forcedeth.c 84 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848
  1. /*
  2. * forcedeth: Ethernet driver for NVIDIA nForce media access controllers.
  3. *
  4. * Note: This driver is a cleanroom reimplementation based on reverse
  5. * engineered documentation written by Carl-Daniel Hailfinger
  6. * and Andrew de Quincey. It's neither supported nor endorsed
  7. * by NVIDIA Corp. Use at your own risk.
  8. *
  9. * NVIDIA, nForce and other NVIDIA marks are trademarks or registered
  10. * trademarks of NVIDIA Corporation in the United States and other
  11. * countries.
  12. *
  13. * Copyright (C) 2003,4,5 Manfred Spraul
  14. * Copyright (C) 2004 Andrew de Quincey (wol support)
  15. * Copyright (C) 2004 Carl-Daniel Hailfinger (invalid MAC handling, insane
  16. * IRQ rate fixes, bigendian fixes, cleanups, verification)
  17. * Copyright (c) 2004 NVIDIA Corporation
  18. *
  19. * This program is free software; you can redistribute it and/or modify
  20. * it under the terms of the GNU General Public License as published by
  21. * the Free Software Foundation; either version 2 of the License, or
  22. * (at your option) any later version.
  23. *
  24. * This program is distributed in the hope that it will be useful,
  25. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  26. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  27. * GNU General Public License for more details.
  28. *
  29. * You should have received a copy of the GNU General Public License
  30. * along with this program; if not, write to the Free Software
  31. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  32. *
  33. * Changelog:
  34. * 0.01: 05 Oct 2003: First release that compiles without warnings.
  35. * 0.02: 05 Oct 2003: Fix bug for nv_drain_tx: do not try to free NULL skbs.
  36. * Check all PCI BARs for the register window.
  37. * udelay added to mii_rw.
  38. * 0.03: 06 Oct 2003: Initialize dev->irq.
  39. * 0.04: 07 Oct 2003: Initialize np->lock, reduce handled irqs, add printks.
  40. * 0.05: 09 Oct 2003: printk removed again, irq status print tx_timeout.
  41. * 0.06: 10 Oct 2003: MAC Address read updated, pff flag generation updated,
  42. * irq mask updated
  43. * 0.07: 14 Oct 2003: Further irq mask updates.
  44. * 0.08: 20 Oct 2003: rx_desc.Length initialization added, nv_alloc_rx refill
  45. * added into irq handler, NULL check for drain_ring.
  46. * 0.09: 20 Oct 2003: Basic link speed irq implementation. Only handle the
  47. * requested interrupt sources.
  48. * 0.10: 20 Oct 2003: First cleanup for release.
  49. * 0.11: 21 Oct 2003: hexdump for tx added, rx buffer sizes increased.
  50. * MAC Address init fix, set_multicast cleanup.
  51. * 0.12: 23 Oct 2003: Cleanups for release.
  52. * 0.13: 25 Oct 2003: Limit for concurrent tx packets increased to 10.
  53. * Set link speed correctly. start rx before starting
  54. * tx (nv_start_rx sets the link speed).
  55. * 0.14: 25 Oct 2003: Nic dependant irq mask.
  56. * 0.15: 08 Nov 2003: fix smp deadlock with set_multicast_list during
  57. * open.
  58. * 0.16: 15 Nov 2003: include file cleanup for ppc64, rx buffer size
  59. * increased to 1628 bytes.
  60. * 0.17: 16 Nov 2003: undo rx buffer size increase. Substract 1 from
  61. * the tx length.
  62. * 0.18: 17 Nov 2003: fix oops due to late initialization of dev_stats
  63. * 0.19: 29 Nov 2003: Handle RxNoBuf, detect & handle invalid mac
  64. * addresses, really stop rx if already running
  65. * in nv_start_rx, clean up a bit.
  66. * 0.20: 07 Dec 2003: alloc fixes
  67. * 0.21: 12 Jan 2004: additional alloc fix, nic polling fix.
  68. * 0.22: 19 Jan 2004: reprogram timer to a sane rate, avoid lockup
  69. * on close.
  70. * 0.23: 26 Jan 2004: various small cleanups
  71. * 0.24: 27 Feb 2004: make driver even less anonymous in backtraces
  72. * 0.25: 09 Mar 2004: wol support
  73. * 0.26: 03 Jun 2004: netdriver specific annotation, sparse-related fixes
  74. * 0.27: 19 Jun 2004: Gigabit support, new descriptor rings,
  75. * added CK804/MCP04 device IDs, code fixes
  76. * for registers, link status and other minor fixes.
  77. * 0.28: 21 Jun 2004: Big cleanup, making driver mostly endian safe
  78. * 0.29: 31 Aug 2004: Add backup timer for link change notification.
  79. * 0.30: 25 Sep 2004: rx checksum support for nf 250 Gb. Add rx reset
  80. * into nv_close, otherwise reenabling for wol can
  81. * cause DMA to kfree'd memory.
  82. * 0.31: 14 Nov 2004: ethtool support for getting/setting link
  83. * capabilities.
  84. * 0.32: 16 Apr 2005: RX_ERROR4 handling added.
  85. * 0.33: 16 May 2005: Support for MCP51 added.
  86. * 0.34: 18 Jun 2005: Add DEV_NEED_LINKTIMER to all nForce nics.
  87. * 0.35: 26 Jun 2005: Support for MCP55 added.
  88. * 0.36: 28 Jun 2005: Add jumbo frame support.
  89. * 0.37: 10 Jul 2005: Additional ethtool support, cleanup of pci id list
  90. * 0.38: 16 Jul 2005: tx irq rewrite: Use global flags instead of
  91. * per-packet flags.
  92. * 0.39: 18 Jul 2005: Add 64bit descriptor support.
  93. * 0.40: 19 Jul 2005: Add support for mac address change.
  94. * 0.41: 30 Jul 2005: Write back original MAC in nv_close instead
  95. * of nv_remove
  96. * 0.42: 06 Aug 2005: Fix lack of link speed initialization
  97. * in the second (and later) nv_open call
  98. * 0.43: 10 Aug 2005: Add support for tx checksum.
  99. * 0.44: 20 Aug 2005: Add support for scatter gather and segmentation.
  100. * 0.45: 18 Sep 2005: Remove nv_stop/start_rx from every link check
  101. * 0.46: 20 Oct 2005: Add irq optimization modes.
  102. * 0.47: 26 Oct 2005: Add phyaddr 0 in phy scan.
  103. * 0.48: 24 Dec 2005: Disable TSO, bugfix for pci_map_single
  104. * 0.49: 10 Dec 2005: Fix tso for large buffers.
  105. * 0.50: 20 Jan 2006: Add 8021pq tagging support.
  106. *
  107. * Known bugs:
  108. * We suspect that on some hardware no TX done interrupts are generated.
  109. * This means recovery from netif_stop_queue only happens if the hw timer
  110. * interrupt fires (100 times/second, configurable with NVREG_POLL_DEFAULT)
  111. * and the timer is active in the IRQMask, or if a rx packet arrives by chance.
  112. * If your hardware reliably generates tx done interrupts, then you can remove
  113. * DEV_NEED_TIMERIRQ from the driver_data flags.
  114. * DEV_NEED_TIMERIRQ will not harm you on sane hardware, only generating a few
  115. * superfluous timer interrupts from the nic.
  116. */
  117. #define FORCEDETH_VERSION "0.50"
  118. #define DRV_NAME "forcedeth"
  119. #include <linux/module.h>
  120. #include <linux/types.h>
  121. #include <linux/pci.h>
  122. #include <linux/interrupt.h>
  123. #include <linux/netdevice.h>
  124. #include <linux/etherdevice.h>
  125. #include <linux/delay.h>
  126. #include <linux/spinlock.h>
  127. #include <linux/ethtool.h>
  128. #include <linux/timer.h>
  129. #include <linux/skbuff.h>
  130. #include <linux/mii.h>
  131. #include <linux/random.h>
  132. #include <linux/init.h>
  133. #include <linux/if_vlan.h>
  134. #include <asm/irq.h>
  135. #include <asm/io.h>
  136. #include <asm/uaccess.h>
  137. #include <asm/system.h>
  138. #if 0
  139. #define dprintk printk
  140. #else
  141. #define dprintk(x...) do { } while (0)
  142. #endif
  143. /*
  144. * Hardware access:
  145. */
  146. #define DEV_NEED_TIMERIRQ 0x0001 /* set the timer irq flag in the irq mask */
  147. #define DEV_NEED_LINKTIMER 0x0002 /* poll link settings. Relies on the timer irq */
  148. #define DEV_HAS_LARGEDESC 0x0004 /* device supports jumbo frames and needs packet format 2 */
  149. #define DEV_HAS_HIGH_DMA 0x0008 /* device supports 64bit dma */
  150. #define DEV_HAS_CHECKSUM 0x0010 /* device supports tx and rx checksum offloads */
  151. #define DEV_HAS_VLAN 0x0020 /* device supports vlan tagging and striping */
  152. enum {
  153. NvRegIrqStatus = 0x000,
  154. #define NVREG_IRQSTAT_MIIEVENT 0x040
  155. #define NVREG_IRQSTAT_MASK 0x1ff
  156. NvRegIrqMask = 0x004,
  157. #define NVREG_IRQ_RX_ERROR 0x0001
  158. #define NVREG_IRQ_RX 0x0002
  159. #define NVREG_IRQ_RX_NOBUF 0x0004
  160. #define NVREG_IRQ_TX_ERR 0x0008
  161. #define NVREG_IRQ_TX_OK 0x0010
  162. #define NVREG_IRQ_TIMER 0x0020
  163. #define NVREG_IRQ_LINK 0x0040
  164. #define NVREG_IRQ_TX_ERROR 0x0080
  165. #define NVREG_IRQ_TX1 0x0100
  166. #define NVREG_IRQMASK_THROUGHPUT 0x00df
  167. #define NVREG_IRQMASK_CPU 0x0040
  168. #define NVREG_IRQ_UNKNOWN (~(NVREG_IRQ_RX_ERROR|NVREG_IRQ_RX|NVREG_IRQ_RX_NOBUF|NVREG_IRQ_TX_ERR| \
  169. NVREG_IRQ_TX_OK|NVREG_IRQ_TIMER|NVREG_IRQ_LINK|NVREG_IRQ_TX_ERROR| \
  170. NVREG_IRQ_TX1))
  171. NvRegUnknownSetupReg6 = 0x008,
  172. #define NVREG_UNKSETUP6_VAL 3
  173. /*
  174. * NVREG_POLL_DEFAULT is the interval length of the timer source on the nic
  175. * NVREG_POLL_DEFAULT=97 would result in an interval length of 1 ms
  176. */
  177. NvRegPollingInterval = 0x00c,
  178. #define NVREG_POLL_DEFAULT_THROUGHPUT 970
  179. #define NVREG_POLL_DEFAULT_CPU 13
  180. NvRegMisc1 = 0x080,
  181. #define NVREG_MISC1_HD 0x02
  182. #define NVREG_MISC1_FORCE 0x3b0f3c
  183. NvRegTransmitterControl = 0x084,
  184. #define NVREG_XMITCTL_START 0x01
  185. NvRegTransmitterStatus = 0x088,
  186. #define NVREG_XMITSTAT_BUSY 0x01
  187. NvRegPacketFilterFlags = 0x8c,
  188. #define NVREG_PFF_ALWAYS 0x7F0008
  189. #define NVREG_PFF_PROMISC 0x80
  190. #define NVREG_PFF_MYADDR 0x20
  191. NvRegOffloadConfig = 0x90,
  192. #define NVREG_OFFLOAD_HOMEPHY 0x601
  193. #define NVREG_OFFLOAD_NORMAL RX_NIC_BUFSIZE
  194. NvRegReceiverControl = 0x094,
  195. #define NVREG_RCVCTL_START 0x01
  196. NvRegReceiverStatus = 0x98,
  197. #define NVREG_RCVSTAT_BUSY 0x01
  198. NvRegRandomSeed = 0x9c,
  199. #define NVREG_RNDSEED_MASK 0x00ff
  200. #define NVREG_RNDSEED_FORCE 0x7f00
  201. #define NVREG_RNDSEED_FORCE2 0x2d00
  202. #define NVREG_RNDSEED_FORCE3 0x7400
  203. NvRegUnknownSetupReg1 = 0xA0,
  204. #define NVREG_UNKSETUP1_VAL 0x16070f
  205. NvRegUnknownSetupReg2 = 0xA4,
  206. #define NVREG_UNKSETUP2_VAL 0x16
  207. NvRegMacAddrA = 0xA8,
  208. NvRegMacAddrB = 0xAC,
  209. NvRegMulticastAddrA = 0xB0,
  210. #define NVREG_MCASTADDRA_FORCE 0x01
  211. NvRegMulticastAddrB = 0xB4,
  212. NvRegMulticastMaskA = 0xB8,
  213. NvRegMulticastMaskB = 0xBC,
  214. NvRegPhyInterface = 0xC0,
  215. #define PHY_RGMII 0x10000000
  216. NvRegTxRingPhysAddr = 0x100,
  217. NvRegRxRingPhysAddr = 0x104,
  218. NvRegRingSizes = 0x108,
  219. #define NVREG_RINGSZ_TXSHIFT 0
  220. #define NVREG_RINGSZ_RXSHIFT 16
  221. NvRegUnknownTransmitterReg = 0x10c,
  222. NvRegLinkSpeed = 0x110,
  223. #define NVREG_LINKSPEED_FORCE 0x10000
  224. #define NVREG_LINKSPEED_10 1000
  225. #define NVREG_LINKSPEED_100 100
  226. #define NVREG_LINKSPEED_1000 50
  227. #define NVREG_LINKSPEED_MASK (0xFFF)
  228. NvRegUnknownSetupReg5 = 0x130,
  229. #define NVREG_UNKSETUP5_BIT31 (1<<31)
  230. NvRegUnknownSetupReg3 = 0x13c,
  231. #define NVREG_UNKSETUP3_VAL1 0x200010
  232. NvRegTxRxControl = 0x144,
  233. #define NVREG_TXRXCTL_KICK 0x0001
  234. #define NVREG_TXRXCTL_BIT1 0x0002
  235. #define NVREG_TXRXCTL_BIT2 0x0004
  236. #define NVREG_TXRXCTL_IDLE 0x0008
  237. #define NVREG_TXRXCTL_RESET 0x0010
  238. #define NVREG_TXRXCTL_RXCHECK 0x0400
  239. #define NVREG_TXRXCTL_DESC_1 0
  240. #define NVREG_TXRXCTL_DESC_2 0x02100
  241. #define NVREG_TXRXCTL_DESC_3 0x02200
  242. #define NVREG_TXRXCTL_VLANSTRIP 0x00040
  243. #define NVREG_TXRXCTL_VLANINS 0x00080
  244. NvRegMIIStatus = 0x180,
  245. #define NVREG_MIISTAT_ERROR 0x0001
  246. #define NVREG_MIISTAT_LINKCHANGE 0x0008
  247. #define NVREG_MIISTAT_MASK 0x000f
  248. #define NVREG_MIISTAT_MASK2 0x000f
  249. NvRegUnknownSetupReg4 = 0x184,
  250. #define NVREG_UNKSETUP4_VAL 8
  251. NvRegAdapterControl = 0x188,
  252. #define NVREG_ADAPTCTL_START 0x02
  253. #define NVREG_ADAPTCTL_LINKUP 0x04
  254. #define NVREG_ADAPTCTL_PHYVALID 0x40000
  255. #define NVREG_ADAPTCTL_RUNNING 0x100000
  256. #define NVREG_ADAPTCTL_PHYSHIFT 24
  257. NvRegMIISpeed = 0x18c,
  258. #define NVREG_MIISPEED_BIT8 (1<<8)
  259. #define NVREG_MIIDELAY 5
  260. NvRegMIIControl = 0x190,
  261. #define NVREG_MIICTL_INUSE 0x08000
  262. #define NVREG_MIICTL_WRITE 0x00400
  263. #define NVREG_MIICTL_ADDRSHIFT 5
  264. NvRegMIIData = 0x194,
  265. NvRegWakeUpFlags = 0x200,
  266. #define NVREG_WAKEUPFLAGS_VAL 0x7770
  267. #define NVREG_WAKEUPFLAGS_BUSYSHIFT 24
  268. #define NVREG_WAKEUPFLAGS_ENABLESHIFT 16
  269. #define NVREG_WAKEUPFLAGS_D3SHIFT 12
  270. #define NVREG_WAKEUPFLAGS_D2SHIFT 8
  271. #define NVREG_WAKEUPFLAGS_D1SHIFT 4
  272. #define NVREG_WAKEUPFLAGS_D0SHIFT 0
  273. #define NVREG_WAKEUPFLAGS_ACCEPT_MAGPAT 0x01
  274. #define NVREG_WAKEUPFLAGS_ACCEPT_WAKEUPPAT 0x02
  275. #define NVREG_WAKEUPFLAGS_ACCEPT_LINKCHANGE 0x04
  276. #define NVREG_WAKEUPFLAGS_ENABLE 0x1111
  277. NvRegPatternCRC = 0x204,
  278. NvRegPatternMask = 0x208,
  279. NvRegPowerCap = 0x268,
  280. #define NVREG_POWERCAP_D3SUPP (1<<30)
  281. #define NVREG_POWERCAP_D2SUPP (1<<26)
  282. #define NVREG_POWERCAP_D1SUPP (1<<25)
  283. NvRegPowerState = 0x26c,
  284. #define NVREG_POWERSTATE_POWEREDUP 0x8000
  285. #define NVREG_POWERSTATE_VALID 0x0100
  286. #define NVREG_POWERSTATE_MASK 0x0003
  287. #define NVREG_POWERSTATE_D0 0x0000
  288. #define NVREG_POWERSTATE_D1 0x0001
  289. #define NVREG_POWERSTATE_D2 0x0002
  290. #define NVREG_POWERSTATE_D3 0x0003
  291. NvRegVlanControl = 0x300,
  292. #define NVREG_VLANCONTROL_ENABLE 0x2000
  293. };
  294. /* Big endian: should work, but is untested */
  295. struct ring_desc {
  296. u32 PacketBuffer;
  297. u32 FlagLen;
  298. };
  299. struct ring_desc_ex {
  300. u32 PacketBufferHigh;
  301. u32 PacketBufferLow;
  302. u32 TxVlan;
  303. u32 FlagLen;
  304. };
  305. typedef union _ring_type {
  306. struct ring_desc* orig;
  307. struct ring_desc_ex* ex;
  308. } ring_type;
  309. #define FLAG_MASK_V1 0xffff0000
  310. #define FLAG_MASK_V2 0xffffc000
  311. #define LEN_MASK_V1 (0xffffffff ^ FLAG_MASK_V1)
  312. #define LEN_MASK_V2 (0xffffffff ^ FLAG_MASK_V2)
  313. #define NV_TX_LASTPACKET (1<<16)
  314. #define NV_TX_RETRYERROR (1<<19)
  315. #define NV_TX_FORCED_INTERRUPT (1<<24)
  316. #define NV_TX_DEFERRED (1<<26)
  317. #define NV_TX_CARRIERLOST (1<<27)
  318. #define NV_TX_LATECOLLISION (1<<28)
  319. #define NV_TX_UNDERFLOW (1<<29)
  320. #define NV_TX_ERROR (1<<30)
  321. #define NV_TX_VALID (1<<31)
  322. #define NV_TX2_LASTPACKET (1<<29)
  323. #define NV_TX2_RETRYERROR (1<<18)
  324. #define NV_TX2_FORCED_INTERRUPT (1<<30)
  325. #define NV_TX2_DEFERRED (1<<25)
  326. #define NV_TX2_CARRIERLOST (1<<26)
  327. #define NV_TX2_LATECOLLISION (1<<27)
  328. #define NV_TX2_UNDERFLOW (1<<28)
  329. /* error and valid are the same for both */
  330. #define NV_TX2_ERROR (1<<30)
  331. #define NV_TX2_VALID (1<<31)
  332. #define NV_TX2_TSO (1<<28)
  333. #define NV_TX2_TSO_SHIFT 14
  334. #define NV_TX2_TSO_MAX_SHIFT 14
  335. #define NV_TX2_TSO_MAX_SIZE (1<<NV_TX2_TSO_MAX_SHIFT)
  336. #define NV_TX2_CHECKSUM_L3 (1<<27)
  337. #define NV_TX2_CHECKSUM_L4 (1<<26)
  338. #define NV_TX3_VLAN_TAG_PRESENT (1<<18)
  339. #define NV_RX_DESCRIPTORVALID (1<<16)
  340. #define NV_RX_MISSEDFRAME (1<<17)
  341. #define NV_RX_SUBSTRACT1 (1<<18)
  342. #define NV_RX_ERROR1 (1<<23)
  343. #define NV_RX_ERROR2 (1<<24)
  344. #define NV_RX_ERROR3 (1<<25)
  345. #define NV_RX_ERROR4 (1<<26)
  346. #define NV_RX_CRCERR (1<<27)
  347. #define NV_RX_OVERFLOW (1<<28)
  348. #define NV_RX_FRAMINGERR (1<<29)
  349. #define NV_RX_ERROR (1<<30)
  350. #define NV_RX_AVAIL (1<<31)
  351. #define NV_RX2_CHECKSUMMASK (0x1C000000)
  352. #define NV_RX2_CHECKSUMOK1 (0x10000000)
  353. #define NV_RX2_CHECKSUMOK2 (0x14000000)
  354. #define NV_RX2_CHECKSUMOK3 (0x18000000)
  355. #define NV_RX2_DESCRIPTORVALID (1<<29)
  356. #define NV_RX2_SUBSTRACT1 (1<<25)
  357. #define NV_RX2_ERROR1 (1<<18)
  358. #define NV_RX2_ERROR2 (1<<19)
  359. #define NV_RX2_ERROR3 (1<<20)
  360. #define NV_RX2_ERROR4 (1<<21)
  361. #define NV_RX2_CRCERR (1<<22)
  362. #define NV_RX2_OVERFLOW (1<<23)
  363. #define NV_RX2_FRAMINGERR (1<<24)
  364. /* error and avail are the same for both */
  365. #define NV_RX2_ERROR (1<<30)
  366. #define NV_RX2_AVAIL (1<<31)
  367. #define NV_RX3_VLAN_TAG_PRESENT (1<<16)
  368. #define NV_RX3_VLAN_TAG_MASK (0x0000FFFF)
  369. /* Miscelaneous hardware related defines: */
  370. #define NV_PCI_REGSZ 0x270
  371. /* various timeout delays: all in usec */
  372. #define NV_TXRX_RESET_DELAY 4
  373. #define NV_TXSTOP_DELAY1 10
  374. #define NV_TXSTOP_DELAY1MAX 500000
  375. #define NV_TXSTOP_DELAY2 100
  376. #define NV_RXSTOP_DELAY1 10
  377. #define NV_RXSTOP_DELAY1MAX 500000
  378. #define NV_RXSTOP_DELAY2 100
  379. #define NV_SETUP5_DELAY 5
  380. #define NV_SETUP5_DELAYMAX 50000
  381. #define NV_POWERUP_DELAY 5
  382. #define NV_POWERUP_DELAYMAX 5000
  383. #define NV_MIIBUSY_DELAY 50
  384. #define NV_MIIPHY_DELAY 10
  385. #define NV_MIIPHY_DELAYMAX 10000
  386. #define NV_WAKEUPPATTERNS 5
  387. #define NV_WAKEUPMASKENTRIES 4
  388. /* General driver defaults */
  389. #define NV_WATCHDOG_TIMEO (5*HZ)
  390. #define RX_RING 128
  391. #define TX_RING 256
  392. /*
  393. * If your nic mysteriously hangs then try to reduce the limits
  394. * to 1/0: It might be required to set NV_TX_LASTPACKET in the
  395. * last valid ring entry. But this would be impossible to
  396. * implement - probably a disassembly error.
  397. */
  398. #define TX_LIMIT_STOP 255
  399. #define TX_LIMIT_START 254
  400. /* rx/tx mac addr + type + vlan + align + slack*/
  401. #define NV_RX_HEADERS (64)
  402. /* even more slack. */
  403. #define NV_RX_ALLOC_PAD (64)
  404. /* maximum mtu size */
  405. #define NV_PKTLIMIT_1 ETH_DATA_LEN /* hard limit not known */
  406. #define NV_PKTLIMIT_2 9100 /* Actual limit according to NVidia: 9202 */
  407. #define OOM_REFILL (1+HZ/20)
  408. #define POLL_WAIT (1+HZ/100)
  409. #define LINK_TIMEOUT (3*HZ)
  410. /*
  411. * desc_ver values:
  412. * The nic supports three different descriptor types:
  413. * - DESC_VER_1: Original
  414. * - DESC_VER_2: support for jumbo frames.
  415. * - DESC_VER_3: 64-bit format.
  416. */
  417. #define DESC_VER_1 1
  418. #define DESC_VER_2 2
  419. #define DESC_VER_3 3
  420. /* PHY defines */
  421. #define PHY_OUI_MARVELL 0x5043
  422. #define PHY_OUI_CICADA 0x03f1
  423. #define PHYID1_OUI_MASK 0x03ff
  424. #define PHYID1_OUI_SHFT 6
  425. #define PHYID2_OUI_MASK 0xfc00
  426. #define PHYID2_OUI_SHFT 10
  427. #define PHY_INIT1 0x0f000
  428. #define PHY_INIT2 0x0e00
  429. #define PHY_INIT3 0x01000
  430. #define PHY_INIT4 0x0200
  431. #define PHY_INIT5 0x0004
  432. #define PHY_INIT6 0x02000
  433. #define PHY_GIGABIT 0x0100
  434. #define PHY_TIMEOUT 0x1
  435. #define PHY_ERROR 0x2
  436. #define PHY_100 0x1
  437. #define PHY_1000 0x2
  438. #define PHY_HALF 0x100
  439. /* FIXME: MII defines that should be added to <linux/mii.h> */
  440. #define MII_1000BT_CR 0x09
  441. #define MII_1000BT_SR 0x0a
  442. #define ADVERTISE_1000FULL 0x0200
  443. #define ADVERTISE_1000HALF 0x0100
  444. #define LPA_1000FULL 0x0800
  445. #define LPA_1000HALF 0x0400
  446. /*
  447. * SMP locking:
  448. * All hardware access under dev->priv->lock, except the performance
  449. * critical parts:
  450. * - rx is (pseudo-) lockless: it relies on the single-threading provided
  451. * by the arch code for interrupts.
  452. * - tx setup is lockless: it relies on dev->xmit_lock. Actual submission
  453. * needs dev->priv->lock :-(
  454. * - set_multicast_list: preparation lockless, relies on dev->xmit_lock.
  455. */
  456. /* in dev: base, irq */
  457. struct fe_priv {
  458. spinlock_t lock;
  459. /* General data:
  460. * Locking: spin_lock(&np->lock); */
  461. struct net_device_stats stats;
  462. int in_shutdown;
  463. u32 linkspeed;
  464. int duplex;
  465. int autoneg;
  466. int fixed_mode;
  467. int phyaddr;
  468. int wolenabled;
  469. unsigned int phy_oui;
  470. u16 gigabit;
  471. /* General data: RO fields */
  472. dma_addr_t ring_addr;
  473. struct pci_dev *pci_dev;
  474. u32 orig_mac[2];
  475. u32 irqmask;
  476. u32 desc_ver;
  477. u32 txrxctl_bits;
  478. u32 vlanctl_bits;
  479. void __iomem *base;
  480. /* rx specific fields.
  481. * Locking: Within irq hander or disable_irq+spin_lock(&np->lock);
  482. */
  483. ring_type rx_ring;
  484. unsigned int cur_rx, refill_rx;
  485. struct sk_buff *rx_skbuff[RX_RING];
  486. dma_addr_t rx_dma[RX_RING];
  487. unsigned int rx_buf_sz;
  488. unsigned int pkt_limit;
  489. struct timer_list oom_kick;
  490. struct timer_list nic_poll;
  491. /* media detection workaround.
  492. * Locking: Within irq hander or disable_irq+spin_lock(&np->lock);
  493. */
  494. int need_linktimer;
  495. unsigned long link_timeout;
  496. /*
  497. * tx specific fields.
  498. */
  499. ring_type tx_ring;
  500. unsigned int next_tx, nic_tx;
  501. struct sk_buff *tx_skbuff[TX_RING];
  502. dma_addr_t tx_dma[TX_RING];
  503. unsigned int tx_dma_len[TX_RING];
  504. u32 tx_flags;
  505. /* vlan fields */
  506. struct vlan_group *vlangrp;
  507. };
  508. /*
  509. * Maximum number of loops until we assume that a bit in the irq mask
  510. * is stuck. Overridable with module param.
  511. */
  512. static int max_interrupt_work = 5;
  513. /*
  514. * Optimization can be either throuput mode or cpu mode
  515. *
  516. * Throughput Mode: Every tx and rx packet will generate an interrupt.
  517. * CPU Mode: Interrupts are controlled by a timer.
  518. */
  519. #define NV_OPTIMIZATION_MODE_THROUGHPUT 0
  520. #define NV_OPTIMIZATION_MODE_CPU 1
  521. static int optimization_mode = NV_OPTIMIZATION_MODE_THROUGHPUT;
  522. /*
  523. * Poll interval for timer irq
  524. *
  525. * This interval determines how frequent an interrupt is generated.
  526. * The is value is determined by [(time_in_micro_secs * 100) / (2^10)]
  527. * Min = 0, and Max = 65535
  528. */
  529. static int poll_interval = -1;
  530. static inline struct fe_priv *get_nvpriv(struct net_device *dev)
  531. {
  532. return netdev_priv(dev);
  533. }
  534. static inline u8 __iomem *get_hwbase(struct net_device *dev)
  535. {
  536. return ((struct fe_priv *)netdev_priv(dev))->base;
  537. }
  538. static inline void pci_push(u8 __iomem *base)
  539. {
  540. /* force out pending posted writes */
  541. readl(base);
  542. }
  543. static inline u32 nv_descr_getlength(struct ring_desc *prd, u32 v)
  544. {
  545. return le32_to_cpu(prd->FlagLen)
  546. & ((v == DESC_VER_1) ? LEN_MASK_V1 : LEN_MASK_V2);
  547. }
  548. static inline u32 nv_descr_getlength_ex(struct ring_desc_ex *prd, u32 v)
  549. {
  550. return le32_to_cpu(prd->FlagLen) & LEN_MASK_V2;
  551. }
  552. static int reg_delay(struct net_device *dev, int offset, u32 mask, u32 target,
  553. int delay, int delaymax, const char *msg)
  554. {
  555. u8 __iomem *base = get_hwbase(dev);
  556. pci_push(base);
  557. do {
  558. udelay(delay);
  559. delaymax -= delay;
  560. if (delaymax < 0) {
  561. if (msg)
  562. printk(msg);
  563. return 1;
  564. }
  565. } while ((readl(base + offset) & mask) != target);
  566. return 0;
  567. }
  568. #define MII_READ (-1)
  569. /* mii_rw: read/write a register on the PHY.
  570. *
  571. * Caller must guarantee serialization
  572. */
  573. static int mii_rw(struct net_device *dev, int addr, int miireg, int value)
  574. {
  575. u8 __iomem *base = get_hwbase(dev);
  576. u32 reg;
  577. int retval;
  578. writel(NVREG_MIISTAT_MASK, base + NvRegMIIStatus);
  579. reg = readl(base + NvRegMIIControl);
  580. if (reg & NVREG_MIICTL_INUSE) {
  581. writel(NVREG_MIICTL_INUSE, base + NvRegMIIControl);
  582. udelay(NV_MIIBUSY_DELAY);
  583. }
  584. reg = (addr << NVREG_MIICTL_ADDRSHIFT) | miireg;
  585. if (value != MII_READ) {
  586. writel(value, base + NvRegMIIData);
  587. reg |= NVREG_MIICTL_WRITE;
  588. }
  589. writel(reg, base + NvRegMIIControl);
  590. if (reg_delay(dev, NvRegMIIControl, NVREG_MIICTL_INUSE, 0,
  591. NV_MIIPHY_DELAY, NV_MIIPHY_DELAYMAX, NULL)) {
  592. dprintk(KERN_DEBUG "%s: mii_rw of reg %d at PHY %d timed out.\n",
  593. dev->name, miireg, addr);
  594. retval = -1;
  595. } else if (value != MII_READ) {
  596. /* it was a write operation - fewer failures are detectable */
  597. dprintk(KERN_DEBUG "%s: mii_rw wrote 0x%x to reg %d at PHY %d\n",
  598. dev->name, value, miireg, addr);
  599. retval = 0;
  600. } else if (readl(base + NvRegMIIStatus) & NVREG_MIISTAT_ERROR) {
  601. dprintk(KERN_DEBUG "%s: mii_rw of reg %d at PHY %d failed.\n",
  602. dev->name, miireg, addr);
  603. retval = -1;
  604. } else {
  605. retval = readl(base + NvRegMIIData);
  606. dprintk(KERN_DEBUG "%s: mii_rw read from reg %d at PHY %d: 0x%x.\n",
  607. dev->name, miireg, addr, retval);
  608. }
  609. return retval;
  610. }
  611. static int phy_reset(struct net_device *dev)
  612. {
  613. struct fe_priv *np = netdev_priv(dev);
  614. u32 miicontrol;
  615. unsigned int tries = 0;
  616. miicontrol = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  617. miicontrol |= BMCR_RESET;
  618. if (mii_rw(dev, np->phyaddr, MII_BMCR, miicontrol)) {
  619. return -1;
  620. }
  621. /* wait for 500ms */
  622. msleep(500);
  623. /* must wait till reset is deasserted */
  624. while (miicontrol & BMCR_RESET) {
  625. msleep(10);
  626. miicontrol = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  627. /* FIXME: 100 tries seem excessive */
  628. if (tries++ > 100)
  629. return -1;
  630. }
  631. return 0;
  632. }
  633. static int phy_init(struct net_device *dev)
  634. {
  635. struct fe_priv *np = get_nvpriv(dev);
  636. u8 __iomem *base = get_hwbase(dev);
  637. u32 phyinterface, phy_reserved, mii_status, mii_control, mii_control_1000,reg;
  638. /* set advertise register */
  639. reg = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
  640. reg |= (ADVERTISE_10HALF|ADVERTISE_10FULL|ADVERTISE_100HALF|ADVERTISE_100FULL|0x800|0x400);
  641. if (mii_rw(dev, np->phyaddr, MII_ADVERTISE, reg)) {
  642. printk(KERN_INFO "%s: phy write to advertise failed.\n", pci_name(np->pci_dev));
  643. return PHY_ERROR;
  644. }
  645. /* get phy interface type */
  646. phyinterface = readl(base + NvRegPhyInterface);
  647. /* see if gigabit phy */
  648. mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
  649. if (mii_status & PHY_GIGABIT) {
  650. np->gigabit = PHY_GIGABIT;
  651. mii_control_1000 = mii_rw(dev, np->phyaddr, MII_1000BT_CR, MII_READ);
  652. mii_control_1000 &= ~ADVERTISE_1000HALF;
  653. if (phyinterface & PHY_RGMII)
  654. mii_control_1000 |= ADVERTISE_1000FULL;
  655. else
  656. mii_control_1000 &= ~ADVERTISE_1000FULL;
  657. if (mii_rw(dev, np->phyaddr, MII_1000BT_CR, mii_control_1000)) {
  658. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  659. return PHY_ERROR;
  660. }
  661. }
  662. else
  663. np->gigabit = 0;
  664. /* reset the phy */
  665. if (phy_reset(dev)) {
  666. printk(KERN_INFO "%s: phy reset failed\n", pci_name(np->pci_dev));
  667. return PHY_ERROR;
  668. }
  669. /* phy vendor specific configuration */
  670. if ((np->phy_oui == PHY_OUI_CICADA) && (phyinterface & PHY_RGMII) ) {
  671. phy_reserved = mii_rw(dev, np->phyaddr, MII_RESV1, MII_READ);
  672. phy_reserved &= ~(PHY_INIT1 | PHY_INIT2);
  673. phy_reserved |= (PHY_INIT3 | PHY_INIT4);
  674. if (mii_rw(dev, np->phyaddr, MII_RESV1, phy_reserved)) {
  675. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  676. return PHY_ERROR;
  677. }
  678. phy_reserved = mii_rw(dev, np->phyaddr, MII_NCONFIG, MII_READ);
  679. phy_reserved |= PHY_INIT5;
  680. if (mii_rw(dev, np->phyaddr, MII_NCONFIG, phy_reserved)) {
  681. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  682. return PHY_ERROR;
  683. }
  684. }
  685. if (np->phy_oui == PHY_OUI_CICADA) {
  686. phy_reserved = mii_rw(dev, np->phyaddr, MII_SREVISION, MII_READ);
  687. phy_reserved |= PHY_INIT6;
  688. if (mii_rw(dev, np->phyaddr, MII_SREVISION, phy_reserved)) {
  689. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  690. return PHY_ERROR;
  691. }
  692. }
  693. /* restart auto negotiation */
  694. mii_control = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  695. mii_control |= (BMCR_ANRESTART | BMCR_ANENABLE);
  696. if (mii_rw(dev, np->phyaddr, MII_BMCR, mii_control)) {
  697. return PHY_ERROR;
  698. }
  699. return 0;
  700. }
  701. static void nv_start_rx(struct net_device *dev)
  702. {
  703. struct fe_priv *np = netdev_priv(dev);
  704. u8 __iomem *base = get_hwbase(dev);
  705. dprintk(KERN_DEBUG "%s: nv_start_rx\n", dev->name);
  706. /* Already running? Stop it. */
  707. if (readl(base + NvRegReceiverControl) & NVREG_RCVCTL_START) {
  708. writel(0, base + NvRegReceiverControl);
  709. pci_push(base);
  710. }
  711. writel(np->linkspeed, base + NvRegLinkSpeed);
  712. pci_push(base);
  713. writel(NVREG_RCVCTL_START, base + NvRegReceiverControl);
  714. dprintk(KERN_DEBUG "%s: nv_start_rx to duplex %d, speed 0x%08x.\n",
  715. dev->name, np->duplex, np->linkspeed);
  716. pci_push(base);
  717. }
  718. static void nv_stop_rx(struct net_device *dev)
  719. {
  720. u8 __iomem *base = get_hwbase(dev);
  721. dprintk(KERN_DEBUG "%s: nv_stop_rx\n", dev->name);
  722. writel(0, base + NvRegReceiverControl);
  723. reg_delay(dev, NvRegReceiverStatus, NVREG_RCVSTAT_BUSY, 0,
  724. NV_RXSTOP_DELAY1, NV_RXSTOP_DELAY1MAX,
  725. KERN_INFO "nv_stop_rx: ReceiverStatus remained busy");
  726. udelay(NV_RXSTOP_DELAY2);
  727. writel(0, base + NvRegLinkSpeed);
  728. }
  729. static void nv_start_tx(struct net_device *dev)
  730. {
  731. u8 __iomem *base = get_hwbase(dev);
  732. dprintk(KERN_DEBUG "%s: nv_start_tx\n", dev->name);
  733. writel(NVREG_XMITCTL_START, base + NvRegTransmitterControl);
  734. pci_push(base);
  735. }
  736. static void nv_stop_tx(struct net_device *dev)
  737. {
  738. u8 __iomem *base = get_hwbase(dev);
  739. dprintk(KERN_DEBUG "%s: nv_stop_tx\n", dev->name);
  740. writel(0, base + NvRegTransmitterControl);
  741. reg_delay(dev, NvRegTransmitterStatus, NVREG_XMITSTAT_BUSY, 0,
  742. NV_TXSTOP_DELAY1, NV_TXSTOP_DELAY1MAX,
  743. KERN_INFO "nv_stop_tx: TransmitterStatus remained busy");
  744. udelay(NV_TXSTOP_DELAY2);
  745. writel(0, base + NvRegUnknownTransmitterReg);
  746. }
  747. static void nv_txrx_reset(struct net_device *dev)
  748. {
  749. struct fe_priv *np = netdev_priv(dev);
  750. u8 __iomem *base = get_hwbase(dev);
  751. dprintk(KERN_DEBUG "%s: nv_txrx_reset\n", dev->name);
  752. writel(NVREG_TXRXCTL_BIT2 | NVREG_TXRXCTL_RESET | np->txrxctl_bits, base + NvRegTxRxControl);
  753. pci_push(base);
  754. udelay(NV_TXRX_RESET_DELAY);
  755. writel(NVREG_TXRXCTL_BIT2 | np->txrxctl_bits, base + NvRegTxRxControl);
  756. pci_push(base);
  757. }
  758. /*
  759. * nv_get_stats: dev->get_stats function
  760. * Get latest stats value from the nic.
  761. * Called with read_lock(&dev_base_lock) held for read -
  762. * only synchronized against unregister_netdevice.
  763. */
  764. static struct net_device_stats *nv_get_stats(struct net_device *dev)
  765. {
  766. struct fe_priv *np = netdev_priv(dev);
  767. /* It seems that the nic always generates interrupts and doesn't
  768. * accumulate errors internally. Thus the current values in np->stats
  769. * are already up to date.
  770. */
  771. return &np->stats;
  772. }
  773. /*
  774. * nv_alloc_rx: fill rx ring entries.
  775. * Return 1 if the allocations for the skbs failed and the
  776. * rx engine is without Available descriptors
  777. */
  778. static int nv_alloc_rx(struct net_device *dev)
  779. {
  780. struct fe_priv *np = netdev_priv(dev);
  781. unsigned int refill_rx = np->refill_rx;
  782. int nr;
  783. while (np->cur_rx != refill_rx) {
  784. struct sk_buff *skb;
  785. nr = refill_rx % RX_RING;
  786. if (np->rx_skbuff[nr] == NULL) {
  787. skb = dev_alloc_skb(np->rx_buf_sz + NV_RX_ALLOC_PAD);
  788. if (!skb)
  789. break;
  790. skb->dev = dev;
  791. np->rx_skbuff[nr] = skb;
  792. } else {
  793. skb = np->rx_skbuff[nr];
  794. }
  795. np->rx_dma[nr] = pci_map_single(np->pci_dev, skb->data,
  796. skb->end-skb->data, PCI_DMA_FROMDEVICE);
  797. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  798. np->rx_ring.orig[nr].PacketBuffer = cpu_to_le32(np->rx_dma[nr]);
  799. wmb();
  800. np->rx_ring.orig[nr].FlagLen = cpu_to_le32(np->rx_buf_sz | NV_RX_AVAIL);
  801. } else {
  802. np->rx_ring.ex[nr].PacketBufferHigh = cpu_to_le64(np->rx_dma[nr]) >> 32;
  803. np->rx_ring.ex[nr].PacketBufferLow = cpu_to_le64(np->rx_dma[nr]) & 0x0FFFFFFFF;
  804. wmb();
  805. np->rx_ring.ex[nr].FlagLen = cpu_to_le32(np->rx_buf_sz | NV_RX2_AVAIL);
  806. }
  807. dprintk(KERN_DEBUG "%s: nv_alloc_rx: Packet %d marked as Available\n",
  808. dev->name, refill_rx);
  809. refill_rx++;
  810. }
  811. np->refill_rx = refill_rx;
  812. if (np->cur_rx - refill_rx == RX_RING)
  813. return 1;
  814. return 0;
  815. }
  816. static void nv_do_rx_refill(unsigned long data)
  817. {
  818. struct net_device *dev = (struct net_device *) data;
  819. struct fe_priv *np = netdev_priv(dev);
  820. disable_irq(dev->irq);
  821. if (nv_alloc_rx(dev)) {
  822. spin_lock(&np->lock);
  823. if (!np->in_shutdown)
  824. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  825. spin_unlock(&np->lock);
  826. }
  827. enable_irq(dev->irq);
  828. }
  829. static void nv_init_rx(struct net_device *dev)
  830. {
  831. struct fe_priv *np = netdev_priv(dev);
  832. int i;
  833. np->cur_rx = RX_RING;
  834. np->refill_rx = 0;
  835. for (i = 0; i < RX_RING; i++)
  836. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
  837. np->rx_ring.orig[i].FlagLen = 0;
  838. else
  839. np->rx_ring.ex[i].FlagLen = 0;
  840. }
  841. static void nv_init_tx(struct net_device *dev)
  842. {
  843. struct fe_priv *np = netdev_priv(dev);
  844. int i;
  845. np->next_tx = np->nic_tx = 0;
  846. for (i = 0; i < TX_RING; i++) {
  847. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
  848. np->tx_ring.orig[i].FlagLen = 0;
  849. else
  850. np->tx_ring.ex[i].FlagLen = 0;
  851. np->tx_skbuff[i] = NULL;
  852. np->tx_dma[i] = 0;
  853. }
  854. }
  855. static int nv_init_ring(struct net_device *dev)
  856. {
  857. nv_init_tx(dev);
  858. nv_init_rx(dev);
  859. return nv_alloc_rx(dev);
  860. }
  861. static int nv_release_txskb(struct net_device *dev, unsigned int skbnr)
  862. {
  863. struct fe_priv *np = netdev_priv(dev);
  864. dprintk(KERN_INFO "%s: nv_release_txskb for skbnr %d\n",
  865. dev->name, skbnr);
  866. if (np->tx_dma[skbnr]) {
  867. pci_unmap_page(np->pci_dev, np->tx_dma[skbnr],
  868. np->tx_dma_len[skbnr],
  869. PCI_DMA_TODEVICE);
  870. np->tx_dma[skbnr] = 0;
  871. }
  872. if (np->tx_skbuff[skbnr]) {
  873. dev_kfree_skb_irq(np->tx_skbuff[skbnr]);
  874. np->tx_skbuff[skbnr] = NULL;
  875. return 1;
  876. } else {
  877. return 0;
  878. }
  879. }
  880. static void nv_drain_tx(struct net_device *dev)
  881. {
  882. struct fe_priv *np = netdev_priv(dev);
  883. unsigned int i;
  884. for (i = 0; i < TX_RING; i++) {
  885. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
  886. np->tx_ring.orig[i].FlagLen = 0;
  887. else
  888. np->tx_ring.ex[i].FlagLen = 0;
  889. if (nv_release_txskb(dev, i))
  890. np->stats.tx_dropped++;
  891. }
  892. }
  893. static void nv_drain_rx(struct net_device *dev)
  894. {
  895. struct fe_priv *np = netdev_priv(dev);
  896. int i;
  897. for (i = 0; i < RX_RING; i++) {
  898. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
  899. np->rx_ring.orig[i].FlagLen = 0;
  900. else
  901. np->rx_ring.ex[i].FlagLen = 0;
  902. wmb();
  903. if (np->rx_skbuff[i]) {
  904. pci_unmap_single(np->pci_dev, np->rx_dma[i],
  905. np->rx_skbuff[i]->end-np->rx_skbuff[i]->data,
  906. PCI_DMA_FROMDEVICE);
  907. dev_kfree_skb(np->rx_skbuff[i]);
  908. np->rx_skbuff[i] = NULL;
  909. }
  910. }
  911. }
  912. static void drain_ring(struct net_device *dev)
  913. {
  914. nv_drain_tx(dev);
  915. nv_drain_rx(dev);
  916. }
  917. /*
  918. * nv_start_xmit: dev->hard_start_xmit function
  919. * Called with dev->xmit_lock held.
  920. */
  921. static int nv_start_xmit(struct sk_buff *skb, struct net_device *dev)
  922. {
  923. struct fe_priv *np = netdev_priv(dev);
  924. u32 tx_flags = 0;
  925. u32 tx_flags_extra = (np->desc_ver == DESC_VER_1 ? NV_TX_LASTPACKET : NV_TX2_LASTPACKET);
  926. unsigned int fragments = skb_shinfo(skb)->nr_frags;
  927. unsigned int nr = (np->next_tx - 1) % TX_RING;
  928. unsigned int start_nr = np->next_tx % TX_RING;
  929. unsigned int i;
  930. u32 offset = 0;
  931. u32 bcnt;
  932. u32 size = skb->len-skb->data_len;
  933. u32 entries = (size >> NV_TX2_TSO_MAX_SHIFT) + ((size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0);
  934. u32 tx_flags_vlan = 0;
  935. /* add fragments to entries count */
  936. for (i = 0; i < fragments; i++) {
  937. entries += (skb_shinfo(skb)->frags[i].size >> NV_TX2_TSO_MAX_SHIFT) +
  938. ((skb_shinfo(skb)->frags[i].size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0);
  939. }
  940. spin_lock_irq(&np->lock);
  941. if ((np->next_tx - np->nic_tx + entries - 1) > TX_LIMIT_STOP) {
  942. spin_unlock_irq(&np->lock);
  943. netif_stop_queue(dev);
  944. return NETDEV_TX_BUSY;
  945. }
  946. /* setup the header buffer */
  947. do {
  948. bcnt = (size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : size;
  949. nr = (nr + 1) % TX_RING;
  950. np->tx_dma[nr] = pci_map_single(np->pci_dev, skb->data + offset, bcnt,
  951. PCI_DMA_TODEVICE);
  952. np->tx_dma_len[nr] = bcnt;
  953. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  954. np->tx_ring.orig[nr].PacketBuffer = cpu_to_le32(np->tx_dma[nr]);
  955. np->tx_ring.orig[nr].FlagLen = cpu_to_le32((bcnt-1) | tx_flags);
  956. } else {
  957. np->tx_ring.ex[nr].PacketBufferHigh = cpu_to_le64(np->tx_dma[nr]) >> 32;
  958. np->tx_ring.ex[nr].PacketBufferLow = cpu_to_le64(np->tx_dma[nr]) & 0x0FFFFFFFF;
  959. np->tx_ring.ex[nr].FlagLen = cpu_to_le32((bcnt-1) | tx_flags);
  960. }
  961. tx_flags = np->tx_flags;
  962. offset += bcnt;
  963. size -= bcnt;
  964. } while(size);
  965. /* setup the fragments */
  966. for (i = 0; i < fragments; i++) {
  967. skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  968. u32 size = frag->size;
  969. offset = 0;
  970. do {
  971. bcnt = (size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : size;
  972. nr = (nr + 1) % TX_RING;
  973. np->tx_dma[nr] = pci_map_page(np->pci_dev, frag->page, frag->page_offset+offset, bcnt,
  974. PCI_DMA_TODEVICE);
  975. np->tx_dma_len[nr] = bcnt;
  976. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  977. np->tx_ring.orig[nr].PacketBuffer = cpu_to_le32(np->tx_dma[nr]);
  978. np->tx_ring.orig[nr].FlagLen = cpu_to_le32((bcnt-1) | tx_flags);
  979. } else {
  980. np->tx_ring.ex[nr].PacketBufferHigh = cpu_to_le64(np->tx_dma[nr]) >> 32;
  981. np->tx_ring.ex[nr].PacketBufferLow = cpu_to_le64(np->tx_dma[nr]) & 0x0FFFFFFFF;
  982. np->tx_ring.ex[nr].FlagLen = cpu_to_le32((bcnt-1) | tx_flags);
  983. }
  984. offset += bcnt;
  985. size -= bcnt;
  986. } while (size);
  987. }
  988. /* set last fragment flag */
  989. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  990. np->tx_ring.orig[nr].FlagLen |= cpu_to_le32(tx_flags_extra);
  991. } else {
  992. np->tx_ring.ex[nr].FlagLen |= cpu_to_le32(tx_flags_extra);
  993. }
  994. np->tx_skbuff[nr] = skb;
  995. #ifdef NETIF_F_TSO
  996. if (skb_shinfo(skb)->tso_size)
  997. tx_flags_extra = NV_TX2_TSO | (skb_shinfo(skb)->tso_size << NV_TX2_TSO_SHIFT);
  998. else
  999. #endif
  1000. tx_flags_extra = (skb->ip_summed == CHECKSUM_HW ? (NV_TX2_CHECKSUM_L3|NV_TX2_CHECKSUM_L4) : 0);
  1001. /* vlan tag */
  1002. if (np->vlangrp && vlan_tx_tag_present(skb)) {
  1003. tx_flags_vlan = NV_TX3_VLAN_TAG_PRESENT | vlan_tx_tag_get(skb);
  1004. }
  1005. /* set tx flags */
  1006. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  1007. np->tx_ring.orig[start_nr].FlagLen |= cpu_to_le32(tx_flags | tx_flags_extra);
  1008. } else {
  1009. np->tx_ring.ex[start_nr].TxVlan = cpu_to_le32(tx_flags_vlan);
  1010. np->tx_ring.ex[start_nr].FlagLen |= cpu_to_le32(tx_flags | tx_flags_extra);
  1011. }
  1012. dprintk(KERN_DEBUG "%s: nv_start_xmit: packet %d (entries %d) queued for transmission. tx_flags_extra: %x\n",
  1013. dev->name, np->next_tx, entries, tx_flags_extra);
  1014. {
  1015. int j;
  1016. for (j=0; j<64; j++) {
  1017. if ((j%16) == 0)
  1018. dprintk("\n%03x:", j);
  1019. dprintk(" %02x", ((unsigned char*)skb->data)[j]);
  1020. }
  1021. dprintk("\n");
  1022. }
  1023. np->next_tx += entries;
  1024. dev->trans_start = jiffies;
  1025. spin_unlock_irq(&np->lock);
  1026. writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  1027. pci_push(get_hwbase(dev));
  1028. return NETDEV_TX_OK;
  1029. }
  1030. /*
  1031. * nv_tx_done: check for completed packets, release the skbs.
  1032. *
  1033. * Caller must own np->lock.
  1034. */
  1035. static void nv_tx_done(struct net_device *dev)
  1036. {
  1037. struct fe_priv *np = netdev_priv(dev);
  1038. u32 Flags;
  1039. unsigned int i;
  1040. struct sk_buff *skb;
  1041. while (np->nic_tx != np->next_tx) {
  1042. i = np->nic_tx % TX_RING;
  1043. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
  1044. Flags = le32_to_cpu(np->tx_ring.orig[i].FlagLen);
  1045. else
  1046. Flags = le32_to_cpu(np->tx_ring.ex[i].FlagLen);
  1047. dprintk(KERN_DEBUG "%s: nv_tx_done: looking at packet %d, Flags 0x%x.\n",
  1048. dev->name, np->nic_tx, Flags);
  1049. if (Flags & NV_TX_VALID)
  1050. break;
  1051. if (np->desc_ver == DESC_VER_1) {
  1052. if (Flags & NV_TX_LASTPACKET) {
  1053. skb = np->tx_skbuff[i];
  1054. if (Flags & (NV_TX_RETRYERROR|NV_TX_CARRIERLOST|NV_TX_LATECOLLISION|
  1055. NV_TX_UNDERFLOW|NV_TX_ERROR)) {
  1056. if (Flags & NV_TX_UNDERFLOW)
  1057. np->stats.tx_fifo_errors++;
  1058. if (Flags & NV_TX_CARRIERLOST)
  1059. np->stats.tx_carrier_errors++;
  1060. np->stats.tx_errors++;
  1061. } else {
  1062. np->stats.tx_packets++;
  1063. np->stats.tx_bytes += skb->len;
  1064. }
  1065. }
  1066. } else {
  1067. if (Flags & NV_TX2_LASTPACKET) {
  1068. skb = np->tx_skbuff[i];
  1069. if (Flags & (NV_TX2_RETRYERROR|NV_TX2_CARRIERLOST|NV_TX2_LATECOLLISION|
  1070. NV_TX2_UNDERFLOW|NV_TX2_ERROR)) {
  1071. if (Flags & NV_TX2_UNDERFLOW)
  1072. np->stats.tx_fifo_errors++;
  1073. if (Flags & NV_TX2_CARRIERLOST)
  1074. np->stats.tx_carrier_errors++;
  1075. np->stats.tx_errors++;
  1076. } else {
  1077. np->stats.tx_packets++;
  1078. np->stats.tx_bytes += skb->len;
  1079. }
  1080. }
  1081. }
  1082. nv_release_txskb(dev, i);
  1083. np->nic_tx++;
  1084. }
  1085. if (np->next_tx - np->nic_tx < TX_LIMIT_START)
  1086. netif_wake_queue(dev);
  1087. }
  1088. /*
  1089. * nv_tx_timeout: dev->tx_timeout function
  1090. * Called with dev->xmit_lock held.
  1091. */
  1092. static void nv_tx_timeout(struct net_device *dev)
  1093. {
  1094. struct fe_priv *np = netdev_priv(dev);
  1095. u8 __iomem *base = get_hwbase(dev);
  1096. printk(KERN_INFO "%s: Got tx_timeout. irq: %08x\n", dev->name,
  1097. readl(base + NvRegIrqStatus) & NVREG_IRQSTAT_MASK);
  1098. {
  1099. int i;
  1100. printk(KERN_INFO "%s: Ring at %lx: next %d nic %d\n",
  1101. dev->name, (unsigned long)np->ring_addr,
  1102. np->next_tx, np->nic_tx);
  1103. printk(KERN_INFO "%s: Dumping tx registers\n", dev->name);
  1104. for (i=0;i<0x400;i+= 32) {
  1105. printk(KERN_INFO "%3x: %08x %08x %08x %08x %08x %08x %08x %08x\n",
  1106. i,
  1107. readl(base + i + 0), readl(base + i + 4),
  1108. readl(base + i + 8), readl(base + i + 12),
  1109. readl(base + i + 16), readl(base + i + 20),
  1110. readl(base + i + 24), readl(base + i + 28));
  1111. }
  1112. printk(KERN_INFO "%s: Dumping tx ring\n", dev->name);
  1113. for (i=0;i<TX_RING;i+= 4) {
  1114. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  1115. printk(KERN_INFO "%03x: %08x %08x // %08x %08x // %08x %08x // %08x %08x\n",
  1116. i,
  1117. le32_to_cpu(np->tx_ring.orig[i].PacketBuffer),
  1118. le32_to_cpu(np->tx_ring.orig[i].FlagLen),
  1119. le32_to_cpu(np->tx_ring.orig[i+1].PacketBuffer),
  1120. le32_to_cpu(np->tx_ring.orig[i+1].FlagLen),
  1121. le32_to_cpu(np->tx_ring.orig[i+2].PacketBuffer),
  1122. le32_to_cpu(np->tx_ring.orig[i+2].FlagLen),
  1123. le32_to_cpu(np->tx_ring.orig[i+3].PacketBuffer),
  1124. le32_to_cpu(np->tx_ring.orig[i+3].FlagLen));
  1125. } else {
  1126. printk(KERN_INFO "%03x: %08x %08x %08x // %08x %08x %08x // %08x %08x %08x // %08x %08x %08x\n",
  1127. i,
  1128. le32_to_cpu(np->tx_ring.ex[i].PacketBufferHigh),
  1129. le32_to_cpu(np->tx_ring.ex[i].PacketBufferLow),
  1130. le32_to_cpu(np->tx_ring.ex[i].FlagLen),
  1131. le32_to_cpu(np->tx_ring.ex[i+1].PacketBufferHigh),
  1132. le32_to_cpu(np->tx_ring.ex[i+1].PacketBufferLow),
  1133. le32_to_cpu(np->tx_ring.ex[i+1].FlagLen),
  1134. le32_to_cpu(np->tx_ring.ex[i+2].PacketBufferHigh),
  1135. le32_to_cpu(np->tx_ring.ex[i+2].PacketBufferLow),
  1136. le32_to_cpu(np->tx_ring.ex[i+2].FlagLen),
  1137. le32_to_cpu(np->tx_ring.ex[i+3].PacketBufferHigh),
  1138. le32_to_cpu(np->tx_ring.ex[i+3].PacketBufferLow),
  1139. le32_to_cpu(np->tx_ring.ex[i+3].FlagLen));
  1140. }
  1141. }
  1142. }
  1143. spin_lock_irq(&np->lock);
  1144. /* 1) stop tx engine */
  1145. nv_stop_tx(dev);
  1146. /* 2) check that the packets were not sent already: */
  1147. nv_tx_done(dev);
  1148. /* 3) if there are dead entries: clear everything */
  1149. if (np->next_tx != np->nic_tx) {
  1150. printk(KERN_DEBUG "%s: tx_timeout: dead entries!\n", dev->name);
  1151. nv_drain_tx(dev);
  1152. np->next_tx = np->nic_tx = 0;
  1153. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
  1154. writel((u32) (np->ring_addr + RX_RING*sizeof(struct ring_desc)), base + NvRegTxRingPhysAddr);
  1155. else
  1156. writel((u32) (np->ring_addr + RX_RING*sizeof(struct ring_desc_ex)), base + NvRegTxRingPhysAddr);
  1157. netif_wake_queue(dev);
  1158. }
  1159. /* 4) restart tx engine */
  1160. nv_start_tx(dev);
  1161. spin_unlock_irq(&np->lock);
  1162. }
  1163. /*
  1164. * Called when the nic notices a mismatch between the actual data len on the
  1165. * wire and the len indicated in the 802 header
  1166. */
  1167. static int nv_getlen(struct net_device *dev, void *packet, int datalen)
  1168. {
  1169. int hdrlen; /* length of the 802 header */
  1170. int protolen; /* length as stored in the proto field */
  1171. /* 1) calculate len according to header */
  1172. if ( ((struct vlan_ethhdr *)packet)->h_vlan_proto == __constant_htons(ETH_P_8021Q)) {
  1173. protolen = ntohs( ((struct vlan_ethhdr *)packet)->h_vlan_encapsulated_proto );
  1174. hdrlen = VLAN_HLEN;
  1175. } else {
  1176. protolen = ntohs( ((struct ethhdr *)packet)->h_proto);
  1177. hdrlen = ETH_HLEN;
  1178. }
  1179. dprintk(KERN_DEBUG "%s: nv_getlen: datalen %d, protolen %d, hdrlen %d\n",
  1180. dev->name, datalen, protolen, hdrlen);
  1181. if (protolen > ETH_DATA_LEN)
  1182. return datalen; /* Value in proto field not a len, no checks possible */
  1183. protolen += hdrlen;
  1184. /* consistency checks: */
  1185. if (datalen > ETH_ZLEN) {
  1186. if (datalen >= protolen) {
  1187. /* more data on wire than in 802 header, trim of
  1188. * additional data.
  1189. */
  1190. dprintk(KERN_DEBUG "%s: nv_getlen: accepting %d bytes.\n",
  1191. dev->name, protolen);
  1192. return protolen;
  1193. } else {
  1194. /* less data on wire than mentioned in header.
  1195. * Discard the packet.
  1196. */
  1197. dprintk(KERN_DEBUG "%s: nv_getlen: discarding long packet.\n",
  1198. dev->name);
  1199. return -1;
  1200. }
  1201. } else {
  1202. /* short packet. Accept only if 802 values are also short */
  1203. if (protolen > ETH_ZLEN) {
  1204. dprintk(KERN_DEBUG "%s: nv_getlen: discarding short packet.\n",
  1205. dev->name);
  1206. return -1;
  1207. }
  1208. dprintk(KERN_DEBUG "%s: nv_getlen: accepting %d bytes.\n",
  1209. dev->name, datalen);
  1210. return datalen;
  1211. }
  1212. }
  1213. static void nv_rx_process(struct net_device *dev)
  1214. {
  1215. struct fe_priv *np = netdev_priv(dev);
  1216. u32 Flags;
  1217. u32 vlanflags = 0;
  1218. for (;;) {
  1219. struct sk_buff *skb;
  1220. int len;
  1221. int i;
  1222. if (np->cur_rx - np->refill_rx >= RX_RING)
  1223. break; /* we scanned the whole ring - do not continue */
  1224. i = np->cur_rx % RX_RING;
  1225. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  1226. Flags = le32_to_cpu(np->rx_ring.orig[i].FlagLen);
  1227. len = nv_descr_getlength(&np->rx_ring.orig[i], np->desc_ver);
  1228. } else {
  1229. Flags = le32_to_cpu(np->rx_ring.ex[i].FlagLen);
  1230. len = nv_descr_getlength_ex(&np->rx_ring.ex[i], np->desc_ver);
  1231. vlanflags = le32_to_cpu(np->rx_ring.ex[i].PacketBufferLow);
  1232. }
  1233. dprintk(KERN_DEBUG "%s: nv_rx_process: looking at packet %d, Flags 0x%x.\n",
  1234. dev->name, np->cur_rx, Flags);
  1235. if (Flags & NV_RX_AVAIL)
  1236. break; /* still owned by hardware, */
  1237. /*
  1238. * the packet is for us - immediately tear down the pci mapping.
  1239. * TODO: check if a prefetch of the first cacheline improves
  1240. * the performance.
  1241. */
  1242. pci_unmap_single(np->pci_dev, np->rx_dma[i],
  1243. np->rx_skbuff[i]->end-np->rx_skbuff[i]->data,
  1244. PCI_DMA_FROMDEVICE);
  1245. {
  1246. int j;
  1247. dprintk(KERN_DEBUG "Dumping packet (flags 0x%x).",Flags);
  1248. for (j=0; j<64; j++) {
  1249. if ((j%16) == 0)
  1250. dprintk("\n%03x:", j);
  1251. dprintk(" %02x", ((unsigned char*)np->rx_skbuff[i]->data)[j]);
  1252. }
  1253. dprintk("\n");
  1254. }
  1255. /* look at what we actually got: */
  1256. if (np->desc_ver == DESC_VER_1) {
  1257. if (!(Flags & NV_RX_DESCRIPTORVALID))
  1258. goto next_pkt;
  1259. if (Flags & NV_RX_ERROR) {
  1260. if (Flags & NV_RX_MISSEDFRAME) {
  1261. np->stats.rx_missed_errors++;
  1262. np->stats.rx_errors++;
  1263. goto next_pkt;
  1264. }
  1265. if (Flags & (NV_RX_ERROR1|NV_RX_ERROR2|NV_RX_ERROR3)) {
  1266. np->stats.rx_errors++;
  1267. goto next_pkt;
  1268. }
  1269. if (Flags & NV_RX_CRCERR) {
  1270. np->stats.rx_crc_errors++;
  1271. np->stats.rx_errors++;
  1272. goto next_pkt;
  1273. }
  1274. if (Flags & NV_RX_OVERFLOW) {
  1275. np->stats.rx_over_errors++;
  1276. np->stats.rx_errors++;
  1277. goto next_pkt;
  1278. }
  1279. if (Flags & NV_RX_ERROR4) {
  1280. len = nv_getlen(dev, np->rx_skbuff[i]->data, len);
  1281. if (len < 0) {
  1282. np->stats.rx_errors++;
  1283. goto next_pkt;
  1284. }
  1285. }
  1286. /* framing errors are soft errors. */
  1287. if (Flags & NV_RX_FRAMINGERR) {
  1288. if (Flags & NV_RX_SUBSTRACT1) {
  1289. len--;
  1290. }
  1291. }
  1292. }
  1293. } else {
  1294. if (!(Flags & NV_RX2_DESCRIPTORVALID))
  1295. goto next_pkt;
  1296. if (Flags & NV_RX2_ERROR) {
  1297. if (Flags & (NV_RX2_ERROR1|NV_RX2_ERROR2|NV_RX2_ERROR3)) {
  1298. np->stats.rx_errors++;
  1299. goto next_pkt;
  1300. }
  1301. if (Flags & NV_RX2_CRCERR) {
  1302. np->stats.rx_crc_errors++;
  1303. np->stats.rx_errors++;
  1304. goto next_pkt;
  1305. }
  1306. if (Flags & NV_RX2_OVERFLOW) {
  1307. np->stats.rx_over_errors++;
  1308. np->stats.rx_errors++;
  1309. goto next_pkt;
  1310. }
  1311. if (Flags & NV_RX2_ERROR4) {
  1312. len = nv_getlen(dev, np->rx_skbuff[i]->data, len);
  1313. if (len < 0) {
  1314. np->stats.rx_errors++;
  1315. goto next_pkt;
  1316. }
  1317. }
  1318. /* framing errors are soft errors */
  1319. if (Flags & NV_RX2_FRAMINGERR) {
  1320. if (Flags & NV_RX2_SUBSTRACT1) {
  1321. len--;
  1322. }
  1323. }
  1324. }
  1325. Flags &= NV_RX2_CHECKSUMMASK;
  1326. if (Flags == NV_RX2_CHECKSUMOK1 ||
  1327. Flags == NV_RX2_CHECKSUMOK2 ||
  1328. Flags == NV_RX2_CHECKSUMOK3) {
  1329. dprintk(KERN_DEBUG "%s: hw checksum hit!.\n", dev->name);
  1330. np->rx_skbuff[i]->ip_summed = CHECKSUM_UNNECESSARY;
  1331. } else {
  1332. dprintk(KERN_DEBUG "%s: hwchecksum miss!.\n", dev->name);
  1333. }
  1334. }
  1335. /* got a valid packet - forward it to the network core */
  1336. skb = np->rx_skbuff[i];
  1337. np->rx_skbuff[i] = NULL;
  1338. skb_put(skb, len);
  1339. skb->protocol = eth_type_trans(skb, dev);
  1340. dprintk(KERN_DEBUG "%s: nv_rx_process: packet %d with %d bytes, proto %d accepted.\n",
  1341. dev->name, np->cur_rx, len, skb->protocol);
  1342. if (np->vlangrp && (vlanflags & NV_RX3_VLAN_TAG_PRESENT)) {
  1343. vlan_hwaccel_rx(skb, np->vlangrp, vlanflags & NV_RX3_VLAN_TAG_MASK);
  1344. } else {
  1345. netif_rx(skb);
  1346. }
  1347. dev->last_rx = jiffies;
  1348. np->stats.rx_packets++;
  1349. np->stats.rx_bytes += len;
  1350. next_pkt:
  1351. np->cur_rx++;
  1352. }
  1353. }
  1354. static void set_bufsize(struct net_device *dev)
  1355. {
  1356. struct fe_priv *np = netdev_priv(dev);
  1357. if (dev->mtu <= ETH_DATA_LEN)
  1358. np->rx_buf_sz = ETH_DATA_LEN + NV_RX_HEADERS;
  1359. else
  1360. np->rx_buf_sz = dev->mtu + NV_RX_HEADERS;
  1361. }
  1362. /*
  1363. * nv_change_mtu: dev->change_mtu function
  1364. * Called with dev_base_lock held for read.
  1365. */
  1366. static int nv_change_mtu(struct net_device *dev, int new_mtu)
  1367. {
  1368. struct fe_priv *np = netdev_priv(dev);
  1369. int old_mtu;
  1370. if (new_mtu < 64 || new_mtu > np->pkt_limit)
  1371. return -EINVAL;
  1372. old_mtu = dev->mtu;
  1373. dev->mtu = new_mtu;
  1374. /* return early if the buffer sizes will not change */
  1375. if (old_mtu <= ETH_DATA_LEN && new_mtu <= ETH_DATA_LEN)
  1376. return 0;
  1377. if (old_mtu == new_mtu)
  1378. return 0;
  1379. /* synchronized against open : rtnl_lock() held by caller */
  1380. if (netif_running(dev)) {
  1381. u8 __iomem *base = get_hwbase(dev);
  1382. /*
  1383. * It seems that the nic preloads valid ring entries into an
  1384. * internal buffer. The procedure for flushing everything is
  1385. * guessed, there is probably a simpler approach.
  1386. * Changing the MTU is a rare event, it shouldn't matter.
  1387. */
  1388. disable_irq(dev->irq);
  1389. spin_lock_bh(&dev->xmit_lock);
  1390. spin_lock(&np->lock);
  1391. /* stop engines */
  1392. nv_stop_rx(dev);
  1393. nv_stop_tx(dev);
  1394. nv_txrx_reset(dev);
  1395. /* drain rx queue */
  1396. nv_drain_rx(dev);
  1397. nv_drain_tx(dev);
  1398. /* reinit driver view of the rx queue */
  1399. nv_init_rx(dev);
  1400. nv_init_tx(dev);
  1401. /* alloc new rx buffers */
  1402. set_bufsize(dev);
  1403. if (nv_alloc_rx(dev)) {
  1404. if (!np->in_shutdown)
  1405. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  1406. }
  1407. /* reinit nic view of the rx queue */
  1408. writel(np->rx_buf_sz, base + NvRegOffloadConfig);
  1409. writel((u32) np->ring_addr, base + NvRegRxRingPhysAddr);
  1410. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
  1411. writel((u32) (np->ring_addr + RX_RING*sizeof(struct ring_desc)), base + NvRegTxRingPhysAddr);
  1412. else
  1413. writel((u32) (np->ring_addr + RX_RING*sizeof(struct ring_desc_ex)), base + NvRegTxRingPhysAddr);
  1414. writel( ((RX_RING-1) << NVREG_RINGSZ_RXSHIFT) + ((TX_RING-1) << NVREG_RINGSZ_TXSHIFT),
  1415. base + NvRegRingSizes);
  1416. pci_push(base);
  1417. writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  1418. pci_push(base);
  1419. /* restart rx engine */
  1420. nv_start_rx(dev);
  1421. nv_start_tx(dev);
  1422. spin_unlock(&np->lock);
  1423. spin_unlock_bh(&dev->xmit_lock);
  1424. enable_irq(dev->irq);
  1425. }
  1426. return 0;
  1427. }
  1428. static void nv_copy_mac_to_hw(struct net_device *dev)
  1429. {
  1430. u8 __iomem *base = get_hwbase(dev);
  1431. u32 mac[2];
  1432. mac[0] = (dev->dev_addr[0] << 0) + (dev->dev_addr[1] << 8) +
  1433. (dev->dev_addr[2] << 16) + (dev->dev_addr[3] << 24);
  1434. mac[1] = (dev->dev_addr[4] << 0) + (dev->dev_addr[5] << 8);
  1435. writel(mac[0], base + NvRegMacAddrA);
  1436. writel(mac[1], base + NvRegMacAddrB);
  1437. }
  1438. /*
  1439. * nv_set_mac_address: dev->set_mac_address function
  1440. * Called with rtnl_lock() held.
  1441. */
  1442. static int nv_set_mac_address(struct net_device *dev, void *addr)
  1443. {
  1444. struct fe_priv *np = netdev_priv(dev);
  1445. struct sockaddr *macaddr = (struct sockaddr*)addr;
  1446. if(!is_valid_ether_addr(macaddr->sa_data))
  1447. return -EADDRNOTAVAIL;
  1448. /* synchronized against open : rtnl_lock() held by caller */
  1449. memcpy(dev->dev_addr, macaddr->sa_data, ETH_ALEN);
  1450. if (netif_running(dev)) {
  1451. spin_lock_bh(&dev->xmit_lock);
  1452. spin_lock_irq(&np->lock);
  1453. /* stop rx engine */
  1454. nv_stop_rx(dev);
  1455. /* set mac address */
  1456. nv_copy_mac_to_hw(dev);
  1457. /* restart rx engine */
  1458. nv_start_rx(dev);
  1459. spin_unlock_irq(&np->lock);
  1460. spin_unlock_bh(&dev->xmit_lock);
  1461. } else {
  1462. nv_copy_mac_to_hw(dev);
  1463. }
  1464. return 0;
  1465. }
  1466. /*
  1467. * nv_set_multicast: dev->set_multicast function
  1468. * Called with dev->xmit_lock held.
  1469. */
  1470. static void nv_set_multicast(struct net_device *dev)
  1471. {
  1472. struct fe_priv *np = netdev_priv(dev);
  1473. u8 __iomem *base = get_hwbase(dev);
  1474. u32 addr[2];
  1475. u32 mask[2];
  1476. u32 pff;
  1477. memset(addr, 0, sizeof(addr));
  1478. memset(mask, 0, sizeof(mask));
  1479. if (dev->flags & IFF_PROMISC) {
  1480. printk(KERN_NOTICE "%s: Promiscuous mode enabled.\n", dev->name);
  1481. pff = NVREG_PFF_PROMISC;
  1482. } else {
  1483. pff = NVREG_PFF_MYADDR;
  1484. if (dev->flags & IFF_ALLMULTI || dev->mc_list) {
  1485. u32 alwaysOff[2];
  1486. u32 alwaysOn[2];
  1487. alwaysOn[0] = alwaysOn[1] = alwaysOff[0] = alwaysOff[1] = 0xffffffff;
  1488. if (dev->flags & IFF_ALLMULTI) {
  1489. alwaysOn[0] = alwaysOn[1] = alwaysOff[0] = alwaysOff[1] = 0;
  1490. } else {
  1491. struct dev_mc_list *walk;
  1492. walk = dev->mc_list;
  1493. while (walk != NULL) {
  1494. u32 a, b;
  1495. a = le32_to_cpu(*(u32 *) walk->dmi_addr);
  1496. b = le16_to_cpu(*(u16 *) (&walk->dmi_addr[4]));
  1497. alwaysOn[0] &= a;
  1498. alwaysOff[0] &= ~a;
  1499. alwaysOn[1] &= b;
  1500. alwaysOff[1] &= ~b;
  1501. walk = walk->next;
  1502. }
  1503. }
  1504. addr[0] = alwaysOn[0];
  1505. addr[1] = alwaysOn[1];
  1506. mask[0] = alwaysOn[0] | alwaysOff[0];
  1507. mask[1] = alwaysOn[1] | alwaysOff[1];
  1508. }
  1509. }
  1510. addr[0] |= NVREG_MCASTADDRA_FORCE;
  1511. pff |= NVREG_PFF_ALWAYS;
  1512. spin_lock_irq(&np->lock);
  1513. nv_stop_rx(dev);
  1514. writel(addr[0], base + NvRegMulticastAddrA);
  1515. writel(addr[1], base + NvRegMulticastAddrB);
  1516. writel(mask[0], base + NvRegMulticastMaskA);
  1517. writel(mask[1], base + NvRegMulticastMaskB);
  1518. writel(pff, base + NvRegPacketFilterFlags);
  1519. dprintk(KERN_INFO "%s: reconfiguration for multicast lists.\n",
  1520. dev->name);
  1521. nv_start_rx(dev);
  1522. spin_unlock_irq(&np->lock);
  1523. }
  1524. /**
  1525. * nv_update_linkspeed: Setup the MAC according to the link partner
  1526. * @dev: Network device to be configured
  1527. *
  1528. * The function queries the PHY and checks if there is a link partner.
  1529. * If yes, then it sets up the MAC accordingly. Otherwise, the MAC is
  1530. * set to 10 MBit HD.
  1531. *
  1532. * The function returns 0 if there is no link partner and 1 if there is
  1533. * a good link partner.
  1534. */
  1535. static int nv_update_linkspeed(struct net_device *dev)
  1536. {
  1537. struct fe_priv *np = netdev_priv(dev);
  1538. u8 __iomem *base = get_hwbase(dev);
  1539. int adv, lpa;
  1540. int newls = np->linkspeed;
  1541. int newdup = np->duplex;
  1542. int mii_status;
  1543. int retval = 0;
  1544. u32 control_1000, status_1000, phyreg;
  1545. /* BMSR_LSTATUS is latched, read it twice:
  1546. * we want the current value.
  1547. */
  1548. mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
  1549. mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
  1550. if (!(mii_status & BMSR_LSTATUS)) {
  1551. dprintk(KERN_DEBUG "%s: no link detected by phy - falling back to 10HD.\n",
  1552. dev->name);
  1553. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  1554. newdup = 0;
  1555. retval = 0;
  1556. goto set_speed;
  1557. }
  1558. if (np->autoneg == 0) {
  1559. dprintk(KERN_DEBUG "%s: nv_update_linkspeed: autoneg off, PHY set to 0x%04x.\n",
  1560. dev->name, np->fixed_mode);
  1561. if (np->fixed_mode & LPA_100FULL) {
  1562. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
  1563. newdup = 1;
  1564. } else if (np->fixed_mode & LPA_100HALF) {
  1565. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
  1566. newdup = 0;
  1567. } else if (np->fixed_mode & LPA_10FULL) {
  1568. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  1569. newdup = 1;
  1570. } else {
  1571. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  1572. newdup = 0;
  1573. }
  1574. retval = 1;
  1575. goto set_speed;
  1576. }
  1577. /* check auto negotiation is complete */
  1578. if (!(mii_status & BMSR_ANEGCOMPLETE)) {
  1579. /* still in autonegotiation - configure nic for 10 MBit HD and wait. */
  1580. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  1581. newdup = 0;
  1582. retval = 0;
  1583. dprintk(KERN_DEBUG "%s: autoneg not completed - falling back to 10HD.\n", dev->name);
  1584. goto set_speed;
  1585. }
  1586. retval = 1;
  1587. if (np->gigabit == PHY_GIGABIT) {
  1588. control_1000 = mii_rw(dev, np->phyaddr, MII_1000BT_CR, MII_READ);
  1589. status_1000 = mii_rw(dev, np->phyaddr, MII_1000BT_SR, MII_READ);
  1590. if ((control_1000 & ADVERTISE_1000FULL) &&
  1591. (status_1000 & LPA_1000FULL)) {
  1592. dprintk(KERN_DEBUG "%s: nv_update_linkspeed: GBit ethernet detected.\n",
  1593. dev->name);
  1594. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_1000;
  1595. newdup = 1;
  1596. goto set_speed;
  1597. }
  1598. }
  1599. adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
  1600. lpa = mii_rw(dev, np->phyaddr, MII_LPA, MII_READ);
  1601. dprintk(KERN_DEBUG "%s: nv_update_linkspeed: PHY advertises 0x%04x, lpa 0x%04x.\n",
  1602. dev->name, adv, lpa);
  1603. /* FIXME: handle parallel detection properly */
  1604. lpa = lpa & adv;
  1605. if (lpa & LPA_100FULL) {
  1606. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
  1607. newdup = 1;
  1608. } else if (lpa & LPA_100HALF) {
  1609. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
  1610. newdup = 0;
  1611. } else if (lpa & LPA_10FULL) {
  1612. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  1613. newdup = 1;
  1614. } else if (lpa & LPA_10HALF) {
  1615. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  1616. newdup = 0;
  1617. } else {
  1618. dprintk(KERN_DEBUG "%s: bad ability %04x - falling back to 10HD.\n", dev->name, lpa);
  1619. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  1620. newdup = 0;
  1621. }
  1622. set_speed:
  1623. if (np->duplex == newdup && np->linkspeed == newls)
  1624. return retval;
  1625. dprintk(KERN_INFO "%s: changing link setting from %d/%d to %d/%d.\n",
  1626. dev->name, np->linkspeed, np->duplex, newls, newdup);
  1627. np->duplex = newdup;
  1628. np->linkspeed = newls;
  1629. if (np->gigabit == PHY_GIGABIT) {
  1630. phyreg = readl(base + NvRegRandomSeed);
  1631. phyreg &= ~(0x3FF00);
  1632. if ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_10)
  1633. phyreg |= NVREG_RNDSEED_FORCE3;
  1634. else if ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_100)
  1635. phyreg |= NVREG_RNDSEED_FORCE2;
  1636. else if ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_1000)
  1637. phyreg |= NVREG_RNDSEED_FORCE;
  1638. writel(phyreg, base + NvRegRandomSeed);
  1639. }
  1640. phyreg = readl(base + NvRegPhyInterface);
  1641. phyreg &= ~(PHY_HALF|PHY_100|PHY_1000);
  1642. if (np->duplex == 0)
  1643. phyreg |= PHY_HALF;
  1644. if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_100)
  1645. phyreg |= PHY_100;
  1646. else if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_1000)
  1647. phyreg |= PHY_1000;
  1648. writel(phyreg, base + NvRegPhyInterface);
  1649. writel(NVREG_MISC1_FORCE | ( np->duplex ? 0 : NVREG_MISC1_HD),
  1650. base + NvRegMisc1);
  1651. pci_push(base);
  1652. writel(np->linkspeed, base + NvRegLinkSpeed);
  1653. pci_push(base);
  1654. return retval;
  1655. }
  1656. static void nv_linkchange(struct net_device *dev)
  1657. {
  1658. if (nv_update_linkspeed(dev)) {
  1659. if (!netif_carrier_ok(dev)) {
  1660. netif_carrier_on(dev);
  1661. printk(KERN_INFO "%s: link up.\n", dev->name);
  1662. nv_start_rx(dev);
  1663. }
  1664. } else {
  1665. if (netif_carrier_ok(dev)) {
  1666. netif_carrier_off(dev);
  1667. printk(KERN_INFO "%s: link down.\n", dev->name);
  1668. nv_stop_rx(dev);
  1669. }
  1670. }
  1671. }
  1672. static void nv_link_irq(struct net_device *dev)
  1673. {
  1674. u8 __iomem *base = get_hwbase(dev);
  1675. u32 miistat;
  1676. miistat = readl(base + NvRegMIIStatus);
  1677. writel(NVREG_MIISTAT_MASK, base + NvRegMIIStatus);
  1678. dprintk(KERN_INFO "%s: link change irq, status 0x%x.\n", dev->name, miistat);
  1679. if (miistat & (NVREG_MIISTAT_LINKCHANGE))
  1680. nv_linkchange(dev);
  1681. dprintk(KERN_DEBUG "%s: link change notification done.\n", dev->name);
  1682. }
  1683. static irqreturn_t nv_nic_irq(int foo, void *data, struct pt_regs *regs)
  1684. {
  1685. struct net_device *dev = (struct net_device *) data;
  1686. struct fe_priv *np = netdev_priv(dev);
  1687. u8 __iomem *base = get_hwbase(dev);
  1688. u32 events;
  1689. int i;
  1690. dprintk(KERN_DEBUG "%s: nv_nic_irq\n", dev->name);
  1691. for (i=0; ; i++) {
  1692. events = readl(base + NvRegIrqStatus) & NVREG_IRQSTAT_MASK;
  1693. writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
  1694. pci_push(base);
  1695. dprintk(KERN_DEBUG "%s: irq: %08x\n", dev->name, events);
  1696. if (!(events & np->irqmask))
  1697. break;
  1698. spin_lock(&np->lock);
  1699. nv_tx_done(dev);
  1700. spin_unlock(&np->lock);
  1701. nv_rx_process(dev);
  1702. if (nv_alloc_rx(dev)) {
  1703. spin_lock(&np->lock);
  1704. if (!np->in_shutdown)
  1705. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  1706. spin_unlock(&np->lock);
  1707. }
  1708. if (events & NVREG_IRQ_LINK) {
  1709. spin_lock(&np->lock);
  1710. nv_link_irq(dev);
  1711. spin_unlock(&np->lock);
  1712. }
  1713. if (np->need_linktimer && time_after(jiffies, np->link_timeout)) {
  1714. spin_lock(&np->lock);
  1715. nv_linkchange(dev);
  1716. spin_unlock(&np->lock);
  1717. np->link_timeout = jiffies + LINK_TIMEOUT;
  1718. }
  1719. if (events & (NVREG_IRQ_TX_ERR)) {
  1720. dprintk(KERN_DEBUG "%s: received irq with events 0x%x. Probably TX fail.\n",
  1721. dev->name, events);
  1722. }
  1723. if (events & (NVREG_IRQ_UNKNOWN)) {
  1724. printk(KERN_DEBUG "%s: received irq with unknown events 0x%x. Please report\n",
  1725. dev->name, events);
  1726. }
  1727. if (i > max_interrupt_work) {
  1728. spin_lock(&np->lock);
  1729. /* disable interrupts on the nic */
  1730. writel(0, base + NvRegIrqMask);
  1731. pci_push(base);
  1732. if (!np->in_shutdown)
  1733. mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
  1734. printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq.\n", dev->name, i);
  1735. spin_unlock(&np->lock);
  1736. break;
  1737. }
  1738. }
  1739. dprintk(KERN_DEBUG "%s: nv_nic_irq completed\n", dev->name);
  1740. return IRQ_RETVAL(i);
  1741. }
  1742. static void nv_do_nic_poll(unsigned long data)
  1743. {
  1744. struct net_device *dev = (struct net_device *) data;
  1745. struct fe_priv *np = netdev_priv(dev);
  1746. u8 __iomem *base = get_hwbase(dev);
  1747. disable_irq(dev->irq);
  1748. /* FIXME: Do we need synchronize_irq(dev->irq) here? */
  1749. /*
  1750. * reenable interrupts on the nic, we have to do this before calling
  1751. * nv_nic_irq because that may decide to do otherwise
  1752. */
  1753. writel(np->irqmask, base + NvRegIrqMask);
  1754. pci_push(base);
  1755. nv_nic_irq((int) 0, (void *) data, (struct pt_regs *) NULL);
  1756. enable_irq(dev->irq);
  1757. }
  1758. #ifdef CONFIG_NET_POLL_CONTROLLER
  1759. static void nv_poll_controller(struct net_device *dev)
  1760. {
  1761. nv_do_nic_poll((unsigned long) dev);
  1762. }
  1763. #endif
  1764. static void nv_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
  1765. {
  1766. struct fe_priv *np = netdev_priv(dev);
  1767. strcpy(info->driver, "forcedeth");
  1768. strcpy(info->version, FORCEDETH_VERSION);
  1769. strcpy(info->bus_info, pci_name(np->pci_dev));
  1770. }
  1771. static void nv_get_wol(struct net_device *dev, struct ethtool_wolinfo *wolinfo)
  1772. {
  1773. struct fe_priv *np = netdev_priv(dev);
  1774. wolinfo->supported = WAKE_MAGIC;
  1775. spin_lock_irq(&np->lock);
  1776. if (np->wolenabled)
  1777. wolinfo->wolopts = WAKE_MAGIC;
  1778. spin_unlock_irq(&np->lock);
  1779. }
  1780. static int nv_set_wol(struct net_device *dev, struct ethtool_wolinfo *wolinfo)
  1781. {
  1782. struct fe_priv *np = netdev_priv(dev);
  1783. u8 __iomem *base = get_hwbase(dev);
  1784. spin_lock_irq(&np->lock);
  1785. if (wolinfo->wolopts == 0) {
  1786. writel(0, base + NvRegWakeUpFlags);
  1787. np->wolenabled = 0;
  1788. }
  1789. if (wolinfo->wolopts & WAKE_MAGIC) {
  1790. writel(NVREG_WAKEUPFLAGS_ENABLE, base + NvRegWakeUpFlags);
  1791. np->wolenabled = 1;
  1792. }
  1793. spin_unlock_irq(&np->lock);
  1794. return 0;
  1795. }
  1796. static int nv_get_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
  1797. {
  1798. struct fe_priv *np = netdev_priv(dev);
  1799. int adv;
  1800. spin_lock_irq(&np->lock);
  1801. ecmd->port = PORT_MII;
  1802. if (!netif_running(dev)) {
  1803. /* We do not track link speed / duplex setting if the
  1804. * interface is disabled. Force a link check */
  1805. nv_update_linkspeed(dev);
  1806. }
  1807. switch(np->linkspeed & (NVREG_LINKSPEED_MASK)) {
  1808. case NVREG_LINKSPEED_10:
  1809. ecmd->speed = SPEED_10;
  1810. break;
  1811. case NVREG_LINKSPEED_100:
  1812. ecmd->speed = SPEED_100;
  1813. break;
  1814. case NVREG_LINKSPEED_1000:
  1815. ecmd->speed = SPEED_1000;
  1816. break;
  1817. }
  1818. ecmd->duplex = DUPLEX_HALF;
  1819. if (np->duplex)
  1820. ecmd->duplex = DUPLEX_FULL;
  1821. ecmd->autoneg = np->autoneg;
  1822. ecmd->advertising = ADVERTISED_MII;
  1823. if (np->autoneg) {
  1824. ecmd->advertising |= ADVERTISED_Autoneg;
  1825. adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
  1826. } else {
  1827. adv = np->fixed_mode;
  1828. }
  1829. if (adv & ADVERTISE_10HALF)
  1830. ecmd->advertising |= ADVERTISED_10baseT_Half;
  1831. if (adv & ADVERTISE_10FULL)
  1832. ecmd->advertising |= ADVERTISED_10baseT_Full;
  1833. if (adv & ADVERTISE_100HALF)
  1834. ecmd->advertising |= ADVERTISED_100baseT_Half;
  1835. if (adv & ADVERTISE_100FULL)
  1836. ecmd->advertising |= ADVERTISED_100baseT_Full;
  1837. if (np->autoneg && np->gigabit == PHY_GIGABIT) {
  1838. adv = mii_rw(dev, np->phyaddr, MII_1000BT_CR, MII_READ);
  1839. if (adv & ADVERTISE_1000FULL)
  1840. ecmd->advertising |= ADVERTISED_1000baseT_Full;
  1841. }
  1842. ecmd->supported = (SUPPORTED_Autoneg |
  1843. SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full |
  1844. SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full |
  1845. SUPPORTED_MII);
  1846. if (np->gigabit == PHY_GIGABIT)
  1847. ecmd->supported |= SUPPORTED_1000baseT_Full;
  1848. ecmd->phy_address = np->phyaddr;
  1849. ecmd->transceiver = XCVR_EXTERNAL;
  1850. /* ignore maxtxpkt, maxrxpkt for now */
  1851. spin_unlock_irq(&np->lock);
  1852. return 0;
  1853. }
  1854. static int nv_set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
  1855. {
  1856. struct fe_priv *np = netdev_priv(dev);
  1857. if (ecmd->port != PORT_MII)
  1858. return -EINVAL;
  1859. if (ecmd->transceiver != XCVR_EXTERNAL)
  1860. return -EINVAL;
  1861. if (ecmd->phy_address != np->phyaddr) {
  1862. /* TODO: support switching between multiple phys. Should be
  1863. * trivial, but not enabled due to lack of test hardware. */
  1864. return -EINVAL;
  1865. }
  1866. if (ecmd->autoneg == AUTONEG_ENABLE) {
  1867. u32 mask;
  1868. mask = ADVERTISED_10baseT_Half | ADVERTISED_10baseT_Full |
  1869. ADVERTISED_100baseT_Half | ADVERTISED_100baseT_Full;
  1870. if (np->gigabit == PHY_GIGABIT)
  1871. mask |= ADVERTISED_1000baseT_Full;
  1872. if ((ecmd->advertising & mask) == 0)
  1873. return -EINVAL;
  1874. } else if (ecmd->autoneg == AUTONEG_DISABLE) {
  1875. /* Note: autonegotiation disable, speed 1000 intentionally
  1876. * forbidden - noone should need that. */
  1877. if (ecmd->speed != SPEED_10 && ecmd->speed != SPEED_100)
  1878. return -EINVAL;
  1879. if (ecmd->duplex != DUPLEX_HALF && ecmd->duplex != DUPLEX_FULL)
  1880. return -EINVAL;
  1881. } else {
  1882. return -EINVAL;
  1883. }
  1884. spin_lock_irq(&np->lock);
  1885. if (ecmd->autoneg == AUTONEG_ENABLE) {
  1886. int adv, bmcr;
  1887. np->autoneg = 1;
  1888. /* advertise only what has been requested */
  1889. adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
  1890. adv &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4);
  1891. if (ecmd->advertising & ADVERTISED_10baseT_Half)
  1892. adv |= ADVERTISE_10HALF;
  1893. if (ecmd->advertising & ADVERTISED_10baseT_Full)
  1894. adv |= ADVERTISE_10FULL;
  1895. if (ecmd->advertising & ADVERTISED_100baseT_Half)
  1896. adv |= ADVERTISE_100HALF;
  1897. if (ecmd->advertising & ADVERTISED_100baseT_Full)
  1898. adv |= ADVERTISE_100FULL;
  1899. mii_rw(dev, np->phyaddr, MII_ADVERTISE, adv);
  1900. if (np->gigabit == PHY_GIGABIT) {
  1901. adv = mii_rw(dev, np->phyaddr, MII_1000BT_CR, MII_READ);
  1902. adv &= ~ADVERTISE_1000FULL;
  1903. if (ecmd->advertising & ADVERTISED_1000baseT_Full)
  1904. adv |= ADVERTISE_1000FULL;
  1905. mii_rw(dev, np->phyaddr, MII_1000BT_CR, adv);
  1906. }
  1907. bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  1908. bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART);
  1909. mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
  1910. } else {
  1911. int adv, bmcr;
  1912. np->autoneg = 0;
  1913. adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
  1914. adv &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4);
  1915. if (ecmd->speed == SPEED_10 && ecmd->duplex == DUPLEX_HALF)
  1916. adv |= ADVERTISE_10HALF;
  1917. if (ecmd->speed == SPEED_10 && ecmd->duplex == DUPLEX_FULL)
  1918. adv |= ADVERTISE_10FULL;
  1919. if (ecmd->speed == SPEED_100 && ecmd->duplex == DUPLEX_HALF)
  1920. adv |= ADVERTISE_100HALF;
  1921. if (ecmd->speed == SPEED_100 && ecmd->duplex == DUPLEX_FULL)
  1922. adv |= ADVERTISE_100FULL;
  1923. mii_rw(dev, np->phyaddr, MII_ADVERTISE, adv);
  1924. np->fixed_mode = adv;
  1925. if (np->gigabit == PHY_GIGABIT) {
  1926. adv = mii_rw(dev, np->phyaddr, MII_1000BT_CR, MII_READ);
  1927. adv &= ~ADVERTISE_1000FULL;
  1928. mii_rw(dev, np->phyaddr, MII_1000BT_CR, adv);
  1929. }
  1930. bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  1931. bmcr |= ~(BMCR_ANENABLE|BMCR_SPEED100|BMCR_FULLDPLX);
  1932. if (adv & (ADVERTISE_10FULL|ADVERTISE_100FULL))
  1933. bmcr |= BMCR_FULLDPLX;
  1934. if (adv & (ADVERTISE_100HALF|ADVERTISE_100FULL))
  1935. bmcr |= BMCR_SPEED100;
  1936. mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
  1937. if (netif_running(dev)) {
  1938. /* Wait a bit and then reconfigure the nic. */
  1939. udelay(10);
  1940. nv_linkchange(dev);
  1941. }
  1942. }
  1943. spin_unlock_irq(&np->lock);
  1944. return 0;
  1945. }
  1946. #define FORCEDETH_REGS_VER 1
  1947. #define FORCEDETH_REGS_SIZE 0x400 /* 256 32-bit registers */
  1948. static int nv_get_regs_len(struct net_device *dev)
  1949. {
  1950. return FORCEDETH_REGS_SIZE;
  1951. }
  1952. static void nv_get_regs(struct net_device *dev, struct ethtool_regs *regs, void *buf)
  1953. {
  1954. struct fe_priv *np = netdev_priv(dev);
  1955. u8 __iomem *base = get_hwbase(dev);
  1956. u32 *rbuf = buf;
  1957. int i;
  1958. regs->version = FORCEDETH_REGS_VER;
  1959. spin_lock_irq(&np->lock);
  1960. for (i=0;i<FORCEDETH_REGS_SIZE/sizeof(u32);i++)
  1961. rbuf[i] = readl(base + i*sizeof(u32));
  1962. spin_unlock_irq(&np->lock);
  1963. }
  1964. static int nv_nway_reset(struct net_device *dev)
  1965. {
  1966. struct fe_priv *np = netdev_priv(dev);
  1967. int ret;
  1968. spin_lock_irq(&np->lock);
  1969. if (np->autoneg) {
  1970. int bmcr;
  1971. bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  1972. bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART);
  1973. mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
  1974. ret = 0;
  1975. } else {
  1976. ret = -EINVAL;
  1977. }
  1978. spin_unlock_irq(&np->lock);
  1979. return ret;
  1980. }
  1981. static struct ethtool_ops ops = {
  1982. .get_drvinfo = nv_get_drvinfo,
  1983. .get_link = ethtool_op_get_link,
  1984. .get_wol = nv_get_wol,
  1985. .set_wol = nv_set_wol,
  1986. .get_settings = nv_get_settings,
  1987. .set_settings = nv_set_settings,
  1988. .get_regs_len = nv_get_regs_len,
  1989. .get_regs = nv_get_regs,
  1990. .nway_reset = nv_nway_reset,
  1991. .get_perm_addr = ethtool_op_get_perm_addr,
  1992. };
  1993. static void nv_vlan_rx_register(struct net_device *dev, struct vlan_group *grp)
  1994. {
  1995. struct fe_priv *np = get_nvpriv(dev);
  1996. spin_lock_irq(&np->lock);
  1997. /* save vlan group */
  1998. np->vlangrp = grp;
  1999. if (grp) {
  2000. /* enable vlan on MAC */
  2001. np->txrxctl_bits |= NVREG_TXRXCTL_VLANSTRIP | NVREG_TXRXCTL_VLANINS;
  2002. } else {
  2003. /* disable vlan on MAC */
  2004. np->txrxctl_bits &= ~NVREG_TXRXCTL_VLANSTRIP;
  2005. np->txrxctl_bits &= ~NVREG_TXRXCTL_VLANINS;
  2006. }
  2007. writel(np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  2008. spin_unlock_irq(&np->lock);
  2009. };
  2010. static void nv_vlan_rx_kill_vid(struct net_device *dev, unsigned short vid)
  2011. {
  2012. /* nothing to do */
  2013. };
  2014. static int nv_open(struct net_device *dev)
  2015. {
  2016. struct fe_priv *np = netdev_priv(dev);
  2017. u8 __iomem *base = get_hwbase(dev);
  2018. int ret, oom, i;
  2019. dprintk(KERN_DEBUG "nv_open: begin\n");
  2020. /* 1) erase previous misconfiguration */
  2021. /* 4.1-1: stop adapter: ignored, 4.3 seems to be overkill */
  2022. writel(NVREG_MCASTADDRA_FORCE, base + NvRegMulticastAddrA);
  2023. writel(0, base + NvRegMulticastAddrB);
  2024. writel(0, base + NvRegMulticastMaskA);
  2025. writel(0, base + NvRegMulticastMaskB);
  2026. writel(0, base + NvRegPacketFilterFlags);
  2027. writel(0, base + NvRegTransmitterControl);
  2028. writel(0, base + NvRegReceiverControl);
  2029. writel(0, base + NvRegAdapterControl);
  2030. /* 2) initialize descriptor rings */
  2031. set_bufsize(dev);
  2032. oom = nv_init_ring(dev);
  2033. writel(0, base + NvRegLinkSpeed);
  2034. writel(0, base + NvRegUnknownTransmitterReg);
  2035. nv_txrx_reset(dev);
  2036. writel(0, base + NvRegUnknownSetupReg6);
  2037. np->in_shutdown = 0;
  2038. /* 3) set mac address */
  2039. nv_copy_mac_to_hw(dev);
  2040. /* 4) give hw rings */
  2041. writel((u32) np->ring_addr, base + NvRegRxRingPhysAddr);
  2042. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
  2043. writel((u32) (np->ring_addr + RX_RING*sizeof(struct ring_desc)), base + NvRegTxRingPhysAddr);
  2044. else
  2045. writel((u32) (np->ring_addr + RX_RING*sizeof(struct ring_desc_ex)), base + NvRegTxRingPhysAddr);
  2046. writel( ((RX_RING-1) << NVREG_RINGSZ_RXSHIFT) + ((TX_RING-1) << NVREG_RINGSZ_TXSHIFT),
  2047. base + NvRegRingSizes);
  2048. /* 5) continue setup */
  2049. writel(np->linkspeed, base + NvRegLinkSpeed);
  2050. writel(NVREG_UNKSETUP3_VAL1, base + NvRegUnknownSetupReg3);
  2051. writel(np->txrxctl_bits, base + NvRegTxRxControl);
  2052. writel(np->vlanctl_bits, base + NvRegVlanControl);
  2053. pci_push(base);
  2054. writel(NVREG_TXRXCTL_BIT1|np->txrxctl_bits, base + NvRegTxRxControl);
  2055. reg_delay(dev, NvRegUnknownSetupReg5, NVREG_UNKSETUP5_BIT31, NVREG_UNKSETUP5_BIT31,
  2056. NV_SETUP5_DELAY, NV_SETUP5_DELAYMAX,
  2057. KERN_INFO "open: SetupReg5, Bit 31 remained off\n");
  2058. writel(0, base + NvRegUnknownSetupReg4);
  2059. writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
  2060. writel(NVREG_MIISTAT_MASK2, base + NvRegMIIStatus);
  2061. /* 6) continue setup */
  2062. writel(NVREG_MISC1_FORCE | NVREG_MISC1_HD, base + NvRegMisc1);
  2063. writel(readl(base + NvRegTransmitterStatus), base + NvRegTransmitterStatus);
  2064. writel(NVREG_PFF_ALWAYS, base + NvRegPacketFilterFlags);
  2065. writel(np->rx_buf_sz, base + NvRegOffloadConfig);
  2066. writel(readl(base + NvRegReceiverStatus), base + NvRegReceiverStatus);
  2067. get_random_bytes(&i, sizeof(i));
  2068. writel(NVREG_RNDSEED_FORCE | (i&NVREG_RNDSEED_MASK), base + NvRegRandomSeed);
  2069. writel(NVREG_UNKSETUP1_VAL, base + NvRegUnknownSetupReg1);
  2070. writel(NVREG_UNKSETUP2_VAL, base + NvRegUnknownSetupReg2);
  2071. if (poll_interval == -1) {
  2072. if (optimization_mode == NV_OPTIMIZATION_MODE_THROUGHPUT)
  2073. writel(NVREG_POLL_DEFAULT_THROUGHPUT, base + NvRegPollingInterval);
  2074. else
  2075. writel(NVREG_POLL_DEFAULT_CPU, base + NvRegPollingInterval);
  2076. }
  2077. else
  2078. writel(poll_interval & 0xFFFF, base + NvRegPollingInterval);
  2079. writel(NVREG_UNKSETUP6_VAL, base + NvRegUnknownSetupReg6);
  2080. writel((np->phyaddr << NVREG_ADAPTCTL_PHYSHIFT)|NVREG_ADAPTCTL_PHYVALID|NVREG_ADAPTCTL_RUNNING,
  2081. base + NvRegAdapterControl);
  2082. writel(NVREG_MIISPEED_BIT8|NVREG_MIIDELAY, base + NvRegMIISpeed);
  2083. writel(NVREG_UNKSETUP4_VAL, base + NvRegUnknownSetupReg4);
  2084. writel(NVREG_WAKEUPFLAGS_VAL, base + NvRegWakeUpFlags);
  2085. i = readl(base + NvRegPowerState);
  2086. if ( (i & NVREG_POWERSTATE_POWEREDUP) == 0)
  2087. writel(NVREG_POWERSTATE_POWEREDUP|i, base + NvRegPowerState);
  2088. pci_push(base);
  2089. udelay(10);
  2090. writel(readl(base + NvRegPowerState) | NVREG_POWERSTATE_VALID, base + NvRegPowerState);
  2091. writel(0, base + NvRegIrqMask);
  2092. pci_push(base);
  2093. writel(NVREG_MIISTAT_MASK2, base + NvRegMIIStatus);
  2094. writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
  2095. pci_push(base);
  2096. ret = request_irq(dev->irq, &nv_nic_irq, SA_SHIRQ, dev->name, dev);
  2097. if (ret)
  2098. goto out_drain;
  2099. /* ask for interrupts */
  2100. writel(np->irqmask, base + NvRegIrqMask);
  2101. spin_lock_irq(&np->lock);
  2102. writel(NVREG_MCASTADDRA_FORCE, base + NvRegMulticastAddrA);
  2103. writel(0, base + NvRegMulticastAddrB);
  2104. writel(0, base + NvRegMulticastMaskA);
  2105. writel(0, base + NvRegMulticastMaskB);
  2106. writel(NVREG_PFF_ALWAYS|NVREG_PFF_MYADDR, base + NvRegPacketFilterFlags);
  2107. /* One manual link speed update: Interrupts are enabled, future link
  2108. * speed changes cause interrupts and are handled by nv_link_irq().
  2109. */
  2110. {
  2111. u32 miistat;
  2112. miistat = readl(base + NvRegMIIStatus);
  2113. writel(NVREG_MIISTAT_MASK, base + NvRegMIIStatus);
  2114. dprintk(KERN_INFO "startup: got 0x%08x.\n", miistat);
  2115. }
  2116. /* set linkspeed to invalid value, thus force nv_update_linkspeed
  2117. * to init hw */
  2118. np->linkspeed = 0;
  2119. ret = nv_update_linkspeed(dev);
  2120. nv_start_rx(dev);
  2121. nv_start_tx(dev);
  2122. netif_start_queue(dev);
  2123. if (ret) {
  2124. netif_carrier_on(dev);
  2125. } else {
  2126. printk("%s: no link during initialization.\n", dev->name);
  2127. netif_carrier_off(dev);
  2128. }
  2129. if (oom)
  2130. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  2131. spin_unlock_irq(&np->lock);
  2132. return 0;
  2133. out_drain:
  2134. drain_ring(dev);
  2135. return ret;
  2136. }
  2137. static int nv_close(struct net_device *dev)
  2138. {
  2139. struct fe_priv *np = netdev_priv(dev);
  2140. u8 __iomem *base;
  2141. spin_lock_irq(&np->lock);
  2142. np->in_shutdown = 1;
  2143. spin_unlock_irq(&np->lock);
  2144. synchronize_irq(dev->irq);
  2145. del_timer_sync(&np->oom_kick);
  2146. del_timer_sync(&np->nic_poll);
  2147. netif_stop_queue(dev);
  2148. spin_lock_irq(&np->lock);
  2149. nv_stop_tx(dev);
  2150. nv_stop_rx(dev);
  2151. nv_txrx_reset(dev);
  2152. /* disable interrupts on the nic or we will lock up */
  2153. base = get_hwbase(dev);
  2154. writel(0, base + NvRegIrqMask);
  2155. pci_push(base);
  2156. dprintk(KERN_INFO "%s: Irqmask is zero again\n", dev->name);
  2157. spin_unlock_irq(&np->lock);
  2158. free_irq(dev->irq, dev);
  2159. drain_ring(dev);
  2160. if (np->wolenabled)
  2161. nv_start_rx(dev);
  2162. /* special op: write back the misordered MAC address - otherwise
  2163. * the next nv_probe would see a wrong address.
  2164. */
  2165. writel(np->orig_mac[0], base + NvRegMacAddrA);
  2166. writel(np->orig_mac[1], base + NvRegMacAddrB);
  2167. /* FIXME: power down nic */
  2168. return 0;
  2169. }
  2170. static int __devinit nv_probe(struct pci_dev *pci_dev, const struct pci_device_id *id)
  2171. {
  2172. struct net_device *dev;
  2173. struct fe_priv *np;
  2174. unsigned long addr;
  2175. u8 __iomem *base;
  2176. int err, i;
  2177. dev = alloc_etherdev(sizeof(struct fe_priv));
  2178. err = -ENOMEM;
  2179. if (!dev)
  2180. goto out;
  2181. np = netdev_priv(dev);
  2182. np->pci_dev = pci_dev;
  2183. spin_lock_init(&np->lock);
  2184. SET_MODULE_OWNER(dev);
  2185. SET_NETDEV_DEV(dev, &pci_dev->dev);
  2186. init_timer(&np->oom_kick);
  2187. np->oom_kick.data = (unsigned long) dev;
  2188. np->oom_kick.function = &nv_do_rx_refill; /* timer handler */
  2189. init_timer(&np->nic_poll);
  2190. np->nic_poll.data = (unsigned long) dev;
  2191. np->nic_poll.function = &nv_do_nic_poll; /* timer handler */
  2192. err = pci_enable_device(pci_dev);
  2193. if (err) {
  2194. printk(KERN_INFO "forcedeth: pci_enable_dev failed (%d) for device %s\n",
  2195. err, pci_name(pci_dev));
  2196. goto out_free;
  2197. }
  2198. pci_set_master(pci_dev);
  2199. err = pci_request_regions(pci_dev, DRV_NAME);
  2200. if (err < 0)
  2201. goto out_disable;
  2202. err = -EINVAL;
  2203. addr = 0;
  2204. for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
  2205. dprintk(KERN_DEBUG "%s: resource %d start %p len %ld flags 0x%08lx.\n",
  2206. pci_name(pci_dev), i, (void*)pci_resource_start(pci_dev, i),
  2207. pci_resource_len(pci_dev, i),
  2208. pci_resource_flags(pci_dev, i));
  2209. if (pci_resource_flags(pci_dev, i) & IORESOURCE_MEM &&
  2210. pci_resource_len(pci_dev, i) >= NV_PCI_REGSZ) {
  2211. addr = pci_resource_start(pci_dev, i);
  2212. break;
  2213. }
  2214. }
  2215. if (i == DEVICE_COUNT_RESOURCE) {
  2216. printk(KERN_INFO "forcedeth: Couldn't find register window for device %s.\n",
  2217. pci_name(pci_dev));
  2218. goto out_relreg;
  2219. }
  2220. /* handle different descriptor versions */
  2221. if (id->driver_data & DEV_HAS_HIGH_DMA) {
  2222. /* packet format 3: supports 40-bit addressing */
  2223. np->desc_ver = DESC_VER_3;
  2224. if (pci_set_dma_mask(pci_dev, 0x0000007fffffffffULL)) {
  2225. printk(KERN_INFO "forcedeth: 64-bit DMA failed, using 32-bit addressing for device %s.\n",
  2226. pci_name(pci_dev));
  2227. } else {
  2228. dev->features |= NETIF_F_HIGHDMA;
  2229. }
  2230. np->txrxctl_bits = NVREG_TXRXCTL_DESC_3;
  2231. } else if (id->driver_data & DEV_HAS_LARGEDESC) {
  2232. /* packet format 2: supports jumbo frames */
  2233. np->desc_ver = DESC_VER_2;
  2234. np->txrxctl_bits = NVREG_TXRXCTL_DESC_2;
  2235. } else {
  2236. /* original packet format */
  2237. np->desc_ver = DESC_VER_1;
  2238. np->txrxctl_bits = NVREG_TXRXCTL_DESC_1;
  2239. }
  2240. np->pkt_limit = NV_PKTLIMIT_1;
  2241. if (id->driver_data & DEV_HAS_LARGEDESC)
  2242. np->pkt_limit = NV_PKTLIMIT_2;
  2243. if (id->driver_data & DEV_HAS_CHECKSUM) {
  2244. np->txrxctl_bits |= NVREG_TXRXCTL_RXCHECK;
  2245. dev->features |= NETIF_F_HW_CSUM | NETIF_F_SG;
  2246. #ifdef NETIF_F_TSO
  2247. dev->features |= NETIF_F_TSO;
  2248. #endif
  2249. }
  2250. np->vlanctl_bits = 0;
  2251. if (id->driver_data & DEV_HAS_VLAN) {
  2252. np->vlanctl_bits = NVREG_VLANCONTROL_ENABLE;
  2253. dev->features |= NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_TX;
  2254. dev->vlan_rx_register = nv_vlan_rx_register;
  2255. dev->vlan_rx_kill_vid = nv_vlan_rx_kill_vid;
  2256. }
  2257. err = -ENOMEM;
  2258. np->base = ioremap(addr, NV_PCI_REGSZ);
  2259. if (!np->base)
  2260. goto out_relreg;
  2261. dev->base_addr = (unsigned long)np->base;
  2262. dev->irq = pci_dev->irq;
  2263. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  2264. np->rx_ring.orig = pci_alloc_consistent(pci_dev,
  2265. sizeof(struct ring_desc) * (RX_RING + TX_RING),
  2266. &np->ring_addr);
  2267. if (!np->rx_ring.orig)
  2268. goto out_unmap;
  2269. np->tx_ring.orig = &np->rx_ring.orig[RX_RING];
  2270. } else {
  2271. np->rx_ring.ex = pci_alloc_consistent(pci_dev,
  2272. sizeof(struct ring_desc_ex) * (RX_RING + TX_RING),
  2273. &np->ring_addr);
  2274. if (!np->rx_ring.ex)
  2275. goto out_unmap;
  2276. np->tx_ring.ex = &np->rx_ring.ex[RX_RING];
  2277. }
  2278. dev->open = nv_open;
  2279. dev->stop = nv_close;
  2280. dev->hard_start_xmit = nv_start_xmit;
  2281. dev->get_stats = nv_get_stats;
  2282. dev->change_mtu = nv_change_mtu;
  2283. dev->set_mac_address = nv_set_mac_address;
  2284. dev->set_multicast_list = nv_set_multicast;
  2285. #ifdef CONFIG_NET_POLL_CONTROLLER
  2286. dev->poll_controller = nv_poll_controller;
  2287. #endif
  2288. SET_ETHTOOL_OPS(dev, &ops);
  2289. dev->tx_timeout = nv_tx_timeout;
  2290. dev->watchdog_timeo = NV_WATCHDOG_TIMEO;
  2291. pci_set_drvdata(pci_dev, dev);
  2292. /* read the mac address */
  2293. base = get_hwbase(dev);
  2294. np->orig_mac[0] = readl(base + NvRegMacAddrA);
  2295. np->orig_mac[1] = readl(base + NvRegMacAddrB);
  2296. dev->dev_addr[0] = (np->orig_mac[1] >> 8) & 0xff;
  2297. dev->dev_addr[1] = (np->orig_mac[1] >> 0) & 0xff;
  2298. dev->dev_addr[2] = (np->orig_mac[0] >> 24) & 0xff;
  2299. dev->dev_addr[3] = (np->orig_mac[0] >> 16) & 0xff;
  2300. dev->dev_addr[4] = (np->orig_mac[0] >> 8) & 0xff;
  2301. dev->dev_addr[5] = (np->orig_mac[0] >> 0) & 0xff;
  2302. memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
  2303. if (!is_valid_ether_addr(dev->perm_addr)) {
  2304. /*
  2305. * Bad mac address. At least one bios sets the mac address
  2306. * to 01:23:45:67:89:ab
  2307. */
  2308. printk(KERN_ERR "%s: Invalid Mac address detected: %02x:%02x:%02x:%02x:%02x:%02x\n",
  2309. pci_name(pci_dev),
  2310. dev->dev_addr[0], dev->dev_addr[1], dev->dev_addr[2],
  2311. dev->dev_addr[3], dev->dev_addr[4], dev->dev_addr[5]);
  2312. printk(KERN_ERR "Please complain to your hardware vendor. Switching to a random MAC.\n");
  2313. dev->dev_addr[0] = 0x00;
  2314. dev->dev_addr[1] = 0x00;
  2315. dev->dev_addr[2] = 0x6c;
  2316. get_random_bytes(&dev->dev_addr[3], 3);
  2317. }
  2318. dprintk(KERN_DEBUG "%s: MAC Address %02x:%02x:%02x:%02x:%02x:%02x\n", pci_name(pci_dev),
  2319. dev->dev_addr[0], dev->dev_addr[1], dev->dev_addr[2],
  2320. dev->dev_addr[3], dev->dev_addr[4], dev->dev_addr[5]);
  2321. /* disable WOL */
  2322. writel(0, base + NvRegWakeUpFlags);
  2323. np->wolenabled = 0;
  2324. if (np->desc_ver == DESC_VER_1) {
  2325. np->tx_flags = NV_TX_VALID;
  2326. } else {
  2327. np->tx_flags = NV_TX2_VALID;
  2328. }
  2329. if (optimization_mode == NV_OPTIMIZATION_MODE_THROUGHPUT)
  2330. np->irqmask = NVREG_IRQMASK_THROUGHPUT;
  2331. else
  2332. np->irqmask = NVREG_IRQMASK_CPU;
  2333. if (id->driver_data & DEV_NEED_TIMERIRQ)
  2334. np->irqmask |= NVREG_IRQ_TIMER;
  2335. if (id->driver_data & DEV_NEED_LINKTIMER) {
  2336. dprintk(KERN_INFO "%s: link timer on.\n", pci_name(pci_dev));
  2337. np->need_linktimer = 1;
  2338. np->link_timeout = jiffies + LINK_TIMEOUT;
  2339. } else {
  2340. dprintk(KERN_INFO "%s: link timer off.\n", pci_name(pci_dev));
  2341. np->need_linktimer = 0;
  2342. }
  2343. /* find a suitable phy */
  2344. for (i = 1; i <= 32; i++) {
  2345. int id1, id2;
  2346. int phyaddr = i & 0x1F;
  2347. spin_lock_irq(&np->lock);
  2348. id1 = mii_rw(dev, phyaddr, MII_PHYSID1, MII_READ);
  2349. spin_unlock_irq(&np->lock);
  2350. if (id1 < 0 || id1 == 0xffff)
  2351. continue;
  2352. spin_lock_irq(&np->lock);
  2353. id2 = mii_rw(dev, phyaddr, MII_PHYSID2, MII_READ);
  2354. spin_unlock_irq(&np->lock);
  2355. if (id2 < 0 || id2 == 0xffff)
  2356. continue;
  2357. id1 = (id1 & PHYID1_OUI_MASK) << PHYID1_OUI_SHFT;
  2358. id2 = (id2 & PHYID2_OUI_MASK) >> PHYID2_OUI_SHFT;
  2359. dprintk(KERN_DEBUG "%s: open: Found PHY %04x:%04x at address %d.\n",
  2360. pci_name(pci_dev), id1, id2, phyaddr);
  2361. np->phyaddr = phyaddr;
  2362. np->phy_oui = id1 | id2;
  2363. break;
  2364. }
  2365. if (i == 33) {
  2366. printk(KERN_INFO "%s: open: Could not find a valid PHY.\n",
  2367. pci_name(pci_dev));
  2368. goto out_freering;
  2369. }
  2370. /* reset it */
  2371. phy_init(dev);
  2372. /* set default link speed settings */
  2373. np->linkspeed = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  2374. np->duplex = 0;
  2375. np->autoneg = 1;
  2376. err = register_netdev(dev);
  2377. if (err) {
  2378. printk(KERN_INFO "forcedeth: unable to register netdev: %d\n", err);
  2379. goto out_freering;
  2380. }
  2381. printk(KERN_INFO "%s: forcedeth.c: subsystem: %05x:%04x bound to %s\n",
  2382. dev->name, pci_dev->subsystem_vendor, pci_dev->subsystem_device,
  2383. pci_name(pci_dev));
  2384. return 0;
  2385. out_freering:
  2386. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
  2387. pci_free_consistent(np->pci_dev, sizeof(struct ring_desc) * (RX_RING + TX_RING),
  2388. np->rx_ring.orig, np->ring_addr);
  2389. else
  2390. pci_free_consistent(np->pci_dev, sizeof(struct ring_desc_ex) * (RX_RING + TX_RING),
  2391. np->rx_ring.ex, np->ring_addr);
  2392. pci_set_drvdata(pci_dev, NULL);
  2393. out_unmap:
  2394. iounmap(get_hwbase(dev));
  2395. out_relreg:
  2396. pci_release_regions(pci_dev);
  2397. out_disable:
  2398. pci_disable_device(pci_dev);
  2399. out_free:
  2400. free_netdev(dev);
  2401. out:
  2402. return err;
  2403. }
  2404. static void __devexit nv_remove(struct pci_dev *pci_dev)
  2405. {
  2406. struct net_device *dev = pci_get_drvdata(pci_dev);
  2407. struct fe_priv *np = netdev_priv(dev);
  2408. unregister_netdev(dev);
  2409. /* free all structures */
  2410. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
  2411. pci_free_consistent(np->pci_dev, sizeof(struct ring_desc) * (RX_RING + TX_RING), np->rx_ring.orig, np->ring_addr);
  2412. else
  2413. pci_free_consistent(np->pci_dev, sizeof(struct ring_desc_ex) * (RX_RING + TX_RING), np->rx_ring.ex, np->ring_addr);
  2414. iounmap(get_hwbase(dev));
  2415. pci_release_regions(pci_dev);
  2416. pci_disable_device(pci_dev);
  2417. free_netdev(dev);
  2418. pci_set_drvdata(pci_dev, NULL);
  2419. }
  2420. static struct pci_device_id pci_tbl[] = {
  2421. { /* nForce Ethernet Controller */
  2422. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_1),
  2423. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER,
  2424. },
  2425. { /* nForce2 Ethernet Controller */
  2426. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_2),
  2427. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER,
  2428. },
  2429. { /* nForce3 Ethernet Controller */
  2430. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_3),
  2431. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER,
  2432. },
  2433. { /* nForce3 Ethernet Controller */
  2434. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_4),
  2435. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
  2436. },
  2437. { /* nForce3 Ethernet Controller */
  2438. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_5),
  2439. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
  2440. },
  2441. { /* nForce3 Ethernet Controller */
  2442. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_6),
  2443. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
  2444. },
  2445. { /* nForce3 Ethernet Controller */
  2446. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_7),
  2447. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
  2448. },
  2449. { /* CK804 Ethernet Controller */
  2450. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_8),
  2451. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA,
  2452. },
  2453. { /* CK804 Ethernet Controller */
  2454. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_9),
  2455. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA,
  2456. },
  2457. { /* MCP04 Ethernet Controller */
  2458. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_10),
  2459. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA,
  2460. },
  2461. { /* MCP04 Ethernet Controller */
  2462. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_11),
  2463. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA,
  2464. },
  2465. { /* MCP51 Ethernet Controller */
  2466. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_12),
  2467. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA,
  2468. },
  2469. { /* MCP51 Ethernet Controller */
  2470. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_13),
  2471. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA,
  2472. },
  2473. { /* MCP55 Ethernet Controller */
  2474. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_14),
  2475. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_VLAN,
  2476. },
  2477. { /* MCP55 Ethernet Controller */
  2478. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_15),
  2479. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_VLAN,
  2480. },
  2481. {0,},
  2482. };
  2483. static struct pci_driver driver = {
  2484. .name = "forcedeth",
  2485. .id_table = pci_tbl,
  2486. .probe = nv_probe,
  2487. .remove = __devexit_p(nv_remove),
  2488. };
  2489. static int __init init_nic(void)
  2490. {
  2491. printk(KERN_INFO "forcedeth.c: Reverse Engineered nForce ethernet driver. Version %s.\n", FORCEDETH_VERSION);
  2492. return pci_module_init(&driver);
  2493. }
  2494. static void __exit exit_nic(void)
  2495. {
  2496. pci_unregister_driver(&driver);
  2497. }
  2498. module_param(max_interrupt_work, int, 0);
  2499. MODULE_PARM_DESC(max_interrupt_work, "forcedeth maximum events handled per interrupt");
  2500. module_param(optimization_mode, int, 0);
  2501. MODULE_PARM_DESC(optimization_mode, "In throughput mode (0), every tx & rx packet will generate an interrupt. In CPU mode (1), interrupts are controlled by a timer.");
  2502. module_param(poll_interval, int, 0);
  2503. MODULE_PARM_DESC(poll_interval, "Interval determines how frequent timer interrupt is generated by [(time_in_micro_secs * 100) / (2^10)]. Min is 0 and Max is 65535.");
  2504. MODULE_AUTHOR("Manfred Spraul <manfred@colorfullife.com>");
  2505. MODULE_DESCRIPTION("Reverse Engineered nForce ethernet driver");
  2506. MODULE_LICENSE("GPL");
  2507. MODULE_DEVICE_TABLE(pci, pci_tbl);
  2508. module_init(init_nic);
  2509. module_exit(exit_nic);