intelfbhw.c 49 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055
  1. /*
  2. * intelfb
  3. *
  4. * Linux framebuffer driver for Intel(R) 865G integrated graphics chips.
  5. *
  6. * Copyright © 2002, 2003 David Dawes <dawes@xfree86.org>
  7. * 2004 Sylvain Meyer
  8. *
  9. * This driver consists of two parts. The first part (intelfbdrv.c) provides
  10. * the basic fbdev interfaces, is derived in part from the radeonfb and
  11. * vesafb drivers, and is covered by the GPL. The second part (intelfbhw.c)
  12. * provides the code to program the hardware. Most of it is derived from
  13. * the i810/i830 XFree86 driver. The HW-specific code is covered here
  14. * under a dual license (GPL and MIT/XFree86 license).
  15. *
  16. * Author: David Dawes
  17. *
  18. */
  19. /* $DHD: intelfb/intelfbhw.c,v 1.9 2003/06/27 15:06:25 dawes Exp $ */
  20. #include <linux/module.h>
  21. #include <linux/kernel.h>
  22. #include <linux/errno.h>
  23. #include <linux/string.h>
  24. #include <linux/mm.h>
  25. #include <linux/slab.h>
  26. #include <linux/delay.h>
  27. #include <linux/fb.h>
  28. #include <linux/ioport.h>
  29. #include <linux/init.h>
  30. #include <linux/pci.h>
  31. #include <linux/vmalloc.h>
  32. #include <linux/pagemap.h>
  33. #include <linux/interrupt.h>
  34. #include <asm/io.h>
  35. #include "intelfb.h"
  36. #include "intelfbhw.h"
  37. struct pll_min_max {
  38. int min_m, max_m, min_m1, max_m1;
  39. int min_m2, max_m2, min_n, max_n;
  40. int min_p, max_p, min_p1, max_p1;
  41. int min_vco, max_vco, p_transition_clk, ref_clk;
  42. int p_inc_lo, p_inc_hi;
  43. };
  44. #define PLLS_I8xx 0
  45. #define PLLS_I9xx 1
  46. #define PLLS_MAX 2
  47. static struct pll_min_max plls[PLLS_MAX] = {
  48. { 108, 140, 18, 26,
  49. 6, 16, 3, 16,
  50. 4, 128, 0, 31,
  51. 930000, 1400000, 165000, 48000,
  52. 4, 2 }, /* I8xx */
  53. { 75, 120, 10, 20,
  54. 5, 9, 4, 7,
  55. 5, 80, 1, 8,
  56. 1400000, 2800000, 200000, 96000,
  57. 10, 5 } /* I9xx */
  58. };
  59. int intelfbhw_get_chipset(struct pci_dev *pdev, struct intelfb_info *dinfo)
  60. {
  61. u32 tmp;
  62. if (!pdev || !dinfo)
  63. return 1;
  64. switch (pdev->device) {
  65. case PCI_DEVICE_ID_INTEL_830M:
  66. dinfo->name = "Intel(R) 830M";
  67. dinfo->chipset = INTEL_830M;
  68. dinfo->mobile = 1;
  69. dinfo->pll_index = PLLS_I8xx;
  70. return 0;
  71. case PCI_DEVICE_ID_INTEL_845G:
  72. dinfo->name = "Intel(R) 845G";
  73. dinfo->chipset = INTEL_845G;
  74. dinfo->mobile = 0;
  75. dinfo->pll_index = PLLS_I8xx;
  76. return 0;
  77. case PCI_DEVICE_ID_INTEL_85XGM:
  78. tmp = 0;
  79. dinfo->mobile = 1;
  80. dinfo->pll_index = PLLS_I8xx;
  81. pci_read_config_dword(pdev, INTEL_85X_CAPID, &tmp);
  82. switch ((tmp >> INTEL_85X_VARIANT_SHIFT) &
  83. INTEL_85X_VARIANT_MASK) {
  84. case INTEL_VAR_855GME:
  85. dinfo->name = "Intel(R) 855GME";
  86. dinfo->chipset = INTEL_855GME;
  87. return 0;
  88. case INTEL_VAR_855GM:
  89. dinfo->name = "Intel(R) 855GM";
  90. dinfo->chipset = INTEL_855GM;
  91. return 0;
  92. case INTEL_VAR_852GME:
  93. dinfo->name = "Intel(R) 852GME";
  94. dinfo->chipset = INTEL_852GME;
  95. return 0;
  96. case INTEL_VAR_852GM:
  97. dinfo->name = "Intel(R) 852GM";
  98. dinfo->chipset = INTEL_852GM;
  99. return 0;
  100. default:
  101. dinfo->name = "Intel(R) 852GM/855GM";
  102. dinfo->chipset = INTEL_85XGM;
  103. return 0;
  104. }
  105. break;
  106. case PCI_DEVICE_ID_INTEL_865G:
  107. dinfo->name = "Intel(R) 865G";
  108. dinfo->chipset = INTEL_865G;
  109. dinfo->mobile = 0;
  110. dinfo->pll_index = PLLS_I8xx;
  111. return 0;
  112. case PCI_DEVICE_ID_INTEL_915G:
  113. dinfo->name = "Intel(R) 915G";
  114. dinfo->chipset = INTEL_915G;
  115. dinfo->mobile = 0;
  116. dinfo->pll_index = PLLS_I9xx;
  117. return 0;
  118. case PCI_DEVICE_ID_INTEL_915GM:
  119. dinfo->name = "Intel(R) 915GM";
  120. dinfo->chipset = INTEL_915GM;
  121. dinfo->mobile = 1;
  122. dinfo->pll_index = PLLS_I9xx;
  123. return 0;
  124. case PCI_DEVICE_ID_INTEL_945G:
  125. dinfo->name = "Intel(R) 945G";
  126. dinfo->chipset = INTEL_945G;
  127. dinfo->mobile = 0;
  128. dinfo->pll_index = PLLS_I9xx;
  129. return 0;
  130. case PCI_DEVICE_ID_INTEL_945GM:
  131. dinfo->name = "Intel(R) 945GM";
  132. dinfo->chipset = INTEL_945GM;
  133. dinfo->mobile = 1;
  134. dinfo->pll_index = PLLS_I9xx;
  135. return 0;
  136. default:
  137. return 1;
  138. }
  139. }
  140. int intelfbhw_get_memory(struct pci_dev *pdev, int *aperture_size,
  141. int *stolen_size)
  142. {
  143. struct pci_dev *bridge_dev;
  144. u16 tmp;
  145. int stolen_overhead;
  146. if (!pdev || !aperture_size || !stolen_size)
  147. return 1;
  148. /* Find the bridge device. It is always 0:0.0 */
  149. if (!(bridge_dev = pci_get_bus_and_slot(0, PCI_DEVFN(0, 0)))) {
  150. ERR_MSG("cannot find bridge device\n");
  151. return 1;
  152. }
  153. /* Get the fb aperture size and "stolen" memory amount. */
  154. tmp = 0;
  155. pci_read_config_word(bridge_dev, INTEL_GMCH_CTRL, &tmp);
  156. pci_dev_put(bridge_dev);
  157. switch (pdev->device) {
  158. case PCI_DEVICE_ID_INTEL_915G:
  159. case PCI_DEVICE_ID_INTEL_915GM:
  160. case PCI_DEVICE_ID_INTEL_945G:
  161. case PCI_DEVICE_ID_INTEL_945GM:
  162. /* 915 and 945 chipsets support a 256MB aperture.
  163. Aperture size is determined by inspected the
  164. base address of the aperture. */
  165. if (pci_resource_start(pdev, 2) & 0x08000000)
  166. *aperture_size = MB(128);
  167. else
  168. *aperture_size = MB(256);
  169. break;
  170. default:
  171. if ((tmp & INTEL_GMCH_MEM_MASK) == INTEL_GMCH_MEM_64M)
  172. *aperture_size = MB(64);
  173. else
  174. *aperture_size = MB(128);
  175. break;
  176. }
  177. /* Stolen memory size is reduced by the GTT and the popup.
  178. GTT is 1K per MB of aperture size, and popup is 4K. */
  179. stolen_overhead = (*aperture_size / MB(1)) + 4;
  180. switch(pdev->device) {
  181. case PCI_DEVICE_ID_INTEL_830M:
  182. case PCI_DEVICE_ID_INTEL_845G:
  183. switch (tmp & INTEL_830_GMCH_GMS_MASK) {
  184. case INTEL_830_GMCH_GMS_STOLEN_512:
  185. *stolen_size = KB(512) - KB(stolen_overhead);
  186. return 0;
  187. case INTEL_830_GMCH_GMS_STOLEN_1024:
  188. *stolen_size = MB(1) - KB(stolen_overhead);
  189. return 0;
  190. case INTEL_830_GMCH_GMS_STOLEN_8192:
  191. *stolen_size = MB(8) - KB(stolen_overhead);
  192. return 0;
  193. case INTEL_830_GMCH_GMS_LOCAL:
  194. ERR_MSG("only local memory found\n");
  195. return 1;
  196. case INTEL_830_GMCH_GMS_DISABLED:
  197. ERR_MSG("video memory is disabled\n");
  198. return 1;
  199. default:
  200. ERR_MSG("unexpected GMCH_GMS value: 0x%02x\n",
  201. tmp & INTEL_830_GMCH_GMS_MASK);
  202. return 1;
  203. }
  204. break;
  205. default:
  206. switch (tmp & INTEL_855_GMCH_GMS_MASK) {
  207. case INTEL_855_GMCH_GMS_STOLEN_1M:
  208. *stolen_size = MB(1) - KB(stolen_overhead);
  209. return 0;
  210. case INTEL_855_GMCH_GMS_STOLEN_4M:
  211. *stolen_size = MB(4) - KB(stolen_overhead);
  212. return 0;
  213. case INTEL_855_GMCH_GMS_STOLEN_8M:
  214. *stolen_size = MB(8) - KB(stolen_overhead);
  215. return 0;
  216. case INTEL_855_GMCH_GMS_STOLEN_16M:
  217. *stolen_size = MB(16) - KB(stolen_overhead);
  218. return 0;
  219. case INTEL_855_GMCH_GMS_STOLEN_32M:
  220. *stolen_size = MB(32) - KB(stolen_overhead);
  221. return 0;
  222. case INTEL_915G_GMCH_GMS_STOLEN_48M:
  223. *stolen_size = MB(48) - KB(stolen_overhead);
  224. return 0;
  225. case INTEL_915G_GMCH_GMS_STOLEN_64M:
  226. *stolen_size = MB(64) - KB(stolen_overhead);
  227. return 0;
  228. case INTEL_855_GMCH_GMS_DISABLED:
  229. ERR_MSG("video memory is disabled\n");
  230. return 0;
  231. default:
  232. ERR_MSG("unexpected GMCH_GMS value: 0x%02x\n",
  233. tmp & INTEL_855_GMCH_GMS_MASK);
  234. return 1;
  235. }
  236. }
  237. }
  238. int intelfbhw_check_non_crt(struct intelfb_info *dinfo)
  239. {
  240. int dvo = 0;
  241. if (INREG(LVDS) & PORT_ENABLE)
  242. dvo |= LVDS_PORT;
  243. if (INREG(DVOA) & PORT_ENABLE)
  244. dvo |= DVOA_PORT;
  245. if (INREG(DVOB) & PORT_ENABLE)
  246. dvo |= DVOB_PORT;
  247. if (INREG(DVOC) & PORT_ENABLE)
  248. dvo |= DVOC_PORT;
  249. return dvo;
  250. }
  251. const char * intelfbhw_dvo_to_string(int dvo)
  252. {
  253. if (dvo & DVOA_PORT)
  254. return "DVO port A";
  255. else if (dvo & DVOB_PORT)
  256. return "DVO port B";
  257. else if (dvo & DVOC_PORT)
  258. return "DVO port C";
  259. else if (dvo & LVDS_PORT)
  260. return "LVDS port";
  261. else
  262. return NULL;
  263. }
  264. int intelfbhw_validate_mode(struct intelfb_info *dinfo,
  265. struct fb_var_screeninfo *var)
  266. {
  267. int bytes_per_pixel;
  268. int tmp;
  269. #if VERBOSE > 0
  270. DBG_MSG("intelfbhw_validate_mode\n");
  271. #endif
  272. bytes_per_pixel = var->bits_per_pixel / 8;
  273. if (bytes_per_pixel == 3)
  274. bytes_per_pixel = 4;
  275. /* Check if enough video memory. */
  276. tmp = var->yres_virtual * var->xres_virtual * bytes_per_pixel;
  277. if (tmp > dinfo->fb.size) {
  278. WRN_MSG("Not enough video ram for mode "
  279. "(%d KByte vs %d KByte).\n",
  280. BtoKB(tmp), BtoKB(dinfo->fb.size));
  281. return 1;
  282. }
  283. /* Check if x/y limits are OK. */
  284. if (var->xres - 1 > HACTIVE_MASK) {
  285. WRN_MSG("X resolution too large (%d vs %d).\n",
  286. var->xres, HACTIVE_MASK + 1);
  287. return 1;
  288. }
  289. if (var->yres - 1 > VACTIVE_MASK) {
  290. WRN_MSG("Y resolution too large (%d vs %d).\n",
  291. var->yres, VACTIVE_MASK + 1);
  292. return 1;
  293. }
  294. /* Check for doublescan modes. */
  295. if (var->vmode & FB_VMODE_DOUBLE) {
  296. WRN_MSG("Mode is double-scan.\n");
  297. return 1;
  298. }
  299. /* Check if clock is OK. */
  300. tmp = 1000000000 / var->pixclock;
  301. if (tmp < MIN_CLOCK) {
  302. WRN_MSG("Pixel clock is too low (%d MHz vs %d MHz).\n",
  303. (tmp + 500) / 1000, MIN_CLOCK / 1000);
  304. return 1;
  305. }
  306. if (tmp > MAX_CLOCK) {
  307. WRN_MSG("Pixel clock is too high (%d MHz vs %d MHz).\n",
  308. (tmp + 500) / 1000, MAX_CLOCK / 1000);
  309. return 1;
  310. }
  311. return 0;
  312. }
  313. int intelfbhw_pan_display(struct fb_var_screeninfo *var, struct fb_info *info)
  314. {
  315. struct intelfb_info *dinfo = GET_DINFO(info);
  316. u32 offset, xoffset, yoffset;
  317. #if VERBOSE > 0
  318. DBG_MSG("intelfbhw_pan_display\n");
  319. #endif
  320. xoffset = ROUND_DOWN_TO(var->xoffset, 8);
  321. yoffset = var->yoffset;
  322. if ((xoffset + var->xres > var->xres_virtual) ||
  323. (yoffset + var->yres > var->yres_virtual))
  324. return -EINVAL;
  325. offset = (yoffset * dinfo->pitch) +
  326. (xoffset * var->bits_per_pixel) / 8;
  327. offset += dinfo->fb.offset << 12;
  328. dinfo->vsync.pan_offset = offset;
  329. if ((var->activate & FB_ACTIVATE_VBL) &&
  330. !intelfbhw_enable_irq(dinfo, 0))
  331. dinfo->vsync.pan_display = 1;
  332. else {
  333. dinfo->vsync.pan_display = 0;
  334. OUTREG(DSPABASE, offset);
  335. }
  336. return 0;
  337. }
  338. /* Blank the screen. */
  339. void intelfbhw_do_blank(int blank, struct fb_info *info)
  340. {
  341. struct intelfb_info *dinfo = GET_DINFO(info);
  342. u32 tmp;
  343. #if VERBOSE > 0
  344. DBG_MSG("intelfbhw_do_blank: blank is %d\n", blank);
  345. #endif
  346. /* Turn plane A on or off */
  347. tmp = INREG(DSPACNTR);
  348. if (blank)
  349. tmp &= ~DISPPLANE_PLANE_ENABLE;
  350. else
  351. tmp |= DISPPLANE_PLANE_ENABLE;
  352. OUTREG(DSPACNTR, tmp);
  353. /* Flush */
  354. tmp = INREG(DSPABASE);
  355. OUTREG(DSPABASE, tmp);
  356. /* Turn off/on the HW cursor */
  357. #if VERBOSE > 0
  358. DBG_MSG("cursor_on is %d\n", dinfo->cursor_on);
  359. #endif
  360. if (dinfo->cursor_on) {
  361. if (blank)
  362. intelfbhw_cursor_hide(dinfo);
  363. else
  364. intelfbhw_cursor_show(dinfo);
  365. dinfo->cursor_on = 1;
  366. }
  367. dinfo->cursor_blanked = blank;
  368. /* Set DPMS level */
  369. tmp = INREG(ADPA) & ~ADPA_DPMS_CONTROL_MASK;
  370. switch (blank) {
  371. case FB_BLANK_UNBLANK:
  372. case FB_BLANK_NORMAL:
  373. tmp |= ADPA_DPMS_D0;
  374. break;
  375. case FB_BLANK_VSYNC_SUSPEND:
  376. tmp |= ADPA_DPMS_D1;
  377. break;
  378. case FB_BLANK_HSYNC_SUSPEND:
  379. tmp |= ADPA_DPMS_D2;
  380. break;
  381. case FB_BLANK_POWERDOWN:
  382. tmp |= ADPA_DPMS_D3;
  383. break;
  384. }
  385. OUTREG(ADPA, tmp);
  386. return;
  387. }
  388. void intelfbhw_setcolreg(struct intelfb_info *dinfo, unsigned regno,
  389. unsigned red, unsigned green, unsigned blue,
  390. unsigned transp)
  391. {
  392. u32 palette_reg = (dinfo->pipe == PIPE_A) ?
  393. PALETTE_A : PALETTE_B;
  394. #if VERBOSE > 0
  395. DBG_MSG("intelfbhw_setcolreg: %d: (%d, %d, %d)\n",
  396. regno, red, green, blue);
  397. #endif
  398. OUTREG(palette_reg + (regno << 2),
  399. (red << PALETTE_8_RED_SHIFT) |
  400. (green << PALETTE_8_GREEN_SHIFT) |
  401. (blue << PALETTE_8_BLUE_SHIFT));
  402. }
  403. int intelfbhw_read_hw_state(struct intelfb_info *dinfo,
  404. struct intelfb_hwstate *hw, int flag)
  405. {
  406. int i;
  407. #if VERBOSE > 0
  408. DBG_MSG("intelfbhw_read_hw_state\n");
  409. #endif
  410. if (!hw || !dinfo)
  411. return -1;
  412. /* Read in as much of the HW state as possible. */
  413. hw->vga0_divisor = INREG(VGA0_DIVISOR);
  414. hw->vga1_divisor = INREG(VGA1_DIVISOR);
  415. hw->vga_pd = INREG(VGAPD);
  416. hw->dpll_a = INREG(DPLL_A);
  417. hw->dpll_b = INREG(DPLL_B);
  418. hw->fpa0 = INREG(FPA0);
  419. hw->fpa1 = INREG(FPA1);
  420. hw->fpb0 = INREG(FPB0);
  421. hw->fpb1 = INREG(FPB1);
  422. if (flag == 1)
  423. return flag;
  424. #if 0
  425. /* This seems to be a problem with the 852GM/855GM */
  426. for (i = 0; i < PALETTE_8_ENTRIES; i++) {
  427. hw->palette_a[i] = INREG(PALETTE_A + (i << 2));
  428. hw->palette_b[i] = INREG(PALETTE_B + (i << 2));
  429. }
  430. #endif
  431. if (flag == 2)
  432. return flag;
  433. hw->htotal_a = INREG(HTOTAL_A);
  434. hw->hblank_a = INREG(HBLANK_A);
  435. hw->hsync_a = INREG(HSYNC_A);
  436. hw->vtotal_a = INREG(VTOTAL_A);
  437. hw->vblank_a = INREG(VBLANK_A);
  438. hw->vsync_a = INREG(VSYNC_A);
  439. hw->src_size_a = INREG(SRC_SIZE_A);
  440. hw->bclrpat_a = INREG(BCLRPAT_A);
  441. hw->htotal_b = INREG(HTOTAL_B);
  442. hw->hblank_b = INREG(HBLANK_B);
  443. hw->hsync_b = INREG(HSYNC_B);
  444. hw->vtotal_b = INREG(VTOTAL_B);
  445. hw->vblank_b = INREG(VBLANK_B);
  446. hw->vsync_b = INREG(VSYNC_B);
  447. hw->src_size_b = INREG(SRC_SIZE_B);
  448. hw->bclrpat_b = INREG(BCLRPAT_B);
  449. if (flag == 3)
  450. return flag;
  451. hw->adpa = INREG(ADPA);
  452. hw->dvoa = INREG(DVOA);
  453. hw->dvob = INREG(DVOB);
  454. hw->dvoc = INREG(DVOC);
  455. hw->dvoa_srcdim = INREG(DVOA_SRCDIM);
  456. hw->dvob_srcdim = INREG(DVOB_SRCDIM);
  457. hw->dvoc_srcdim = INREG(DVOC_SRCDIM);
  458. hw->lvds = INREG(LVDS);
  459. if (flag == 4)
  460. return flag;
  461. hw->pipe_a_conf = INREG(PIPEACONF);
  462. hw->pipe_b_conf = INREG(PIPEBCONF);
  463. hw->disp_arb = INREG(DISPARB);
  464. if (flag == 5)
  465. return flag;
  466. hw->cursor_a_control = INREG(CURSOR_A_CONTROL);
  467. hw->cursor_b_control = INREG(CURSOR_B_CONTROL);
  468. hw->cursor_a_base = INREG(CURSOR_A_BASEADDR);
  469. hw->cursor_b_base = INREG(CURSOR_B_BASEADDR);
  470. if (flag == 6)
  471. return flag;
  472. for (i = 0; i < 4; i++) {
  473. hw->cursor_a_palette[i] = INREG(CURSOR_A_PALETTE0 + (i << 2));
  474. hw->cursor_b_palette[i] = INREG(CURSOR_B_PALETTE0 + (i << 2));
  475. }
  476. if (flag == 7)
  477. return flag;
  478. hw->cursor_size = INREG(CURSOR_SIZE);
  479. if (flag == 8)
  480. return flag;
  481. hw->disp_a_ctrl = INREG(DSPACNTR);
  482. hw->disp_b_ctrl = INREG(DSPBCNTR);
  483. hw->disp_a_base = INREG(DSPABASE);
  484. hw->disp_b_base = INREG(DSPBBASE);
  485. hw->disp_a_stride = INREG(DSPASTRIDE);
  486. hw->disp_b_stride = INREG(DSPBSTRIDE);
  487. if (flag == 9)
  488. return flag;
  489. hw->vgacntrl = INREG(VGACNTRL);
  490. if (flag == 10)
  491. return flag;
  492. hw->add_id = INREG(ADD_ID);
  493. if (flag == 11)
  494. return flag;
  495. for (i = 0; i < 7; i++) {
  496. hw->swf0x[i] = INREG(SWF00 + (i << 2));
  497. hw->swf1x[i] = INREG(SWF10 + (i << 2));
  498. if (i < 3)
  499. hw->swf3x[i] = INREG(SWF30 + (i << 2));
  500. }
  501. for (i = 0; i < 8; i++)
  502. hw->fence[i] = INREG(FENCE + (i << 2));
  503. hw->instpm = INREG(INSTPM);
  504. hw->mem_mode = INREG(MEM_MODE);
  505. hw->fw_blc_0 = INREG(FW_BLC_0);
  506. hw->fw_blc_1 = INREG(FW_BLC_1);
  507. hw->hwstam = INREG16(HWSTAM);
  508. hw->ier = INREG16(IER);
  509. hw->iir = INREG16(IIR);
  510. hw->imr = INREG16(IMR);
  511. return 0;
  512. }
  513. static int calc_vclock3(int index, int m, int n, int p)
  514. {
  515. if (p == 0 || n == 0)
  516. return 0;
  517. return plls[index].ref_clk * m / n / p;
  518. }
  519. static int calc_vclock(int index, int m1, int m2, int n, int p1, int p2,
  520. int lvds)
  521. {
  522. struct pll_min_max *pll = &plls[index];
  523. u32 m, vco, p;
  524. m = (5 * (m1 + 2)) + (m2 + 2);
  525. n += 2;
  526. vco = pll->ref_clk * m / n;
  527. if (index == PLLS_I8xx)
  528. p = ((p1 + 2) * (1 << (p2 + 1)));
  529. else
  530. p = ((p1) * (p2 ? 5 : 10));
  531. return vco / p;
  532. }
  533. #if REGDUMP
  534. static void intelfbhw_get_p1p2(struct intelfb_info *dinfo, int dpll,
  535. int *o_p1, int *o_p2)
  536. {
  537. int p1, p2;
  538. if (IS_I9XX(dinfo)) {
  539. if (dpll & DPLL_P1_FORCE_DIV2)
  540. p1 = 1;
  541. else
  542. p1 = (dpll >> DPLL_P1_SHIFT) & 0xff;
  543. p1 = ffs(p1);
  544. p2 = (dpll >> DPLL_I9XX_P2_SHIFT) & DPLL_P2_MASK;
  545. } else {
  546. if (dpll & DPLL_P1_FORCE_DIV2)
  547. p1 = 0;
  548. else
  549. p1 = (dpll >> DPLL_P1_SHIFT) & DPLL_P1_MASK;
  550. p2 = (dpll >> DPLL_P2_SHIFT) & DPLL_P2_MASK;
  551. }
  552. *o_p1 = p1;
  553. *o_p2 = p2;
  554. }
  555. #endif
  556. void intelfbhw_print_hw_state(struct intelfb_info *dinfo,
  557. struct intelfb_hwstate *hw)
  558. {
  559. #if REGDUMP
  560. int i, m1, m2, n, p1, p2;
  561. int index = dinfo->pll_index;
  562. DBG_MSG("intelfbhw_print_hw_state\n");
  563. if (!hw)
  564. return;
  565. /* Read in as much of the HW state as possible. */
  566. printk("hw state dump start\n");
  567. printk(" VGA0_DIVISOR: 0x%08x\n", hw->vga0_divisor);
  568. printk(" VGA1_DIVISOR: 0x%08x\n", hw->vga1_divisor);
  569. printk(" VGAPD: 0x%08x\n", hw->vga_pd);
  570. n = (hw->vga0_divisor >> FP_N_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
  571. m1 = (hw->vga0_divisor >> FP_M1_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
  572. m2 = (hw->vga0_divisor >> FP_M2_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
  573. intelfbhw_get_p1p2(dinfo, hw->vga_pd, &p1, &p2);
  574. printk(" VGA0: (m1, m2, n, p1, p2) = (%d, %d, %d, %d, %d)\n",
  575. m1, m2, n, p1, p2);
  576. printk(" VGA0: clock is %d\n",
  577. calc_vclock(index, m1, m2, n, p1, p2, 0));
  578. n = (hw->vga1_divisor >> FP_N_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
  579. m1 = (hw->vga1_divisor >> FP_M1_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
  580. m2 = (hw->vga1_divisor >> FP_M2_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
  581. intelfbhw_get_p1p2(dinfo, hw->vga_pd, &p1, &p2);
  582. printk(" VGA1: (m1, m2, n, p1, p2) = (%d, %d, %d, %d, %d)\n",
  583. m1, m2, n, p1, p2);
  584. printk(" VGA1: clock is %d\n",
  585. calc_vclock(index, m1, m2, n, p1, p2, 0));
  586. printk(" DPLL_A: 0x%08x\n", hw->dpll_a);
  587. printk(" DPLL_B: 0x%08x\n", hw->dpll_b);
  588. printk(" FPA0: 0x%08x\n", hw->fpa0);
  589. printk(" FPA1: 0x%08x\n", hw->fpa1);
  590. printk(" FPB0: 0x%08x\n", hw->fpb0);
  591. printk(" FPB1: 0x%08x\n", hw->fpb1);
  592. n = (hw->fpa0 >> FP_N_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
  593. m1 = (hw->fpa0 >> FP_M1_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
  594. m2 = (hw->fpa0 >> FP_M2_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
  595. intelfbhw_get_p1p2(dinfo, hw->dpll_a, &p1, &p2);
  596. printk(" PLLA0: (m1, m2, n, p1, p2) = (%d, %d, %d, %d, %d)\n",
  597. m1, m2, n, p1, p2);
  598. printk(" PLLA0: clock is %d\n",
  599. calc_vclock(index, m1, m2, n, p1, p2, 0));
  600. n = (hw->fpa1 >> FP_N_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
  601. m1 = (hw->fpa1 >> FP_M1_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
  602. m2 = (hw->fpa1 >> FP_M2_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
  603. intelfbhw_get_p1p2(dinfo, hw->dpll_a, &p1, &p2);
  604. printk(" PLLA1: (m1, m2, n, p1, p2) = (%d, %d, %d, %d, %d)\n",
  605. m1, m2, n, p1, p2);
  606. printk(" PLLA1: clock is %d\n",
  607. calc_vclock(index, m1, m2, n, p1, p2, 0));
  608. #if 0
  609. printk(" PALETTE_A:\n");
  610. for (i = 0; i < PALETTE_8_ENTRIES)
  611. printk(" %3d: 0x%08x\n", i, hw->palette_a[i]);
  612. printk(" PALETTE_B:\n");
  613. for (i = 0; i < PALETTE_8_ENTRIES)
  614. printk(" %3d: 0x%08x\n", i, hw->palette_b[i]);
  615. #endif
  616. printk(" HTOTAL_A: 0x%08x\n", hw->htotal_a);
  617. printk(" HBLANK_A: 0x%08x\n", hw->hblank_a);
  618. printk(" HSYNC_A: 0x%08x\n", hw->hsync_a);
  619. printk(" VTOTAL_A: 0x%08x\n", hw->vtotal_a);
  620. printk(" VBLANK_A: 0x%08x\n", hw->vblank_a);
  621. printk(" VSYNC_A: 0x%08x\n", hw->vsync_a);
  622. printk(" SRC_SIZE_A: 0x%08x\n", hw->src_size_a);
  623. printk(" BCLRPAT_A: 0x%08x\n", hw->bclrpat_a);
  624. printk(" HTOTAL_B: 0x%08x\n", hw->htotal_b);
  625. printk(" HBLANK_B: 0x%08x\n", hw->hblank_b);
  626. printk(" HSYNC_B: 0x%08x\n", hw->hsync_b);
  627. printk(" VTOTAL_B: 0x%08x\n", hw->vtotal_b);
  628. printk(" VBLANK_B: 0x%08x\n", hw->vblank_b);
  629. printk(" VSYNC_B: 0x%08x\n", hw->vsync_b);
  630. printk(" SRC_SIZE_B: 0x%08x\n", hw->src_size_b);
  631. printk(" BCLRPAT_B: 0x%08x\n", hw->bclrpat_b);
  632. printk(" ADPA: 0x%08x\n", hw->adpa);
  633. printk(" DVOA: 0x%08x\n", hw->dvoa);
  634. printk(" DVOB: 0x%08x\n", hw->dvob);
  635. printk(" DVOC: 0x%08x\n", hw->dvoc);
  636. printk(" DVOA_SRCDIM: 0x%08x\n", hw->dvoa_srcdim);
  637. printk(" DVOB_SRCDIM: 0x%08x\n", hw->dvob_srcdim);
  638. printk(" DVOC_SRCDIM: 0x%08x\n", hw->dvoc_srcdim);
  639. printk(" LVDS: 0x%08x\n", hw->lvds);
  640. printk(" PIPEACONF: 0x%08x\n", hw->pipe_a_conf);
  641. printk(" PIPEBCONF: 0x%08x\n", hw->pipe_b_conf);
  642. printk(" DISPARB: 0x%08x\n", hw->disp_arb);
  643. printk(" CURSOR_A_CONTROL: 0x%08x\n", hw->cursor_a_control);
  644. printk(" CURSOR_B_CONTROL: 0x%08x\n", hw->cursor_b_control);
  645. printk(" CURSOR_A_BASEADDR: 0x%08x\n", hw->cursor_a_base);
  646. printk(" CURSOR_B_BASEADDR: 0x%08x\n", hw->cursor_b_base);
  647. printk(" CURSOR_A_PALETTE: ");
  648. for (i = 0; i < 4; i++) {
  649. printk("0x%08x", hw->cursor_a_palette[i]);
  650. if (i < 3)
  651. printk(", ");
  652. }
  653. printk("\n");
  654. printk(" CURSOR_B_PALETTE: ");
  655. for (i = 0; i < 4; i++) {
  656. printk("0x%08x", hw->cursor_b_palette[i]);
  657. if (i < 3)
  658. printk(", ");
  659. }
  660. printk("\n");
  661. printk(" CURSOR_SIZE: 0x%08x\n", hw->cursor_size);
  662. printk(" DSPACNTR: 0x%08x\n", hw->disp_a_ctrl);
  663. printk(" DSPBCNTR: 0x%08x\n", hw->disp_b_ctrl);
  664. printk(" DSPABASE: 0x%08x\n", hw->disp_a_base);
  665. printk(" DSPBBASE: 0x%08x\n", hw->disp_b_base);
  666. printk(" DSPASTRIDE: 0x%08x\n", hw->disp_a_stride);
  667. printk(" DSPBSTRIDE: 0x%08x\n", hw->disp_b_stride);
  668. printk(" VGACNTRL: 0x%08x\n", hw->vgacntrl);
  669. printk(" ADD_ID: 0x%08x\n", hw->add_id);
  670. for (i = 0; i < 7; i++) {
  671. printk(" SWF0%d 0x%08x\n", i,
  672. hw->swf0x[i]);
  673. }
  674. for (i = 0; i < 7; i++) {
  675. printk(" SWF1%d 0x%08x\n", i,
  676. hw->swf1x[i]);
  677. }
  678. for (i = 0; i < 3; i++) {
  679. printk(" SWF3%d 0x%08x\n", i,
  680. hw->swf3x[i]);
  681. }
  682. for (i = 0; i < 8; i++)
  683. printk(" FENCE%d 0x%08x\n", i,
  684. hw->fence[i]);
  685. printk(" INSTPM 0x%08x\n", hw->instpm);
  686. printk(" MEM_MODE 0x%08x\n", hw->mem_mode);
  687. printk(" FW_BLC_0 0x%08x\n", hw->fw_blc_0);
  688. printk(" FW_BLC_1 0x%08x\n", hw->fw_blc_1);
  689. printk(" HWSTAM 0x%04x\n", hw->hwstam);
  690. printk(" IER 0x%04x\n", hw->ier);
  691. printk(" IIR 0x%04x\n", hw->iir);
  692. printk(" IMR 0x%04x\n", hw->imr);
  693. printk("hw state dump end\n");
  694. #endif
  695. }
  696. /* Split the M parameter into M1 and M2. */
  697. static int splitm(int index, unsigned int m, unsigned int *retm1,
  698. unsigned int *retm2)
  699. {
  700. int m1, m2;
  701. int testm;
  702. struct pll_min_max *pll = &plls[index];
  703. /* no point optimising too much - brute force m */
  704. for (m1 = pll->min_m1; m1 < pll->max_m1 + 1; m1++) {
  705. for (m2 = pll->min_m2; m2 < pll->max_m2 + 1; m2++) {
  706. testm = (5 * (m1 + 2)) + (m2 + 2);
  707. if (testm == m) {
  708. *retm1 = (unsigned int)m1;
  709. *retm2 = (unsigned int)m2;
  710. return 0;
  711. }
  712. }
  713. }
  714. return 1;
  715. }
  716. /* Split the P parameter into P1 and P2. */
  717. static int splitp(int index, unsigned int p, unsigned int *retp1,
  718. unsigned int *retp2)
  719. {
  720. int p1, p2;
  721. struct pll_min_max *pll = &plls[index];
  722. if (index == PLLS_I9xx) {
  723. p2 = (p % 10) ? 1 : 0;
  724. p1 = p / (p2 ? 5 : 10);
  725. *retp1 = (unsigned int)p1;
  726. *retp2 = (unsigned int)p2;
  727. return 0;
  728. }
  729. if (p % 4 == 0)
  730. p2 = 1;
  731. else
  732. p2 = 0;
  733. p1 = (p / (1 << (p2 + 1))) - 2;
  734. if (p % 4 == 0 && p1 < pll->min_p1) {
  735. p2 = 0;
  736. p1 = (p / (1 << (p2 + 1))) - 2;
  737. }
  738. if (p1 < pll->min_p1 || p1 > pll->max_p1 ||
  739. (p1 + 2) * (1 << (p2 + 1)) != p) {
  740. return 1;
  741. } else {
  742. *retp1 = (unsigned int)p1;
  743. *retp2 = (unsigned int)p2;
  744. return 0;
  745. }
  746. }
  747. static int calc_pll_params(int index, int clock, u32 *retm1, u32 *retm2,
  748. u32 *retn, u32 *retp1, u32 *retp2, u32 *retclock)
  749. {
  750. u32 m1, m2, n, p1, p2, n1, testm;
  751. u32 f_vco, p, p_best = 0, m, f_out = 0;
  752. u32 err_max, err_target, err_best = 10000000;
  753. u32 n_best = 0, m_best = 0, f_best, f_err;
  754. u32 p_min, p_max, p_inc, div_max;
  755. struct pll_min_max *pll = &plls[index];
  756. /* Accept 0.5% difference, but aim for 0.1% */
  757. err_max = 5 * clock / 1000;
  758. err_target = clock / 1000;
  759. DBG_MSG("Clock is %d\n", clock);
  760. div_max = pll->max_vco / clock;
  761. p_inc = (clock <= pll->p_transition_clk) ? pll->p_inc_lo : pll->p_inc_hi;
  762. p_min = p_inc;
  763. p_max = ROUND_DOWN_TO(div_max, p_inc);
  764. if (p_min < pll->min_p)
  765. p_min = pll->min_p;
  766. if (p_max > pll->max_p)
  767. p_max = pll->max_p;
  768. DBG_MSG("p range is %d-%d (%d)\n", p_min, p_max, p_inc);
  769. p = p_min;
  770. do {
  771. if (splitp(index, p, &p1, &p2)) {
  772. WRN_MSG("cannot split p = %d\n", p);
  773. p += p_inc;
  774. continue;
  775. }
  776. n = pll->min_n;
  777. f_vco = clock * p;
  778. do {
  779. m = ROUND_UP_TO(f_vco * n, pll->ref_clk) / pll->ref_clk;
  780. if (m < pll->min_m)
  781. m = pll->min_m + 1;
  782. if (m > pll->max_m)
  783. m = pll->max_m - 1;
  784. for (testm = m - 1; testm <= m; testm++) {
  785. f_out = calc_vclock3(index, testm, n, p);
  786. if (splitm(index, testm, &m1, &m2)) {
  787. WRN_MSG("cannot split m = %d\n",
  788. testm);
  789. continue;
  790. }
  791. if (clock > f_out)
  792. f_err = clock - f_out;
  793. else/* slightly bias the error for bigger clocks */
  794. f_err = f_out - clock + 1;
  795. if (f_err < err_best) {
  796. m_best = testm;
  797. n_best = n;
  798. p_best = p;
  799. f_best = f_out;
  800. err_best = f_err;
  801. }
  802. }
  803. n++;
  804. } while ((n <= pll->max_n) && (f_out >= clock));
  805. p += p_inc;
  806. } while ((p <= p_max));
  807. if (!m_best) {
  808. WRN_MSG("cannot find parameters for clock %d\n", clock);
  809. return 1;
  810. }
  811. m = m_best;
  812. n = n_best;
  813. p = p_best;
  814. splitm(index, m, &m1, &m2);
  815. splitp(index, p, &p1, &p2);
  816. n1 = n - 2;
  817. DBG_MSG("m, n, p: %d (%d,%d), %d (%d), %d (%d,%d), "
  818. "f: %d (%d), VCO: %d\n",
  819. m, m1, m2, n, n1, p, p1, p2,
  820. calc_vclock3(index, m, n, p),
  821. calc_vclock(index, m1, m2, n1, p1, p2, 0),
  822. calc_vclock3(index, m, n, p) * p);
  823. *retm1 = m1;
  824. *retm2 = m2;
  825. *retn = n1;
  826. *retp1 = p1;
  827. *retp2 = p2;
  828. *retclock = calc_vclock(index, m1, m2, n1, p1, p2, 0);
  829. return 0;
  830. }
  831. static __inline__ int check_overflow(u32 value, u32 limit,
  832. const char *description)
  833. {
  834. if (value > limit) {
  835. WRN_MSG("%s value %d exceeds limit %d\n",
  836. description, value, limit);
  837. return 1;
  838. }
  839. return 0;
  840. }
  841. /* It is assumed that hw is filled in with the initial state information. */
  842. int intelfbhw_mode_to_hw(struct intelfb_info *dinfo,
  843. struct intelfb_hwstate *hw,
  844. struct fb_var_screeninfo *var)
  845. {
  846. int pipe = PIPE_A;
  847. u32 *dpll, *fp0, *fp1;
  848. u32 m1, m2, n, p1, p2, clock_target, clock;
  849. u32 hsync_start, hsync_end, hblank_start, hblank_end, htotal, hactive;
  850. u32 vsync_start, vsync_end, vblank_start, vblank_end, vtotal, vactive;
  851. u32 vsync_pol, hsync_pol;
  852. u32 *vs, *vb, *vt, *hs, *hb, *ht, *ss, *pipe_conf;
  853. u32 stride_alignment;
  854. DBG_MSG("intelfbhw_mode_to_hw\n");
  855. /* Disable VGA */
  856. hw->vgacntrl |= VGA_DISABLE;
  857. /* Check whether pipe A or pipe B is enabled. */
  858. if (hw->pipe_a_conf & PIPECONF_ENABLE)
  859. pipe = PIPE_A;
  860. else if (hw->pipe_b_conf & PIPECONF_ENABLE)
  861. pipe = PIPE_B;
  862. /* Set which pipe's registers will be set. */
  863. if (pipe == PIPE_B) {
  864. dpll = &hw->dpll_b;
  865. fp0 = &hw->fpb0;
  866. fp1 = &hw->fpb1;
  867. hs = &hw->hsync_b;
  868. hb = &hw->hblank_b;
  869. ht = &hw->htotal_b;
  870. vs = &hw->vsync_b;
  871. vb = &hw->vblank_b;
  872. vt = &hw->vtotal_b;
  873. ss = &hw->src_size_b;
  874. pipe_conf = &hw->pipe_b_conf;
  875. } else {
  876. dpll = &hw->dpll_a;
  877. fp0 = &hw->fpa0;
  878. fp1 = &hw->fpa1;
  879. hs = &hw->hsync_a;
  880. hb = &hw->hblank_a;
  881. ht = &hw->htotal_a;
  882. vs = &hw->vsync_a;
  883. vb = &hw->vblank_a;
  884. vt = &hw->vtotal_a;
  885. ss = &hw->src_size_a;
  886. pipe_conf = &hw->pipe_a_conf;
  887. }
  888. /* Use ADPA register for sync control. */
  889. hw->adpa &= ~ADPA_USE_VGA_HVPOLARITY;
  890. /* sync polarity */
  891. hsync_pol = (var->sync & FB_SYNC_HOR_HIGH_ACT) ?
  892. ADPA_SYNC_ACTIVE_HIGH : ADPA_SYNC_ACTIVE_LOW;
  893. vsync_pol = (var->sync & FB_SYNC_VERT_HIGH_ACT) ?
  894. ADPA_SYNC_ACTIVE_HIGH : ADPA_SYNC_ACTIVE_LOW;
  895. hw->adpa &= ~((ADPA_SYNC_ACTIVE_MASK << ADPA_VSYNC_ACTIVE_SHIFT) |
  896. (ADPA_SYNC_ACTIVE_MASK << ADPA_HSYNC_ACTIVE_SHIFT));
  897. hw->adpa |= (hsync_pol << ADPA_HSYNC_ACTIVE_SHIFT) |
  898. (vsync_pol << ADPA_VSYNC_ACTIVE_SHIFT);
  899. /* Connect correct pipe to the analog port DAC */
  900. hw->adpa &= ~(PIPE_MASK << ADPA_PIPE_SELECT_SHIFT);
  901. hw->adpa |= (pipe << ADPA_PIPE_SELECT_SHIFT);
  902. /* Set DPMS state to D0 (on) */
  903. hw->adpa &= ~ADPA_DPMS_CONTROL_MASK;
  904. hw->adpa |= ADPA_DPMS_D0;
  905. hw->adpa |= ADPA_DAC_ENABLE;
  906. *dpll |= (DPLL_VCO_ENABLE | DPLL_VGA_MODE_DISABLE);
  907. *dpll &= ~(DPLL_RATE_SELECT_MASK | DPLL_REFERENCE_SELECT_MASK);
  908. *dpll |= (DPLL_REFERENCE_DEFAULT | DPLL_RATE_SELECT_FP0);
  909. /* Desired clock in kHz */
  910. clock_target = 1000000000 / var->pixclock;
  911. if (calc_pll_params(dinfo->pll_index, clock_target, &m1, &m2,
  912. &n, &p1, &p2, &clock)) {
  913. WRN_MSG("calc_pll_params failed\n");
  914. return 1;
  915. }
  916. /* Check for overflow. */
  917. if (check_overflow(p1, DPLL_P1_MASK, "PLL P1 parameter"))
  918. return 1;
  919. if (check_overflow(p2, DPLL_P2_MASK, "PLL P2 parameter"))
  920. return 1;
  921. if (check_overflow(m1, FP_DIVISOR_MASK, "PLL M1 parameter"))
  922. return 1;
  923. if (check_overflow(m2, FP_DIVISOR_MASK, "PLL M2 parameter"))
  924. return 1;
  925. if (check_overflow(n, FP_DIVISOR_MASK, "PLL N parameter"))
  926. return 1;
  927. *dpll &= ~DPLL_P1_FORCE_DIV2;
  928. *dpll &= ~((DPLL_P2_MASK << DPLL_P2_SHIFT) |
  929. (DPLL_P1_MASK << DPLL_P1_SHIFT));
  930. if (IS_I9XX(dinfo)) {
  931. *dpll |= (p2 << DPLL_I9XX_P2_SHIFT);
  932. *dpll |= (1 << (p1 - 1)) << DPLL_P1_SHIFT;
  933. } else
  934. *dpll |= (p2 << DPLL_P2_SHIFT) | (p1 << DPLL_P1_SHIFT);
  935. *fp0 = (n << FP_N_DIVISOR_SHIFT) |
  936. (m1 << FP_M1_DIVISOR_SHIFT) |
  937. (m2 << FP_M2_DIVISOR_SHIFT);
  938. *fp1 = *fp0;
  939. hw->dvob &= ~PORT_ENABLE;
  940. hw->dvoc &= ~PORT_ENABLE;
  941. /* Use display plane A. */
  942. hw->disp_a_ctrl |= DISPPLANE_PLANE_ENABLE;
  943. hw->disp_a_ctrl &= ~DISPPLANE_GAMMA_ENABLE;
  944. hw->disp_a_ctrl &= ~DISPPLANE_PIXFORMAT_MASK;
  945. switch (intelfb_var_to_depth(var)) {
  946. case 8:
  947. hw->disp_a_ctrl |= DISPPLANE_8BPP | DISPPLANE_GAMMA_ENABLE;
  948. break;
  949. case 15:
  950. hw->disp_a_ctrl |= DISPPLANE_15_16BPP;
  951. break;
  952. case 16:
  953. hw->disp_a_ctrl |= DISPPLANE_16BPP;
  954. break;
  955. case 24:
  956. hw->disp_a_ctrl |= DISPPLANE_32BPP_NO_ALPHA;
  957. break;
  958. }
  959. hw->disp_a_ctrl &= ~(PIPE_MASK << DISPPLANE_SEL_PIPE_SHIFT);
  960. hw->disp_a_ctrl |= (pipe << DISPPLANE_SEL_PIPE_SHIFT);
  961. /* Set CRTC registers. */
  962. hactive = var->xres;
  963. hsync_start = hactive + var->right_margin;
  964. hsync_end = hsync_start + var->hsync_len;
  965. htotal = hsync_end + var->left_margin;
  966. hblank_start = hactive;
  967. hblank_end = htotal;
  968. DBG_MSG("H: act %d, ss %d, se %d, tot %d bs %d, be %d\n",
  969. hactive, hsync_start, hsync_end, htotal, hblank_start,
  970. hblank_end);
  971. vactive = var->yres;
  972. vsync_start = vactive + var->lower_margin;
  973. vsync_end = vsync_start + var->vsync_len;
  974. vtotal = vsync_end + var->upper_margin;
  975. vblank_start = vactive;
  976. vblank_end = vtotal;
  977. vblank_end = vsync_end + 1;
  978. DBG_MSG("V: act %d, ss %d, se %d, tot %d bs %d, be %d\n",
  979. vactive, vsync_start, vsync_end, vtotal, vblank_start,
  980. vblank_end);
  981. /* Adjust for register values, and check for overflow. */
  982. hactive--;
  983. if (check_overflow(hactive, HACTIVE_MASK, "CRTC hactive"))
  984. return 1;
  985. hsync_start--;
  986. if (check_overflow(hsync_start, HSYNCSTART_MASK, "CRTC hsync_start"))
  987. return 1;
  988. hsync_end--;
  989. if (check_overflow(hsync_end, HSYNCEND_MASK, "CRTC hsync_end"))
  990. return 1;
  991. htotal--;
  992. if (check_overflow(htotal, HTOTAL_MASK, "CRTC htotal"))
  993. return 1;
  994. hblank_start--;
  995. if (check_overflow(hblank_start, HBLANKSTART_MASK, "CRTC hblank_start"))
  996. return 1;
  997. hblank_end--;
  998. if (check_overflow(hblank_end, HBLANKEND_MASK, "CRTC hblank_end"))
  999. return 1;
  1000. vactive--;
  1001. if (check_overflow(vactive, VACTIVE_MASK, "CRTC vactive"))
  1002. return 1;
  1003. vsync_start--;
  1004. if (check_overflow(vsync_start, VSYNCSTART_MASK, "CRTC vsync_start"))
  1005. return 1;
  1006. vsync_end--;
  1007. if (check_overflow(vsync_end, VSYNCEND_MASK, "CRTC vsync_end"))
  1008. return 1;
  1009. vtotal--;
  1010. if (check_overflow(vtotal, VTOTAL_MASK, "CRTC vtotal"))
  1011. return 1;
  1012. vblank_start--;
  1013. if (check_overflow(vblank_start, VBLANKSTART_MASK, "CRTC vblank_start"))
  1014. return 1;
  1015. vblank_end--;
  1016. if (check_overflow(vblank_end, VBLANKEND_MASK, "CRTC vblank_end"))
  1017. return 1;
  1018. *ht = (htotal << HTOTAL_SHIFT) | (hactive << HACTIVE_SHIFT);
  1019. *hb = (hblank_start << HBLANKSTART_SHIFT) |
  1020. (hblank_end << HSYNCEND_SHIFT);
  1021. *hs = (hsync_start << HSYNCSTART_SHIFT) | (hsync_end << HSYNCEND_SHIFT);
  1022. *vt = (vtotal << VTOTAL_SHIFT) | (vactive << VACTIVE_SHIFT);
  1023. *vb = (vblank_start << VBLANKSTART_SHIFT) |
  1024. (vblank_end << VSYNCEND_SHIFT);
  1025. *vs = (vsync_start << VSYNCSTART_SHIFT) | (vsync_end << VSYNCEND_SHIFT);
  1026. *ss = (hactive << SRC_SIZE_HORIZ_SHIFT) |
  1027. (vactive << SRC_SIZE_VERT_SHIFT);
  1028. hw->disp_a_stride = dinfo->pitch;
  1029. DBG_MSG("pitch is %d\n", hw->disp_a_stride);
  1030. hw->disp_a_base = hw->disp_a_stride * var->yoffset +
  1031. var->xoffset * var->bits_per_pixel / 8;
  1032. hw->disp_a_base += dinfo->fb.offset << 12;
  1033. /* Check stride alignment. */
  1034. stride_alignment = IS_I9XX(dinfo) ? STRIDE_ALIGNMENT_I9XX :
  1035. STRIDE_ALIGNMENT;
  1036. if (hw->disp_a_stride % stride_alignment != 0) {
  1037. WRN_MSG("display stride %d has bad alignment %d\n",
  1038. hw->disp_a_stride, stride_alignment);
  1039. return 1;
  1040. }
  1041. /* Set the palette to 8-bit mode. */
  1042. *pipe_conf &= ~PIPECONF_GAMMA;
  1043. if (var->vmode & FB_VMODE_INTERLACED)
  1044. *pipe_conf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
  1045. else
  1046. *pipe_conf &= ~PIPECONF_INTERLACE_MASK;
  1047. return 0;
  1048. }
  1049. /* Program a (non-VGA) video mode. */
  1050. int intelfbhw_program_mode(struct intelfb_info *dinfo,
  1051. const struct intelfb_hwstate *hw, int blank)
  1052. {
  1053. int pipe = PIPE_A;
  1054. u32 tmp;
  1055. const u32 *dpll, *fp0, *fp1, *pipe_conf;
  1056. const u32 *hs, *ht, *hb, *vs, *vt, *vb, *ss;
  1057. u32 dpll_reg, fp0_reg, fp1_reg, pipe_conf_reg;
  1058. u32 hsync_reg, htotal_reg, hblank_reg;
  1059. u32 vsync_reg, vtotal_reg, vblank_reg;
  1060. u32 src_size_reg;
  1061. u32 count, tmp_val[3];
  1062. /* Assume single pipe, display plane A, analog CRT. */
  1063. #if VERBOSE > 0
  1064. DBG_MSG("intelfbhw_program_mode\n");
  1065. #endif
  1066. /* Disable VGA */
  1067. tmp = INREG(VGACNTRL);
  1068. tmp |= VGA_DISABLE;
  1069. OUTREG(VGACNTRL, tmp);
  1070. /* Check whether pipe A or pipe B is enabled. */
  1071. if (hw->pipe_a_conf & PIPECONF_ENABLE)
  1072. pipe = PIPE_A;
  1073. else if (hw->pipe_b_conf & PIPECONF_ENABLE)
  1074. pipe = PIPE_B;
  1075. dinfo->pipe = pipe;
  1076. if (pipe == PIPE_B) {
  1077. dpll = &hw->dpll_b;
  1078. fp0 = &hw->fpb0;
  1079. fp1 = &hw->fpb1;
  1080. pipe_conf = &hw->pipe_b_conf;
  1081. hs = &hw->hsync_b;
  1082. hb = &hw->hblank_b;
  1083. ht = &hw->htotal_b;
  1084. vs = &hw->vsync_b;
  1085. vb = &hw->vblank_b;
  1086. vt = &hw->vtotal_b;
  1087. ss = &hw->src_size_b;
  1088. dpll_reg = DPLL_B;
  1089. fp0_reg = FPB0;
  1090. fp1_reg = FPB1;
  1091. pipe_conf_reg = PIPEBCONF;
  1092. hsync_reg = HSYNC_B;
  1093. htotal_reg = HTOTAL_B;
  1094. hblank_reg = HBLANK_B;
  1095. vsync_reg = VSYNC_B;
  1096. vtotal_reg = VTOTAL_B;
  1097. vblank_reg = VBLANK_B;
  1098. src_size_reg = SRC_SIZE_B;
  1099. } else {
  1100. dpll = &hw->dpll_a;
  1101. fp0 = &hw->fpa0;
  1102. fp1 = &hw->fpa1;
  1103. pipe_conf = &hw->pipe_a_conf;
  1104. hs = &hw->hsync_a;
  1105. hb = &hw->hblank_a;
  1106. ht = &hw->htotal_a;
  1107. vs = &hw->vsync_a;
  1108. vb = &hw->vblank_a;
  1109. vt = &hw->vtotal_a;
  1110. ss = &hw->src_size_a;
  1111. dpll_reg = DPLL_A;
  1112. fp0_reg = FPA0;
  1113. fp1_reg = FPA1;
  1114. pipe_conf_reg = PIPEACONF;
  1115. hsync_reg = HSYNC_A;
  1116. htotal_reg = HTOTAL_A;
  1117. hblank_reg = HBLANK_A;
  1118. vsync_reg = VSYNC_A;
  1119. vtotal_reg = VTOTAL_A;
  1120. vblank_reg = VBLANK_A;
  1121. src_size_reg = SRC_SIZE_A;
  1122. }
  1123. /* turn off pipe */
  1124. tmp = INREG(pipe_conf_reg);
  1125. tmp &= ~PIPECONF_ENABLE;
  1126. OUTREG(pipe_conf_reg, tmp);
  1127. count = 0;
  1128. do {
  1129. tmp_val[count % 3] = INREG(PIPEA_DSL);
  1130. if ((tmp_val[0] == tmp_val[1]) && (tmp_val[1] == tmp_val[2]))
  1131. break;
  1132. count++;
  1133. udelay(1);
  1134. if (count % 200 == 0) {
  1135. tmp = INREG(pipe_conf_reg);
  1136. tmp &= ~PIPECONF_ENABLE;
  1137. OUTREG(pipe_conf_reg, tmp);
  1138. }
  1139. } while (count < 2000);
  1140. OUTREG(ADPA, INREG(ADPA) & ~ADPA_DAC_ENABLE);
  1141. /* Disable planes A and B. */
  1142. tmp = INREG(DSPACNTR);
  1143. tmp &= ~DISPPLANE_PLANE_ENABLE;
  1144. OUTREG(DSPACNTR, tmp);
  1145. tmp = INREG(DSPBCNTR);
  1146. tmp &= ~DISPPLANE_PLANE_ENABLE;
  1147. OUTREG(DSPBCNTR, tmp);
  1148. /* Wait for vblank. For now, just wait for a 50Hz cycle (20ms)) */
  1149. mdelay(20);
  1150. OUTREG(DVOB, INREG(DVOB) & ~PORT_ENABLE);
  1151. OUTREG(DVOC, INREG(DVOC) & ~PORT_ENABLE);
  1152. OUTREG(ADPA, INREG(ADPA) & ~ADPA_DAC_ENABLE);
  1153. /* Disable Sync */
  1154. tmp = INREG(ADPA);
  1155. tmp &= ~ADPA_DPMS_CONTROL_MASK;
  1156. tmp |= ADPA_DPMS_D3;
  1157. OUTREG(ADPA, tmp);
  1158. /* do some funky magic - xyzzy */
  1159. OUTREG(0x61204, 0xabcd0000);
  1160. /* turn off PLL */
  1161. tmp = INREG(dpll_reg);
  1162. tmp &= ~DPLL_VCO_ENABLE;
  1163. OUTREG(dpll_reg, tmp);
  1164. /* Set PLL parameters */
  1165. OUTREG(fp0_reg, *fp0);
  1166. OUTREG(fp1_reg, *fp1);
  1167. /* Enable PLL */
  1168. OUTREG(dpll_reg, *dpll);
  1169. /* Set DVOs B/C */
  1170. OUTREG(DVOB, hw->dvob);
  1171. OUTREG(DVOC, hw->dvoc);
  1172. /* undo funky magic */
  1173. OUTREG(0x61204, 0x00000000);
  1174. /* Set ADPA */
  1175. OUTREG(ADPA, INREG(ADPA) | ADPA_DAC_ENABLE);
  1176. OUTREG(ADPA, (hw->adpa & ~(ADPA_DPMS_CONTROL_MASK)) | ADPA_DPMS_D3);
  1177. /* Set pipe parameters */
  1178. OUTREG(hsync_reg, *hs);
  1179. OUTREG(hblank_reg, *hb);
  1180. OUTREG(htotal_reg, *ht);
  1181. OUTREG(vsync_reg, *vs);
  1182. OUTREG(vblank_reg, *vb);
  1183. OUTREG(vtotal_reg, *vt);
  1184. OUTREG(src_size_reg, *ss);
  1185. /* Enable pipe */
  1186. OUTREG(pipe_conf_reg, *pipe_conf | PIPECONF_ENABLE);
  1187. /* Enable sync */
  1188. tmp = INREG(ADPA);
  1189. tmp &= ~ADPA_DPMS_CONTROL_MASK;
  1190. tmp |= ADPA_DPMS_D0;
  1191. OUTREG(ADPA, tmp);
  1192. /* setup display plane */
  1193. if (dinfo->pdev->device == PCI_DEVICE_ID_INTEL_830M) {
  1194. /*
  1195. * i830M errata: the display plane must be enabled
  1196. * to allow writes to the other bits in the plane
  1197. * control register.
  1198. */
  1199. tmp = INREG(DSPACNTR);
  1200. if ((tmp & DISPPLANE_PLANE_ENABLE) != DISPPLANE_PLANE_ENABLE) {
  1201. tmp |= DISPPLANE_PLANE_ENABLE;
  1202. OUTREG(DSPACNTR, tmp);
  1203. OUTREG(DSPACNTR,
  1204. hw->disp_a_ctrl|DISPPLANE_PLANE_ENABLE);
  1205. mdelay(1);
  1206. }
  1207. }
  1208. OUTREG(DSPACNTR, hw->disp_a_ctrl & ~DISPPLANE_PLANE_ENABLE);
  1209. OUTREG(DSPASTRIDE, hw->disp_a_stride);
  1210. OUTREG(DSPABASE, hw->disp_a_base);
  1211. /* Enable plane */
  1212. if (!blank) {
  1213. tmp = INREG(DSPACNTR);
  1214. tmp |= DISPPLANE_PLANE_ENABLE;
  1215. OUTREG(DSPACNTR, tmp);
  1216. OUTREG(DSPABASE, hw->disp_a_base);
  1217. }
  1218. return 0;
  1219. }
  1220. /* forward declarations */
  1221. static void refresh_ring(struct intelfb_info *dinfo);
  1222. static void reset_state(struct intelfb_info *dinfo);
  1223. static void do_flush(struct intelfb_info *dinfo);
  1224. static u32 get_ring_space(struct intelfb_info *dinfo)
  1225. {
  1226. u32 ring_space;
  1227. if (dinfo->ring_tail >= dinfo->ring_head)
  1228. ring_space = dinfo->ring.size -
  1229. (dinfo->ring_tail - dinfo->ring_head);
  1230. else
  1231. ring_space = dinfo->ring_head - dinfo->ring_tail;
  1232. if (ring_space > RING_MIN_FREE)
  1233. ring_space -= RING_MIN_FREE;
  1234. else
  1235. ring_space = 0;
  1236. return ring_space;
  1237. }
  1238. static int wait_ring(struct intelfb_info *dinfo, int n)
  1239. {
  1240. int i = 0;
  1241. unsigned long end;
  1242. u32 last_head = INREG(PRI_RING_HEAD) & RING_HEAD_MASK;
  1243. #if VERBOSE > 0
  1244. DBG_MSG("wait_ring: %d\n", n);
  1245. #endif
  1246. end = jiffies + (HZ * 3);
  1247. while (dinfo->ring_space < n) {
  1248. dinfo->ring_head = INREG(PRI_RING_HEAD) & RING_HEAD_MASK;
  1249. dinfo->ring_space = get_ring_space(dinfo);
  1250. if (dinfo->ring_head != last_head) {
  1251. end = jiffies + (HZ * 3);
  1252. last_head = dinfo->ring_head;
  1253. }
  1254. i++;
  1255. if (time_before(end, jiffies)) {
  1256. if (!i) {
  1257. /* Try again */
  1258. reset_state(dinfo);
  1259. refresh_ring(dinfo);
  1260. do_flush(dinfo);
  1261. end = jiffies + (HZ * 3);
  1262. i = 1;
  1263. } else {
  1264. WRN_MSG("ring buffer : space: %d wanted %d\n",
  1265. dinfo->ring_space, n);
  1266. WRN_MSG("lockup - turning off hardware "
  1267. "acceleration\n");
  1268. dinfo->ring_lockup = 1;
  1269. break;
  1270. }
  1271. }
  1272. udelay(1);
  1273. }
  1274. return i;
  1275. }
  1276. static void do_flush(struct intelfb_info *dinfo)
  1277. {
  1278. START_RING(2);
  1279. OUT_RING(MI_FLUSH | MI_WRITE_DIRTY_STATE | MI_INVALIDATE_MAP_CACHE);
  1280. OUT_RING(MI_NOOP);
  1281. ADVANCE_RING();
  1282. }
  1283. void intelfbhw_do_sync(struct intelfb_info *dinfo)
  1284. {
  1285. #if VERBOSE > 0
  1286. DBG_MSG("intelfbhw_do_sync\n");
  1287. #endif
  1288. if (!dinfo->accel)
  1289. return;
  1290. /*
  1291. * Send a flush, then wait until the ring is empty. This is what
  1292. * the XFree86 driver does, and actually it doesn't seem a lot worse
  1293. * than the recommended method (both have problems).
  1294. */
  1295. do_flush(dinfo);
  1296. wait_ring(dinfo, dinfo->ring.size - RING_MIN_FREE);
  1297. dinfo->ring_space = dinfo->ring.size - RING_MIN_FREE;
  1298. }
  1299. static void refresh_ring(struct intelfb_info *dinfo)
  1300. {
  1301. #if VERBOSE > 0
  1302. DBG_MSG("refresh_ring\n");
  1303. #endif
  1304. dinfo->ring_head = INREG(PRI_RING_HEAD) & RING_HEAD_MASK;
  1305. dinfo->ring_tail = INREG(PRI_RING_TAIL) & RING_TAIL_MASK;
  1306. dinfo->ring_space = get_ring_space(dinfo);
  1307. }
  1308. static void reset_state(struct intelfb_info *dinfo)
  1309. {
  1310. int i;
  1311. u32 tmp;
  1312. #if VERBOSE > 0
  1313. DBG_MSG("reset_state\n");
  1314. #endif
  1315. for (i = 0; i < FENCE_NUM; i++)
  1316. OUTREG(FENCE + (i << 2), 0);
  1317. /* Flush the ring buffer if it's enabled. */
  1318. tmp = INREG(PRI_RING_LENGTH);
  1319. if (tmp & RING_ENABLE) {
  1320. #if VERBOSE > 0
  1321. DBG_MSG("reset_state: ring was enabled\n");
  1322. #endif
  1323. refresh_ring(dinfo);
  1324. intelfbhw_do_sync(dinfo);
  1325. DO_RING_IDLE();
  1326. }
  1327. OUTREG(PRI_RING_LENGTH, 0);
  1328. OUTREG(PRI_RING_HEAD, 0);
  1329. OUTREG(PRI_RING_TAIL, 0);
  1330. OUTREG(PRI_RING_START, 0);
  1331. }
  1332. /* Stop the 2D engine, and turn off the ring buffer. */
  1333. void intelfbhw_2d_stop(struct intelfb_info *dinfo)
  1334. {
  1335. #if VERBOSE > 0
  1336. DBG_MSG("intelfbhw_2d_stop: accel: %d, ring_active: %d\n",
  1337. dinfo->accel, dinfo->ring_active);
  1338. #endif
  1339. if (!dinfo->accel)
  1340. return;
  1341. dinfo->ring_active = 0;
  1342. reset_state(dinfo);
  1343. }
  1344. /*
  1345. * Enable the ring buffer, and initialise the 2D engine.
  1346. * It is assumed that the graphics engine has been stopped by previously
  1347. * calling intelfb_2d_stop().
  1348. */
  1349. void intelfbhw_2d_start(struct intelfb_info *dinfo)
  1350. {
  1351. #if VERBOSE > 0
  1352. DBG_MSG("intelfbhw_2d_start: accel: %d, ring_active: %d\n",
  1353. dinfo->accel, dinfo->ring_active);
  1354. #endif
  1355. if (!dinfo->accel)
  1356. return;
  1357. /* Initialise the primary ring buffer. */
  1358. OUTREG(PRI_RING_LENGTH, 0);
  1359. OUTREG(PRI_RING_TAIL, 0);
  1360. OUTREG(PRI_RING_HEAD, 0);
  1361. OUTREG(PRI_RING_START, dinfo->ring.physical & RING_START_MASK);
  1362. OUTREG(PRI_RING_LENGTH,
  1363. ((dinfo->ring.size - GTT_PAGE_SIZE) & RING_LENGTH_MASK) |
  1364. RING_NO_REPORT | RING_ENABLE);
  1365. refresh_ring(dinfo);
  1366. dinfo->ring_active = 1;
  1367. }
  1368. /* 2D fillrect (solid fill or invert) */
  1369. void intelfbhw_do_fillrect(struct intelfb_info *dinfo, u32 x, u32 y, u32 w,
  1370. u32 h, u32 color, u32 pitch, u32 bpp, u32 rop)
  1371. {
  1372. u32 br00, br09, br13, br14, br16;
  1373. #if VERBOSE > 0
  1374. DBG_MSG("intelfbhw_do_fillrect: (%d,%d) %dx%d, c 0x%06x, p %d bpp %d, "
  1375. "rop 0x%02x\n", x, y, w, h, color, pitch, bpp, rop);
  1376. #endif
  1377. br00 = COLOR_BLT_CMD;
  1378. br09 = dinfo->fb_start + (y * pitch + x * (bpp / 8));
  1379. br13 = (rop << ROP_SHIFT) | pitch;
  1380. br14 = (h << HEIGHT_SHIFT) | ((w * (bpp / 8)) << WIDTH_SHIFT);
  1381. br16 = color;
  1382. switch (bpp) {
  1383. case 8:
  1384. br13 |= COLOR_DEPTH_8;
  1385. break;
  1386. case 16:
  1387. br13 |= COLOR_DEPTH_16;
  1388. break;
  1389. case 32:
  1390. br13 |= COLOR_DEPTH_32;
  1391. br00 |= WRITE_ALPHA | WRITE_RGB;
  1392. break;
  1393. }
  1394. START_RING(6);
  1395. OUT_RING(br00);
  1396. OUT_RING(br13);
  1397. OUT_RING(br14);
  1398. OUT_RING(br09);
  1399. OUT_RING(br16);
  1400. OUT_RING(MI_NOOP);
  1401. ADVANCE_RING();
  1402. #if VERBOSE > 0
  1403. DBG_MSG("ring = 0x%08x, 0x%08x (%d)\n", dinfo->ring_head,
  1404. dinfo->ring_tail, dinfo->ring_space);
  1405. #endif
  1406. }
  1407. void
  1408. intelfbhw_do_bitblt(struct intelfb_info *dinfo, u32 curx, u32 cury,
  1409. u32 dstx, u32 dsty, u32 w, u32 h, u32 pitch, u32 bpp)
  1410. {
  1411. u32 br00, br09, br11, br12, br13, br22, br23, br26;
  1412. #if VERBOSE > 0
  1413. DBG_MSG("intelfbhw_do_bitblt: (%d,%d)->(%d,%d) %dx%d, p %d bpp %d\n",
  1414. curx, cury, dstx, dsty, w, h, pitch, bpp);
  1415. #endif
  1416. br00 = XY_SRC_COPY_BLT_CMD;
  1417. br09 = dinfo->fb_start;
  1418. br11 = (pitch << PITCH_SHIFT);
  1419. br12 = dinfo->fb_start;
  1420. br13 = (SRC_ROP_GXCOPY << ROP_SHIFT) | (pitch << PITCH_SHIFT);
  1421. br22 = (dstx << WIDTH_SHIFT) | (dsty << HEIGHT_SHIFT);
  1422. br23 = ((dstx + w) << WIDTH_SHIFT) |
  1423. ((dsty + h) << HEIGHT_SHIFT);
  1424. br26 = (curx << WIDTH_SHIFT) | (cury << HEIGHT_SHIFT);
  1425. switch (bpp) {
  1426. case 8:
  1427. br13 |= COLOR_DEPTH_8;
  1428. break;
  1429. case 16:
  1430. br13 |= COLOR_DEPTH_16;
  1431. break;
  1432. case 32:
  1433. br13 |= COLOR_DEPTH_32;
  1434. br00 |= WRITE_ALPHA | WRITE_RGB;
  1435. break;
  1436. }
  1437. START_RING(8);
  1438. OUT_RING(br00);
  1439. OUT_RING(br13);
  1440. OUT_RING(br22);
  1441. OUT_RING(br23);
  1442. OUT_RING(br09);
  1443. OUT_RING(br26);
  1444. OUT_RING(br11);
  1445. OUT_RING(br12);
  1446. ADVANCE_RING();
  1447. }
  1448. int intelfbhw_do_drawglyph(struct intelfb_info *dinfo, u32 fg, u32 bg, u32 w,
  1449. u32 h, const u8* cdat, u32 x, u32 y, u32 pitch,
  1450. u32 bpp)
  1451. {
  1452. int nbytes, ndwords, pad, tmp;
  1453. u32 br00, br09, br13, br18, br19, br22, br23;
  1454. int dat, ix, iy, iw;
  1455. int i, j;
  1456. #if VERBOSE > 0
  1457. DBG_MSG("intelfbhw_do_drawglyph: (%d,%d) %dx%d\n", x, y, w, h);
  1458. #endif
  1459. /* size in bytes of a padded scanline */
  1460. nbytes = ROUND_UP_TO(w, 16) / 8;
  1461. /* Total bytes of padded scanline data to write out. */
  1462. nbytes = nbytes * h;
  1463. /*
  1464. * Check if the glyph data exceeds the immediate mode limit.
  1465. * It would take a large font (1K pixels) to hit this limit.
  1466. */
  1467. if (nbytes > MAX_MONO_IMM_SIZE)
  1468. return 0;
  1469. /* Src data is packaged a dword (32-bit) at a time. */
  1470. ndwords = ROUND_UP_TO(nbytes, 4) / 4;
  1471. /*
  1472. * Ring has to be padded to a quad word. But because the command starts
  1473. with 7 bytes, pad only if there is an even number of ndwords
  1474. */
  1475. pad = !(ndwords % 2);
  1476. tmp = (XY_MONO_SRC_IMM_BLT_CMD & DW_LENGTH_MASK) + ndwords;
  1477. br00 = (XY_MONO_SRC_IMM_BLT_CMD & ~DW_LENGTH_MASK) | tmp;
  1478. br09 = dinfo->fb_start;
  1479. br13 = (SRC_ROP_GXCOPY << ROP_SHIFT) | (pitch << PITCH_SHIFT);
  1480. br18 = bg;
  1481. br19 = fg;
  1482. br22 = (x << WIDTH_SHIFT) | (y << HEIGHT_SHIFT);
  1483. br23 = ((x + w) << WIDTH_SHIFT) | ((y + h) << HEIGHT_SHIFT);
  1484. switch (bpp) {
  1485. case 8:
  1486. br13 |= COLOR_DEPTH_8;
  1487. break;
  1488. case 16:
  1489. br13 |= COLOR_DEPTH_16;
  1490. break;
  1491. case 32:
  1492. br13 |= COLOR_DEPTH_32;
  1493. br00 |= WRITE_ALPHA | WRITE_RGB;
  1494. break;
  1495. }
  1496. START_RING(8 + ndwords);
  1497. OUT_RING(br00);
  1498. OUT_RING(br13);
  1499. OUT_RING(br22);
  1500. OUT_RING(br23);
  1501. OUT_RING(br09);
  1502. OUT_RING(br18);
  1503. OUT_RING(br19);
  1504. ix = iy = 0;
  1505. iw = ROUND_UP_TO(w, 8) / 8;
  1506. while (ndwords--) {
  1507. dat = 0;
  1508. for (j = 0; j < 2; ++j) {
  1509. for (i = 0; i < 2; ++i) {
  1510. if (ix != iw || i == 0)
  1511. dat |= cdat[iy*iw + ix++] << (i+j*2)*8;
  1512. }
  1513. if (ix == iw && iy != (h-1)) {
  1514. ix = 0;
  1515. ++iy;
  1516. }
  1517. }
  1518. OUT_RING(dat);
  1519. }
  1520. if (pad)
  1521. OUT_RING(MI_NOOP);
  1522. ADVANCE_RING();
  1523. return 1;
  1524. }
  1525. /* HW cursor functions. */
  1526. void intelfbhw_cursor_init(struct intelfb_info *dinfo)
  1527. {
  1528. u32 tmp;
  1529. #if VERBOSE > 0
  1530. DBG_MSG("intelfbhw_cursor_init\n");
  1531. #endif
  1532. if (dinfo->mobile || IS_I9XX(dinfo)) {
  1533. if (!dinfo->cursor.physical)
  1534. return;
  1535. tmp = INREG(CURSOR_A_CONTROL);
  1536. tmp &= ~(CURSOR_MODE_MASK | CURSOR_MOBILE_GAMMA_ENABLE |
  1537. CURSOR_MEM_TYPE_LOCAL |
  1538. (1 << CURSOR_PIPE_SELECT_SHIFT));
  1539. tmp |= CURSOR_MODE_DISABLE;
  1540. OUTREG(CURSOR_A_CONTROL, tmp);
  1541. OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.physical);
  1542. } else {
  1543. tmp = INREG(CURSOR_CONTROL);
  1544. tmp &= ~(CURSOR_FORMAT_MASK | CURSOR_GAMMA_ENABLE |
  1545. CURSOR_ENABLE | CURSOR_STRIDE_MASK);
  1546. tmp = CURSOR_FORMAT_3C;
  1547. OUTREG(CURSOR_CONTROL, tmp);
  1548. OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.offset << 12);
  1549. tmp = (64 << CURSOR_SIZE_H_SHIFT) |
  1550. (64 << CURSOR_SIZE_V_SHIFT);
  1551. OUTREG(CURSOR_SIZE, tmp);
  1552. }
  1553. }
  1554. void intelfbhw_cursor_hide(struct intelfb_info *dinfo)
  1555. {
  1556. u32 tmp;
  1557. #if VERBOSE > 0
  1558. DBG_MSG("intelfbhw_cursor_hide\n");
  1559. #endif
  1560. dinfo->cursor_on = 0;
  1561. if (dinfo->mobile || IS_I9XX(dinfo)) {
  1562. if (!dinfo->cursor.physical)
  1563. return;
  1564. tmp = INREG(CURSOR_A_CONTROL);
  1565. tmp &= ~CURSOR_MODE_MASK;
  1566. tmp |= CURSOR_MODE_DISABLE;
  1567. OUTREG(CURSOR_A_CONTROL, tmp);
  1568. /* Flush changes */
  1569. OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.physical);
  1570. } else {
  1571. tmp = INREG(CURSOR_CONTROL);
  1572. tmp &= ~CURSOR_ENABLE;
  1573. OUTREG(CURSOR_CONTROL, tmp);
  1574. }
  1575. }
  1576. void intelfbhw_cursor_show(struct intelfb_info *dinfo)
  1577. {
  1578. u32 tmp;
  1579. #if VERBOSE > 0
  1580. DBG_MSG("intelfbhw_cursor_show\n");
  1581. #endif
  1582. dinfo->cursor_on = 1;
  1583. if (dinfo->cursor_blanked)
  1584. return;
  1585. if (dinfo->mobile || IS_I9XX(dinfo)) {
  1586. if (!dinfo->cursor.physical)
  1587. return;
  1588. tmp = INREG(CURSOR_A_CONTROL);
  1589. tmp &= ~CURSOR_MODE_MASK;
  1590. tmp |= CURSOR_MODE_64_4C_AX;
  1591. OUTREG(CURSOR_A_CONTROL, tmp);
  1592. /* Flush changes */
  1593. OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.physical);
  1594. } else {
  1595. tmp = INREG(CURSOR_CONTROL);
  1596. tmp |= CURSOR_ENABLE;
  1597. OUTREG(CURSOR_CONTROL, tmp);
  1598. }
  1599. }
  1600. void intelfbhw_cursor_setpos(struct intelfb_info *dinfo, int x, int y)
  1601. {
  1602. u32 tmp;
  1603. #if VERBOSE > 0
  1604. DBG_MSG("intelfbhw_cursor_setpos: (%d, %d)\n", x, y);
  1605. #endif
  1606. /*
  1607. * Sets the position. The coordinates are assumed to already
  1608. * have any offset adjusted. Assume that the cursor is never
  1609. * completely off-screen, and that x, y are always >= 0.
  1610. */
  1611. tmp = ((x & CURSOR_POS_MASK) << CURSOR_X_SHIFT) |
  1612. ((y & CURSOR_POS_MASK) << CURSOR_Y_SHIFT);
  1613. OUTREG(CURSOR_A_POSITION, tmp);
  1614. if (IS_I9XX(dinfo))
  1615. OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.physical);
  1616. }
  1617. void intelfbhw_cursor_setcolor(struct intelfb_info *dinfo, u32 bg, u32 fg)
  1618. {
  1619. #if VERBOSE > 0
  1620. DBG_MSG("intelfbhw_cursor_setcolor\n");
  1621. #endif
  1622. OUTREG(CURSOR_A_PALETTE0, bg & CURSOR_PALETTE_MASK);
  1623. OUTREG(CURSOR_A_PALETTE1, fg & CURSOR_PALETTE_MASK);
  1624. OUTREG(CURSOR_A_PALETTE2, fg & CURSOR_PALETTE_MASK);
  1625. OUTREG(CURSOR_A_PALETTE3, bg & CURSOR_PALETTE_MASK);
  1626. }
  1627. void intelfbhw_cursor_load(struct intelfb_info *dinfo, int width, int height,
  1628. u8 *data)
  1629. {
  1630. u8 __iomem *addr = (u8 __iomem *)dinfo->cursor.virtual;
  1631. int i, j, w = width / 8;
  1632. int mod = width % 8, t_mask, d_mask;
  1633. #if VERBOSE > 0
  1634. DBG_MSG("intelfbhw_cursor_load\n");
  1635. #endif
  1636. if (!dinfo->cursor.virtual)
  1637. return;
  1638. t_mask = 0xff >> mod;
  1639. d_mask = ~(0xff >> mod);
  1640. for (i = height; i--; ) {
  1641. for (j = 0; j < w; j++) {
  1642. writeb(0x00, addr + j);
  1643. writeb(*(data++), addr + j+8);
  1644. }
  1645. if (mod) {
  1646. writeb(t_mask, addr + j);
  1647. writeb(*(data++) & d_mask, addr + j+8);
  1648. }
  1649. addr += 16;
  1650. }
  1651. }
  1652. void intelfbhw_cursor_reset(struct intelfb_info *dinfo)
  1653. {
  1654. u8 __iomem *addr = (u8 __iomem *)dinfo->cursor.virtual;
  1655. int i, j;
  1656. #if VERBOSE > 0
  1657. DBG_MSG("intelfbhw_cursor_reset\n");
  1658. #endif
  1659. if (!dinfo->cursor.virtual)
  1660. return;
  1661. for (i = 64; i--; ) {
  1662. for (j = 0; j < 8; j++) {
  1663. writeb(0xff, addr + j+0);
  1664. writeb(0x00, addr + j+8);
  1665. }
  1666. addr += 16;
  1667. }
  1668. }
  1669. static irqreturn_t
  1670. intelfbhw_irq(int irq, void *dev_id) {
  1671. int handled = 0;
  1672. u16 tmp;
  1673. struct intelfb_info *dinfo = (struct intelfb_info *)dev_id;
  1674. spin_lock(&dinfo->int_lock);
  1675. tmp = INREG16(IIR);
  1676. tmp &= VSYNC_PIPE_A_INTERRUPT;
  1677. if (tmp == 0) {
  1678. spin_unlock(&dinfo->int_lock);
  1679. return IRQ_RETVAL(handled);
  1680. }
  1681. OUTREG16(IIR, tmp);
  1682. if (tmp & VSYNC_PIPE_A_INTERRUPT) {
  1683. dinfo->vsync.count++;
  1684. if (dinfo->vsync.pan_display) {
  1685. dinfo->vsync.pan_display = 0;
  1686. OUTREG(DSPABASE, dinfo->vsync.pan_offset);
  1687. }
  1688. wake_up_interruptible(&dinfo->vsync.wait);
  1689. handled = 1;
  1690. }
  1691. spin_unlock(&dinfo->int_lock);
  1692. return IRQ_RETVAL(handled);
  1693. }
  1694. int
  1695. intelfbhw_enable_irq(struct intelfb_info *dinfo, int reenable) {
  1696. if (!test_and_set_bit(0, &dinfo->irq_flags)) {
  1697. if (request_irq(dinfo->pdev->irq, intelfbhw_irq, IRQF_SHARED,
  1698. "intelfb", dinfo)) {
  1699. clear_bit(0, &dinfo->irq_flags);
  1700. return -EINVAL;
  1701. }
  1702. spin_lock_irq(&dinfo->int_lock);
  1703. OUTREG16(HWSTAM, 0xfffe);
  1704. OUTREG16(IMR, 0x0);
  1705. OUTREG16(IER, VSYNC_PIPE_A_INTERRUPT);
  1706. spin_unlock_irq(&dinfo->int_lock);
  1707. } else if (reenable) {
  1708. u16 ier;
  1709. spin_lock_irq(&dinfo->int_lock);
  1710. ier = INREG16(IER);
  1711. if ((ier & VSYNC_PIPE_A_INTERRUPT)) {
  1712. DBG_MSG("someone disabled the IRQ [%08X]\n", ier);
  1713. OUTREG(IER, VSYNC_PIPE_A_INTERRUPT);
  1714. }
  1715. spin_unlock_irq(&dinfo->int_lock);
  1716. }
  1717. return 0;
  1718. }
  1719. void
  1720. intelfbhw_disable_irq(struct intelfb_info *dinfo) {
  1721. if (test_and_clear_bit(0, &dinfo->irq_flags)) {
  1722. if (dinfo->vsync.pan_display) {
  1723. dinfo->vsync.pan_display = 0;
  1724. OUTREG(DSPABASE, dinfo->vsync.pan_offset);
  1725. }
  1726. spin_lock_irq(&dinfo->int_lock);
  1727. OUTREG16(HWSTAM, 0xffff);
  1728. OUTREG16(IMR, 0xffff);
  1729. OUTREG16(IER, 0x0);
  1730. OUTREG16(IIR, INREG16(IIR)); /* clear IRQ requests */
  1731. spin_unlock_irq(&dinfo->int_lock);
  1732. free_irq(dinfo->pdev->irq, dinfo);
  1733. }
  1734. }
  1735. int intelfbhw_wait_for_vsync(struct intelfb_info *dinfo, u32 pipe)
  1736. {
  1737. struct intelfb_vsync *vsync;
  1738. unsigned int count;
  1739. int ret;
  1740. switch (pipe) {
  1741. case 0:
  1742. vsync = &dinfo->vsync;
  1743. break;
  1744. default:
  1745. return -ENODEV;
  1746. }
  1747. ret = intelfbhw_enable_irq(dinfo, 0);
  1748. if (ret)
  1749. return ret;
  1750. count = vsync->count;
  1751. ret = wait_event_interruptible_timeout(vsync->wait,
  1752. count != vsync->count, HZ / 10);
  1753. if (ret < 0)
  1754. return ret;
  1755. if (ret == 0) {
  1756. intelfbhw_enable_irq(dinfo, 1);
  1757. DBG_MSG("wait_for_vsync timed out!\n");
  1758. return -ETIMEDOUT;
  1759. }
  1760. return 0;
  1761. }