process_64.c 18 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705
  1. /*
  2. * arch/sh/kernel/process_64.c
  3. *
  4. * This file handles the architecture-dependent parts of process handling..
  5. *
  6. * Copyright (C) 2000, 2001 Paolo Alberelli
  7. * Copyright (C) 2003 - 2007 Paul Mundt
  8. * Copyright (C) 2003, 2004 Richard Curnow
  9. *
  10. * Started from SH3/4 version:
  11. * Copyright (C) 1999, 2000 Niibe Yutaka & Kaz Kojima
  12. *
  13. * In turn started from i386 version:
  14. * Copyright (C) 1995 Linus Torvalds
  15. *
  16. * This file is subject to the terms and conditions of the GNU General Public
  17. * License. See the file "COPYING" in the main directory of this archive
  18. * for more details.
  19. */
  20. #include <linux/mm.h>
  21. #include <linux/fs.h>
  22. #include <linux/ptrace.h>
  23. #include <linux/reboot.h>
  24. #include <linux/init.h>
  25. #include <linux/module.h>
  26. #include <linux/proc_fs.h>
  27. #include <linux/io.h>
  28. #include <asm/uaccess.h>
  29. #include <asm/pgtable.h>
  30. #include <asm/mmu_context.h>
  31. #include <asm/fpu.h>
  32. struct task_struct *last_task_used_math = NULL;
  33. static int hlt_counter = 1;
  34. #define HARD_IDLE_TIMEOUT (HZ / 3)
  35. void disable_hlt(void)
  36. {
  37. hlt_counter++;
  38. }
  39. void enable_hlt(void)
  40. {
  41. hlt_counter--;
  42. }
  43. static int __init nohlt_setup(char *__unused)
  44. {
  45. hlt_counter = 1;
  46. return 1;
  47. }
  48. static int __init hlt_setup(char *__unused)
  49. {
  50. hlt_counter = 0;
  51. return 1;
  52. }
  53. __setup("nohlt", nohlt_setup);
  54. __setup("hlt", hlt_setup);
  55. static inline void hlt(void)
  56. {
  57. __asm__ __volatile__ ("sleep" : : : "memory");
  58. }
  59. /*
  60. * The idle loop on a uniprocessor SH..
  61. */
  62. void cpu_idle(void)
  63. {
  64. /* endless idle loop with no priority at all */
  65. while (1) {
  66. if (hlt_counter) {
  67. while (!need_resched())
  68. cpu_relax();
  69. } else {
  70. local_irq_disable();
  71. while (!need_resched()) {
  72. local_irq_enable();
  73. hlt();
  74. local_irq_disable();
  75. }
  76. local_irq_enable();
  77. }
  78. preempt_enable_no_resched();
  79. schedule();
  80. preempt_disable();
  81. }
  82. }
  83. void machine_restart(char * __unused)
  84. {
  85. extern void phys_stext(void);
  86. phys_stext();
  87. }
  88. void machine_halt(void)
  89. {
  90. for (;;);
  91. }
  92. void machine_power_off(void)
  93. {
  94. #if 0
  95. /* Disable watchdog timer */
  96. ctrl_outl(0xa5000000, WTCSR);
  97. /* Configure deep standby on sleep */
  98. ctrl_outl(0x03, STBCR);
  99. #endif
  100. __asm__ __volatile__ (
  101. "sleep\n\t"
  102. "synci\n\t"
  103. "nop;nop;nop;nop\n\t"
  104. );
  105. panic("Unexpected wakeup!\n");
  106. }
  107. void (*pm_power_off)(void) = machine_power_off;
  108. EXPORT_SYMBOL(pm_power_off);
  109. void show_regs(struct pt_regs * regs)
  110. {
  111. unsigned long long ah, al, bh, bl, ch, cl;
  112. printk("\n");
  113. ah = (regs->pc) >> 32;
  114. al = (regs->pc) & 0xffffffff;
  115. bh = (regs->regs[18]) >> 32;
  116. bl = (regs->regs[18]) & 0xffffffff;
  117. ch = (regs->regs[15]) >> 32;
  118. cl = (regs->regs[15]) & 0xffffffff;
  119. printk("PC : %08Lx%08Lx LINK: %08Lx%08Lx SP : %08Lx%08Lx\n",
  120. ah, al, bh, bl, ch, cl);
  121. ah = (regs->sr) >> 32;
  122. al = (regs->sr) & 0xffffffff;
  123. asm volatile ("getcon " __TEA ", %0" : "=r" (bh));
  124. asm volatile ("getcon " __TEA ", %0" : "=r" (bl));
  125. bh = (bh) >> 32;
  126. bl = (bl) & 0xffffffff;
  127. asm volatile ("getcon " __KCR0 ", %0" : "=r" (ch));
  128. asm volatile ("getcon " __KCR0 ", %0" : "=r" (cl));
  129. ch = (ch) >> 32;
  130. cl = (cl) & 0xffffffff;
  131. printk("SR : %08Lx%08Lx TEA : %08Lx%08Lx KCR0: %08Lx%08Lx\n",
  132. ah, al, bh, bl, ch, cl);
  133. ah = (regs->regs[0]) >> 32;
  134. al = (regs->regs[0]) & 0xffffffff;
  135. bh = (regs->regs[1]) >> 32;
  136. bl = (regs->regs[1]) & 0xffffffff;
  137. ch = (regs->regs[2]) >> 32;
  138. cl = (regs->regs[2]) & 0xffffffff;
  139. printk("R0 : %08Lx%08Lx R1 : %08Lx%08Lx R2 : %08Lx%08Lx\n",
  140. ah, al, bh, bl, ch, cl);
  141. ah = (regs->regs[3]) >> 32;
  142. al = (regs->regs[3]) & 0xffffffff;
  143. bh = (regs->regs[4]) >> 32;
  144. bl = (regs->regs[4]) & 0xffffffff;
  145. ch = (regs->regs[5]) >> 32;
  146. cl = (regs->regs[5]) & 0xffffffff;
  147. printk("R3 : %08Lx%08Lx R4 : %08Lx%08Lx R5 : %08Lx%08Lx\n",
  148. ah, al, bh, bl, ch, cl);
  149. ah = (regs->regs[6]) >> 32;
  150. al = (regs->regs[6]) & 0xffffffff;
  151. bh = (regs->regs[7]) >> 32;
  152. bl = (regs->regs[7]) & 0xffffffff;
  153. ch = (regs->regs[8]) >> 32;
  154. cl = (regs->regs[8]) & 0xffffffff;
  155. printk("R6 : %08Lx%08Lx R7 : %08Lx%08Lx R8 : %08Lx%08Lx\n",
  156. ah, al, bh, bl, ch, cl);
  157. ah = (regs->regs[9]) >> 32;
  158. al = (regs->regs[9]) & 0xffffffff;
  159. bh = (regs->regs[10]) >> 32;
  160. bl = (regs->regs[10]) & 0xffffffff;
  161. ch = (regs->regs[11]) >> 32;
  162. cl = (regs->regs[11]) & 0xffffffff;
  163. printk("R9 : %08Lx%08Lx R10 : %08Lx%08Lx R11 : %08Lx%08Lx\n",
  164. ah, al, bh, bl, ch, cl);
  165. ah = (regs->regs[12]) >> 32;
  166. al = (regs->regs[12]) & 0xffffffff;
  167. bh = (regs->regs[13]) >> 32;
  168. bl = (regs->regs[13]) & 0xffffffff;
  169. ch = (regs->regs[14]) >> 32;
  170. cl = (regs->regs[14]) & 0xffffffff;
  171. printk("R12 : %08Lx%08Lx R13 : %08Lx%08Lx R14 : %08Lx%08Lx\n",
  172. ah, al, bh, bl, ch, cl);
  173. ah = (regs->regs[16]) >> 32;
  174. al = (regs->regs[16]) & 0xffffffff;
  175. bh = (regs->regs[17]) >> 32;
  176. bl = (regs->regs[17]) & 0xffffffff;
  177. ch = (regs->regs[19]) >> 32;
  178. cl = (regs->regs[19]) & 0xffffffff;
  179. printk("R16 : %08Lx%08Lx R17 : %08Lx%08Lx R19 : %08Lx%08Lx\n",
  180. ah, al, bh, bl, ch, cl);
  181. ah = (regs->regs[20]) >> 32;
  182. al = (regs->regs[20]) & 0xffffffff;
  183. bh = (regs->regs[21]) >> 32;
  184. bl = (regs->regs[21]) & 0xffffffff;
  185. ch = (regs->regs[22]) >> 32;
  186. cl = (regs->regs[22]) & 0xffffffff;
  187. printk("R20 : %08Lx%08Lx R21 : %08Lx%08Lx R22 : %08Lx%08Lx\n",
  188. ah, al, bh, bl, ch, cl);
  189. ah = (regs->regs[23]) >> 32;
  190. al = (regs->regs[23]) & 0xffffffff;
  191. bh = (regs->regs[24]) >> 32;
  192. bl = (regs->regs[24]) & 0xffffffff;
  193. ch = (regs->regs[25]) >> 32;
  194. cl = (regs->regs[25]) & 0xffffffff;
  195. printk("R23 : %08Lx%08Lx R24 : %08Lx%08Lx R25 : %08Lx%08Lx\n",
  196. ah, al, bh, bl, ch, cl);
  197. ah = (regs->regs[26]) >> 32;
  198. al = (regs->regs[26]) & 0xffffffff;
  199. bh = (regs->regs[27]) >> 32;
  200. bl = (regs->regs[27]) & 0xffffffff;
  201. ch = (regs->regs[28]) >> 32;
  202. cl = (regs->regs[28]) & 0xffffffff;
  203. printk("R26 : %08Lx%08Lx R27 : %08Lx%08Lx R28 : %08Lx%08Lx\n",
  204. ah, al, bh, bl, ch, cl);
  205. ah = (regs->regs[29]) >> 32;
  206. al = (regs->regs[29]) & 0xffffffff;
  207. bh = (regs->regs[30]) >> 32;
  208. bl = (regs->regs[30]) & 0xffffffff;
  209. ch = (regs->regs[31]) >> 32;
  210. cl = (regs->regs[31]) & 0xffffffff;
  211. printk("R29 : %08Lx%08Lx R30 : %08Lx%08Lx R31 : %08Lx%08Lx\n",
  212. ah, al, bh, bl, ch, cl);
  213. ah = (regs->regs[32]) >> 32;
  214. al = (regs->regs[32]) & 0xffffffff;
  215. bh = (regs->regs[33]) >> 32;
  216. bl = (regs->regs[33]) & 0xffffffff;
  217. ch = (regs->regs[34]) >> 32;
  218. cl = (regs->regs[34]) & 0xffffffff;
  219. printk("R32 : %08Lx%08Lx R33 : %08Lx%08Lx R34 : %08Lx%08Lx\n",
  220. ah, al, bh, bl, ch, cl);
  221. ah = (regs->regs[35]) >> 32;
  222. al = (regs->regs[35]) & 0xffffffff;
  223. bh = (regs->regs[36]) >> 32;
  224. bl = (regs->regs[36]) & 0xffffffff;
  225. ch = (regs->regs[37]) >> 32;
  226. cl = (regs->regs[37]) & 0xffffffff;
  227. printk("R35 : %08Lx%08Lx R36 : %08Lx%08Lx R37 : %08Lx%08Lx\n",
  228. ah, al, bh, bl, ch, cl);
  229. ah = (regs->regs[38]) >> 32;
  230. al = (regs->regs[38]) & 0xffffffff;
  231. bh = (regs->regs[39]) >> 32;
  232. bl = (regs->regs[39]) & 0xffffffff;
  233. ch = (regs->regs[40]) >> 32;
  234. cl = (regs->regs[40]) & 0xffffffff;
  235. printk("R38 : %08Lx%08Lx R39 : %08Lx%08Lx R40 : %08Lx%08Lx\n",
  236. ah, al, bh, bl, ch, cl);
  237. ah = (regs->regs[41]) >> 32;
  238. al = (regs->regs[41]) & 0xffffffff;
  239. bh = (regs->regs[42]) >> 32;
  240. bl = (regs->regs[42]) & 0xffffffff;
  241. ch = (regs->regs[43]) >> 32;
  242. cl = (regs->regs[43]) & 0xffffffff;
  243. printk("R41 : %08Lx%08Lx R42 : %08Lx%08Lx R43 : %08Lx%08Lx\n",
  244. ah, al, bh, bl, ch, cl);
  245. ah = (regs->regs[44]) >> 32;
  246. al = (regs->regs[44]) & 0xffffffff;
  247. bh = (regs->regs[45]) >> 32;
  248. bl = (regs->regs[45]) & 0xffffffff;
  249. ch = (regs->regs[46]) >> 32;
  250. cl = (regs->regs[46]) & 0xffffffff;
  251. printk("R44 : %08Lx%08Lx R45 : %08Lx%08Lx R46 : %08Lx%08Lx\n",
  252. ah, al, bh, bl, ch, cl);
  253. ah = (regs->regs[47]) >> 32;
  254. al = (regs->regs[47]) & 0xffffffff;
  255. bh = (regs->regs[48]) >> 32;
  256. bl = (regs->regs[48]) & 0xffffffff;
  257. ch = (regs->regs[49]) >> 32;
  258. cl = (regs->regs[49]) & 0xffffffff;
  259. printk("R47 : %08Lx%08Lx R48 : %08Lx%08Lx R49 : %08Lx%08Lx\n",
  260. ah, al, bh, bl, ch, cl);
  261. ah = (regs->regs[50]) >> 32;
  262. al = (regs->regs[50]) & 0xffffffff;
  263. bh = (regs->regs[51]) >> 32;
  264. bl = (regs->regs[51]) & 0xffffffff;
  265. ch = (regs->regs[52]) >> 32;
  266. cl = (regs->regs[52]) & 0xffffffff;
  267. printk("R50 : %08Lx%08Lx R51 : %08Lx%08Lx R52 : %08Lx%08Lx\n",
  268. ah, al, bh, bl, ch, cl);
  269. ah = (regs->regs[53]) >> 32;
  270. al = (regs->regs[53]) & 0xffffffff;
  271. bh = (regs->regs[54]) >> 32;
  272. bl = (regs->regs[54]) & 0xffffffff;
  273. ch = (regs->regs[55]) >> 32;
  274. cl = (regs->regs[55]) & 0xffffffff;
  275. printk("R53 : %08Lx%08Lx R54 : %08Lx%08Lx R55 : %08Lx%08Lx\n",
  276. ah, al, bh, bl, ch, cl);
  277. ah = (regs->regs[56]) >> 32;
  278. al = (regs->regs[56]) & 0xffffffff;
  279. bh = (regs->regs[57]) >> 32;
  280. bl = (regs->regs[57]) & 0xffffffff;
  281. ch = (regs->regs[58]) >> 32;
  282. cl = (regs->regs[58]) & 0xffffffff;
  283. printk("R56 : %08Lx%08Lx R57 : %08Lx%08Lx R58 : %08Lx%08Lx\n",
  284. ah, al, bh, bl, ch, cl);
  285. ah = (regs->regs[59]) >> 32;
  286. al = (regs->regs[59]) & 0xffffffff;
  287. bh = (regs->regs[60]) >> 32;
  288. bl = (regs->regs[60]) & 0xffffffff;
  289. ch = (regs->regs[61]) >> 32;
  290. cl = (regs->regs[61]) & 0xffffffff;
  291. printk("R59 : %08Lx%08Lx R60 : %08Lx%08Lx R61 : %08Lx%08Lx\n",
  292. ah, al, bh, bl, ch, cl);
  293. ah = (regs->regs[62]) >> 32;
  294. al = (regs->regs[62]) & 0xffffffff;
  295. bh = (regs->tregs[0]) >> 32;
  296. bl = (regs->tregs[0]) & 0xffffffff;
  297. ch = (regs->tregs[1]) >> 32;
  298. cl = (regs->tregs[1]) & 0xffffffff;
  299. printk("R62 : %08Lx%08Lx T0 : %08Lx%08Lx T1 : %08Lx%08Lx\n",
  300. ah, al, bh, bl, ch, cl);
  301. ah = (regs->tregs[2]) >> 32;
  302. al = (regs->tregs[2]) & 0xffffffff;
  303. bh = (regs->tregs[3]) >> 32;
  304. bl = (regs->tregs[3]) & 0xffffffff;
  305. ch = (regs->tregs[4]) >> 32;
  306. cl = (regs->tregs[4]) & 0xffffffff;
  307. printk("T2 : %08Lx%08Lx T3 : %08Lx%08Lx T4 : %08Lx%08Lx\n",
  308. ah, al, bh, bl, ch, cl);
  309. ah = (regs->tregs[5]) >> 32;
  310. al = (regs->tregs[5]) & 0xffffffff;
  311. bh = (regs->tregs[6]) >> 32;
  312. bl = (regs->tregs[6]) & 0xffffffff;
  313. ch = (regs->tregs[7]) >> 32;
  314. cl = (regs->tregs[7]) & 0xffffffff;
  315. printk("T5 : %08Lx%08Lx T6 : %08Lx%08Lx T7 : %08Lx%08Lx\n",
  316. ah, al, bh, bl, ch, cl);
  317. /*
  318. * If we're in kernel mode, dump the stack too..
  319. */
  320. if (!user_mode(regs)) {
  321. void show_stack(struct task_struct *tsk, unsigned long *sp);
  322. unsigned long sp = regs->regs[15] & 0xffffffff;
  323. struct task_struct *tsk = get_current();
  324. tsk->thread.kregs = regs;
  325. show_stack(tsk, (unsigned long *)sp);
  326. }
  327. }
  328. struct task_struct * alloc_task_struct(void)
  329. {
  330. /* Get task descriptor pages */
  331. return (struct task_struct *)
  332. __get_free_pages(GFP_KERNEL, get_order(THREAD_SIZE));
  333. }
  334. void free_task_struct(struct task_struct *p)
  335. {
  336. free_pages((unsigned long) p, get_order(THREAD_SIZE));
  337. }
  338. /*
  339. * Create a kernel thread
  340. */
  341. ATTRIB_NORET void kernel_thread_helper(void *arg, int (*fn)(void *))
  342. {
  343. do_exit(fn(arg));
  344. }
  345. /*
  346. * This is the mechanism for creating a new kernel thread.
  347. *
  348. * NOTE! Only a kernel-only process(ie the swapper or direct descendants
  349. * who haven't done an "execve()") should use this: it will work within
  350. * a system call from a "real" process, but the process memory space will
  351. * not be freed until both the parent and the child have exited.
  352. */
  353. int kernel_thread(int (*fn)(void *), void * arg, unsigned long flags)
  354. {
  355. struct pt_regs regs;
  356. memset(&regs, 0, sizeof(regs));
  357. regs.regs[2] = (unsigned long)arg;
  358. regs.regs[3] = (unsigned long)fn;
  359. regs.pc = (unsigned long)kernel_thread_helper;
  360. regs.sr = (1 << 30);
  361. return do_fork(flags | CLONE_VM | CLONE_UNTRACED, 0,
  362. &regs, 0, NULL, NULL);
  363. }
  364. /*
  365. * Free current thread data structures etc..
  366. */
  367. void exit_thread(void)
  368. {
  369. /*
  370. * See arch/sparc/kernel/process.c for the precedent for doing
  371. * this -- RPC.
  372. *
  373. * The SH-5 FPU save/restore approach relies on
  374. * last_task_used_math pointing to a live task_struct. When
  375. * another task tries to use the FPU for the 1st time, the FPUDIS
  376. * trap handling (see arch/sh/kernel/cpu/sh5/fpu.c) will save the
  377. * existing FPU state to the FP regs field within
  378. * last_task_used_math before re-loading the new task's FPU state
  379. * (or initialising it if the FPU has been used before). So if
  380. * last_task_used_math is stale, and its page has already been
  381. * re-allocated for another use, the consequences are rather
  382. * grim. Unless we null it here, there is no other path through
  383. * which it would get safely nulled.
  384. */
  385. #ifdef CONFIG_SH_FPU
  386. if (last_task_used_math == current) {
  387. last_task_used_math = NULL;
  388. }
  389. #endif
  390. }
  391. void flush_thread(void)
  392. {
  393. /* Called by fs/exec.c (flush_old_exec) to remove traces of a
  394. * previously running executable. */
  395. #ifdef CONFIG_SH_FPU
  396. if (last_task_used_math == current) {
  397. last_task_used_math = NULL;
  398. }
  399. /* Force FPU state to be reinitialised after exec */
  400. clear_used_math();
  401. #endif
  402. /* if we are a kernel thread, about to change to user thread,
  403. * update kreg
  404. */
  405. if(current->thread.kregs==&fake_swapper_regs) {
  406. current->thread.kregs =
  407. ((struct pt_regs *)(THREAD_SIZE + (unsigned long) current) - 1);
  408. current->thread.uregs = current->thread.kregs;
  409. }
  410. }
  411. void release_thread(struct task_struct *dead_task)
  412. {
  413. /* do nothing */
  414. }
  415. /* Fill in the fpu structure for a core dump.. */
  416. int dump_fpu(struct pt_regs *regs, elf_fpregset_t *fpu)
  417. {
  418. #ifdef CONFIG_SH_FPU
  419. int fpvalid;
  420. struct task_struct *tsk = current;
  421. fpvalid = !!tsk_used_math(tsk);
  422. if (fpvalid) {
  423. if (current == last_task_used_math) {
  424. enable_fpu();
  425. save_fpu(tsk, regs);
  426. disable_fpu();
  427. last_task_used_math = 0;
  428. regs->sr |= SR_FD;
  429. }
  430. memcpy(fpu, &tsk->thread.fpu.hard, sizeof(*fpu));
  431. }
  432. return fpvalid;
  433. #else
  434. return 0; /* Task didn't use the fpu at all. */
  435. #endif
  436. }
  437. asmlinkage void ret_from_fork(void);
  438. int copy_thread(int nr, unsigned long clone_flags, unsigned long usp,
  439. unsigned long unused,
  440. struct task_struct *p, struct pt_regs *regs)
  441. {
  442. struct pt_regs *childregs;
  443. unsigned long long se; /* Sign extension */
  444. #ifdef CONFIG_SH_FPU
  445. if(last_task_used_math == current) {
  446. enable_fpu();
  447. save_fpu(current, regs);
  448. disable_fpu();
  449. last_task_used_math = NULL;
  450. regs->sr |= SR_FD;
  451. }
  452. #endif
  453. /* Copy from sh version */
  454. childregs = (struct pt_regs *)(THREAD_SIZE + task_stack_page(p)) - 1;
  455. *childregs = *regs;
  456. if (user_mode(regs)) {
  457. childregs->regs[15] = usp;
  458. p->thread.uregs = childregs;
  459. } else {
  460. childregs->regs[15] = (unsigned long)task_stack_page(p) + THREAD_SIZE;
  461. }
  462. childregs->regs[9] = 0; /* Set return value for child */
  463. childregs->sr |= SR_FD; /* Invalidate FPU flag */
  464. p->thread.sp = (unsigned long) childregs;
  465. p->thread.pc = (unsigned long) ret_from_fork;
  466. /*
  467. * Sign extend the edited stack.
  468. * Note that thread.pc and thread.pc will stay
  469. * 32-bit wide and context switch must take care
  470. * of NEFF sign extension.
  471. */
  472. se = childregs->regs[15];
  473. se = (se & NEFF_SIGN) ? (se | NEFF_MASK) : se;
  474. childregs->regs[15] = se;
  475. return 0;
  476. }
  477. asmlinkage int sys_fork(unsigned long r2, unsigned long r3,
  478. unsigned long r4, unsigned long r5,
  479. unsigned long r6, unsigned long r7,
  480. struct pt_regs *pregs)
  481. {
  482. return do_fork(SIGCHLD, pregs->regs[15], pregs, 0, 0, 0);
  483. }
  484. asmlinkage int sys_clone(unsigned long clone_flags, unsigned long newsp,
  485. unsigned long r4, unsigned long r5,
  486. unsigned long r6, unsigned long r7,
  487. struct pt_regs *pregs)
  488. {
  489. if (!newsp)
  490. newsp = pregs->regs[15];
  491. return do_fork(clone_flags, newsp, pregs, 0, 0, 0);
  492. }
  493. /*
  494. * This is trivial, and on the face of it looks like it
  495. * could equally well be done in user mode.
  496. *
  497. * Not so, for quite unobvious reasons - register pressure.
  498. * In user mode vfork() cannot have a stack frame, and if
  499. * done by calling the "clone()" system call directly, you
  500. * do not have enough call-clobbered registers to hold all
  501. * the information you need.
  502. */
  503. asmlinkage int sys_vfork(unsigned long r2, unsigned long r3,
  504. unsigned long r4, unsigned long r5,
  505. unsigned long r6, unsigned long r7,
  506. struct pt_regs *pregs)
  507. {
  508. return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, pregs->regs[15], pregs, 0, 0, 0);
  509. }
  510. /*
  511. * sys_execve() executes a new program.
  512. */
  513. asmlinkage int sys_execve(char *ufilename, char **uargv,
  514. char **uenvp, unsigned long r5,
  515. unsigned long r6, unsigned long r7,
  516. struct pt_regs *pregs)
  517. {
  518. int error;
  519. char *filename;
  520. lock_kernel();
  521. filename = getname((char __user *)ufilename);
  522. error = PTR_ERR(filename);
  523. if (IS_ERR(filename))
  524. goto out;
  525. error = do_execve(filename,
  526. (char __user * __user *)uargv,
  527. (char __user * __user *)uenvp,
  528. pregs);
  529. if (error == 0) {
  530. task_lock(current);
  531. current->ptrace &= ~PT_DTRACE;
  532. task_unlock(current);
  533. }
  534. putname(filename);
  535. out:
  536. unlock_kernel();
  537. return error;
  538. }
  539. /*
  540. * These bracket the sleeping functions..
  541. */
  542. extern void interruptible_sleep_on(wait_queue_head_t *q);
  543. #define mid_sched ((unsigned long) interruptible_sleep_on)
  544. #ifdef CONFIG_FRAME_POINTER
  545. static int in_sh64_switch_to(unsigned long pc)
  546. {
  547. extern char __sh64_switch_to_end;
  548. /* For a sleeping task, the PC is somewhere in the middle of the function,
  549. so we don't have to worry about masking the LSB off */
  550. return (pc >= (unsigned long) sh64_switch_to) &&
  551. (pc < (unsigned long) &__sh64_switch_to_end);
  552. }
  553. #endif
  554. unsigned long get_wchan(struct task_struct *p)
  555. {
  556. unsigned long pc;
  557. if (!p || p == current || p->state == TASK_RUNNING)
  558. return 0;
  559. /*
  560. * The same comment as on the Alpha applies here, too ...
  561. */
  562. pc = thread_saved_pc(p);
  563. #ifdef CONFIG_FRAME_POINTER
  564. if (in_sh64_switch_to(pc)) {
  565. unsigned long schedule_fp;
  566. unsigned long sh64_switch_to_fp;
  567. unsigned long schedule_caller_pc;
  568. sh64_switch_to_fp = (long) p->thread.sp;
  569. /* r14 is saved at offset 4 in the sh64_switch_to frame */
  570. schedule_fp = *(unsigned long *) (long)(sh64_switch_to_fp + 4);
  571. /* and the caller of 'schedule' is (currently!) saved at offset 24
  572. in the frame of schedule (from disasm) */
  573. schedule_caller_pc = *(unsigned long *) (long)(schedule_fp + 24);
  574. return schedule_caller_pc;
  575. }
  576. #endif
  577. return pc;
  578. }
  579. /* Provide a /proc/asids file that lists out the
  580. ASIDs currently associated with the processes. (If the DM.PC register is
  581. examined through the debug link, this shows ASID + PC. To make use of this,
  582. the PID->ASID relationship needs to be known. This is primarily for
  583. debugging.)
  584. */
  585. #if defined(CONFIG_SH64_PROC_ASIDS)
  586. static int
  587. asids_proc_info(char *buf, char **start, off_t fpos, int length, int *eof, void *data)
  588. {
  589. int len=0;
  590. struct task_struct *p;
  591. read_lock(&tasklist_lock);
  592. for_each_process(p) {
  593. int pid = p->pid;
  594. if (!pid)
  595. continue;
  596. if (p->mm)
  597. len += sprintf(buf+len, "%5d : %02lx\n", pid,
  598. asid_cache(smp_processor_id()));
  599. else
  600. len += sprintf(buf+len, "%5d : (none)\n", pid);
  601. }
  602. read_unlock(&tasklist_lock);
  603. *eof = 1;
  604. return len;
  605. }
  606. static int __init register_proc_asids(void)
  607. {
  608. create_proc_read_entry("asids", 0, NULL, asids_proc_info, NULL);
  609. return 0;
  610. }
  611. __initcall(register_proc_asids);
  612. #endif