvRegMSIMap1 = 0x024,
  127. NvRegMSIIrqMask = 0x030,
  128. #define NVREG_MSI_VECTOR_0_ENABLED 0x01
  129. NvRegMisc1 = 0x080,
  130. #define NVREG_MISC1_PAUSE_TX 0x01
  131. #define NVREG_MISC1_HD 0x02
  132. #define NVREG_MISC1_FORCE 0x3b0f3c
  133. NvRegMacReset = 0x34,
  134. #define NVREG_MAC_RESET_ASSERT 0x0F3
  135. NvRegTransmitterControl = 0x084,
  136. #define NVREG_XMITCTL_START 0x01
  137. #define NVREG_XMITCTL_MGMT_ST 0x40000000
  138. #define NVREG_XMITCTL_SYNC_MASK 0x000f0000
  139. #define NVREG_XMITCTL_SYNC_NOT_READY 0x0
  140. #define NVREG_XMITCTL_SYNC_PHY_INIT 0x00040000
  141. #define NVREG_XMITCTL_MGMT_SEMA_MASK 0x00000f00
  142. #define NVREG_XMITCTL_MGMT_SEMA_FREE 0x0
  143. #define NVREG_XMITCTL_HOST_SEMA_MASK 0x0000f000
  144. #define NVREG_XMITCTL_HOST_SEMA_ACQ 0x0000f000
  145. #define NVREG_XMITCTL_HOST_LOADED 0x00004000
  146. #define NVREG_XMITCTL_TX_PATH_EN 0x01000000
  147. NvRegTransmitterStatus = 0x088,
  148. #define NVREG_XMITSTAT_BUSY 0x01
  149. NvRegPacketFilterFlags = 0x8c,
  150. #define NVREG_PFF_PAUSE_RX 0x08
  151. #define NVREG_PFF_ALWAYS 0x7F0000
  152. #define NVREG_PFF_PROMISC 0x80
  153. #define NVREG_PFF_MYADDR 0x20
  154. #define NVREG_PFF_LOOPBACK 0x10
  155. NvRegOffloadConfig = 0x90,
  156. #define NVREG_OFFLOAD_HOMEPHY 0x601
  157. #define NVREG_OFFLOAD_NORMAL RX_NIC_BUFSIZE
  158. NvRegReceiverControl = 0x094,
  159. #define NVREG_RCVCTL_START 0x01
  160. #define NVREG_RCVCTL_RX_PATH_EN 0x01000000
  161. NvRegReceiverStatus = 0x98,
  162. #define NVREG_RCVSTAT_BUSY 0x01
  163. NvRegRandomSeed = 0x9c,
  164. #define NVREG_RNDSEED_MASK 0x00ff
  165. #define NVREG_RNDSEED_FORCE 0x7f00
  166. #define NVREG_RNDSEED_FORCE2 0x2d00
  167. #define NVREG_RNDSEED_FORCE3 0x7400
  168. NvRegTxDeferral = 0xA0,
  169. #define NVREG_TX_DEFERRAL_DEFAULT 0x15050f
  170. #define NVREG_TX_DEFERRAL_RGMII_10_100 0x16070f
  171. #define NVREG_TX_DEFERRAL_RGMII_1000 0x14050f
  172. #define NVREG_TX_DEFERRAL_RGMII_STRETCH_10 0x16190f
  173. #define NVREG_TX_DEFERRAL_RGMII_STRETCH_100 0x16300f
  174. #define NVREG_TX_DEFERRAL_MII_STRETCH 0x152000
  175. NvRegRxDeferral = 0xA4,
  176. #define NVREG_RX_DEFERRAL_DEFAULT 0x16
  177. NvRegMacAddrA = 0xA8,
  178. NvRegMacAddrB = 0xAC,
  179. NvRegMulticastAddrA = 0xB0,
  180. #define NVREG_MCASTADDRA_FORCE 0x01
  181. NvRegMulticastAddrB = 0xB4,
  182. NvRegMulticastMaskA = 0xB8,
  183. #define NVREG_MCASTMASKA_NONE 0xffffffff
  184. NvRegMulticastMaskB = 0xBC,
  185. #define NVREG_MCASTMASKB_NONE 0xffff
  186. NvRegPhyInterface = 0xC0,
  187. #define PHY_RGMII 0x10000000
  188. NvRegTxRingPhysAddr = 0x100,
  189. NvRegRxRingPhysAddr = 0x104,
  190. NvRegRingSizes = 0x108,
  191. #define NVREG_RINGSZ_TXSHIFT 0
  192. #define NVREG_RINGSZ_RXSHIFT 16
  193. NvRegTransmitPoll = 0x10c,
  194. #define NVREG_TRANSMITPOLL_MAC_ADDR_REV 0x00008000
  195. NvRegLinkSpeed = 0x110,
  196. #define NVREG_LINKSPEED_FORCE 0x10000
  197. #define NVREG_LINKSPEED_10 1000
  198. #define NVREG_LINKSPEED_100 100
  199. #define NVREG_LINKSPEED_1000 50
  200. #define NVREG_LINKSPEED_MASK (0xFFF)
  201. NvRegUnknownSetupReg5 = 0x130,
  202. #define NVREG_UNKSETUP5_BIT31 (1<<31)
  203. NvRegTxWatermark = 0x13c,
  204. #define NVREG_TX_WM_DESC1_DEFAULT 0x0200010
  205. #define NVREG_TX_WM_DESC2_3_DEFAULT 0x1e08000
  206. #define NVREG_TX_WM_DESC2_3_1000 0xfe08000
  207. NvRegTxRxControl = 0x144,
  208. #define NVREG_TXRXCTL_KICK 0x0001
  209. #define NVREG_TXRXCTL_BIT1 0x0002
  210. #define NVREG_TXRXCTL_BIT2 0x0004
  211. #define NVREG_TXRXCTL_IDLE 0x0008
  212. #define NVREG_TXRXCTL_RESET 0x0010
  213. #define NVREG_TXRXCTL_RXCHECK 0x0400
  214. #define NVREG_TXRXCTL_DESC_1 0
  215. #define NVREG_TXRXCTL_DESC_2 0x002100
  216. #define NVREG_TXRXCTL_DESC_3 0xc02200
  217. #define NVREG_TXRXCTL_VLANSTRIP 0x00040
  218. #define NVREG_TXRXCTL_VLANINS 0x00080
  219. NvRegTxRingPhysAddrHigh = 0x148,
  220. NvRegRxRingPhysAddrHigh = 0x14C,
  221. NvRegTxPauseFrame = 0x170,
  222. #define NVREG_TX_PAUSEFRAME_DISABLE 0x0fff0080
  223. #define NVREG_TX_PAUSEFRAME_ENABLE_V1 0x01800010
  224. #define NVREG_TX_PAUSEFRAME_ENABLE_V2 0x056003f0
  225. #define NVREG_TX_PAUSEFRAME_ENABLE_V3 0x09f00880
  226. NvRegMIIStatus = 0x180,
  227. #define NVREG_MIISTAT_ERROR 0x0001
  228. #define NVREG_MIISTAT_LINKCHANGE 0x0008
  229. #define NVREG_MIISTAT_MASK_RW 0x0007
  230. #define NVREG_MIISTAT_MASK_ALL 0x000f
  231. NvRegMIIMask = 0x184,
  232. #define NVREG_MII_LINKCHANGE 0x0008
  233. NvRegAdapterControl = 0x188,
  234. #define NVREG_ADAPTCTL_START 0x02
  235. #define NVREG_ADAPTCTL_LINKUP 0x04
  236. #define NVREG_ADAPTCTL_PHYVALID 0x40000
  237. #define NVREG_ADAPTCTL_RUNNING 0x100000
  238. #define NVREG_ADAPTCTL_PHYSHIFT 24
  239. NvRegMIISpeed = 0x18c,
  240. #define NVREG_MIISPEED_BIT8 (1<<8)
  241. #define NVREG_MIIDELAY 5
  242. NvRegMIIControl = 0x190,
  243. #define NVREG_MIICTL_INUSE 0x08000
  244. #define NVREG_MIICTL_WRITE 0x00400
  245. #define NVREG_MIICTL_ADDRSHIFT 5
  246. NvRegMIIData = 0x194,
  247. NvRegWakeUpFlags = 0x200,
  248. #define NVREG_WAKEUPFLAGS_VAL 0x7770
  249. #define NVREG_WAKEUPFLAGS_BUSYSHIFT 24
  250. #define NVREG_WAKEUPFLAGS_ENABLESHIFT 16
  251. #define NVREG_WAKEUPFLAGS_D3SHIFT 12
  252. #define NVREG_WAKEUPFLAGS_D2SHIFT 8
  253. #define NVREG_WAKEUPFLAGS_D1SHIFT 4
  254. #define NVREG_WAKEUPFLAGS_D0SHIFT 0
  255. #define NVREG_WAKEUPFLAGS_ACCEPT_MAGPAT 0x01
  256. #define NVREG_WAKEUPFLAGS_ACCEPT_WAKEUPPAT 0x02
  257. #define NVREG_WAKEUPFLAGS_ACCEPT_LINKCHANGE 0x04
  258. #define NVREG_WAKEUPFLAGS_ENABLE 0x1111
  259. NvRegPatternCRC = 0x204,
  260. NvRegPatternMask = 0x208,
  261. NvRegPowerCap = 0x268,
  262. #define NVREG_POWERCAP_D3SUPP (1<<30)
  263. #define NVREG_POWERCAP_D2SUPP (1<<26)
  264. #define NVREG_POWERCAP_D1SUPP (1<<25)
  265. NvRegPowerState = 0x26c,
  266. #define NVREG_POWERSTATE_POWEREDUP 0x8000
  267. #define NVREG_POWERSTATE_VALID 0x0100
  268. #define NVREG_POWERSTATE_MASK 0x0003
  269. #define NVREG_POWERSTATE_D0 0x0000
  270. #define NVREG_POWERSTATE_D1 0x0001
  271. #define NVREG_POWERSTATE_D2 0x0002
  272. #define NVREG_POWERSTATE_D3 0x0003
  273. NvRegTxCnt = 0x280,
  274. NvRegTxZeroReXmt = 0x284,
  275. NvRegTxOneReXmt = 0x288,
  276. NvRegTxManyReXmt = 0x28c,
  277. NvRegTxLateCol = 0x290,
  278. NvRegTxUnderflow = 0x294,
  279. NvRegTxLossCarrier = 0x298,
  280. NvRegTxExcessDef = 0x29c,
  281. NvRegTxRetryErr = 0x2a0,
  282. NvRegRxFrameErr = 0x2a4,
  283. NvRegRxExtraByte = 0x2a8,
  284. NvRegRxLateCol = 0x2ac,
  285. NvRegRxRunt = 0x2b0,
  286. NvRegRxFrameTooLong = 0x2b4,
  287. NvRegRxOverflow = 0x2b8,
  288. NvRegRxFCSErr = 0x2bc,
  289. NvRegRxFrameAlignErr = 0x2c0,
  290. NvRegRxLenErr = 0x2c4,
  291. NvRegRxUnicast = 0x2c8,
  292. NvRegRxMulticast = 0x2cc,
  293. NvRegRxBroadcast = 0x2d0,
  294. NvRegTxDef = 0x2d4,
  295. NvRegTxFrame = 0x2d8,
  296. NvRegRxCnt = 0x2dc,
  297. NvRegTxPause = 0x2e0,
  298. NvRegRxPause = 0x2e4,
  299. NvRegRxDropFrame = 0x2e8,
  300. NvRegVlanControl = 0x300,
  301. #define NVREG_VLANCONTROL_ENABLE 0x2000
  302. NvRegMSIXMap0 = 0x3e0,
  303. NvRegMSIXMap1 = 0x3e4,
  304. NvRegMSIXIrqStatus = 0x3f0,
  305. NvRegPowerState2 = 0x600,
  306. #define NVREG_POWERSTATE2_POWERUP_MASK 0x0F11
  307. #define NVREG_POWERSTATE2_POWERUP_REV_A3 0x0001
  308. };
  309. /* Big endian: should work, but is untested */
  310. struct ring_desc {
  311. __le32 buf;
  312. __le32 flaglen;
  313. };
  314. struct ring_desc_ex {
  315. __le32 bufhigh;
  316. __le32 buflow;
  317. __le32 txvlan;
  318. __le32 flaglen;
  319. };
  320. union ring_type {
  321. struct ring_desc* orig;
  322. struct ring_desc_ex* ex;
  323. };
  324. #define FLAG_MASK_V1 0xffff0000
  325. #define FLAG_MASK_V2 0xffffc000
  326. #define LEN_MASK_V1 (0xffffffff ^ FLAG_MASK_V1)
  327. #define LEN_MASK_V2 (0xffffffff ^ FLAG_MASK_V2)
  328. #define NV_TX_LASTPACKET (1<<16)
  329. #define NV_TX_RETRYERROR (1<<19)
  330. #define NV_TX_FORCED_INTERRUPT (1<<24)
  331. #define NV_TX_DEFERRED (1<<26)
  332. #define NV_TX_CARRIERLOST (1<<27)
  333. #define NV_TX_LATECOLLISION (1<<28)
  334. #define NV_TX_UNDERFLOW (1<<29)
  335. #define NV_TX_ERROR (1<<30)
  336. #define NV_TX_VALID (1<<31)
  337. #define NV_TX2_LASTPACKET (1<<29)
  338. #define NV_TX2_RETRYERROR (1<<18)
  339. #define NV_TX2_FORCED_INTERRUPT (1<<30)
  340. #define NV_TX2_DEFERRED (1<<25)
  341. #define NV_TX2_CARRIERLOST (1<<26)
  342. #define NV_TX2_LATECOLLISION (1<<27)
  343. #define NV_TX2_UNDERFLOW (1<<28)
  344. /* error and valid are the same for both */
  345. #define NV_TX2_ERROR (1<<30)
  346. #define NV_TX2_VALID (1<<31)
  347. #define NV_TX2_TSO (1<<28)
  348. #define NV_TX2_TSO_SHIFT 14
  349. #define NV_TX2_TSO_MAX_SHIFT 14
  350. #define NV_TX2_TSO_MAX_SIZE (1<<NV_TX2_TSO_MAX_SHIFT)
  351. #define NV_TX2_CHECKSUM_L3 (1<<27)
  352. #define NV_TX2_CHECKSUM_L4 (1<<26)
  353. #define NV_TX3_VLAN_TAG_PRESENT (1<<18)
  354. #define NV_RX_DESCRIPTORVALID (1<<16)
  355. #define NV_RX_MISSEDFRAME (1<<17)
  356. #define NV_RX_SUBSTRACT1 (1<<18)
  357. #define NV_RX_ERROR1 (1<<23)
  358. #define NV_RX_ERROR2 (1<<24)
  359. #define NV_RX_ERROR3 (1<<25)
  360. #define NV_RX_ERROR4 (1<<26)
  361. #define NV_RX_CRCERR (1<<27)
  362. #define NV_RX_OVERFLOW (1<<28)
  363. #define NV_RX_FRAMINGERR (1<<29)
  364. #define NV_RX_ERROR (1<<30)
  365. #define NV_RX_AVAIL (1<<31)
  366. #define NV_RX2_CHECKSUMMASK (0x1C000000)
  367. #define NV_RX2_CHECKSUM_IP (0x10000000)
  368. #define NV_RX2_CHECKSUM_IP_TCP (0x14000000)
  369. #define NV_RX2_CHECKSUM_IP_UDP (0x18000000)
  370. #define NV_RX2_DESCRIPTORVALID (1<<29)
  371. #define NV_RX2_SUBSTRACT1 (1<<25)
  372. #define NV_RX2_ERROR1 (1<<18)
  373. #define NV_RX2_ERROR2 (1<<19)
  374. #define NV_RX2_ERROR3 (1<<20)
  375. #define NV_RX2_ERROR4 (1<<21)
  376. #define NV_RX2_CRCERR (1<<22)
  377. #define NV_RX2_OVERFLOW (1<<23)
  378. #define NV_RX2_FRAMINGERR (1<<24)
  379. /* error and avail are the same for both */
  380. #define NV_RX2_ERROR (1<<30)
  381. #define NV_RX2_AVAIL (1<<31)
  382. #define NV_RX3_VLAN_TAG_PRESENT (1<<16)
  383. #define NV_RX3_VLAN_TAG_MASK (0x0000FFFF)
  384. /* Miscelaneous hardware related defines: */
  385. #define NV_PCI_REGSZ_VER1 0x270
  386. #define NV_PCI_REGSZ_VER2 0x2d4
  387. #define NV_PCI_REGSZ_VER3 0x604
  388. /* various timeout delays: all in usec */
  389. #define NV_TXRX_RESET_DELAY 4
  390. #define NV_TXSTOP_DELAY1 10
  391. #define NV_TXSTOP_DELAY1MAX 500000
  392. #define NV_TXSTOP_DELAY2 100
  393. #define NV_RXSTOP_DELAY1 10
  394. #define NV_RXSTOP_DELAY1MAX 500000
  395. #define NV_RXSTOP_DELAY2 100
  396. #define NV_SETUP5_DELAY 5
  397. #define NV_SETUP5_DELAYMAX 50000
  398. #define NV_POWERUP_DELAY 5
  399. #define NV_POWERUP_DELAYMAX 5000
  400. #define NV_MIIBUSY_DELAY 50
  401. #define NV_MIIPHY_DELAY 10
  402. #define NV_MIIPHY_DELAYMAX 10000
  403. #define NV_MAC_RESET_DELAY 64
  404. #define NV_WAKEUPPATTERNS 5
  405. #define NV_WAKEUPMASKENTRIES 4
  406. /* General driver defaults */
  407. #define NV_WATCHDOG_TIMEO (5*HZ)
  408. #define RX_RING_DEFAULT 128
  409. #define TX_RING_DEFAULT 256
  410. #define RX_RING_MIN 128
  411. #define TX_RING_MIN 64
  412. #define RING_MAX_DESC_VER_1 1024
  413. #define RING_MAX_DESC_VER_2_3 16384
  414. /* rx/tx mac addr + type + vlan + align + slack*/
  415. #define NV_RX_HEADERS (64)
  416. /* even more slack. */
  417. #define NV_RX_ALLOC_PAD (64)
  418. /* maximum mtu size */
  419. #define NV_PKTLIMIT_1 ETH_DATA_LEN /* hard limit not known */
  420. #define NV_PKTLIMIT_2 9100 /* Actual limit according to NVidia: 9202 */
  421. #define OOM_REFILL (1+HZ/20)
  422. #define POLL_WAIT (1+HZ/100)
  423. #define LINK_TIMEOUT (3*HZ)
  424. #define STATS_INTERVAL (10*HZ)
  425. /*
  426. * desc_ver values:
  427. * The nic supports three different descriptor types:
  428. * - DESC_VER_1: Original
  429. * - DESC_VER_2: support for jumbo frames.
  430. * - DESC_VER_3: 64-bit format.
  431. */
  432. #define DESC_VER_1 1
  433. #define DESC_VER_2 2
  434. #define DESC_VER_3 3
  435. /* PHY defines */
  436. #define PHY_OUI_MARVELL 0x5043
  437. #define PHY_OUI_CICADA 0x03f1
  438. #define PHY_OUI_VITESSE 0x01c1
  439. #define PHY_OUI_REALTEK 0x0732
  440. #define PHYID1_OUI_MASK 0x03ff
  441. #define PHYID1_OUI_SHFT 6
  442. #define PHYID2_OUI_MASK 0xfc00
  443. #define PHYID2_OUI_SHFT 10
  444. #define PHYID2_MODEL_MASK 0x03f0
  445. #define PHY_MODEL_MARVELL_E3016 0x220
  446. #define PHY_MARVELL_E3016_INITMASK 0x0300
  447. #define PHY_CICADA_INIT1 0x0f000
  448. #define PHY_CICADA_INIT2 0x0e00
  449. #define PHY_CICADA_INIT3 0x01000
  450. #define PHY_CICADA_INIT4 0x0200
  451. #define PHY_CICADA_INIT5 0x0004
  452. #define PHY_CICADA_INIT6 0x02000
  453. #define PHY_VITESSE_INIT_REG1 0x1f
  454. #define PHY_VITESSE_INIT_REG2 0x10
  455. #define PHY_VITESSE_INIT_REG3 0x11
  456. #define PHY_VITESSE_INIT_REG4 0x12
  457. #define PHY_VITESSE_INIT_MSK1 0xc
  458. #define PHY_VITESSE_INIT_MSK2 0x0180
  459. #define PHY_VITESSE_INIT1 0x52b5
  460. #define PHY_VITESSE_INIT2 0xaf8a
  461. #define PHY_VITESSE_INIT3 0x8
  462. #define PHY_VITESSE_INIT4 0x8f8a
  463. #define PHY_VITESSE_INIT5 0xaf86
  464. #define PHY_VITESSE_INIT6 0x8f86
  465. #define PHY_VITESSE_INIT7 0xaf82
  466. #define PHY_VITESSE_INIT8 0x0100
  467. #define PHY_VITESSE_INIT9 0x8f82
  468. #define PHY_VITESSE_INIT10 0x0
  469. #define PHY_REALTEK_INIT_REG1 0x1f
  470. #define PHY_REALTEK_INIT_REG2 0x19
  471. #define PHY_REALTEK_INIT_REG3 0x13
  472. #define PHY_REALTEK_INIT1 0x0000
  473. #define PHY_REALTEK_INIT2 0x8e00
  474. #define PHY_REALTEK_INIT3 0x0001
  475. #define PHY_REALTEK_INIT4 0xad17
  476. #define PHY_GIGABIT 0x0100
  477. #define PHY_TIMEOUT 0x1
  478. #define PHY_ERROR 0x2
  479. #define PHY_100 0x1
  480. #define PHY_1000 0x2
  481. #define PHY_HALF 0x100
  482. #define NV_PAUSEFRAME_RX_CAPABLE 0x0001
  483. #define NV_PAUSEFRAME_TX_CAPABLE 0x0002
  484. #define NV_PAUSEFRAME_RX_ENABLE 0x0004
  485. #define NV_PAUSEFRAME_TX_ENABLE 0x0008
  486. #define NV_PAUSEFRAME_RX_REQ 0x0010
  487. #define NV_PAUSEFRAME_TX_REQ 0x0020
  488. #define NV_PAUSEFRAME_AUTONEG 0x0040
  489. /* MSI/MSI-X defines */
  490. #define NV_MSI_X_MAX_VECTORS 8
  491. #define NV_MSI_X_VECTORS_MASK 0x000f
  492. #define NV_MSI_CAPABLE 0x0010
  493. #define NV_MSI_X_CAPABLE 0x0020
  494. #define NV_MSI_ENABLED 0x0040
  495. #define NV_MSI_X_ENABLED 0x0080
  496. #define NV_MSI_X_VECTOR_ALL 0x0
  497. #define NV_MSI_X_VECTOR_RX 0x0
  498. #define NV_MSI_X_VECTOR_TX 0x1
  499. #define NV_MSI_X_VECTOR_OTHER 0x2
  500. #define NV_RESTART_TX 0x1
  501. #define NV_RESTART_RX 0x2
  502. #define NV_TX_LIMIT_COUNT 16
  503. /* statistics */
  504. struct nv_ethtool_str {
  505. char name[ETH_GSTRING_LEN];
  506. };
  507. static const struct nv_ethtool_str nv_estats_str[] = {
  508. { "tx_bytes" },
  509. { "tx_zero_rexmt" },
  510. { "tx_one_rexmt" },
  511. { "tx_many_rexmt" },
  512. { "tx_late_collision" },
  513. { "tx_fifo_errors" },
  514. { "tx_carrier_errors" },
  515. { "tx_excess_deferral" },
  516. { "tx_retry_error" },
  517. { "rx_frame_error" },
  518. { "rx_extra_byte" },
  519. { "rx_late_collision" },
  520. { "rx_runt" },
  521. { "rx_frame_too_long" },
  522. { "rx_over_errors" },
  523. { "rx_crc_errors" },
  524. { "rx_frame_align_error" },
  525. { "rx_length_error" },
  526. { "rx_unicast" },
  527. { "rx_multicast" },
  528. { "rx_broadcast" },
  529. { "rx_packets" },
  530. { "rx_errors_total" },
  531. { "tx_errors_total" },
  532. /* version 2 stats */
  533. { "tx_deferral" },
  534. { "tx_packets" },
  535. { "rx_bytes" },
  536. { "tx_pause" },
  537. { "rx_pause" },
  538. { "rx_drop_frame" }
  539. };
  540. struct nv_ethtool_stats {
  541. u64 tx_bytes;
  542. u64 tx_zero_rexmt;
  543. u64 tx_one_rexmt;
  544. u64 tx_many_rexmt;
  545. u64 tx_late_collision;
  546. u64 tx_fifo_errors;
  547. u64 tx_carrier_errors;
  548. u64 tx_excess_deferral;
  549. u64 tx_retry_error;
  550. u64 rx_frame_error;
  551. u64 rx_extra_byte;
  552. u64 rx_late_collision;
  553. u64 rx_runt;
  554. u64 rx_frame_too_long;
  555. u64 rx_over_errors;
  556. u64 rx_crc_errors;
  557. u64 rx_frame_align_error;
  558. u64 rx_length_error;
  559. u64 rx_unicast;
  560. u64 rx_multicast;
  561. u64 rx_broadcast;
  562. u64 rx_packets;
  563. u64 rx_errors_total;
  564. u64 tx_errors_total;
  565. /* version 2 stats */
  566. u64 tx_deferral;
  567. u64 tx_packets;
  568. u64 rx_bytes;
  569. u64 tx_pause;
  570. u64 rx_pause;
  571. u64 rx_drop_frame;
  572. };
  573. #define NV_DEV_STATISTICS_V2_COUNT (sizeof(struct nv_ethtool_stats)/sizeof(u64))
  574. #define NV_DEV_STATISTICS_V1_COUNT (NV_DEV_STATISTICS_V2_COUNT - 6)
  575. /* diagnostics */
  576. #define NV_TEST_COUNT_BASE 3
  577. #define NV_TEST_COUNT_EXTENDED 4
  578. static const struct nv_ethtool_str nv_etests_str[] = {
  579. { "link (online/offline)" },
  580. { "register (offline) " },
  581. { "interrupt (offline) " },
  582. { "loopback (offline) " }
  583. };
  584. struct register_test {
  585. __u32 reg;
  586. __u32 mask;
  587. };
  588. static const struct register_test nv_registers_test[] = {
  589. { NvRegUnknownSetupReg6, 0x01 },
  590. { NvRegMisc1, 0x03c },
  591. { NvRegOffloadConfig, 0x03ff },
  592. { NvRegMulticastAddrA, 0xffffffff },
  593. { NvRegTxWatermark, 0x0ff },
  594. { NvRegWakeUpFlags, 0x07777 },
  595. { 0,0 }
  596. };
  597. struct nv_skb_map {
  598. struct sk_buff *skb;
  599. dma_addr_t dma;
  600. unsigned int dma_len;
  601. struct ring_desc_ex *first_tx_desc;
  602. struct nv_skb_map *next_tx_ctx;
  603. };
  604. /*
  605. * SMP locking:
  606. * All hardware access under dev->priv->lock, except the performance
  607. * critical parts:
  608. * - rx is (pseudo-) lockless: it relies on the single-threading provided
  609. * by the arch code for interrupts.
  610. * - tx setup is lockless: it relies on netif_tx_lock. Actual submission
  611. * needs dev->priv->lock :-(
  612. * - set_multicast_list: preparation lockless, relies on netif_tx_lock.
  613. */
  614. /* in dev: base, irq */
  615. struct fe_priv {
  616. spinlock_t lock;
  617. struct net_device *dev;
  618. struct napi_struct napi;
  619. /* General data:
  620. * Locking: spin_lock(&np->lock); */
  621. struct nv_ethtool_stats estats;
  622. int in_shutdown;
  623. u32 linkspeed;
  624. int duplex;
  625. int autoneg;
  626. int fixed_mode;
  627. int phyaddr;
  628. int wolenabled;
  629. unsigned int phy_oui;
  630. unsigned int phy_model;
  631. u16 gigabit;
  632. int intr_test;
  633. int recover_error;
  634. /* General data: RO fields */
  635. dma_addr_t ring_addr;
  636. struct pci_dev *pci_dev;
  637. u32 orig_mac[2];
  638. u32 irqmask;
  639. u32 desc_ver;
  640. u32 txrxctl_bits;
  641. u32 vlanctl_bits;
  642. u32 driver_data;
  643. u32 register_size;
  644. int rx_csum;
  645. u32 mac_in_use;
  646. void __iomem *base;
  647. /* rx specific fields.
  648. * Locking: Within irq hander or disable_irq+spin_lock(&np->lock);
  649. */
  650. union ring_type get_rx, put_rx, first_rx, last_rx;
  651. struct nv_skb_map *get_rx_ctx, *put_rx_ctx;
  652. struct nv_skb_map *first_rx_ctx, *last_rx_ctx;
  653. struct nv_skb_map *rx_skb;
  654. union ring_type rx_ring;
  655. unsigned int rx_buf_sz;
  656. unsigned int pkt_limit;
  657. struct timer_list oom_kick;
  658. struct timer_list nic_poll;
  659. struct timer_list stats_poll;
  660. u32 nic_poll_irq;
  661. int rx_ring_size;
  662. /* media detection workaround.
  663. * Locking: Within irq hander or disable_irq+spin_lock(&np->lock);
  664. */
  665. int need_linktimer;
  666. unsigned long link_timeout;
  667. /*
  668. * tx specific fields.
  669. */
  670. union ring_type get_tx, put_tx, first_tx, last_tx;
  671. struct nv_skb_map *get_tx_ctx, *put_tx_ctx;
  672. struct nv_skb_map *first_tx_ctx, *last_tx_ctx;
  673. struct nv_skb_map *tx_skb;
  674. union ring_type tx_ring;
  675. u32 tx_flags;
  676. int tx_ring_size;
  677. int tx_limit;
  678. u32 tx_pkts_in_progress;
  679. struct nv_skb_map *tx_change_owner;
  680. struct nv_skb_map *tx_end_flip;
  681. int tx_stop;
  682. /* vlan fields */
  683. struct vlan_group *vlangrp;
  684. /* msi/msi-x fields */
  685. u32 msi_flags;
  686. struct msix_entry msi_x_entry[NV_MSI_X_MAX_VECTORS];
  687. /* flow control */
  688. u32 pause_flags;
  689. };
  690. /*
  691. * Maximum number of loops until we assume that a bit in the irq mask
  692. * is stuck. Overridable with module param.
  693. */
  694. static int max_interrupt_work = 5;
  695. /*
  696. * Optimization can be either throuput mode or cpu mode
  697. *
  698. * Throughput Mode: Every tx and rx packet will generate an interrupt.
  699. * CPU Mode: Interrupts are controlled by a timer.
  700. */
  701. enum {
  702. NV_OPTIMIZATION_MODE_THROUGHPUT,
  703. NV_OPTIMIZATION_MODE_CPU
  704. };
  705. static int optimization_mode = NV_OPTIMIZATION_MODE_THROUGHPUT;
  706. /*
  707. * Poll interval for timer irq
  708. *
  709. * This interval determines how frequent an interrupt is generated.
  710. * The is value is determined by [(time_in_micro_secs * 100) / (2^10)]
  711. * Min = 0, and Max = 65535
  712. */
  713. static int poll_interval = -1;
  714. /*
  715. * MSI interrupts
  716. */
  717. enum {
  718. NV_MSI_INT_DISABLED,
  719. NV_MSI_INT_ENABLED
  720. };
  721. static int msi = NV_MSI_INT_ENABLED;
  722. /*
  723. * MSIX interrupts
  724. */
  725. enum {
  726. NV_MSIX_INT_DISABLED,
  727. NV_MSIX_INT_ENABLED
  728. };
  729. static int msix = NV_MSIX_INT_DISABLED;
  730. /*
  731. * DMA 64bit
  732. */
  733. enum {
  734. NV_DMA_64BIT_DISABLED,
  735. NV_DMA_64BIT_ENABLED
  736. };
  737. static int dma_64bit = NV_DMA_64BIT_ENABLED;
  738. static inline struct fe_priv *get_nvpriv(struct net_device *dev)
  739. {
  740. return netdev_priv(dev);
  741. }
  742. static inline u8 __iomem *get_hwbase(struct net_device *dev)
  743. {
  744. return ((struct fe_priv *)netdev_priv(dev))->base;
  745. }
  746. static inline void pci_push(u8 __iomem *base)
  747. {
  748. /* force out pending posted writes */
  749. readl(base);
  750. }
  751. static inline u32 nv_descr_getlength(struct ring_desc *prd, u32 v)
  752. {
  753. return le32_to_cpu(prd->flaglen)
  754. & ((v == DESC_VER_1) ? LEN_MASK_V1 : LEN_MASK_V2);
  755. }
  756. static inline u32 nv_descr_getlength_ex(struct ring_desc_ex *prd, u32 v)
  757. {
  758. return le32_to_cpu(prd->flaglen) & LEN_MASK_V2;
  759. }
  760. static bool nv_optimized(struct fe_priv *np)
  761. {
  762. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
  763. return false;
  764. return true;
  765. }
  766. static int reg_delay(struct net_device *dev, int offset, u32 mask, u32 target,
  767. int delay, int delaymax, const char *msg)
  768. {
  769. u8 __iomem *base = get_hwbase(dev);
  770. pci_push(base);
  771. do {
  772. udelay(delay);
  773. delaymax -= delay;
  774. if (delaymax < 0) {
  775. if (msg)
  776. printk(msg);
  777. return 1;
  778. }
  779. } while ((readl(base + offset) & mask) != target);
  780. return 0;
  781. }
  782. #define NV_SETUP_RX_RING 0x01
  783. #define NV_SETUP_TX_RING 0x02
  784. static inline u32 dma_low(dma_addr_t addr)
  785. {
  786. return addr;
  787. }
  788. static inline u32 dma_high(dma_addr_t addr)
  789. {
  790. return addr>>31>>1; /* 0 if 32bit, shift down by 32 if 64bit */
  791. }
  792. static void setup_hw_rings(struct net_device *dev, int rxtx_flags)
  793. {
  794. struct fe_priv *np = get_nvpriv(dev);
  795. u8 __iomem *base = get_hwbase(dev);
  796. if (!nv_optimized(np)) {
  797. if (rxtx_flags & NV_SETUP_RX_RING) {
  798. writel(dma_low(np->ring_addr), base + NvRegRxRingPhysAddr);
  799. }
  800. if (rxtx_flags & NV_SETUP_TX_RING) {
  801. writel(dma_low(np->ring_addr + np->rx_ring_size*sizeof(struct ring_desc)), base + NvRegTxRingPhysAddr);
  802. }
  803. } else {
  804. if (rxtx_flags & NV_SETUP_RX_RING) {
  805. writel(dma_low(np->ring_addr), base + NvRegRxRingPhysAddr);
  806. writel(dma_high(np->ring_addr), base + NvRegRxRingPhysAddrHigh);
  807. }
  808. if (rxtx_flags & NV_SETUP_TX_RING) {
  809. writel(dma_low(np->ring_addr + np->rx_ring_size*sizeof(struct ring_desc_ex)), base + NvRegTxRingPhysAddr);
  810. writel(dma_high(np->ring_addr + np->rx_ring_size*sizeof(struct ring_desc_ex)), base + NvRegTxRingPhysAddrHigh);
  811. }
  812. }
  813. }
  814. static void free_rings(struct net_device *dev)
  815. {
  816. struct fe_priv *np = get_nvpriv(dev);
  817. if (!nv_optimized(np)) {
  818. if (np->rx_ring.orig)
  819. pci_free_consistent(np->pci_dev, sizeof(struct ring_desc) * (np->rx_ring_size + np->tx_ring_size),
  820. np->rx_ring.orig, np->ring_addr);
  821. } else {
  822. if (np->rx_ring.ex)
  823. pci_free_consistent(np->pci_dev, sizeof(struct ring_desc_ex) * (np->rx_ring_size + np->tx_ring_size),
  824. np->rx_ring.ex, np->ring_addr);
  825. }
  826. if (np->rx_skb)
  827. kfree(np->rx_skb);
  828. if (np->tx_skb)
  829. kfree(np->tx_skb);
  830. }
  831. static int using_multi_irqs(struct net_device *dev)
  832. {
  833. struct fe_priv *np = get_nvpriv(dev);
  834. if (!(np->msi_flags & NV_MSI_X_ENABLED) ||
  835. ((np->msi_flags & NV_MSI_X_ENABLED) &&
  836. ((np->msi_flags & NV_MSI_X_VECTORS_MASK) == 0x1)))
  837. return 0;
  838. else
  839. return 1;
  840. }
  841. static void nv_enable_irq(struct net_device *dev)
  842. {
  843. struct fe_priv *np = get_nvpriv(dev);
  844. if (!using_multi_irqs(dev)) {
  845. if (np->msi_flags & NV_MSI_X_ENABLED)
  846. enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
  847. else
  848. enable_irq(np->pci_dev->irq);
  849. } else {
  850. enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
  851. enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
  852. enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
  853. }
  854. }
  855. static void nv_disable_irq(struct net_device *dev)
  856. {
  857. struct fe_priv *np = get_nvpriv(dev);
  858. if (!using_multi_irqs(dev)) {
  859. if (np->msi_flags & NV_MSI_X_ENABLED)
  860. disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
  861. else
  862. disable_irq(np->pci_dev->irq);
  863. } else {
  864. disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
  865. disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
  866. disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
  867. }
  868. }
  869. /* In MSIX mode, a write to irqmask behaves as XOR */
  870. static void nv_enable_hw_interrupts(struct net_device *dev, u32 mask)
  871. {
  872. u8 __iomem *base = get_hwbase(dev);
  873. writel(mask, base + NvRegIrqMask);
  874. }
  875. static void nv_disable_hw_interrupts(struct net_device *dev, u32 mask)
  876. {
  877. struct fe_priv *np = get_nvpriv(dev);
  878. u8 __iomem *base = get_hwbase(dev);
  879. if (np->msi_flags & NV_MSI_X_ENABLED) {
  880. writel(mask, base + NvRegIrqMask);
  881. } else {
  882. if (np->msi_flags & NV_MSI_ENABLED)
  883. writel(0, base + NvRegMSIIrqMask);
  884. writel(0, base + NvRegIrqMask);
  885. }
  886. }
  887. #define MII_READ (-1)
  888. /* mii_rw: read/write a register on the PHY.
  889. *
  890. * Caller must guarantee serialization
  891. */
  892. static int mii_rw(struct net_device *dev, int addr, int miireg, int value)
  893. {
  894. u8 __iomem *base = get_hwbase(dev);
  895. u32 reg;
  896. int retval;
  897. writel(NVREG_MIISTAT_MASK_RW, base + NvRegMIIStatus);
  898. reg = readl(base + NvRegMIIControl);
  899. if (reg & NVREG_MIICTL_INUSE) {
  900. writel(NVREG_MIICTL_INUSE, base + NvRegMIIControl);
  901. udelay(NV_MIIBUSY_DELAY);
  902. }
  903. reg = (addr << NVREG_MIICTL_ADDRSHIFT) | miireg;
  904. if (value != MII_READ) {
  905. writel(value, base + NvRegMIIData);
  906. reg |= NVREG_MIICTL_WRITE;
  907. }
  908. writel(reg, base + NvRegMIIControl);
  909. if (reg_delay(dev, NvRegMIIControl, NVREG_MIICTL_INUSE, 0,
  910. NV_MIIPHY_DELAY, NV_MIIPHY_DELAYMAX, NULL)) {
  911. dprintk(KERN_DEBUG "%s: mii_rw of reg %d at PHY %d timed out.\n",
  912. dev->name, miireg, addr);
  913. retval = -1;
  914. } else if (value != MII_READ) {
  915. /* it was a write operation - fewer failures are detectable */
  916. dprintk(KERN_DEBUG "%s: mii_rw wrote 0x%x to reg %d at PHY %d\n",
  917. dev->name, value, miireg, addr);
  918. retval = 0;
  919. } else if (readl(base + NvRegMIIStatus) & NVREG_MIISTAT_ERROR) {
  920. dprintk(KERN_DEBUG "%s: mii_rw of reg %d at PHY %d failed.\n",
  921. dev->name, miireg, addr);
  922. retval = -1;
  923. } else {
  924. retval = readl(base + NvRegMIIData);
  925. dprintk(KERN_DEBUG "%s: mii_rw read from reg %d at PHY %d: 0x%x.\n",
  926. dev->name, miireg, addr, retval);
  927. }
  928. return retval;
  929. }
  930. static int phy_reset(struct net_device *dev, u32 bmcr_setup)
  931. {
  932. struct fe_priv *np = netdev_priv(dev);
  933. u32 miicontrol;
  934. unsigned int tries = 0;
  935. miicontrol = BMCR_RESET | bmcr_setup;
  936. if (mii_rw(dev, np->phyaddr, MII_BMCR, miicontrol)) {
  937. return -1;
  938. }
  939. /* wait for 500ms */
  940. msleep(500);
  941. /* must wait till reset is deasserted */
  942. while (miicontrol & BMCR_RESET) {
  943. msleep(10);
  944. miicontrol = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  945. /* FIXME: 100 tries seem excessive */
  946. if (tries++ > 100)
  947. return -1;
  948. }
  949. return 0;
  950. }
  951. static int phy_init(struct net_device *dev)
  952. {
  953. struct fe_priv *np = get_nvpriv(dev);
  954. u8 __iomem *base = get_hwbase(dev);
  955. u32 phyinterface, phy_reserved, mii_status, mii_control, mii_control_1000,reg;
  956. /* phy errata for E3016 phy */
  957. if (np->phy_model == PHY_MODEL_MARVELL_E3016) {
  958. reg = mii_rw(dev, np->phyaddr, MII_NCONFIG, MII_READ);
  959. reg &= ~PHY_MARVELL_E3016_INITMASK;
  960. if (mii_rw(dev, np->phyaddr, MII_NCONFIG, reg)) {
  961. printk(KERN_INFO "%s: phy write to errata reg failed.\n", pci_name(np->pci_dev));
  962. return PHY_ERROR;
  963. }
  964. }
  965. if (np->phy_oui == PHY_OUI_REALTEK) {
  966. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1)) {
  967. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  968. return PHY_ERROR;
  969. }
  970. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG2, PHY_REALTEK_INIT2)) {
  971. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  972. return PHY_ERROR;
  973. }
  974. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT3)) {
  975. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  976. return PHY_ERROR;
  977. }
  978. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG3, PHY_REALTEK_INIT4)) {
  979. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  980. return PHY_ERROR;
  981. }
  982. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1)) {
  983. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  984. return PHY_ERROR;
  985. }
  986. }
  987. /* set advertise register */
  988. reg = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
  989. reg |= (ADVERTISE_10HALF|ADVERTISE_10FULL|ADVERTISE_100HALF|ADVERTISE_100FULL|ADVERTISE_PAUSE_ASYM|ADVERTISE_PAUSE_CAP);
  990. if (mii_rw(dev, np->phyaddr, MII_ADVERTISE, reg)) {
  991. printk(KERN_INFO "%s: phy write to advertise failed.\n", pci_name(np->pci_dev));
  992. return PHY_ERROR;
  993. }
  994. /* get phy interface type */
  995. phyinterface = readl(base + NvRegPhyInterface);
  996. /* see if gigabit phy */
  997. mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
  998. if (mii_status & PHY_GIGABIT) {
  999. np->gigabit = PHY_GIGABIT;
  1000. mii_control_1000 = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
  1001. mii_control_1000 &= ~ADVERTISE_1000HALF;
  1002. if (phyinterface & PHY_RGMII)
  1003. mii_control_1000 |= ADVERTISE_1000FULL;
  1004. else
  1005. mii_control_1000 &= ~ADVERTISE_1000FULL;
  1006. if (mii_rw(dev, np->phyaddr, MII_CTRL1000, mii_control_1000)) {
  1007. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1008. return PHY_ERROR;
  1009. }
  1010. }
  1011. else
  1012. np->gigabit = 0;
  1013. mii_control = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  1014. mii_control |= BMCR_ANENABLE;
  1015. /* reset the phy
  1016. * (certain phys need bmcr to be setup with reset)
  1017. */
  1018. if (phy_reset(dev, mii_control)) {
  1019. printk(KERN_INFO "%s: phy reset failed\n", pci_name(np->pci_dev));
  1020. return PHY_ERROR;
  1021. }
  1022. /* phy vendor specific configuration */
  1023. if ((np->phy_oui == PHY_OUI_CICADA) && (phyinterface & PHY_RGMII) ) {
  1024. phy_reserved = mii_rw(dev, np->phyaddr, MII_RESV1, MII_READ);
  1025. phy_reserved &= ~(PHY_CICADA_INIT1 | PHY_CICADA_INIT2);
  1026. phy_reserved |= (PHY_CICADA_INIT3 | PHY_CICADA_INIT4);
  1027. if (mii_rw(dev, np->phyaddr, MII_RESV1, phy_reserved)) {
  1028. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1029. return PHY_ERROR;
  1030. }
  1031. phy_reserved = mii_rw(dev, np->phyaddr, MII_NCONFIG, MII_READ);
  1032. phy_reserved |= PHY_CICADA_INIT5;
  1033. if (mii_rw(dev, np->phyaddr, MII_NCONFIG, phy_reserved)) {
  1034. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1035. return PHY_ERROR;
  1036. }
  1037. }
  1038. if (np->phy_oui == PHY_OUI_CICADA) {
  1039. phy_reserved = mii_rw(dev, np->phyaddr, MII_SREVISION, MII_READ);
  1040. phy_reserved |= PHY_CICADA_INIT6;
  1041. if (mii_rw(dev, np->phyaddr, MII_SREVISION, phy_reserved)) {
  1042. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1043. return PHY_ERROR;
  1044. }
  1045. }
  1046. if (np->phy_oui == PHY_OUI_VITESSE) {
  1047. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG1, PHY_VITESSE_INIT1)) {
  1048. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1049. return PHY_ERROR;
  1050. }
  1051. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT2)) {
  1052. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1053. return PHY_ERROR;
  1054. }
  1055. phy_reserved = mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, MII_READ);
  1056. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, phy_reserved)) {
  1057. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1058. return PHY_ERROR;
  1059. }
  1060. phy_reserved = mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, MII_READ);
  1061. phy_reserved &= ~PHY_VITESSE_INIT_MSK1;
  1062. phy_reserved |= PHY_VITESSE_INIT3;
  1063. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, phy_reserved)) {
  1064. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1065. return PHY_ERROR;
  1066. }
  1067. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT4)) {
  1068. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1069. return PHY_ERROR;
  1070. }
  1071. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT5)) {
  1072. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1073. return PHY_ERROR;
  1074. }
  1075. phy_reserved = mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, MII_READ);
  1076. phy_reserved &= ~PHY_VITESSE_INIT_MSK1;
  1077. phy_reserved |= PHY_VITESSE_INIT3;
  1078. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, phy_reserved)) {
  1079. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1080. return PHY_ERROR;
  1081. }
  1082. phy_reserved = mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, MII_READ);
  1083. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, phy_reserved)) {
  1084. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1085. return PHY_ERROR;
  1086. }
  1087. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT6)) {
  1088. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1089. return PHY_ERROR;
  1090. }
  1091. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT7)) {
  1092. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1093. return PHY_ERROR;
  1094. }
  1095. phy_reserved = mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, MII_READ);
  1096. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, phy_reserved)) {
  1097. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1098. return PHY_ERROR;
  1099. }
  1100. phy_reserved = mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, MII_READ);
  1101. phy_reserved &= ~PHY_VITESSE_INIT_MSK2;
  1102. phy_reserved |= PHY_VITESSE_INIT8;
  1103. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, phy_reserved)) {
  1104. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1105. return PHY_ERROR;
  1106. }
  1107. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT9)) {
  1108. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1109. return PHY_ERROR;
  1110. }
  1111. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG1, PHY_VITESSE_INIT10)) {
  1112. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1113. return PHY_ERROR;
  1114. }
  1115. }
  1116. if (np->phy_oui == PHY_OUI_REALTEK) {
  1117. /* reset could have cleared these out, set them back */
  1118. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1)) {
  1119. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1120. return PHY_ERROR;
  1121. }
  1122. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG2, PHY_REALTEK_INIT2)) {
  1123. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1124. return PHY_ERROR;
  1125. }
  1126. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT3)) {
  1127. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1128. return PHY_ERROR;
  1129. }
  1130. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG3, PHY_REALTEK_INIT4)) {
  1131. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1132. return PHY_ERROR;
  1133. }
  1134. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1)) {
  1135. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1136. return PHY_ERROR;
  1137. }
  1138. }
  1139. /* some phys clear out pause advertisment on reset, set it back */
  1140. mii_rw(dev, np->phyaddr, MII_ADVERTISE, reg);
  1141. /* restart auto negotiation */
  1142. mii_control = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  1143. mii_control |= (BMCR_ANRESTART | BMCR_ANENABLE);
  1144. if (mii_rw(dev, np->phyaddr, MII_BMCR, mii_control)) {
  1145. return PHY_ERROR;
  1146. }
  1147. return 0;
  1148. }
  1149. static void nv_start_rx(struct net_device *dev)
  1150. {
  1151. struct fe_priv *np = netdev_priv(dev);
  1152. u8 __iomem *base = get_hwbase(dev);
  1153. u32 rx_ctrl = readl(base + NvRegReceiverControl);
  1154. dprintk(KERN_DEBUG "%s: nv_start_rx\n", dev->name);
  1155. /* Already running? Stop it. */
  1156. if ((readl(base + NvRegReceiverControl) & NVREG_RCVCTL_START) && !np->mac_in_use) {
  1157. rx_ctrl &= ~NVREG_RCVCTL_START;
  1158. writel(rx_ctrl, base + NvRegReceiverControl);
  1159. pci_push(base);
  1160. }
  1161. writel(np->linkspeed, base + NvRegLinkSpeed);
  1162. pci_push(base);
  1163. rx_ctrl |= NVREG_RCVCTL_START;
  1164. if (np->mac_in_use)
  1165. rx_ctrl &= ~NVREG_RCVCTL_RX_PATH_EN;
  1166. writel(rx_ctrl, base + NvRegReceiverControl);
  1167. dprintk(KERN_DEBUG "%s: nv_start_rx to duplex %d, speed 0x%08x.\n",
  1168. dev->name, np->duplex, np->linkspeed);
  1169. pci_push(base);
  1170. }
  1171. static void nv_stop_rx(struct net_device *dev)
  1172. {
  1173. struct fe_priv *np = netdev_priv(dev);
  1174. u8 __iomem *base = get_hwbase(dev);
  1175. u32 rx_ctrl = readl(base + NvRegReceiverControl);
  1176. dprintk(KERN_DEBUG "%s: nv_stop_rx\n", dev->name);
  1177. if (!np->mac_in_use)
  1178. rx_ctrl &= ~NVREG_RCVCTL_START;
  1179. else
  1180. rx_ctrl |= NVREG_RCVCTL_RX_PATH_EN;
  1181. writel(rx_ctrl, base + NvRegReceiverControl);
  1182. reg_delay(dev, NvRegReceiverStatus, NVREG_RCVSTAT_BUSY, 0,
  1183. NV_RXSTOP_DELAY1, NV_RXSTOP_DELAY1MAX,
  1184. KERN_INFO "nv_stop_rx: ReceiverStatus remained busy");
  1185. udelay(NV_RXSTOP_DELAY2);
  1186. if (!np->mac_in_use)
  1187. writel(0, base + NvRegLinkSpeed);
  1188. }
  1189. static void nv_start_tx(struct net_device *dev)
  1190. {
  1191. struct fe_priv *np = netdev_priv(dev);
  1192. u8 __iomem *base = get_hwbase(dev);
  1193. u32 tx_ctrl = readl(base + NvRegTransmitterControl);
  1194. dprintk(KERN_DEBUG "%s: nv_start_tx\n", dev->name);
  1195. tx_ctrl |= NVREG_XMITCTL_START;
  1196. if (np->mac_in_use)
  1197. tx_ctrl &= ~NVREG_XMITCTL_TX_PATH_EN;
  1198. writel(tx_ctrl, base + NvRegTransmitterControl);
  1199. pci_push(base);
  1200. }
  1201. static void nv_stop_tx(struct net_device *dev)
  1202. {
  1203. struct fe_priv *np = netdev_priv(dev);
  1204. u8 __iomem *base = get_hwbase(dev);
  1205. u32 tx_ctrl = readl(base + NvRegTransmitterControl);
  1206. dprintk(KERN_DEBUG "%s: nv_stop_tx\n", dev->name);
  1207. if (!np->mac_in_use)
  1208. tx_ctrl &= ~NVREG_XMITCTL_START;
  1209. else
  1210. tx_ctrl |= NVREG_XMITCTL_TX_PATH_EN;
  1211. writel(tx_ctrl, base + NvRegTransmitterControl);
  1212. reg_delay(dev, NvRegTransmitterStatus, NVREG_XMITSTAT_BUSY, 0,
  1213. NV_TXSTOP_DELAY1, NV_TXSTOP_DELAY1MAX,
  1214. KERN_INFO "nv_stop_tx: TransmitterStatus remained busy");
  1215. udelay(NV_TXSTOP_DELAY2);
  1216. if (!np->mac_in_use)
  1217. writel(readl(base + NvRegTransmitPoll) & NVREG_TRANSMITPOLL_MAC_ADDR_REV,
  1218. base + NvRegTransmitPoll);
  1219. }
  1220. static void nv_start_rxtx(struct net_device *dev)
  1221. {
  1222. nv_start_rx(dev);
  1223. nv_start_tx(dev);
  1224. }
  1225. static void nv_stop_rxtx(struct net_device *dev)
  1226. {
  1227. nv_stop_rx(dev);
  1228. nv_stop_tx(dev);
  1229. }
  1230. static void nv_txrx_reset(struct net_device *dev)
  1231. {
  1232. struct fe_priv *np = netdev_priv(dev);
  1233. u8 __iomem *base = get_hwbase(dev);
  1234. dprintk(KERN_DEBUG "%s: nv_txrx_reset\n", dev->name);
  1235. writel(NVREG_TXRXCTL_BIT2 | NVREG_TXRXCTL_RESET | np->txrxctl_bits, base + NvRegTxRxControl);
  1236. pci_push(base);
  1237. udelay(NV_TXRX_RESET_DELAY);
  1238. writel(NVREG_TXRXCTL_BIT2 | np->txrxctl_bits, base + NvRegTxRxControl);
  1239. pci_push(base);
  1240. }
  1241. static void nv_mac_reset(struct net_device *dev)
  1242. {
  1243. struct fe_priv *np = netdev_priv(dev);
  1244. u8 __iomem *base = get_hwbase(dev);
  1245. u32 temp1, temp2, temp3;
  1246. dprintk(KERN_DEBUG "%s: nv_mac_reset\n", dev->name);
  1247. writel(NVREG_TXRXCTL_BIT2 | NVREG_TXRXCTL_RESET | np->txrxctl_bits, base + NvRegTxRxControl);
  1248. pci_push(base);
  1249. /* save registers since they will be cleared on reset */
  1250. temp1 = readl(base + NvRegMacAddrA);
  1251. temp2 = readl(base + NvRegMacAddrB);
  1252. temp3 = readl(base + NvRegTransmitPoll);
  1253. writel(NVREG_MAC_RESET_ASSERT, base + NvRegMacReset);
  1254. pci_push(base);
  1255. udelay(NV_MAC_RESET_DELAY);
  1256. writel(0, base + NvRegMacReset);
  1257. pci_push(base);
  1258. udelay(NV_MAC_RESET_DELAY);
  1259. /* restore saved registers */
  1260. writel(temp1, base + NvRegMacAddrA);
  1261. writel(temp2, base + NvRegMacAddrB);
  1262. writel(temp3, base + NvRegTransmitPoll);
  1263. writel(NVREG_TXRXCTL_BIT2 | np->txrxctl_bits, base + NvRegTxRxControl);
  1264. pci_push(base);
  1265. }
  1266. static void nv_get_hw_stats(struct net_device *dev)
  1267. {
  1268. struct fe_priv *np = netdev_priv(dev);
  1269. u8 __iomem *base = get_hwbase(dev);
  1270. np->estats.tx_bytes += readl(base + NvRegTxCnt);
  1271. np->estats.tx_zero_rexmt += readl(base + NvRegTxZeroReXmt);
  1272. np->estats.tx_one_rexmt += readl(base + NvRegTxOneReXmt);
  1273. np->estats.tx_many_rexmt += readl(base + NvRegTxManyReXmt);
  1274. np->estats.tx_late_collision += readl(base + NvRegTxLateCol);
  1275. np->estats.tx_fifo_errors += readl(base + NvRegTxUnderflow);
  1276. np->estats.tx_carrier_errors += readl(base + NvRegTxLossCarrier);
  1277. np->estats.tx_excess_deferral += readl(base + NvRegTxExcessDef);
  1278. np->estats.tx_retry_error += readl(base + NvRegTxRetryErr);
  1279. np->estats.rx_frame_error += readl(base + NvRegRxFrameErr);
  1280. np->estats.rx_extra_byte += readl(base + NvRegRxExtraByte);
  1281. np->estats.rx_late_collision += readl(base + NvRegRxLateCol);
  1282. np->estats.rx_runt += readl(base + NvRegRxRunt);
  1283. np->estats.rx_frame_too_long += readl(base + NvRegRxFrameTooLong);
  1284. np->estats.rx_over_errors += readl(base + NvRegRxOverflow);
  1285. np->estats.rx_crc_errors += readl(base + NvRegRxFCSErr);
  1286. np->estats.rx_frame_align_error += readl(base + NvRegRxFrameAlignErr);
  1287. np->estats.rx_length_error += readl(base + NvRegRxLenErr);
  1288. np->estats.rx_unicast += readl(base + NvRegRxUnicast);
  1289. np->estats.rx_multicast += readl(base + NvRegRxMulticast);
  1290. np->estats.rx_broadcast += readl(base + NvRegRxBroadcast);
  1291. np->estats.rx_packets =
  1292. np->estats.rx_unicast +
  1293. np->estats.rx_multicast +
  1294. np->estats.rx_broadcast;
  1295. np->estats.rx_errors_total =
  1296. np->estats.rx_crc_errors +
  1297. np->estats.rx_over_errors +
  1298. np->estats.rx_frame_error +
  1299. (np->estats.rx_frame_align_error - np->estats.rx_extra_byte) +
  1300. np->estats.rx_late_collision +
  1301. np->estats.rx_runt +
  1302. np->estats.rx_frame_too_long;
  1303. np->estats.tx_errors_total =
  1304. np->estats.tx_late_collision +
  1305. np->estats.tx_fifo_errors +
  1306. np->estats.tx_carrier_errors +
  1307. np->estats.tx_excess_deferral +
  1308. np->estats.tx_retry_error;
  1309. if (np->driver_data & DEV_HAS_STATISTICS_V2) {
  1310. np->estats.tx_deferral += readl(base + NvRegTxDef);
  1311. np->estats.tx_packets += readl(base + NvRegTxFrame);
  1312. np->estats.rx_bytes += readl(base + NvRegRxCnt);
  1313. np->estats.tx_pause += readl(base + NvRegTxPause);
  1314. np->estats.rx_pause += readl(base + NvRegRxPause);
  1315. np->estats.rx_drop_frame += readl(base + NvRegRxDropFrame);
  1316. }
  1317. }
  1318. /*
  1319. * nv_get_stats: dev->get_stats function
  1320. * Get latest stats value from the nic.
  1321. * Called with read_lock(&dev_base_lock) held for read -
  1322. * only synchronized against unregister_netdevice.
  1323. */
  1324. static struct net_device_stats *nv_get_stats(struct net_device *dev)
  1325. {
  1326. struct fe_priv *np = netdev_priv(dev);
  1327. /* If the nic supports hw counters then retrieve latest values */
  1328. if (np->driver_data & (DEV_HAS_STATISTICS_V1|DEV_HAS_STATISTICS_V2)) {
  1329. nv_get_hw_stats(dev);
  1330. /* copy to net_device stats */
  1331. dev->stats.tx_bytes = np->estats.tx_bytes;
  1332. dev->stats.tx_fifo_errors = np->estats.tx_fifo_errors;
  1333. dev->stats.tx_carrier_errors = np->estats.tx_carrier_errors;
  1334. dev->stats.rx_crc_errors = np->estats.rx_crc_errors;
  1335. dev->stats.rx_over_errors = np->estats.rx_over_errors;
  1336. dev->stats.rx_errors = np->estats.rx_errors_total;
  1337. dev->stats.tx_errors = np->estats.tx_errors_total;
  1338. }
  1339. return &dev->stats;
  1340. }
  1341. /*
  1342. * nv_alloc_rx: fill rx ring entries.
  1343. * Return 1 if the allocations for the skbs failed and the
  1344. * rx engine is without Available descriptors
  1345. */
  1346. static int nv_alloc_rx(struct net_device *dev)
  1347. {
  1348. struct fe_priv *np = netdev_priv(dev);
  1349. struct ring_desc* less_rx;
  1350. less_rx = np->get_rx.orig;
  1351. if (less_rx-- == np->first_rx.orig)
  1352. less_rx = np->last_rx.orig;
  1353. while (np->put_rx.orig != less_rx) {
  1354. struct sk_buff *skb = dev_alloc_skb(np->rx_buf_sz + NV_RX_ALLOC_PAD);
  1355. if (skb) {
  1356. np->put_rx_ctx->skb = skb;
  1357. np->put_rx_ctx->dma = pci_map_single(np->pci_dev,
  1358. skb->data,
  1359. skb_tailroom(skb),
  1360. PCI_DMA_FROMDEVICE);
  1361. np->put_rx_ctx->dma_len = skb_tailroom(skb);
  1362. np->put_rx.orig->buf = cpu_to_le32(np->put_rx_ctx->dma);
  1363. wmb();
  1364. np->put_rx.orig->flaglen = cpu_to_le32(np->rx_buf_sz | NV_RX_AVAIL);
  1365. if (unlikely(np->put_rx.orig++ == np->last_rx.orig))
  1366. np->put_rx.orig = np->first_rx.orig;
  1367. if (unlikely(np->put_rx_ctx++ == np->last_rx_ctx))
  1368. np->put_rx_ctx = np->first_rx_ctx;
  1369. } else {
  1370. return 1;
  1371. }
  1372. }
  1373. return 0;
  1374. }
  1375. static int nv_alloc_rx_optimized(struct net_device *dev)
  1376. {
  1377. struct fe_priv *np = netdev_priv(dev);
  1378. struct ring_desc_ex* less_rx;
  1379. less_rx = np->get_rx.ex;
  1380. if (less_rx-- == np->first_rx.ex)
  1381. less_rx = np->last_rx.ex;
  1382. while (np->put_rx.ex != less_rx) {
  1383. struct sk_buff *skb = dev_alloc_skb(np->rx_buf_sz + NV_RX_ALLOC_PAD);
  1384. if (skb) {
  1385. np->put_rx_ctx->skb = skb;
  1386. np->put_rx_ctx->dma = pci_map_single(np->pci_dev,
  1387. skb->data,
  1388. skb_tailroom(skb),
  1389. PCI_DMA_FROMDEVICE);
  1390. np->put_rx_ctx->dma_len = skb_tailroom(skb);
  1391. np->put_rx.ex->bufhigh = cpu_to_le32(dma_high(np->put_rx_ctx->dma));
  1392. np->put_rx.ex->buflow = cpu_to_le32(dma_low(np->put_rx_ctx->dma));
  1393. wmb();
  1394. np->put_rx.ex->flaglen = cpu_to_le32(np->rx_buf_sz | NV_RX2_AVAIL);
  1395. if (unlikely(np->put_rx.ex++ == np->last_rx.ex))
  1396. np->put_rx.ex = np->first_rx.ex;
  1397. if (unlikely(np->put_rx_ctx++ == np->last_rx_ctx))
  1398. np->put_rx_ctx = np->first_rx_ctx;
  1399. } else {
  1400. return 1;
  1401. }
  1402. }
  1403. return 0;
  1404. }
  1405. /* If rx bufs are exhausted called after 50ms to attempt to refresh */
  1406. #ifdef CONFIG_FORCEDETH_NAPI
  1407. static void nv_do_rx_refill(unsigned long data)
  1408. {
  1409. struct net_device *dev = (struct net_device *) data;
  1410. struct fe_priv *np = netdev_priv(dev);
  1411. /* Just reschedule NAPI rx processing */
  1412. netif_rx_schedule(dev, &np->napi);
  1413. }
  1414. #else
  1415. static void nv_do_rx_refill(unsigned long data)
  1416. {
  1417. struct net_device *dev = (struct net_device *) data;
  1418. struct fe_priv *np = netdev_priv(dev);
  1419. int retcode;
  1420. if (!using_multi_irqs(dev)) {
  1421. if (np->msi_flags & NV_MSI_X_ENABLED)
  1422. disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
  1423. else
  1424. disable_irq(np->pci_dev->irq);
  1425. } else {
  1426. disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
  1427. }
  1428. if (!nv_optimized(np))
  1429. retcode = nv_alloc_rx(dev);
  1430. else
  1431. retcode = nv_alloc_rx_optimized(dev);
  1432. if (retcode) {
  1433. spin_lock_irq(&np->lock);
  1434. if (!np->in_shutdown)
  1435. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  1436. spin_unlock_irq(&np->lock);
  1437. }
  1438. if (!using_multi_irqs(dev)) {
  1439. if (np->msi_flags & NV_MSI_X_ENABLED)
  1440. enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
  1441. else
  1442. enable_irq(np->pci_dev->irq);
  1443. } else {
  1444. enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
  1445. }
  1446. }
  1447. #endif
  1448. static void nv_init_rx(struct net_device *dev)
  1449. {
  1450. struct fe_priv *np = netdev_priv(dev);
  1451. int i;
  1452. np->get_rx = np->put_rx = np->first_rx = np->rx_ring;
  1453. if (!nv_optimized(np))
  1454. np->last_rx.orig = &np->rx_ring.orig[np->rx_ring_size-1];
  1455. else
  1456. np->last_rx.ex = &np->rx_ring.ex[np->rx_ring_size-1];
  1457. np->get_rx_ctx = np->put_rx_ctx = np->first_rx_ctx = np->rx_skb;
  1458. np->last_rx_ctx = &np->rx_skb[np->rx_ring_size-1];
  1459. for (i = 0; i < np->rx_ring_size; i++) {
  1460. if (!nv_optimized(np)) {
  1461. np->rx_ring.orig[i].flaglen = 0;
  1462. np->rx_ring.orig[i].buf = 0;
  1463. } else {
  1464. np->rx_ring.ex[i].flaglen = 0;
  1465. np->rx_ring.ex[i].txvlan = 0;
  1466. np->rx_ring.ex[i].bufhigh = 0;
  1467. np->rx_ring.ex[i].buflow = 0;
  1468. }
  1469. np->rx_skb[i].skb = NULL;
  1470. np->rx_skb[i].dma = 0;
  1471. }
  1472. }
  1473. static void nv_init_tx(struct net_device *dev)
  1474. {
  1475. struct fe_priv *np = netdev_priv(dev);
  1476. int i;
  1477. np->get_tx = np->put_tx = np->first_tx = np->tx_ring;
  1478. if (!nv_optimized(np))
  1479. np->last_tx.orig = &np->tx_ring.orig[np->tx_ring_size-1];
  1480. else
  1481. np->last_tx.ex = &np->tx_ring.ex[np->tx_ring_size-1];
  1482. np->get_tx_ctx = np->put_tx_ctx = np->first_tx_ctx = np->tx_skb;
  1483. np->last_tx_ctx = &np->tx_skb[np->tx_ring_size-1];
  1484. np->tx_pkts_in_progress = 0;
  1485. np->tx_change_owner = NULL;
  1486. np->tx_end_flip = NULL;
  1487. for (i = 0; i < np->tx_ring_size; i++) {
  1488. if (!nv_optimized(np)) {
  1489. np->tx_ring.orig[i].flaglen = 0;
  1490. np->tx_ring.orig[i].buf = 0;
  1491. } else {
  1492. np->tx_ring.ex[i].flaglen = 0;
  1493. np->tx_ring.ex[i].txvlan = 0;
  1494. np->tx_ring.ex[i].bufhigh = 0;
  1495. np->tx_ring.ex[i].buflow = 0;
  1496. }
  1497. np->tx_skb[i].skb = NULL;
  1498. np->tx_skb[i].dma = 0;
  1499. np->tx_skb[i].dma_len = 0;
  1500. np->tx_skb[i].first_tx_desc = NULL;
  1501. np->tx_skb[i].next_tx_ctx = NULL;
  1502. }
  1503. }
  1504. static int nv_init_ring(struct net_device *dev)
  1505. {
  1506. struct fe_priv *np = netdev_priv(dev);
  1507. nv_init_tx(dev);
  1508. nv_init_rx(dev);
  1509. if (!nv_optimized(np))
  1510. return nv_alloc_rx(dev);
  1511. else
  1512. return nv_alloc_rx_optimized(dev);
  1513. }
  1514. static int nv_release_txskb(struct net_device *dev, struct nv_skb_map* tx_skb)
  1515. {
  1516. struct fe_priv *np = netdev_priv(dev);
  1517. if (tx_skb->dma) {
  1518. pci_unmap_page(np->pci_dev, tx_skb->dma,
  1519. tx_skb->dma_len,
  1520. PCI_DMA_TODEVICE);
  1521. tx_skb->dma = 0;
  1522. }
  1523. if (tx_skb->skb) {
  1524. dev_kfree_skb_any(tx_skb->skb);
  1525. tx_skb->skb = NULL;
  1526. return 1;
  1527. } else {
  1528. return 0;
  1529. }
  1530. }
  1531. static void nv_drain_tx(struct net_device *dev)
  1532. {
  1533. struct fe_priv *np = netdev_priv(dev);
  1534. unsigned int i;
  1535. for (i = 0; i < np->tx_ring_size; i++) {
  1536. if (!nv_optimized(np)) {
  1537. np->tx_ring.orig[i].flaglen = 0;
  1538. np->tx_ring.orig[i].buf = 0;
  1539. } else {
  1540. np->tx_ring.ex[i].flaglen = 0;
  1541. np->tx_ring.ex[i].txvlan = 0;
  1542. np->tx_ring.ex[i].bufhigh = 0;
  1543. np->tx_ring.ex[i].buflow = 0;
  1544. }
  1545. if (nv_release_txskb(dev, &np->tx_skb[i]))
  1546. dev->stats.tx_dropped++;
  1547. np->tx_skb[i].dma = 0;
  1548. np->tx_skb[i].dma_len = 0;
  1549. np->tx_skb[i].first_tx_desc = NULL;
  1550. np->tx_skb[i].next_tx_ctx = NULL;
  1551. }
  1552. np->tx_pkts_in_progress = 0;
  1553. np->tx_change_owner = NULL;
  1554. np->tx_end_flip = NULL;
  1555. }
  1556. static void nv_drain_rx(struct net_device *dev)
  1557. {
  1558. struct fe_priv *np = netdev_priv(dev);
  1559. int i;
  1560. for (i = 0; i < np->rx_ring_size; i++) {
  1561. if (!nv_optimized(np)) {
  1562. np->rx_ring.orig[i].flaglen = 0;
  1563. np->rx_ring.orig[i].buf = 0;
  1564. } else {
  1565. np->rx_ring.ex[i].flaglen = 0;
  1566. np->rx_ring.ex[i].txvlan = 0;
  1567. np->rx_ring.ex[i].bufhigh = 0;
  1568. np->rx_ring.ex[i].buflow = 0;
  1569. }
  1570. wmb();
  1571. if (np->rx_skb[i].skb) {
  1572. pci_unmap_single(np->pci_dev, np->rx_skb[i].dma,
  1573. (skb_end_pointer(np->rx_skb[i].skb) -
  1574. np->rx_skb[i].skb->data),
  1575. PCI_DMA_FROMDEVICE);
  1576. dev_kfree_skb(np->rx_skb[i].skb);
  1577. np->rx_skb[i].skb = NULL;
  1578. }
  1579. }
  1580. }
  1581. static void nv_drain_rxtx(struct net_device *dev)
  1582. {
  1583. nv_drain_tx(dev);
  1584. nv_drain_rx(dev);
  1585. }
  1586. static inline u32 nv_get_empty_tx_slots(struct fe_priv *np)
  1587. {
  1588. return (u32)(np->tx_ring_size - ((np->tx_ring_size + (np->put_tx_ctx - np->get_tx_ctx)) % np->tx_ring_size));
  1589. }
  1590. /*
  1591. * nv_start_xmit: dev->hard_start_xmit function
  1592. * Called with netif_tx_lock held.
  1593. */
  1594. static int nv_start_xmit(struct sk_buff *skb, struct net_device *dev)
  1595. {
  1596. struct fe_priv *np = netdev_priv(dev);
  1597. u32 tx_flags = 0;
  1598. u32 tx_flags_extra = (np->desc_ver == DESC_VER_1 ? NV_TX_LASTPACKET : NV_TX2_LASTPACKET);
  1599. unsigned int fragments = skb_shinfo(skb)->nr_frags;
  1600. unsigned int i;
  1601. u32 offset = 0;
  1602. u32 bcnt;
  1603. u32 size = skb->len-skb->data_len;
  1604. u32 entries = (size >> NV_TX2_TSO_MAX_SHIFT) + ((size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0);
  1605. u32 empty_slots;
  1606. struct ring_desc* put_tx;
  1607. struct ring_desc* start_tx;
  1608. struct ring_desc* prev_tx;
  1609. struct nv_skb_map* prev_tx_ctx;
  1610. unsigned long flags;
  1611. /* add fragments to entries count */
  1612. for (i = 0; i < fragments; i++) {
  1613. entries += (skb_shinfo(skb)->frags[i].size >> NV_TX2_TSO_MAX_SHIFT) +
  1614. ((skb_shinfo(skb)->frags[i].size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0);
  1615. }
  1616. empty_slots = nv_get_empty_tx_slots(np);
  1617. if (unlikely(empty_slots <= entries)) {
  1618. spin_lock_irqsave(&np->lock, flags);
  1619. netif_stop_queue(dev);
  1620. np->tx_stop = 1;
  1621. spin_unlock_irqrestore(&np->lock, flags);
  1622. return NETDEV_TX_BUSY;
  1623. }
  1624. start_tx = put_tx = np->put_tx.orig;
  1625. /* setup the header buffer */
  1626. do {
  1627. prev_tx = put_tx;
  1628. prev_tx_ctx = np->put_tx_ctx;
  1629. bcnt = (size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : size;
  1630. np->put_tx_ctx->dma = pci_map_single(np->pci_dev, skb->data + offset, bcnt,
  1631. PCI_DMA_TODEVICE);
  1632. np->put_tx_ctx->dma_len = bcnt;
  1633. put_tx->buf = cpu_to_le32(np->put_tx_ctx->dma);
  1634. put_tx->flaglen = cpu_to_le32((bcnt-1) | tx_flags);
  1635. tx_flags = np->tx_flags;
  1636. offset += bcnt;
  1637. size -= bcnt;
  1638. if (unlikely(put_tx++ == np->last_tx.orig))
  1639. put_tx = np->first_tx.orig;
  1640. if (unlikely(np->put_tx_ctx++ == np->last_tx_ctx))
  1641. np->put_tx_ctx = np->first_tx_ctx;
  1642. } while (size);
  1643. /* setup the fragments */
  1644. for (i = 0; i < fragments; i++) {
  1645. skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  1646. u32 size = frag->size;
  1647. offset = 0;
  1648. do {
  1649. prev_tx = put_tx;
  1650. prev_tx_ctx = np->put_tx_ctx;
  1651. bcnt = (size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : size;
  1652. np->put_tx_ctx->dma = pci_map_page(np->pci_dev, frag->page, frag->page_offset+offset, bcnt,
  1653. PCI_DMA_TODEVICE);
  1654. np->put_tx_ctx->dma_len = bcnt;
  1655. put_tx->buf = cpu_to_le32(np->put_tx_ctx->dma);
  1656. put_tx->flaglen = cpu_to_le32((bcnt-1) | tx_flags);
  1657. offset += bcnt;
  1658. size -= bcnt;
  1659. if (unlikely(put_tx++ == np->last_tx.orig))
  1660. put_tx = np->first_tx.orig;
  1661. if (unlikely(np->put_tx_ctx++ == np->last_tx_ctx))
  1662. np->put_tx_ctx = np->first_tx_ctx;
  1663. } while (size);
  1664. }
  1665. /* set last fragment flag */
  1666. prev_tx->flaglen |= cpu_to_le32(tx_flags_extra);
  1667. /* save skb in this slot's context area */
  1668. prev_tx_ctx->skb = skb;
  1669. if (skb_is_gso(skb))
  1670. tx_flags_extra = NV_TX2_TSO | (skb_shinfo(skb)->gso_size << NV_TX2_TSO_SHIFT);
  1671. else
  1672. tx_flags_extra = skb->ip_summed == CHECKSUM_PARTIAL ?
  1673. NV_TX2_CHECKSUM_L3 | NV_TX2_CHECKSUM_L4 : 0;
  1674. spin_lock_irqsave(&np->lock, flags);
  1675. /* set tx flags */
  1676. start_tx->flaglen |= cpu_to_le32(tx_flags | tx_flags_extra);
  1677. np->put_tx.orig = put_tx;
  1678. spin_unlock_irqrestore(&np->lock, flags);
  1679. dprintk(KERN_DEBUG "%s: nv_start_xmit: entries %d queued for transmission. tx_flags_extra: %x\n",
  1680. dev->name, entries, tx_flags_extra);
  1681. {
  1682. int j;
  1683. for (j=0; j<64; j++) {
  1684. if ((j%16) == 0)
  1685. dprintk("\n%03x:", j);
  1686. dprintk(" %02x", ((unsigned char*)skb->data)[j]);
  1687. }
  1688. dprintk("\n");
  1689. }
  1690. dev->trans_start = jiffies;
  1691. writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  1692. return NETDEV_TX_OK;
  1693. }
  1694. static int nv_start_xmit_optimized(struct sk_buff *skb, struct net_device *dev)
  1695. {
  1696. struct fe_priv *np = netdev_priv(dev);
  1697. u32 tx_flags = 0;
  1698. u32 tx_flags_extra;
  1699. unsigned int fragments = skb_shinfo(skb)->nr_frags;
  1700. unsigned int i;
  1701. u32 offset = 0;
  1702. u32 bcnt;
  1703. u32 size = skb->len-skb->data_len;
  1704. u32 entries = (size >> NV_TX2_TSO_MAX_SHIFT) + ((size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0);
  1705. u32 empty_slots;
  1706. struct ring_desc_ex* put_tx;
  1707. struct ring_desc_ex* start_tx;
  1708. struct ring_desc_ex* prev_tx;
  1709. struct nv_skb_map* prev_tx_ctx;
  1710. struct nv_skb_map* start_tx_ctx;
  1711. unsigned long flags;
  1712. /* add fragments to entries count */
  1713. for (i = 0; i < fragments; i++) {
  1714. entries += (skb_shinfo(skb)->frags[i].size >> NV_TX2_TSO_MAX_SHIFT) +
  1715. ((skb_shinfo(skb)->frags[i].size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0);
  1716. }
  1717. empty_slots = nv_get_empty_tx_slots(np);
  1718. if (unlikely(empty_slots <= entries)) {
  1719. spin_lock_irqsave(&np->lock, flags);
  1720. netif_stop_queue(dev);
  1721. np->tx_stop = 1;
  1722. spin_unlock_irqrestore(&np->lock, flags);
  1723. return NETDEV_TX_BUSY;
  1724. }
  1725. start_tx = put_tx = np->put_tx.ex;
  1726. start_tx_ctx = np->put_tx_ctx;
  1727. /* setup the header buffer */
  1728. do {
  1729. prev_tx = put_tx;
  1730. prev_tx_ctx = np->put_tx_ctx;
  1731. bcnt = (size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : size;
  1732. np->put_tx_ctx->dma = pci_map_single(np->pci_dev, skb->data + offset, bcnt,
  1733. PCI_DMA_TODEVICE);
  1734. np->put_tx_ctx->dma_len = bcnt;
  1735. put_tx->bufhigh = cpu_to_le32(dma_high(np->put_tx_ctx->dma));
  1736. put_tx->buflow = cpu_to_le32(dma_low(np->put_tx_ctx->dma));
  1737. put_tx->flaglen = cpu_to_le32((bcnt-1) | tx_flags);
  1738. tx_flags = NV_TX2_VALID;
  1739. offset += bcnt;
  1740. size -= bcnt;
  1741. if (unlikely(put_tx++ == np->last_tx.ex))
  1742. put_tx = np->first_tx.ex;
  1743. if (unlikely(np->put_tx_ctx++ == np->last_tx_ctx))
  1744. np->put_tx_ctx = np->first_tx_ctx;
  1745. } while (size);
  1746. /* setup the fragments */
  1747. for (i = 0; i < fragments; i++) {
  1748. skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  1749. u32 size = frag->size;
  1750. offset = 0;
  1751. do {
  1752. prev_tx = put_tx;
  1753. prev_tx_ctx = np->put_tx_ctx;
  1754. bcnt = (size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : size;
  1755. np->put_tx_ctx->dma = pci_map_page(np->pci_dev, frag->page, frag->page_offset+offset, bcnt,
  1756. PCI_DMA_TODEVICE);
  1757. np->put_tx_ctx->dma_len = bcnt;
  1758. put_tx->bufhigh = cpu_to_le32(dma_high(np->put_tx_ctx->dma));
  1759. put_tx->buflow = cpu_to_le32(dma_low(np->put_tx_ctx->dma));
  1760. put_tx->flaglen = cpu_to_le32((bcnt-1) | tx_flags);
  1761. offset += bcnt;
  1762. size -= bcnt;
  1763. if (unlikely(put_tx++ == np->last_tx.ex))
  1764. put_tx = np->first_tx.ex;
  1765. if (unlikely(np->put_tx_ctx++ == np->last_tx_ctx))
  1766. np->put_tx_ctx = np->first_tx_ctx;
  1767. } while (size);
  1768. }
  1769. /* set last fragment flag */
  1770. prev_tx->flaglen |= cpu_to_le32(NV_TX2_LASTPACKET);
  1771. /* save skb in this slot's context area */
  1772. prev_tx_ctx->skb = skb;
  1773. if (skb_is_gso(skb))
  1774. tx_flags_extra = NV_TX2_TSO | (skb_shinfo(skb)->gso_size << NV_TX2_TSO_SHIFT);
  1775. else
  1776. tx_flags_extra = skb->ip_summed == CHECKSUM_PARTIAL ?
  1777. NV_TX2_CHECKSUM_L3 | NV_TX2_CHECKSUM_L4 : 0;
  1778. /* vlan tag */
  1779. if (likely(!np->vlangrp)) {
  1780. start_tx->txvlan = 0;
  1781. } else {
  1782. if (vlan_tx_tag_present(skb))
  1783. start_tx->txvlan = cpu_to_le32(NV_TX3_VLAN_TAG_PRESENT | vlan_tx_tag_get(skb));
  1784. else
  1785. start_tx->txvlan = 0;
  1786. }
  1787. spin_lock_irqsave(&np->lock, flags);
  1788. if (np->tx_limit) {
  1789. /* Limit the number of outstanding tx. Setup all fragments, but
  1790. * do not set the VALID bit on the first descriptor. Save a pointer
  1791. * to that descriptor and also for next skb_map element.
  1792. */
  1793. if (np->tx_pkts_in_progress == NV_TX_LIMIT_COUNT) {
  1794. if (!np->tx_change_owner)
  1795. np->tx_change_owner = start_tx_ctx;
  1796. /* remove VALID bit */
  1797. tx_flags &= ~NV_TX2_VALID;
  1798. start_tx_ctx->first_tx_desc = start_tx;
  1799. start_tx_ctx->next_tx_ctx = np->put_tx_ctx;
  1800. np->tx_end_flip = np->put_tx_ctx;
  1801. } else {
  1802. np->tx_pkts_in_progress++;
  1803. }
  1804. }
  1805. /* set tx flags */
  1806. start_tx->flaglen |= cpu_to_le32(tx_flags | tx_flags_extra);
  1807. np->put_tx.ex = put_tx;
  1808. spin_unlock_irqrestore(&np->lock, flags);
  1809. dprintk(KERN_DEBUG "%s: nv_start_xmit_optimized: entries %d queued for transmission. tx_flags_extra: %x\n",
  1810. dev->name, entries, tx_flags_extra);
  1811. {
  1812. int j;
  1813. for (j=0; j<64; j++) {
  1814. if ((j%16) == 0)
  1815. dprintk("\n%03x:", j);
  1816. dprintk(" %02x", ((unsigned char*)skb->data)[j]);
  1817. }
  1818. dprintk("\n");
  1819. }
  1820. dev->trans_start = jiffies;
  1821. writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  1822. return NETDEV_TX_OK;
  1823. }
  1824. static inline void nv_tx_flip_ownership(struct net_device *dev)
  1825. {
  1826. struct fe_priv *np = netdev_priv(dev);
  1827. np->tx_pkts_in_progress--;
  1828. if (np->tx_change_owner) {
  1829. np->tx_change_owner->first_tx_desc->flaglen |=
  1830. cpu_to_le32(NV_TX2_VALID);
  1831. np->tx_pkts_in_progress++;
  1832. np->tx_change_owner = np->tx_change_owner->next_tx_ctx;
  1833. if (np->tx_change_owner == np->tx_end_flip)
  1834. np->tx_change_owner = NULL;
  1835. writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  1836. }
  1837. }
  1838. /*
  1839. * nv_tx_done: check for completed packets, release the skbs.
  1840. *
  1841. * Caller must own np->lock.
  1842. */
  1843. static void nv_tx_done(struct net_device *dev)
  1844. {
  1845. struct fe_priv *np = netdev_priv(dev);
  1846. u32 flags;
  1847. struct ring_desc* orig_get_tx = np->get_tx.orig;
  1848. while ((np->get_tx.orig != np->put_tx.orig) &&
  1849. !((flags = le32_to_cpu(np->get_tx.orig->flaglen)) & NV_TX_VALID)) {
  1850. dprintk(KERN_DEBUG "%s: nv_tx_done: flags 0x%x.\n",
  1851. dev->name, flags);
  1852. pci_unmap_page(np->pci_dev, np->get_tx_ctx->dma,
  1853. np->get_tx_ctx->dma_len,
  1854. PCI_DMA_TODEVICE);
  1855. np->get_tx_ctx->dma = 0;
  1856. if (np->desc_ver == DESC_VER_1) {
  1857. if (flags & NV_TX_LASTPACKET) {
  1858. if (flags & NV_TX_ERROR) {
  1859. if (flags & NV_TX_UNDERFLOW)
  1860. dev->stats.tx_fifo_errors++;
  1861. if (flags & NV_TX_CARRIERLOST)
  1862. dev->stats.tx_carrier_errors++;
  1863. dev->stats.tx_errors++;
  1864. } else {
  1865. dev->stats.tx_packets++;
  1866. dev->stats.tx_bytes += np->get_tx_ctx->skb->len;
  1867. }
  1868. dev_kfree_skb_any(np->get_tx_ctx->skb);
  1869. np->get_tx_ctx->skb = NULL;
  1870. }
  1871. } else {
  1872. if (flags & NV_TX2_LASTPACKET) {
  1873. if (flags & NV_TX2_ERROR) {
  1874. if (flags & NV_TX2_UNDERFLOW)
  1875. dev->stats.tx_fifo_errors++;
  1876. if (flags & NV_TX2_CARRIERLOST)
  1877. dev->stats.tx_carrier_errors++;
  1878. dev->stats.tx_errors++;
  1879. } else {
  1880. dev->stats.tx_packets++;
  1881. dev->stats.tx_bytes += np->get_tx_ctx->skb->len;
  1882. }
  1883. dev_kfree_skb_any(np->get_tx_ctx->skb);
  1884. np->get_tx_ctx->skb = NULL;
  1885. }
  1886. }
  1887. if (unlikely(np->get_tx.orig++ == np->last_tx.orig))
  1888. np->get_tx.orig = np->first_tx.orig;
  1889. if (unlikely(np->get_tx_ctx++ == np->last_tx_ctx))
  1890. np->get_tx_ctx = np->first_tx_ctx;
  1891. }
  1892. if (unlikely((np->tx_stop == 1) && (np->get_tx.orig != orig_get_tx))) {
  1893. np->tx_stop = 0;
  1894. netif_wake_queue(dev);
  1895. }
  1896. }
  1897. static void nv_tx_done_optimized(struct net_device *dev, int limit)
  1898. {
  1899. struct fe_priv *np = netdev_priv(dev);
  1900. u32 flags;
  1901. struct ring_desc_ex* orig_get_tx = np->get_tx.ex;
  1902. while ((np->get_tx.ex != np->put_tx.ex) &&
  1903. !((flags = le32_to_cpu(np->get_tx.ex->flaglen)) & NV_TX_VALID) &&
  1904. (limit-- > 0)) {
  1905. dprintk(KERN_DEBUG "%s: nv_tx_done_optimized: flags 0x%x.\n",
  1906. dev->name, flags);
  1907. pci_unmap_page(np->pci_dev, np->get_tx_ctx->dma,
  1908. np->get_tx_ctx->dma_len,
  1909. PCI_DMA_TODEVICE);
  1910. np->get_tx_ctx->dma = 0;
  1911. if (flags & NV_TX2_LASTPACKET) {
  1912. if (!(flags & NV_TX2_ERROR))
  1913. dev->stats.tx_packets++;
  1914. dev_kfree_skb_any(np->get_tx_ctx->skb);
  1915. np->get_tx_ctx->skb = NULL;
  1916. if (np->tx_limit) {
  1917. nv_tx_flip_ownership(dev);
  1918. }
  1919. }
  1920. if (unlikely(np->get_tx.ex++ == np->last_tx.ex))
  1921. np->get_tx.ex = np->first_tx.ex;
  1922. if (unlikely(np->get_tx_ctx++ == np->last_tx_ctx))
  1923. np->get_tx_ctx = np->first_tx_ctx;
  1924. }
  1925. if (unlikely((np->tx_stop == 1) && (np->get_tx.ex != orig_get_tx))) {
  1926. np->tx_stop = 0;
  1927. netif_wake_queue(dev);
  1928. }
  1929. }
  1930. /*
  1931. * nv_tx_timeout: dev->tx_timeout function
  1932. * Called with netif_tx_lock held.
  1933. */
  1934. static void nv_tx_timeout(struct net_device *dev)
  1935. {
  1936. struct fe_priv *np = netdev_priv(dev);
  1937. u8 __iomem *base = get_hwbase(dev);
  1938. u32 status;
  1939. if (np->msi_flags & NV_MSI_X_ENABLED)
  1940. status = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQSTAT_MASK;
  1941. else
  1942. status = readl(base + NvRegIrqStatus) & NVREG_IRQSTAT_MASK;
  1943. printk(KERN_INFO "%s: Got tx_timeout. irq: %08x\n", dev->name, status);
  1944. {
  1945. int i;
  1946. printk(KERN_INFO "%s: Ring at %lx\n",
  1947. dev->name, (unsigned long)np->ring_addr);
  1948. printk(KERN_INFO "%s: Dumping tx registers\n", dev->name);
  1949. for (i=0;i<=np->register_size;i+= 32) {
  1950. printk(KERN_INFO "%3x: %08x %08x %08x %08x %08x %08x %08x %08x\n",
  1951. i,
  1952. readl(base + i + 0), readl(base + i + 4),
  1953. readl(base + i + 8), readl(base + i + 12),
  1954. readl(base + i + 16), readl(base + i + 20),
  1955. readl(base + i + 24), readl(base + i + 28));
  1956. }
  1957. printk(KERN_INFO "%s: Dumping tx ring\n", dev->name);
  1958. for (i=0;i<np->tx_ring_size;i+= 4) {
  1959. if (!nv_optimized(np)) {
  1960. printk(KERN_INFO "%03x: %08x %08x // %08x %08x // %08x %08x // %08x %08x\n",
  1961. i,
  1962. le32_to_cpu(np->tx_ring.orig[i].buf),
  1963. le32_to_cpu(np->tx_ring.orig[i].flaglen),
  1964. le32_to_cpu(np->tx_ring.orig[i+1].buf),
  1965. le32_to_cpu(np->tx_ring.orig[i+1].flaglen),
  1966. le32_to_cpu(np->tx_ring.orig[i+2].buf),
  1967. le32_to_cpu(np->tx_ring.orig[i+2].flaglen),
  1968. le32_to_cpu(np->tx_ring.orig[i+3].buf),
  1969. le32_to_cpu(np->tx_ring.orig[i+3].flaglen));
  1970. } else {
  1971. printk(KERN_INFO "%03x: %08x %08x %08x // %08x %08x %08x // %08x %08x %08x // %08x %08x %08x\n",
  1972. i,
  1973. le32_to_cpu(np->tx_ring.ex[i].bufhigh),
  1974. le32_to_cpu(np->tx_ring.ex[i].buflow),
  1975. le32_to_cpu(np->tx_ring.ex[i].flaglen),
  1976. le32_to_cpu(np->tx_ring.ex[i+1].bufhigh),
  1977. le32_to_cpu(np->tx_ring.ex[i+1].buflow),
  1978. le32_to_cpu(np->tx_ring.ex[i+1].flaglen),
  1979. le32_to_cpu(np->tx_ring.ex[i+2].bufhigh),
  1980. le32_to_cpu(np->tx_ring.ex[i+2].buflow),
  1981. le32_to_cpu(np->tx_ring.ex[i+2].flaglen),
  1982. le32_to_cpu(np->tx_ring.ex[i+3].bufhigh),
  1983. le32_to_cpu(np->tx_ring.ex[i+3].buflow),
  1984. le32_to_cpu(np->tx_ring.ex[i+3].flaglen));
  1985. }
  1986. }
  1987. }
  1988. spin_lock_irq(&np->lock);
  1989. /* 1) stop tx engine */
  1990. nv_stop_tx(dev);
  1991. /* 2) check that the packets were not sent already: */
  1992. if (!nv_optimized(np))
  1993. nv_tx_done(dev);
  1994. else
  1995. nv_tx_done_optimized(dev, np->tx_ring_size);
  1996. /* 3) if there are dead entries: clear everything */
  1997. if (np->get_tx_ctx != np->put_tx_ctx) {
  1998. printk(KERN_DEBUG "%s: tx_timeout: dead entries!\n", dev->name);
  1999. nv_drain_tx(dev);
  2000. nv_init_tx(dev);
  2001. setup_hw_rings(dev, NV_SETUP_TX_RING);
  2002. }
  2003. netif_wake_queue(dev);
  2004. /* 4) restart tx engine */
  2005. nv_start_tx(dev);
  2006. spin_unlock_irq(&np->lock);
  2007. }
  2008. /*
  2009. * Called when the nic notices a mismatch between the actual data len on the
  2010. * wire and the len indicated in the 802 header
  2011. */
  2012. static int nv_getlen(struct net_device *dev, void *packet, int datalen)
  2013. {
  2014. int hdrlen; /* length of the 802 header */
  2015. int protolen; /* length as stored in the proto field */
  2016. /* 1) calculate len according to header */
  2017. if ( ((struct vlan_ethhdr *)packet)->h_vlan_proto == htons(ETH_P_8021Q)) {
  2018. protolen = ntohs( ((struct vlan_ethhdr *)packet)->h_vlan_encapsulated_proto );
  2019. hdrlen = VLAN_HLEN;
  2020. } else {
  2021. protolen = ntohs( ((struct ethhdr *)packet)->h_proto);
  2022. hdrlen = ETH_HLEN;
  2023. }
  2024. dprintk(KERN_DEBUG "%s: nv_getlen: datalen %d, protolen %d, hdrlen %d\n",
  2025. dev->name, datalen, protolen, hdrlen);
  2026. if (protolen > ETH_DATA_LEN)
  2027. return datalen; /* Value in proto field not a len, no checks possible */
  2028. protolen += hdrlen;
  2029. /* consistency checks: */
  2030. if (datalen > ETH_ZLEN) {
  2031. if (datalen >= protolen) {
  2032. /* more data on wire than in 802 header, trim of
  2033. * additional data.
  2034. */
  2035. dprintk(KERN_DEBUG "%s: nv_getlen: accepting %d bytes.\n",
  2036. dev->name, protolen);
  2037. return protolen;
  2038. } else {
  2039. /* less data on wire than mentioned in header.
  2040. * Discard the packet.
  2041. */
  2042. dprintk(KERN_DEBUG "%s: nv_getlen: discarding long packet.\n",
  2043. dev->name);
  2044. return -1;
  2045. }
  2046. } else {
  2047. /* short packet. Accept only if 802 values are also short */
  2048. if (protolen > ETH_ZLEN) {
  2049. dprintk(KERN_DEBUG "%s: nv_getlen: discarding short packet.\n",
  2050. dev->name);
  2051. return -1;
  2052. }
  2053. dprintk(KERN_DEBUG "%s: nv_getlen: accepting %d bytes.\n",
  2054. dev->name, datalen);
  2055. return datalen;
  2056. }
  2057. }
  2058. static int nv_rx_process(struct net_device *dev, int limit)
  2059. {
  2060. struct fe_priv *np = netdev_priv(dev);
  2061. u32 flags;
  2062. int rx_work = 0;
  2063. struct sk_buff *skb;
  2064. int len;
  2065. while((np->get_rx.orig != np->put_rx.orig) &&
  2066. !((flags = le32_to_cpu(np->get_rx.orig->flaglen)) & NV_RX_AVAIL) &&
  2067. (rx_work < limit)) {
  2068. dprintk(KERN_DEBUG "%s: nv_rx_process: flags 0x%x.\n",
  2069. dev->name, flags);
  2070. /*
  2071. * the packet is for us - immediately tear down the pci mapping.
  2072. * TODO: check if a prefetch of the first cacheline improves
  2073. * the performance.
  2074. */
  2075. pci_unmap_single(np->pci_dev, np->get_rx_ctx->dma,
  2076. np->get_rx_ctx->dma_len,
  2077. PCI_DMA_FROMDEVICE);
  2078. skb = np->get_rx_ctx->skb;
  2079. np->get_rx_ctx->skb = NULL;
  2080. {
  2081. int j;
  2082. dprintk(KERN_DEBUG "Dumping packet (flags 0x%x).",flags);
  2083. for (j=0; j<64; j++) {
  2084. if ((j%16) == 0)
  2085. dprintk("\n%03x:", j);
  2086. dprintk(" %02x", ((unsigned char*)skb->data)[j]);
  2087. }
  2088. dprintk("\n");
  2089. }
  2090. /* look at what we actually got: */
  2091. if (np->desc_ver == DESC_VER_1) {
  2092. if (likely(flags & NV_RX_DESCRIPTORVALID)) {
  2093. len = flags & LEN_MASK_V1;
  2094. if (unlikely(flags & NV_RX_ERROR)) {
  2095. if (flags & NV_RX_ERROR4) {
  2096. len = nv_getlen(dev, skb->data, len);
  2097. if (len < 0) {
  2098. dev->stats.rx_errors++;
  2099. dev_kfree_skb(skb);
  2100. goto next_pkt;
  2101. }
  2102. }
  2103. /* framing errors are soft errors */
  2104. else if (flags & NV_RX_FRAMINGERR) {
  2105. if (flags & NV_RX_SUBSTRACT1) {
  2106. len--;
  2107. }
  2108. }
  2109. /* the rest are hard errors */
  2110. else {
  2111. if (flags & NV_RX_MISSEDFRAME)
  2112. dev->stats.rx_missed_errors++;
  2113. if (flags & NV_RX_CRCERR)
  2114. dev->stats.rx_crc_errors++;
  2115. if (flags & NV_RX_OVERFLOW)
  2116. dev->stats.rx_over_errors++;
  2117. dev->stats.rx_errors++;
  2118. dev_kfree_skb(skb);
  2119. goto next_pkt;
  2120. }
  2121. }
  2122. } else {
  2123. dev_kfree_skb(skb);
  2124. goto next_pkt;
  2125. }
  2126. } else {
  2127. if (likely(flags & NV_RX2_DESCRIPTORVALID)) {
  2128. len = flags & LEN_MASK_V2;
  2129. if (unlikely(flags & NV_RX2_ERROR)) {
  2130. if (flags & NV_RX2_ERROR4) {
  2131. len = nv_getlen(dev, skb->data, len);
  2132. if (len < 0) {
  2133. dev->stats.rx_errors++;
  2134. dev_kfree_skb(skb);
  2135. goto next_pkt;
  2136. }
  2137. }
  2138. /* framing errors are soft errors */
  2139. else if (flags & NV_RX2_FRAMINGERR) {
  2140. if (flags & NV_RX2_SUBSTRACT1) {
  2141. len--;
  2142. }
  2143. }
  2144. /* the rest are hard errors */
  2145. else {
  2146. if (flags & NV_RX2_CRCERR)
  2147. dev->stats.rx_crc_errors++;
  2148. if (flags & NV_RX2_OVERFLOW)
  2149. dev->stats.rx_over_errors++;
  2150. dev->stats.rx_errors++;
  2151. dev_kfree_skb(skb);
  2152. goto next_pkt;
  2153. }
  2154. }
  2155. if (((flags & NV_RX2_CHECKSUMMASK) == NV_RX2_CHECKSUM_IP_TCP) || /*ip and tcp */
  2156. ((flags & NV_RX2_CHECKSUMMASK) == NV_RX2_CHECKSUM_IP_UDP)) /*ip and udp */
  2157. skb->ip_summed = CHECKSUM_UNNECESSARY;
  2158. } else {
  2159. dev_kfree_skb(skb);
  2160. goto next_pkt;
  2161. }
  2162. }
  2163. /* got a valid packet - forward it to the network core */
  2164. skb_put(skb, len);
  2165. skb->protocol = eth_type_trans(skb, dev);
  2166. dprintk(KERN_DEBUG "%s: nv_rx_process: %d bytes, proto %d accepted.\n",
  2167. dev->name, len, skb->protocol);
  2168. #ifdef CONFIG_FORCEDETH_NAPI
  2169. netif_receive_skb(skb);
  2170. #else
  2171. netif_rx(skb);
  2172. #endif
  2173. dev->last_rx = jiffies;
  2174. dev->stats.rx_packets++;
  2175. dev->stats.rx_bytes += len;
  2176. next_pkt:
  2177. if (unlikely(np->get_rx.orig++ == np->last_rx.orig))
  2178. np->get_rx.orig = np->first_rx.orig;
  2179. if (unlikely(np->get_rx_ctx++ == np->last_rx_ctx))
  2180. np->get_rx_ctx = np->first_rx_ctx;
  2181. rx_work++;
  2182. }
  2183. return rx_work;
  2184. }
  2185. static int nv_rx_process_optimized(struct net_device *dev, int limit)
  2186. {
  2187. struct fe_priv *np = netdev_priv(dev);
  2188. u32 flags;
  2189. u32 vlanflags = 0;
  2190. int rx_work = 0;
  2191. struct sk_buff *skb;
  2192. int len;
  2193. while((np->get_rx.ex != np->put_rx.ex) &&
  2194. !((flags = le32_to_cpu(np->get_rx.ex->flaglen)) & NV_RX2_AVAIL) &&
  2195. (rx_work < limit)) {
  2196. dprintk(KERN_DEBUG "%s: nv_rx_process_optimized: flags 0x%x.\n",
  2197. dev->name, flags);
  2198. /*
  2199. * the packet is for us - immediately tear down the pci mapping.
  2200. * TODO: check if a prefetch of the first cacheline improves
  2201. * the performance.
  2202. */
  2203. pci_unmap_single(np->pci_dev, np->get_rx_ctx->dma,
  2204. np->get_rx_ctx->dma_len,
  2205. PCI_DMA_FROMDEVICE);
  2206. skb = np->get_rx_ctx->skb;
  2207. np->get_rx_ctx->skb = NULL;
  2208. {
  2209. int j;
  2210. dprintk(KERN_DEBUG "Dumping packet (flags 0x%x).",flags);
  2211. for (j=0; j<64; j++) {
  2212. if ((j%16) == 0)
  2213. dprintk("\n%03x:", j);
  2214. dprintk(" %02x", ((unsigned char*)skb->data)[j]);
  2215. }
  2216. dprintk("\n");
  2217. }
  2218. /* look at what we actually got: */
  2219. if (likely(flags & NV_RX2_DESCRIPTORVALID)) {
  2220. len = flags & LEN_MASK_V2;
  2221. if (unlikely(flags & NV_RX2_ERROR)) {
  2222. if (flags & NV_RX2_ERROR4) {
  2223. len = nv_getlen(dev, skb->data, len);
  2224. if (len < 0) {
  2225. dev_kfree_skb(skb);
  2226. goto next_pkt;
  2227. }
  2228. }
  2229. /* framing errors are soft errors */
  2230. else if (flags & NV_RX2_FRAMINGERR) {
  2231. if (flags & NV_RX2_SUBSTRACT1) {
  2232. len--;
  2233. }
  2234. }
  2235. /* the rest are hard errors */
  2236. else {
  2237. dev_kfree_skb(skb);
  2238. goto next_pkt;
  2239. }
  2240. }
  2241. if (((flags & NV_RX2_CHECKSUMMASK) == NV_RX2_CHECKSUM_IP_TCP) || /*ip and tcp */
  2242. ((flags & NV_RX2_CHECKSUMMASK) == NV_RX2_CHECKSUM_IP_UDP)) /*ip and udp */
  2243. skb->ip_summed = CHECKSUM_UNNECESSARY;
  2244. /* got a valid packet - forward it to the network core */
  2245. skb_put(skb, len);
  2246. skb->protocol = eth_type_trans(skb, dev);
  2247. prefetch(skb->data);
  2248. dprintk(KERN_DEBUG "%s: nv_rx_process_optimized: %d bytes, proto %d accepted.\n",
  2249. dev->name, len, skb->protocol);
  2250. if (likely(!np->vlangrp)) {
  2251. #ifdef CONFIG_FORCEDETH_NAPI
  2252. netif_receive_skb(skb);
  2253. #else
  2254. netif_rx(skb);
  2255. #endif
  2256. } else {
  2257. vlanflags = le32_to_cpu(np->get_rx.ex->buflow);
  2258. if (vlanflags & NV_RX3_VLAN_TAG_PRESENT) {
  2259. #ifdef CONFIG_FORCEDETH_NAPI
  2260. vlan_hwaccel_receive_skb(skb, np->vlangrp,
  2261. vlanflags & NV_RX3_VLAN_TAG_MASK);
  2262. #else
  2263. vlan_hwaccel_rx(skb, np->vlangrp,
  2264. vlanflags & NV_RX3_VLAN_TAG_MASK);
  2265. #endif
  2266. } else {
  2267. #ifdef CONFIG_FORCEDETH_NAPI
  2268. netif_receive_skb(skb);
  2269. #else
  2270. netif_rx(skb);
  2271. #endif
  2272. }
  2273. }
  2274. dev->last_rx = jiffies;
  2275. dev->stats.rx_packets++;
  2276. dev->stats.rx_bytes += len;
  2277. } else {
  2278. dev_kfree_skb(skb);
  2279. }
  2280. next_pkt:
  2281. if (unlikely(np->get_rx.ex++ == np->last_rx.ex))
  2282. np->get_rx.ex = np->first_rx.ex;
  2283. if (unlikely(np->get_rx_ctx++ == np->last_rx_ctx))
  2284. np->get_rx_ctx = np->first_rx_ctx;
  2285. rx_work++;
  2286. }
  2287. return rx_work;
  2288. }
  2289. static void set_bufsize(struct net_device *dev)
  2290. {
  2291. struct fe_priv *np = netdev_priv(dev);
  2292. if (dev->mtu <= ETH_DATA_LEN)
  2293. np->rx_buf_sz = ETH_DATA_LEN + NV_RX_HEADERS;
  2294. else
  2295. np->rx_buf_sz = dev->mtu + NV_RX_HEADERS;
  2296. }
  2297. /*
  2298. * nv_change_mtu: dev->change_mtu function
  2299. * Called with dev_base_lock held for read.
  2300. */
  2301. static int nv_change_mtu(struct net_device *dev, int new_mtu)
  2302. {
  2303. struct fe_priv *np = netdev_priv(dev);
  2304. int old_mtu;
  2305. if (new_mtu < 64 || new_mtu > np->pkt_limit)
  2306. return -EINVAL;
  2307. old_mtu = dev->mtu;
  2308. dev->mtu = new_mtu;
  2309. /* return early if the buffer sizes will not change */
  2310. if (old_mtu <= ETH_DATA_LEN && new_mtu <= ETH_DATA_LEN)
  2311. return 0;
  2312. if (old_mtu == new_mtu)
  2313. return 0;
  2314. /* synchronized against open : rtnl_lock() held by caller */
  2315. if (netif_running(dev)) {
  2316. u8 __iomem *base = get_hwbase(dev);
  2317. /*
  2318. * It seems that the nic preloads valid ring entries into an
  2319. * internal buffer. The procedure for flushing everything is
  2320. * guessed, there is probably a simpler approach.
  2321. * Changing the MTU is a rare event, it shouldn't matter.
  2322. */
  2323. nv_disable_irq(dev);
  2324. netif_tx_lock_bh(dev);
  2325. spin_lock(&np->lock);
  2326. /* stop engines */
  2327. nv_stop_rxtx(dev);
  2328. nv_txrx_reset(dev);
  2329. /* drain rx queue */
  2330. nv_drain_rxtx(dev);
  2331. /* reinit driver view of the rx queue */
  2332. set_bufsize(dev);
  2333. if (nv_init_ring(dev)) {
  2334. if (!np->in_shutdown)
  2335. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  2336. }
  2337. /* reinit nic view of the rx queue */
  2338. writel(np->rx_buf_sz, base + NvRegOffloadConfig);
  2339. setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
  2340. writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
  2341. base + NvRegRingSizes);
  2342. pci_push(base);
  2343. writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  2344. pci_push(base);
  2345. /* restart rx engine */
  2346. nv_start_rxtx(dev);
  2347. spin_unlock(&np->lock);
  2348. netif_tx_unlock_bh(dev);
  2349. nv_enable_irq(dev);
  2350. }
  2351. return 0;
  2352. }
  2353. static void nv_copy_mac_to_hw(struct net_device *dev)
  2354. {
  2355. u8 __iomem *base = get_hwbase(dev);
  2356. u32 mac[2];
  2357. mac[0] = (dev->dev_addr[0] << 0) + (dev->dev_addr[1] << 8) +
  2358. (dev->dev_addr[2] << 16) + (dev->dev_addr[3] << 24);
  2359. mac[1] = (dev->dev_addr[4] << 0) + (dev->dev_addr[5] << 8);
  2360. writel(mac[0], base + NvRegMacAddrA);
  2361. writel(mac[1], base + NvRegMacAddrB);
  2362. }
  2363. /*
  2364. * nv_set_mac_address: dev->set_mac_address function
  2365. * Called with rtnl_lock() held.
  2366. */
  2367. static int nv_set_mac_address(struct net_device *dev, void *addr)
  2368. {
  2369. struct fe_priv *np = netdev_priv(dev);
  2370. struct sockaddr *macaddr = (struct sockaddr*)addr;
  2371. if (!is_valid_ether_addr(macaddr->sa_data))
  2372. return -EADDRNOTAVAIL;
  2373. /* synchronized against open : rtnl_lock() held by caller */
  2374. memcpy(dev->dev_addr, macaddr->sa_data, ETH_ALEN);
  2375. if (netif_running(dev)) {
  2376. netif_tx_lock_bh(dev);
  2377. spin_lock_irq(&np->lock);
  2378. /* stop rx engine */
  2379. nv_stop_rx(dev);
  2380. /* set mac address */
  2381. nv_copy_mac_to_hw(dev);
  2382. /* restart rx engine */
  2383. nv_start_rx(dev);
  2384. spin_unlock_irq(&np->lock);
  2385. netif_tx_unlock_bh(dev);
  2386. } else {
  2387. nv_copy_mac_to_hw(dev);
  2388. }
  2389. return 0;
  2390. }
  2391. /*
  2392. * nv_set_multicast: dev->set_multicast function
  2393. * Called with netif_tx_lock held.
  2394. */
  2395. static void nv_set_multicast(struct net_device *dev)
  2396. {
  2397. struct fe_priv *np = netdev_priv(dev);
  2398. u8 __iomem *base = get_hwbase(dev);
  2399. u32 addr[2];
  2400. u32 mask[2];
  2401. u32 pff = readl(base + NvRegPacketFilterFlags) & NVREG_PFF_PAUSE_RX;
  2402. memset(addr, 0, sizeof(addr));
  2403. memset(mask, 0, sizeof(mask));
  2404. if (dev->flags & IFF_PROMISC) {
  2405. pff |= NVREG_PFF_PROMISC;
  2406. } else {
  2407. pff |= NVREG_PFF_MYADDR;
  2408. if (dev->flags & IFF_ALLMULTI || dev->mc_list) {
  2409. u32 alwaysOff[2];
  2410. u32 alwaysOn[2];
  2411. alwaysOn[0] = alwaysOn[1] = alwaysOff[0] = alwaysOff[1] = 0xffffffff;
  2412. if (dev->flags & IFF_ALLMULTI) {
  2413. alwaysOn[0] = alwaysOn[1] = alwaysOff[0] = alwaysOff[1] = 0;
  2414. } else {
  2415. struct dev_mc_list *walk;
  2416. walk = dev->mc_list;
  2417. while (walk != NULL) {
  2418. u32 a, b;
  2419. a = le32_to_cpu(*(__le32 *) walk->dmi_addr);
  2420. b = le16_to_cpu(*(__le16 *) (&walk->dmi_addr[4]));
  2421. alwaysOn[0] &= a;
  2422. alwaysOff[0] &= ~a;
  2423. alwaysOn[1] &= b;
  2424. alwaysOff[1] &= ~b;
  2425. walk = walk->next;
  2426. }
  2427. }
  2428. addr[0] = alwaysOn[0];
  2429. addr[1] = alwaysOn[1];
  2430. mask[0] = alwaysOn[0] | alwaysOff[0];
  2431. mask[1] = alwaysOn[1] | alwaysOff[1];
  2432. } else {
  2433. mask[0] = NVREG_MCASTMASKA_NONE;
  2434. mask[1] = NVREG_MCASTMASKB_NONE;
  2435. }
  2436. }
  2437. addr[0] |= NVREG_MCASTADDRA_FORCE;
  2438. pff |= NVREG_PFF_ALWAYS;
  2439. spin_lock_irq(&np->lock);
  2440. nv_stop_rx(dev);
  2441. writel(addr[0], base + NvRegMulticastAddrA);
  2442. writel(addr[1], base + NvRegMulticastAddrB);
  2443. writel(mask[0], base + NvRegMulticastMaskA);
  2444. writel(mask[1], base + NvRegMulticastMaskB);
  2445. writel(pff, base + NvRegPacketFilterFlags);
  2446. dprintk(KERN_INFO "%s: reconfiguration for multicast lists.\n",
  2447. dev->name);
  2448. nv_start_rx(dev);
  2449. spin_unlock_irq(&np->lock);
  2450. }
  2451. static void nv_update_pause(struct net_device *dev, u32 pause_flags)
  2452. {
  2453. struct fe_priv *np = netdev_priv(dev);
  2454. u8 __iomem *base = get_hwbase(dev);
  2455. np->pause_flags &= ~(NV_PAUSEFRAME_TX_ENABLE | NV_PAUSEFRAME_RX_ENABLE);
  2456. if (np->pause_flags & NV_PAUSEFRAME_RX_CAPABLE) {
  2457. u32 pff = readl(base + NvRegPacketFilterFlags) & ~NVREG_PFF_PAUSE_RX;
  2458. if (pause_flags & NV_PAUSEFRAME_RX_ENABLE) {
  2459. writel(pff|NVREG_PFF_PAUSE_RX, base + NvRegPacketFilterFlags);
  2460. np->pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
  2461. } else {
  2462. writel(pff, base + NvRegPacketFilterFlags);
  2463. }
  2464. }
  2465. if (np->pause_flags & NV_PAUSEFRAME_TX_CAPABLE) {
  2466. u32 regmisc = readl(base + NvRegMisc1) & ~NVREG_MISC1_PAUSE_TX;
  2467. if (pause_flags & NV_PAUSEFRAME_TX_ENABLE) {
  2468. u32 pause_enable = NVREG_TX_PAUSEFRAME_ENABLE_V1;
  2469. if (np->driver_data & DEV_HAS_PAUSEFRAME_TX_V2)
  2470. pause_enable = NVREG_TX_PAUSEFRAME_ENABLE_V2;
  2471. if (np->driver_data & DEV_HAS_PAUSEFRAME_TX_V3)
  2472. pause_enable = NVREG_TX_PAUSEFRAME_ENABLE_V3;
  2473. writel(pause_enable, base + NvRegTxPauseFrame);
  2474. writel(regmisc|NVREG_MISC1_PAUSE_TX, base + NvRegMisc1);
  2475. np->pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
  2476. } else {
  2477. writel(NVREG_TX_PAUSEFRAME_DISABLE, base + NvRegTxPauseFrame);
  2478. writel(regmisc, base + NvRegMisc1);
  2479. }
  2480. }
  2481. }
  2482. /**
  2483. * nv_update_linkspeed: Setup the MAC according to the link partner
  2484. * @dev: Network device to be configured
  2485. *
  2486. * The function queries the PHY and checks if there is a link partner.
  2487. * If yes, then it sets up the MAC accordingly. Otherwise, the MAC is
  2488. * set to 10 MBit HD.
  2489. *
  2490. * The function returns 0 if there is no link partner and 1 if there is
  2491. * a good link partner.
  2492. */
  2493. static int nv_update_linkspeed(struct net_device *dev)
  2494. {
  2495. struct fe_priv *np = netdev_priv(dev);
  2496. u8 __iomem *base = get_hwbase(dev);
  2497. int adv = 0;
  2498. int lpa = 0;
  2499. int adv_lpa, adv_pause, lpa_pause;
  2500. int newls = np->linkspeed;
  2501. int newdup = np->duplex;
  2502. int mii_status;
  2503. int retval = 0;
  2504. u32 control_1000, status_1000, phyreg, pause_flags, txreg;
  2505. u32 txrxFlags = 0;
  2506. u32 phy_exp;
  2507. /* BMSR_LSTATUS is latched, read it twice:
  2508. * we want the current value.
  2509. */
  2510. mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
  2511. mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
  2512. if (!(mii_status & BMSR_LSTATUS)) {
  2513. dprintk(KERN_DEBUG "%s: no link detected by phy - falling back to 10HD.\n",
  2514. dev->name);
  2515. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  2516. newdup = 0;
  2517. retval = 0;
  2518. goto set_speed;
  2519. }
  2520. if (np->autoneg == 0) {
  2521. dprintk(KERN_DEBUG "%s: nv_update_linkspeed: autoneg off, PHY set to 0x%04x.\n",
  2522. dev->name, np->fixed_mode);
  2523. if (np->fixed_mode & LPA_100FULL) {
  2524. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
  2525. newdup = 1;
  2526. } else if (np->fixed_mode & LPA_100HALF) {
  2527. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
  2528. newdup = 0;
  2529. } else if (np->fixed_mode & LPA_10FULL) {
  2530. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  2531. newdup = 1;
  2532. } else {
  2533. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  2534. newdup = 0;
  2535. }
  2536. retval = 1;
  2537. goto set_speed;
  2538. }
  2539. /* check auto negotiation is complete */
  2540. if (!(mii_status & BMSR_ANEGCOMPLETE)) {
  2541. /* still in autonegotiation - configure nic for 10 MBit HD and wait. */
  2542. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  2543. newdup = 0;
  2544. retval = 0;
  2545. dprintk(KERN_DEBUG "%s: autoneg not completed - falling back to 10HD.\n", dev->name);
  2546. goto set_speed;
  2547. }
  2548. adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
  2549. lpa = mii_rw(dev, np->phyaddr, MII_LPA, MII_READ);
  2550. dprintk(KERN_DEBUG "%s: nv_update_linkspeed: PHY advertises 0x%04x, lpa 0x%04x.\n",
  2551. dev->name, adv, lpa);
  2552. retval = 1;
  2553. if (np->gigabit == PHY_GIGABIT) {
  2554. control_1000 = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
  2555. status_1000 = mii_rw(dev, np->phyaddr, MII_STAT1000, MII_READ);
  2556. if ((control_1000 & ADVERTISE_1000FULL) &&
  2557. (status_1000 & LPA_1000FULL)) {
  2558. dprintk(KERN_DEBUG "%s: nv_update_linkspeed: GBit ethernet detected.\n",
  2559. dev->name);
  2560. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_1000;
  2561. newdup = 1;
  2562. goto set_speed;
  2563. }
  2564. }
  2565. /* FIXME: handle parallel detection properly */
  2566. adv_lpa = lpa & adv;
  2567. if (adv_lpa & LPA_100FULL) {
  2568. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
  2569. newdup = 1;
  2570. } else if (adv_lpa & LPA_100HALF) {
  2571. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
  2572. newdup = 0;
  2573. } else if (adv_lpa & LPA_10FULL) {
  2574. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  2575. newdup = 1;
  2576. } else if (adv_lpa & LPA_10HALF) {
  2577. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  2578. newdup = 0;
  2579. } else {
  2580. dprintk(KERN_DEBUG "%s: bad ability %04x - falling back to 10HD.\n", dev->name, adv_lpa);
  2581. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  2582. newdup = 0;
  2583. }
  2584. set_speed:
  2585. if (np->duplex == newdup && np->linkspeed == newls)
  2586. return retval;
  2587. dprintk(KERN_INFO "%s: changing link setting from %d/%d to %d/%d.\n",
  2588. dev->name, np->linkspeed, np->duplex, newls, newdup);
  2589. np->duplex = newdup;
  2590. np->linkspeed = newls;
  2591. /* The transmitter and receiver must be restarted for safe update */
  2592. if (readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_START) {
  2593. txrxFlags |= NV_RESTART_TX;
  2594. nv_stop_tx(dev);
  2595. }
  2596. if (readl(base + NvRegReceiverControl) & NVREG_RCVCTL_START) {
  2597. txrxFlags |= NV_RESTART_RX;
  2598. nv_stop_rx(dev);
  2599. }
  2600. if (np->gigabit == PHY_GIGABIT) {
  2601. phyreg = readl(base + NvRegRandomSeed);
  2602. phyreg &= ~(0x3FF00);
  2603. if ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_10)
  2604. phyreg |= NVREG_RNDSEED_FORCE3;
  2605. else if ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_100)
  2606. phyreg |= NVREG_RNDSEED_FORCE2;
  2607. else if ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_1000)
  2608. phyreg |= NVREG_RNDSEED_FORCE;
  2609. writel(phyreg, base + NvRegRandomSeed);
  2610. }
  2611. phyreg = readl(base + NvRegPhyInterface);
  2612. phyreg &= ~(PHY_HALF|PHY_100|PHY_1000);
  2613. if (np->duplex == 0)
  2614. phyreg |= PHY_HALF;
  2615. if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_100)
  2616. phyreg |= PHY_100;
  2617. else if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_1000)
  2618. phyreg |= PHY_1000;
  2619. writel(phyreg, base + NvRegPhyInterface);
  2620. phy_exp = mii_rw(dev, np->phyaddr, MII_EXPANSION, MII_READ) & EXPANSION_NWAY; /* autoneg capable */
  2621. if (phyreg & PHY_RGMII) {
  2622. if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_1000) {
  2623. txreg = NVREG_TX_DEFERRAL_RGMII_1000;
  2624. } else {
  2625. if (!phy_exp && !np->duplex && (np->driver_data & DEV_HAS_COLLISION_FIX)) {
  2626. if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_10)
  2627. txreg = NVREG_TX_DEFERRAL_RGMII_STRETCH_10;
  2628. else
  2629. txreg = NVREG_TX_DEFERRAL_RGMII_STRETCH_100;
  2630. } else {
  2631. txreg = NVREG_TX_DEFERRAL_RGMII_10_100;
  2632. }
  2633. }
  2634. } else {
  2635. if (!phy_exp && !np->duplex && (np->driver_data & DEV_HAS_COLLISION_FIX))
  2636. txreg = NVREG_TX_DEFERRAL_MII_STRETCH;
  2637. else
  2638. txreg = NVREG_TX_DEFERRAL_DEFAULT;
  2639. }
  2640. writel(txreg, base + NvRegTxDeferral);
  2641. if (np->desc_ver == DESC_VER_1) {
  2642. txreg = NVREG_TX_WM_DESC1_DEFAULT;
  2643. } else {
  2644. if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_1000)
  2645. txreg = NVREG_TX_WM_DESC2_3_1000;
  2646. else
  2647. txreg = NVREG_TX_WM_DESC2_3_DEFAULT;
  2648. }
  2649. writel(txreg, base + NvRegTxWatermark);
  2650. writel(NVREG_MISC1_FORCE | ( np->duplex ? 0 : NVREG_MISC1_HD),
  2651. base + NvRegMisc1);
  2652. pci_push(base);
  2653. writel(np->linkspeed, base + NvRegLinkSpeed);
  2654. pci_push(base);
  2655. pause_flags = 0;
  2656. /* setup pause frame */
  2657. if (np->duplex != 0) {
  2658. if (np->autoneg && np->pause_flags & NV_PAUSEFRAME_AUTONEG) {
  2659. adv_pause = adv & (ADVERTISE_PAUSE_CAP| ADVERTISE_PAUSE_ASYM);
  2660. lpa_pause = lpa & (LPA_PAUSE_CAP| LPA_PAUSE_ASYM);
  2661. switch (adv_pause) {
  2662. case ADVERTISE_PAUSE_CAP:
  2663. if (lpa_pause & LPA_PAUSE_CAP) {
  2664. pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
  2665. if (np->pause_flags & NV_PAUSEFRAME_TX_REQ)
  2666. pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
  2667. }
  2668. break;
  2669. case ADVERTISE_PAUSE_ASYM:
  2670. if (lpa_pause == (LPA_PAUSE_CAP| LPA_PAUSE_ASYM))
  2671. {
  2672. pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
  2673. }
  2674. break;
  2675. case ADVERTISE_PAUSE_CAP| ADVERTISE_PAUSE_ASYM:
  2676. if (lpa_pause & LPA_PAUSE_CAP)
  2677. {
  2678. pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
  2679. if (np->pause_flags & NV_PAUSEFRAME_TX_REQ)
  2680. pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
  2681. }
  2682. if (lpa_pause == LPA_PAUSE_ASYM)
  2683. {
  2684. pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
  2685. }
  2686. break;
  2687. }
  2688. } else {
  2689. pause_flags = np->pause_flags;
  2690. }
  2691. }
  2692. nv_update_pause(dev, pause_flags);
  2693. if (txrxFlags & NV_RESTART_TX)
  2694. nv_start_tx(dev);
  2695. if (txrxFlags & NV_RESTART_RX)
  2696. nv_start_rx(dev);
  2697. return retval;
  2698. }
  2699. static void nv_linkchange(struct net_device *dev)
  2700. {
  2701. if (nv_update_linkspeed(dev)) {
  2702. if (!netif_carrier_ok(dev)) {
  2703. netif_carrier_on(dev);
  2704. printk(KERN_INFO "%s: link up.\n", dev->name);
  2705. nv_start_rx(dev);
  2706. }
  2707. } else {
  2708. if (netif_carrier_ok(dev)) {
  2709. netif_carrier_off(dev);
  2710. printk(KERN_INFO "%s: link down.\n", dev->name);
  2711. nv_stop_rx(dev);
  2712. }
  2713. }
  2714. }
  2715. static void nv_link_irq(struct net_device *dev)
  2716. {
  2717. u8 __iomem *base = get_hwbase(dev);
  2718. u32 miistat;
  2719. miistat = readl(base + NvRegMIIStatus);
  2720. writel(NVREG_MIISTAT_LINKCHANGE, base + NvRegMIIStatus);
  2721. dprintk(KERN_INFO "%s: link change irq, status 0x%x.\n", dev->name, miistat);
  2722. if (miistat & (NVREG_MIISTAT_LINKCHANGE))
  2723. nv_linkchange(dev);
  2724. dprintk(KERN_DEBUG "%s: link change notification done.\n", dev->name);
  2725. }
  2726. static irqreturn_t nv_nic_irq(int foo, void *data)
  2727. {
  2728. struct net_device *dev = (struct net_device *) data;
  2729. struct fe_priv *np = netdev_priv(dev);
  2730. u8 __iomem *base = get_hwbase(dev);
  2731. u32 events;
  2732. int i;
  2733. dprintk(KERN_DEBUG "%s: nv_nic_irq\n", dev->name);
  2734. for (i=0; ; i++) {
  2735. if (!(np->msi_flags & NV_MSI_X_ENABLED)) {
  2736. events = readl(base + NvRegIrqStatus) & NVREG_IRQSTAT_MASK;
  2737. writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
  2738. } else {
  2739. events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQSTAT_MASK;
  2740. writel(NVREG_IRQSTAT_MASK, base + NvRegMSIXIrqStatus);
  2741. }
  2742. dprintk(KERN_DEBUG "%s: irq: %08x\n", dev->name, events);
  2743. if (!(events & np->irqmask))
  2744. break;
  2745. spin_lock(&np->lock);
  2746. nv_tx_done(dev);
  2747. spin_unlock(&np->lock);
  2748. #ifdef CONFIG_FORCEDETH_NAPI
  2749. if (events & NVREG_IRQ_RX_ALL) {
  2750. netif_rx_schedule(dev, &np->napi);
  2751. /* Disable furthur receive irq's */
  2752. spin_lock(&np->lock);
  2753. np->irqmask &= ~NVREG_IRQ_RX_ALL;
  2754. if (np->msi_flags & NV_MSI_X_ENABLED)
  2755. writel(NVREG_IRQ_RX_ALL, base + NvRegIrqMask);
  2756. else
  2757. writel(np->irqmask, base + NvRegIrqMask);
  2758. spin_unlock(&np->lock);
  2759. }
  2760. #else
  2761. if (nv_rx_process(dev, RX_WORK_PER_LOOP)) {
  2762. if (unlikely(nv_alloc_rx(dev))) {
  2763. spin_lock(&np->lock);
  2764. if (!np->in_shutdown)
  2765. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  2766. spin_unlock(&np->lock);
  2767. }
  2768. }
  2769. #endif
  2770. if (unlikely(events & NVREG_IRQ_LINK)) {
  2771. spin_lock(&np->lock);
  2772. nv_link_irq(dev);
  2773. spin_unlock(&np->lock);
  2774. }
  2775. if (unlikely(np->need_linktimer && time_after(jiffies, np->link_timeout))) {
  2776. spin_lock(&np->lock);
  2777. nv_linkchange(dev);
  2778. spin_unlock(&np->lock);
  2779. np->link_timeout = jiffies + LINK_TIMEOUT;
  2780. }
  2781. if (unlikely(events & (NVREG_IRQ_TX_ERR))) {
  2782. dprintk(KERN_DEBUG "%s: received irq with events 0x%x. Probably TX fail.\n",
  2783. dev->name, events);
  2784. }
  2785. if (unlikely(events & (NVREG_IRQ_UNKNOWN))) {
  2786. printk(KERN_DEBUG "%s: received irq with unknown events 0x%x. Please report\n",
  2787. dev->name, events);
  2788. }
  2789. if (unlikely(events & NVREG_IRQ_RECOVER_ERROR)) {
  2790. spin_lock(&np->lock);
  2791. /* disable interrupts on the nic */
  2792. if (!(np->msi_flags & NV_MSI_X_ENABLED))
  2793. writel(0, base + NvRegIrqMask);
  2794. else
  2795. writel(np->irqmask, base + NvRegIrqMask);
  2796. pci_push(base);
  2797. if (!np->in_shutdown) {
  2798. np->nic_poll_irq = np->irqmask;
  2799. np->recover_error = 1;
  2800. mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
  2801. }
  2802. spin_unlock(&np->lock);
  2803. break;
  2804. }
  2805. if (unlikely(i > max_interrupt_work)) {
  2806. spin_lock(&np->lock);
  2807. /* disable interrupts on the nic */
  2808. if (!(np->msi_flags & NV_MSI_X_ENABLED))
  2809. writel(0, base + NvRegIrqMask);
  2810. else
  2811. writel(np->irqmask, base + NvRegIrqMask);
  2812. pci_push(base);
  2813. if (!np->in_shutdown) {
  2814. np->nic_poll_irq = np->irqmask;
  2815. mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
  2816. }
  2817. spin_unlock(&np->lock);
  2818. printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq.\n", dev->name, i);
  2819. break;
  2820. }
  2821. }
  2822. dprintk(KERN_DEBUG "%s: nv_nic_irq completed\n", dev->name);
  2823. return IRQ_RETVAL(i);
  2824. }
  2825. /**
  2826. * All _optimized functions are used to help increase performance
  2827. * (reduce CPU and increase throughput). They use descripter version 3,
  2828. * compiler directives, and reduce memory accesses.
  2829. */
  2830. static irqreturn_t nv_nic_irq_optimized(int foo, void *data)
  2831. {
  2832. struct net_device *dev = (struct net_device *) data;
  2833. struct fe_priv *np = netdev_priv(dev);
  2834. u8 __iomem *base = get_hwbase(dev);
  2835. u32 events;
  2836. int i;
  2837. dprintk(KERN_DEBUG "%s: nv_nic_irq_optimized\n", dev->name);
  2838. for (i=0; ; i++) {
  2839. if (!(np->msi_flags & NV_MSI_X_ENABLED)) {
  2840. events = readl(base + NvRegIrqStatus) & NVREG_IRQSTAT_MASK;
  2841. writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
  2842. } else {
  2843. events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQSTAT_MASK;
  2844. writel(NVREG_IRQSTAT_MASK, base + NvRegMSIXIrqStatus);
  2845. }
  2846. dprintk(KERN_DEBUG "%s: irq: %08x\n", dev->name, events);
  2847. if (!(events & np->irqmask))
  2848. break;
  2849. spin_lock(&np->lock);
  2850. nv_tx_done_optimized(dev, TX_WORK_PER_LOOP);
  2851. spin_unlock(&np->lock);
  2852. #ifdef CONFIG_FORCEDETH_NAPI
  2853. if (events & NVREG_IRQ_RX_ALL) {
  2854. netif_rx_schedule(dev, &np->napi);
  2855. /* Disable furthur receive irq's */
  2856. spin_lock(&np->lock);
  2857. np->irqmask &= ~NVREG_IRQ_RX_ALL;
  2858. if (np->msi_flags & NV_MSI_X_ENABLED)
  2859. writel(NVREG_IRQ_RX_ALL, base + NvRegIrqMask);
  2860. else
  2861. writel(np->irqmask, base + NvRegIrqMask);
  2862. spin_unlock(&np->lock);
  2863. }
  2864. #else
  2865. if (nv_rx_process_optimized(dev, RX_WORK_PER_LOOP)) {
  2866. if (unlikely(nv_alloc_rx_optimized(dev))) {
  2867. spin_lock(&np->lock);
  2868. if (!np->in_shutdown)
  2869. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  2870. spin_unlock(&np->lock);
  2871. }
  2872. }
  2873. #endif
  2874. if (unlikely(events & NVREG_IRQ_LINK)) {
  2875. spin_lock(&np->lock);
  2876. nv_link_irq(dev);
  2877. spin_unlock(&np->lock);
  2878. }
  2879. if (unlikely(np->need_linktimer && time_after(jiffies, np->link_timeout))) {
  2880. spin_lock(&np->lock);
  2881. nv_linkchange(dev);
  2882. spin_unlock(&np->lock);
  2883. np->link_timeout = jiffies + LINK_TIMEOUT;
  2884. }
  2885. if (unlikely(events & (NVREG_IRQ_TX_ERR))) {
  2886. dprintk(KERN_DEBUG "%s: received irq with events 0x%x. Probably TX fail.\n",
  2887. dev->name, events);
  2888. }
  2889. if (unlikely(events & (NVREG_IRQ_UNKNOWN))) {
  2890. printk(KERN_DEBUG "%s: received irq with unknown events 0x%x. Please report\n",
  2891. dev->name, events);
  2892. }
  2893. if (unlikely(events & NVREG_IRQ_RECOVER_ERROR)) {
  2894. spin_lock(&np->lock);
  2895. /* disable interrupts on the nic */
  2896. if (!(np->msi_flags & NV_MSI_X_ENABLED))
  2897. writel(0, base + NvRegIrqMask);
  2898. else
  2899. writel(np->irqmask, base + NvRegIrqMask);
  2900. pci_push(base);
  2901. if (!np->in_shutdown) {
  2902. np->nic_poll_irq = np->irqmask;
  2903. np->recover_error = 1;
  2904. mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
  2905. }
  2906. spin_unlock(&np->lock);
  2907. break;
  2908. }
  2909. if (unlikely(i > max_interrupt_work)) {
  2910. spin_lock(&np->lock);
  2911. /* disable interrupts on the nic */
  2912. if (!(np->msi_flags & NV_MSI_X_ENABLED))
  2913. writel(0, base + NvRegIrqMask);
  2914. else
  2915. writel(np->irqmask, base + NvRegIrqMask);
  2916. pci_push(base);
  2917. if (!np->in_shutdown) {
  2918. np->nic_poll_irq = np->irqmask;
  2919. mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
  2920. }
  2921. spin_unlock(&np->lock);
  2922. printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq.\n", dev->name, i);
  2923. break;
  2924. }
  2925. }
  2926. dprintk(KERN_DEBUG "%s: nv_nic_irq_optimized completed\n", dev->name);
  2927. return IRQ_RETVAL(i);
  2928. }
  2929. static irqreturn_t nv_nic_irq_tx(int foo, void *data)
  2930. {
  2931. struct net_device *dev = (struct net_device *) data;
  2932. struct fe_priv *np = netdev_priv(dev);
  2933. u8 __iomem *base = get_hwbase(dev);
  2934. u32 events;
  2935. int i;
  2936. unsigned long flags;
  2937. dprintk(KERN_DEBUG "%s: nv_nic_irq_tx\n", dev->name);
  2938. for (i=0; ; i++) {
  2939. events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_TX_ALL;
  2940. writel(NVREG_IRQ_TX_ALL, base + NvRegMSIXIrqStatus);
  2941. dprintk(KERN_DEBUG "%s: tx irq: %08x\n", dev->name, events);
  2942. if (!(events & np->irqmask))
  2943. break;
  2944. spin_lock_irqsave(&np->lock, flags);
  2945. nv_tx_done_optimized(dev, TX_WORK_PER_LOOP);
  2946. spin_unlock_irqrestore(&np->lock, flags);
  2947. if (unlikely(events & (NVREG_IRQ_TX_ERR))) {
  2948. dprintk(KERN_DEBUG "%s: received irq with events 0x%x. Probably TX fail.\n",
  2949. dev->name, events);
  2950. }
  2951. if (unlikely(i > max_interrupt_work)) {
  2952. spin_lock_irqsave(&np->lock, flags);
  2953. /* disable interrupts on the nic */
  2954. writel(NVREG_IRQ_TX_ALL, base + NvRegIrqMask);
  2955. pci_push(base);
  2956. if (!np->in_shutdown) {
  2957. np->nic_poll_irq |= NVREG_IRQ_TX_ALL;
  2958. mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
  2959. }
  2960. spin_unlock_irqrestore(&np->lock, flags);
  2961. printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq_tx.\n", dev->name, i);
  2962. break;
  2963. }
  2964. }
  2965. dprintk(KERN_DEBUG "%s: nv_nic_irq_tx completed\n", dev->name);
  2966. return IRQ_RETVAL(i);
  2967. }
  2968. #ifdef CONFIG_FORCEDETH_NAPI
  2969. static int nv_napi_poll(struct napi_struct *napi, int budget)
  2970. {
  2971. struct fe_priv *np = container_of(napi, struct fe_priv, napi);
  2972. struct net_device *dev = np->dev;
  2973. u8 __iomem *base = get_hwbase(dev);
  2974. unsigned long flags;
  2975. int pkts, retcode;
  2976. if (!nv_optimized(np)) {
  2977. pkts = nv_rx_process(dev, budget);
  2978. retcode = nv_alloc_rx(dev);
  2979. } else {
  2980. pkts = nv_rx_process_optimized(dev, budget);
  2981. retcode = nv_alloc_rx_optimized(dev);
  2982. }
  2983. if (retcode) {
  2984. spin_lock_irqsave(&np->lock, flags);
  2985. if (!np->in_shutdown)
  2986. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  2987. spin_unlock_irqrestore(&np->lock, flags);
  2988. }
  2989. if (pkts < budget) {
  2990. /* re-enable receive interrupts */
  2991. spin_lock_irqsave(&np->lock, flags);
  2992. __netif_rx_complete(dev, napi);
  2993. np->irqmask |= NVREG_IRQ_RX_ALL;
  2994. if (np->msi_flags & NV_MSI_X_ENABLED)
  2995. writel(NVREG_IRQ_RX_ALL, base + NvRegIrqMask);
  2996. else
  2997. writel(np->irqmask, base + NvRegIrqMask);
  2998. spin_unlock_irqrestore(&np->lock, flags);
  2999. }
  3000. return pkts;
  3001. }
  3002. #endif
  3003. #ifdef CONFIG_FORCEDETH_NAPI
  3004. static irqreturn_t nv_nic_irq_rx(int foo, void *data)
  3005. {
  3006. struct net_device *dev = (struct net_device *) data;
  3007. struct fe_priv *np = netdev_priv(dev);
  3008. u8 __iomem *base = get_hwbase(dev);
  3009. u32 events;
  3010. events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_RX_ALL;
  3011. writel(NVREG_IRQ_RX_ALL, base + NvRegMSIXIrqStatus);
  3012. if (events) {
  3013. netif_rx_schedule(dev, &np->napi);
  3014. /* disable receive interrupts on the nic */
  3015. writel(NVREG_IRQ_RX_ALL, base + NvRegIrqMask);
  3016. pci_push(base);
  3017. }
  3018. return IRQ_HANDLED;
  3019. }
  3020. #else
  3021. static irqreturn_t nv_nic_irq_rx(int foo, void *data)
  3022. {
  3023. struct net_device *dev = (struct net_device *) data;
  3024. struct fe_priv *np = netdev_priv(dev);
  3025. u8 __iomem *base = get_hwbase(dev);
  3026. u32 events;
  3027. int i;
  3028. unsigned long flags;
  3029. dprintk(KERN_DEBUG "%s: nv_nic_irq_rx\n", dev->name);
  3030. for (i=0; ; i++) {
  3031. events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_RX_ALL;
  3032. writel(NVREG_IRQ_RX_ALL, base + NvRegMSIXIrqStatus);
  3033. dprintk(KERN_DEBUG "%s: rx irq: %08x\n", dev->name, events);
  3034. if (!(events & np->irqmask))
  3035. break;
  3036. if (nv_rx_process_optimized(dev, RX_WORK_PER_LOOP)) {
  3037. if (unlikely(nv_alloc_rx_optimized(dev))) {
  3038. spin_lock_irqsave(&np->lock, flags);
  3039. if (!np->in_shutdown)
  3040. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  3041. spin_unlock_irqrestore(&np->lock, flags);
  3042. }
  3043. }
  3044. if (unlikely(i > max_interrupt_work)) {
  3045. spin_lock_irqsave(&np->lock, flags);
  3046. /* disable interrupts on the nic */
  3047. writel(NVREG_IRQ_RX_ALL, base + NvRegIrqMask);
  3048. pci_push(base);
  3049. if (!np->in_shutdown) {
  3050. np->nic_poll_irq |= NVREG_IRQ_RX_ALL;
  3051. mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
  3052. }
  3053. spin_unlock_irqrestore(&np->lock, flags);
  3054. printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq_rx.\n", dev->name, i);
  3055. break;
  3056. }
  3057. }
  3058. dprintk(KERN_DEBUG "%s: nv_nic_irq_rx completed\n", dev->name);
  3059. return IRQ_RETVAL(i);
  3060. }
  3061. #endif
  3062. static irqreturn_t nv_nic_irq_other(int foo, void *data)
  3063. {
  3064. struct net_device *dev = (struct net_device *) data;
  3065. struct fe_priv *np = netdev_priv(dev);
  3066. u8 __iomem *base = get_hwbase(dev);
  3067. u32 events;
  3068. int i;
  3069. unsigned long flags;
  3070. dprintk(KERN_DEBUG "%s: nv_nic_irq_other\n", dev->name);
  3071. for (i=0; ; i++) {
  3072. events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_OTHER;
  3073. writel(NVREG_IRQ_OTHER, base + NvRegMSIXIrqStatus);
  3074. dprintk(KERN_DEBUG "%s: irq: %08x\n", dev->name, events);
  3075. if (!(events & np->irqmask))
  3076. break;
  3077. /* check tx in case we reached max loop limit in tx isr */
  3078. spin_lock_irqsave(&np->lock, flags);
  3079. nv_tx_done_optimized(dev, TX_WORK_PER_LOOP);
  3080. spin_unlock_irqrestore(&np->lock, flags);
  3081. if (events & NVREG_IRQ_LINK) {
  3082. spin_lock_irqsave(&np->lock, flags);
  3083. nv_link_irq(dev);
  3084. spin_unlock_irqrestore(&np->lock, flags);
  3085. }
  3086. if (np->need_linktimer && time_after(jiffies, np->link_timeout)) {
  3087. spin_lock_irqsave(&np->lock, flags);
  3088. nv_linkchange(dev);
  3089. spin_unlock_irqrestore(&np->lock, flags);
  3090. np->link_timeout = jiffies + LINK_TIMEOUT;
  3091. }
  3092. if (events & NVREG_IRQ_RECOVER_ERROR) {
  3093. spin_lock_irq(&np->lock);
  3094. /* disable interrupts on the nic */
  3095. writel(NVREG_IRQ_OTHER, base + NvRegIrqMask);
  3096. pci_push(base);
  3097. if (!np->in_shutdown) {
  3098. np->nic_poll_irq |= NVREG_IRQ_OTHER;
  3099. np->recover_error = 1;
  3100. mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
  3101. }
  3102. spin_unlock_irq(&np->lock);
  3103. break;
  3104. }
  3105. if (events & (NVREG_IRQ_UNKNOWN)) {
  3106. printk(KERN_DEBUG "%s: received irq with unknown events 0x%x. Please report\n",
  3107. dev->name, events);
  3108. }
  3109. if (unlikely(i > max_interrupt_work)) {
  3110. spin_lock_irqsave(&np->lock, flags);
  3111. /* disable interrupts on the nic */
  3112. writel(NVREG_IRQ_OTHER, base + NvRegIrqMask);
  3113. pci_push(base);
  3114. if (!np->in_shutdown) {
  3115. np->nic_poll_irq |= NVREG_IRQ_OTHER;
  3116. mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
  3117. }
  3118. spin_unlock_irqrestore(&np->lock, flags);
  3119. printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq_other.\n", dev->name, i);
  3120. break;
  3121. }
  3122. }
  3123. dprintk(KERN_DEBUG "%s: nv_nic_irq_other completed\n", dev->name);
  3124. return IRQ_RETVAL(i);
  3125. }
  3126. static irqreturn_t nv_nic_irq_test(int foo, void *data)
  3127. {
  3128. struct net_device *dev = (struct net_device *) data;
  3129. struct fe_priv *np = netdev_priv(dev);
  3130. u8 __iomem *base = get_hwbase(dev);
  3131. u32 events;
  3132. dprintk(KERN_DEBUG "%s: nv_nic_irq_test\n", dev->name);
  3133. if (!(np->msi_flags & NV_MSI_X_ENABLED)) {
  3134. events = readl(base + NvRegIrqStatus) & NVREG_IRQSTAT_MASK;
  3135. writel(NVREG_IRQ_TIMER, base + NvRegIrqStatus);
  3136. } else {
  3137. events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQSTAT_MASK;
  3138. writel(NVREG_IRQ_TIMER, base + NvRegMSIXIrqStatus);
  3139. }
  3140. pci_push(base);
  3141. dprintk(KERN_DEBUG "%s: irq: %08x\n", dev->name, events);
  3142. if (!(events & NVREG_IRQ_TIMER))
  3143. return IRQ_RETVAL(0);
  3144. spin_lock(&np->lock);
  3145. np->intr_test = 1;
  3146. spin_unlock(&np->lock);
  3147. dprintk(KERN_DEBUG "%s: nv_nic_irq_test completed\n", dev->name);
  3148. return IRQ_RETVAL(1);
  3149. }
  3150. static void set_msix_vector_map(struct net_device *dev, u32 vector, u32 irqmask)
  3151. {
  3152. u8 __iomem *base = get_hwbase(dev);
  3153. int i;
  3154. u32 msixmap = 0;
  3155. /* Each interrupt bit can be mapped to a MSIX vector (4 bits).
  3156. * MSIXMap0 represents the first 8 interrupts and MSIXMap1 represents
  3157. * the remaining 8 interrupts.
  3158. */
  3159. for (i = 0; i < 8; i++) {
  3160. if ((irqmask >> i) & 0x1) {
  3161. msixmap |= vector << (i << 2);
  3162. }
  3163. }
  3164. writel(readl(base + NvRegMSIXMap0) | msixmap, base + NvRegMSIXMap0);
  3165. msixmap = 0;
  3166. for (i = 0; i < 8; i++) {
  3167. if ((irqmask >> (i + 8)) & 0x1) {
  3168. msixmap |= vector << (i << 2);
  3169. }
  3170. }
  3171. writel(readl(base + NvRegMSIXMap1) | msixmap, base + NvRegMSIXMap1);
  3172. }
  3173. static int nv_request_irq(struct net_device *dev, int intr_test)
  3174. {
  3175. struct fe_priv *np = get_nvpriv(dev);
  3176. u8 __iomem *base = get_hwbase(dev);
  3177. int ret = 1;
  3178. int i;
  3179. irqreturn_t (*handler)(int foo, void *data);
  3180. if (intr_test) {
  3181. handler = nv_nic_irq_test;
  3182. } else {
  3183. if (nv_optimized(np))
  3184. handler = nv_nic_irq_optimized;
  3185. else
  3186. handler = nv_nic_irq;
  3187. }
  3188. if (np->msi_flags & NV_MSI_X_CAPABLE) {
  3189. for (i = 0; i < (np->msi_flags & NV_MSI_X_VECTORS_MASK); i++) {
  3190. np->msi_x_entry[i].entry = i;
  3191. }
  3192. if ((ret = pci_enable_msix(np->pci_dev, np->msi_x_entry, (np->msi_flags & NV_MSI_X_VECTORS_MASK))) == 0) {
  3193. np->msi_flags |= NV_MSI_X_ENABLED;
  3194. if (optimization_mode == NV_OPTIMIZATION_MODE_THROUGHPUT && !intr_test) {
  3195. /* Request irq for rx handling */
  3196. if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector, &nv_nic_irq_rx, IRQF_SHARED, dev->name, dev) != 0) {
  3197. printk(KERN_INFO "forcedeth: request_irq failed for rx %d\n", ret);
  3198. pci_disable_msix(np->pci_dev);
  3199. np->msi_flags &= ~NV_MSI_X_ENABLED;
  3200. goto out_err;
  3201. }
  3202. /* Request irq for tx handling */
  3203. if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector, &nv_nic_irq_tx, IRQF_SHARED, dev->name, dev) != 0) {
  3204. printk(KERN_INFO "forcedeth: request_irq failed for tx %d\n", ret);
  3205. pci_disable_msix(np->pci_dev);
  3206. np->msi_flags &= ~NV_MSI_X_ENABLED;
  3207. goto out_free_rx;
  3208. }
  3209. /* Request irq for link and timer handling */
  3210. if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector, &nv_nic_irq_other, IRQF_SHARED, dev->name, dev) != 0) {
  3211. printk(KERN_INFO "forcedeth: request_irq failed for link %d\n", ret);
  3212. pci_disable_msix(np->pci_dev);
  3213. np->msi_flags &= ~NV_MSI_X_ENABLED;
  3214. goto out_free_tx;
  3215. }
  3216. /* map interrupts to their respective vector */
  3217. writel(0, base + NvRegMSIXMap0);
  3218. writel(0, base + NvRegMSIXMap1);
  3219. set_msix_vector_map(dev, NV_MSI_X_VECTOR_RX, NVREG_IRQ_RX_ALL);
  3220. set_msix_vector_map(dev, NV_MSI_X_VECTOR_TX, NVREG_IRQ_TX_ALL);
  3221. set_msix_vector_map(dev, NV_MSI_X_VECTOR_OTHER, NVREG_IRQ_OTHER);
  3222. } else {
  3223. /* Request irq for all interrupts */
  3224. if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector, handler, IRQF_SHARED, dev->name, dev) != 0) {
  3225. printk(KERN_INFO "forcedeth: request_irq failed %d\n", ret);
  3226. pci_disable_msix(np->pci_dev);
  3227. np->msi_flags &= ~NV_MSI_X_ENABLED;
  3228. goto out_err;
  3229. }
  3230. /* map interrupts to vector 0 */
  3231. writel(0, base + NvRegMSIXMap0);
  3232. writel(0, base + NvRegMSIXMap1);
  3233. }
  3234. }
  3235. }
  3236. if (ret != 0 && np->msi_flags & NV_MSI_CAPABLE) {
  3237. if ((ret = pci_enable_msi(np->pci_dev)) == 0) {
  3238. np->msi_flags |= NV_MSI_ENABLED;
  3239. dev->irq = np->pci_dev->irq;
  3240. if (request_irq(np->pci_dev->irq, handler, IRQF_SHARED, dev->name, dev) != 0) {
  3241. printk(KERN_INFO "forcedeth: request_irq failed %d\n", ret);
  3242. pci_disable_msi(np->pci_dev);
  3243. np->msi_flags &= ~NV_MSI_ENABLED;
  3244. dev->irq = np->pci_dev->irq;
  3245. goto out_err;
  3246. }
  3247. /* map interrupts to vector 0 */
  3248. writel(0, base + NvRegMSIMap0);
  3249. writel(0, base + NvRegMSIMap1);
  3250. /* enable msi vector 0 */
  3251. writel(NVREG_MSI_VECTOR_0_ENABLED, base + NvRegMSIIrqMask);
  3252. }
  3253. }
  3254. if (ret != 0) {
  3255. if (request_irq(np->pci_dev->irq, handler, IRQF_SHARED, dev->name, dev) != 0)
  3256. goto out_err;
  3257. }
  3258. return 0;
  3259. out_free_tx:
  3260. free_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector, dev);
  3261. out_free_rx:
  3262. free_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector, dev);
  3263. out_err:
  3264. return 1;
  3265. }
  3266. static void nv_free_irq(struct net_device *dev)
  3267. {
  3268. struct fe_priv *np = get_nvpriv(dev);
  3269. int i;
  3270. if (np->msi_flags & NV_MSI_X_ENABLED) {
  3271. for (i = 0; i < (np->msi_flags & NV_MSI_X_VECTORS_MASK); i++) {
  3272. free_irq(np->msi_x_entry[i].vector, dev);
  3273. }
  3274. pci_disable_msix(np->pci_dev);
  3275. np->msi_flags &= ~NV_MSI_X_ENABLED;
  3276. } else {
  3277. free_irq(np->pci_dev->irq, dev);
  3278. if (np->msi_flags & NV_MSI_ENABLED) {
  3279. pci_disable_msi(np->pci_dev);
  3280. np->msi_flags &= ~NV_MSI_ENABLED;
  3281. }
  3282. }
  3283. }
  3284. static void nv_do_nic_poll(unsigned long data)
  3285. {
  3286. struct net_device *dev = (struct net_device *) data;
  3287. struct fe_priv *np = netdev_priv(dev);
  3288. u8 __iomem *base = get_hwbase(dev);
  3289. u32 mask = 0;
  3290. /*
  3291. * First disable irq(s) and then
  3292. * reenable interrupts on the nic, we have to do this before calling
  3293. * nv_nic_irq because that may decide to do otherwise
  3294. */
  3295. if (!using_multi_irqs(dev)) {
  3296. if (np->msi_flags & NV_MSI_X_ENABLED)
  3297. disable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
  3298. else
  3299. disable_irq_lockdep(np->pci_dev->irq);
  3300. mask = np->irqmask;
  3301. } else {
  3302. if (np->nic_poll_irq & NVREG_IRQ_RX_ALL) {
  3303. disable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
  3304. mask |= NVREG_IRQ_RX_ALL;
  3305. }
  3306. if (np->nic_poll_irq & NVREG_IRQ_TX_ALL) {
  3307. disable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
  3308. mask |= NVREG_IRQ_TX_ALL;
  3309. }
  3310. if (np->nic_poll_irq & NVREG_IRQ_OTHER) {
  3311. disable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
  3312. mask |= NVREG_IRQ_OTHER;
  3313. }
  3314. }
  3315. np->nic_poll_irq = 0;
  3316. /* disable_irq() contains synchronize_irq, thus no irq handler can run now */
  3317. if (np->recover_error) {
  3318. np->recover_error = 0;
  3319. printk(KERN_INFO "forcedeth: MAC in recoverable error state\n");
  3320. if (netif_running(dev)) {
  3321. netif_tx_lock_bh(dev);
  3322. spin_lock(&np->lock);
  3323. /* stop engines */
  3324. nv_stop_rxtx(dev);
  3325. nv_txrx_reset(dev);
  3326. /* drain rx queue */
  3327. nv_drain_rxtx(dev);
  3328. /* reinit driver view of the rx queue */
  3329. set_bufsize(dev);
  3330. if (nv_init_ring(dev)) {
  3331. if (!np->in_shutdown)
  3332. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  3333. }
  3334. /* reinit nic view of the rx queue */
  3335. writel(np->rx_buf_sz, base + NvRegOffloadConfig);
  3336. setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
  3337. writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
  3338. base + NvRegRingSizes);
  3339. pci_push(base);
  3340. writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  3341. pci_push(base);
  3342. /* restart rx engine */
  3343. nv_start_rxtx(dev);
  3344. spin_unlock(&np->lock);
  3345. netif_tx_unlock_bh(dev);
  3346. }
  3347. }
  3348. writel(mask, base + NvRegIrqMask);
  3349. pci_push(base);
  3350. if (!using_multi_irqs(dev)) {
  3351. if (nv_optimized(np))
  3352. nv_nic_irq_optimized(0, dev);
  3353. else
  3354. nv_nic_irq(0, dev);
  3355. if (np->msi_flags & NV_MSI_X_ENABLED)
  3356. enable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
  3357. else
  3358. enable_irq_lockdep(np->pci_dev->irq);
  3359. } else {
  3360. if (np->nic_poll_irq & NVREG_IRQ_RX_ALL) {
  3361. nv_nic_irq_rx(0, dev);
  3362. enable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
  3363. }
  3364. if (np->nic_poll_irq & NVREG_IRQ_TX_ALL) {
  3365. nv_nic_irq_tx(0, dev);
  3366. enable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
  3367. }
  3368. if (np->nic_poll_irq & NVREG_IRQ_OTHER) {
  3369. nv_nic_irq_other(0, dev);
  3370. enable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
  3371. }
  3372. }
  3373. }
  3374. #ifdef CONFIG_NET_POLL_CONTROLLER
  3375. static void nv_poll_controller(struct net_device *dev)
  3376. {
  3377. nv_do_nic_poll((unsigned long) dev);
  3378. }
  3379. #endif
  3380. static void nv_do_stats_poll(unsigned long data)
  3381. {
  3382. struct net_device *dev = (struct net_device *) data;
  3383. struct fe_priv *np = netdev_priv(dev);
  3384. nv_get_hw_stats(dev);
  3385. if (!np->in_shutdown)
  3386. mod_timer(&np->stats_poll,
  3387. round_jiffies(jiffies + STATS_INTERVAL));
  3388. }
  3389. static void nv_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
  3390. {
  3391. struct fe_priv *np = netdev_priv(dev);
  3392. strcpy(info->driver, DRV_NAME);
  3393. strcpy(info->version, FORCEDETH_VERSION);
  3394. strcpy(info->bus_info, pci_name(np->pci_dev));
  3395. }
  3396. static void nv_get_wol(struct net_device *dev, struct ethtool_wolinfo *wolinfo)
  3397. {
  3398. struct fe_priv *np = netdev_priv(dev);
  3399. wolinfo->supported = WAKE_MAGIC;
  3400. spin_lock_irq(&np->lock);
  3401. if (np->wolenabled)
  3402. wolinfo->wolopts = WAKE_MAGIC;
  3403. spin_unlock_irq(&np->lock);
  3404. }
  3405. static int nv_set_wol(struct net_device *dev, struct ethtool_wolinfo *wolinfo)
  3406. {
  3407. struct fe_priv *np = netdev_priv(dev);
  3408. u8 __iomem *base = get_hwbase(dev);
  3409. u32 flags = 0;
  3410. if (wolinfo->wolopts == 0) {
  3411. np->wolenabled = 0;
  3412. } else if (wolinfo->wolopts & WAKE_MAGIC) {
  3413. np->wolenabled = 1;
  3414. flags = NVREG_WAKEUPFLAGS_ENABLE;
  3415. }
  3416. if (netif_running(dev)) {
  3417. spin_lock_irq(&np->lock);
  3418. writel(flags, base + NvRegWakeUpFlags);
  3419. spin_unlock_irq(&np->lock);
  3420. }
  3421. return 0;
  3422. }
  3423. static int nv_get_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
  3424. {
  3425. struct fe_priv *np = netdev_priv(dev);
  3426. int adv;
  3427. spin_lock_irq(&np->lock);
  3428. ecmd->port = PORT_MII;
  3429. if (!netif_running(dev)) {
  3430. /* We do not track link speed / duplex setting if the
  3431. * interface is disabled. Force a link check */
  3432. if (nv_update_linkspeed(dev)) {
  3433. if (!netif_carrier_ok(dev))
  3434. netif_carrier_on(dev);
  3435. } else {
  3436. if (netif_carrier_ok(dev))
  3437. netif_carrier_off(dev);
  3438. }
  3439. }
  3440. if (netif_carrier_ok(dev)) {
  3441. switch(np->linkspeed & (NVREG_LINKSPEED_MASK)) {
  3442. case NVREG_LINKSPEED_10:
  3443. ecmd->speed = SPEED_10;
  3444. break;
  3445. case NVREG_LINKSPEED_100:
  3446. ecmd->speed = SPEED_100;
  3447. break;
  3448. case NVREG_LINKSPEED_1000:
  3449. ecmd->speed = SPEED_1000;
  3450. break;
  3451. }
  3452. ecmd->duplex = DUPLEX_HALF;
  3453. if (np->duplex)
  3454. ecmd->duplex = DUPLEX_FULL;
  3455. } else {
  3456. ecmd->speed = -1;
  3457. ecmd->duplex = -1;
  3458. }
  3459. ecmd->autoneg = np->autoneg;
  3460. ecmd->advertising = ADVERTISED_MII;
  3461. if (np->autoneg) {
  3462. ecmd->advertising |= ADVERTISED_Autoneg;
  3463. adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
  3464. if (adv & ADVERTISE_10HALF)
  3465. ecmd->advertising |= ADVERTISED_10baseT_Half;
  3466. if (adv & ADVERTISE_10FULL)
  3467. ecmd->advertising |= ADVERTISED_10baseT_Full;
  3468. if (adv & ADVERTISE_100HALF)
  3469. ecmd->advertising |= ADVERTISED_100baseT_Half;
  3470. if (adv & ADVERTISE_100FULL)
  3471. ecmd->advertising |= ADVERTISED_100baseT_Full;
  3472. if (np->gigabit == PHY_GIGABIT) {
  3473. adv = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
  3474. if (adv & ADVERTISE_1000FULL)
  3475. ecmd->advertising |= ADVERTISED_1000baseT_Full;
  3476. }
  3477. }
  3478. ecmd->supported = (SUPPORTED_Autoneg |
  3479. SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full |
  3480. SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full |
  3481. SUPPORTED_MII);
  3482. if (np->gigabit == PHY_GIGABIT)
  3483. ecmd->supported |= SUPPORTED_1000baseT_Full;
  3484. ecmd->phy_address = np->phyaddr;
  3485. ecmd->transceiver = XCVR_EXTERNAL;
  3486. /* ignore maxtxpkt, maxrxpkt for now */
  3487. spin_unlock_irq(&np->lock);
  3488. return 0;
  3489. }
  3490. static int nv_set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
  3491. {
  3492. struct fe_priv *np = netdev_priv(dev);
  3493. if (ecmd->port != PORT_MII)
  3494. return -EINVAL;
  3495. if (ecmd->transceiver != XCVR_EXTERNAL)
  3496. return -EINVAL;
  3497. if (ecmd->phy_address != np->phyaddr) {
  3498. /* TODO: support switching between multiple phys. Should be
  3499. * trivial, but not enabled due to lack of test hardware. */
  3500. return -EINVAL;
  3501. }
  3502. if (ecmd->autoneg == AUTONEG_ENABLE) {
  3503. u32 mask;
  3504. mask = ADVERTISED_10baseT_Half | ADVERTISED_10baseT_Full |
  3505. ADVERTISED_100baseT_Half | ADVERTISED_100baseT_Full;
  3506. if (np->gigabit == PHY_GIGABIT)
  3507. mask |= ADVERTISED_1000baseT_Full;
  3508. if ((ecmd->advertising & mask) == 0)
  3509. return -EINVAL;
  3510. } else if (ecmd->autoneg == AUTONEG_DISABLE) {
  3511. /* Note: autonegotiation disable, speed 1000 intentionally
  3512. * forbidden - noone should need that. */
  3513. if (ecmd->speed != SPEED_10 && ecmd->speed != SPEED_100)
  3514. return -EINVAL;
  3515. if (ecmd->duplex != DUPLEX_HALF && ecmd->duplex != DUPLEX_FULL)
  3516. return -EINVAL;
  3517. } else {
  3518. return -EINVAL;
  3519. }
  3520. netif_carrier_off(dev);
  3521. if (netif_running(dev)) {
  3522. nv_disable_irq(dev);
  3523. netif_tx_lock_bh(dev);
  3524. spin_lock(&np->lock);
  3525. /* stop engines */
  3526. nv_stop_rxtx(dev);
  3527. spin_unlock(&np->lock);
  3528. netif_tx_unlock_bh(dev);
  3529. }
  3530. if (ecmd->autoneg == AUTONEG_ENABLE) {
  3531. int adv, bmcr;
  3532. np->autoneg = 1;
  3533. /* advertise only what has been requested */
  3534. adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
  3535. adv &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4 | ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM);
  3536. if (ecmd->advertising & ADVERTISED_10baseT_Half)
  3537. adv |= ADVERTISE_10HALF;
  3538. if (ecmd->advertising & ADVERTISED_10baseT_Full)
  3539. adv |= ADVERTISE_10FULL;
  3540. if (ecmd->advertising & ADVERTISED_100baseT_Half)
  3541. adv |= ADVERTISE_100HALF;
  3542. if (ecmd->advertising & ADVERTISED_100baseT_Full)
  3543. adv |= ADVERTISE_100FULL;
  3544. if (np->pause_flags & NV_PAUSEFRAME_RX_REQ) /* for rx we set both advertisments but disable tx pause */
  3545. adv |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
  3546. if (np->pause_flags & NV_PAUSEFRAME_TX_REQ)
  3547. adv |= ADVERTISE_PAUSE_ASYM;
  3548. mii_rw(dev, np->phyaddr, MII_ADVERTISE, adv);
  3549. if (np->gigabit == PHY_GIGABIT) {
  3550. adv = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
  3551. adv &= ~ADVERTISE_1000FULL;
  3552. if (ecmd->advertising & ADVERTISED_1000baseT_Full)
  3553. adv |= ADVERTISE_1000FULL;
  3554. mii_rw(dev, np->phyaddr, MII_CTRL1000, adv);
  3555. }
  3556. if (netif_running(dev))
  3557. printk(KERN_INFO "%s: link down.\n", dev->name);
  3558. bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  3559. if (np->phy_model == PHY_MODEL_MARVELL_E3016) {
  3560. bmcr |= BMCR_ANENABLE;
  3561. /* reset the phy in order for settings to stick,
  3562. * and cause autoneg to start */
  3563. if (phy_reset(dev, bmcr)) {
  3564. printk(KERN_INFO "%s: phy reset failed\n", dev->name);
  3565. return -EINVAL;
  3566. }
  3567. } else {
  3568. bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART);
  3569. mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
  3570. }
  3571. } else {
  3572. int adv, bmcr;
  3573. np->autoneg = 0;
  3574. adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
  3575. adv &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4 | ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM);
  3576. if (ecmd->speed == SPEED_10 && ecmd->duplex == DUPLEX_HALF)
  3577. adv |= ADVERTISE_10HALF;
  3578. if (ecmd->speed == SPEED_10 && ecmd->duplex == DUPLEX_FULL)
  3579. adv |= ADVERTISE_10FULL;
  3580. if (ecmd->speed == SPEED_100 && ecmd->duplex == DUPLEX_HALF)
  3581. adv |= ADVERTISE_100HALF;
  3582. if (ecmd->speed == SPEED_100 && ecmd->duplex == DUPLEX_FULL)
  3583. adv |= ADVERTISE_100FULL;
  3584. np->pause_flags &= ~(NV_PAUSEFRAME_AUTONEG|NV_PAUSEFRAME_RX_ENABLE|NV_PAUSEFRAME_TX_ENABLE);
  3585. if (np->pause_flags & NV_PAUSEFRAME_RX_REQ) {/* for rx we set both advertisments but disable tx pause */
  3586. adv |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
  3587. np->pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
  3588. }
  3589. if (np->pause_flags & NV_PAUSEFRAME_TX_REQ) {
  3590. adv |= ADVERTISE_PAUSE_ASYM;
  3591. np->pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
  3592. }
  3593. mii_rw(dev, np->phyaddr, MII_ADVERTISE, adv);
  3594. np->fixed_mode = adv;
  3595. if (np->gigabit == PHY_GIGABIT) {
  3596. adv = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
  3597. adv &= ~ADVERTISE_1000FULL;
  3598. mii_rw(dev, np->phyaddr, MII_CTRL1000, adv);
  3599. }
  3600. bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  3601. bmcr &= ~(BMCR_ANENABLE|BMCR_SPEED100|BMCR_SPEED1000|BMCR_FULLDPLX);
  3602. if (np->fixed_mode & (ADVERTISE_10FULL|ADVERTISE_100FULL))
  3603. bmcr |= BMCR_FULLDPLX;
  3604. if (np->fixed_mode & (ADVERTISE_100HALF|ADVERTISE_100FULL))
  3605. bmcr |= BMCR_SPEED100;
  3606. if (np->phy_oui == PHY_OUI_MARVELL) {
  3607. /* reset the phy in order for forced mode settings to stick */
  3608. if (phy_reset(dev, bmcr)) {
  3609. printk(KERN_INFO "%s: phy reset failed\n", dev->name);
  3610. return -EINVAL;
  3611. }
  3612. } else {
  3613. mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
  3614. if (netif_running(dev)) {
  3615. /* Wait a bit and then reconfigure the nic. */
  3616. udelay(10);
  3617. nv_linkchange(dev);
  3618. }
  3619. }
  3620. }
  3621. if (netif_running(dev)) {
  3622. nv_start_rxtx(dev);
  3623. nv_enable_irq(dev);
  3624. }
  3625. return 0;
  3626. }
  3627. #define FORCEDETH_REGS_VER 1
  3628. static int nv_get_regs_len(struct net_device *dev)
  3629. {
  3630. struct fe_priv *np = netdev_priv(dev);
  3631. return np->register_size;
  3632. }
  3633. static void nv_get_regs(struct net_device *dev, struct ethtool_regs *regs, void *buf)
  3634. {
  3635. struct fe_priv *np = netdev_priv(dev);
  3636. u8 __iomem *base = get_hwbase(dev);
  3637. u32 *rbuf = buf;
  3638. int i;
  3639. regs->version = FORCEDETH_REGS_VER;
  3640. spin_lock_irq(&np->lock);
  3641. for (i = 0;i <= np->register_size/sizeof(u32); i++)
  3642. rbuf[i] = readl(base + i*sizeof(u32));
  3643. spin_unlock_irq(&np->lock);
  3644. }
  3645. static int nv_nway_reset(struct net_device *dev)
  3646. {
  3647. struct fe_priv *np = netdev_priv(dev);
  3648. int ret;
  3649. if (np->autoneg) {
  3650. int bmcr;
  3651. netif_carrier_off(dev);
  3652. if (netif_running(dev)) {
  3653. nv_disable_irq(dev);
  3654. netif_tx_lock_bh(dev);
  3655. spin_lock(&np->lock);
  3656. /* stop engines */
  3657. nv_stop_rxtx(dev);
  3658. spin_unlock(&np->lock);
  3659. netif_tx_unlock_bh(dev);
  3660. printk(KERN_INFO "%s: link down.\n", dev->name);
  3661. }
  3662. bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  3663. if (np->phy_model == PHY_MODEL_MARVELL_E3016) {
  3664. bmcr |= BMCR_ANENABLE;
  3665. /* reset the phy in order for settings to stick*/
  3666. if (phy_reset(dev, bmcr)) {
  3667. printk(KERN_INFO "%s: phy reset failed\n", dev->name);
  3668. return -EINVAL;
  3669. }
  3670. } else {
  3671. bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART);
  3672. mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
  3673. }
  3674. if (netif_running(dev)) {
  3675. nv_start_rxtx(dev);
  3676. nv_enable_irq(dev);
  3677. }
  3678. ret = 0;
  3679. } else {
  3680. ret = -EINVAL;
  3681. }
  3682. return ret;
  3683. }
  3684. static int nv_set_tso(struct net_device *dev, u32 value)
  3685. {
  3686. struct fe_priv *np = netdev_priv(dev);
  3687. if ((np->driver_data & DEV_HAS_CHECKSUM))
  3688. return ethtool_op_set_tso(dev, value);
  3689. else
  3690. return -EOPNOTSUPP;
  3691. }
  3692. static void nv_get_ringparam(struct net_device *dev, struct ethtool_ringparam* ring)
  3693. {
  3694. struct fe_priv *np = netdev_priv(dev);
  3695. ring->rx_max_pending = (np->desc_ver == DESC_VER_1) ? RING_MAX_DESC_VER_1 : RING_MAX_DESC_VER_2_3;
  3696. ring->rx_mini_max_pending = 0;
  3697. ring->rx_jumbo_max_pending = 0;
  3698. ring->tx_max_pending = (np->desc_ver == DESC_VER_1) ? RING_MAX_DESC_VER_1 : RING_MAX_DESC_VER_2_3;
  3699. ring->rx_pending = np->rx_ring_size;
  3700. ring->rx_mini_pending = 0;
  3701. ring->rx_jumbo_pending = 0;
  3702. ring->tx_pending = np->tx_ring_size;
  3703. }
  3704. static int nv_set_ringparam(struct net_device *dev, struct ethtool_ringparam* ring)
  3705. {
  3706. struct fe_priv *np = netdev_priv(dev);
  3707. u8 __iomem *base = get_hwbase(dev);
  3708. u8 *rxtx_ring, *rx_skbuff, *tx_skbuff;
  3709. dma_addr_t ring_addr;
  3710. if (ring->rx_pending < RX_RING_MIN ||
  3711. ring->tx_pending < TX_RING_MIN ||
  3712. ring->rx_mini_pending != 0 ||
  3713. ring->rx_jumbo_pending != 0 ||
  3714. (np->desc_ver == DESC_VER_1 &&
  3715. (ring->rx_pending > RING_MAX_DESC_VER_1 ||
  3716. ring->tx_pending > RING_MAX_DESC_VER_1)) ||
  3717. (np->desc_ver != DESC_VER_1 &&
  3718. (ring->rx_pending > RING_MAX_DESC_VER_2_3 ||
  3719. ring->tx_pending > RING_MAX_DESC_VER_2_3))) {
  3720. return -EINVAL;
  3721. }
  3722. /* allocate new rings */
  3723. if (!nv_optimized(np)) {
  3724. rxtx_ring = pci_alloc_consistent(np->pci_dev,
  3725. sizeof(struct ring_desc) * (ring->rx_pending + ring->tx_pending),
  3726. &ring_addr);
  3727. } else {
  3728. rxtx_ring = pci_alloc_consistent(np->pci_dev,
  3729. sizeof(struct ring_desc_ex) * (ring->rx_pending + ring->tx_pending),
  3730. &ring_addr);
  3731. }
  3732. rx_skbuff = kmalloc(sizeof(struct nv_skb_map) * ring->rx_pending, GFP_KERNEL);
  3733. tx_skbuff = kmalloc(sizeof(struct nv_skb_map) * ring->tx_pending, GFP_KERNEL);
  3734. if (!rxtx_ring || !rx_skbuff || !tx_skbuff) {
  3735. /* fall back to old rings */
  3736. if (!nv_optimized(np)) {
  3737. if (rxtx_ring)
  3738. pci_free_consistent(np->pci_dev, sizeof(struct ring_desc) * (ring->rx_pending + ring->tx_pending),
  3739. rxtx_ring, ring_addr);
  3740. } else {
  3741. if (rxtx_ring)
  3742. pci_free_consistent(np->pci_dev, sizeof(struct ring_desc_ex) * (ring->rx_pending + ring->tx_pending),
  3743. rxtx_ring, ring_addr);
  3744. }
  3745. if (rx_skbuff)
  3746. kfree(rx_skbuff);
  3747. if (tx_skbuff)
  3748. kfree(tx_skbuff);
  3749. goto exit;
  3750. }
  3751. if (netif_running(dev)) {
  3752. nv_disable_irq(dev);
  3753. netif_tx_lock_bh(dev);
  3754. spin_lock(&np->lock);
  3755. /* stop engines */
  3756. nv_stop_rxtx(dev);
  3757. nv_txrx_reset(dev);
  3758. /* drain queues */
  3759. nv_drain_rxtx(dev);
  3760. /* delete queues */
  3761. free_rings(dev);
  3762. }
  3763. /* set new values */
  3764. np->rx_ring_size = ring->rx_pending;
  3765. np->tx_ring_size = ring->tx_pending;
  3766. if (!nv_optimized(np)) {
  3767. np->rx_ring.orig = (struct ring_desc*)rxtx_ring;
  3768. np->tx_ring.orig = &np->rx_ring.orig[np->rx_ring_size];
  3769. } else {
  3770. np->rx_ring.ex = (struct ring_desc_ex*)rxtx_ring;
  3771. np->tx_ring.ex = &np->rx_ring.ex[np->rx_ring_size];
  3772. }
  3773. np->rx_skb = (struct nv_skb_map*)rx_skbuff;
  3774. np->tx_skb = (struct nv_skb_map*)tx_skbuff;
  3775. np->ring_addr = ring_addr;
  3776. memset(np->rx_skb, 0, sizeof(struct nv_skb_map) * np->rx_ring_size);
  3777. memset(np->tx_skb, 0, sizeof(struct nv_skb_map) * np->tx_ring_size);
  3778. if (netif_running(dev)) {
  3779. /* reinit driver view of the queues */
  3780. set_bufsize(dev);
  3781. if (nv_init_ring(dev)) {
  3782. if (!np->in_shutdown)
  3783. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  3784. }
  3785. /* reinit nic view of the queues */
  3786. writel(np->rx_buf_sz, base + NvRegOffloadConfig);
  3787. setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
  3788. writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
  3789. base + NvRegRingSizes);
  3790. pci_push(base);
  3791. writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  3792. pci_push(base);
  3793. /* restart engines */
  3794. nv_start_rxtx(dev);
  3795. spin_unlock(&np->lock);
  3796. netif_tx_unlock_bh(dev);
  3797. nv_enable_irq(dev);
  3798. }
  3799. return 0;
  3800. exit:
  3801. return -ENOMEM;
  3802. }
  3803. static void nv_get_pauseparam(struct net_device *dev, struct ethtool_pauseparam* pause)
  3804. {
  3805. struct fe_priv *np = netdev_priv(dev);
  3806. pause->autoneg = (np->pause_flags & NV_PAUSEFRAME_AUTONEG) != 0;
  3807. pause->rx_pause = (np->pause_flags & NV_PAUSEFRAME_RX_ENABLE) != 0;
  3808. pause->tx_pause = (np->pause_flags & NV_PAUSEFRAME_TX_ENABLE) != 0;
  3809. }
  3810. static int nv_set_pauseparam(struct net_device *dev, struct ethtool_pauseparam* pause)
  3811. {
  3812. struct fe_priv *np = netdev_priv(dev);
  3813. int adv, bmcr;
  3814. if ((!np->autoneg && np->duplex == 0) ||
  3815. (np->autoneg && !pause->autoneg && np->duplex == 0)) {
  3816. printk(KERN_INFO "%s: can not set pause settings when forced link is in half duplex.\n",
  3817. dev->name);
  3818. return -EINVAL;
  3819. }
  3820. if (pause->tx_pause && !(np->pause_flags & NV_PAUSEFRAME_TX_CAPABLE)) {
  3821. printk(KERN_INFO "%s: hardware does not support tx pause frames.\n", dev->name);
  3822. return -EINVAL;
  3823. }
  3824. netif_carrier_off(dev);
  3825. if (netif_running(dev)) {
  3826. nv_disable_irq(dev);
  3827. netif_tx_lock_bh(dev);
  3828. spin_lock(&np->lock);
  3829. /* stop engines */
  3830. nv_stop_rxtx(dev);
  3831. spin_unlock(&np->lock);
  3832. netif_tx_unlock_bh(dev);
  3833. }
  3834. np->pause_flags &= ~(NV_PAUSEFRAME_RX_REQ|NV_PAUSEFRAME_TX_REQ);
  3835. if (pause->rx_pause)
  3836. np->pause_flags |= NV_PAUSEFRAME_RX_REQ;
  3837. if (pause->tx_pause)
  3838. np->pause_flags |= NV_PAUSEFRAME_TX_REQ;
  3839. if (np->autoneg && pause->autoneg) {
  3840. np->pause_flags |= NV_PAUSEFRAME_AUTONEG;
  3841. adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
  3842. adv &= ~(ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM);
  3843. if (np->pause_flags & NV_PAUSEFRAME_RX_REQ) /* for rx we set both advertisments but disable tx pause */
  3844. adv |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
  3845. if (np->pause_flags & NV_PAUSEFRAME_TX_REQ)
  3846. adv |= ADVERTISE_PAUSE_ASYM;
  3847. mii_rw(dev, np->phyaddr, MII_ADVERTISE, adv);
  3848. if (netif_running(dev))
  3849. printk(KERN_INFO "%s: link down.\n", dev->name);
  3850. bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  3851. bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART);
  3852. mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
  3853. } else {
  3854. np->pause_flags &= ~(NV_PAUSEFRAME_AUTONEG|NV_PAUSEFRAME_RX_ENABLE|NV_PAUSEFRAME_TX_ENABLE);
  3855. if (pause->rx_pause)
  3856. np->pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
  3857. if (pause->tx_pause)
  3858. np->pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
  3859. if (!netif_running(dev))
  3860. nv_update_linkspeed(dev);
  3861. else
  3862. nv_update_pause(dev, np->pause_flags);
  3863. }
  3864. if (netif_running(dev)) {
  3865. nv_start_rxtx(dev);
  3866. nv_enable_irq(dev);
  3867. }
  3868. return 0;
  3869. }
  3870. static u32 nv_get_rx_csum(struct net_device *dev)
  3871. {
  3872. struct fe_priv *np = netdev_priv(dev);
  3873. return (np->rx_csum) != 0;
  3874. }
  3875. static int nv_set_rx_csum(struct net_device *dev, u32 data)
  3876. {
  3877. struct fe_priv *np = netdev_priv(dev);
  3878. u8 __iomem *base = get_hwbase(dev);
  3879. int retcode = 0;
  3880. if (np->driver_data & DEV_HAS_CHECKSUM) {
  3881. if (data) {
  3882. np->rx_csum = 1;
  3883. np->txrxctl_bits |= NVREG_TXRXCTL_RXCHECK;
  3884. } else {
  3885. np->rx_csum = 0;
  3886. /* vlan is dependent on rx checksum offload */
  3887. if (!(np->vlanctl_bits & NVREG_VLANCONTROL_ENABLE))
  3888. np->txrxctl_bits &= ~NVREG_TXRXCTL_RXCHECK;
  3889. }
  3890. if (netif_running(dev)) {
  3891. spin_lock_irq(&np->lock);
  3892. writel(np->txrxctl_bits, base + NvRegTxRxControl);
  3893. spin_unlock_irq(&np->lock);
  3894. }
  3895. } else {
  3896. return -EINVAL;
  3897. }
  3898. return retcode;
  3899. }
  3900. static int nv_set_tx_csum(struct net_device *dev, u32 data)
  3901. {
  3902. struct fe_priv *np = netdev_priv(dev);
  3903. if (np->driver_data & DEV_HAS_CHECKSUM)
  3904. return ethtool_op_set_tx_hw_csum(dev, data);
  3905. else
  3906. return -EOPNOTSUPP;
  3907. }
  3908. static int nv_set_sg(struct net_device *dev, u32 data)
  3909. {
  3910. struct fe_priv *np = netdev_priv(dev);
  3911. if (np->driver_data & DEV_HAS_CHECKSUM)
  3912. return ethtool_op_set_sg(dev, data);
  3913. else
  3914. return -EOPNOTSUPP;
  3915. }
  3916. static int nv_get_sset_count(struct net_device *dev, int sset)
  3917. {
  3918. struct fe_priv *np = netdev_priv(dev);
  3919. switch (sset) {
  3920. case ETH_SS_TEST:
  3921. if (np->driver_data & DEV_HAS_TEST_EXTENDED)
  3922. return NV_TEST_COUNT_EXTENDED;
  3923. else
  3924. return NV_TEST_COUNT_BASE;
  3925. case ETH_SS_STATS:
  3926. if (np->driver_data & DEV_HAS_STATISTICS_V1)
  3927. return NV_DEV_STATISTICS_V1_COUNT;
  3928. else if (np->driver_data & DEV_HAS_STATISTICS_V2)
  3929. return NV_DEV_STATISTICS_V2_COUNT;
  3930. else
  3931. return 0;
  3932. default:
  3933. return -EOPNOTSUPP;
  3934. }
  3935. }
  3936. static void nv_get_ethtool_stats(struct net_device *dev, struct ethtool_stats *estats, u64 *buffer)
  3937. {
  3938. struct fe_priv *np = netdev_priv(dev);
  3939. /* update stats */
  3940. nv_do_stats_poll((unsigned long)dev);
  3941. memcpy(buffer, &np->estats, nv_get_sset_count(dev, ETH_SS_STATS)*sizeof(u64));
  3942. }
  3943. static int nv_link_test(struct net_device *dev)
  3944. {
  3945. struct fe_priv *np = netdev_priv(dev);
  3946. int mii_status;
  3947. mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
  3948. mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
  3949. /* check phy link status */
  3950. if (!(mii_status & BMSR_LSTATUS))
  3951. return 0;
  3952. else
  3953. return 1;
  3954. }
  3955. static int nv_register_test(struct net_device *dev)
  3956. {
  3957. u8 __iomem *base = get_hwbase(dev);
  3958. int i = 0;
  3959. u32 orig_read, new_read;
  3960. do {
  3961. orig_read = readl(base + nv_registers_test[i].reg);
  3962. /* xor with mask to toggle bits */
  3963. orig_read ^= nv_registers_test[i].mask;
  3964. writel(orig_read, base + nv_registers_test[i].reg);
  3965. new_read = readl(base + nv_registers_test[i].reg);
  3966. if ((new_read & nv_registers_test[i].mask) != (orig_read & nv_registers_test[i].mask))
  3967. return 0;
  3968. /* restore original value */
  3969. orig_read ^= nv_registers_test[i].mask;
  3970. writel(orig_read, base + nv_registers_test[i].reg);
  3971. } while (nv_registers_test[++i].reg != 0);
  3972. return 1;
  3973. }
  3974. static int nv_interrupt_test(struct net_device *dev)
  3975. {
  3976. struct fe_priv *np = netdev_priv(dev);
  3977. u8 __iomem *base = get_hwbase(dev);
  3978. int ret = 1;
  3979. int testcnt;
  3980. u32 save_msi_flags, save_poll_interval = 0;
  3981. if (netif_running(dev)) {
  3982. /* free current irq */
  3983. nv_free_irq(dev);
  3984. save_poll_interval = readl(base+NvRegPollingInterval);
  3985. }
  3986. /* flag to test interrupt handler */
  3987. np->intr_test = 0;
  3988. /* setup test irq */
  3989. save_msi_flags = np->msi_flags;
  3990. np->msi_flags &= ~NV_MSI_X_VECTORS_MASK;
  3991. np->msi_flags |= 0x001; /* setup 1 vector */
  3992. if (nv_request_irq(dev, 1))
  3993. return 0;
  3994. /* setup timer interrupt */
  3995. writel(NVREG_POLL_DEFAULT_CPU, base + NvRegPollingInterval);
  3996. writel(NVREG_UNKSETUP6_VAL, base + NvRegUnknownSetupReg6);
  3997. nv_enable_hw_interrupts(dev, NVREG_IRQ_TIMER);
  3998. /* wait for at least one interrupt */
  3999. msleep(100);
  4000. spin_lock_irq(&np->lock);
  4001. /* flag should be set within ISR */
  4002. testcnt = np->intr_test;
  4003. if (!testcnt)
  4004. ret = 2;
  4005. nv_disable_hw_interrupts(dev, NVREG_IRQ_TIMER);
  4006. if (!(np->msi_flags & NV_MSI_X_ENABLED))
  4007. writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
  4008. else
  4009. writel(NVREG_IRQSTAT_MASK, base + NvRegMSIXIrqStatus);
  4010. spin_unlock_irq(&np->lock);
  4011. nv_free_irq(dev);
  4012. np->msi_flags = save_msi_flags;
  4013. if (netif_running(dev)) {
  4014. writel(save_poll_interval, base + NvRegPollingInterval);
  4015. writel(NVREG_UNKSETUP6_VAL, base + NvRegUnknownSetupReg6);
  4016. /* restore original irq */
  4017. if (nv_request_irq(dev, 0))
  4018. return 0;
  4019. }
  4020. return ret;
  4021. }
  4022. static int nv_loopback_test(struct net_device *dev)
  4023. {
  4024. struct fe_priv *np = netdev_priv(dev);
  4025. u8 __iomem *base = get_hwbase(dev);
  4026. struct sk_buff *tx_skb, *rx_skb;
  4027. dma_addr_t test_dma_addr;
  4028. u32 tx_flags_extra = (np->desc_ver == DESC_VER_1 ? NV_TX_LASTPACKET : NV_TX2_LASTPACKET);
  4029. u32 flags;
  4030. int len, i, pkt_len;
  4031. u8 *pkt_data;
  4032. u32 filter_flags = 0;
  4033. u32 misc1_flags = 0;
  4034. int ret = 1;
  4035. if (netif_running(dev)) {
  4036. nv_disable_irq(dev);
  4037. filter_flags = readl(base + NvRegPacketFilterFlags);
  4038. misc1_flags = readl(base + NvRegMisc1);
  4039. } else {
  4040. nv_txrx_reset(dev);
  4041. }
  4042. /* reinit driver view of the rx queue */
  4043. set_bufsize(dev);
  4044. nv_init_ring(dev);
  4045. /* setup hardware for loopback */
  4046. writel(NVREG_MISC1_FORCE, base + NvRegMisc1);
  4047. writel(NVREG_PFF_ALWAYS | NVREG_PFF_LOOPBACK, base + NvRegPacketFilterFlags);
  4048. /* reinit nic view of the rx queue */
  4049. writel(np->rx_buf_sz, base + NvRegOffloadConfig);
  4050. setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
  4051. writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
  4052. base + NvRegRingSizes);
  4053. pci_push(base);
  4054. /* restart rx engine */
  4055. nv_start_rxtx(dev);
  4056. /* setup packet for tx */
  4057. pkt_len = ETH_DATA_LEN;
  4058. tx_skb = dev_alloc_skb(pkt_len);
  4059. if (!tx_skb) {
  4060. printk(KERN_ERR "dev_alloc_skb() failed during loopback test"
  4061. " of %s\n", dev->name);
  4062. ret = 0;
  4063. goto out;
  4064. }
  4065. test_dma_addr = pci_map_single(np->pci_dev, tx_skb->data,
  4066. skb_tailroom(tx_skb),
  4067. PCI_DMA_FROMDEVICE);
  4068. pkt_data = skb_put(tx_skb, pkt_len);
  4069. for (i = 0; i < pkt_len; i++)
  4070. pkt_data[i] = (u8)(i & 0xff);
  4071. if (!nv_optimized(np)) {
  4072. np->tx_ring.orig[0].buf = cpu_to_le32(test_dma_addr);
  4073. np->tx_ring.orig[0].flaglen = cpu_to_le32((pkt_len-1) | np->tx_flags | tx_flags_extra);
  4074. } else {
  4075. np->tx_ring.ex[0].bufhigh = cpu_to_le32(dma_high(test_dma_addr));
  4076. np->tx_ring.ex[0].buflow = cpu_to_le32(dma_low(test_dma_addr));
  4077. np->tx_ring.ex[0].flaglen = cpu_to_le32((pkt_len-1) | np->tx_flags | tx_flags_extra);
  4078. }
  4079. writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  4080. pci_push(get_hwbase(dev));
  4081. msleep(500);
  4082. /* check for rx of the packet */
  4083. if (!nv_optimized(np)) {
  4084. flags = le32_to_cpu(np->rx_ring.orig[0].flaglen);
  4085. len = nv_descr_getlength(&np->rx_ring.orig[0], np->desc_ver);
  4086. } else {
  4087. flags = le32_to_cpu(np->rx_ring.ex[0].flaglen);
  4088. len = nv_descr_getlength_ex(&np->rx_ring.ex[0], np->desc_ver);
  4089. }
  4090. if (flags & NV_RX_AVAIL) {
  4091. ret = 0;
  4092. } else if (np->desc_ver == DESC_VER_1) {
  4093. if (flags & NV_RX_ERROR)
  4094. ret = 0;
  4095. } else {
  4096. if (flags & NV_RX2_ERROR) {
  4097. ret = 0;
  4098. }
  4099. }
  4100. if (ret) {
  4101. if (len != pkt_len) {
  4102. ret = 0;
  4103. dprintk(KERN_DEBUG "%s: loopback len mismatch %d vs %d\n",
  4104. dev->name, len, pkt_len);
  4105. } else {
  4106. rx_skb = np->rx_skb[0].skb;
  4107. for (i = 0; i < pkt_len; i++) {
  4108. if (rx_skb->data[i] != (u8)(i & 0xff)) {
  4109. ret = 0;
  4110. dprintk(KERN_DEBUG "%s: loopback pattern check failed on byte %d\n",
  4111. dev->name, i);
  4112. break;
  4113. }
  4114. }
  4115. }
  4116. } else {
  4117. dprintk(KERN_DEBUG "%s: loopback - did not receive test packet\n", dev->name);
  4118. }
  4119. pci_unmap_page(np->pci_dev, test_dma_addr,
  4120. (skb_end_pointer(tx_skb) - tx_skb->data),
  4121. PCI_DMA_TODEVICE);
  4122. dev_kfree_skb_any(tx_skb);
  4123. out:
  4124. /* stop engines */
  4125. nv_stop_rxtx(dev);
  4126. nv_txrx_reset(dev);
  4127. /* drain rx queue */
  4128. nv_drain_rxtx(dev);
  4129. if (netif_running(dev)) {
  4130. writel(misc1_flags, base + NvRegMisc1);
  4131. writel(filter_flags, base + NvRegPacketFilterFlags);
  4132. nv_enable_irq(dev);
  4133. }
  4134. return ret;
  4135. }
  4136. static void nv_self_test(struct net_device *dev, struct ethtool_test *test, u64 *buffer)
  4137. {
  4138. struct fe_priv *np = netdev_priv(dev);
  4139. u8 __iomem *base = get_hwbase(dev);
  4140. int result;
  4141. memset(buffer, 0, nv_get_sset_count(dev, ETH_SS_TEST)*sizeof(u64));
  4142. if (!nv_link_test(dev)) {
  4143. test->flags |= ETH_TEST_FL_FAILED;
  4144. buffer[0] = 1;
  4145. }
  4146. if (test->flags & ETH_TEST_FL_OFFLINE) {
  4147. if (netif_running(dev)) {
  4148. netif_stop_queue(dev);
  4149. #ifdef CONFIG_FORCEDETH_NAPI
  4150. napi_disable(&np->napi);
  4151. #endif
  4152. netif_tx_lock_bh(dev);
  4153. spin_lock_irq(&np->lock);
  4154. nv_disable_hw_interrupts(dev, np->irqmask);
  4155. if (!(np->msi_flags & NV_MSI_X_ENABLED)) {
  4156. writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
  4157. } else {
  4158. writel(NVREG_IRQSTAT_MASK, base + NvRegMSIXIrqStatus);
  4159. }
  4160. /* stop engines */
  4161. nv_stop_rxtx(dev);
  4162. nv_txrx_reset(dev);
  4163. /* drain rx queue */
  4164. nv_drain_rxtx(dev);
  4165. spin_unlock_irq(&np->lock);
  4166. netif_tx_unlock_bh(dev);
  4167. }
  4168. if (!nv_register_test(dev)) {
  4169. test->flags |= ETH_TEST_FL_FAILED;
  4170. buffer[1] = 1;
  4171. }
  4172. result = nv_interrupt_test(dev);
  4173. if (result != 1) {
  4174. test->flags |= ETH_TEST_FL_FAILED;
  4175. buffer[2] = 1;
  4176. }
  4177. if (result == 0) {
  4178. /* bail out */
  4179. return;
  4180. }
  4181. if (!nv_loopback_test(dev)) {
  4182. test->flags |= ETH_TEST_FL_FAILED;
  4183. buffer[3] = 1;
  4184. }
  4185. if (netif_running(dev)) {
  4186. /* reinit driver view of the rx queue */
  4187. set_bufsize(dev);
  4188. if (nv_init_ring(dev)) {
  4189. if (!np->in_shutdown)
  4190. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  4191. }
  4192. /* reinit nic view of the rx queue */
  4193. writel(np->rx_buf_sz, base + NvRegOffloadConfig);
  4194. setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
  4195. writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
  4196. base + NvRegRingSizes);
  4197. pci_push(base);
  4198. writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  4199. pci_push(base);
  4200. /* restart rx engine */
  4201. nv_start_rxtx(dev);
  4202. netif_start_queue(dev);
  4203. #ifdef CONFIG_FORCEDETH_NAPI
  4204. napi_enable(&np->napi);
  4205. #endif
  4206. nv_enable_hw_interrupts(dev, np->irqmask);
  4207. }
  4208. }
  4209. }
  4210. static void nv_get_strings(struct net_device *dev, u32 stringset, u8 *buffer)
  4211. {
  4212. switch (stringset) {
  4213. case ETH_SS_STATS:
  4214. memcpy(buffer, &nv_estats_str, nv_get_sset_count(dev, ETH_SS_STATS)*sizeof(struct nv_ethtool_str));
  4215. break;
  4216. case ETH_SS_TEST:
  4217. memcpy(buffer, &nv_etests_str, nv_get_sset_count(dev, ETH_SS_TEST)*sizeof(struct nv_ethtool_str));
  4218. break;
  4219. }
  4220. }
  4221. static const struct ethtool_ops ops = {
  4222. .get_drvinfo = nv_get_drvinfo,
  4223. .get_link = ethtool_op_get_link,
  4224. .get_wol = nv_get_wol,
  4225. .set_wol = nv_set_wol,
  4226. .get_settings = nv_get_settings,
  4227. .set_settings = nv_set_settings,
  4228. .get_regs_len = nv_get_regs_len,
  4229. .get_regs = nv_get_regs,
  4230. .nway_reset = nv_nway_reset,
  4231. .set_tso = nv_set_tso,
  4232. .get_ringparam = nv_get_ringparam,
  4233. .set_ringparam = nv_set_ringparam,
  4234. .get_pauseparam = nv_get_pauseparam,
  4235. .set_pauseparam = nv_set_pauseparam,
  4236. .get_rx_csum = nv_get_rx_csum,
  4237. .set_rx_csum = nv_set_rx_csum,
  4238. .set_tx_csum = nv_set_tx_csum,
  4239. .set_sg = nv_set_sg,
  4240. .get_strings = nv_get_strings,
  4241. .get_ethtool_stats = nv_get_ethtool_stats,
  4242. .get_sset_count = nv_get_sset_count,
  4243. .self_test = nv_self_test,
  4244. };
  4245. static void nv_vlan_rx_register(struct net_device *dev, struct vlan_group *grp)
  4246. {
  4247. struct fe_priv *np = get_nvpriv(dev);
  4248. spin_lock_irq(&np->lock);
  4249. /* save vlan group */
  4250. np->vlangrp = grp;
  4251. if (grp) {
  4252. /* enable vlan on MAC */
  4253. np->txrxctl_bits |= NVREG_TXRXCTL_VLANSTRIP | NVREG_TXRXCTL_VLANINS;
  4254. } else {
  4255. /* disable vlan on MAC */
  4256. np->txrxctl_bits &= ~NVREG_TXRXCTL_VLANSTRIP;
  4257. np->txrxctl_bits &= ~NVREG_TXRXCTL_VLANINS;
  4258. }
  4259. writel(np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  4260. spin_unlock_irq(&np->lock);
  4261. }
  4262. /* The mgmt unit and driver use a semaphore to access the phy during init */
  4263. static int nv_mgmt_acquire_sema(struct net_device *dev)
  4264. {
  4265. u8 __iomem *base = get_hwbase(dev);
  4266. int i;
  4267. u32 tx_ctrl, mgmt_sema;
  4268. for (i = 0; i < 10; i++) {
  4269. mgmt_sema = readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_MGMT_SEMA_MASK;
  4270. if (mgmt_sema == NVREG_XMITCTL_MGMT_SEMA_FREE)
  4271. break;
  4272. msleep(500);
  4273. }
  4274. if (mgmt_sema != NVREG_XMITCTL_MGMT_SEMA_FREE)
  4275. return 0;
  4276. for (i = 0; i < 2; i++) {
  4277. tx_ctrl = readl(base + NvRegTransmitterControl);
  4278. tx_ctrl |= NVREG_XMITCTL_HOST_SEMA_ACQ;
  4279. writel(tx_ctrl, base + NvRegTransmitterControl);
  4280. /* verify that semaphore was acquired */
  4281. tx_ctrl = readl(base + NvRegTransmitterControl);
  4282. if (((tx_ctrl & NVREG_XMITCTL_HOST_SEMA_MASK) == NVREG_XMITCTL_HOST_SEMA_ACQ) &&
  4283. ((tx_ctrl & NVREG_XMITCTL_MGMT_SEMA_MASK) == NVREG_XMITCTL_MGMT_SEMA_FREE))
  4284. return 1;
  4285. else
  4286. udelay(50);
  4287. }
  4288. return 0;
  4289. }
  4290. static int nv_open(struct net_device *dev)
  4291. {
  4292. struct fe_priv *np = netdev_priv(dev);
  4293. u8 __iomem *base = get_hwbase(dev);
  4294. int ret = 1;
  4295. int oom, i;
  4296. dprintk(KERN_DEBUG "nv_open: begin\n");
  4297. /* erase previous misconfiguration */
  4298. if (np->driver_data & DEV_HAS_POWER_CNTRL)
  4299. nv_mac_reset(dev);
  4300. writel(NVREG_MCASTADDRA_FORCE, base + NvRegMulticastAddrA);
  4301. writel(0, base + NvRegMulticastAddrB);
  4302. writel(NVREG_MCASTMASKA_NONE, base + NvRegMulticastMaskA);
  4303. writel(NVREG_MCASTMASKB_NONE, base + NvRegMulticastMaskB);
  4304. writel(0, base + NvRegPacketFilterFlags);
  4305. writel(0, base + NvRegTransmitterControl);
  4306. writel(0, base + NvRegReceiverControl);
  4307. writel(0, base + NvRegAdapterControl);
  4308. if (np->pause_flags & NV_PAUSEFRAME_TX_CAPABLE)
  4309. writel(NVREG_TX_PAUSEFRAME_DISABLE, base + NvRegTxPauseFrame);
  4310. /* initialize descriptor rings */
  4311. set_bufsize(dev);
  4312. oom = nv_init_ring(dev);
  4313. writel(0, base + NvRegLinkSpeed);
  4314. writel(readl(base + NvRegTransmitPoll) & NVREG_TRANSMITPOLL_MAC_ADDR_REV, base + NvRegTransmitPoll);
  4315. nv_txrx_reset(dev);
  4316. writel(0, base + NvRegUnknownSetupReg6);
  4317. np->in_shutdown = 0;
  4318. /* give hw rings */
  4319. setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
  4320. writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
  4321. base + NvRegRingSizes);
  4322. writel(np->linkspeed, base + NvRegLinkSpeed);
  4323. if (np->desc_ver == DESC_VER_1)
  4324. writel(NVREG_TX_WM_DESC1_DEFAULT, base + NvRegTxWatermark);
  4325. else
  4326. writel(NVREG_TX_WM_DESC2_3_DEFAULT, base + NvRegTxWatermark);
  4327. writel(np->txrxctl_bits, base + NvRegTxRxControl);
  4328. writel(np->vlanctl_bits, base + NvRegVlanControl);
  4329. pci_push(base);
  4330. writel(NVREG_TXRXCTL_BIT1|np->txrxctl_bits, base + NvRegTxRxControl);
  4331. reg_delay(dev, NvRegUnknownSetupReg5, NVREG_UNKSETUP5_BIT31, NVREG_UNKSETUP5_BIT31,
  4332. NV_SETUP5_DELAY, NV_SETUP5_DELAYMAX,
  4333. KERN_INFO "open: SetupReg5, Bit 31 remained off\n");
  4334. writel(0, base + NvRegMIIMask);
  4335. writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
  4336. writel(NVREG_MIISTAT_MASK_ALL, base + NvRegMIIStatus);
  4337. writel(NVREG_MISC1_FORCE | NVREG_MISC1_HD, base + NvRegMisc1);
  4338. writel(readl(base + NvRegTransmitterStatus), base + NvRegTransmitterStatus);
  4339. writel(NVREG_PFF_ALWAYS, base + NvRegPacketFilterFlags);
  4340. writel(np->rx_buf_sz, base + NvRegOffloadConfig);
  4341. writel(readl(base + NvRegReceiverStatus), base + NvRegReceiverStatus);
  4342. get_random_bytes(&i, sizeof(i));
  4343. writel(NVREG_RNDSEED_FORCE | (i&NVREG_RNDSEED_MASK), base + NvRegRandomSeed);
  4344. writel(NVREG_TX_DEFERRAL_DEFAULT, base + NvRegTxDeferral);
  4345. writel(NVREG_RX_DEFERRAL_DEFAULT, base + NvRegRxDeferral);
  4346. if (poll_interval == -1) {
  4347. if (optimization_mode == NV_OPTIMIZATION_MODE_THROUGHPUT)
  4348. writel(NVREG_POLL_DEFAULT_THROUGHPUT, base + NvRegPollingInterval);
  4349. else
  4350. writel(NVREG_POLL_DEFAULT_CPU, base + NvRegPollingInterval);
  4351. }
  4352. else
  4353. writel(poll_interval & 0xFFFF, base + NvRegPollingInterval);
  4354. writel(NVREG_UNKSETUP6_VAL, base + NvRegUnknownSetupReg6);
  4355. writel((np->phyaddr << NVREG_ADAPTCTL_PHYSHIFT)|NVREG_ADAPTCTL_PHYVALID|NVREG_ADAPTCTL_RUNNING,
  4356. base + NvRegAdapterControl);
  4357. writel(NVREG_MIISPEED_BIT8|NVREG_MIIDELAY, base + NvRegMIISpeed);
  4358. writel(NVREG_MII_LINKCHANGE, base + NvRegMIIMask);
  4359. if (np->wolenabled)
  4360. writel(NVREG_WAKEUPFLAGS_ENABLE , base + NvRegWakeUpFlags);
  4361. i = readl(base + NvRegPowerState);
  4362. if ( (i & NVREG_POWERSTATE_POWEREDUP) == 0)
  4363. writel(NVREG_POWERSTATE_POWEREDUP|i, base + NvRegPowerState);
  4364. pci_push(base);
  4365. udelay(10);
  4366. writel(readl(base + NvRegPowerState) | NVREG_POWERSTATE_VALID, base + NvRegPowerState);
  4367. nv_disable_hw_interrupts(dev, np->irqmask);
  4368. pci_push(base);
  4369. writel(NVREG_MIISTAT_MASK_ALL, base + NvRegMIIStatus);
  4370. writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
  4371. pci_push(base);
  4372. if (nv_request_irq(dev, 0)) {
  4373. goto out_drain;
  4374. }
  4375. /* ask for interrupts */
  4376. nv_enable_hw_interrupts(dev, np->irqmask);
  4377. spin_lock_irq(&np->lock);
  4378. writel(NVREG_MCASTADDRA_FORCE, base + NvRegMulticastAddrA);
  4379. writel(0, base + NvRegMulticastAddrB);
  4380. writel(NVREG_MCASTMASKA_NONE, base + NvRegMulticastMaskA);
  4381. writel(NVREG_MCASTMASKB_NONE, base + NvRegMulticastMaskB);
  4382. writel(NVREG_PFF_ALWAYS|NVREG_PFF_MYADDR, base + NvRegPacketFilterFlags);
  4383. /* One manual link speed update: Interrupts are enabled, future link
  4384. * speed changes cause interrupts and are handled by nv_link_irq().
  4385. */
  4386. {
  4387. u32 miistat;
  4388. miistat = readl(base + NvRegMIIStatus);
  4389. writel(NVREG_MIISTAT_MASK_ALL, base + NvRegMIIStatus);
  4390. dprintk(KERN_INFO "startup: got 0x%08x.\n", miistat);
  4391. }
  4392. /* set linkspeed to invalid value, thus force nv_update_linkspeed
  4393. * to init hw */
  4394. np->linkspeed = 0;
  4395. ret = nv_update_linkspeed(dev);
  4396. nv_start_rxtx(dev);
  4397. netif_start_queue(dev);
  4398. #ifdef CONFIG_FORCEDETH_NAPI
  4399. napi_enable(&np->napi);
  4400. #endif
  4401. if (ret) {
  4402. netif_carrier_on(dev);
  4403. } else {
  4404. printk(KERN_INFO "%s: no link during initialization.\n", dev->name);
  4405. netif_carrier_off(dev);
  4406. }
  4407. if (oom)
  4408. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  4409. /* start statistics timer */
  4410. if (np->driver_data & (DEV_HAS_STATISTICS_V1|DEV_HAS_STATISTICS_V2))
  4411. mod_timer(&np->stats_poll,
  4412. round_jiffies(jiffies + STATS_INTERVAL));
  4413. spin_unlock_irq(&np->lock);
  4414. return 0;
  4415. out_drain:
  4416. nv_drain_rxtx(dev);
  4417. return ret;
  4418. }
  4419. static int nv_close(struct net_device *dev)
  4420. {
  4421. struct fe_priv *np = netdev_priv(dev);
  4422. u8 __iomem *base;
  4423. spin_lock_irq(&np->lock);
  4424. np->in_shutdown = 1;
  4425. spin_unlock_irq(&np->lock);
  4426. #ifdef CONFIG_FORCEDETH_NAPI
  4427. napi_disable(&np->napi);
  4428. #endif
  4429. synchronize_irq(np->pci_dev->irq);
  4430. del_timer_sync(&np->oom_kick);
  4431. del_timer_sync(&np->nic_poll);
  4432. del_timer_sync(&np->stats_poll);
  4433. netif_stop_queue(dev);
  4434. spin_lock_irq(&np->lock);
  4435. nv_stop_rxtx(dev);
  4436. nv_txrx_reset(dev);
  4437. /* disable interrupts on the nic or we will lock up */
  4438. base = get_hwbase(dev);
  4439. nv_disable_hw_interrupts(dev, np->irqmask);
  4440. pci_push(base);
  4441. dprintk(KERN_INFO "%s: Irqmask is zero again\n", dev->name);
  4442. spin_unlock_irq(&np->lock);
  4443. nv_free_irq(dev);
  4444. nv_drain_rxtx(dev);
  4445. if (np->wolenabled) {
  4446. writel(NVREG_PFF_ALWAYS|NVREG_PFF_MYADDR, base + NvRegPacketFilterFlags);
  4447. nv_start_rx(dev);
  4448. }
  4449. /* FIXME: power down nic */
  4450. return 0;
  4451. }
  4452. static int __devinit nv_probe(struct pci_dev *pci_dev, const struct pci_device_id *id)
  4453. {
  4454. struct net_device *dev;
  4455. struct fe_priv *np;
  4456. unsigned long addr;
  4457. u8 __iomem *base;
  4458. int err, i;
  4459. u32 powerstate, txreg;
  4460. u32 phystate_orig = 0, phystate;
  4461. int phyinitialized = 0;
  4462. DECLARE_MAC_BUF(mac);
  4463. static int printed_version;
  4464. if (!printed_version++)
  4465. printk(KERN_INFO "%s: Reverse Engineered nForce ethernet"
  4466. " driver. Version %s.\n", DRV_NAME, FORCEDETH_VERSION);
  4467. dev = alloc_etherdev(sizeof(struct fe_priv));
  4468. err = -ENOMEM;
  4469. if (!dev)
  4470. goto out;
  4471. np = netdev_priv(dev);
  4472. np->dev = dev;
  4473. np->pci_dev = pci_dev;
  4474. spin_lock_init(&np->lock);
  4475. SET_NETDEV_DEV(dev, &pci_dev->dev);
  4476. init_timer(&np->oom_kick);
  4477. np->oom_kick.data = (unsigned long) dev;
  4478. np->oom_kick.function = &nv_do_rx_refill; /* timer handler */
  4479. init_timer(&np->nic_poll);
  4480. np->nic_poll.data = (unsigned long) dev;
  4481. np->nic_poll.function = &nv_do_nic_poll; /* timer handler */
  4482. init_timer(&np->stats_poll);
  4483. np->stats_poll.data = (unsigned long) dev;
  4484. np->stats_poll.function = &nv_do_stats_poll; /* timer handler */
  4485. err = pci_enable_device(pci_dev);
  4486. if (err)
  4487. goto out_free;
  4488. pci_set_master(pci_dev);
  4489. err = pci_request_regions(pci_dev, DRV_NAME);
  4490. if (err < 0)
  4491. goto out_disable;
  4492. if (id->driver_data & (DEV_HAS_VLAN|DEV_HAS_MSI_X|DEV_HAS_POWER_CNTRL|DEV_HAS_STATISTICS_V2))
  4493. np->register_size = NV_PCI_REGSZ_VER3;
  4494. else if (id->driver_data & DEV_HAS_STATISTICS_V1)
  4495. np->register_size = NV_PCI_REGSZ_VER2;
  4496. else
  4497. np->register_size = NV_PCI_REGSZ_VER1;
  4498. err = -EINVAL;
  4499. addr = 0;
  4500. for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
  4501. dprintk(KERN_DEBUG "%s: resource %d start %p len %ld flags 0x%08lx.\n",
  4502. pci_name(pci_dev), i, (void*)pci_resource_start(pci_dev, i),
  4503. pci_resource_len(pci_dev, i),
  4504. pci_resource_flags(pci_dev, i));
  4505. if (pci_resource_flags(pci_dev, i) & IORESOURCE_MEM &&
  4506. pci_resource_len(pci_dev, i) >= np->register_size) {
  4507. addr = pci_resource_start(pci_dev, i);
  4508. break;
  4509. }
  4510. }
  4511. if (i == DEVICE_COUNT_RESOURCE) {
  4512. dev_printk(KERN_INFO, &pci_dev->dev,
  4513. "Couldn't find register window\n");
  4514. goto out_relreg;
  4515. }
  4516. /* copy of driver data */
  4517. np->driver_data = id->driver_data;
  4518. /* handle different descriptor versions */
  4519. if (id->driver_data & DEV_HAS_HIGH_DMA) {
  4520. /* packet format 3: supports 40-bit addressing */
  4521. np->desc_ver = DESC_VER_3;
  4522. np->txrxctl_bits = NVREG_TXRXCTL_DESC_3;
  4523. if (dma_64bit) {
  4524. if (pci_set_dma_mask(pci_dev, DMA_39BIT_MASK))
  4525. dev_printk(KERN_INFO, &pci_dev->dev,
  4526. "64-bit DMA failed, using 32-bit addressing\n");
  4527. else
  4528. dev->features |= NETIF_F_HIGHDMA;
  4529. if (pci_set_consistent_dma_mask(pci_dev, DMA_39BIT_MASK)) {
  4530. dev_printk(KERN_INFO, &pci_dev->dev,
  4531. "64-bit DMA (consistent) failed, using 32-bit ring buffers\n");
  4532. }
  4533. }
  4534. } else if (id->driver_data & DEV_HAS_LARGEDESC) {
  4535. /* packet format 2: supports jumbo frames */
  4536. np->desc_ver = DESC_VER_2;
  4537. np->txrxctl_bits = NVREG_TXRXCTL_DESC_2;
  4538. } else {
  4539. /* original packet format */
  4540. np->desc_ver = DESC_VER_1;
  4541. np->txrxctl_bits = NVREG_TXRXCTL_DESC_1;
  4542. }
  4543. np->pkt_limit = NV_PKTLIMIT_1;
  4544. if (id->driver_data & DEV_HAS_LARGEDESC)
  4545. np->pkt_limit = NV_PKTLIMIT_2;
  4546. if (id->driver_data & DEV_HAS_CHECKSUM) {
  4547. np->rx_csum = 1;
  4548. np->txrxctl_bits |= NVREG_TXRXCTL_RXCHECK;
  4549. dev->features |= NETIF_F_HW_CSUM | NETIF_F_SG;
  4550. dev->features |= NETIF_F_TSO;
  4551. }
  4552. np->vlanctl_bits = 0;
  4553. if (id->driver_data & DEV_HAS_VLAN) {
  4554. np->vlanctl_bits = NVREG_VLANCONTROL_ENABLE;
  4555. dev->features |= NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_TX;
  4556. dev->vlan_rx_register = nv_vlan_rx_register;
  4557. }
  4558. np->msi_flags = 0;
  4559. if ((id->driver_data & DEV_HAS_MSI) && msi) {
  4560. np->msi_flags |= NV_MSI_CAPABLE;
  4561. }
  4562. if ((id->driver_data & DEV_HAS_MSI_X) && msix) {
  4563. np->msi_flags |= NV_MSI_X_CAPABLE;
  4564. }
  4565. np->pause_flags = NV_PAUSEFRAME_RX_CAPABLE | NV_PAUSEFRAME_RX_REQ | NV_PAUSEFRAME_AUTONEG;
  4566. if ((id->driver_data & DEV_HAS_PAUSEFRAME_TX_V1) ||
  4567. (id->driver_data & DEV_HAS_PAUSEFRAME_TX_V2) ||
  4568. (id->driver_data & DEV_HAS_PAUSEFRAME_TX_V3)) {
  4569. np->pause_flags |= NV_PAUSEFRAME_TX_CAPABLE | NV_PAUSEFRAME_TX_REQ;
  4570. }
  4571. err = -ENOMEM;
  4572. np->base = ioremap(addr, np->register_size);
  4573. if (!np->base)
  4574. goto out_relreg;
  4575. dev->base_addr = (unsigned long)np->base;
  4576. dev->irq = pci_dev->irq;
  4577. np->rx_ring_size = RX_RING_DEFAULT;
  4578. np->tx_ring_size = TX_RING_DEFAULT;
  4579. if (!nv_optimized(np)) {
  4580. np->rx_ring.orig = pci_alloc_consistent(pci_dev,
  4581. sizeof(struct ring_desc) * (np->rx_ring_size + np->tx_ring_size),
  4582. &np->ring_addr);
  4583. if (!np->rx_ring.orig)
  4584. goto out_unmap;
  4585. np->tx_ring.orig = &np->rx_ring.orig[np->rx_ring_size];
  4586. } else {
  4587. np->rx_ring.ex = pci_alloc_consistent(pci_dev,
  4588. sizeof(struct ring_desc_ex) * (np->rx_ring_size + np->tx_ring_size),
  4589. &np->ring_addr);
  4590. if (!np->rx_ring.ex)
  4591. goto out_unmap;
  4592. np->tx_ring.ex = &np->rx_ring.ex[np->rx_ring_size];
  4593. }
  4594. np->rx_skb = kcalloc(np->rx_ring_size, sizeof(struct nv_skb_map), GFP_KERNEL);
  4595. np->tx_skb = kcalloc(np->tx_ring_size, sizeof(struct nv_skb_map), GFP_KERNEL);
  4596. if (!np->rx_skb || !np->tx_skb)
  4597. goto out_freering;
  4598. dev->open = nv_open;
  4599. dev->stop = nv_close;
  4600. if (!nv_optimized(np))
  4601. dev->hard_start_xmit = nv_start_xmit;
  4602. else
  4603. dev->hard_start_xmit = nv_start_xmit_optimized;
  4604. dev->get_stats = nv_get_stats;
  4605. dev->change_mtu = nv_change_mtu;
  4606. dev->set_mac_address = nv_set_mac_address;
  4607. dev->set_multicast_list = nv_set_multicast;
  4608. #ifdef CONFIG_NET_POLL_CONTROLLER
  4609. dev->poll_controller = nv_poll_controller;
  4610. #endif
  4611. #ifdef CONFIG_FORCEDETH_NAPI
  4612. netif_napi_add(dev, &np->napi, nv_napi_poll, RX_WORK_PER_LOOP);
  4613. #endif
  4614. SET_ETHTOOL_OPS(dev, &ops);
  4615. dev->tx_timeout = nv_tx_timeout;
  4616. dev->watchdog_timeo = NV_WATCHDOG_TIMEO;
  4617. pci_set_drvdata(pci_dev, dev);
  4618. /* read the mac address */
  4619. base = get_hwbase(dev);
  4620. np->orig_mac[0] = readl(base + NvRegMacAddrA);
  4621. np->orig_mac[1] = readl(base + NvRegMacAddrB);
  4622. /* check the workaround bit for correct mac address order */
  4623. txreg = readl(base + NvRegTransmitPoll);
  4624. if (id->driver_data & DEV_HAS_CORRECT_MACADDR) {
  4625. /* mac address is already in correct order */
  4626. dev->dev_addr[0] = (np->orig_mac[0] >> 0) & 0xff;
  4627. dev->dev_addr[1] = (np->orig_mac[0] >> 8) & 0xff;
  4628. dev->dev_addr[2] = (np->orig_mac[0] >> 16) & 0xff;
  4629. dev->dev_addr[3] = (np->orig_mac[0] >> 24) & 0xff;
  4630. dev->dev_addr[4] = (np->orig_mac[1] >> 0) & 0xff;
  4631. dev->dev_addr[5] = (np->orig_mac[1] >> 8) & 0xff;
  4632. } else if (txreg & NVREG_TRANSMITPOLL_MAC_ADDR_REV) {
  4633. /* mac address is already in correct order */
  4634. dev->dev_addr[0] = (np->orig_mac[0] >> 0) & 0xff;
  4635. dev->dev_addr[1] = (np->orig_mac[0] >> 8) & 0xff;
  4636. dev->dev_addr[2] = (np->orig_mac[0] >> 16) & 0xff;
  4637. dev->dev_addr[3] = (np->orig_mac[0] >> 24) & 0xff;
  4638. dev->dev_addr[4] = (np->orig_mac[1] >> 0) & 0xff;
  4639. dev->dev_addr[5] = (np->orig_mac[1] >> 8) & 0xff;
  4640. /*
  4641. * Set orig mac address back to the reversed version.
  4642. * This flag will be cleared during low power transition.
  4643. * Therefore, we should always put back the reversed address.
  4644. */
  4645. np->orig_mac[0] = (dev->dev_addr[5] << 0) + (dev->dev_addr[4] << 8) +
  4646. (dev->dev_addr[3] << 16) + (dev->dev_addr[2] << 24);
  4647. np->orig_mac[1] = (dev->dev_addr[1] << 0) + (dev->dev_addr[0] << 8);
  4648. } else {
  4649. /* need to reverse mac address to correct order */
  4650. dev->dev_addr[0] = (np->orig_mac[1] >> 8) & 0xff;
  4651. dev->dev_addr[1] = (np->orig_mac[1] >> 0) & 0xff;
  4652. dev->dev_addr[2] = (np->orig_mac[0] >> 24) & 0xff;
  4653. dev->dev_addr[3] = (np->orig_mac[0] >> 16) & 0xff;
  4654. dev->dev_addr[4] = (np->orig_mac[0] >> 8) & 0xff;
  4655. dev->dev_addr[5] = (np->orig_mac[0] >> 0) & 0xff;
  4656. writel(txreg|NVREG_TRANSMITPOLL_MAC_ADDR_REV, base + NvRegTransmitPoll);
  4657. }
  4658. memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
  4659. if (!is_valid_ether_addr(dev->perm_addr)) {
  4660. /*
  4661. * Bad mac address. At least one bios sets the mac address
  4662. * to 01:23:45:67:89:ab
  4663. */
  4664. dev_printk(KERN_ERR, &pci_dev->dev,
  4665. "Invalid Mac address detected: %s\n",
  4666. print_mac(mac, dev->dev_addr));
  4667. dev_printk(KERN_ERR, &pci_dev->dev,
  4668. "Please complain to your hardware vendor. Switching to a random MAC.\n");
  4669. dev->dev_addr[0] = 0x00;
  4670. dev->dev_addr[1] = 0x00;
  4671. dev->dev_addr[2] = 0x6c;
  4672. get_random_bytes(&dev->dev_addr[3], 3);
  4673. }
  4674. dprintk(KERN_DEBUG "%s: MAC Address %s\n",
  4675. pci_name(pci_dev), print_mac(mac, dev->dev_addr));
  4676. /* set mac address */
  4677. nv_copy_mac_to_hw(dev);
  4678. /* disable WOL */
  4679. writel(0, base + NvRegWakeUpFlags);
  4680. np->wolenabled = 0;
  4681. if (id->driver_data & DEV_HAS_POWER_CNTRL) {
  4682. /* take phy and nic out of low power mode */
  4683. powerstate = readl(base + NvRegPowerState2);
  4684. powerstate &= ~NVREG_POWERSTATE2_POWERUP_MASK;
  4685. if ((id->device == PCI_DEVICE_ID_NVIDIA_NVENET_12 ||
  4686. id->device == PCI_DEVICE_ID_NVIDIA_NVENET_13) &&
  4687. pci_dev->revision >= 0xA3)
  4688. powerstate |= NVREG_POWERSTATE2_POWERUP_REV_A3;
  4689. writel(powerstate, base + NvRegPowerState2);
  4690. }
  4691. if (np->desc_ver == DESC_VER_1) {
  4692. np->tx_flags = NV_TX_VALID;
  4693. } else {
  4694. np->tx_flags = NV_TX2_VALID;
  4695. }
  4696. if (optimization_mode == NV_OPTIMIZATION_MODE_THROUGHPUT) {
  4697. np->irqmask = NVREG_IRQMASK_THROUGHPUT;
  4698. if (np->msi_flags & NV_MSI_X_CAPABLE) /* set number of vectors */
  4699. np->msi_flags |= 0x0003;
  4700. } else {
  4701. np->irqmask = NVREG_IRQMASK_CPU;
  4702. if (np->msi_flags & NV_MSI_X_CAPABLE) /* set number of vectors */
  4703. np->msi_flags |= 0x0001;
  4704. }
  4705. if (id->driver_data & DEV_NEED_TIMERIRQ)
  4706. np->irqmask |= NVREG_IRQ_TIMER;
  4707. if (id->driver_data & DEV_NEED_LINKTIMER) {
  4708. dprintk(KERN_INFO "%s: link timer on.\n", pci_name(pci_dev));
  4709. np->need_linktimer = 1;
  4710. np->link_timeout = jiffies + LINK_TIMEOUT;
  4711. } else {
  4712. dprintk(KERN_INFO "%s: link timer off.\n", pci_name(pci_dev));
  4713. np->need_linktimer = 0;
  4714. }
  4715. /* Limit the number of tx's outstanding for hw bug */
  4716. if (id->driver_data & DEV_NEED_TX_LIMIT) {
  4717. np->tx_limit = 1;
  4718. if ((id->device == PCI_DEVICE_ID_NVIDIA_NVENET_32 ||
  4719. id->device == PCI_DEVICE_ID_NVIDIA_NVENET_33 ||
  4720. id->device == PCI_DEVICE_ID_NVIDIA_NVENET_34 ||
  4721. id->device == PCI_DEVICE_ID_NVIDIA_NVENET_35 ||
  4722. id->device == PCI_DEVICE_ID_NVIDIA_NVENET_36 ||
  4723. id->device == PCI_DEVICE_ID_NVIDIA_NVENET_37 ||
  4724. id->device == PCI_DEVICE_ID_NVIDIA_NVENET_38 ||
  4725. id->device == PCI_DEVICE_ID_NVIDIA_NVENET_39) &&
  4726. pci_dev->revision >= 0xA2)
  4727. np->tx_limit = 0;
  4728. }
  4729. /* clear phy state and temporarily halt phy interrupts */
  4730. writel(0, base + NvRegMIIMask);
  4731. phystate = readl(base + NvRegAdapterControl);
  4732. if (phystate & NVREG_ADAPTCTL_RUNNING) {
  4733. phystate_orig = 1;
  4734. phystate &= ~NVREG_ADAPTCTL_RUNNING;
  4735. writel(phystate, base + NvRegAdapterControl);
  4736. }
  4737. writel(NVREG_MIISTAT_MASK_ALL, base + NvRegMIIStatus);
  4738. if (id->driver_data & DEV_HAS_MGMT_UNIT) {
  4739. /* management unit running on the mac? */
  4740. if (readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_SYNC_PHY_INIT) {
  4741. np->mac_in_use = readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_MGMT_ST;
  4742. dprintk(KERN_INFO "%s: mgmt unit is running. mac in use %x.\n", pci_name(pci_dev), np->mac_in_use);
  4743. if (nv_mgmt_acquire_sema(dev)) {
  4744. /* management unit setup the phy already? */
  4745. if ((readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_SYNC_MASK) ==
  4746. NVREG_XMITCTL_SYNC_PHY_INIT) {
  4747. /* phy is inited by mgmt unit */
  4748. phyinitialized = 1;
  4749. dprintk(KERN_INFO "%s: Phy already initialized by mgmt unit.\n", pci_name(pci_dev));
  4750. } else {
  4751. /* we need to init the phy */
  4752. }
  4753. }
  4754. }
  4755. }
  4756. /* find a suitable phy */
  4757. for (i = 1; i <= 32; i++) {
  4758. int id1, id2;
  4759. int phyaddr = i & 0x1F;
  4760. spin_lock_irq(&np->lock);
  4761. id1 = mii_rw(dev, phyaddr, MII_PHYSID1, MII_READ);
  4762. spin_unlock_irq(&np->lock);
  4763. if (id1 < 0 || id1 == 0xffff)
  4764. continue;
  4765. spin_lock_irq(&np->lock);
  4766. id2 = mii_rw(dev, phyaddr, MII_PHYSID2, MII_READ);
  4767. spin_unlock_irq(&np->lock);
  4768. if (id2 < 0 || id2 == 0xffff)
  4769. continue;
  4770. np->phy_model = id2 & PHYID2_MODEL_MASK;
  4771. id1 = (id1 & PHYID1_OUI_MASK) << PHYID1_OUI_SHFT;
  4772. id2 = (id2 & PHYID2_OUI_MASK) >> PHYID2_OUI_SHFT;
  4773. dprintk(KERN_DEBUG "%s: open: Found PHY %04x:%04x at address %d.\n",
  4774. pci_name(pci_dev), id1, id2, phyaddr);
  4775. np->phyaddr = phyaddr;
  4776. np->phy_oui = id1 | id2;
  4777. break;
  4778. }
  4779. if (i == 33) {
  4780. dev_printk(KERN_INFO, &pci_dev->dev,
  4781. "open: Could not find a valid PHY.\n");
  4782. goto out_error;
  4783. }
  4784. if (!phyinitialized) {
  4785. /* reset it */
  4786. phy_init(dev);
  4787. } else {
  4788. /* see if it is a gigabit phy */
  4789. u32 mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
  4790. if (mii_status & PHY_GIGABIT) {
  4791. np->gigabit = PHY_GIGABIT;
  4792. }
  4793. }
  4794. /* set default link speed settings */
  4795. np->linkspeed = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  4796. np->duplex = 0;
  4797. np->autoneg = 1;
  4798. err = register_netdev(dev);
  4799. if (err) {
  4800. dev_printk(KERN_INFO, &pci_dev->dev,
  4801. "unable to register netdev: %d\n", err);
  4802. goto out_error;
  4803. }
  4804. dev_printk(KERN_INFO, &pci_dev->dev, "ifname %s, PHY OUI 0x%x @ %d, "
  4805. "addr %2.2x:%2.2x:%2.2x:%2.2x:%2.2x:%2.2x\n",
  4806. dev->name,
  4807. np->phy_oui,
  4808. np->phyaddr,
  4809. dev->dev_addr[0],
  4810. dev->dev_addr[1],
  4811. dev->dev_addr[2],
  4812. dev->dev_addr[3],
  4813. dev->dev_addr[4],
  4814. dev->dev_addr[5]);
  4815. dev_printk(KERN_INFO, &pci_dev->dev, "%s%s%s%s%s%s%s%s%s%sdesc-v%u\n",
  4816. dev->features & NETIF_F_HIGHDMA ? "highdma " : "",
  4817. dev->features & (NETIF_F_HW_CSUM | NETIF_F_SG) ?
  4818. "csum " : "",
  4819. dev->features & (NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_TX) ?
  4820. "vlan " : "",
  4821. id->driver_data & DEV_HAS_POWER_CNTRL ? "pwrctl " : "",
  4822. id->driver_data & DEV_HAS_MGMT_UNIT ? "mgmt " : "",
  4823. id->driver_data & DEV_NEED_TIMERIRQ ? "timirq " : "",
  4824. np->gigabit == PHY_GIGABIT ? "gbit " : "",
  4825. np->need_linktimer ? "lnktim " : "",
  4826. np->msi_flags & NV_MSI_CAPABLE ? "msi " : "",
  4827. np->msi_flags & NV_MSI_X_CAPABLE ? "msi-x " : "",
  4828. np->desc_ver);
  4829. return 0;
  4830. out_error:
  4831. if (phystate_orig)
  4832. writel(phystate|NVREG_ADAPTCTL_RUNNING, base + NvRegAdapterControl);
  4833. pci_set_drvdata(pci_dev, NULL);
  4834. out_freering:
  4835. free_rings(dev);
  4836. out_unmap:
  4837. iounmap(get_hwbase(dev));
  4838. out_relreg:
  4839. pci_release_regions(pci_dev);
  4840. out_disable:
  4841. pci_disable_device(pci_dev);
  4842. out_free:
  4843. free_netdev(dev);
  4844. out:
  4845. return err;
  4846. }
  4847. static void __devexit nv_remove(struct pci_dev *pci_dev)
  4848. {
  4849. struct net_device *dev = pci_get_drvdata(pci_dev);
  4850. struct fe_priv *np = netdev_priv(dev);
  4851. u8 __iomem *base = get_hwbase(dev);
  4852. unregister_netdev(dev);
  4853. /* special op: write back the misordered MAC address - otherwise
  4854. * the next nv_probe would see a wrong address.
  4855. */
  4856. writel(np->orig_mac[0], base + NvRegMacAddrA);
  4857. writel(np->orig_mac[1], base + NvRegMacAddrB);
  4858. writel(readl(base + NvRegTransmitPoll) & ~NVREG_TRANSMITPOLL_MAC_ADDR_REV,
  4859. base + NvRegTransmitPoll);
  4860. /* free all structures */
  4861. free_rings(dev);
  4862. iounmap(get_hwbase(dev));
  4863. pci_release_regions(pci_dev);
  4864. pci_disable_device(pci_dev);
  4865. free_netdev(dev);
  4866. pci_set_drvdata(pci_dev, NULL);
  4867. }
  4868. #ifdef CONFIG_PM
  4869. static int nv_suspend(struct pci_dev *pdev, pm_message_t state)
  4870. {
  4871. struct net_device *dev = pci_get_drvdata(pdev);
  4872. struct fe_priv *np = netdev_priv(dev);
  4873. if (!netif_running(dev))
  4874. goto out;
  4875. netif_device_detach(dev);
  4876. // Gross.
  4877. nv_close(dev);
  4878. pci_save_state(pdev);
  4879. pci_enable_wake(pdev, pci_choose_state(pdev, state), np->wolenabled);
  4880. pci_set_power_state(pdev, pci_choose_state(pdev, state));
  4881. out:
  4882. return 0;
  4883. }
  4884. static int nv_resume(struct pci_dev *pdev)
  4885. {
  4886. struct net_device *dev = pci_get_drvdata(pdev);
  4887. u8 __iomem *base = get_hwbase(dev);
  4888. int rc = 0;
  4889. u32 txreg;
  4890. if (!netif_running(dev))
  4891. goto out;
  4892. netif_device_attach(dev);
  4893. pci_set_power_state(pdev, PCI_D0);
  4894. pci_restore_state(pdev);
  4895. pci_enable_wake(pdev, PCI_D0, 0);
  4896. /* restore mac address reverse flag */
  4897. txreg = readl(base + NvRegTransmitPoll);
  4898. txreg |= NVREG_TRANSMITPOLL_MAC_ADDR_REV;
  4899. writel(txreg, base + NvRegTransmitPoll);
  4900. rc = nv_open(dev);
  4901. out:
  4902. return rc;
  4903. }
  4904. #else
  4905. #define nv_suspend NULL
  4906. #define nv_resume NULL
  4907. #endif /* CONFIG_PM */
  4908. static struct pci_device_id pci_tbl[] = {
  4909. { /* nForce Ethernet Controller */
  4910. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_1),
  4911. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER,
  4912. },
  4913. { /* nForce2 Ethernet Controller */
  4914. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_2),
  4915. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER,
  4916. },
  4917. { /* nForce3 Ethernet Controller */
  4918. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_3),
  4919. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER,
  4920. },
  4921. { /* nForce3 Ethernet Controller */
  4922. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_4),
  4923. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
  4924. },
  4925. { /* nForce3 Ethernet Controller */
  4926. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_5),
  4927. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
  4928. },
  4929. { /* nForce3 Ethernet Controller */
  4930. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_6),
  4931. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
  4932. },
  4933. { /* nForce3 Ethernet Controller */
  4934. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_7),
  4935. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
  4936. },
  4937. { /* CK804 Ethernet Controller */
  4938. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_8),
  4939. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_STATISTICS_V1|DEV_NEED_TX_LIMIT,
  4940. },
  4941. { /* CK804 Ethernet Controller */
  4942. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_9),
  4943. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_STATISTICS_V1|DEV_NEED_TX_LIMIT,
  4944. },
  4945. { /* MCP04 Ethernet Controller */
  4946. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_10),
  4947. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_STATISTICS_V1|DEV_NEED_TX_LIMIT,
  4948. },
  4949. { /* MCP04 Ethernet Controller */
  4950. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_11),
  4951. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_STATISTICS_V1|DEV_NEED_TX_LIMIT,
  4952. },
  4953. { /* MCP51 Ethernet Controller */
  4954. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_12),
  4955. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_STATISTICS_V1,
  4956. },
  4957. { /* MCP51 Ethernet Controller */
  4958. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_13),
  4959. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_STATISTICS_V1,
  4960. },
  4961. { /* MCP55 Ethernet Controller */
  4962. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_14),
  4963. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_VLAN|DEV_HAS_MSI|DEV_HAS_MSI_X|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_NEED_TX_LIMIT,
  4964. },
  4965. { /* MCP55 Ethernet Controller */
  4966. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_15),
  4967. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_VLAN|DEV_HAS_MSI|DEV_HAS_MSI_X|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_NEED_TX_LIMIT,
  4968. },
  4969. { /* MCP61 Ethernet Controller */
  4970. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_16),
  4971. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR,
  4972. },
  4973. { /* MCP61 Ethernet Controller */
  4974. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_17),
  4975. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR,
  4976. },
  4977. { /* MCP61 Ethernet Controller */
  4978. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_18),
  4979. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR,
  4980. },
  4981. { /* MCP61 Ethernet Controller */
  4982. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_19),
  4983. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR,
  4984. },
  4985. { /* MCP65 Ethernet Controller */
  4986. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_20),
  4987. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_NEED_TX_LIMIT|DEV_NEED_TX_LIMIT,
  4988. },
  4989. { /* MCP65 Ethernet Controller */
  4990. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_21),
  4991. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_NEED_TX_LIMIT,
  4992. },
  4993. { /* MCP65 Ethernet Controller */
  4994. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_22),
  4995. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_NEED_TX_LIMIT,
  4996. },
  4997. { /* MCP65 Ethernet Controller */
  4998. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_23),
  4999. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_NEED_TX_LIMIT,
  5000. },
  5001. { /* MCP67 Ethernet Controller */
  5002. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_24),
  5003. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR,
  5004. },
  5005. { /* MCP67 Ethernet Controller */
  5006. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_25),
  5007. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR,
  5008. },
  5009. { /* MCP67 Ethernet Controller */
  5010. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_26),
  5011. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR,
  5012. },
  5013. { /* MCP67 Ethernet Controller */
  5014. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_27),
  5015. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR,
  5016. },
  5017. { /* MCP73 Ethernet Controller */
  5018. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_28),
  5019. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX,
  5020. },
  5021. { /* MCP73 Ethernet Controller */
  5022. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_29),
  5023. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX,
  5024. },
  5025. { /* MCP73 Ethernet Controller */
  5026. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_30),
  5027. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX,
  5028. },
  5029. { /* MCP73 Ethernet Controller */
  5030. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_31),
  5031. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX,
  5032. },
  5033. { /* MCP77 Ethernet Controller */
  5034. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_32),
  5035. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V2|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT,
  5036. },
  5037. { /* MCP77 Ethernet Controller */
  5038. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_33),
  5039. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V2|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT,
  5040. },
  5041. { /* MCP77 Ethernet Controller */
  5042. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_34),
  5043. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V2|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT,
  5044. },
  5045. { /* MCP77 Ethernet Controller */
  5046. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_35),
  5047. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V2|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT,
  5048. },
  5049. { /* MCP79 Ethernet Controller */
  5050. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_36),
  5051. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V3|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT,
  5052. },
  5053. { /* MCP79 Ethernet Controller */
  5054. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_37),
  5055. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V3|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT,
  5056. },
  5057. { /* MCP79 Ethernet Controller */
  5058. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_38),
  5059. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V3|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT,
  5060. },
  5061. { /* MCP79 Ethernet Controller */
  5062. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_39),
  5063. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V3|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT,
  5064. },
  5065. {0,},
  5066. };
  5067. static struct pci_driver driver = {
  5068. .name = DRV_NAME,
  5069. .id_table = pci_tbl,
  5070. .probe = nv_probe,
  5071. .remove = __devexit_p(nv_remove),
  5072. .suspend = nv_suspend,
  5073. .resume = nv_resume,
  5074. };
  5075. static int __init init_nic(void)
  5076. {
  5077. return pci_register_driver(&driver);
  5078. }
  5079. static void __exit exit_nic(void)
  5080. {
  5081. pci_unregister_driver(&driver);
  5082. }
  5083. module_param(max_interrupt_work, int, 0);
  5084. MODULE_PARM_DESC(max_interrupt_work, "forcedeth maximum events handled per interrupt");
  5085. module_param(optimization_mode, int, 0);
  5086. MODULE_PARM_DESC(optimization_mode, "In throughput mode (0), every tx & rx packet will generate an interrupt. In CPU mode (1), interrupts are controlled by a timer.");
  5087. module_param(poll_interval, int, 0);
  5088. MODULE_PARM_DESC(poll_interval, "Interval determines how frequent timer interrupt is generated by [(time_in_micro_secs * 100) / (2^10)]. Min is 0 and Max is 65535.");
  5089. module_param(msi, int, 0);
  5090. MODULE_PARM_DESC(msi, "MSI interrupts are enabled by setting to 1 and disabled by setting to 0.");
  5091. module_param(msix, int, 0);
  5092. MODULE_PARM_DESC(msix, "MSIX interrupts are enabled by setting to 1 and disabled by setting to 0.");
  5093. module_param(dma_64bit, int, 0);
  5094. MODULE_PARM_DESC(dma_64bit, "High DMA is enabled by setting to 1 and disabled by setting to 0.");
  5095. MODULE_AUTHOR("Manfred Spraul <manfred@colorfullife.com>");
  5096. MODULE_DESCRIPTION("Reverse Engineered nForce ethernet driver");
  5097. MODULE_LICENSE("GPL");
  5098. MODULE_DEVICE_TABLE(pci, pci_tbl);
  5099. module_init(init_nic);
  5100. module_exit(exit_nic);