pgtable_32.c 9.4 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385
  1. #include <linux/sched.h>
  2. #include <linux/kernel.h>
  3. #include <linux/errno.h>
  4. #include <linux/mm.h>
  5. #include <linux/nmi.h>
  6. #include <linux/swap.h>
  7. #include <linux/smp.h>
  8. #include <linux/highmem.h>
  9. #include <linux/slab.h>
  10. #include <linux/pagemap.h>
  11. #include <linux/spinlock.h>
  12. #include <linux/module.h>
  13. #include <linux/quicklist.h>
  14. #include <asm/system.h>
  15. #include <asm/pgtable.h>
  16. #include <asm/pgalloc.h>
  17. #include <asm/fixmap.h>
  18. #include <asm/e820.h>
  19. #include <asm/tlb.h>
  20. #include <asm/tlbflush.h>
  21. void show_mem(void)
  22. {
  23. int total = 0, reserved = 0;
  24. int shared = 0, cached = 0;
  25. int highmem = 0;
  26. struct page *page;
  27. pg_data_t *pgdat;
  28. unsigned long i;
  29. unsigned long flags;
  30. printk(KERN_INFO "Mem-info:\n");
  31. show_free_areas();
  32. for_each_online_pgdat(pgdat) {
  33. pgdat_resize_lock(pgdat, &flags);
  34. for (i = 0; i < pgdat->node_spanned_pages; ++i) {
  35. if (unlikely(i % MAX_ORDER_NR_PAGES == 0))
  36. touch_nmi_watchdog();
  37. page = pgdat_page_nr(pgdat, i);
  38. total++;
  39. if (PageHighMem(page))
  40. highmem++;
  41. if (PageReserved(page))
  42. reserved++;
  43. else if (PageSwapCache(page))
  44. cached++;
  45. else if (page_count(page))
  46. shared += page_count(page) - 1;
  47. }
  48. pgdat_resize_unlock(pgdat, &flags);
  49. }
  50. printk(KERN_INFO "%d pages of RAM\n", total);
  51. printk(KERN_INFO "%d pages of HIGHMEM\n", highmem);
  52. printk(KERN_INFO "%d reserved pages\n", reserved);
  53. printk(KERN_INFO "%d pages shared\n", shared);
  54. printk(KERN_INFO "%d pages swap cached\n", cached);
  55. printk(KERN_INFO "%lu pages dirty\n", global_page_state(NR_FILE_DIRTY));
  56. printk(KERN_INFO "%lu pages writeback\n",
  57. global_page_state(NR_WRITEBACK));
  58. printk(KERN_INFO "%lu pages mapped\n", global_page_state(NR_FILE_MAPPED));
  59. printk(KERN_INFO "%lu pages slab\n",
  60. global_page_state(NR_SLAB_RECLAIMABLE) +
  61. global_page_state(NR_SLAB_UNRECLAIMABLE));
  62. printk(KERN_INFO "%lu pages pagetables\n",
  63. global_page_state(NR_PAGETABLE));
  64. }
  65. /*
  66. * Associate a virtual page frame with a given physical page frame
  67. * and protection flags for that frame.
  68. */
  69. static void set_pte_pfn(unsigned long vaddr, unsigned long pfn, pgprot_t flags)
  70. {
  71. pgd_t *pgd;
  72. pud_t *pud;
  73. pmd_t *pmd;
  74. pte_t *pte;
  75. pgd = swapper_pg_dir + pgd_index(vaddr);
  76. if (pgd_none(*pgd)) {
  77. BUG();
  78. return;
  79. }
  80. pud = pud_offset(pgd, vaddr);
  81. if (pud_none(*pud)) {
  82. BUG();
  83. return;
  84. }
  85. pmd = pmd_offset(pud, vaddr);
  86. if (pmd_none(*pmd)) {
  87. BUG();
  88. return;
  89. }
  90. pte = pte_offset_kernel(pmd, vaddr);
  91. if (pgprot_val(flags))
  92. set_pte_present(&init_mm, vaddr, pte, pfn_pte(pfn, flags));
  93. else
  94. pte_clear(&init_mm, vaddr, pte);
  95. /*
  96. * It's enough to flush this one mapping.
  97. * (PGE mappings get flushed as well)
  98. */
  99. __flush_tlb_one(vaddr);
  100. }
  101. /*
  102. * Associate a large virtual page frame with a given physical page frame
  103. * and protection flags for that frame. pfn is for the base of the page,
  104. * vaddr is what the page gets mapped to - both must be properly aligned.
  105. * The pmd must already be instantiated. Assumes PAE mode.
  106. */
  107. void set_pmd_pfn(unsigned long vaddr, unsigned long pfn, pgprot_t flags)
  108. {
  109. pgd_t *pgd;
  110. pud_t *pud;
  111. pmd_t *pmd;
  112. if (vaddr & (PMD_SIZE-1)) { /* vaddr is misaligned */
  113. printk(KERN_WARNING "set_pmd_pfn: vaddr misaligned\n");
  114. return; /* BUG(); */
  115. }
  116. if (pfn & (PTRS_PER_PTE-1)) { /* pfn is misaligned */
  117. printk(KERN_WARNING "set_pmd_pfn: pfn misaligned\n");
  118. return; /* BUG(); */
  119. }
  120. pgd = swapper_pg_dir + pgd_index(vaddr);
  121. if (pgd_none(*pgd)) {
  122. printk(KERN_WARNING "set_pmd_pfn: pgd_none\n");
  123. return; /* BUG(); */
  124. }
  125. pud = pud_offset(pgd, vaddr);
  126. pmd = pmd_offset(pud, vaddr);
  127. set_pmd(pmd, pfn_pmd(pfn, flags));
  128. /*
  129. * It's enough to flush this one mapping.
  130. * (PGE mappings get flushed as well)
  131. */
  132. __flush_tlb_one(vaddr);
  133. }
  134. static int fixmaps;
  135. unsigned long __FIXADDR_TOP = 0xfffff000;
  136. EXPORT_SYMBOL(__FIXADDR_TOP);
  137. void __set_fixmap (enum fixed_addresses idx, unsigned long phys, pgprot_t flags)
  138. {
  139. unsigned long address = __fix_to_virt(idx);
  140. if (idx >= __end_of_fixed_addresses) {
  141. BUG();
  142. return;
  143. }
  144. set_pte_pfn(address, phys >> PAGE_SHIFT, flags);
  145. fixmaps++;
  146. }
  147. /**
  148. * reserve_top_address - reserves a hole in the top of kernel address space
  149. * @reserve - size of hole to reserve
  150. *
  151. * Can be used to relocate the fixmap area and poke a hole in the top
  152. * of kernel address space to make room for a hypervisor.
  153. */
  154. void reserve_top_address(unsigned long reserve)
  155. {
  156. BUG_ON(fixmaps > 0);
  157. printk(KERN_INFO "Reserving virtual address space above 0x%08x\n",
  158. (int)-reserve);
  159. __FIXADDR_TOP = -reserve - PAGE_SIZE;
  160. __VMALLOC_RESERVE += reserve;
  161. }
  162. pte_t *pte_alloc_one_kernel(struct mm_struct *mm, unsigned long address)
  163. {
  164. return (pte_t *)__get_free_page(GFP_KERNEL|__GFP_REPEAT|__GFP_ZERO);
  165. }
  166. pgtable_t pte_alloc_one(struct mm_struct *mm, unsigned long address)
  167. {
  168. struct page *pte;
  169. #ifdef CONFIG_HIGHPTE
  170. pte = alloc_pages(GFP_KERNEL|__GFP_HIGHMEM|__GFP_REPEAT|__GFP_ZERO, 0);
  171. #else
  172. pte = alloc_pages(GFP_KERNEL|__GFP_REPEAT|__GFP_ZERO, 0);
  173. #endif
  174. if (pte)
  175. pgtable_page_ctor(pte);
  176. return pte;
  177. }
  178. /*
  179. * List of all pgd's needed for non-PAE so it can invalidate entries
  180. * in both cached and uncached pgd's; not needed for PAE since the
  181. * kernel pmd is shared. If PAE were not to share the pmd a similar
  182. * tactic would be needed. This is essentially codepath-based locking
  183. * against pageattr.c; it is the unique case in which a valid change
  184. * of kernel pagetables can't be lazily synchronized by vmalloc faults.
  185. * vmalloc faults work because attached pagetables are never freed.
  186. * -- wli
  187. */
  188. static inline void pgd_list_add(pgd_t *pgd)
  189. {
  190. struct page *page = virt_to_page(pgd);
  191. list_add(&page->lru, &pgd_list);
  192. }
  193. static inline void pgd_list_del(pgd_t *pgd)
  194. {
  195. struct page *page = virt_to_page(pgd);
  196. list_del(&page->lru);
  197. }
  198. #define UNSHARED_PTRS_PER_PGD \
  199. (SHARED_KERNEL_PMD ? USER_PTRS_PER_PGD : PTRS_PER_PGD)
  200. static void pgd_ctor(void *p)
  201. {
  202. pgd_t *pgd = p;
  203. unsigned long flags;
  204. /* Clear usermode parts of PGD */
  205. memset(pgd, 0, USER_PTRS_PER_PGD*sizeof(pgd_t));
  206. spin_lock_irqsave(&pgd_lock, flags);
  207. /* If the pgd points to a shared pagetable level (either the
  208. ptes in non-PAE, or shared PMD in PAE), then just copy the
  209. references from swapper_pg_dir. */
  210. if (PAGETABLE_LEVELS == 2 ||
  211. (PAGETABLE_LEVELS == 3 && SHARED_KERNEL_PMD)) {
  212. clone_pgd_range(pgd + USER_PTRS_PER_PGD,
  213. swapper_pg_dir + USER_PTRS_PER_PGD,
  214. KERNEL_PGD_PTRS);
  215. paravirt_alloc_pd_clone(__pa(pgd) >> PAGE_SHIFT,
  216. __pa(swapper_pg_dir) >> PAGE_SHIFT,
  217. USER_PTRS_PER_PGD,
  218. KERNEL_PGD_PTRS);
  219. }
  220. /* list required to sync kernel mapping updates */
  221. if (!SHARED_KERNEL_PMD)
  222. pgd_list_add(pgd);
  223. spin_unlock_irqrestore(&pgd_lock, flags);
  224. }
  225. static void pgd_dtor(void *pgd)
  226. {
  227. unsigned long flags; /* can be called from interrupt context */
  228. if (SHARED_KERNEL_PMD)
  229. return;
  230. spin_lock_irqsave(&pgd_lock, flags);
  231. pgd_list_del(pgd);
  232. spin_unlock_irqrestore(&pgd_lock, flags);
  233. }
  234. #ifdef CONFIG_X86_PAE
  235. /*
  236. * Mop up any pmd pages which may still be attached to the pgd.
  237. * Normally they will be freed by munmap/exit_mmap, but any pmd we
  238. * preallocate which never got a corresponding vma will need to be
  239. * freed manually.
  240. */
  241. static void pgd_mop_up_pmds(struct mm_struct *mm, pgd_t *pgdp)
  242. {
  243. int i;
  244. for(i = 0; i < UNSHARED_PTRS_PER_PGD; i++) {
  245. pgd_t pgd = pgdp[i];
  246. if (pgd_val(pgd) != 0) {
  247. pmd_t *pmd = (pmd_t *)pgd_page_vaddr(pgd);
  248. pgdp[i] = native_make_pgd(0);
  249. paravirt_release_pd(pgd_val(pgd) >> PAGE_SHIFT);
  250. pmd_free(mm, pmd);
  251. }
  252. }
  253. }
  254. /*
  255. * In PAE mode, we need to do a cr3 reload (=tlb flush) when
  256. * updating the top-level pagetable entries to guarantee the
  257. * processor notices the update. Since this is expensive, and
  258. * all 4 top-level entries are used almost immediately in a
  259. * new process's life, we just pre-populate them here.
  260. *
  261. * Also, if we're in a paravirt environment where the kernel pmd is
  262. * not shared between pagetables (!SHARED_KERNEL_PMDS), we allocate
  263. * and initialize the kernel pmds here.
  264. */
  265. static int pgd_prepopulate_pmd(struct mm_struct *mm, pgd_t *pgd)
  266. {
  267. pud_t *pud;
  268. unsigned long addr;
  269. int i;
  270. pud = pud_offset(pgd, 0);
  271. for (addr = i = 0; i < UNSHARED_PTRS_PER_PGD;
  272. i++, pud++, addr += PUD_SIZE) {
  273. pmd_t *pmd = pmd_alloc_one(mm, addr);
  274. if (!pmd) {
  275. pgd_mop_up_pmds(mm, pgd);
  276. return 0;
  277. }
  278. if (i >= USER_PTRS_PER_PGD)
  279. memcpy(pmd, (pmd_t *)pgd_page_vaddr(swapper_pg_dir[i]),
  280. sizeof(pmd_t) * PTRS_PER_PMD);
  281. pud_populate(mm, pud, pmd);
  282. }
  283. return 1;
  284. }
  285. #else /* !CONFIG_X86_PAE */
  286. /* No need to prepopulate any pagetable entries in non-PAE modes. */
  287. static int pgd_prepopulate_pmd(struct mm_struct *mm, pgd_t *pgd)
  288. {
  289. return 1;
  290. }
  291. static void pgd_mop_up_pmds(struct mm_struct *mm, pgd_t *pgdp)
  292. {
  293. }
  294. #endif /* CONFIG_X86_PAE */
  295. pgd_t *pgd_alloc(struct mm_struct *mm)
  296. {
  297. pgd_t *pgd = (pgd_t *)__get_free_page(GFP_KERNEL | __GFP_ZERO);
  298. /* so that alloc_pd can use it */
  299. mm->pgd = pgd;
  300. if (pgd)
  301. pgd_ctor(pgd);
  302. if (pgd && !pgd_prepopulate_pmd(mm, pgd)) {
  303. pgd_dtor(pgd);
  304. free_page((unsigned long)pgd);
  305. pgd = NULL;
  306. }
  307. return pgd;
  308. }
  309. void pgd_free(struct mm_struct *mm, pgd_t *pgd)
  310. {
  311. pgd_mop_up_pmds(mm, pgd);
  312. pgd_dtor(pgd);
  313. free_page((unsigned long)pgd);
  314. }
  315. void __pte_free_tlb(struct mmu_gather *tlb, struct page *pte)
  316. {
  317. pgtable_page_dtor(pte);
  318. paravirt_release_pt(page_to_pfn(pte));
  319. tlb_remove_page(tlb, pte);
  320. }
  321. #ifdef CONFIG_X86_PAE
  322. void __pmd_free_tlb(struct mmu_gather *tlb, pmd_t *pmd)
  323. {
  324. paravirt_release_pd(__pa(pmd) >> PAGE_SHIFT);
  325. tlb_remove_page(tlb, virt_to_page(pmd));
  326. }
  327. #endif
  328. int pmd_bad(pmd_t pmd)
  329. {
  330. WARN_ON_ONCE(pmd_bad_v1(pmd) != pmd_bad_v2(pmd));
  331. return pmd_bad_v1(pmd);
  332. }