rcar-hpbdma.c 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656
  1. /*
  2. * Copyright (C) 2011-2013 Renesas Electronics Corporation
  3. * Copyright (C) 2013 Cogent Embedded, Inc.
  4. *
  5. * This file is based on the drivers/dma/sh/shdma.c
  6. *
  7. * Renesas SuperH DMA Engine support
  8. *
  9. * This is free software; you can redistribute it and/or modify
  10. * it under the terms of the GNU General Public License as published by
  11. * the Free Software Foundation; either version 2 of the License, or
  12. * (at your option) any later version.
  13. *
  14. * - DMA of SuperH does not have Hardware DMA chain mode.
  15. * - max DMA size is 16MB.
  16. *
  17. */
  18. #include <linux/dmaengine.h>
  19. #include <linux/delay.h>
  20. #include <linux/init.h>
  21. #include <linux/interrupt.h>
  22. #include <linux/module.h>
  23. #include <linux/platform_data/dma-rcar-hpbdma.h>
  24. #include <linux/platform_device.h>
  25. #include <linux/pm_runtime.h>
  26. #include <linux/shdma-base.h>
  27. #include <linux/slab.h>
  28. /* DMA channel registers */
  29. #define HPB_DMAE_DSAR0 0x00
  30. #define HPB_DMAE_DDAR0 0x04
  31. #define HPB_DMAE_DTCR0 0x08
  32. #define HPB_DMAE_DSAR1 0x0C
  33. #define HPB_DMAE_DDAR1 0x10
  34. #define HPB_DMAE_DTCR1 0x14
  35. #define HPB_DMAE_DSASR 0x18
  36. #define HPB_DMAE_DDASR 0x1C
  37. #define HPB_DMAE_DTCSR 0x20
  38. #define HPB_DMAE_DPTR 0x24
  39. #define HPB_DMAE_DCR 0x28
  40. #define HPB_DMAE_DCMDR 0x2C
  41. #define HPB_DMAE_DSTPR 0x30
  42. #define HPB_DMAE_DSTSR 0x34
  43. #define HPB_DMAE_DDBGR 0x38
  44. #define HPB_DMAE_DDBGR2 0x3C
  45. #define HPB_DMAE_CHAN(n) (0x40 * (n))
  46. /* DMA command register (DCMDR) bits */
  47. #define HPB_DMAE_DCMDR_BDOUT BIT(7)
  48. #define HPB_DMAE_DCMDR_DQSPD BIT(6)
  49. #define HPB_DMAE_DCMDR_DQSPC BIT(5)
  50. #define HPB_DMAE_DCMDR_DMSPD BIT(4)
  51. #define HPB_DMAE_DCMDR_DMSPC BIT(3)
  52. #define HPB_DMAE_DCMDR_DQEND BIT(2)
  53. #define HPB_DMAE_DCMDR_DNXT BIT(1)
  54. #define HPB_DMAE_DCMDR_DMEN BIT(0)
  55. /* DMA forced stop register (DSTPR) bits */
  56. #define HPB_DMAE_DSTPR_DMSTP BIT(0)
  57. /* DMA status register (DSTSR) bits */
  58. #define HPB_DMAE_DSTSR_DMSTS BIT(0)
  59. /* DMA common registers */
  60. #define HPB_DMAE_DTIMR 0x00
  61. #define HPB_DMAE_DINTSR0 0x0C
  62. #define HPB_DMAE_DINTSR1 0x10
  63. #define HPB_DMAE_DINTCR0 0x14
  64. #define HPB_DMAE_DINTCR1 0x18
  65. #define HPB_DMAE_DINTMR0 0x1C
  66. #define HPB_DMAE_DINTMR1 0x20
  67. #define HPB_DMAE_DACTSR0 0x24
  68. #define HPB_DMAE_DACTSR1 0x28
  69. #define HPB_DMAE_HSRSTR(n) (0x40 + (n) * 4)
  70. #define HPB_DMAE_HPB_DMASPR(n) (0x140 + (n) * 4)
  71. #define HPB_DMAE_HPB_DMLVLR0 0x160
  72. #define HPB_DMAE_HPB_DMLVLR1 0x164
  73. #define HPB_DMAE_HPB_DMSHPT0 0x168
  74. #define HPB_DMAE_HPB_DMSHPT1 0x16C
  75. #define HPB_DMA_SLAVE_NUMBER 256
  76. #define HPB_DMA_TCR_MAX 0x01000000 /* 16 MiB */
  77. struct hpb_dmae_chan {
  78. struct shdma_chan shdma_chan;
  79. int xfer_mode; /* DMA transfer mode */
  80. #define XFER_SINGLE 1
  81. #define XFER_DOUBLE 2
  82. unsigned plane_idx; /* current DMA information set */
  83. bool first_desc; /* first/next transfer */
  84. int xmit_shift; /* log_2(bytes_per_xfer) */
  85. void __iomem *base;
  86. const struct hpb_dmae_slave_config *cfg;
  87. char dev_id[16]; /* unique name per DMAC of channel */
  88. dma_addr_t slave_addr;
  89. };
  90. struct hpb_dmae_device {
  91. struct shdma_dev shdma_dev;
  92. spinlock_t reg_lock; /* comm_reg operation lock */
  93. struct hpb_dmae_pdata *pdata;
  94. void __iomem *chan_reg;
  95. void __iomem *comm_reg;
  96. void __iomem *reset_reg;
  97. void __iomem *mode_reg;
  98. };
  99. struct hpb_dmae_regs {
  100. u32 sar; /* SAR / source address */
  101. u32 dar; /* DAR / destination address */
  102. u32 tcr; /* TCR / transfer count */
  103. };
  104. struct hpb_desc {
  105. struct shdma_desc shdma_desc;
  106. struct hpb_dmae_regs hw;
  107. unsigned plane_idx;
  108. };
  109. #define to_chan(schan) container_of(schan, struct hpb_dmae_chan, shdma_chan)
  110. #define to_desc(sdesc) container_of(sdesc, struct hpb_desc, shdma_desc)
  111. #define to_dev(sc) container_of(sc->shdma_chan.dma_chan.device, \
  112. struct hpb_dmae_device, shdma_dev.dma_dev)
  113. static void ch_reg_write(struct hpb_dmae_chan *hpb_dc, u32 data, u32 reg)
  114. {
  115. iowrite32(data, hpb_dc->base + reg);
  116. }
  117. static u32 ch_reg_read(struct hpb_dmae_chan *hpb_dc, u32 reg)
  118. {
  119. return ioread32(hpb_dc->base + reg);
  120. }
  121. static void dcmdr_write(struct hpb_dmae_device *hpbdev, u32 data)
  122. {
  123. iowrite32(data, hpbdev->chan_reg + HPB_DMAE_DCMDR);
  124. }
  125. static void hsrstr_write(struct hpb_dmae_device *hpbdev, u32 ch)
  126. {
  127. iowrite32(0x1, hpbdev->comm_reg + HPB_DMAE_HSRSTR(ch));
  128. }
  129. static u32 dintsr_read(struct hpb_dmae_device *hpbdev, u32 ch)
  130. {
  131. u32 v;
  132. if (ch < 32)
  133. v = ioread32(hpbdev->comm_reg + HPB_DMAE_DINTSR0) >> ch;
  134. else
  135. v = ioread32(hpbdev->comm_reg + HPB_DMAE_DINTSR1) >> (ch - 32);
  136. return v & 0x1;
  137. }
  138. static void dintcr_write(struct hpb_dmae_device *hpbdev, u32 ch)
  139. {
  140. if (ch < 32)
  141. iowrite32((0x1 << ch), hpbdev->comm_reg + HPB_DMAE_DINTCR0);
  142. else
  143. iowrite32((0x1 << (ch - 32)),
  144. hpbdev->comm_reg + HPB_DMAE_DINTCR1);
  145. }
  146. static void asyncmdr_write(struct hpb_dmae_device *hpbdev, u32 data)
  147. {
  148. iowrite32(data, hpbdev->mode_reg);
  149. }
  150. static u32 asyncmdr_read(struct hpb_dmae_device *hpbdev)
  151. {
  152. return ioread32(hpbdev->mode_reg);
  153. }
  154. static void hpb_dmae_enable_int(struct hpb_dmae_device *hpbdev, u32 ch)
  155. {
  156. u32 intreg;
  157. spin_lock_irq(&hpbdev->reg_lock);
  158. if (ch < 32) {
  159. intreg = ioread32(hpbdev->comm_reg + HPB_DMAE_DINTMR0);
  160. iowrite32(BIT(ch) | intreg,
  161. hpbdev->comm_reg + HPB_DMAE_DINTMR0);
  162. } else {
  163. intreg = ioread32(hpbdev->comm_reg + HPB_DMAE_DINTMR1);
  164. iowrite32(BIT(ch - 32) | intreg,
  165. hpbdev->comm_reg + HPB_DMAE_DINTMR1);
  166. }
  167. spin_unlock_irq(&hpbdev->reg_lock);
  168. }
  169. static void hpb_dmae_async_reset(struct hpb_dmae_device *hpbdev, u32 data)
  170. {
  171. u32 rstr;
  172. int timeout = 10000; /* 100 ms */
  173. spin_lock(&hpbdev->reg_lock);
  174. rstr = ioread32(hpbdev->reset_reg);
  175. rstr |= data;
  176. iowrite32(rstr, hpbdev->reset_reg);
  177. do {
  178. rstr = ioread32(hpbdev->reset_reg);
  179. if ((rstr & data) == data)
  180. break;
  181. udelay(10);
  182. } while (timeout--);
  183. if (timeout < 0)
  184. dev_err(hpbdev->shdma_dev.dma_dev.dev,
  185. "%s timeout\n", __func__);
  186. rstr &= ~data;
  187. iowrite32(rstr, hpbdev->reset_reg);
  188. spin_unlock(&hpbdev->reg_lock);
  189. }
  190. static void hpb_dmae_set_async_mode(struct hpb_dmae_device *hpbdev,
  191. u32 mask, u32 data)
  192. {
  193. u32 mode;
  194. spin_lock_irq(&hpbdev->reg_lock);
  195. mode = asyncmdr_read(hpbdev);
  196. mode &= ~mask;
  197. mode |= data;
  198. asyncmdr_write(hpbdev, mode);
  199. spin_unlock_irq(&hpbdev->reg_lock);
  200. }
  201. static void hpb_dmae_ctl_stop(struct hpb_dmae_device *hpbdev)
  202. {
  203. dcmdr_write(hpbdev, HPB_DMAE_DCMDR_DQSPD);
  204. }
  205. static void hpb_dmae_reset(struct hpb_dmae_device *hpbdev)
  206. {
  207. u32 ch;
  208. for (ch = 0; ch < hpbdev->pdata->num_hw_channels; ch++)
  209. hsrstr_write(hpbdev, ch);
  210. }
  211. static unsigned int calc_xmit_shift(struct hpb_dmae_chan *hpb_chan)
  212. {
  213. struct hpb_dmae_device *hpbdev = to_dev(hpb_chan);
  214. struct hpb_dmae_pdata *pdata = hpbdev->pdata;
  215. int width = ch_reg_read(hpb_chan, HPB_DMAE_DCR);
  216. int i;
  217. switch (width & (HPB_DMAE_DCR_SPDS_MASK | HPB_DMAE_DCR_DPDS_MASK)) {
  218. case HPB_DMAE_DCR_SPDS_8BIT | HPB_DMAE_DCR_DPDS_8BIT:
  219. default:
  220. i = XMIT_SZ_8BIT;
  221. break;
  222. case HPB_DMAE_DCR_SPDS_16BIT | HPB_DMAE_DCR_DPDS_16BIT:
  223. i = XMIT_SZ_16BIT;
  224. break;
  225. case HPB_DMAE_DCR_SPDS_32BIT | HPB_DMAE_DCR_DPDS_32BIT:
  226. i = XMIT_SZ_32BIT;
  227. break;
  228. }
  229. return pdata->ts_shift[i];
  230. }
  231. static void hpb_dmae_set_reg(struct hpb_dmae_chan *hpb_chan,
  232. struct hpb_dmae_regs *hw, unsigned plane)
  233. {
  234. ch_reg_write(hpb_chan, hw->sar,
  235. plane ? HPB_DMAE_DSAR1 : HPB_DMAE_DSAR0);
  236. ch_reg_write(hpb_chan, hw->dar,
  237. plane ? HPB_DMAE_DDAR1 : HPB_DMAE_DDAR0);
  238. ch_reg_write(hpb_chan, hw->tcr >> hpb_chan->xmit_shift,
  239. plane ? HPB_DMAE_DTCR1 : HPB_DMAE_DTCR0);
  240. }
  241. static void hpb_dmae_start(struct hpb_dmae_chan *hpb_chan, bool next)
  242. {
  243. ch_reg_write(hpb_chan, (next ? HPB_DMAE_DCMDR_DNXT : 0) |
  244. HPB_DMAE_DCMDR_DMEN, HPB_DMAE_DCMDR);
  245. }
  246. static void hpb_dmae_halt(struct shdma_chan *schan)
  247. {
  248. struct hpb_dmae_chan *chan = to_chan(schan);
  249. ch_reg_write(chan, HPB_DMAE_DCMDR_DQEND, HPB_DMAE_DCMDR);
  250. ch_reg_write(chan, HPB_DMAE_DSTPR_DMSTP, HPB_DMAE_DSTPR);
  251. }
  252. static const struct hpb_dmae_slave_config *
  253. hpb_dmae_find_slave(struct hpb_dmae_chan *hpb_chan, int slave_id)
  254. {
  255. struct hpb_dmae_device *hpbdev = to_dev(hpb_chan);
  256. struct hpb_dmae_pdata *pdata = hpbdev->pdata;
  257. int i;
  258. if (slave_id >= HPB_DMA_SLAVE_NUMBER)
  259. return NULL;
  260. for (i = 0; i < pdata->num_slaves; i++)
  261. if (pdata->slaves[i].id == slave_id)
  262. return pdata->slaves + i;
  263. return NULL;
  264. }
  265. static void hpb_dmae_start_xfer(struct shdma_chan *schan,
  266. struct shdma_desc *sdesc)
  267. {
  268. struct hpb_dmae_chan *chan = to_chan(schan);
  269. struct hpb_dmae_device *hpbdev = to_dev(chan);
  270. struct hpb_desc *desc = to_desc(sdesc);
  271. if (chan->cfg->flags & HPB_DMAE_SET_ASYNC_RESET)
  272. hpb_dmae_async_reset(hpbdev, chan->cfg->rstr);
  273. desc->plane_idx = chan->plane_idx;
  274. hpb_dmae_set_reg(chan, &desc->hw, chan->plane_idx);
  275. hpb_dmae_start(chan, !chan->first_desc);
  276. if (chan->xfer_mode == XFER_DOUBLE) {
  277. chan->plane_idx ^= 1;
  278. chan->first_desc = false;
  279. }
  280. }
  281. static bool hpb_dmae_desc_completed(struct shdma_chan *schan,
  282. struct shdma_desc *sdesc)
  283. {
  284. /*
  285. * This is correct since we always have at most single
  286. * outstanding DMA transfer per channel, and by the time
  287. * we get completion interrupt the transfer is completed.
  288. * This will change if we ever use alternating DMA
  289. * information sets and submit two descriptors at once.
  290. */
  291. return true;
  292. }
  293. static bool hpb_dmae_chan_irq(struct shdma_chan *schan, int irq)
  294. {
  295. struct hpb_dmae_chan *chan = to_chan(schan);
  296. struct hpb_dmae_device *hpbdev = to_dev(chan);
  297. int ch = chan->cfg->dma_ch;
  298. /* Check Complete DMA Transfer */
  299. if (dintsr_read(hpbdev, ch)) {
  300. /* Clear Interrupt status */
  301. dintcr_write(hpbdev, ch);
  302. return true;
  303. }
  304. return false;
  305. }
  306. static int hpb_dmae_desc_setup(struct shdma_chan *schan,
  307. struct shdma_desc *sdesc,
  308. dma_addr_t src, dma_addr_t dst, size_t *len)
  309. {
  310. struct hpb_desc *desc = to_desc(sdesc);
  311. if (*len > (size_t)HPB_DMA_TCR_MAX)
  312. *len = (size_t)HPB_DMA_TCR_MAX;
  313. desc->hw.sar = src;
  314. desc->hw.dar = dst;
  315. desc->hw.tcr = *len;
  316. return 0;
  317. }
  318. static size_t hpb_dmae_get_partial(struct shdma_chan *schan,
  319. struct shdma_desc *sdesc)
  320. {
  321. struct hpb_desc *desc = to_desc(sdesc);
  322. struct hpb_dmae_chan *chan = to_chan(schan);
  323. u32 tcr = ch_reg_read(chan, desc->plane_idx ?
  324. HPB_DMAE_DTCR1 : HPB_DMAE_DTCR0);
  325. return (desc->hw.tcr - tcr) << chan->xmit_shift;
  326. }
  327. static bool hpb_dmae_channel_busy(struct shdma_chan *schan)
  328. {
  329. struct hpb_dmae_chan *chan = to_chan(schan);
  330. u32 dstsr = ch_reg_read(chan, HPB_DMAE_DSTSR);
  331. return (dstsr & HPB_DMAE_DSTSR_DMSTS) == HPB_DMAE_DSTSR_DMSTS;
  332. }
  333. static int
  334. hpb_dmae_alloc_chan_resources(struct hpb_dmae_chan *hpb_chan,
  335. const struct hpb_dmae_slave_config *cfg)
  336. {
  337. struct hpb_dmae_device *hpbdev = to_dev(hpb_chan);
  338. struct hpb_dmae_pdata *pdata = hpbdev->pdata;
  339. const struct hpb_dmae_channel *channel = pdata->channels;
  340. int slave_id = cfg->id;
  341. int i, err;
  342. for (i = 0; i < pdata->num_channels; i++, channel++) {
  343. if (channel->s_id == slave_id) {
  344. struct device *dev = hpb_chan->shdma_chan.dev;
  345. hpb_chan->base = hpbdev->chan_reg +
  346. HPB_DMAE_CHAN(cfg->dma_ch);
  347. dev_dbg(dev, "Detected Slave device\n");
  348. dev_dbg(dev, " -- slave_id : 0x%x\n", slave_id);
  349. dev_dbg(dev, " -- cfg->dma_ch : %d\n", cfg->dma_ch);
  350. dev_dbg(dev, " -- channel->ch_irq: %d\n",
  351. channel->ch_irq);
  352. break;
  353. }
  354. }
  355. err = shdma_request_irq(&hpb_chan->shdma_chan, channel->ch_irq,
  356. IRQF_SHARED, hpb_chan->dev_id);
  357. if (err) {
  358. dev_err(hpb_chan->shdma_chan.dev,
  359. "DMA channel request_irq %d failed with error %d\n",
  360. channel->ch_irq, err);
  361. return err;
  362. }
  363. hpb_chan->plane_idx = 0;
  364. hpb_chan->first_desc = true;
  365. if ((cfg->dcr & (HPB_DMAE_DCR_CT | HPB_DMAE_DCR_DIP)) == 0) {
  366. hpb_chan->xfer_mode = XFER_SINGLE;
  367. } else if ((cfg->dcr & (HPB_DMAE_DCR_CT | HPB_DMAE_DCR_DIP)) ==
  368. (HPB_DMAE_DCR_CT | HPB_DMAE_DCR_DIP)) {
  369. hpb_chan->xfer_mode = XFER_DOUBLE;
  370. } else {
  371. dev_err(hpb_chan->shdma_chan.dev, "DCR setting error");
  372. return -EINVAL;
  373. }
  374. if (cfg->flags & HPB_DMAE_SET_ASYNC_MODE)
  375. hpb_dmae_set_async_mode(hpbdev, cfg->mdm, cfg->mdr);
  376. ch_reg_write(hpb_chan, cfg->dcr, HPB_DMAE_DCR);
  377. ch_reg_write(hpb_chan, cfg->port, HPB_DMAE_DPTR);
  378. hpb_chan->xmit_shift = calc_xmit_shift(hpb_chan);
  379. hpb_dmae_enable_int(hpbdev, cfg->dma_ch);
  380. return 0;
  381. }
  382. static int hpb_dmae_set_slave(struct shdma_chan *schan, int slave_id,
  383. dma_addr_t slave_addr, bool try)
  384. {
  385. struct hpb_dmae_chan *chan = to_chan(schan);
  386. const struct hpb_dmae_slave_config *sc =
  387. hpb_dmae_find_slave(chan, slave_id);
  388. if (!sc)
  389. return -ENODEV;
  390. if (try)
  391. return 0;
  392. chan->cfg = sc;
  393. chan->slave_addr = slave_addr ? : sc->addr;
  394. return hpb_dmae_alloc_chan_resources(chan, sc);
  395. }
  396. static void hpb_dmae_setup_xfer(struct shdma_chan *schan, int slave_id)
  397. {
  398. }
  399. static dma_addr_t hpb_dmae_slave_addr(struct shdma_chan *schan)
  400. {
  401. struct hpb_dmae_chan *chan = to_chan(schan);
  402. return chan->slave_addr;
  403. }
  404. static struct shdma_desc *hpb_dmae_embedded_desc(void *buf, int i)
  405. {
  406. return &((struct hpb_desc *)buf)[i].shdma_desc;
  407. }
  408. static const struct shdma_ops hpb_dmae_ops = {
  409. .desc_completed = hpb_dmae_desc_completed,
  410. .halt_channel = hpb_dmae_halt,
  411. .channel_busy = hpb_dmae_channel_busy,
  412. .slave_addr = hpb_dmae_slave_addr,
  413. .desc_setup = hpb_dmae_desc_setup,
  414. .set_slave = hpb_dmae_set_slave,
  415. .setup_xfer = hpb_dmae_setup_xfer,
  416. .start_xfer = hpb_dmae_start_xfer,
  417. .embedded_desc = hpb_dmae_embedded_desc,
  418. .chan_irq = hpb_dmae_chan_irq,
  419. .get_partial = hpb_dmae_get_partial,
  420. };
  421. static int hpb_dmae_chan_probe(struct hpb_dmae_device *hpbdev, int id)
  422. {
  423. struct shdma_dev *sdev = &hpbdev->shdma_dev;
  424. struct platform_device *pdev =
  425. to_platform_device(hpbdev->shdma_dev.dma_dev.dev);
  426. struct hpb_dmae_chan *new_hpb_chan;
  427. struct shdma_chan *schan;
  428. /* Alloc channel */
  429. new_hpb_chan = devm_kzalloc(&pdev->dev,
  430. sizeof(struct hpb_dmae_chan), GFP_KERNEL);
  431. if (!new_hpb_chan) {
  432. dev_err(hpbdev->shdma_dev.dma_dev.dev,
  433. "No free memory for allocating DMA channels!\n");
  434. return -ENOMEM;
  435. }
  436. schan = &new_hpb_chan->shdma_chan;
  437. shdma_chan_probe(sdev, schan, id);
  438. if (pdev->id >= 0)
  439. snprintf(new_hpb_chan->dev_id, sizeof(new_hpb_chan->dev_id),
  440. "hpb-dmae%d.%d", pdev->id, id);
  441. else
  442. snprintf(new_hpb_chan->dev_id, sizeof(new_hpb_chan->dev_id),
  443. "hpb-dma.%d", id);
  444. return 0;
  445. }
  446. static int hpb_dmae_probe(struct platform_device *pdev)
  447. {
  448. struct hpb_dmae_pdata *pdata = pdev->dev.platform_data;
  449. struct hpb_dmae_device *hpbdev;
  450. struct dma_device *dma_dev;
  451. struct resource *chan, *comm, *rest, *mode, *irq_res;
  452. int err, i;
  453. /* Get platform data */
  454. if (!pdata || !pdata->num_channels)
  455. return -ENODEV;
  456. chan = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  457. comm = platform_get_resource(pdev, IORESOURCE_MEM, 1);
  458. rest = platform_get_resource(pdev, IORESOURCE_MEM, 2);
  459. mode = platform_get_resource(pdev, IORESOURCE_MEM, 3);
  460. irq_res = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
  461. if (!irq_res)
  462. return -ENODEV;
  463. hpbdev = devm_kzalloc(&pdev->dev, sizeof(struct hpb_dmae_device),
  464. GFP_KERNEL);
  465. if (!hpbdev) {
  466. dev_err(&pdev->dev, "Not enough memory\n");
  467. return -ENOMEM;
  468. }
  469. hpbdev->chan_reg = devm_ioremap_resource(&pdev->dev, chan);
  470. if (IS_ERR(hpbdev->chan_reg))
  471. return PTR_ERR(hpbdev->chan_reg);
  472. hpbdev->comm_reg = devm_ioremap_resource(&pdev->dev, comm);
  473. if (IS_ERR(hpbdev->comm_reg))
  474. return PTR_ERR(hpbdev->comm_reg);
  475. hpbdev->reset_reg = devm_ioremap_resource(&pdev->dev, rest);
  476. if (IS_ERR(hpbdev->reset_reg))
  477. return PTR_ERR(hpbdev->reset_reg);
  478. hpbdev->mode_reg = devm_ioremap_resource(&pdev->dev, mode);
  479. if (IS_ERR(hpbdev->mode_reg))
  480. return PTR_ERR(hpbdev->mode_reg);
  481. dma_dev = &hpbdev->shdma_dev.dma_dev;
  482. spin_lock_init(&hpbdev->reg_lock);
  483. /* Platform data */
  484. hpbdev->pdata = pdata;
  485. pm_runtime_enable(&pdev->dev);
  486. err = pm_runtime_get_sync(&pdev->dev);
  487. if (err < 0)
  488. dev_err(&pdev->dev, "%s(): GET = %d\n", __func__, err);
  489. /* Reset DMA controller */
  490. hpb_dmae_reset(hpbdev);
  491. pm_runtime_put(&pdev->dev);
  492. dma_cap_set(DMA_MEMCPY, dma_dev->cap_mask);
  493. dma_cap_set(DMA_SLAVE, dma_dev->cap_mask);
  494. hpbdev->shdma_dev.ops = &hpb_dmae_ops;
  495. hpbdev->shdma_dev.desc_size = sizeof(struct hpb_desc);
  496. err = shdma_init(&pdev->dev, &hpbdev->shdma_dev, pdata->num_channels);
  497. if (err < 0)
  498. goto error;
  499. /* Create DMA channels */
  500. for (i = 0; i < pdata->num_channels; i++)
  501. hpb_dmae_chan_probe(hpbdev, i);
  502. platform_set_drvdata(pdev, hpbdev);
  503. err = dma_async_device_register(dma_dev);
  504. if (!err)
  505. return 0;
  506. shdma_cleanup(&hpbdev->shdma_dev);
  507. error:
  508. pm_runtime_disable(&pdev->dev);
  509. return err;
  510. }
  511. static void hpb_dmae_chan_remove(struct hpb_dmae_device *hpbdev)
  512. {
  513. struct dma_device *dma_dev = &hpbdev->shdma_dev.dma_dev;
  514. struct shdma_chan *schan;
  515. int i;
  516. shdma_for_each_chan(schan, &hpbdev->shdma_dev, i) {
  517. BUG_ON(!schan);
  518. shdma_chan_remove(schan);
  519. }
  520. dma_dev->chancnt = 0;
  521. }
  522. static int hpb_dmae_remove(struct platform_device *pdev)
  523. {
  524. struct hpb_dmae_device *hpbdev = platform_get_drvdata(pdev);
  525. dma_async_device_unregister(&hpbdev->shdma_dev.dma_dev);
  526. pm_runtime_disable(&pdev->dev);
  527. hpb_dmae_chan_remove(hpbdev);
  528. return 0;
  529. }
  530. static void hpb_dmae_shutdown(struct platform_device *pdev)
  531. {
  532. struct hpb_dmae_device *hpbdev = platform_get_drvdata(pdev);
  533. hpb_dmae_ctl_stop(hpbdev);
  534. }
  535. static struct platform_driver hpb_dmae_driver = {
  536. .probe = hpb_dmae_probe,
  537. .remove = hpb_dmae_remove,
  538. .shutdown = hpb_dmae_shutdown,
  539. .driver = {
  540. .owner = THIS_MODULE,
  541. .name = "hpb-dma-engine",
  542. },
  543. };
  544. module_platform_driver(hpb_dmae_driver);
  545. MODULE_AUTHOR("Max Filippov <max.filippov@cogentembedded.com>");
  546. MODULE_DESCRIPTION("Renesas HPB DMA Engine driver");
  547. MODULE_LICENSE("GPL");