keyboard.c 34 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425
  1. /*
  2. * linux/drivers/char/keyboard.c
  3. *
  4. * Written for linux by Johan Myreen as a translation from
  5. * the assembly version by Linus (with diacriticals added)
  6. *
  7. * Some additional features added by Christoph Niemann (ChN), March 1993
  8. *
  9. * Loadable keymaps by Risto Kankkunen, May 1993
  10. *
  11. * Diacriticals redone & other small changes, aeb@cwi.nl, June 1993
  12. * Added decr/incr_console, dynamic keymaps, Unicode support,
  13. * dynamic function/string keys, led setting, Sept 1994
  14. * `Sticky' modifier keys, 951006.
  15. *
  16. * 11-11-96: SAK should now work in the raw mode (Martin Mares)
  17. *
  18. * Modified to provide 'generic' keyboard support by Hamish Macdonald
  19. * Merge with the m68k keyboard driver and split-off of the PC low-level
  20. * parts by Geert Uytterhoeven, May 1997
  21. *
  22. * 27-05-97: Added support for the Magic SysRq Key (Martin Mares)
  23. * 30-07-98: Dead keys redone, aeb@cwi.nl.
  24. * 21-08-02: Converted to input API, major cleanup. (Vojtech Pavlik)
  25. */
  26. #include <linux/consolemap.h>
  27. #include <linux/module.h>
  28. #include <linux/sched.h>
  29. #include <linux/tty.h>
  30. #include <linux/tty_flip.h>
  31. #include <linux/mm.h>
  32. #include <linux/string.h>
  33. #include <linux/init.h>
  34. #include <linux/slab.h>
  35. #include <linux/irq.h>
  36. #include <linux/kbd_kern.h>
  37. #include <linux/kbd_diacr.h>
  38. #include <linux/vt_kern.h>
  39. #include <linux/sysrq.h>
  40. #include <linux/input.h>
  41. #include <linux/reboot.h>
  42. #include <linux/notifier.h>
  43. extern void ctrl_alt_del(void);
  44. /*
  45. * Exported functions/variables
  46. */
  47. #define KBD_DEFMODE ((1 << VC_REPEAT) | (1 << VC_META))
  48. /*
  49. * Some laptops take the 789uiojklm,. keys as number pad when NumLock is on.
  50. * This seems a good reason to start with NumLock off. On HIL keyboards
  51. * of PARISC machines however there is no NumLock key and everyone expects the keypad
  52. * to be used for numbers.
  53. */
  54. #if defined(CONFIG_PARISC) && (defined(CONFIG_KEYBOARD_HIL) || defined(CONFIG_KEYBOARD_HIL_OLD))
  55. #define KBD_DEFLEDS (1 << VC_NUMLOCK)
  56. #else
  57. #define KBD_DEFLEDS 0
  58. #endif
  59. #define KBD_DEFLOCK 0
  60. void compute_shiftstate(void);
  61. /*
  62. * Handler Tables.
  63. */
  64. #define K_HANDLERS\
  65. k_self, k_fn, k_spec, k_pad,\
  66. k_dead, k_cons, k_cur, k_shift,\
  67. k_meta, k_ascii, k_lock, k_lowercase,\
  68. k_slock, k_dead2, k_brl, k_ignore
  69. typedef void (k_handler_fn)(struct vc_data *vc, unsigned char value,
  70. char up_flag);
  71. static k_handler_fn K_HANDLERS;
  72. k_handler_fn *k_handler[16] = { K_HANDLERS };
  73. EXPORT_SYMBOL_GPL(k_handler);
  74. #define FN_HANDLERS\
  75. fn_null, fn_enter, fn_show_ptregs, fn_show_mem,\
  76. fn_show_state, fn_send_intr, fn_lastcons, fn_caps_toggle,\
  77. fn_num, fn_hold, fn_scroll_forw, fn_scroll_back,\
  78. fn_boot_it, fn_caps_on, fn_compose, fn_SAK,\
  79. fn_dec_console, fn_inc_console, fn_spawn_con, fn_bare_num
  80. typedef void (fn_handler_fn)(struct vc_data *vc);
  81. static fn_handler_fn FN_HANDLERS;
  82. static fn_handler_fn *fn_handler[] = { FN_HANDLERS };
  83. /*
  84. * Variables exported for vt_ioctl.c
  85. */
  86. /* maximum values each key_handler can handle */
  87. const int max_vals[] = {
  88. 255, ARRAY_SIZE(func_table) - 1, ARRAY_SIZE(fn_handler) - 1, NR_PAD - 1,
  89. NR_DEAD - 1, 255, 3, NR_SHIFT - 1, 255, NR_ASCII - 1, NR_LOCK - 1,
  90. 255, NR_LOCK - 1, 255, NR_BRL - 1
  91. };
  92. const int NR_TYPES = ARRAY_SIZE(max_vals);
  93. struct kbd_struct kbd_table[MAX_NR_CONSOLES];
  94. static struct kbd_struct *kbd = kbd_table;
  95. struct vt_spawn_console vt_spawn_con = {
  96. .lock = __SPIN_LOCK_UNLOCKED(vt_spawn_con.lock),
  97. .pid = NULL,
  98. .sig = 0,
  99. };
  100. /*
  101. * Variables exported for vt.c
  102. */
  103. int shift_state = 0;
  104. /*
  105. * Internal Data.
  106. */
  107. static struct input_handler kbd_handler;
  108. static unsigned long key_down[BITS_TO_LONGS(KEY_CNT)]; /* keyboard key bitmap */
  109. static unsigned char shift_down[NR_SHIFT]; /* shift state counters.. */
  110. static int dead_key_next;
  111. static int npadch = -1; /* -1 or number assembled on pad */
  112. static unsigned int diacr;
  113. static char rep; /* flag telling character repeat */
  114. static unsigned char ledstate = 0xff; /* undefined */
  115. static unsigned char ledioctl;
  116. static struct ledptr {
  117. unsigned int *addr;
  118. unsigned int mask;
  119. unsigned char valid:1;
  120. } ledptrs[3];
  121. /* Simple translation table for the SysRq keys */
  122. #ifdef CONFIG_MAGIC_SYSRQ
  123. unsigned char kbd_sysrq_xlate[KEY_MAX + 1] =
  124. "\000\0331234567890-=\177\t" /* 0x00 - 0x0f */
  125. "qwertyuiop[]\r\000as" /* 0x10 - 0x1f */
  126. "dfghjkl;'`\000\\zxcv" /* 0x20 - 0x2f */
  127. "bnm,./\000*\000 \000\201\202\203\204\205" /* 0x30 - 0x3f */
  128. "\206\207\210\211\212\000\000789-456+1" /* 0x40 - 0x4f */
  129. "230\177\000\000\213\214\000\000\000\000\000\000\000\000\000\000" /* 0x50 - 0x5f */
  130. "\r\000/"; /* 0x60 - 0x6f */
  131. static int sysrq_down;
  132. static int sysrq_alt_use;
  133. #endif
  134. static int sysrq_alt;
  135. /*
  136. * Notifier list for console keyboard events
  137. */
  138. static ATOMIC_NOTIFIER_HEAD(keyboard_notifier_list);
  139. int register_keyboard_notifier(struct notifier_block *nb)
  140. {
  141. return atomic_notifier_chain_register(&keyboard_notifier_list, nb);
  142. }
  143. EXPORT_SYMBOL_GPL(register_keyboard_notifier);
  144. int unregister_keyboard_notifier(struct notifier_block *nb)
  145. {
  146. return atomic_notifier_chain_unregister(&keyboard_notifier_list, nb);
  147. }
  148. EXPORT_SYMBOL_GPL(unregister_keyboard_notifier);
  149. /*
  150. * Translation of scancodes to keycodes. We set them on only the first
  151. * keyboard in the list that accepts the scancode and keycode.
  152. * Explanation for not choosing the first attached keyboard anymore:
  153. * USB keyboards for example have two event devices: one for all "normal"
  154. * keys and one for extra function keys (like "volume up", "make coffee",
  155. * etc.). So this means that scancodes for the extra function keys won't
  156. * be valid for the first event device, but will be for the second.
  157. */
  158. int getkeycode(unsigned int scancode)
  159. {
  160. struct input_handle *handle;
  161. int keycode;
  162. int error = -ENODEV;
  163. list_for_each_entry(handle, &kbd_handler.h_list, h_node) {
  164. error = input_get_keycode(handle->dev, scancode, &keycode);
  165. if (!error)
  166. return keycode;
  167. }
  168. return error;
  169. }
  170. int setkeycode(unsigned int scancode, unsigned int keycode)
  171. {
  172. struct input_handle *handle;
  173. int error = -ENODEV;
  174. list_for_each_entry(handle, &kbd_handler.h_list, h_node) {
  175. error = input_set_keycode(handle->dev, scancode, keycode);
  176. if (!error)
  177. break;
  178. }
  179. return error;
  180. }
  181. /*
  182. * Making beeps and bells.
  183. */
  184. static void kd_nosound(unsigned long ignored)
  185. {
  186. struct input_handle *handle;
  187. list_for_each_entry(handle, &kbd_handler.h_list, h_node) {
  188. if (test_bit(EV_SND, handle->dev->evbit)) {
  189. if (test_bit(SND_TONE, handle->dev->sndbit))
  190. input_inject_event(handle, EV_SND, SND_TONE, 0);
  191. if (test_bit(SND_BELL, handle->dev->sndbit))
  192. input_inject_event(handle, EV_SND, SND_BELL, 0);
  193. }
  194. }
  195. }
  196. static DEFINE_TIMER(kd_mksound_timer, kd_nosound, 0, 0);
  197. void kd_mksound(unsigned int hz, unsigned int ticks)
  198. {
  199. struct list_head *node;
  200. del_timer(&kd_mksound_timer);
  201. if (hz) {
  202. list_for_each_prev(node, &kbd_handler.h_list) {
  203. struct input_handle *handle = to_handle_h(node);
  204. if (test_bit(EV_SND, handle->dev->evbit)) {
  205. if (test_bit(SND_TONE, handle->dev->sndbit)) {
  206. input_inject_event(handle, EV_SND, SND_TONE, hz);
  207. break;
  208. }
  209. if (test_bit(SND_BELL, handle->dev->sndbit)) {
  210. input_inject_event(handle, EV_SND, SND_BELL, 1);
  211. break;
  212. }
  213. }
  214. }
  215. if (ticks)
  216. mod_timer(&kd_mksound_timer, jiffies + ticks);
  217. } else
  218. kd_nosound(0);
  219. }
  220. /*
  221. * Setting the keyboard rate.
  222. */
  223. int kbd_rate(struct kbd_repeat *rep)
  224. {
  225. struct list_head *node;
  226. unsigned int d = 0;
  227. unsigned int p = 0;
  228. list_for_each(node, &kbd_handler.h_list) {
  229. struct input_handle *handle = to_handle_h(node);
  230. struct input_dev *dev = handle->dev;
  231. if (test_bit(EV_REP, dev->evbit)) {
  232. if (rep->delay > 0)
  233. input_inject_event(handle, EV_REP, REP_DELAY, rep->delay);
  234. if (rep->period > 0)
  235. input_inject_event(handle, EV_REP, REP_PERIOD, rep->period);
  236. d = dev->rep[REP_DELAY];
  237. p = dev->rep[REP_PERIOD];
  238. }
  239. }
  240. rep->delay = d;
  241. rep->period = p;
  242. return 0;
  243. }
  244. /*
  245. * Helper Functions.
  246. */
  247. static void put_queue(struct vc_data *vc, int ch)
  248. {
  249. struct tty_struct *tty = vc->vc_tty;
  250. if (tty) {
  251. tty_insert_flip_char(tty, ch, 0);
  252. con_schedule_flip(tty);
  253. }
  254. }
  255. static void puts_queue(struct vc_data *vc, char *cp)
  256. {
  257. struct tty_struct *tty = vc->vc_tty;
  258. if (!tty)
  259. return;
  260. while (*cp) {
  261. tty_insert_flip_char(tty, *cp, 0);
  262. cp++;
  263. }
  264. con_schedule_flip(tty);
  265. }
  266. static void applkey(struct vc_data *vc, int key, char mode)
  267. {
  268. static char buf[] = { 0x1b, 'O', 0x00, 0x00 };
  269. buf[1] = (mode ? 'O' : '[');
  270. buf[2] = key;
  271. puts_queue(vc, buf);
  272. }
  273. /*
  274. * Many other routines do put_queue, but I think either
  275. * they produce ASCII, or they produce some user-assigned
  276. * string, and in both cases we might assume that it is
  277. * in utf-8 already.
  278. */
  279. static void to_utf8(struct vc_data *vc, uint c)
  280. {
  281. if (c < 0x80)
  282. /* 0******* */
  283. put_queue(vc, c);
  284. else if (c < 0x800) {
  285. /* 110***** 10****** */
  286. put_queue(vc, 0xc0 | (c >> 6));
  287. put_queue(vc, 0x80 | (c & 0x3f));
  288. } else if (c < 0x10000) {
  289. if (c >= 0xD800 && c < 0xE000)
  290. return;
  291. if (c == 0xFFFF)
  292. return;
  293. /* 1110**** 10****** 10****** */
  294. put_queue(vc, 0xe0 | (c >> 12));
  295. put_queue(vc, 0x80 | ((c >> 6) & 0x3f));
  296. put_queue(vc, 0x80 | (c & 0x3f));
  297. } else if (c < 0x110000) {
  298. /* 11110*** 10****** 10****** 10****** */
  299. put_queue(vc, 0xf0 | (c >> 18));
  300. put_queue(vc, 0x80 | ((c >> 12) & 0x3f));
  301. put_queue(vc, 0x80 | ((c >> 6) & 0x3f));
  302. put_queue(vc, 0x80 | (c & 0x3f));
  303. }
  304. }
  305. /*
  306. * Called after returning from RAW mode or when changing consoles - recompute
  307. * shift_down[] and shift_state from key_down[] maybe called when keymap is
  308. * undefined, so that shiftkey release is seen
  309. */
  310. void compute_shiftstate(void)
  311. {
  312. unsigned int i, j, k, sym, val;
  313. shift_state = 0;
  314. memset(shift_down, 0, sizeof(shift_down));
  315. for (i = 0; i < ARRAY_SIZE(key_down); i++) {
  316. if (!key_down[i])
  317. continue;
  318. k = i * BITS_PER_LONG;
  319. for (j = 0; j < BITS_PER_LONG; j++, k++) {
  320. if (!test_bit(k, key_down))
  321. continue;
  322. sym = U(key_maps[0][k]);
  323. if (KTYP(sym) != KT_SHIFT && KTYP(sym) != KT_SLOCK)
  324. continue;
  325. val = KVAL(sym);
  326. if (val == KVAL(K_CAPSSHIFT))
  327. val = KVAL(K_SHIFT);
  328. shift_down[val]++;
  329. shift_state |= (1 << val);
  330. }
  331. }
  332. }
  333. /*
  334. * We have a combining character DIACR here, followed by the character CH.
  335. * If the combination occurs in the table, return the corresponding value.
  336. * Otherwise, if CH is a space or equals DIACR, return DIACR.
  337. * Otherwise, conclude that DIACR was not combining after all,
  338. * queue it and return CH.
  339. */
  340. static unsigned int handle_diacr(struct vc_data *vc, unsigned int ch)
  341. {
  342. unsigned int d = diacr;
  343. unsigned int i;
  344. diacr = 0;
  345. if ((d & ~0xff) == BRL_UC_ROW) {
  346. if ((ch & ~0xff) == BRL_UC_ROW)
  347. return d | ch;
  348. } else {
  349. for (i = 0; i < accent_table_size; i++)
  350. if (accent_table[i].diacr == d && accent_table[i].base == ch)
  351. return accent_table[i].result;
  352. }
  353. if (ch == ' ' || ch == (BRL_UC_ROW|0) || ch == d)
  354. return d;
  355. if (kbd->kbdmode == VC_UNICODE)
  356. to_utf8(vc, d);
  357. else {
  358. int c = conv_uni_to_8bit(d);
  359. if (c != -1)
  360. put_queue(vc, c);
  361. }
  362. return ch;
  363. }
  364. /*
  365. * Special function handlers
  366. */
  367. static void fn_enter(struct vc_data *vc)
  368. {
  369. if (diacr) {
  370. if (kbd->kbdmode == VC_UNICODE)
  371. to_utf8(vc, diacr);
  372. else {
  373. int c = conv_uni_to_8bit(diacr);
  374. if (c != -1)
  375. put_queue(vc, c);
  376. }
  377. diacr = 0;
  378. }
  379. put_queue(vc, 13);
  380. if (vc_kbd_mode(kbd, VC_CRLF))
  381. put_queue(vc, 10);
  382. }
  383. static void fn_caps_toggle(struct vc_data *vc)
  384. {
  385. if (rep)
  386. return;
  387. chg_vc_kbd_led(kbd, VC_CAPSLOCK);
  388. }
  389. static void fn_caps_on(struct vc_data *vc)
  390. {
  391. if (rep)
  392. return;
  393. set_vc_kbd_led(kbd, VC_CAPSLOCK);
  394. }
  395. static void fn_show_ptregs(struct vc_data *vc)
  396. {
  397. struct pt_regs *regs = get_irq_regs();
  398. if (regs)
  399. show_regs(regs);
  400. }
  401. static void fn_hold(struct vc_data *vc)
  402. {
  403. struct tty_struct *tty = vc->vc_tty;
  404. if (rep || !tty)
  405. return;
  406. /*
  407. * Note: SCROLLOCK will be set (cleared) by stop_tty (start_tty);
  408. * these routines are also activated by ^S/^Q.
  409. * (And SCROLLOCK can also be set by the ioctl KDSKBLED.)
  410. */
  411. if (tty->stopped)
  412. start_tty(tty);
  413. else
  414. stop_tty(tty);
  415. }
  416. static void fn_num(struct vc_data *vc)
  417. {
  418. if (vc_kbd_mode(kbd,VC_APPLIC))
  419. applkey(vc, 'P', 1);
  420. else
  421. fn_bare_num(vc);
  422. }
  423. /*
  424. * Bind this to Shift-NumLock if you work in application keypad mode
  425. * but want to be able to change the NumLock flag.
  426. * Bind this to NumLock if you prefer that the NumLock key always
  427. * changes the NumLock flag.
  428. */
  429. static void fn_bare_num(struct vc_data *vc)
  430. {
  431. if (!rep)
  432. chg_vc_kbd_led(kbd, VC_NUMLOCK);
  433. }
  434. static void fn_lastcons(struct vc_data *vc)
  435. {
  436. /* switch to the last used console, ChN */
  437. set_console(last_console);
  438. }
  439. static void fn_dec_console(struct vc_data *vc)
  440. {
  441. int i, cur = fg_console;
  442. /* Currently switching? Queue this next switch relative to that. */
  443. if (want_console != -1)
  444. cur = want_console;
  445. for (i = cur - 1; i != cur; i--) {
  446. if (i == -1)
  447. i = MAX_NR_CONSOLES - 1;
  448. if (vc_cons_allocated(i))
  449. break;
  450. }
  451. set_console(i);
  452. }
  453. static void fn_inc_console(struct vc_data *vc)
  454. {
  455. int i, cur = fg_console;
  456. /* Currently switching? Queue this next switch relative to that. */
  457. if (want_console != -1)
  458. cur = want_console;
  459. for (i = cur+1; i != cur; i++) {
  460. if (i == MAX_NR_CONSOLES)
  461. i = 0;
  462. if (vc_cons_allocated(i))
  463. break;
  464. }
  465. set_console(i);
  466. }
  467. static void fn_send_intr(struct vc_data *vc)
  468. {
  469. struct tty_struct *tty = vc->vc_tty;
  470. if (!tty)
  471. return;
  472. tty_insert_flip_char(tty, 0, TTY_BREAK);
  473. con_schedule_flip(tty);
  474. }
  475. static void fn_scroll_forw(struct vc_data *vc)
  476. {
  477. scrollfront(vc, 0);
  478. }
  479. static void fn_scroll_back(struct vc_data *vc)
  480. {
  481. scrollback(vc, 0);
  482. }
  483. static void fn_show_mem(struct vc_data *vc)
  484. {
  485. show_mem();
  486. }
  487. static void fn_show_state(struct vc_data *vc)
  488. {
  489. show_state();
  490. }
  491. static void fn_boot_it(struct vc_data *vc)
  492. {
  493. ctrl_alt_del();
  494. }
  495. static void fn_compose(struct vc_data *vc)
  496. {
  497. dead_key_next = 1;
  498. }
  499. static void fn_spawn_con(struct vc_data *vc)
  500. {
  501. spin_lock(&vt_spawn_con.lock);
  502. if (vt_spawn_con.pid)
  503. if (kill_pid(vt_spawn_con.pid, vt_spawn_con.sig, 1)) {
  504. put_pid(vt_spawn_con.pid);
  505. vt_spawn_con.pid = NULL;
  506. }
  507. spin_unlock(&vt_spawn_con.lock);
  508. }
  509. static void fn_SAK(struct vc_data *vc)
  510. {
  511. struct work_struct *SAK_work = &vc_cons[fg_console].SAK_work;
  512. schedule_work(SAK_work);
  513. }
  514. static void fn_null(struct vc_data *vc)
  515. {
  516. compute_shiftstate();
  517. }
  518. /*
  519. * Special key handlers
  520. */
  521. static void k_ignore(struct vc_data *vc, unsigned char value, char up_flag)
  522. {
  523. }
  524. static void k_spec(struct vc_data *vc, unsigned char value, char up_flag)
  525. {
  526. if (up_flag)
  527. return;
  528. if (value >= ARRAY_SIZE(fn_handler))
  529. return;
  530. if ((kbd->kbdmode == VC_RAW ||
  531. kbd->kbdmode == VC_MEDIUMRAW) &&
  532. value != KVAL(K_SAK))
  533. return; /* SAK is allowed even in raw mode */
  534. fn_handler[value](vc);
  535. }
  536. static void k_lowercase(struct vc_data *vc, unsigned char value, char up_flag)
  537. {
  538. printk(KERN_ERR "keyboard.c: k_lowercase was called - impossible\n");
  539. }
  540. static void k_unicode(struct vc_data *vc, unsigned int value, char up_flag)
  541. {
  542. if (up_flag)
  543. return; /* no action, if this is a key release */
  544. if (diacr)
  545. value = handle_diacr(vc, value);
  546. if (dead_key_next) {
  547. dead_key_next = 0;
  548. diacr = value;
  549. return;
  550. }
  551. if (kbd->kbdmode == VC_UNICODE)
  552. to_utf8(vc, value);
  553. else {
  554. int c = conv_uni_to_8bit(value);
  555. if (c != -1)
  556. put_queue(vc, c);
  557. }
  558. }
  559. /*
  560. * Handle dead key. Note that we now may have several
  561. * dead keys modifying the same character. Very useful
  562. * for Vietnamese.
  563. */
  564. static void k_deadunicode(struct vc_data *vc, unsigned int value, char up_flag)
  565. {
  566. if (up_flag)
  567. return;
  568. diacr = (diacr ? handle_diacr(vc, value) : value);
  569. }
  570. static void k_self(struct vc_data *vc, unsigned char value, char up_flag)
  571. {
  572. unsigned int uni;
  573. if (kbd->kbdmode == VC_UNICODE)
  574. uni = value;
  575. else
  576. uni = conv_8bit_to_uni(value);
  577. k_unicode(vc, uni, up_flag);
  578. }
  579. static void k_dead2(struct vc_data *vc, unsigned char value, char up_flag)
  580. {
  581. k_deadunicode(vc, value, up_flag);
  582. }
  583. /*
  584. * Obsolete - for backwards compatibility only
  585. */
  586. static void k_dead(struct vc_data *vc, unsigned char value, char up_flag)
  587. {
  588. static const unsigned char ret_diacr[NR_DEAD] = {'`', '\'', '^', '~', '"', ',' };
  589. value = ret_diacr[value];
  590. k_deadunicode(vc, value, up_flag);
  591. }
  592. static void k_cons(struct vc_data *vc, unsigned char value, char up_flag)
  593. {
  594. if (up_flag)
  595. return;
  596. set_console(value);
  597. }
  598. static void k_fn(struct vc_data *vc, unsigned char value, char up_flag)
  599. {
  600. unsigned v;
  601. if (up_flag)
  602. return;
  603. v = value;
  604. if (v < ARRAY_SIZE(func_table)) {
  605. if (func_table[value])
  606. puts_queue(vc, func_table[value]);
  607. } else
  608. printk(KERN_ERR "k_fn called with value=%d\n", value);
  609. }
  610. static void k_cur(struct vc_data *vc, unsigned char value, char up_flag)
  611. {
  612. static const char cur_chars[] = "BDCA";
  613. if (up_flag)
  614. return;
  615. applkey(vc, cur_chars[value], vc_kbd_mode(kbd, VC_CKMODE));
  616. }
  617. static void k_pad(struct vc_data *vc, unsigned char value, char up_flag)
  618. {
  619. static const char pad_chars[] = "0123456789+-*/\015,.?()#";
  620. static const char app_map[] = "pqrstuvwxylSRQMnnmPQS";
  621. if (up_flag)
  622. return; /* no action, if this is a key release */
  623. /* kludge... shift forces cursor/number keys */
  624. if (vc_kbd_mode(kbd, VC_APPLIC) && !shift_down[KG_SHIFT]) {
  625. applkey(vc, app_map[value], 1);
  626. return;
  627. }
  628. if (!vc_kbd_led(kbd, VC_NUMLOCK))
  629. switch (value) {
  630. case KVAL(K_PCOMMA):
  631. case KVAL(K_PDOT):
  632. k_fn(vc, KVAL(K_REMOVE), 0);
  633. return;
  634. case KVAL(K_P0):
  635. k_fn(vc, KVAL(K_INSERT), 0);
  636. return;
  637. case KVAL(K_P1):
  638. k_fn(vc, KVAL(K_SELECT), 0);
  639. return;
  640. case KVAL(K_P2):
  641. k_cur(vc, KVAL(K_DOWN), 0);
  642. return;
  643. case KVAL(K_P3):
  644. k_fn(vc, KVAL(K_PGDN), 0);
  645. return;
  646. case KVAL(K_P4):
  647. k_cur(vc, KVAL(K_LEFT), 0);
  648. return;
  649. case KVAL(K_P6):
  650. k_cur(vc, KVAL(K_RIGHT), 0);
  651. return;
  652. case KVAL(K_P7):
  653. k_fn(vc, KVAL(K_FIND), 0);
  654. return;
  655. case KVAL(K_P8):
  656. k_cur(vc, KVAL(K_UP), 0);
  657. return;
  658. case KVAL(K_P9):
  659. k_fn(vc, KVAL(K_PGUP), 0);
  660. return;
  661. case KVAL(K_P5):
  662. applkey(vc, 'G', vc_kbd_mode(kbd, VC_APPLIC));
  663. return;
  664. }
  665. put_queue(vc, pad_chars[value]);
  666. if (value == KVAL(K_PENTER) && vc_kbd_mode(kbd, VC_CRLF))
  667. put_queue(vc, 10);
  668. }
  669. static void k_shift(struct vc_data *vc, unsigned char value, char up_flag)
  670. {
  671. int old_state = shift_state;
  672. if (rep)
  673. return;
  674. /*
  675. * Mimic typewriter:
  676. * a CapsShift key acts like Shift but undoes CapsLock
  677. */
  678. if (value == KVAL(K_CAPSSHIFT)) {
  679. value = KVAL(K_SHIFT);
  680. if (!up_flag)
  681. clr_vc_kbd_led(kbd, VC_CAPSLOCK);
  682. }
  683. if (up_flag) {
  684. /*
  685. * handle the case that two shift or control
  686. * keys are depressed simultaneously
  687. */
  688. if (shift_down[value])
  689. shift_down[value]--;
  690. } else
  691. shift_down[value]++;
  692. if (shift_down[value])
  693. shift_state |= (1 << value);
  694. else
  695. shift_state &= ~(1 << value);
  696. /* kludge */
  697. if (up_flag && shift_state != old_state && npadch != -1) {
  698. if (kbd->kbdmode == VC_UNICODE)
  699. to_utf8(vc, npadch);
  700. else
  701. put_queue(vc, npadch & 0xff);
  702. npadch = -1;
  703. }
  704. }
  705. static void k_meta(struct vc_data *vc, unsigned char value, char up_flag)
  706. {
  707. if (up_flag)
  708. return;
  709. if (vc_kbd_mode(kbd, VC_META)) {
  710. put_queue(vc, '\033');
  711. put_queue(vc, value);
  712. } else
  713. put_queue(vc, value | 0x80);
  714. }
  715. static void k_ascii(struct vc_data *vc, unsigned char value, char up_flag)
  716. {
  717. int base;
  718. if (up_flag)
  719. return;
  720. if (value < 10) {
  721. /* decimal input of code, while Alt depressed */
  722. base = 10;
  723. } else {
  724. /* hexadecimal input of code, while AltGr depressed */
  725. value -= 10;
  726. base = 16;
  727. }
  728. if (npadch == -1)
  729. npadch = value;
  730. else
  731. npadch = npadch * base + value;
  732. }
  733. static void k_lock(struct vc_data *vc, unsigned char value, char up_flag)
  734. {
  735. if (up_flag || rep)
  736. return;
  737. chg_vc_kbd_lock(kbd, value);
  738. }
  739. static void k_slock(struct vc_data *vc, unsigned char value, char up_flag)
  740. {
  741. k_shift(vc, value, up_flag);
  742. if (up_flag || rep)
  743. return;
  744. chg_vc_kbd_slock(kbd, value);
  745. /* try to make Alt, oops, AltGr and such work */
  746. if (!key_maps[kbd->lockstate ^ kbd->slockstate]) {
  747. kbd->slockstate = 0;
  748. chg_vc_kbd_slock(kbd, value);
  749. }
  750. }
  751. /* by default, 300ms interval for combination release */
  752. static unsigned brl_timeout = 300;
  753. MODULE_PARM_DESC(brl_timeout, "Braille keys release delay in ms (0 for commit on first key release)");
  754. module_param(brl_timeout, uint, 0644);
  755. static unsigned brl_nbchords = 1;
  756. MODULE_PARM_DESC(brl_nbchords, "Number of chords that produce a braille pattern (0 for dead chords)");
  757. module_param(brl_nbchords, uint, 0644);
  758. static void k_brlcommit(struct vc_data *vc, unsigned int pattern, char up_flag)
  759. {
  760. static unsigned long chords;
  761. static unsigned committed;
  762. if (!brl_nbchords)
  763. k_deadunicode(vc, BRL_UC_ROW | pattern, up_flag);
  764. else {
  765. committed |= pattern;
  766. chords++;
  767. if (chords == brl_nbchords) {
  768. k_unicode(vc, BRL_UC_ROW | committed, up_flag);
  769. chords = 0;
  770. committed = 0;
  771. }
  772. }
  773. }
  774. static void k_brl(struct vc_data *vc, unsigned char value, char up_flag)
  775. {
  776. static unsigned pressed,committing;
  777. static unsigned long releasestart;
  778. if (kbd->kbdmode != VC_UNICODE) {
  779. if (!up_flag)
  780. printk("keyboard mode must be unicode for braille patterns\n");
  781. return;
  782. }
  783. if (!value) {
  784. k_unicode(vc, BRL_UC_ROW, up_flag);
  785. return;
  786. }
  787. if (value > 8)
  788. return;
  789. if (up_flag) {
  790. if (brl_timeout) {
  791. if (!committing ||
  792. jiffies - releasestart > (brl_timeout * HZ) / 1000) {
  793. committing = pressed;
  794. releasestart = jiffies;
  795. }
  796. pressed &= ~(1 << (value - 1));
  797. if (!pressed) {
  798. if (committing) {
  799. k_brlcommit(vc, committing, 0);
  800. committing = 0;
  801. }
  802. }
  803. } else {
  804. if (committing) {
  805. k_brlcommit(vc, committing, 0);
  806. committing = 0;
  807. }
  808. pressed &= ~(1 << (value - 1));
  809. }
  810. } else {
  811. pressed |= 1 << (value - 1);
  812. if (!brl_timeout)
  813. committing = pressed;
  814. }
  815. }
  816. /*
  817. * The leds display either (i) the status of NumLock, CapsLock, ScrollLock,
  818. * or (ii) whatever pattern of lights people want to show using KDSETLED,
  819. * or (iii) specified bits of specified words in kernel memory.
  820. */
  821. unsigned char getledstate(void)
  822. {
  823. return ledstate;
  824. }
  825. void setledstate(struct kbd_struct *kbd, unsigned int led)
  826. {
  827. if (!(led & ~7)) {
  828. ledioctl = led;
  829. kbd->ledmode = LED_SHOW_IOCTL;
  830. } else
  831. kbd->ledmode = LED_SHOW_FLAGS;
  832. set_leds();
  833. }
  834. static inline unsigned char getleds(void)
  835. {
  836. struct kbd_struct *kbd = kbd_table + fg_console;
  837. unsigned char leds;
  838. int i;
  839. if (kbd->ledmode == LED_SHOW_IOCTL)
  840. return ledioctl;
  841. leds = kbd->ledflagstate;
  842. if (kbd->ledmode == LED_SHOW_MEM) {
  843. for (i = 0; i < 3; i++)
  844. if (ledptrs[i].valid) {
  845. if (*ledptrs[i].addr & ledptrs[i].mask)
  846. leds |= (1 << i);
  847. else
  848. leds &= ~(1 << i);
  849. }
  850. }
  851. return leds;
  852. }
  853. /*
  854. * This routine is the bottom half of the keyboard interrupt
  855. * routine, and runs with all interrupts enabled. It does
  856. * console changing, led setting and copy_to_cooked, which can
  857. * take a reasonably long time.
  858. *
  859. * Aside from timing (which isn't really that important for
  860. * keyboard interrupts as they happen often), using the software
  861. * interrupt routines for this thing allows us to easily mask
  862. * this when we don't want any of the above to happen.
  863. * This allows for easy and efficient race-condition prevention
  864. * for kbd_start => input_inject_event(dev, EV_LED, ...) => ...
  865. */
  866. static void kbd_bh(unsigned long dummy)
  867. {
  868. struct list_head *node;
  869. unsigned char leds = getleds();
  870. if (leds != ledstate) {
  871. list_for_each(node, &kbd_handler.h_list) {
  872. struct input_handle *handle = to_handle_h(node);
  873. input_inject_event(handle, EV_LED, LED_SCROLLL, !!(leds & 0x01));
  874. input_inject_event(handle, EV_LED, LED_NUML, !!(leds & 0x02));
  875. input_inject_event(handle, EV_LED, LED_CAPSL, !!(leds & 0x04));
  876. input_inject_event(handle, EV_SYN, SYN_REPORT, 0);
  877. }
  878. }
  879. ledstate = leds;
  880. }
  881. DECLARE_TASKLET_DISABLED(keyboard_tasklet, kbd_bh, 0);
  882. #if defined(CONFIG_X86) || defined(CONFIG_IA64) || defined(CONFIG_ALPHA) ||\
  883. defined(CONFIG_MIPS) || defined(CONFIG_PPC) || defined(CONFIG_SPARC) ||\
  884. defined(CONFIG_PARISC) || defined(CONFIG_SUPERH) ||\
  885. (defined(CONFIG_ARM) && defined(CONFIG_KEYBOARD_ATKBD) && !defined(CONFIG_ARCH_RPC)) ||\
  886. defined(CONFIG_AVR32)
  887. #define HW_RAW(dev) (test_bit(EV_MSC, dev->evbit) && test_bit(MSC_RAW, dev->mscbit) &&\
  888. ((dev)->id.bustype == BUS_I8042) && ((dev)->id.vendor == 0x0001) && ((dev)->id.product == 0x0001))
  889. static const unsigned short x86_keycodes[256] =
  890. { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
  891. 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
  892. 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47,
  893. 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63,
  894. 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79,
  895. 80, 81, 82, 83, 84,118, 86, 87, 88,115,120,119,121,112,123, 92,
  896. 284,285,309, 0,312, 91,327,328,329,331,333,335,336,337,338,339,
  897. 367,288,302,304,350, 89,334,326,267,126,268,269,125,347,348,349,
  898. 360,261,262,263,268,376,100,101,321,316,373,286,289,102,351,355,
  899. 103,104,105,275,287,279,258,106,274,107,294,364,358,363,362,361,
  900. 291,108,381,281,290,272,292,305,280, 99,112,257,306,359,113,114,
  901. 264,117,271,374,379,265,266, 93, 94, 95, 85,259,375,260, 90,116,
  902. 377,109,111,277,278,282,283,295,296,297,299,300,301,293,303,307,
  903. 308,310,313,314,315,317,318,319,320,357,322,323,324,325,276,330,
  904. 332,340,365,342,343,344,345,346,356,270,341,368,369,370,371,372 };
  905. #ifdef CONFIG_SPARC
  906. static int sparc_l1_a_state = 0;
  907. extern void sun_do_break(void);
  908. #endif
  909. static int emulate_raw(struct vc_data *vc, unsigned int keycode,
  910. unsigned char up_flag)
  911. {
  912. int code;
  913. switch (keycode) {
  914. case KEY_PAUSE:
  915. put_queue(vc, 0xe1);
  916. put_queue(vc, 0x1d | up_flag);
  917. put_queue(vc, 0x45 | up_flag);
  918. break;
  919. case KEY_HANGEUL:
  920. if (!up_flag)
  921. put_queue(vc, 0xf2);
  922. break;
  923. case KEY_HANJA:
  924. if (!up_flag)
  925. put_queue(vc, 0xf1);
  926. break;
  927. case KEY_SYSRQ:
  928. /*
  929. * Real AT keyboards (that's what we're trying
  930. * to emulate here emit 0xe0 0x2a 0xe0 0x37 when
  931. * pressing PrtSc/SysRq alone, but simply 0x54
  932. * when pressing Alt+PrtSc/SysRq.
  933. */
  934. if (sysrq_alt) {
  935. put_queue(vc, 0x54 | up_flag);
  936. } else {
  937. put_queue(vc, 0xe0);
  938. put_queue(vc, 0x2a | up_flag);
  939. put_queue(vc, 0xe0);
  940. put_queue(vc, 0x37 | up_flag);
  941. }
  942. break;
  943. default:
  944. if (keycode > 255)
  945. return -1;
  946. code = x86_keycodes[keycode];
  947. if (!code)
  948. return -1;
  949. if (code & 0x100)
  950. put_queue(vc, 0xe0);
  951. put_queue(vc, (code & 0x7f) | up_flag);
  952. break;
  953. }
  954. return 0;
  955. }
  956. #else
  957. #define HW_RAW(dev) 0
  958. #warning "Cannot generate rawmode keyboard for your architecture yet."
  959. static int emulate_raw(struct vc_data *vc, unsigned int keycode, unsigned char up_flag)
  960. {
  961. if (keycode > 127)
  962. return -1;
  963. put_queue(vc, keycode | up_flag);
  964. return 0;
  965. }
  966. #endif
  967. static void kbd_rawcode(unsigned char data)
  968. {
  969. struct vc_data *vc = vc_cons[fg_console].d;
  970. kbd = kbd_table + fg_console;
  971. if (kbd->kbdmode == VC_RAW)
  972. put_queue(vc, data);
  973. }
  974. static void kbd_keycode(unsigned int keycode, int down, int hw_raw)
  975. {
  976. struct vc_data *vc = vc_cons[fg_console].d;
  977. unsigned short keysym, *key_map;
  978. unsigned char type, raw_mode;
  979. struct tty_struct *tty;
  980. int shift_final;
  981. struct keyboard_notifier_param param = { .vc = vc, .value = keycode, .down = down };
  982. tty = vc->vc_tty;
  983. if (tty && (!tty->driver_data)) {
  984. /* No driver data? Strange. Okay we fix it then. */
  985. tty->driver_data = vc;
  986. }
  987. kbd = kbd_table + fg_console;
  988. if (keycode == KEY_LEFTALT || keycode == KEY_RIGHTALT)
  989. sysrq_alt = down ? keycode : 0;
  990. #ifdef CONFIG_SPARC
  991. if (keycode == KEY_STOP)
  992. sparc_l1_a_state = down;
  993. #endif
  994. rep = (down == 2);
  995. #ifdef CONFIG_MAC_EMUMOUSEBTN
  996. if (mac_hid_mouse_emulate_buttons(1, keycode, down))
  997. return;
  998. #endif /* CONFIG_MAC_EMUMOUSEBTN */
  999. if ((raw_mode = (kbd->kbdmode == VC_RAW)) && !hw_raw)
  1000. if (emulate_raw(vc, keycode, !down << 7))
  1001. if (keycode < BTN_MISC && printk_ratelimit())
  1002. printk(KERN_WARNING "keyboard.c: can't emulate rawmode for keycode %d\n", keycode);
  1003. #ifdef CONFIG_MAGIC_SYSRQ /* Handle the SysRq Hack */
  1004. if (keycode == KEY_SYSRQ && (sysrq_down || (down == 1 && sysrq_alt))) {
  1005. if (!sysrq_down) {
  1006. sysrq_down = down;
  1007. sysrq_alt_use = sysrq_alt;
  1008. }
  1009. return;
  1010. }
  1011. if (sysrq_down && !down && keycode == sysrq_alt_use)
  1012. sysrq_down = 0;
  1013. if (sysrq_down && down && !rep) {
  1014. handle_sysrq(kbd_sysrq_xlate[keycode], tty);
  1015. return;
  1016. }
  1017. #endif
  1018. #ifdef CONFIG_SPARC
  1019. if (keycode == KEY_A && sparc_l1_a_state) {
  1020. sparc_l1_a_state = 0;
  1021. sun_do_break();
  1022. }
  1023. #endif
  1024. if (kbd->kbdmode == VC_MEDIUMRAW) {
  1025. /*
  1026. * This is extended medium raw mode, with keys above 127
  1027. * encoded as 0, high 7 bits, low 7 bits, with the 0 bearing
  1028. * the 'up' flag if needed. 0 is reserved, so this shouldn't
  1029. * interfere with anything else. The two bytes after 0 will
  1030. * always have the up flag set not to interfere with older
  1031. * applications. This allows for 16384 different keycodes,
  1032. * which should be enough.
  1033. */
  1034. if (keycode < 128) {
  1035. put_queue(vc, keycode | (!down << 7));
  1036. } else {
  1037. put_queue(vc, !down << 7);
  1038. put_queue(vc, (keycode >> 7) | 0x80);
  1039. put_queue(vc, keycode | 0x80);
  1040. }
  1041. raw_mode = 1;
  1042. }
  1043. if (down)
  1044. set_bit(keycode, key_down);
  1045. else
  1046. clear_bit(keycode, key_down);
  1047. if (rep &&
  1048. (!vc_kbd_mode(kbd, VC_REPEAT) ||
  1049. (tty && !L_ECHO(tty) && tty->driver->chars_in_buffer(tty)))) {
  1050. /*
  1051. * Don't repeat a key if the input buffers are not empty and the
  1052. * characters get aren't echoed locally. This makes key repeat
  1053. * usable with slow applications and under heavy loads.
  1054. */
  1055. return;
  1056. }
  1057. param.shift = shift_final = (shift_state | kbd->slockstate) ^ kbd->lockstate;
  1058. key_map = key_maps[shift_final];
  1059. if (atomic_notifier_call_chain(&keyboard_notifier_list, KBD_KEYCODE, &param) == NOTIFY_STOP || !key_map) {
  1060. atomic_notifier_call_chain(&keyboard_notifier_list, KBD_UNBOUND_KEYCODE, &param);
  1061. compute_shiftstate();
  1062. kbd->slockstate = 0;
  1063. return;
  1064. }
  1065. if (keycode > NR_KEYS)
  1066. if (keycode >= KEY_BRL_DOT1 && keycode <= KEY_BRL_DOT8)
  1067. keysym = K(KT_BRL, keycode - KEY_BRL_DOT1 + 1);
  1068. else
  1069. return;
  1070. else
  1071. keysym = key_map[keycode];
  1072. type = KTYP(keysym);
  1073. if (type < 0xf0) {
  1074. param.value = keysym;
  1075. if (atomic_notifier_call_chain(&keyboard_notifier_list, KBD_UNICODE, &param) == NOTIFY_STOP)
  1076. return;
  1077. if (down && !raw_mode)
  1078. to_utf8(vc, keysym);
  1079. return;
  1080. }
  1081. type -= 0xf0;
  1082. if (type == KT_LETTER) {
  1083. type = KT_LATIN;
  1084. if (vc_kbd_led(kbd, VC_CAPSLOCK)) {
  1085. key_map = key_maps[shift_final ^ (1 << KG_SHIFT)];
  1086. if (key_map)
  1087. keysym = key_map[keycode];
  1088. }
  1089. }
  1090. param.value = keysym;
  1091. if (atomic_notifier_call_chain(&keyboard_notifier_list, KBD_KEYSYM, &param) == NOTIFY_STOP)
  1092. return;
  1093. if (raw_mode && type != KT_SPEC && type != KT_SHIFT)
  1094. return;
  1095. (*k_handler[type])(vc, keysym & 0xff, !down);
  1096. atomic_notifier_call_chain(&keyboard_notifier_list, KBD_POST_KEYSYM, &param);
  1097. if (type != KT_SLOCK)
  1098. kbd->slockstate = 0;
  1099. }
  1100. static void kbd_event(struct input_handle *handle, unsigned int event_type,
  1101. unsigned int event_code, int value)
  1102. {
  1103. if (event_type == EV_MSC && event_code == MSC_RAW && HW_RAW(handle->dev))
  1104. kbd_rawcode(value);
  1105. if (event_type == EV_KEY)
  1106. kbd_keycode(event_code, value, HW_RAW(handle->dev));
  1107. tasklet_schedule(&keyboard_tasklet);
  1108. do_poke_blanked_console = 1;
  1109. schedule_console_callback();
  1110. }
  1111. /*
  1112. * When a keyboard (or other input device) is found, the kbd_connect
  1113. * function is called. The function then looks at the device, and if it
  1114. * likes it, it can open it and get events from it. In this (kbd_connect)
  1115. * function, we should decide which VT to bind that keyboard to initially.
  1116. */
  1117. static int kbd_connect(struct input_handler *handler, struct input_dev *dev,
  1118. const struct input_device_id *id)
  1119. {
  1120. struct input_handle *handle;
  1121. int error;
  1122. int i;
  1123. for (i = KEY_RESERVED; i < BTN_MISC; i++)
  1124. if (test_bit(i, dev->keybit))
  1125. break;
  1126. if (i == BTN_MISC && !test_bit(EV_SND, dev->evbit))
  1127. return -ENODEV;
  1128. handle = kzalloc(sizeof(struct input_handle), GFP_KERNEL);
  1129. if (!handle)
  1130. return -ENOMEM;
  1131. handle->dev = dev;
  1132. handle->handler = handler;
  1133. handle->name = "kbd";
  1134. error = input_register_handle(handle);
  1135. if (error)
  1136. goto err_free_handle;
  1137. error = input_open_device(handle);
  1138. if (error)
  1139. goto err_unregister_handle;
  1140. return 0;
  1141. err_unregister_handle:
  1142. input_unregister_handle(handle);
  1143. err_free_handle:
  1144. kfree(handle);
  1145. return error;
  1146. }
  1147. static void kbd_disconnect(struct input_handle *handle)
  1148. {
  1149. input_close_device(handle);
  1150. input_unregister_handle(handle);
  1151. kfree(handle);
  1152. }
  1153. /*
  1154. * Start keyboard handler on the new keyboard by refreshing LED state to
  1155. * match the rest of the system.
  1156. */
  1157. static void kbd_start(struct input_handle *handle)
  1158. {
  1159. unsigned char leds = ledstate;
  1160. tasklet_disable(&keyboard_tasklet);
  1161. if (leds != 0xff) {
  1162. input_inject_event(handle, EV_LED, LED_SCROLLL, !!(leds & 0x01));
  1163. input_inject_event(handle, EV_LED, LED_NUML, !!(leds & 0x02));
  1164. input_inject_event(handle, EV_LED, LED_CAPSL, !!(leds & 0x04));
  1165. input_inject_event(handle, EV_SYN, SYN_REPORT, 0);
  1166. }
  1167. tasklet_enable(&keyboard_tasklet);
  1168. }
  1169. static const struct input_device_id kbd_ids[] = {
  1170. {
  1171. .flags = INPUT_DEVICE_ID_MATCH_EVBIT,
  1172. .evbit = { BIT_MASK(EV_KEY) },
  1173. },
  1174. {
  1175. .flags = INPUT_DEVICE_ID_MATCH_EVBIT,
  1176. .evbit = { BIT_MASK(EV_SND) },
  1177. },
  1178. { }, /* Terminating entry */
  1179. };
  1180. MODULE_DEVICE_TABLE(input, kbd_ids);
  1181. static struct input_handler kbd_handler = {
  1182. .event = kbd_event,
  1183. .connect = kbd_connect,
  1184. .disconnect = kbd_disconnect,
  1185. .start = kbd_start,
  1186. .name = "kbd",
  1187. .id_table = kbd_ids,
  1188. };
  1189. int __init kbd_init(void)
  1190. {
  1191. int i;
  1192. int error;
  1193. for (i = 0; i < MAX_NR_CONSOLES; i++) {
  1194. kbd_table[i].ledflagstate = KBD_DEFLEDS;
  1195. kbd_table[i].default_ledflagstate = KBD_DEFLEDS;
  1196. kbd_table[i].ledmode = LED_SHOW_FLAGS;
  1197. kbd_table[i].lockstate = KBD_DEFLOCK;
  1198. kbd_table[i].slockstate = 0;
  1199. kbd_table[i].modeflags = KBD_DEFMODE;
  1200. kbd_table[i].kbdmode = default_utf8 ? VC_UNICODE : VC_XLATE;
  1201. }
  1202. error = input_register_handler(&kbd_handler);
  1203. if (error)
  1204. return error;
  1205. tasklet_enable(&keyboard_tasklet);
  1206. tasklet_schedule(&keyboard_tasklet);
  1207. return 0;
  1208. }