enlighten.c 30 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236
  1. /*
  2. * Core of Xen paravirt_ops implementation.
  3. *
  4. * This file contains the xen_paravirt_ops structure itself, and the
  5. * implementations for:
  6. * - privileged instructions
  7. * - interrupt flags
  8. * - segment operations
  9. * - booting and setup
  10. *
  11. * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
  12. */
  13. #include <linux/kernel.h>
  14. #include <linux/init.h>
  15. #include <linux/smp.h>
  16. #include <linux/preempt.h>
  17. #include <linux/hardirq.h>
  18. #include <linux/percpu.h>
  19. #include <linux/delay.h>
  20. #include <linux/start_kernel.h>
  21. #include <linux/sched.h>
  22. #include <linux/bootmem.h>
  23. #include <linux/module.h>
  24. #include <linux/mm.h>
  25. #include <linux/page-flags.h>
  26. #include <linux/highmem.h>
  27. #include <linux/console.h>
  28. #include <xen/interface/xen.h>
  29. #include <xen/interface/physdev.h>
  30. #include <xen/interface/vcpu.h>
  31. #include <xen/interface/sched.h>
  32. #include <xen/features.h>
  33. #include <xen/page.h>
  34. #include <asm/paravirt.h>
  35. #include <asm/page.h>
  36. #include <asm/xen/hypercall.h>
  37. #include <asm/xen/hypervisor.h>
  38. #include <asm/fixmap.h>
  39. #include <asm/processor.h>
  40. #include <asm/setup.h>
  41. #include <asm/desc.h>
  42. #include <asm/pgtable.h>
  43. #include <asm/tlbflush.h>
  44. #include <asm/reboot.h>
  45. #include "xen-ops.h"
  46. #include "mmu.h"
  47. #include "multicalls.h"
  48. EXPORT_SYMBOL_GPL(hypercall_page);
  49. DEFINE_PER_CPU(struct vcpu_info *, xen_vcpu);
  50. DEFINE_PER_CPU(struct vcpu_info, xen_vcpu_info);
  51. /*
  52. * Note about cr3 (pagetable base) values:
  53. *
  54. * xen_cr3 contains the current logical cr3 value; it contains the
  55. * last set cr3. This may not be the current effective cr3, because
  56. * its update may be being lazily deferred. However, a vcpu looking
  57. * at its own cr3 can use this value knowing that it everything will
  58. * be self-consistent.
  59. *
  60. * xen_current_cr3 contains the actual vcpu cr3; it is set once the
  61. * hypercall to set the vcpu cr3 is complete (so it may be a little
  62. * out of date, but it will never be set early). If one vcpu is
  63. * looking at another vcpu's cr3 value, it should use this variable.
  64. */
  65. DEFINE_PER_CPU(unsigned long, xen_cr3); /* cr3 stored as physaddr */
  66. DEFINE_PER_CPU(unsigned long, xen_current_cr3); /* actual vcpu cr3 */
  67. struct start_info *xen_start_info;
  68. EXPORT_SYMBOL_GPL(xen_start_info);
  69. static /* __initdata */ struct shared_info dummy_shared_info;
  70. /*
  71. * Point at some empty memory to start with. We map the real shared_info
  72. * page as soon as fixmap is up and running.
  73. */
  74. struct shared_info *HYPERVISOR_shared_info = (void *)&dummy_shared_info;
  75. /*
  76. * Flag to determine whether vcpu info placement is available on all
  77. * VCPUs. We assume it is to start with, and then set it to zero on
  78. * the first failure. This is because it can succeed on some VCPUs
  79. * and not others, since it can involve hypervisor memory allocation,
  80. * or because the guest failed to guarantee all the appropriate
  81. * constraints on all VCPUs (ie buffer can't cross a page boundary).
  82. *
  83. * Note that any particular CPU may be using a placed vcpu structure,
  84. * but we can only optimise if the all are.
  85. *
  86. * 0: not available, 1: available
  87. */
  88. static int have_vcpu_info_placement = 1;
  89. static void __init xen_vcpu_setup(int cpu)
  90. {
  91. struct vcpu_register_vcpu_info info;
  92. int err;
  93. struct vcpu_info *vcpup;
  94. BUG_ON(HYPERVISOR_shared_info == &dummy_shared_info);
  95. per_cpu(xen_vcpu, cpu) = &HYPERVISOR_shared_info->vcpu_info[cpu];
  96. if (!have_vcpu_info_placement)
  97. return; /* already tested, not available */
  98. vcpup = &per_cpu(xen_vcpu_info, cpu);
  99. info.mfn = virt_to_mfn(vcpup);
  100. info.offset = offset_in_page(vcpup);
  101. printk(KERN_DEBUG "trying to map vcpu_info %d at %p, mfn %llx, offset %d\n",
  102. cpu, vcpup, info.mfn, info.offset);
  103. /* Check to see if the hypervisor will put the vcpu_info
  104. structure where we want it, which allows direct access via
  105. a percpu-variable. */
  106. err = HYPERVISOR_vcpu_op(VCPUOP_register_vcpu_info, cpu, &info);
  107. if (err) {
  108. printk(KERN_DEBUG "register_vcpu_info failed: err=%d\n", err);
  109. have_vcpu_info_placement = 0;
  110. } else {
  111. /* This cpu is using the registered vcpu info, even if
  112. later ones fail to. */
  113. per_cpu(xen_vcpu, cpu) = vcpup;
  114. printk(KERN_DEBUG "cpu %d using vcpu_info at %p\n",
  115. cpu, vcpup);
  116. }
  117. }
  118. static void __init xen_banner(void)
  119. {
  120. printk(KERN_INFO "Booting paravirtualized kernel on %s\n",
  121. pv_info.name);
  122. printk(KERN_INFO "Hypervisor signature: %s\n", xen_start_info->magic);
  123. }
  124. static void xen_cpuid(unsigned int *ax, unsigned int *bx,
  125. unsigned int *cx, unsigned int *dx)
  126. {
  127. unsigned maskedx = ~0;
  128. /*
  129. * Mask out inconvenient features, to try and disable as many
  130. * unsupported kernel subsystems as possible.
  131. */
  132. if (*ax == 1)
  133. maskedx = ~((1 << X86_FEATURE_APIC) | /* disable APIC */
  134. (1 << X86_FEATURE_ACPI) | /* disable ACPI */
  135. (1 << X86_FEATURE_SEP) | /* disable SEP */
  136. (1 << X86_FEATURE_ACC)); /* thermal monitoring */
  137. asm(XEN_EMULATE_PREFIX "cpuid"
  138. : "=a" (*ax),
  139. "=b" (*bx),
  140. "=c" (*cx),
  141. "=d" (*dx)
  142. : "0" (*ax), "2" (*cx));
  143. *dx &= maskedx;
  144. }
  145. static void xen_set_debugreg(int reg, unsigned long val)
  146. {
  147. HYPERVISOR_set_debugreg(reg, val);
  148. }
  149. static unsigned long xen_get_debugreg(int reg)
  150. {
  151. return HYPERVISOR_get_debugreg(reg);
  152. }
  153. static unsigned long xen_save_fl(void)
  154. {
  155. struct vcpu_info *vcpu;
  156. unsigned long flags;
  157. vcpu = x86_read_percpu(xen_vcpu);
  158. /* flag has opposite sense of mask */
  159. flags = !vcpu->evtchn_upcall_mask;
  160. /* convert to IF type flag
  161. -0 -> 0x00000000
  162. -1 -> 0xffffffff
  163. */
  164. return (-flags) & X86_EFLAGS_IF;
  165. }
  166. static void xen_restore_fl(unsigned long flags)
  167. {
  168. struct vcpu_info *vcpu;
  169. /* convert from IF type flag */
  170. flags = !(flags & X86_EFLAGS_IF);
  171. /* There's a one instruction preempt window here. We need to
  172. make sure we're don't switch CPUs between getting the vcpu
  173. pointer and updating the mask. */
  174. preempt_disable();
  175. vcpu = x86_read_percpu(xen_vcpu);
  176. vcpu->evtchn_upcall_mask = flags;
  177. preempt_enable_no_resched();
  178. /* Doesn't matter if we get preempted here, because any
  179. pending event will get dealt with anyway. */
  180. if (flags == 0) {
  181. preempt_check_resched();
  182. barrier(); /* unmask then check (avoid races) */
  183. if (unlikely(vcpu->evtchn_upcall_pending))
  184. force_evtchn_callback();
  185. }
  186. }
  187. static void xen_irq_disable(void)
  188. {
  189. /* There's a one instruction preempt window here. We need to
  190. make sure we're don't switch CPUs between getting the vcpu
  191. pointer and updating the mask. */
  192. preempt_disable();
  193. x86_read_percpu(xen_vcpu)->evtchn_upcall_mask = 1;
  194. preempt_enable_no_resched();
  195. }
  196. static void xen_irq_enable(void)
  197. {
  198. struct vcpu_info *vcpu;
  199. /* There's a one instruction preempt window here. We need to
  200. make sure we're don't switch CPUs between getting the vcpu
  201. pointer and updating the mask. */
  202. preempt_disable();
  203. vcpu = x86_read_percpu(xen_vcpu);
  204. vcpu->evtchn_upcall_mask = 0;
  205. preempt_enable_no_resched();
  206. /* Doesn't matter if we get preempted here, because any
  207. pending event will get dealt with anyway. */
  208. barrier(); /* unmask then check (avoid races) */
  209. if (unlikely(vcpu->evtchn_upcall_pending))
  210. force_evtchn_callback();
  211. }
  212. static void xen_safe_halt(void)
  213. {
  214. /* Blocking includes an implicit local_irq_enable(). */
  215. if (HYPERVISOR_sched_op(SCHEDOP_block, 0) != 0)
  216. BUG();
  217. }
  218. static void xen_halt(void)
  219. {
  220. if (irqs_disabled())
  221. HYPERVISOR_vcpu_op(VCPUOP_down, smp_processor_id(), NULL);
  222. else
  223. xen_safe_halt();
  224. }
  225. static void xen_leave_lazy(void)
  226. {
  227. paravirt_leave_lazy(paravirt_get_lazy_mode());
  228. xen_mc_flush();
  229. }
  230. static unsigned long xen_store_tr(void)
  231. {
  232. return 0;
  233. }
  234. static void xen_set_ldt(const void *addr, unsigned entries)
  235. {
  236. struct mmuext_op *op;
  237. struct multicall_space mcs = xen_mc_entry(sizeof(*op));
  238. op = mcs.args;
  239. op->cmd = MMUEXT_SET_LDT;
  240. op->arg1.linear_addr = (unsigned long)addr;
  241. op->arg2.nr_ents = entries;
  242. MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
  243. xen_mc_issue(PARAVIRT_LAZY_CPU);
  244. }
  245. static void xen_load_gdt(const struct desc_ptr *dtr)
  246. {
  247. unsigned long *frames;
  248. unsigned long va = dtr->address;
  249. unsigned int size = dtr->size + 1;
  250. unsigned pages = (size + PAGE_SIZE - 1) / PAGE_SIZE;
  251. int f;
  252. struct multicall_space mcs;
  253. /* A GDT can be up to 64k in size, which corresponds to 8192
  254. 8-byte entries, or 16 4k pages.. */
  255. BUG_ON(size > 65536);
  256. BUG_ON(va & ~PAGE_MASK);
  257. mcs = xen_mc_entry(sizeof(*frames) * pages);
  258. frames = mcs.args;
  259. for (f = 0; va < dtr->address + size; va += PAGE_SIZE, f++) {
  260. frames[f] = virt_to_mfn(va);
  261. make_lowmem_page_readonly((void *)va);
  262. }
  263. MULTI_set_gdt(mcs.mc, frames, size / sizeof(struct desc_struct));
  264. xen_mc_issue(PARAVIRT_LAZY_CPU);
  265. }
  266. static void load_TLS_descriptor(struct thread_struct *t,
  267. unsigned int cpu, unsigned int i)
  268. {
  269. struct desc_struct *gdt = get_cpu_gdt_table(cpu);
  270. xmaddr_t maddr = virt_to_machine(&gdt[GDT_ENTRY_TLS_MIN+i]);
  271. struct multicall_space mc = __xen_mc_entry(0);
  272. MULTI_update_descriptor(mc.mc, maddr.maddr, t->tls_array[i]);
  273. }
  274. static void xen_load_tls(struct thread_struct *t, unsigned int cpu)
  275. {
  276. xen_mc_batch();
  277. load_TLS_descriptor(t, cpu, 0);
  278. load_TLS_descriptor(t, cpu, 1);
  279. load_TLS_descriptor(t, cpu, 2);
  280. xen_mc_issue(PARAVIRT_LAZY_CPU);
  281. /*
  282. * XXX sleazy hack: If we're being called in a lazy-cpu zone,
  283. * it means we're in a context switch, and %gs has just been
  284. * saved. This means we can zero it out to prevent faults on
  285. * exit from the hypervisor if the next process has no %gs.
  286. * Either way, it has been saved, and the new value will get
  287. * loaded properly. This will go away as soon as Xen has been
  288. * modified to not save/restore %gs for normal hypercalls.
  289. */
  290. if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_CPU)
  291. loadsegment(gs, 0);
  292. }
  293. static void xen_write_ldt_entry(struct desc_struct *dt, int entrynum,
  294. const void *ptr)
  295. {
  296. unsigned long lp = (unsigned long)&dt[entrynum];
  297. xmaddr_t mach_lp = virt_to_machine(lp);
  298. u64 entry = *(u64 *)ptr;
  299. preempt_disable();
  300. xen_mc_flush();
  301. if (HYPERVISOR_update_descriptor(mach_lp.maddr, entry))
  302. BUG();
  303. preempt_enable();
  304. }
  305. static int cvt_gate_to_trap(int vector, u32 low, u32 high,
  306. struct trap_info *info)
  307. {
  308. u8 type, dpl;
  309. type = (high >> 8) & 0x1f;
  310. dpl = (high >> 13) & 3;
  311. if (type != 0xf && type != 0xe)
  312. return 0;
  313. info->vector = vector;
  314. info->address = (high & 0xffff0000) | (low & 0x0000ffff);
  315. info->cs = low >> 16;
  316. info->flags = dpl;
  317. /* interrupt gates clear IF */
  318. if (type == 0xe)
  319. info->flags |= 4;
  320. return 1;
  321. }
  322. /* Locations of each CPU's IDT */
  323. static DEFINE_PER_CPU(struct desc_ptr, idt_desc);
  324. /* Set an IDT entry. If the entry is part of the current IDT, then
  325. also update Xen. */
  326. static void xen_write_idt_entry(gate_desc *dt, int entrynum, const gate_desc *g)
  327. {
  328. unsigned long p = (unsigned long)&dt[entrynum];
  329. unsigned long start, end;
  330. preempt_disable();
  331. start = __get_cpu_var(idt_desc).address;
  332. end = start + __get_cpu_var(idt_desc).size + 1;
  333. xen_mc_flush();
  334. native_write_idt_entry(dt, entrynum, g);
  335. if (p >= start && (p + 8) <= end) {
  336. struct trap_info info[2];
  337. u32 *desc = (u32 *)g;
  338. info[1].address = 0;
  339. if (cvt_gate_to_trap(entrynum, desc[0], desc[1], &info[0]))
  340. if (HYPERVISOR_set_trap_table(info))
  341. BUG();
  342. }
  343. preempt_enable();
  344. }
  345. static void xen_convert_trap_info(const struct desc_ptr *desc,
  346. struct trap_info *traps)
  347. {
  348. unsigned in, out, count;
  349. count = (desc->size+1) / 8;
  350. BUG_ON(count > 256);
  351. for (in = out = 0; in < count; in++) {
  352. const u32 *entry = (u32 *)(desc->address + in * 8);
  353. if (cvt_gate_to_trap(in, entry[0], entry[1], &traps[out]))
  354. out++;
  355. }
  356. traps[out].address = 0;
  357. }
  358. void xen_copy_trap_info(struct trap_info *traps)
  359. {
  360. const struct desc_ptr *desc = &__get_cpu_var(idt_desc);
  361. xen_convert_trap_info(desc, traps);
  362. }
  363. /* Load a new IDT into Xen. In principle this can be per-CPU, so we
  364. hold a spinlock to protect the static traps[] array (static because
  365. it avoids allocation, and saves stack space). */
  366. static void xen_load_idt(const struct desc_ptr *desc)
  367. {
  368. static DEFINE_SPINLOCK(lock);
  369. static struct trap_info traps[257];
  370. spin_lock(&lock);
  371. __get_cpu_var(idt_desc) = *desc;
  372. xen_convert_trap_info(desc, traps);
  373. xen_mc_flush();
  374. if (HYPERVISOR_set_trap_table(traps))
  375. BUG();
  376. spin_unlock(&lock);
  377. }
  378. /* Write a GDT descriptor entry. Ignore LDT descriptors, since
  379. they're handled differently. */
  380. static void xen_write_gdt_entry(struct desc_struct *dt, int entry,
  381. const void *desc, int type)
  382. {
  383. preempt_disable();
  384. switch (type) {
  385. case DESC_LDT:
  386. case DESC_TSS:
  387. /* ignore */
  388. break;
  389. default: {
  390. xmaddr_t maddr = virt_to_machine(&dt[entry]);
  391. xen_mc_flush();
  392. if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
  393. BUG();
  394. }
  395. }
  396. preempt_enable();
  397. }
  398. static void xen_load_sp0(struct tss_struct *tss,
  399. struct thread_struct *thread)
  400. {
  401. struct multicall_space mcs = xen_mc_entry(0);
  402. MULTI_stack_switch(mcs.mc, __KERNEL_DS, thread->sp0);
  403. xen_mc_issue(PARAVIRT_LAZY_CPU);
  404. }
  405. static void xen_set_iopl_mask(unsigned mask)
  406. {
  407. struct physdev_set_iopl set_iopl;
  408. /* Force the change at ring 0. */
  409. set_iopl.iopl = (mask == 0) ? 1 : (mask >> 12) & 3;
  410. HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl);
  411. }
  412. static void xen_io_delay(void)
  413. {
  414. }
  415. #ifdef CONFIG_X86_LOCAL_APIC
  416. static u32 xen_apic_read(unsigned long reg)
  417. {
  418. return 0;
  419. }
  420. static void xen_apic_write(unsigned long reg, u32 val)
  421. {
  422. /* Warn to see if there's any stray references */
  423. WARN_ON(1);
  424. }
  425. #endif
  426. static void xen_flush_tlb(void)
  427. {
  428. struct mmuext_op *op;
  429. struct multicall_space mcs = xen_mc_entry(sizeof(*op));
  430. op = mcs.args;
  431. op->cmd = MMUEXT_TLB_FLUSH_LOCAL;
  432. MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
  433. xen_mc_issue(PARAVIRT_LAZY_MMU);
  434. }
  435. static void xen_flush_tlb_single(unsigned long addr)
  436. {
  437. struct mmuext_op *op;
  438. struct multicall_space mcs = xen_mc_entry(sizeof(*op));
  439. op = mcs.args;
  440. op->cmd = MMUEXT_INVLPG_LOCAL;
  441. op->arg1.linear_addr = addr & PAGE_MASK;
  442. MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
  443. xen_mc_issue(PARAVIRT_LAZY_MMU);
  444. }
  445. static void xen_flush_tlb_others(const cpumask_t *cpus, struct mm_struct *mm,
  446. unsigned long va)
  447. {
  448. struct {
  449. struct mmuext_op op;
  450. cpumask_t mask;
  451. } *args;
  452. cpumask_t cpumask = *cpus;
  453. struct multicall_space mcs;
  454. /*
  455. * A couple of (to be removed) sanity checks:
  456. *
  457. * - current CPU must not be in mask
  458. * - mask must exist :)
  459. */
  460. BUG_ON(cpus_empty(cpumask));
  461. BUG_ON(cpu_isset(smp_processor_id(), cpumask));
  462. BUG_ON(!mm);
  463. /* If a CPU which we ran on has gone down, OK. */
  464. cpus_and(cpumask, cpumask, cpu_online_map);
  465. if (cpus_empty(cpumask))
  466. return;
  467. mcs = xen_mc_entry(sizeof(*args));
  468. args = mcs.args;
  469. args->mask = cpumask;
  470. args->op.arg2.vcpumask = &args->mask;
  471. if (va == TLB_FLUSH_ALL) {
  472. args->op.cmd = MMUEXT_TLB_FLUSH_MULTI;
  473. } else {
  474. args->op.cmd = MMUEXT_INVLPG_MULTI;
  475. args->op.arg1.linear_addr = va;
  476. }
  477. MULTI_mmuext_op(mcs.mc, &args->op, 1, NULL, DOMID_SELF);
  478. xen_mc_issue(PARAVIRT_LAZY_MMU);
  479. }
  480. static void xen_write_cr2(unsigned long cr2)
  481. {
  482. x86_read_percpu(xen_vcpu)->arch.cr2 = cr2;
  483. }
  484. static unsigned long xen_read_cr2(void)
  485. {
  486. return x86_read_percpu(xen_vcpu)->arch.cr2;
  487. }
  488. static unsigned long xen_read_cr2_direct(void)
  489. {
  490. return x86_read_percpu(xen_vcpu_info.arch.cr2);
  491. }
  492. static void xen_write_cr4(unsigned long cr4)
  493. {
  494. /* Just ignore cr4 changes; Xen doesn't allow us to do
  495. anything anyway. */
  496. }
  497. static unsigned long xen_read_cr3(void)
  498. {
  499. return x86_read_percpu(xen_cr3);
  500. }
  501. static void set_current_cr3(void *v)
  502. {
  503. x86_write_percpu(xen_current_cr3, (unsigned long)v);
  504. }
  505. static void xen_write_cr3(unsigned long cr3)
  506. {
  507. struct mmuext_op *op;
  508. struct multicall_space mcs;
  509. unsigned long mfn = pfn_to_mfn(PFN_DOWN(cr3));
  510. BUG_ON(preemptible());
  511. mcs = xen_mc_entry(sizeof(*op)); /* disables interrupts */
  512. /* Update while interrupts are disabled, so its atomic with
  513. respect to ipis */
  514. x86_write_percpu(xen_cr3, cr3);
  515. op = mcs.args;
  516. op->cmd = MMUEXT_NEW_BASEPTR;
  517. op->arg1.mfn = mfn;
  518. MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
  519. /* Update xen_update_cr3 once the batch has actually
  520. been submitted. */
  521. xen_mc_callback(set_current_cr3, (void *)cr3);
  522. xen_mc_issue(PARAVIRT_LAZY_CPU); /* interrupts restored */
  523. }
  524. /* Early in boot, while setting up the initial pagetable, assume
  525. everything is pinned. */
  526. static __init void xen_alloc_pt_init(struct mm_struct *mm, u32 pfn)
  527. {
  528. BUG_ON(mem_map); /* should only be used early */
  529. make_lowmem_page_readonly(__va(PFN_PHYS(pfn)));
  530. }
  531. /* Early release_pt assumes that all pts are pinned, since there's
  532. only init_mm and anything attached to that is pinned. */
  533. static void xen_release_pt_init(u32 pfn)
  534. {
  535. make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
  536. }
  537. static void pin_pagetable_pfn(unsigned cmd, unsigned long pfn)
  538. {
  539. struct mmuext_op op;
  540. op.cmd = cmd;
  541. op.arg1.mfn = pfn_to_mfn(pfn);
  542. if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF))
  543. BUG();
  544. }
  545. /* This needs to make sure the new pte page is pinned iff its being
  546. attached to a pinned pagetable. */
  547. static void xen_alloc_ptpage(struct mm_struct *mm, u32 pfn, unsigned level)
  548. {
  549. struct page *page = pfn_to_page(pfn);
  550. if (PagePinned(virt_to_page(mm->pgd))) {
  551. SetPagePinned(page);
  552. if (!PageHighMem(page)) {
  553. make_lowmem_page_readonly(__va(PFN_PHYS(pfn)));
  554. if (level == PT_PTE)
  555. pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE, pfn);
  556. } else
  557. /* make sure there are no stray mappings of
  558. this page */
  559. kmap_flush_unused();
  560. }
  561. }
  562. static void xen_alloc_pt(struct mm_struct *mm, u32 pfn)
  563. {
  564. xen_alloc_ptpage(mm, pfn, PT_PTE);
  565. }
  566. static void xen_alloc_pd(struct mm_struct *mm, u32 pfn)
  567. {
  568. xen_alloc_ptpage(mm, pfn, PT_PMD);
  569. }
  570. /* This should never happen until we're OK to use struct page */
  571. static void xen_release_ptpage(u32 pfn, unsigned level)
  572. {
  573. struct page *page = pfn_to_page(pfn);
  574. if (PagePinned(page)) {
  575. if (!PageHighMem(page)) {
  576. if (level == PT_PTE)
  577. pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, pfn);
  578. make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
  579. }
  580. ClearPagePinned(page);
  581. }
  582. }
  583. static void xen_release_pt(u32 pfn)
  584. {
  585. xen_release_ptpage(pfn, PT_PTE);
  586. }
  587. static void xen_release_pd(u32 pfn)
  588. {
  589. xen_release_ptpage(pfn, PT_PMD);
  590. }
  591. #ifdef CONFIG_HIGHPTE
  592. static void *xen_kmap_atomic_pte(struct page *page, enum km_type type)
  593. {
  594. pgprot_t prot = PAGE_KERNEL;
  595. if (PagePinned(page))
  596. prot = PAGE_KERNEL_RO;
  597. if (0 && PageHighMem(page))
  598. printk("mapping highpte %lx type %d prot %s\n",
  599. page_to_pfn(page), type,
  600. (unsigned long)pgprot_val(prot) & _PAGE_RW ? "WRITE" : "READ");
  601. return kmap_atomic_prot(page, type, prot);
  602. }
  603. #endif
  604. static __init pte_t mask_rw_pte(pte_t *ptep, pte_t pte)
  605. {
  606. /* If there's an existing pte, then don't allow _PAGE_RW to be set */
  607. if (pte_val_ma(*ptep) & _PAGE_PRESENT)
  608. pte = __pte_ma(((pte_val_ma(*ptep) & _PAGE_RW) | ~_PAGE_RW) &
  609. pte_val_ma(pte));
  610. return pte;
  611. }
  612. /* Init-time set_pte while constructing initial pagetables, which
  613. doesn't allow RO pagetable pages to be remapped RW */
  614. static __init void xen_set_pte_init(pte_t *ptep, pte_t pte)
  615. {
  616. pte = mask_rw_pte(ptep, pte);
  617. xen_set_pte(ptep, pte);
  618. }
  619. static __init void xen_pagetable_setup_start(pgd_t *base)
  620. {
  621. pgd_t *xen_pgd = (pgd_t *)xen_start_info->pt_base;
  622. /* special set_pte for pagetable initialization */
  623. pv_mmu_ops.set_pte = xen_set_pte_init;
  624. init_mm.pgd = base;
  625. /*
  626. * copy top-level of Xen-supplied pagetable into place. For
  627. * !PAE we can use this as-is, but for PAE it is a stand-in
  628. * while we copy the pmd pages.
  629. */
  630. memcpy(base, xen_pgd, PTRS_PER_PGD * sizeof(pgd_t));
  631. if (PTRS_PER_PMD > 1) {
  632. int i;
  633. /*
  634. * For PAE, need to allocate new pmds, rather than
  635. * share Xen's, since Xen doesn't like pmd's being
  636. * shared between address spaces.
  637. */
  638. for (i = 0; i < PTRS_PER_PGD; i++) {
  639. if (pgd_val_ma(xen_pgd[i]) & _PAGE_PRESENT) {
  640. pmd_t *pmd = (pmd_t *)alloc_bootmem_low_pages(PAGE_SIZE);
  641. memcpy(pmd, (void *)pgd_page_vaddr(xen_pgd[i]),
  642. PAGE_SIZE);
  643. make_lowmem_page_readonly(pmd);
  644. set_pgd(&base[i], __pgd(1 + __pa(pmd)));
  645. } else
  646. pgd_clear(&base[i]);
  647. }
  648. }
  649. /* make sure zero_page is mapped RO so we can use it in pagetables */
  650. make_lowmem_page_readonly(empty_zero_page);
  651. make_lowmem_page_readonly(base);
  652. /*
  653. * Switch to new pagetable. This is done before
  654. * pagetable_init has done anything so that the new pages
  655. * added to the table can be prepared properly for Xen.
  656. */
  657. xen_write_cr3(__pa(base));
  658. /* Unpin initial Xen pagetable */
  659. pin_pagetable_pfn(MMUEXT_UNPIN_TABLE,
  660. PFN_DOWN(__pa(xen_start_info->pt_base)));
  661. }
  662. static __init void setup_shared_info(void)
  663. {
  664. if (!xen_feature(XENFEAT_auto_translated_physmap)) {
  665. unsigned long addr = fix_to_virt(FIX_PARAVIRT_BOOTMAP);
  666. /*
  667. * Create a mapping for the shared info page.
  668. * Should be set_fixmap(), but shared_info is a machine
  669. * address with no corresponding pseudo-phys address.
  670. */
  671. set_pte_mfn(addr,
  672. PFN_DOWN(xen_start_info->shared_info),
  673. PAGE_KERNEL);
  674. HYPERVISOR_shared_info = (struct shared_info *)addr;
  675. } else
  676. HYPERVISOR_shared_info =
  677. (struct shared_info *)__va(xen_start_info->shared_info);
  678. #ifndef CONFIG_SMP
  679. /* In UP this is as good a place as any to set up shared info */
  680. xen_setup_vcpu_info_placement();
  681. #endif
  682. }
  683. static __init void xen_pagetable_setup_done(pgd_t *base)
  684. {
  685. /* This will work as long as patching hasn't happened yet
  686. (which it hasn't) */
  687. pv_mmu_ops.alloc_pt = xen_alloc_pt;
  688. pv_mmu_ops.alloc_pd = xen_alloc_pd;
  689. pv_mmu_ops.release_pt = xen_release_pt;
  690. pv_mmu_ops.release_pd = xen_release_pd;
  691. pv_mmu_ops.set_pte = xen_set_pte;
  692. setup_shared_info();
  693. /* Actually pin the pagetable down, but we can't set PG_pinned
  694. yet because the page structures don't exist yet. */
  695. {
  696. unsigned level;
  697. #ifdef CONFIG_X86_PAE
  698. level = MMUEXT_PIN_L3_TABLE;
  699. #else
  700. level = MMUEXT_PIN_L2_TABLE;
  701. #endif
  702. pin_pagetable_pfn(level, PFN_DOWN(__pa(base)));
  703. }
  704. }
  705. /* This is called once we have the cpu_possible_map */
  706. void __init xen_setup_vcpu_info_placement(void)
  707. {
  708. int cpu;
  709. for_each_possible_cpu(cpu)
  710. xen_vcpu_setup(cpu);
  711. /* xen_vcpu_setup managed to place the vcpu_info within the
  712. percpu area for all cpus, so make use of it */
  713. if (have_vcpu_info_placement) {
  714. printk(KERN_INFO "Xen: using vcpu_info placement\n");
  715. pv_irq_ops.save_fl = xen_save_fl_direct;
  716. pv_irq_ops.restore_fl = xen_restore_fl_direct;
  717. pv_irq_ops.irq_disable = xen_irq_disable_direct;
  718. pv_irq_ops.irq_enable = xen_irq_enable_direct;
  719. pv_mmu_ops.read_cr2 = xen_read_cr2_direct;
  720. }
  721. }
  722. static unsigned xen_patch(u8 type, u16 clobbers, void *insnbuf,
  723. unsigned long addr, unsigned len)
  724. {
  725. char *start, *end, *reloc;
  726. unsigned ret;
  727. start = end = reloc = NULL;
  728. #define SITE(op, x) \
  729. case PARAVIRT_PATCH(op.x): \
  730. if (have_vcpu_info_placement) { \
  731. start = (char *)xen_##x##_direct; \
  732. end = xen_##x##_direct_end; \
  733. reloc = xen_##x##_direct_reloc; \
  734. } \
  735. goto patch_site
  736. switch (type) {
  737. SITE(pv_irq_ops, irq_enable);
  738. SITE(pv_irq_ops, irq_disable);
  739. SITE(pv_irq_ops, save_fl);
  740. SITE(pv_irq_ops, restore_fl);
  741. #undef SITE
  742. patch_site:
  743. if (start == NULL || (end-start) > len)
  744. goto default_patch;
  745. ret = paravirt_patch_insns(insnbuf, len, start, end);
  746. /* Note: because reloc is assigned from something that
  747. appears to be an array, gcc assumes it's non-null,
  748. but doesn't know its relationship with start and
  749. end. */
  750. if (reloc > start && reloc < end) {
  751. int reloc_off = reloc - start;
  752. long *relocp = (long *)(insnbuf + reloc_off);
  753. long delta = start - (char *)addr;
  754. *relocp += delta;
  755. }
  756. break;
  757. default_patch:
  758. default:
  759. ret = paravirt_patch_default(type, clobbers, insnbuf,
  760. addr, len);
  761. break;
  762. }
  763. return ret;
  764. }
  765. static const struct pv_info xen_info __initdata = {
  766. .paravirt_enabled = 1,
  767. .shared_kernel_pmd = 0,
  768. .name = "Xen",
  769. };
  770. static const struct pv_init_ops xen_init_ops __initdata = {
  771. .patch = xen_patch,
  772. .banner = xen_banner,
  773. .memory_setup = xen_memory_setup,
  774. .arch_setup = xen_arch_setup,
  775. .post_allocator_init = xen_mark_init_mm_pinned,
  776. };
  777. static const struct pv_time_ops xen_time_ops __initdata = {
  778. .time_init = xen_time_init,
  779. .set_wallclock = xen_set_wallclock,
  780. .get_wallclock = xen_get_wallclock,
  781. .get_cpu_khz = xen_cpu_khz,
  782. .sched_clock = xen_sched_clock,
  783. };
  784. static const struct pv_cpu_ops xen_cpu_ops __initdata = {
  785. .cpuid = xen_cpuid,
  786. .set_debugreg = xen_set_debugreg,
  787. .get_debugreg = xen_get_debugreg,
  788. .clts = native_clts,
  789. .read_cr0 = native_read_cr0,
  790. .write_cr0 = native_write_cr0,
  791. .read_cr4 = native_read_cr4,
  792. .read_cr4_safe = native_read_cr4_safe,
  793. .write_cr4 = xen_write_cr4,
  794. .wbinvd = native_wbinvd,
  795. .read_msr = native_read_msr_safe,
  796. .write_msr = native_write_msr_safe,
  797. .read_tsc = native_read_tsc,
  798. .read_pmc = native_read_pmc,
  799. .iret = xen_iret,
  800. .irq_enable_syscall_ret = NULL, /* never called */
  801. .load_tr_desc = paravirt_nop,
  802. .set_ldt = xen_set_ldt,
  803. .load_gdt = xen_load_gdt,
  804. .load_idt = xen_load_idt,
  805. .load_tls = xen_load_tls,
  806. .store_gdt = native_store_gdt,
  807. .store_idt = native_store_idt,
  808. .store_tr = xen_store_tr,
  809. .write_ldt_entry = xen_write_ldt_entry,
  810. .write_gdt_entry = xen_write_gdt_entry,
  811. .write_idt_entry = xen_write_idt_entry,
  812. .load_sp0 = xen_load_sp0,
  813. .set_iopl_mask = xen_set_iopl_mask,
  814. .io_delay = xen_io_delay,
  815. .lazy_mode = {
  816. .enter = paravirt_enter_lazy_cpu,
  817. .leave = xen_leave_lazy,
  818. },
  819. };
  820. static const struct pv_irq_ops xen_irq_ops __initdata = {
  821. .init_IRQ = xen_init_IRQ,
  822. .save_fl = xen_save_fl,
  823. .restore_fl = xen_restore_fl,
  824. .irq_disable = xen_irq_disable,
  825. .irq_enable = xen_irq_enable,
  826. .safe_halt = xen_safe_halt,
  827. .halt = xen_halt,
  828. };
  829. static const struct pv_apic_ops xen_apic_ops __initdata = {
  830. #ifdef CONFIG_X86_LOCAL_APIC
  831. .apic_write = xen_apic_write,
  832. .apic_write_atomic = xen_apic_write,
  833. .apic_read = xen_apic_read,
  834. .setup_boot_clock = paravirt_nop,
  835. .setup_secondary_clock = paravirt_nop,
  836. .startup_ipi_hook = paravirt_nop,
  837. #endif
  838. };
  839. static const struct pv_mmu_ops xen_mmu_ops __initdata = {
  840. .pagetable_setup_start = xen_pagetable_setup_start,
  841. .pagetable_setup_done = xen_pagetable_setup_done,
  842. .read_cr2 = xen_read_cr2,
  843. .write_cr2 = xen_write_cr2,
  844. .read_cr3 = xen_read_cr3,
  845. .write_cr3 = xen_write_cr3,
  846. .flush_tlb_user = xen_flush_tlb,
  847. .flush_tlb_kernel = xen_flush_tlb,
  848. .flush_tlb_single = xen_flush_tlb_single,
  849. .flush_tlb_others = xen_flush_tlb_others,
  850. .pte_update = paravirt_nop,
  851. .pte_update_defer = paravirt_nop,
  852. .alloc_pt = xen_alloc_pt_init,
  853. .release_pt = xen_release_pt_init,
  854. .alloc_pd = xen_alloc_pt_init,
  855. .alloc_pd_clone = paravirt_nop,
  856. .release_pd = xen_release_pt_init,
  857. #ifdef CONFIG_HIGHPTE
  858. .kmap_atomic_pte = xen_kmap_atomic_pte,
  859. #endif
  860. .set_pte = NULL, /* see xen_pagetable_setup_* */
  861. .set_pte_at = xen_set_pte_at,
  862. .set_pmd = xen_set_pmd,
  863. .pte_val = xen_pte_val,
  864. .pgd_val = xen_pgd_val,
  865. .make_pte = xen_make_pte,
  866. .make_pgd = xen_make_pgd,
  867. #ifdef CONFIG_X86_PAE
  868. .set_pte_atomic = xen_set_pte_atomic,
  869. .set_pte_present = xen_set_pte_at,
  870. .set_pud = xen_set_pud,
  871. .pte_clear = xen_pte_clear,
  872. .pmd_clear = xen_pmd_clear,
  873. .make_pmd = xen_make_pmd,
  874. .pmd_val = xen_pmd_val,
  875. #endif /* PAE */
  876. .activate_mm = xen_activate_mm,
  877. .dup_mmap = xen_dup_mmap,
  878. .exit_mmap = xen_exit_mmap,
  879. .lazy_mode = {
  880. .enter = paravirt_enter_lazy_mmu,
  881. .leave = xen_leave_lazy,
  882. },
  883. };
  884. #ifdef CONFIG_SMP
  885. static const struct smp_ops xen_smp_ops __initdata = {
  886. .smp_prepare_boot_cpu = xen_smp_prepare_boot_cpu,
  887. .smp_prepare_cpus = xen_smp_prepare_cpus,
  888. .cpu_up = xen_cpu_up,
  889. .smp_cpus_done = xen_smp_cpus_done,
  890. .smp_send_stop = xen_smp_send_stop,
  891. .smp_send_reschedule = xen_smp_send_reschedule,
  892. .smp_call_function_mask = xen_smp_call_function_mask,
  893. };
  894. #endif /* CONFIG_SMP */
  895. static void xen_reboot(int reason)
  896. {
  897. #ifdef CONFIG_SMP
  898. smp_send_stop();
  899. #endif
  900. if (HYPERVISOR_sched_op(SCHEDOP_shutdown, reason))
  901. BUG();
  902. }
  903. static void xen_restart(char *msg)
  904. {
  905. xen_reboot(SHUTDOWN_reboot);
  906. }
  907. static void xen_emergency_restart(void)
  908. {
  909. xen_reboot(SHUTDOWN_reboot);
  910. }
  911. static void xen_machine_halt(void)
  912. {
  913. xen_reboot(SHUTDOWN_poweroff);
  914. }
  915. static void xen_crash_shutdown(struct pt_regs *regs)
  916. {
  917. xen_reboot(SHUTDOWN_crash);
  918. }
  919. static const struct machine_ops __initdata xen_machine_ops = {
  920. .restart = xen_restart,
  921. .halt = xen_machine_halt,
  922. .power_off = xen_machine_halt,
  923. .shutdown = xen_machine_halt,
  924. .crash_shutdown = xen_crash_shutdown,
  925. .emergency_restart = xen_emergency_restart,
  926. };
  927. static void __init xen_reserve_top(void)
  928. {
  929. unsigned long top = HYPERVISOR_VIRT_START;
  930. struct xen_platform_parameters pp;
  931. if (HYPERVISOR_xen_version(XENVER_platform_parameters, &pp) == 0)
  932. top = pp.virt_start;
  933. reserve_top_address(-top + 2 * PAGE_SIZE);
  934. }
  935. /* First C function to be called on Xen boot */
  936. asmlinkage void __init xen_start_kernel(void)
  937. {
  938. pgd_t *pgd;
  939. if (!xen_start_info)
  940. return;
  941. BUG_ON(memcmp(xen_start_info->magic, "xen-3", 5) != 0);
  942. /* Install Xen paravirt ops */
  943. pv_info = xen_info;
  944. pv_init_ops = xen_init_ops;
  945. pv_time_ops = xen_time_ops;
  946. pv_cpu_ops = xen_cpu_ops;
  947. pv_irq_ops = xen_irq_ops;
  948. pv_apic_ops = xen_apic_ops;
  949. pv_mmu_ops = xen_mmu_ops;
  950. machine_ops = xen_machine_ops;
  951. #ifdef CONFIG_SMP
  952. smp_ops = xen_smp_ops;
  953. #endif
  954. xen_setup_features();
  955. /* Get mfn list */
  956. if (!xen_feature(XENFEAT_auto_translated_physmap))
  957. phys_to_machine_mapping = (unsigned long *)xen_start_info->mfn_list;
  958. pgd = (pgd_t *)xen_start_info->pt_base;
  959. init_pg_tables_end = __pa(pgd) + xen_start_info->nr_pt_frames*PAGE_SIZE;
  960. init_mm.pgd = pgd; /* use the Xen pagetables to start */
  961. /* keep using Xen gdt for now; no urgent need to change it */
  962. x86_write_percpu(xen_cr3, __pa(pgd));
  963. x86_write_percpu(xen_current_cr3, __pa(pgd));
  964. /* Don't do the full vcpu_info placement stuff until we have a
  965. possible map and a non-dummy shared_info. */
  966. per_cpu(xen_vcpu, 0) = &HYPERVISOR_shared_info->vcpu_info[0];
  967. pv_info.kernel_rpl = 1;
  968. if (xen_feature(XENFEAT_supervisor_mode_kernel))
  969. pv_info.kernel_rpl = 0;
  970. /* set the limit of our address space */
  971. xen_reserve_top();
  972. /* set up basic CPUID stuff */
  973. cpu_detect(&new_cpu_data);
  974. new_cpu_data.hard_math = 1;
  975. new_cpu_data.x86_capability[0] = cpuid_edx(1);
  976. /* Poke various useful things into boot_params */
  977. boot_params.hdr.type_of_loader = (9 << 4) | 0;
  978. boot_params.hdr.ramdisk_image = xen_start_info->mod_start
  979. ? __pa(xen_start_info->mod_start) : 0;
  980. boot_params.hdr.ramdisk_size = xen_start_info->mod_len;
  981. if (!is_initial_xendomain())
  982. add_preferred_console("hvc", 0, NULL);
  983. /* Start the world */
  984. start_kernel();
  985. }