super.c 40 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403
  1. /*
  2. * linux/fs/ufs/super.c
  3. *
  4. * Copyright (C) 1998
  5. * Daniel Pirkl <daniel.pirkl@email.cz>
  6. * Charles University, Faculty of Mathematics and Physics
  7. */
  8. /* Derived from
  9. *
  10. * linux/fs/ext2/super.c
  11. *
  12. * Copyright (C) 1992, 1993, 1994, 1995
  13. * Remy Card (card@masi.ibp.fr)
  14. * Laboratoire MASI - Institut Blaise Pascal
  15. * Universite Pierre et Marie Curie (Paris VI)
  16. *
  17. * from
  18. *
  19. * linux/fs/minix/inode.c
  20. *
  21. * Copyright (C) 1991, 1992 Linus Torvalds
  22. *
  23. * Big-endian to little-endian byte-swapping/bitmaps by
  24. * David S. Miller (davem@caip.rutgers.edu), 1995
  25. */
  26. /*
  27. * Inspired by
  28. *
  29. * linux/fs/ufs/super.c
  30. *
  31. * Copyright (C) 1996
  32. * Adrian Rodriguez (adrian@franklins-tower.rutgers.edu)
  33. * Laboratory for Computer Science Research Computing Facility
  34. * Rutgers, The State University of New Jersey
  35. *
  36. * Copyright (C) 1996 Eddie C. Dost (ecd@skynet.be)
  37. *
  38. * Kernel module support added on 96/04/26 by
  39. * Stefan Reinauer <stepan@home.culture.mipt.ru>
  40. *
  41. * Module usage counts added on 96/04/29 by
  42. * Gertjan van Wingerde <gertjan@cs.vu.nl>
  43. *
  44. * Clean swab support on 19970406 by
  45. * Francois-Rene Rideau <fare@tunes.org>
  46. *
  47. * 4.4BSD (FreeBSD) support added on February 1st 1998 by
  48. * Niels Kristian Bech Jensen <nkbj@image.dk> partially based
  49. * on code by Martin von Loewis <martin@mira.isdn.cs.tu-berlin.de>.
  50. *
  51. * NeXTstep support added on February 5th 1998 by
  52. * Niels Kristian Bech Jensen <nkbj@image.dk>.
  53. *
  54. * write support Daniel Pirkl <daniel.pirkl@email.cz> 1998
  55. *
  56. * HP/UX hfs filesystem support added by
  57. * Martin K. Petersen <mkp@mkp.net>, August 1999
  58. *
  59. * UFS2 (of FreeBSD 5.x) support added by
  60. * Niraj Kumar <niraj17@iitbombay.org>, Jan 2004
  61. *
  62. */
  63. #include <linux/config.h>
  64. #include <linux/module.h>
  65. #include <linux/bitops.h>
  66. #include <stdarg.h>
  67. #include <asm/uaccess.h>
  68. #include <asm/system.h>
  69. #include <linux/errno.h>
  70. #include <linux/fs.h>
  71. #include <linux/ufs_fs.h>
  72. #include <linux/slab.h>
  73. #include <linux/time.h>
  74. #include <linux/stat.h>
  75. #include <linux/string.h>
  76. #include <linux/blkdev.h>
  77. #include <linux/init.h>
  78. #include <linux/parser.h>
  79. #include <linux/smp_lock.h>
  80. #include <linux/buffer_head.h>
  81. #include <linux/vfs.h>
  82. #include "swab.h"
  83. #include "util.h"
  84. #ifdef CONFIG_UFS_DEBUG
  85. /*
  86. * Print contents of ufs_super_block, useful for debugging
  87. */
  88. static void ufs_print_super_stuff(struct super_block *sb, unsigned flags,
  89. struct ufs_super_block_first *usb1,
  90. struct ufs_super_block_second *usb2,
  91. struct ufs_super_block_third *usb3)
  92. {
  93. printk("ufs_print_super_stuff\n");
  94. printk(" magic: 0x%x\n", fs32_to_cpu(sb, usb3->fs_magic));
  95. if ((flags & UFS_TYPE_MASK) == UFS_TYPE_UFS2) {
  96. printk(" fs_size: %llu\n", (unsigned long long)
  97. fs64_to_cpu(sb, usb3->fs_un1.fs_u2.fs_size));
  98. printk(" fs_dsize: %llu\n", (unsigned long long)
  99. fs64_to_cpu(sb, usb3->fs_un1.fs_u2.fs_dsize));
  100. printk(" bsize: %u\n",
  101. fs32_to_cpu(sb, usb1->fs_bsize));
  102. printk(" fsize: %u\n",
  103. fs32_to_cpu(sb, usb1->fs_fsize));
  104. printk(" fs_volname: %s\n", usb2->fs_un.fs_u2.fs_volname);
  105. printk(" fs_sblockloc: %llu\n", (unsigned long long)
  106. fs64_to_cpu(sb, usb2->fs_un.fs_u2.fs_sblockloc));
  107. printk(" cs_ndir(No of dirs): %llu\n", (unsigned long long)
  108. fs64_to_cpu(sb, usb2->fs_un.fs_u2.cs_ndir));
  109. printk(" cs_nbfree(No of free blocks): %llu\n",
  110. (unsigned long long)
  111. fs64_to_cpu(sb, usb2->fs_un.fs_u2.cs_nbfree));
  112. } else {
  113. printk(" sblkno: %u\n", fs32_to_cpu(sb, usb1->fs_sblkno));
  114. printk(" cblkno: %u\n", fs32_to_cpu(sb, usb1->fs_cblkno));
  115. printk(" iblkno: %u\n", fs32_to_cpu(sb, usb1->fs_iblkno));
  116. printk(" dblkno: %u\n", fs32_to_cpu(sb, usb1->fs_dblkno));
  117. printk(" cgoffset: %u\n",
  118. fs32_to_cpu(sb, usb1->fs_cgoffset));
  119. printk(" ~cgmask: 0x%x\n",
  120. ~fs32_to_cpu(sb, usb1->fs_cgmask));
  121. printk(" size: %u\n", fs32_to_cpu(sb, usb1->fs_size));
  122. printk(" dsize: %u\n", fs32_to_cpu(sb, usb1->fs_dsize));
  123. printk(" ncg: %u\n", fs32_to_cpu(sb, usb1->fs_ncg));
  124. printk(" bsize: %u\n", fs32_to_cpu(sb, usb1->fs_bsize));
  125. printk(" fsize: %u\n", fs32_to_cpu(sb, usb1->fs_fsize));
  126. printk(" frag: %u\n", fs32_to_cpu(sb, usb1->fs_frag));
  127. printk(" fragshift: %u\n",
  128. fs32_to_cpu(sb, usb1->fs_fragshift));
  129. printk(" ~fmask: %u\n", ~fs32_to_cpu(sb, usb1->fs_fmask));
  130. printk(" fshift: %u\n", fs32_to_cpu(sb, usb1->fs_fshift));
  131. printk(" sbsize: %u\n", fs32_to_cpu(sb, usb1->fs_sbsize));
  132. printk(" spc: %u\n", fs32_to_cpu(sb, usb1->fs_spc));
  133. printk(" cpg: %u\n", fs32_to_cpu(sb, usb1->fs_cpg));
  134. printk(" ipg: %u\n", fs32_to_cpu(sb, usb1->fs_ipg));
  135. printk(" fpg: %u\n", fs32_to_cpu(sb, usb1->fs_fpg));
  136. printk(" csaddr: %u\n", fs32_to_cpu(sb, usb1->fs_csaddr));
  137. printk(" cssize: %u\n", fs32_to_cpu(sb, usb1->fs_cssize));
  138. printk(" cgsize: %u\n", fs32_to_cpu(sb, usb1->fs_cgsize));
  139. printk(" fstodb: %u\n",
  140. fs32_to_cpu(sb, usb1->fs_fsbtodb));
  141. printk(" nrpos: %u\n", fs32_to_cpu(sb, usb3->fs_nrpos));
  142. printk(" ndir %u\n",
  143. fs32_to_cpu(sb, usb1->fs_cstotal.cs_ndir));
  144. printk(" nifree %u\n",
  145. fs32_to_cpu(sb, usb1->fs_cstotal.cs_nifree));
  146. printk(" nbfree %u\n",
  147. fs32_to_cpu(sb, usb1->fs_cstotal.cs_nbfree));
  148. printk(" nffree %u\n",
  149. fs32_to_cpu(sb, usb1->fs_cstotal.cs_nffree));
  150. }
  151. printk("\n");
  152. }
  153. /*
  154. * Print contents of ufs_cylinder_group, useful for debugging
  155. */
  156. static void ufs_print_cylinder_stuff(struct super_block *sb,
  157. struct ufs_cylinder_group *cg)
  158. {
  159. printk("\nufs_print_cylinder_stuff\n");
  160. printk("size of ucg: %zu\n", sizeof(struct ufs_cylinder_group));
  161. printk(" magic: %x\n", fs32_to_cpu(sb, cg->cg_magic));
  162. printk(" time: %u\n", fs32_to_cpu(sb, cg->cg_time));
  163. printk(" cgx: %u\n", fs32_to_cpu(sb, cg->cg_cgx));
  164. printk(" ncyl: %u\n", fs16_to_cpu(sb, cg->cg_ncyl));
  165. printk(" niblk: %u\n", fs16_to_cpu(sb, cg->cg_niblk));
  166. printk(" ndblk: %u\n", fs32_to_cpu(sb, cg->cg_ndblk));
  167. printk(" cs_ndir: %u\n", fs32_to_cpu(sb, cg->cg_cs.cs_ndir));
  168. printk(" cs_nbfree: %u\n", fs32_to_cpu(sb, cg->cg_cs.cs_nbfree));
  169. printk(" cs_nifree: %u\n", fs32_to_cpu(sb, cg->cg_cs.cs_nifree));
  170. printk(" cs_nffree: %u\n", fs32_to_cpu(sb, cg->cg_cs.cs_nffree));
  171. printk(" rotor: %u\n", fs32_to_cpu(sb, cg->cg_rotor));
  172. printk(" frotor: %u\n", fs32_to_cpu(sb, cg->cg_frotor));
  173. printk(" irotor: %u\n", fs32_to_cpu(sb, cg->cg_irotor));
  174. printk(" frsum: %u, %u, %u, %u, %u, %u, %u, %u\n",
  175. fs32_to_cpu(sb, cg->cg_frsum[0]), fs32_to_cpu(sb, cg->cg_frsum[1]),
  176. fs32_to_cpu(sb, cg->cg_frsum[2]), fs32_to_cpu(sb, cg->cg_frsum[3]),
  177. fs32_to_cpu(sb, cg->cg_frsum[4]), fs32_to_cpu(sb, cg->cg_frsum[5]),
  178. fs32_to_cpu(sb, cg->cg_frsum[6]), fs32_to_cpu(sb, cg->cg_frsum[7]));
  179. printk(" btotoff: %u\n", fs32_to_cpu(sb, cg->cg_btotoff));
  180. printk(" boff: %u\n", fs32_to_cpu(sb, cg->cg_boff));
  181. printk(" iuseoff: %u\n", fs32_to_cpu(sb, cg->cg_iusedoff));
  182. printk(" freeoff: %u\n", fs32_to_cpu(sb, cg->cg_freeoff));
  183. printk(" nextfreeoff: %u\n", fs32_to_cpu(sb, cg->cg_nextfreeoff));
  184. printk(" clustersumoff %u\n",
  185. fs32_to_cpu(sb, cg->cg_u.cg_44.cg_clustersumoff));
  186. printk(" clusteroff %u\n",
  187. fs32_to_cpu(sb, cg->cg_u.cg_44.cg_clusteroff));
  188. printk(" nclusterblks %u\n",
  189. fs32_to_cpu(sb, cg->cg_u.cg_44.cg_nclusterblks));
  190. printk("\n");
  191. }
  192. #else
  193. # define ufs_print_super_stuff(sb, flags, usb1, usb2, usb3) /**/
  194. # define ufs_print_cylinder_stuff(sb, cg) /**/
  195. #endif /* CONFIG_UFS_DEBUG */
  196. static struct super_operations ufs_super_ops;
  197. static char error_buf[1024];
  198. void ufs_error (struct super_block * sb, const char * function,
  199. const char * fmt, ...)
  200. {
  201. struct ufs_sb_private_info * uspi;
  202. struct ufs_super_block_first * usb1;
  203. va_list args;
  204. uspi = UFS_SB(sb)->s_uspi;
  205. usb1 = ubh_get_usb_first(uspi);
  206. if (!(sb->s_flags & MS_RDONLY)) {
  207. usb1->fs_clean = UFS_FSBAD;
  208. ubh_mark_buffer_dirty(USPI_UBH(uspi));
  209. sb->s_dirt = 1;
  210. sb->s_flags |= MS_RDONLY;
  211. }
  212. va_start (args, fmt);
  213. vsprintf (error_buf, fmt, args);
  214. va_end (args);
  215. switch (UFS_SB(sb)->s_mount_opt & UFS_MOUNT_ONERROR) {
  216. case UFS_MOUNT_ONERROR_PANIC:
  217. panic ("UFS-fs panic (device %s): %s: %s\n",
  218. sb->s_id, function, error_buf);
  219. case UFS_MOUNT_ONERROR_LOCK:
  220. case UFS_MOUNT_ONERROR_UMOUNT:
  221. case UFS_MOUNT_ONERROR_REPAIR:
  222. printk (KERN_CRIT "UFS-fs error (device %s): %s: %s\n",
  223. sb->s_id, function, error_buf);
  224. }
  225. }
  226. void ufs_panic (struct super_block * sb, const char * function,
  227. const char * fmt, ...)
  228. {
  229. struct ufs_sb_private_info * uspi;
  230. struct ufs_super_block_first * usb1;
  231. va_list args;
  232. uspi = UFS_SB(sb)->s_uspi;
  233. usb1 = ubh_get_usb_first(uspi);
  234. if (!(sb->s_flags & MS_RDONLY)) {
  235. usb1->fs_clean = UFS_FSBAD;
  236. ubh_mark_buffer_dirty(USPI_UBH(uspi));
  237. sb->s_dirt = 1;
  238. }
  239. va_start (args, fmt);
  240. vsprintf (error_buf, fmt, args);
  241. va_end (args);
  242. sb->s_flags |= MS_RDONLY;
  243. printk (KERN_CRIT "UFS-fs panic (device %s): %s: %s\n",
  244. sb->s_id, function, error_buf);
  245. }
  246. void ufs_warning (struct super_block * sb, const char * function,
  247. const char * fmt, ...)
  248. {
  249. va_list args;
  250. va_start (args, fmt);
  251. vsprintf (error_buf, fmt, args);
  252. va_end (args);
  253. printk (KERN_WARNING "UFS-fs warning (device %s): %s: %s\n",
  254. sb->s_id, function, error_buf);
  255. }
  256. enum {
  257. Opt_type_old, Opt_type_sunx86, Opt_type_sun, Opt_type_44bsd,
  258. Opt_type_ufs2, Opt_type_hp, Opt_type_nextstepcd, Opt_type_nextstep,
  259. Opt_type_openstep, Opt_onerror_panic, Opt_onerror_lock,
  260. Opt_onerror_umount, Opt_onerror_repair, Opt_err
  261. };
  262. static match_table_t tokens = {
  263. {Opt_type_old, "ufstype=old"},
  264. {Opt_type_sunx86, "ufstype=sunx86"},
  265. {Opt_type_sun, "ufstype=sun"},
  266. {Opt_type_44bsd, "ufstype=44bsd"},
  267. {Opt_type_ufs2, "ufstype=ufs2"},
  268. {Opt_type_ufs2, "ufstype=5xbsd"},
  269. {Opt_type_hp, "ufstype=hp"},
  270. {Opt_type_nextstepcd, "ufstype=nextstep-cd"},
  271. {Opt_type_nextstep, "ufstype=nextstep"},
  272. {Opt_type_openstep, "ufstype=openstep"},
  273. {Opt_onerror_panic, "onerror=panic"},
  274. {Opt_onerror_lock, "onerror=lock"},
  275. {Opt_onerror_umount, "onerror=umount"},
  276. {Opt_onerror_repair, "onerror=repair"},
  277. {Opt_err, NULL}
  278. };
  279. static int ufs_parse_options (char * options, unsigned * mount_options)
  280. {
  281. char * p;
  282. UFSD("ENTER\n");
  283. if (!options)
  284. return 1;
  285. while ((p = strsep(&options, ",")) != NULL) {
  286. substring_t args[MAX_OPT_ARGS];
  287. int token;
  288. if (!*p)
  289. continue;
  290. token = match_token(p, tokens, args);
  291. switch (token) {
  292. case Opt_type_old:
  293. ufs_clear_opt (*mount_options, UFSTYPE);
  294. ufs_set_opt (*mount_options, UFSTYPE_OLD);
  295. break;
  296. case Opt_type_sunx86:
  297. ufs_clear_opt (*mount_options, UFSTYPE);
  298. ufs_set_opt (*mount_options, UFSTYPE_SUNx86);
  299. break;
  300. case Opt_type_sun:
  301. ufs_clear_opt (*mount_options, UFSTYPE);
  302. ufs_set_opt (*mount_options, UFSTYPE_SUN);
  303. break;
  304. case Opt_type_44bsd:
  305. ufs_clear_opt (*mount_options, UFSTYPE);
  306. ufs_set_opt (*mount_options, UFSTYPE_44BSD);
  307. break;
  308. case Opt_type_ufs2:
  309. ufs_clear_opt(*mount_options, UFSTYPE);
  310. ufs_set_opt(*mount_options, UFSTYPE_UFS2);
  311. break;
  312. case Opt_type_hp:
  313. ufs_clear_opt (*mount_options, UFSTYPE);
  314. ufs_set_opt (*mount_options, UFSTYPE_HP);
  315. break;
  316. case Opt_type_nextstepcd:
  317. ufs_clear_opt (*mount_options, UFSTYPE);
  318. ufs_set_opt (*mount_options, UFSTYPE_NEXTSTEP_CD);
  319. break;
  320. case Opt_type_nextstep:
  321. ufs_clear_opt (*mount_options, UFSTYPE);
  322. ufs_set_opt (*mount_options, UFSTYPE_NEXTSTEP);
  323. break;
  324. case Opt_type_openstep:
  325. ufs_clear_opt (*mount_options, UFSTYPE);
  326. ufs_set_opt (*mount_options, UFSTYPE_OPENSTEP);
  327. break;
  328. case Opt_onerror_panic:
  329. ufs_clear_opt (*mount_options, ONERROR);
  330. ufs_set_opt (*mount_options, ONERROR_PANIC);
  331. break;
  332. case Opt_onerror_lock:
  333. ufs_clear_opt (*mount_options, ONERROR);
  334. ufs_set_opt (*mount_options, ONERROR_LOCK);
  335. break;
  336. case Opt_onerror_umount:
  337. ufs_clear_opt (*mount_options, ONERROR);
  338. ufs_set_opt (*mount_options, ONERROR_UMOUNT);
  339. break;
  340. case Opt_onerror_repair:
  341. printk("UFS-fs: Unable to do repair on error, "
  342. "will lock lock instead\n");
  343. ufs_clear_opt (*mount_options, ONERROR);
  344. ufs_set_opt (*mount_options, ONERROR_REPAIR);
  345. break;
  346. default:
  347. printk("UFS-fs: Invalid option: \"%s\" "
  348. "or missing value\n", p);
  349. return 0;
  350. }
  351. }
  352. return 1;
  353. }
  354. /*
  355. * Diffrent types of UFS hold fs_cstotal in different
  356. * places, and use diffrent data structure for it.
  357. * To make things simplier we just copy fs_cstotal to ufs_sb_private_info
  358. */
  359. static void ufs_setup_cstotal(struct super_block *sb)
  360. {
  361. struct ufs_sb_info *sbi = UFS_SB(sb);
  362. struct ufs_sb_private_info *uspi = sbi->s_uspi;
  363. struct ufs_super_block_first *usb1;
  364. struct ufs_super_block_second *usb2;
  365. struct ufs_super_block_third *usb3;
  366. unsigned mtype = sbi->s_mount_opt & UFS_MOUNT_UFSTYPE;
  367. UFSD("ENTER, mtype=%u\n", mtype);
  368. usb1 = ubh_get_usb_first(uspi);
  369. usb2 = ubh_get_usb_second(uspi);
  370. usb3 = ubh_get_usb_third(uspi);
  371. if ((mtype == UFS_MOUNT_UFSTYPE_44BSD &&
  372. (usb1->fs_flags & UFS_FLAGS_UPDATED)) ||
  373. mtype == UFS_MOUNT_UFSTYPE_UFS2) {
  374. /*we have statistic in different place, then usual*/
  375. uspi->cs_total.cs_ndir = fs64_to_cpu(sb, usb2->fs_un.fs_u2.cs_ndir);
  376. uspi->cs_total.cs_nbfree = fs64_to_cpu(sb, usb2->fs_un.fs_u2.cs_nbfree);
  377. uspi->cs_total.cs_nifree = fs64_to_cpu(sb, usb3->fs_un1.fs_u2.cs_nifree);
  378. uspi->cs_total.cs_nffree = fs64_to_cpu(sb, usb3->fs_un1.fs_u2.cs_nffree);
  379. } else {
  380. uspi->cs_total.cs_ndir = fs32_to_cpu(sb, usb1->fs_cstotal.cs_ndir);
  381. uspi->cs_total.cs_nbfree = fs32_to_cpu(sb, usb1->fs_cstotal.cs_nbfree);
  382. uspi->cs_total.cs_nifree = fs32_to_cpu(sb, usb1->fs_cstotal.cs_nifree);
  383. uspi->cs_total.cs_nffree = fs32_to_cpu(sb, usb1->fs_cstotal.cs_nffree);
  384. }
  385. UFSD("EXIT\n");
  386. }
  387. /*
  388. * Read on-disk structures associated with cylinder groups
  389. */
  390. static int ufs_read_cylinder_structures(struct super_block *sb)
  391. {
  392. struct ufs_sb_info *sbi = UFS_SB(sb);
  393. struct ufs_sb_private_info *uspi = sbi->s_uspi;
  394. unsigned flags = sbi->s_flags;
  395. struct ufs_buffer_head * ubh;
  396. unsigned char * base, * space;
  397. unsigned size, blks, i;
  398. struct ufs_super_block_third *usb3;
  399. UFSD("ENTER\n");
  400. usb3 = ubh_get_usb_third(uspi);
  401. /*
  402. * Read cs structures from (usually) first data block
  403. * on the device.
  404. */
  405. size = uspi->s_cssize;
  406. blks = (size + uspi->s_fsize - 1) >> uspi->s_fshift;
  407. base = space = kmalloc(size, GFP_KERNEL);
  408. if (!base)
  409. goto failed;
  410. sbi->s_csp = (struct ufs_csum *)space;
  411. for (i = 0; i < blks; i += uspi->s_fpb) {
  412. size = uspi->s_bsize;
  413. if (i + uspi->s_fpb > blks)
  414. size = (blks - i) * uspi->s_fsize;
  415. if ((flags & UFS_TYPE_MASK) == UFS_TYPE_UFS2)
  416. ubh = ubh_bread(sb,
  417. fs64_to_cpu(sb, usb3->fs_un1.fs_u2.fs_csaddr) + i, size);
  418. else
  419. ubh = ubh_bread(sb, uspi->s_csaddr + i, size);
  420. if (!ubh)
  421. goto failed;
  422. ubh_ubhcpymem (space, ubh, size);
  423. space += size;
  424. ubh_brelse (ubh);
  425. ubh = NULL;
  426. }
  427. /*
  428. * Read cylinder group (we read only first fragment from block
  429. * at this time) and prepare internal data structures for cg caching.
  430. */
  431. if (!(sbi->s_ucg = kmalloc (sizeof(struct buffer_head *) * uspi->s_ncg, GFP_KERNEL)))
  432. goto failed;
  433. for (i = 0; i < uspi->s_ncg; i++)
  434. sbi->s_ucg[i] = NULL;
  435. for (i = 0; i < UFS_MAX_GROUP_LOADED; i++) {
  436. sbi->s_ucpi[i] = NULL;
  437. sbi->s_cgno[i] = UFS_CGNO_EMPTY;
  438. }
  439. for (i = 0; i < uspi->s_ncg; i++) {
  440. UFSD("read cg %u\n", i);
  441. if (!(sbi->s_ucg[i] = sb_bread(sb, ufs_cgcmin(i))))
  442. goto failed;
  443. if (!ufs_cg_chkmagic (sb, (struct ufs_cylinder_group *) sbi->s_ucg[i]->b_data))
  444. goto failed;
  445. ufs_print_cylinder_stuff(sb, (struct ufs_cylinder_group *) sbi->s_ucg[i]->b_data);
  446. }
  447. for (i = 0; i < UFS_MAX_GROUP_LOADED; i++) {
  448. if (!(sbi->s_ucpi[i] = kmalloc (sizeof(struct ufs_cg_private_info), GFP_KERNEL)))
  449. goto failed;
  450. sbi->s_cgno[i] = UFS_CGNO_EMPTY;
  451. }
  452. sbi->s_cg_loaded = 0;
  453. UFSD("EXIT\n");
  454. return 1;
  455. failed:
  456. kfree (base);
  457. if (sbi->s_ucg) {
  458. for (i = 0; i < uspi->s_ncg; i++)
  459. if (sbi->s_ucg[i])
  460. brelse (sbi->s_ucg[i]);
  461. kfree (sbi->s_ucg);
  462. for (i = 0; i < UFS_MAX_GROUP_LOADED; i++)
  463. kfree (sbi->s_ucpi[i]);
  464. }
  465. UFSD("EXIT (FAILED)\n");
  466. return 0;
  467. }
  468. /*
  469. * Sync our internal copy of fs_cstotal with disk
  470. */
  471. static void ufs_put_cstotal(struct super_block *sb)
  472. {
  473. unsigned mtype = UFS_SB(sb)->s_mount_opt & UFS_MOUNT_UFSTYPE;
  474. struct ufs_sb_private_info *uspi = UFS_SB(sb)->s_uspi;
  475. struct ufs_super_block_first *usb1;
  476. struct ufs_super_block_second *usb2;
  477. struct ufs_super_block_third *usb3;
  478. UFSD("ENTER\n");
  479. usb1 = ubh_get_usb_first(uspi);
  480. usb2 = ubh_get_usb_second(uspi);
  481. usb3 = ubh_get_usb_third(uspi);
  482. if ((mtype == UFS_MOUNT_UFSTYPE_44BSD &&
  483. (usb1->fs_flags & UFS_FLAGS_UPDATED)) ||
  484. mtype == UFS_MOUNT_UFSTYPE_UFS2) {
  485. /*we have statistic in different place, then usual*/
  486. usb2->fs_un.fs_u2.cs_ndir =
  487. cpu_to_fs64(sb, uspi->cs_total.cs_ndir);
  488. usb2->fs_un.fs_u2.cs_nbfree =
  489. cpu_to_fs64(sb, uspi->cs_total.cs_nbfree);
  490. usb3->fs_un1.fs_u2.cs_nifree =
  491. cpu_to_fs64(sb, uspi->cs_total.cs_nifree);
  492. usb3->fs_un1.fs_u2.cs_nffree =
  493. cpu_to_fs64(sb, uspi->cs_total.cs_nffree);
  494. } else {
  495. usb1->fs_cstotal.cs_ndir =
  496. cpu_to_fs32(sb, uspi->cs_total.cs_ndir);
  497. usb1->fs_cstotal.cs_nbfree =
  498. cpu_to_fs32(sb, uspi->cs_total.cs_nbfree);
  499. usb1->fs_cstotal.cs_nifree =
  500. cpu_to_fs32(sb, uspi->cs_total.cs_nifree);
  501. usb1->fs_cstotal.cs_nffree =
  502. cpu_to_fs32(sb, uspi->cs_total.cs_nffree);
  503. }
  504. ubh_mark_buffer_dirty(USPI_UBH(uspi));
  505. UFSD("EXIT\n");
  506. }
  507. /**
  508. * ufs_put_super_internal() - put on-disk intrenal structures
  509. * @sb: pointer to super_block structure
  510. * Put on-disk structures associated with cylinder groups
  511. * and write them back to disk, also update cs_total on disk
  512. */
  513. static void ufs_put_super_internal(struct super_block *sb)
  514. {
  515. struct ufs_sb_info *sbi = UFS_SB(sb);
  516. struct ufs_sb_private_info *uspi = sbi->s_uspi;
  517. struct ufs_buffer_head * ubh;
  518. unsigned char * base, * space;
  519. unsigned blks, size, i;
  520. UFSD("ENTER\n");
  521. ufs_put_cstotal(sb);
  522. size = uspi->s_cssize;
  523. blks = (size + uspi->s_fsize - 1) >> uspi->s_fshift;
  524. base = space = (char*) sbi->s_csp;
  525. for (i = 0; i < blks; i += uspi->s_fpb) {
  526. size = uspi->s_bsize;
  527. if (i + uspi->s_fpb > blks)
  528. size = (blks - i) * uspi->s_fsize;
  529. ubh = ubh_bread(sb, uspi->s_csaddr + i, size);
  530. ubh_memcpyubh (ubh, space, size);
  531. space += size;
  532. ubh_mark_buffer_uptodate (ubh, 1);
  533. ubh_mark_buffer_dirty (ubh);
  534. ubh_brelse (ubh);
  535. }
  536. for (i = 0; i < sbi->s_cg_loaded; i++) {
  537. ufs_put_cylinder (sb, i);
  538. kfree (sbi->s_ucpi[i]);
  539. }
  540. for (; i < UFS_MAX_GROUP_LOADED; i++)
  541. kfree (sbi->s_ucpi[i]);
  542. for (i = 0; i < uspi->s_ncg; i++)
  543. brelse (sbi->s_ucg[i]);
  544. kfree (sbi->s_ucg);
  545. kfree (base);
  546. UFSD("EXIT\n");
  547. }
  548. static int ufs_fill_super(struct super_block *sb, void *data, int silent)
  549. {
  550. struct ufs_sb_info * sbi;
  551. struct ufs_sb_private_info * uspi;
  552. struct ufs_super_block_first * usb1;
  553. struct ufs_super_block_second * usb2;
  554. struct ufs_super_block_third * usb3;
  555. struct ufs_buffer_head * ubh;
  556. struct inode *inode;
  557. unsigned block_size, super_block_size;
  558. unsigned flags;
  559. unsigned super_block_offset;
  560. uspi = NULL;
  561. ubh = NULL;
  562. flags = 0;
  563. UFSD("ENTER\n");
  564. sbi = kmalloc(sizeof(struct ufs_sb_info), GFP_KERNEL);
  565. if (!sbi)
  566. goto failed_nomem;
  567. sb->s_fs_info = sbi;
  568. memset(sbi, 0, sizeof(struct ufs_sb_info));
  569. UFSD("flag %u\n", (int)(sb->s_flags & MS_RDONLY));
  570. #ifndef CONFIG_UFS_FS_WRITE
  571. if (!(sb->s_flags & MS_RDONLY)) {
  572. printk("ufs was compiled with read-only support, "
  573. "can't be mounted as read-write\n");
  574. goto failed;
  575. }
  576. #endif
  577. /*
  578. * Set default mount options
  579. * Parse mount options
  580. */
  581. sbi->s_mount_opt = 0;
  582. ufs_set_opt (sbi->s_mount_opt, ONERROR_LOCK);
  583. if (!ufs_parse_options ((char *) data, &sbi->s_mount_opt)) {
  584. printk("wrong mount options\n");
  585. goto failed;
  586. }
  587. if (!(sbi->s_mount_opt & UFS_MOUNT_UFSTYPE)) {
  588. if (!silent)
  589. printk("You didn't specify the type of your ufs filesystem\n\n"
  590. "mount -t ufs -o ufstype="
  591. "sun|sunx86|44bsd|ufs2|5xbsd|old|hp|nextstep|nextstep-cd|openstep ...\n\n"
  592. ">>>WARNING<<< Wrong ufstype may corrupt your filesystem, "
  593. "default is ufstype=old\n");
  594. ufs_set_opt (sbi->s_mount_opt, UFSTYPE_OLD);
  595. }
  596. sbi->s_uspi = uspi =
  597. kmalloc (sizeof(struct ufs_sb_private_info), GFP_KERNEL);
  598. if (!uspi)
  599. goto failed;
  600. super_block_offset=UFS_SBLOCK;
  601. /* Keep 2Gig file limit. Some UFS variants need to override
  602. this but as I don't know which I'll let those in the know loosen
  603. the rules */
  604. switch (sbi->s_mount_opt & UFS_MOUNT_UFSTYPE) {
  605. case UFS_MOUNT_UFSTYPE_44BSD:
  606. UFSD("ufstype=44bsd\n");
  607. uspi->s_fsize = block_size = 512;
  608. uspi->s_fmask = ~(512 - 1);
  609. uspi->s_fshift = 9;
  610. uspi->s_sbsize = super_block_size = 1536;
  611. uspi->s_sbbase = 0;
  612. flags |= UFS_DE_44BSD | UFS_UID_44BSD | UFS_ST_44BSD | UFS_CG_44BSD;
  613. break;
  614. case UFS_MOUNT_UFSTYPE_UFS2:
  615. UFSD("ufstype=ufs2\n");
  616. super_block_offset=SBLOCK_UFS2;
  617. uspi->s_fsize = block_size = 512;
  618. uspi->s_fmask = ~(512 - 1);
  619. uspi->s_fshift = 9;
  620. uspi->s_sbsize = super_block_size = 1536;
  621. uspi->s_sbbase = 0;
  622. flags |= UFS_TYPE_UFS2 | UFS_DE_44BSD | UFS_UID_44BSD | UFS_ST_44BSD | UFS_CG_44BSD;
  623. if (!(sb->s_flags & MS_RDONLY)) {
  624. printk(KERN_INFO "ufstype=ufs2 is supported read-only\n");
  625. sb->s_flags |= MS_RDONLY;
  626. }
  627. break;
  628. case UFS_MOUNT_UFSTYPE_SUN:
  629. UFSD("ufstype=sun\n");
  630. uspi->s_fsize = block_size = 1024;
  631. uspi->s_fmask = ~(1024 - 1);
  632. uspi->s_fshift = 10;
  633. uspi->s_sbsize = super_block_size = 2048;
  634. uspi->s_sbbase = 0;
  635. uspi->s_maxsymlinklen = 56;
  636. flags |= UFS_DE_OLD | UFS_UID_EFT | UFS_ST_SUN | UFS_CG_SUN;
  637. break;
  638. case UFS_MOUNT_UFSTYPE_SUNx86:
  639. UFSD("ufstype=sunx86\n");
  640. uspi->s_fsize = block_size = 1024;
  641. uspi->s_fmask = ~(1024 - 1);
  642. uspi->s_fshift = 10;
  643. uspi->s_sbsize = super_block_size = 2048;
  644. uspi->s_sbbase = 0;
  645. uspi->s_maxsymlinklen = 56;
  646. flags |= UFS_DE_OLD | UFS_UID_EFT | UFS_ST_SUNx86 | UFS_CG_SUN;
  647. break;
  648. case UFS_MOUNT_UFSTYPE_OLD:
  649. UFSD("ufstype=old\n");
  650. uspi->s_fsize = block_size = 1024;
  651. uspi->s_fmask = ~(1024 - 1);
  652. uspi->s_fshift = 10;
  653. uspi->s_sbsize = super_block_size = 2048;
  654. uspi->s_sbbase = 0;
  655. flags |= UFS_DE_OLD | UFS_UID_OLD | UFS_ST_OLD | UFS_CG_OLD;
  656. if (!(sb->s_flags & MS_RDONLY)) {
  657. if (!silent)
  658. printk(KERN_INFO "ufstype=old is supported read-only\n");
  659. sb->s_flags |= MS_RDONLY;
  660. }
  661. break;
  662. case UFS_MOUNT_UFSTYPE_NEXTSTEP:
  663. UFSD("ufstype=nextstep\n");
  664. uspi->s_fsize = block_size = 1024;
  665. uspi->s_fmask = ~(1024 - 1);
  666. uspi->s_fshift = 10;
  667. uspi->s_sbsize = super_block_size = 2048;
  668. uspi->s_sbbase = 0;
  669. flags |= UFS_DE_OLD | UFS_UID_OLD | UFS_ST_OLD | UFS_CG_OLD;
  670. if (!(sb->s_flags & MS_RDONLY)) {
  671. if (!silent)
  672. printk(KERN_INFO "ufstype=nextstep is supported read-only\n");
  673. sb->s_flags |= MS_RDONLY;
  674. }
  675. break;
  676. case UFS_MOUNT_UFSTYPE_NEXTSTEP_CD:
  677. UFSD("ufstype=nextstep-cd\n");
  678. uspi->s_fsize = block_size = 2048;
  679. uspi->s_fmask = ~(2048 - 1);
  680. uspi->s_fshift = 11;
  681. uspi->s_sbsize = super_block_size = 2048;
  682. uspi->s_sbbase = 0;
  683. flags |= UFS_DE_OLD | UFS_UID_OLD | UFS_ST_OLD | UFS_CG_OLD;
  684. if (!(sb->s_flags & MS_RDONLY)) {
  685. if (!silent)
  686. printk(KERN_INFO "ufstype=nextstep-cd is supported read-only\n");
  687. sb->s_flags |= MS_RDONLY;
  688. }
  689. break;
  690. case UFS_MOUNT_UFSTYPE_OPENSTEP:
  691. UFSD("ufstype=openstep\n");
  692. uspi->s_fsize = block_size = 1024;
  693. uspi->s_fmask = ~(1024 - 1);
  694. uspi->s_fshift = 10;
  695. uspi->s_sbsize = super_block_size = 2048;
  696. uspi->s_sbbase = 0;
  697. flags |= UFS_DE_44BSD | UFS_UID_44BSD | UFS_ST_44BSD | UFS_CG_44BSD;
  698. if (!(sb->s_flags & MS_RDONLY)) {
  699. if (!silent)
  700. printk(KERN_INFO "ufstype=openstep is supported read-only\n");
  701. sb->s_flags |= MS_RDONLY;
  702. }
  703. break;
  704. case UFS_MOUNT_UFSTYPE_HP:
  705. UFSD("ufstype=hp\n");
  706. uspi->s_fsize = block_size = 1024;
  707. uspi->s_fmask = ~(1024 - 1);
  708. uspi->s_fshift = 10;
  709. uspi->s_sbsize = super_block_size = 2048;
  710. uspi->s_sbbase = 0;
  711. flags |= UFS_DE_OLD | UFS_UID_OLD | UFS_ST_OLD | UFS_CG_OLD;
  712. if (!(sb->s_flags & MS_RDONLY)) {
  713. if (!silent)
  714. printk(KERN_INFO "ufstype=hp is supported read-only\n");
  715. sb->s_flags |= MS_RDONLY;
  716. }
  717. break;
  718. default:
  719. if (!silent)
  720. printk("unknown ufstype\n");
  721. goto failed;
  722. }
  723. again:
  724. if (!sb_set_blocksize(sb, block_size)) {
  725. printk(KERN_ERR "UFS: failed to set blocksize\n");
  726. goto failed;
  727. }
  728. /*
  729. * read ufs super block from device
  730. */
  731. ubh = ubh_bread_uspi(uspi, sb, uspi->s_sbbase + super_block_offset/block_size, super_block_size);
  732. if (!ubh)
  733. goto failed;
  734. usb1 = ubh_get_usb_first(uspi);
  735. usb2 = ubh_get_usb_second(uspi);
  736. usb3 = ubh_get_usb_third(uspi);
  737. /*
  738. * Check ufs magic number
  739. */
  740. sbi->s_bytesex = BYTESEX_LE;
  741. switch ((uspi->fs_magic = fs32_to_cpu(sb, usb3->fs_magic))) {
  742. case UFS_MAGIC:
  743. case UFS2_MAGIC:
  744. case UFS_MAGIC_LFN:
  745. case UFS_MAGIC_FEA:
  746. case UFS_MAGIC_4GB:
  747. goto magic_found;
  748. }
  749. sbi->s_bytesex = BYTESEX_BE;
  750. switch ((uspi->fs_magic = fs32_to_cpu(sb, usb3->fs_magic))) {
  751. case UFS_MAGIC:
  752. case UFS2_MAGIC:
  753. case UFS_MAGIC_LFN:
  754. case UFS_MAGIC_FEA:
  755. case UFS_MAGIC_4GB:
  756. goto magic_found;
  757. }
  758. if ((((sbi->s_mount_opt & UFS_MOUNT_UFSTYPE) == UFS_MOUNT_UFSTYPE_NEXTSTEP)
  759. || ((sbi->s_mount_opt & UFS_MOUNT_UFSTYPE) == UFS_MOUNT_UFSTYPE_NEXTSTEP_CD)
  760. || ((sbi->s_mount_opt & UFS_MOUNT_UFSTYPE) == UFS_MOUNT_UFSTYPE_OPENSTEP))
  761. && uspi->s_sbbase < 256) {
  762. ubh_brelse_uspi(uspi);
  763. ubh = NULL;
  764. uspi->s_sbbase += 8;
  765. goto again;
  766. }
  767. if (!silent)
  768. printk("ufs_read_super: bad magic number\n");
  769. goto failed;
  770. magic_found:
  771. /*
  772. * Check block and fragment sizes
  773. */
  774. uspi->s_bsize = fs32_to_cpu(sb, usb1->fs_bsize);
  775. uspi->s_fsize = fs32_to_cpu(sb, usb1->fs_fsize);
  776. uspi->s_sbsize = fs32_to_cpu(sb, usb1->fs_sbsize);
  777. uspi->s_fmask = fs32_to_cpu(sb, usb1->fs_fmask);
  778. uspi->s_fshift = fs32_to_cpu(sb, usb1->fs_fshift);
  779. if (uspi->s_fsize & (uspi->s_fsize - 1)) {
  780. printk(KERN_ERR "ufs_read_super: fragment size %u is not a power of 2\n",
  781. uspi->s_fsize);
  782. goto failed;
  783. }
  784. if (uspi->s_fsize < 512) {
  785. printk(KERN_ERR "ufs_read_super: fragment size %u is too small\n",
  786. uspi->s_fsize);
  787. goto failed;
  788. }
  789. if (uspi->s_fsize > 4096) {
  790. printk(KERN_ERR "ufs_read_super: fragment size %u is too large\n",
  791. uspi->s_fsize);
  792. goto failed;
  793. }
  794. if (uspi->s_bsize & (uspi->s_bsize - 1)) {
  795. printk(KERN_ERR "ufs_read_super: block size %u is not a power of 2\n",
  796. uspi->s_bsize);
  797. goto failed;
  798. }
  799. if (uspi->s_bsize < 4096) {
  800. printk(KERN_ERR "ufs_read_super: block size %u is too small\n",
  801. uspi->s_bsize);
  802. goto failed;
  803. }
  804. if (uspi->s_bsize / uspi->s_fsize > 8) {
  805. printk(KERN_ERR "ufs_read_super: too many fragments per block (%u)\n",
  806. uspi->s_bsize / uspi->s_fsize);
  807. goto failed;
  808. }
  809. if (uspi->s_fsize != block_size || uspi->s_sbsize != super_block_size) {
  810. ubh_brelse_uspi(uspi);
  811. ubh = NULL;
  812. block_size = uspi->s_fsize;
  813. super_block_size = uspi->s_sbsize;
  814. UFSD("another value of block_size or super_block_size %u, %u\n", block_size, super_block_size);
  815. goto again;
  816. }
  817. ufs_print_super_stuff(sb, flags, usb1, usb2, usb3);
  818. /*
  819. * Check, if file system was correctly unmounted.
  820. * If not, make it read only.
  821. */
  822. if (((flags & UFS_ST_MASK) == UFS_ST_44BSD) ||
  823. ((flags & UFS_ST_MASK) == UFS_ST_OLD) ||
  824. (((flags & UFS_ST_MASK) == UFS_ST_SUN ||
  825. (flags & UFS_ST_MASK) == UFS_ST_SUNx86) &&
  826. (ufs_get_fs_state(sb, usb1, usb3) == (UFS_FSOK - fs32_to_cpu(sb, usb1->fs_time))))) {
  827. switch(usb1->fs_clean) {
  828. case UFS_FSCLEAN:
  829. UFSD("fs is clean\n");
  830. break;
  831. case UFS_FSSTABLE:
  832. UFSD("fs is stable\n");
  833. break;
  834. case UFS_FSOSF1:
  835. UFSD("fs is DEC OSF/1\n");
  836. break;
  837. case UFS_FSACTIVE:
  838. printk("ufs_read_super: fs is active\n");
  839. sb->s_flags |= MS_RDONLY;
  840. break;
  841. case UFS_FSBAD:
  842. printk("ufs_read_super: fs is bad\n");
  843. sb->s_flags |= MS_RDONLY;
  844. break;
  845. default:
  846. printk("ufs_read_super: can't grok fs_clean 0x%x\n", usb1->fs_clean);
  847. sb->s_flags |= MS_RDONLY;
  848. break;
  849. }
  850. } else {
  851. printk("ufs_read_super: fs needs fsck\n");
  852. sb->s_flags |= MS_RDONLY;
  853. }
  854. /*
  855. * Read ufs_super_block into internal data structures
  856. */
  857. sb->s_op = &ufs_super_ops;
  858. sb->dq_op = NULL; /***/
  859. sb->s_magic = fs32_to_cpu(sb, usb3->fs_magic);
  860. uspi->s_sblkno = fs32_to_cpu(sb, usb1->fs_sblkno);
  861. uspi->s_cblkno = fs32_to_cpu(sb, usb1->fs_cblkno);
  862. uspi->s_iblkno = fs32_to_cpu(sb, usb1->fs_iblkno);
  863. uspi->s_dblkno = fs32_to_cpu(sb, usb1->fs_dblkno);
  864. uspi->s_cgoffset = fs32_to_cpu(sb, usb1->fs_cgoffset);
  865. uspi->s_cgmask = fs32_to_cpu(sb, usb1->fs_cgmask);
  866. if ((flags & UFS_TYPE_MASK) == UFS_TYPE_UFS2) {
  867. uspi->s_u2_size = fs64_to_cpu(sb, usb3->fs_un1.fs_u2.fs_size);
  868. uspi->s_u2_dsize = fs64_to_cpu(sb, usb3->fs_un1.fs_u2.fs_dsize);
  869. } else {
  870. uspi->s_size = fs32_to_cpu(sb, usb1->fs_size);
  871. uspi->s_dsize = fs32_to_cpu(sb, usb1->fs_dsize);
  872. }
  873. uspi->s_ncg = fs32_to_cpu(sb, usb1->fs_ncg);
  874. /* s_bsize already set */
  875. /* s_fsize already set */
  876. uspi->s_fpb = fs32_to_cpu(sb, usb1->fs_frag);
  877. uspi->s_minfree = fs32_to_cpu(sb, usb1->fs_minfree);
  878. uspi->s_bmask = fs32_to_cpu(sb, usb1->fs_bmask);
  879. uspi->s_fmask = fs32_to_cpu(sb, usb1->fs_fmask);
  880. uspi->s_bshift = fs32_to_cpu(sb, usb1->fs_bshift);
  881. uspi->s_fshift = fs32_to_cpu(sb, usb1->fs_fshift);
  882. UFSD("uspi->s_bshift = %d,uspi->s_fshift = %d", uspi->s_bshift,
  883. uspi->s_fshift);
  884. uspi->s_fpbshift = fs32_to_cpu(sb, usb1->fs_fragshift);
  885. uspi->s_fsbtodb = fs32_to_cpu(sb, usb1->fs_fsbtodb);
  886. /* s_sbsize already set */
  887. uspi->s_csmask = fs32_to_cpu(sb, usb1->fs_csmask);
  888. uspi->s_csshift = fs32_to_cpu(sb, usb1->fs_csshift);
  889. uspi->s_nindir = fs32_to_cpu(sb, usb1->fs_nindir);
  890. uspi->s_inopb = fs32_to_cpu(sb, usb1->fs_inopb);
  891. uspi->s_nspf = fs32_to_cpu(sb, usb1->fs_nspf);
  892. uspi->s_npsect = ufs_get_fs_npsect(sb, usb1, usb3);
  893. uspi->s_interleave = fs32_to_cpu(sb, usb1->fs_interleave);
  894. uspi->s_trackskew = fs32_to_cpu(sb, usb1->fs_trackskew);
  895. uspi->s_csaddr = fs32_to_cpu(sb, usb1->fs_csaddr);
  896. uspi->s_cssize = fs32_to_cpu(sb, usb1->fs_cssize);
  897. uspi->s_cgsize = fs32_to_cpu(sb, usb1->fs_cgsize);
  898. uspi->s_ntrak = fs32_to_cpu(sb, usb1->fs_ntrak);
  899. uspi->s_nsect = fs32_to_cpu(sb, usb1->fs_nsect);
  900. uspi->s_spc = fs32_to_cpu(sb, usb1->fs_spc);
  901. uspi->s_ipg = fs32_to_cpu(sb, usb1->fs_ipg);
  902. uspi->s_fpg = fs32_to_cpu(sb, usb1->fs_fpg);
  903. uspi->s_cpc = fs32_to_cpu(sb, usb2->fs_un.fs_u1.fs_cpc);
  904. uspi->s_contigsumsize = fs32_to_cpu(sb, usb3->fs_un2.fs_44.fs_contigsumsize);
  905. uspi->s_qbmask = ufs_get_fs_qbmask(sb, usb3);
  906. uspi->s_qfmask = ufs_get_fs_qfmask(sb, usb3);
  907. uspi->s_postblformat = fs32_to_cpu(sb, usb3->fs_postblformat);
  908. uspi->s_nrpos = fs32_to_cpu(sb, usb3->fs_nrpos);
  909. uspi->s_postbloff = fs32_to_cpu(sb, usb3->fs_postbloff);
  910. uspi->s_rotbloff = fs32_to_cpu(sb, usb3->fs_rotbloff);
  911. /*
  912. * Compute another frequently used values
  913. */
  914. uspi->s_fpbmask = uspi->s_fpb - 1;
  915. if ((flags & UFS_TYPE_MASK) == UFS_TYPE_UFS2)
  916. uspi->s_apbshift = uspi->s_bshift - 3;
  917. else
  918. uspi->s_apbshift = uspi->s_bshift - 2;
  919. uspi->s_2apbshift = uspi->s_apbshift * 2;
  920. uspi->s_3apbshift = uspi->s_apbshift * 3;
  921. uspi->s_apb = 1 << uspi->s_apbshift;
  922. uspi->s_2apb = 1 << uspi->s_2apbshift;
  923. uspi->s_3apb = 1 << uspi->s_3apbshift;
  924. uspi->s_apbmask = uspi->s_apb - 1;
  925. uspi->s_nspfshift = uspi->s_fshift - UFS_SECTOR_BITS;
  926. uspi->s_nspb = uspi->s_nspf << uspi->s_fpbshift;
  927. uspi->s_inopf = uspi->s_inopb >> uspi->s_fpbshift;
  928. uspi->s_bpf = uspi->s_fsize << 3;
  929. uspi->s_bpfshift = uspi->s_fshift + 3;
  930. uspi->s_bpfmask = uspi->s_bpf - 1;
  931. if ((sbi->s_mount_opt & UFS_MOUNT_UFSTYPE) ==
  932. UFS_MOUNT_UFSTYPE_44BSD)
  933. uspi->s_maxsymlinklen =
  934. fs32_to_cpu(sb, usb3->fs_un2.fs_44.fs_maxsymlinklen);
  935. sbi->s_flags = flags;
  936. inode = iget(sb, UFS_ROOTINO);
  937. if (!inode || is_bad_inode(inode))
  938. goto failed;
  939. sb->s_root = d_alloc_root(inode);
  940. if (!sb->s_root)
  941. goto dalloc_failed;
  942. ufs_setup_cstotal(sb);
  943. /*
  944. * Read cylinder group structures
  945. */
  946. if (!(sb->s_flags & MS_RDONLY))
  947. if (!ufs_read_cylinder_structures(sb))
  948. goto failed;
  949. UFSD("EXIT\n");
  950. return 0;
  951. dalloc_failed:
  952. iput(inode);
  953. failed:
  954. if (ubh)
  955. ubh_brelse_uspi (uspi);
  956. kfree (uspi);
  957. kfree(sbi);
  958. sb->s_fs_info = NULL;
  959. UFSD("EXIT (FAILED)\n");
  960. return -EINVAL;
  961. failed_nomem:
  962. UFSD("EXIT (NOMEM)\n");
  963. return -ENOMEM;
  964. }
  965. static void ufs_write_super(struct super_block *sb)
  966. {
  967. struct ufs_sb_private_info * uspi;
  968. struct ufs_super_block_first * usb1;
  969. struct ufs_super_block_third * usb3;
  970. unsigned flags;
  971. lock_kernel();
  972. UFSD("ENTER\n");
  973. flags = UFS_SB(sb)->s_flags;
  974. uspi = UFS_SB(sb)->s_uspi;
  975. usb1 = ubh_get_usb_first(uspi);
  976. usb3 = ubh_get_usb_third(uspi);
  977. if (!(sb->s_flags & MS_RDONLY)) {
  978. usb1->fs_time = cpu_to_fs32(sb, get_seconds());
  979. if ((flags & UFS_ST_MASK) == UFS_ST_SUN
  980. || (flags & UFS_ST_MASK) == UFS_ST_SUNx86)
  981. ufs_set_fs_state(sb, usb1, usb3,
  982. UFS_FSOK - fs32_to_cpu(sb, usb1->fs_time));
  983. ufs_put_cstotal(sb);
  984. }
  985. sb->s_dirt = 0;
  986. UFSD("EXIT\n");
  987. unlock_kernel();
  988. }
  989. static void ufs_put_super(struct super_block *sb)
  990. {
  991. struct ufs_sb_info * sbi = UFS_SB(sb);
  992. UFSD("ENTER\n");
  993. if (!(sb->s_flags & MS_RDONLY))
  994. ufs_put_super_internal(sb);
  995. ubh_brelse_uspi (sbi->s_uspi);
  996. kfree (sbi->s_uspi);
  997. kfree (sbi);
  998. sb->s_fs_info = NULL;
  999. UFSD("EXIT\n");
  1000. return;
  1001. }
  1002. static int ufs_remount (struct super_block *sb, int *mount_flags, char *data)
  1003. {
  1004. struct ufs_sb_private_info * uspi;
  1005. struct ufs_super_block_first * usb1;
  1006. struct ufs_super_block_third * usb3;
  1007. unsigned new_mount_opt, ufstype;
  1008. unsigned flags;
  1009. uspi = UFS_SB(sb)->s_uspi;
  1010. flags = UFS_SB(sb)->s_flags;
  1011. usb1 = ubh_get_usb_first(uspi);
  1012. usb3 = ubh_get_usb_third(uspi);
  1013. /*
  1014. * Allow the "check" option to be passed as a remount option.
  1015. * It is not possible to change ufstype option during remount
  1016. */
  1017. ufstype = UFS_SB(sb)->s_mount_opt & UFS_MOUNT_UFSTYPE;
  1018. new_mount_opt = 0;
  1019. ufs_set_opt (new_mount_opt, ONERROR_LOCK);
  1020. if (!ufs_parse_options (data, &new_mount_opt))
  1021. return -EINVAL;
  1022. if (!(new_mount_opt & UFS_MOUNT_UFSTYPE)) {
  1023. new_mount_opt |= ufstype;
  1024. } else if ((new_mount_opt & UFS_MOUNT_UFSTYPE) != ufstype) {
  1025. printk("ufstype can't be changed during remount\n");
  1026. return -EINVAL;
  1027. }
  1028. if ((*mount_flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY)) {
  1029. UFS_SB(sb)->s_mount_opt = new_mount_opt;
  1030. return 0;
  1031. }
  1032. /*
  1033. * fs was mouted as rw, remounting ro
  1034. */
  1035. if (*mount_flags & MS_RDONLY) {
  1036. ufs_put_super_internal(sb);
  1037. usb1->fs_time = cpu_to_fs32(sb, get_seconds());
  1038. if ((flags & UFS_ST_MASK) == UFS_ST_SUN
  1039. || (flags & UFS_ST_MASK) == UFS_ST_SUNx86)
  1040. ufs_set_fs_state(sb, usb1, usb3,
  1041. UFS_FSOK - fs32_to_cpu(sb, usb1->fs_time));
  1042. ubh_mark_buffer_dirty (USPI_UBH(uspi));
  1043. sb->s_dirt = 0;
  1044. sb->s_flags |= MS_RDONLY;
  1045. } else {
  1046. /*
  1047. * fs was mounted as ro, remounting rw
  1048. */
  1049. #ifndef CONFIG_UFS_FS_WRITE
  1050. printk("ufs was compiled with read-only support, "
  1051. "can't be mounted as read-write\n");
  1052. return -EINVAL;
  1053. #else
  1054. if (ufstype != UFS_MOUNT_UFSTYPE_SUN &&
  1055. ufstype != UFS_MOUNT_UFSTYPE_44BSD &&
  1056. ufstype != UFS_MOUNT_UFSTYPE_SUNx86) {
  1057. printk("this ufstype is read-only supported\n");
  1058. return -EINVAL;
  1059. }
  1060. if (!ufs_read_cylinder_structures(sb)) {
  1061. printk("failed during remounting\n");
  1062. return -EPERM;
  1063. }
  1064. sb->s_flags &= ~MS_RDONLY;
  1065. #endif
  1066. }
  1067. UFS_SB(sb)->s_mount_opt = new_mount_opt;
  1068. return 0;
  1069. }
  1070. static int ufs_statfs(struct dentry *dentry, struct kstatfs *buf)
  1071. {
  1072. struct super_block *sb = dentry->d_sb;
  1073. struct ufs_sb_private_info *uspi= UFS_SB(sb)->s_uspi;
  1074. unsigned flags = UFS_SB(sb)->s_flags;
  1075. struct ufs_super_block_first *usb1;
  1076. struct ufs_super_block_second *usb2;
  1077. struct ufs_super_block_third *usb3;
  1078. lock_kernel();
  1079. usb1 = ubh_get_usb_first(uspi);
  1080. usb2 = ubh_get_usb_second(uspi);
  1081. usb3 = ubh_get_usb_third(uspi);
  1082. if ((flags & UFS_TYPE_MASK) == UFS_TYPE_UFS2) {
  1083. buf->f_type = UFS2_MAGIC;
  1084. buf->f_blocks = fs64_to_cpu(sb, usb3->fs_un1.fs_u2.fs_dsize);
  1085. } else {
  1086. buf->f_type = UFS_MAGIC;
  1087. buf->f_blocks = uspi->s_dsize;
  1088. }
  1089. buf->f_bfree = ufs_blkstofrags(uspi->cs_total.cs_nbfree) +
  1090. uspi->cs_total.cs_nffree;
  1091. buf->f_ffree = uspi->cs_total.cs_nifree;
  1092. buf->f_bsize = sb->s_blocksize;
  1093. buf->f_bavail = (buf->f_bfree > (((long)buf->f_blocks / 100) * uspi->s_minfree))
  1094. ? (buf->f_bfree - (((long)buf->f_blocks / 100) * uspi->s_minfree)) : 0;
  1095. buf->f_files = uspi->s_ncg * uspi->s_ipg;
  1096. buf->f_namelen = UFS_MAXNAMLEN;
  1097. unlock_kernel();
  1098. return 0;
  1099. }
  1100. static kmem_cache_t * ufs_inode_cachep;
  1101. static struct inode *ufs_alloc_inode(struct super_block *sb)
  1102. {
  1103. struct ufs_inode_info *ei;
  1104. ei = (struct ufs_inode_info *)kmem_cache_alloc(ufs_inode_cachep, SLAB_KERNEL);
  1105. if (!ei)
  1106. return NULL;
  1107. ei->vfs_inode.i_version = 1;
  1108. return &ei->vfs_inode;
  1109. }
  1110. static void ufs_destroy_inode(struct inode *inode)
  1111. {
  1112. kmem_cache_free(ufs_inode_cachep, UFS_I(inode));
  1113. }
  1114. static void init_once(void * foo, kmem_cache_t * cachep, unsigned long flags)
  1115. {
  1116. struct ufs_inode_info *ei = (struct ufs_inode_info *) foo;
  1117. if ((flags & (SLAB_CTOR_VERIFY|SLAB_CTOR_CONSTRUCTOR)) ==
  1118. SLAB_CTOR_CONSTRUCTOR)
  1119. inode_init_once(&ei->vfs_inode);
  1120. }
  1121. static int init_inodecache(void)
  1122. {
  1123. ufs_inode_cachep = kmem_cache_create("ufs_inode_cache",
  1124. sizeof(struct ufs_inode_info),
  1125. 0, (SLAB_RECLAIM_ACCOUNT|
  1126. SLAB_MEM_SPREAD),
  1127. init_once, NULL);
  1128. if (ufs_inode_cachep == NULL)
  1129. return -ENOMEM;
  1130. return 0;
  1131. }
  1132. static void destroy_inodecache(void)
  1133. {
  1134. if (kmem_cache_destroy(ufs_inode_cachep))
  1135. printk(KERN_INFO "ufs_inode_cache: not all structures were freed\n");
  1136. }
  1137. #ifdef CONFIG_QUOTA
  1138. static ssize_t ufs_quota_read(struct super_block *, int, char *,size_t, loff_t);
  1139. static ssize_t ufs_quota_write(struct super_block *, int, const char *, size_t, loff_t);
  1140. #endif
  1141. static struct super_operations ufs_super_ops = {
  1142. .alloc_inode = ufs_alloc_inode,
  1143. .destroy_inode = ufs_destroy_inode,
  1144. .read_inode = ufs_read_inode,
  1145. .write_inode = ufs_write_inode,
  1146. .delete_inode = ufs_delete_inode,
  1147. .put_super = ufs_put_super,
  1148. .write_super = ufs_write_super,
  1149. .statfs = ufs_statfs,
  1150. .remount_fs = ufs_remount,
  1151. #ifdef CONFIG_QUOTA
  1152. .quota_read = ufs_quota_read,
  1153. .quota_write = ufs_quota_write,
  1154. #endif
  1155. };
  1156. #ifdef CONFIG_QUOTA
  1157. /* Read data from quotafile - avoid pagecache and such because we cannot afford
  1158. * acquiring the locks... As quota files are never truncated and quota code
  1159. * itself serializes the operations (and noone else should touch the files)
  1160. * we don't have to be afraid of races */
  1161. static ssize_t ufs_quota_read(struct super_block *sb, int type, char *data,
  1162. size_t len, loff_t off)
  1163. {
  1164. struct inode *inode = sb_dqopt(sb)->files[type];
  1165. sector_t blk = off >> sb->s_blocksize_bits;
  1166. int err = 0;
  1167. int offset = off & (sb->s_blocksize - 1);
  1168. int tocopy;
  1169. size_t toread;
  1170. struct buffer_head *bh;
  1171. loff_t i_size = i_size_read(inode);
  1172. if (off > i_size)
  1173. return 0;
  1174. if (off+len > i_size)
  1175. len = i_size-off;
  1176. toread = len;
  1177. while (toread > 0) {
  1178. tocopy = sb->s_blocksize - offset < toread ?
  1179. sb->s_blocksize - offset : toread;
  1180. bh = ufs_bread(inode, blk, 0, &err);
  1181. if (err)
  1182. return err;
  1183. if (!bh) /* A hole? */
  1184. memset(data, 0, tocopy);
  1185. else {
  1186. memcpy(data, bh->b_data+offset, tocopy);
  1187. brelse(bh);
  1188. }
  1189. offset = 0;
  1190. toread -= tocopy;
  1191. data += tocopy;
  1192. blk++;
  1193. }
  1194. return len;
  1195. }
  1196. /* Write to quotafile */
  1197. static ssize_t ufs_quota_write(struct super_block *sb, int type,
  1198. const char *data, size_t len, loff_t off)
  1199. {
  1200. struct inode *inode = sb_dqopt(sb)->files[type];
  1201. sector_t blk = off >> sb->s_blocksize_bits;
  1202. int err = 0;
  1203. int offset = off & (sb->s_blocksize - 1);
  1204. int tocopy;
  1205. size_t towrite = len;
  1206. struct buffer_head *bh;
  1207. mutex_lock(&inode->i_mutex);
  1208. while (towrite > 0) {
  1209. tocopy = sb->s_blocksize - offset < towrite ?
  1210. sb->s_blocksize - offset : towrite;
  1211. bh = ufs_bread(inode, blk, 1, &err);
  1212. if (!bh)
  1213. goto out;
  1214. lock_buffer(bh);
  1215. memcpy(bh->b_data+offset, data, tocopy);
  1216. flush_dcache_page(bh->b_page);
  1217. set_buffer_uptodate(bh);
  1218. mark_buffer_dirty(bh);
  1219. unlock_buffer(bh);
  1220. brelse(bh);
  1221. offset = 0;
  1222. towrite -= tocopy;
  1223. data += tocopy;
  1224. blk++;
  1225. }
  1226. out:
  1227. if (len == towrite) {
  1228. mutex_unlock(&inode->i_mutex);
  1229. return err;
  1230. }
  1231. if (inode->i_size < off+len-towrite)
  1232. i_size_write(inode, off+len-towrite);
  1233. inode->i_version++;
  1234. inode->i_mtime = inode->i_ctime = CURRENT_TIME_SEC;
  1235. mark_inode_dirty(inode);
  1236. mutex_unlock(&inode->i_mutex);
  1237. return len - towrite;
  1238. }
  1239. #endif
  1240. static int ufs_get_sb(struct file_system_type *fs_type,
  1241. int flags, const char *dev_name, void *data, struct vfsmount *mnt)
  1242. {
  1243. return get_sb_bdev(fs_type, flags, dev_name, data, ufs_fill_super, mnt);
  1244. }
  1245. static struct file_system_type ufs_fs_type = {
  1246. .owner = THIS_MODULE,
  1247. .name = "ufs",
  1248. .get_sb = ufs_get_sb,
  1249. .kill_sb = kill_block_super,
  1250. .fs_flags = FS_REQUIRES_DEV,
  1251. };
  1252. static int __init init_ufs_fs(void)
  1253. {
  1254. int err = init_inodecache();
  1255. if (err)
  1256. goto out1;
  1257. err = register_filesystem(&ufs_fs_type);
  1258. if (err)
  1259. goto out;
  1260. return 0;
  1261. out:
  1262. destroy_inodecache();
  1263. out1:
  1264. return err;
  1265. }
  1266. static void __exit exit_ufs_fs(void)
  1267. {
  1268. unregister_filesystem(&ufs_fs_type);
  1269. destroy_inodecache();
  1270. }
  1271. module_init(init_ufs_fs)
  1272. module_exit(exit_ufs_fs)
  1273. MODULE_LICENSE("GPL");