pci_sun4v.c 23 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998
  1. /* pci_sun4v.c: SUN4V specific PCI controller support.
  2. *
  3. * Copyright (C) 2006, 2007, 2008 David S. Miller (davem@davemloft.net)
  4. */
  5. #include <linux/kernel.h>
  6. #include <linux/types.h>
  7. #include <linux/pci.h>
  8. #include <linux/init.h>
  9. #include <linux/slab.h>
  10. #include <linux/interrupt.h>
  11. #include <linux/percpu.h>
  12. #include <linux/irq.h>
  13. #include <linux/msi.h>
  14. #include <linux/log2.h>
  15. #include <asm/iommu.h>
  16. #include <asm/irq.h>
  17. #include <asm/upa.h>
  18. #include <asm/pstate.h>
  19. #include <asm/oplib.h>
  20. #include <asm/hypervisor.h>
  21. #include <asm/prom.h>
  22. #include "pci_impl.h"
  23. #include "iommu_common.h"
  24. #include "pci_sun4v.h"
  25. static unsigned long vpci_major = 1;
  26. static unsigned long vpci_minor = 1;
  27. #define PGLIST_NENTS (PAGE_SIZE / sizeof(u64))
  28. struct iommu_batch {
  29. struct device *dev; /* Device mapping is for. */
  30. unsigned long prot; /* IOMMU page protections */
  31. unsigned long entry; /* Index into IOTSB. */
  32. u64 *pglist; /* List of physical pages */
  33. unsigned long npages; /* Number of pages in list. */
  34. };
  35. static DEFINE_PER_CPU(struct iommu_batch, iommu_batch);
  36. /* Interrupts must be disabled. */
  37. static inline void iommu_batch_start(struct device *dev, unsigned long prot, unsigned long entry)
  38. {
  39. struct iommu_batch *p = &__get_cpu_var(iommu_batch);
  40. p->dev = dev;
  41. p->prot = prot;
  42. p->entry = entry;
  43. p->npages = 0;
  44. }
  45. /* Interrupts must be disabled. */
  46. static long iommu_batch_flush(struct iommu_batch *p)
  47. {
  48. struct pci_pbm_info *pbm = p->dev->archdata.host_controller;
  49. unsigned long devhandle = pbm->devhandle;
  50. unsigned long prot = p->prot;
  51. unsigned long entry = p->entry;
  52. u64 *pglist = p->pglist;
  53. unsigned long npages = p->npages;
  54. while (npages != 0) {
  55. long num;
  56. num = pci_sun4v_iommu_map(devhandle, HV_PCI_TSBID(0, entry),
  57. npages, prot, __pa(pglist));
  58. if (unlikely(num < 0)) {
  59. if (printk_ratelimit())
  60. printk("iommu_batch_flush: IOMMU map of "
  61. "[%08lx:%08lx:%lx:%lx:%lx] failed with "
  62. "status %ld\n",
  63. devhandle, HV_PCI_TSBID(0, entry),
  64. npages, prot, __pa(pglist), num);
  65. return -1;
  66. }
  67. entry += num;
  68. npages -= num;
  69. pglist += num;
  70. }
  71. p->entry = entry;
  72. p->npages = 0;
  73. return 0;
  74. }
  75. static inline void iommu_batch_new_entry(unsigned long entry)
  76. {
  77. struct iommu_batch *p = &__get_cpu_var(iommu_batch);
  78. if (p->entry + p->npages == entry)
  79. return;
  80. if (p->entry != ~0UL)
  81. iommu_batch_flush(p);
  82. p->entry = entry;
  83. }
  84. /* Interrupts must be disabled. */
  85. static inline long iommu_batch_add(u64 phys_page)
  86. {
  87. struct iommu_batch *p = &__get_cpu_var(iommu_batch);
  88. BUG_ON(p->npages >= PGLIST_NENTS);
  89. p->pglist[p->npages++] = phys_page;
  90. if (p->npages == PGLIST_NENTS)
  91. return iommu_batch_flush(p);
  92. return 0;
  93. }
  94. /* Interrupts must be disabled. */
  95. static inline long iommu_batch_end(void)
  96. {
  97. struct iommu_batch *p = &__get_cpu_var(iommu_batch);
  98. BUG_ON(p->npages >= PGLIST_NENTS);
  99. return iommu_batch_flush(p);
  100. }
  101. static void *dma_4v_alloc_coherent(struct device *dev, size_t size,
  102. dma_addr_t *dma_addrp, gfp_t gfp)
  103. {
  104. struct iommu *iommu;
  105. unsigned long flags, order, first_page, npages, n;
  106. void *ret;
  107. long entry;
  108. size = IO_PAGE_ALIGN(size);
  109. order = get_order(size);
  110. if (unlikely(order >= MAX_ORDER))
  111. return NULL;
  112. npages = size >> IO_PAGE_SHIFT;
  113. first_page = __get_free_pages(gfp, order);
  114. if (unlikely(first_page == 0UL))
  115. return NULL;
  116. memset((char *)first_page, 0, PAGE_SIZE << order);
  117. iommu = dev->archdata.iommu;
  118. spin_lock_irqsave(&iommu->lock, flags);
  119. entry = iommu_range_alloc(dev, iommu, npages, NULL);
  120. spin_unlock_irqrestore(&iommu->lock, flags);
  121. if (unlikely(entry == DMA_ERROR_CODE))
  122. goto range_alloc_fail;
  123. *dma_addrp = (iommu->page_table_map_base +
  124. (entry << IO_PAGE_SHIFT));
  125. ret = (void *) first_page;
  126. first_page = __pa(first_page);
  127. local_irq_save(flags);
  128. iommu_batch_start(dev,
  129. (HV_PCI_MAP_ATTR_READ |
  130. HV_PCI_MAP_ATTR_WRITE),
  131. entry);
  132. for (n = 0; n < npages; n++) {
  133. long err = iommu_batch_add(first_page + (n * PAGE_SIZE));
  134. if (unlikely(err < 0L))
  135. goto iommu_map_fail;
  136. }
  137. if (unlikely(iommu_batch_end() < 0L))
  138. goto iommu_map_fail;
  139. local_irq_restore(flags);
  140. return ret;
  141. iommu_map_fail:
  142. /* Interrupts are disabled. */
  143. spin_lock(&iommu->lock);
  144. iommu_range_free(iommu, *dma_addrp, npages);
  145. spin_unlock_irqrestore(&iommu->lock, flags);
  146. range_alloc_fail:
  147. free_pages(first_page, order);
  148. return NULL;
  149. }
  150. static void dma_4v_free_coherent(struct device *dev, size_t size, void *cpu,
  151. dma_addr_t dvma)
  152. {
  153. struct pci_pbm_info *pbm;
  154. struct iommu *iommu;
  155. unsigned long flags, order, npages, entry;
  156. u32 devhandle;
  157. npages = IO_PAGE_ALIGN(size) >> IO_PAGE_SHIFT;
  158. iommu = dev->archdata.iommu;
  159. pbm = dev->archdata.host_controller;
  160. devhandle = pbm->devhandle;
  161. entry = ((dvma - iommu->page_table_map_base) >> IO_PAGE_SHIFT);
  162. spin_lock_irqsave(&iommu->lock, flags);
  163. iommu_range_free(iommu, dvma, npages);
  164. do {
  165. unsigned long num;
  166. num = pci_sun4v_iommu_demap(devhandle, HV_PCI_TSBID(0, entry),
  167. npages);
  168. entry += num;
  169. npages -= num;
  170. } while (npages != 0);
  171. spin_unlock_irqrestore(&iommu->lock, flags);
  172. order = get_order(size);
  173. if (order < 10)
  174. free_pages((unsigned long)cpu, order);
  175. }
  176. static dma_addr_t dma_4v_map_single(struct device *dev, void *ptr, size_t sz,
  177. enum dma_data_direction direction)
  178. {
  179. struct iommu *iommu;
  180. unsigned long flags, npages, oaddr;
  181. unsigned long i, base_paddr;
  182. u32 bus_addr, ret;
  183. unsigned long prot;
  184. long entry;
  185. iommu = dev->archdata.iommu;
  186. if (unlikely(direction == DMA_NONE))
  187. goto bad;
  188. oaddr = (unsigned long)ptr;
  189. npages = IO_PAGE_ALIGN(oaddr + sz) - (oaddr & IO_PAGE_MASK);
  190. npages >>= IO_PAGE_SHIFT;
  191. spin_lock_irqsave(&iommu->lock, flags);
  192. entry = iommu_range_alloc(dev, iommu, npages, NULL);
  193. spin_unlock_irqrestore(&iommu->lock, flags);
  194. if (unlikely(entry == DMA_ERROR_CODE))
  195. goto bad;
  196. bus_addr = (iommu->page_table_map_base +
  197. (entry << IO_PAGE_SHIFT));
  198. ret = bus_addr | (oaddr & ~IO_PAGE_MASK);
  199. base_paddr = __pa(oaddr & IO_PAGE_MASK);
  200. prot = HV_PCI_MAP_ATTR_READ;
  201. if (direction != DMA_TO_DEVICE)
  202. prot |= HV_PCI_MAP_ATTR_WRITE;
  203. local_irq_save(flags);
  204. iommu_batch_start(dev, prot, entry);
  205. for (i = 0; i < npages; i++, base_paddr += IO_PAGE_SIZE) {
  206. long err = iommu_batch_add(base_paddr);
  207. if (unlikely(err < 0L))
  208. goto iommu_map_fail;
  209. }
  210. if (unlikely(iommu_batch_end() < 0L))
  211. goto iommu_map_fail;
  212. local_irq_restore(flags);
  213. return ret;
  214. bad:
  215. if (printk_ratelimit())
  216. WARN_ON(1);
  217. return DMA_ERROR_CODE;
  218. iommu_map_fail:
  219. /* Interrupts are disabled. */
  220. spin_lock(&iommu->lock);
  221. iommu_range_free(iommu, bus_addr, npages);
  222. spin_unlock_irqrestore(&iommu->lock, flags);
  223. return DMA_ERROR_CODE;
  224. }
  225. static void dma_4v_unmap_single(struct device *dev, dma_addr_t bus_addr,
  226. size_t sz, enum dma_data_direction direction)
  227. {
  228. struct pci_pbm_info *pbm;
  229. struct iommu *iommu;
  230. unsigned long flags, npages;
  231. long entry;
  232. u32 devhandle;
  233. if (unlikely(direction == DMA_NONE)) {
  234. if (printk_ratelimit())
  235. WARN_ON(1);
  236. return;
  237. }
  238. iommu = dev->archdata.iommu;
  239. pbm = dev->archdata.host_controller;
  240. devhandle = pbm->devhandle;
  241. npages = IO_PAGE_ALIGN(bus_addr + sz) - (bus_addr & IO_PAGE_MASK);
  242. npages >>= IO_PAGE_SHIFT;
  243. bus_addr &= IO_PAGE_MASK;
  244. spin_lock_irqsave(&iommu->lock, flags);
  245. iommu_range_free(iommu, bus_addr, npages);
  246. entry = (bus_addr - iommu->page_table_map_base) >> IO_PAGE_SHIFT;
  247. do {
  248. unsigned long num;
  249. num = pci_sun4v_iommu_demap(devhandle, HV_PCI_TSBID(0, entry),
  250. npages);
  251. entry += num;
  252. npages -= num;
  253. } while (npages != 0);
  254. spin_unlock_irqrestore(&iommu->lock, flags);
  255. }
  256. static int dma_4v_map_sg(struct device *dev, struct scatterlist *sglist,
  257. int nelems, enum dma_data_direction direction)
  258. {
  259. struct scatterlist *s, *outs, *segstart;
  260. unsigned long flags, handle, prot;
  261. dma_addr_t dma_next = 0, dma_addr;
  262. unsigned int max_seg_size;
  263. unsigned long seg_boundary_size;
  264. int outcount, incount, i;
  265. struct iommu *iommu;
  266. unsigned long base_shift;
  267. long err;
  268. BUG_ON(direction == DMA_NONE);
  269. iommu = dev->archdata.iommu;
  270. if (nelems == 0 || !iommu)
  271. return 0;
  272. prot = HV_PCI_MAP_ATTR_READ;
  273. if (direction != DMA_TO_DEVICE)
  274. prot |= HV_PCI_MAP_ATTR_WRITE;
  275. outs = s = segstart = &sglist[0];
  276. outcount = 1;
  277. incount = nelems;
  278. handle = 0;
  279. /* Init first segment length for backout at failure */
  280. outs->dma_length = 0;
  281. spin_lock_irqsave(&iommu->lock, flags);
  282. iommu_batch_start(dev, prot, ~0UL);
  283. max_seg_size = dma_get_max_seg_size(dev);
  284. seg_boundary_size = ALIGN(dma_get_seg_boundary(dev) + 1,
  285. IO_PAGE_SIZE) >> IO_PAGE_SHIFT;
  286. base_shift = iommu->page_table_map_base >> IO_PAGE_SHIFT;
  287. for_each_sg(sglist, s, nelems, i) {
  288. unsigned long paddr, npages, entry, out_entry = 0, slen;
  289. slen = s->length;
  290. /* Sanity check */
  291. if (slen == 0) {
  292. dma_next = 0;
  293. continue;
  294. }
  295. /* Allocate iommu entries for that segment */
  296. paddr = (unsigned long) SG_ENT_PHYS_ADDRESS(s);
  297. npages = iommu_num_pages(paddr, slen);
  298. entry = iommu_range_alloc(dev, iommu, npages, &handle);
  299. /* Handle failure */
  300. if (unlikely(entry == DMA_ERROR_CODE)) {
  301. if (printk_ratelimit())
  302. printk(KERN_INFO "iommu_alloc failed, iommu %p paddr %lx"
  303. " npages %lx\n", iommu, paddr, npages);
  304. goto iommu_map_failed;
  305. }
  306. iommu_batch_new_entry(entry);
  307. /* Convert entry to a dma_addr_t */
  308. dma_addr = iommu->page_table_map_base +
  309. (entry << IO_PAGE_SHIFT);
  310. dma_addr |= (s->offset & ~IO_PAGE_MASK);
  311. /* Insert into HW table */
  312. paddr &= IO_PAGE_MASK;
  313. while (npages--) {
  314. err = iommu_batch_add(paddr);
  315. if (unlikely(err < 0L))
  316. goto iommu_map_failed;
  317. paddr += IO_PAGE_SIZE;
  318. }
  319. /* If we are in an open segment, try merging */
  320. if (segstart != s) {
  321. /* We cannot merge if:
  322. * - allocated dma_addr isn't contiguous to previous allocation
  323. */
  324. if ((dma_addr != dma_next) ||
  325. (outs->dma_length + s->length > max_seg_size) ||
  326. (is_span_boundary(out_entry, base_shift,
  327. seg_boundary_size, outs, s))) {
  328. /* Can't merge: create a new segment */
  329. segstart = s;
  330. outcount++;
  331. outs = sg_next(outs);
  332. } else {
  333. outs->dma_length += s->length;
  334. }
  335. }
  336. if (segstart == s) {
  337. /* This is a new segment, fill entries */
  338. outs->dma_address = dma_addr;
  339. outs->dma_length = slen;
  340. out_entry = entry;
  341. }
  342. /* Calculate next page pointer for contiguous check */
  343. dma_next = dma_addr + slen;
  344. }
  345. err = iommu_batch_end();
  346. if (unlikely(err < 0L))
  347. goto iommu_map_failed;
  348. spin_unlock_irqrestore(&iommu->lock, flags);
  349. if (outcount < incount) {
  350. outs = sg_next(outs);
  351. outs->dma_address = DMA_ERROR_CODE;
  352. outs->dma_length = 0;
  353. }
  354. return outcount;
  355. iommu_map_failed:
  356. for_each_sg(sglist, s, nelems, i) {
  357. if (s->dma_length != 0) {
  358. unsigned long vaddr, npages;
  359. vaddr = s->dma_address & IO_PAGE_MASK;
  360. npages = iommu_num_pages(s->dma_address, s->dma_length);
  361. iommu_range_free(iommu, vaddr, npages);
  362. /* XXX demap? XXX */
  363. s->dma_address = DMA_ERROR_CODE;
  364. s->dma_length = 0;
  365. }
  366. if (s == outs)
  367. break;
  368. }
  369. spin_unlock_irqrestore(&iommu->lock, flags);
  370. return 0;
  371. }
  372. static void dma_4v_unmap_sg(struct device *dev, struct scatterlist *sglist,
  373. int nelems, enum dma_data_direction direction)
  374. {
  375. struct pci_pbm_info *pbm;
  376. struct scatterlist *sg;
  377. struct iommu *iommu;
  378. unsigned long flags;
  379. u32 devhandle;
  380. BUG_ON(direction == DMA_NONE);
  381. iommu = dev->archdata.iommu;
  382. pbm = dev->archdata.host_controller;
  383. devhandle = pbm->devhandle;
  384. spin_lock_irqsave(&iommu->lock, flags);
  385. sg = sglist;
  386. while (nelems--) {
  387. dma_addr_t dma_handle = sg->dma_address;
  388. unsigned int len = sg->dma_length;
  389. unsigned long npages, entry;
  390. if (!len)
  391. break;
  392. npages = iommu_num_pages(dma_handle, len);
  393. iommu_range_free(iommu, dma_handle, npages);
  394. entry = ((dma_handle - iommu->page_table_map_base) >> IO_PAGE_SHIFT);
  395. while (npages) {
  396. unsigned long num;
  397. num = pci_sun4v_iommu_demap(devhandle, HV_PCI_TSBID(0, entry),
  398. npages);
  399. entry += num;
  400. npages -= num;
  401. }
  402. sg = sg_next(sg);
  403. }
  404. spin_unlock_irqrestore(&iommu->lock, flags);
  405. }
  406. static void dma_4v_sync_single_for_cpu(struct device *dev,
  407. dma_addr_t bus_addr, size_t sz,
  408. enum dma_data_direction direction)
  409. {
  410. /* Nothing to do... */
  411. }
  412. static void dma_4v_sync_sg_for_cpu(struct device *dev,
  413. struct scatterlist *sglist, int nelems,
  414. enum dma_data_direction direction)
  415. {
  416. /* Nothing to do... */
  417. }
  418. const struct dma_ops sun4v_dma_ops = {
  419. .alloc_coherent = dma_4v_alloc_coherent,
  420. .free_coherent = dma_4v_free_coherent,
  421. .map_single = dma_4v_map_single,
  422. .unmap_single = dma_4v_unmap_single,
  423. .map_sg = dma_4v_map_sg,
  424. .unmap_sg = dma_4v_unmap_sg,
  425. .sync_single_for_cpu = dma_4v_sync_single_for_cpu,
  426. .sync_sg_for_cpu = dma_4v_sync_sg_for_cpu,
  427. };
  428. static void __init pci_sun4v_scan_bus(struct pci_pbm_info *pbm)
  429. {
  430. struct property *prop;
  431. struct device_node *dp;
  432. dp = pbm->prom_node;
  433. prop = of_find_property(dp, "66mhz-capable", NULL);
  434. pbm->is_66mhz_capable = (prop != NULL);
  435. pbm->pci_bus = pci_scan_one_pbm(pbm);
  436. /* XXX register error interrupt handlers XXX */
  437. }
  438. static unsigned long __init probe_existing_entries(struct pci_pbm_info *pbm,
  439. struct iommu *iommu)
  440. {
  441. struct iommu_arena *arena = &iommu->arena;
  442. unsigned long i, cnt = 0;
  443. u32 devhandle;
  444. devhandle = pbm->devhandle;
  445. for (i = 0; i < arena->limit; i++) {
  446. unsigned long ret, io_attrs, ra;
  447. ret = pci_sun4v_iommu_getmap(devhandle,
  448. HV_PCI_TSBID(0, i),
  449. &io_attrs, &ra);
  450. if (ret == HV_EOK) {
  451. if (page_in_phys_avail(ra)) {
  452. pci_sun4v_iommu_demap(devhandle,
  453. HV_PCI_TSBID(0, i), 1);
  454. } else {
  455. cnt++;
  456. __set_bit(i, arena->map);
  457. }
  458. }
  459. }
  460. return cnt;
  461. }
  462. static void __init pci_sun4v_iommu_init(struct pci_pbm_info *pbm)
  463. {
  464. struct iommu *iommu = pbm->iommu;
  465. struct property *prop;
  466. unsigned long num_tsb_entries, sz, tsbsize;
  467. u32 vdma[2], dma_mask, dma_offset;
  468. prop = of_find_property(pbm->prom_node, "virtual-dma", NULL);
  469. if (prop) {
  470. u32 *val = prop->value;
  471. vdma[0] = val[0];
  472. vdma[1] = val[1];
  473. } else {
  474. /* No property, use default values. */
  475. vdma[0] = 0x80000000;
  476. vdma[1] = 0x80000000;
  477. }
  478. if ((vdma[0] | vdma[1]) & ~IO_PAGE_MASK) {
  479. prom_printf("PCI-SUN4V: strange virtual-dma[%08x:%08x].\n",
  480. vdma[0], vdma[1]);
  481. prom_halt();
  482. };
  483. dma_mask = (roundup_pow_of_two(vdma[1]) - 1UL);
  484. num_tsb_entries = vdma[1] / IO_PAGE_SIZE;
  485. tsbsize = num_tsb_entries * sizeof(iopte_t);
  486. dma_offset = vdma[0];
  487. /* Setup initial software IOMMU state. */
  488. spin_lock_init(&iommu->lock);
  489. iommu->ctx_lowest_free = 1;
  490. iommu->page_table_map_base = dma_offset;
  491. iommu->dma_addr_mask = dma_mask;
  492. /* Allocate and initialize the free area map. */
  493. sz = (num_tsb_entries + 7) / 8;
  494. sz = (sz + 7UL) & ~7UL;
  495. iommu->arena.map = kzalloc(sz, GFP_KERNEL);
  496. if (!iommu->arena.map) {
  497. prom_printf("PCI_IOMMU: Error, kmalloc(arena.map) failed.\n");
  498. prom_halt();
  499. }
  500. iommu->arena.limit = num_tsb_entries;
  501. sz = probe_existing_entries(pbm, iommu);
  502. if (sz)
  503. printk("%s: Imported %lu TSB entries from OBP\n",
  504. pbm->name, sz);
  505. }
  506. #ifdef CONFIG_PCI_MSI
  507. struct pci_sun4v_msiq_entry {
  508. u64 version_type;
  509. #define MSIQ_VERSION_MASK 0xffffffff00000000UL
  510. #define MSIQ_VERSION_SHIFT 32
  511. #define MSIQ_TYPE_MASK 0x00000000000000ffUL
  512. #define MSIQ_TYPE_SHIFT 0
  513. #define MSIQ_TYPE_NONE 0x00
  514. #define MSIQ_TYPE_MSG 0x01
  515. #define MSIQ_TYPE_MSI32 0x02
  516. #define MSIQ_TYPE_MSI64 0x03
  517. #define MSIQ_TYPE_INTX 0x08
  518. #define MSIQ_TYPE_NONE2 0xff
  519. u64 intx_sysino;
  520. u64 reserved1;
  521. u64 stick;
  522. u64 req_id; /* bus/device/func */
  523. #define MSIQ_REQID_BUS_MASK 0xff00UL
  524. #define MSIQ_REQID_BUS_SHIFT 8
  525. #define MSIQ_REQID_DEVICE_MASK 0x00f8UL
  526. #define MSIQ_REQID_DEVICE_SHIFT 3
  527. #define MSIQ_REQID_FUNC_MASK 0x0007UL
  528. #define MSIQ_REQID_FUNC_SHIFT 0
  529. u64 msi_address;
  530. /* The format of this value is message type dependent.
  531. * For MSI bits 15:0 are the data from the MSI packet.
  532. * For MSI-X bits 31:0 are the data from the MSI packet.
  533. * For MSG, the message code and message routing code where:
  534. * bits 39:32 is the bus/device/fn of the msg target-id
  535. * bits 18:16 is the message routing code
  536. * bits 7:0 is the message code
  537. * For INTx the low order 2-bits are:
  538. * 00 - INTA
  539. * 01 - INTB
  540. * 10 - INTC
  541. * 11 - INTD
  542. */
  543. u64 msi_data;
  544. u64 reserved2;
  545. };
  546. static int pci_sun4v_get_head(struct pci_pbm_info *pbm, unsigned long msiqid,
  547. unsigned long *head)
  548. {
  549. unsigned long err, limit;
  550. err = pci_sun4v_msiq_gethead(pbm->devhandle, msiqid, head);
  551. if (unlikely(err))
  552. return -ENXIO;
  553. limit = pbm->msiq_ent_count * sizeof(struct pci_sun4v_msiq_entry);
  554. if (unlikely(*head >= limit))
  555. return -EFBIG;
  556. return 0;
  557. }
  558. static int pci_sun4v_dequeue_msi(struct pci_pbm_info *pbm,
  559. unsigned long msiqid, unsigned long *head,
  560. unsigned long *msi)
  561. {
  562. struct pci_sun4v_msiq_entry *ep;
  563. unsigned long err, type;
  564. /* Note: void pointer arithmetic, 'head' is a byte offset */
  565. ep = (pbm->msi_queues + ((msiqid - pbm->msiq_first) *
  566. (pbm->msiq_ent_count *
  567. sizeof(struct pci_sun4v_msiq_entry))) +
  568. *head);
  569. if ((ep->version_type & MSIQ_TYPE_MASK) == 0)
  570. return 0;
  571. type = (ep->version_type & MSIQ_TYPE_MASK) >> MSIQ_TYPE_SHIFT;
  572. if (unlikely(type != MSIQ_TYPE_MSI32 &&
  573. type != MSIQ_TYPE_MSI64))
  574. return -EINVAL;
  575. *msi = ep->msi_data;
  576. err = pci_sun4v_msi_setstate(pbm->devhandle,
  577. ep->msi_data /* msi_num */,
  578. HV_MSISTATE_IDLE);
  579. if (unlikely(err))
  580. return -ENXIO;
  581. /* Clear the entry. */
  582. ep->version_type &= ~MSIQ_TYPE_MASK;
  583. (*head) += sizeof(struct pci_sun4v_msiq_entry);
  584. if (*head >=
  585. (pbm->msiq_ent_count * sizeof(struct pci_sun4v_msiq_entry)))
  586. *head = 0;
  587. return 1;
  588. }
  589. static int pci_sun4v_set_head(struct pci_pbm_info *pbm, unsigned long msiqid,
  590. unsigned long head)
  591. {
  592. unsigned long err;
  593. err = pci_sun4v_msiq_sethead(pbm->devhandle, msiqid, head);
  594. if (unlikely(err))
  595. return -EINVAL;
  596. return 0;
  597. }
  598. static int pci_sun4v_msi_setup(struct pci_pbm_info *pbm, unsigned long msiqid,
  599. unsigned long msi, int is_msi64)
  600. {
  601. if (pci_sun4v_msi_setmsiq(pbm->devhandle, msi, msiqid,
  602. (is_msi64 ?
  603. HV_MSITYPE_MSI64 : HV_MSITYPE_MSI32)))
  604. return -ENXIO;
  605. if (pci_sun4v_msi_setstate(pbm->devhandle, msi, HV_MSISTATE_IDLE))
  606. return -ENXIO;
  607. if (pci_sun4v_msi_setvalid(pbm->devhandle, msi, HV_MSIVALID_VALID))
  608. return -ENXIO;
  609. return 0;
  610. }
  611. static int pci_sun4v_msi_teardown(struct pci_pbm_info *pbm, unsigned long msi)
  612. {
  613. unsigned long err, msiqid;
  614. err = pci_sun4v_msi_getmsiq(pbm->devhandle, msi, &msiqid);
  615. if (err)
  616. return -ENXIO;
  617. pci_sun4v_msi_setvalid(pbm->devhandle, msi, HV_MSIVALID_INVALID);
  618. return 0;
  619. }
  620. static int pci_sun4v_msiq_alloc(struct pci_pbm_info *pbm)
  621. {
  622. unsigned long q_size, alloc_size, pages, order;
  623. int i;
  624. q_size = pbm->msiq_ent_count * sizeof(struct pci_sun4v_msiq_entry);
  625. alloc_size = (pbm->msiq_num * q_size);
  626. order = get_order(alloc_size);
  627. pages = __get_free_pages(GFP_KERNEL | __GFP_COMP, order);
  628. if (pages == 0UL) {
  629. printk(KERN_ERR "MSI: Cannot allocate MSI queues (o=%lu).\n",
  630. order);
  631. return -ENOMEM;
  632. }
  633. memset((char *)pages, 0, PAGE_SIZE << order);
  634. pbm->msi_queues = (void *) pages;
  635. for (i = 0; i < pbm->msiq_num; i++) {
  636. unsigned long err, base = __pa(pages + (i * q_size));
  637. unsigned long ret1, ret2;
  638. err = pci_sun4v_msiq_conf(pbm->devhandle,
  639. pbm->msiq_first + i,
  640. base, pbm->msiq_ent_count);
  641. if (err) {
  642. printk(KERN_ERR "MSI: msiq register fails (err=%lu)\n",
  643. err);
  644. goto h_error;
  645. }
  646. err = pci_sun4v_msiq_info(pbm->devhandle,
  647. pbm->msiq_first + i,
  648. &ret1, &ret2);
  649. if (err) {
  650. printk(KERN_ERR "MSI: Cannot read msiq (err=%lu)\n",
  651. err);
  652. goto h_error;
  653. }
  654. if (ret1 != base || ret2 != pbm->msiq_ent_count) {
  655. printk(KERN_ERR "MSI: Bogus qconf "
  656. "expected[%lx:%x] got[%lx:%lx]\n",
  657. base, pbm->msiq_ent_count,
  658. ret1, ret2);
  659. goto h_error;
  660. }
  661. }
  662. return 0;
  663. h_error:
  664. free_pages(pages, order);
  665. return -EINVAL;
  666. }
  667. static void pci_sun4v_msiq_free(struct pci_pbm_info *pbm)
  668. {
  669. unsigned long q_size, alloc_size, pages, order;
  670. int i;
  671. for (i = 0; i < pbm->msiq_num; i++) {
  672. unsigned long msiqid = pbm->msiq_first + i;
  673. (void) pci_sun4v_msiq_conf(pbm->devhandle, msiqid, 0UL, 0);
  674. }
  675. q_size = pbm->msiq_ent_count * sizeof(struct pci_sun4v_msiq_entry);
  676. alloc_size = (pbm->msiq_num * q_size);
  677. order = get_order(alloc_size);
  678. pages = (unsigned long) pbm->msi_queues;
  679. free_pages(pages, order);
  680. pbm->msi_queues = NULL;
  681. }
  682. static int pci_sun4v_msiq_build_irq(struct pci_pbm_info *pbm,
  683. unsigned long msiqid,
  684. unsigned long devino)
  685. {
  686. unsigned int virt_irq = sun4v_build_irq(pbm->devhandle, devino);
  687. if (!virt_irq)
  688. return -ENOMEM;
  689. if (pci_sun4v_msiq_setstate(pbm->devhandle, msiqid, HV_MSIQSTATE_IDLE))
  690. return -EINVAL;
  691. if (pci_sun4v_msiq_setvalid(pbm->devhandle, msiqid, HV_MSIQ_VALID))
  692. return -EINVAL;
  693. return virt_irq;
  694. }
  695. static const struct sparc64_msiq_ops pci_sun4v_msiq_ops = {
  696. .get_head = pci_sun4v_get_head,
  697. .dequeue_msi = pci_sun4v_dequeue_msi,
  698. .set_head = pci_sun4v_set_head,
  699. .msi_setup = pci_sun4v_msi_setup,
  700. .msi_teardown = pci_sun4v_msi_teardown,
  701. .msiq_alloc = pci_sun4v_msiq_alloc,
  702. .msiq_free = pci_sun4v_msiq_free,
  703. .msiq_build_irq = pci_sun4v_msiq_build_irq,
  704. };
  705. static void pci_sun4v_msi_init(struct pci_pbm_info *pbm)
  706. {
  707. sparc64_pbm_msi_init(pbm, &pci_sun4v_msiq_ops);
  708. }
  709. #else /* CONFIG_PCI_MSI */
  710. static void pci_sun4v_msi_init(struct pci_pbm_info *pbm)
  711. {
  712. }
  713. #endif /* !(CONFIG_PCI_MSI) */
  714. static void __init pci_sun4v_pbm_init(struct pci_controller_info *p,
  715. struct device_node *dp, u32 devhandle)
  716. {
  717. struct pci_pbm_info *pbm;
  718. if (devhandle & 0x40)
  719. pbm = &p->pbm_B;
  720. else
  721. pbm = &p->pbm_A;
  722. pbm->next = pci_pbm_root;
  723. pci_pbm_root = pbm;
  724. pbm->scan_bus = pci_sun4v_scan_bus;
  725. pbm->pci_ops = &sun4v_pci_ops;
  726. pbm->config_space_reg_bits = 12;
  727. pbm->index = pci_num_pbms++;
  728. pbm->parent = p;
  729. pbm->prom_node = dp;
  730. pbm->devhandle = devhandle;
  731. pbm->name = dp->full_name;
  732. printk("%s: SUN4V PCI Bus Module\n", pbm->name);
  733. pci_determine_mem_io_space(pbm);
  734. pci_get_pbm_props(pbm);
  735. pci_sun4v_iommu_init(pbm);
  736. pci_sun4v_msi_init(pbm);
  737. }
  738. void __init sun4v_pci_init(struct device_node *dp, char *model_name)
  739. {
  740. static int hvapi_negotiated = 0;
  741. struct pci_controller_info *p;
  742. struct pci_pbm_info *pbm;
  743. struct iommu *iommu;
  744. struct property *prop;
  745. struct linux_prom64_registers *regs;
  746. u32 devhandle;
  747. int i;
  748. if (!hvapi_negotiated++) {
  749. int err = sun4v_hvapi_register(HV_GRP_PCI,
  750. vpci_major,
  751. &vpci_minor);
  752. if (err) {
  753. prom_printf("SUN4V_PCI: Could not register hvapi, "
  754. "err=%d\n", err);
  755. prom_halt();
  756. }
  757. printk("SUN4V_PCI: Registered hvapi major[%lu] minor[%lu]\n",
  758. vpci_major, vpci_minor);
  759. dma_ops = &sun4v_dma_ops;
  760. }
  761. prop = of_find_property(dp, "reg", NULL);
  762. if (!prop) {
  763. prom_printf("SUN4V_PCI: Could not find config registers\n");
  764. prom_halt();
  765. }
  766. regs = prop->value;
  767. devhandle = (regs->phys_addr >> 32UL) & 0x0fffffff;
  768. for (pbm = pci_pbm_root; pbm; pbm = pbm->next) {
  769. if (pbm->devhandle == (devhandle ^ 0x40)) {
  770. pci_sun4v_pbm_init(pbm->parent, dp, devhandle);
  771. return;
  772. }
  773. }
  774. for_each_possible_cpu(i) {
  775. unsigned long page = get_zeroed_page(GFP_ATOMIC);
  776. if (!page)
  777. goto fatal_memory_error;
  778. per_cpu(iommu_batch, i).pglist = (u64 *) page;
  779. }
  780. p = kzalloc(sizeof(struct pci_controller_info), GFP_ATOMIC);
  781. if (!p)
  782. goto fatal_memory_error;
  783. iommu = kzalloc(sizeof(struct iommu), GFP_ATOMIC);
  784. if (!iommu)
  785. goto fatal_memory_error;
  786. p->pbm_A.iommu = iommu;
  787. iommu = kzalloc(sizeof(struct iommu), GFP_ATOMIC);
  788. if (!iommu)
  789. goto fatal_memory_error;
  790. p->pbm_B.iommu = iommu;
  791. pci_sun4v_pbm_init(p, dp, devhandle);
  792. return;
  793. fatal_memory_error:
  794. prom_printf("SUN4V_PCI: Fatal memory allocation error.\n");
  795. prom_halt();
  796. }