page_tables.c 24 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669
  1. /*P:700 The pagetable code, on the other hand, still shows the scars of
  2. * previous encounters. It's functional, and as neat as it can be in the
  3. * circumstances, but be wary, for these things are subtle and break easily.
  4. * The Guest provides a virtual to physical mapping, but we can neither trust
  5. * it nor use it: we verify and convert it here to point the hardware to the
  6. * actual Guest pages when running the Guest. :*/
  7. /* Copyright (C) Rusty Russell IBM Corporation 2006.
  8. * GPL v2 and any later version */
  9. #include <linux/mm.h>
  10. #include <linux/types.h>
  11. #include <linux/spinlock.h>
  12. #include <linux/random.h>
  13. #include <linux/percpu.h>
  14. #include <asm/tlbflush.h>
  15. #include "lg.h"
  16. /*M:008 We hold reference to pages, which prevents them from being swapped.
  17. * It'd be nice to have a callback in the "struct mm_struct" when Linux wants
  18. * to swap out. If we had this, and a shrinker callback to trim PTE pages, we
  19. * could probably consider launching Guests as non-root. :*/
  20. /*H:300
  21. * The Page Table Code
  22. *
  23. * We use two-level page tables for the Guest. If you're not entirely
  24. * comfortable with virtual addresses, physical addresses and page tables then
  25. * I recommend you review lguest.c's "Page Table Handling" (with diagrams!).
  26. *
  27. * The Guest keeps page tables, but we maintain the actual ones here: these are
  28. * called "shadow" page tables. Which is a very Guest-centric name: these are
  29. * the real page tables the CPU uses, although we keep them up to date to
  30. * reflect the Guest's. (See what I mean about weird naming? Since when do
  31. * shadows reflect anything?)
  32. *
  33. * Anyway, this is the most complicated part of the Host code. There are seven
  34. * parts to this:
  35. * (i) Setting up a page table entry for the Guest when it faults,
  36. * (ii) Setting up the page table entry for the Guest stack,
  37. * (iii) Setting up a page table entry when the Guest tells us it has changed,
  38. * (iv) Switching page tables,
  39. * (v) Flushing (thowing away) page tables,
  40. * (vi) Mapping the Switcher when the Guest is about to run,
  41. * (vii) Setting up the page tables initially.
  42. :*/
  43. /* 1024 entries in a page table page maps 1024 pages: 4MB. The Switcher is
  44. * conveniently placed at the top 4MB, so it uses a separate, complete PTE
  45. * page. */
  46. #define SWITCHER_PGD_INDEX (PTRS_PER_PGD - 1)
  47. /* We actually need a separate PTE page for each CPU. Remember that after the
  48. * Switcher code itself comes two pages for each CPU, and we don't want this
  49. * CPU's guest to see the pages of any other CPU. */
  50. static DEFINE_PER_CPU(pte_t *, switcher_pte_pages);
  51. #define switcher_pte_page(cpu) per_cpu(switcher_pte_pages, cpu)
  52. /*H:320 With our shadow and Guest types established, we need to deal with
  53. * them: the page table code is curly enough to need helper functions to keep
  54. * it clear and clean.
  55. *
  56. * There are two functions which return pointers to the shadow (aka "real")
  57. * page tables.
  58. *
  59. * spgd_addr() takes the virtual address and returns a pointer to the top-level
  60. * page directory entry for that address. Since we keep track of several page
  61. * tables, the "i" argument tells us which one we're interested in (it's
  62. * usually the current one). */
  63. static pgd_t *spgd_addr(struct lguest *lg, u32 i, unsigned long vaddr)
  64. {
  65. unsigned int index = pgd_index(vaddr);
  66. /* We kill any Guest trying to touch the Switcher addresses. */
  67. if (index >= SWITCHER_PGD_INDEX) {
  68. kill_guest(lg, "attempt to access switcher pages");
  69. index = 0;
  70. }
  71. /* Return a pointer index'th pgd entry for the i'th page table. */
  72. return &lg->pgdirs[i].pgdir[index];
  73. }
  74. /* This routine then takes the PGD entry given above, which contains the
  75. * address of the PTE page. It then returns a pointer to the PTE entry for the
  76. * given address. */
  77. static pte_t *spte_addr(struct lguest *lg, pgd_t spgd, unsigned long vaddr)
  78. {
  79. pte_t *page = __va(pgd_pfn(spgd) << PAGE_SHIFT);
  80. /* You should never call this if the PGD entry wasn't valid */
  81. BUG_ON(!(pgd_flags(spgd) & _PAGE_PRESENT));
  82. return &page[(vaddr >> PAGE_SHIFT) % PTRS_PER_PTE];
  83. }
  84. /* These two functions just like the above two, except they access the Guest
  85. * page tables. Hence they return a Guest address. */
  86. static unsigned long gpgd_addr(struct lguest *lg, unsigned long vaddr)
  87. {
  88. unsigned int index = vaddr >> (PGDIR_SHIFT);
  89. return lg->pgdirs[lg->pgdidx].gpgdir + index * sizeof(pgd_t);
  90. }
  91. static unsigned long gpte_addr(struct lguest *lg,
  92. pgd_t gpgd, unsigned long vaddr)
  93. {
  94. unsigned long gpage = pgd_pfn(gpgd) << PAGE_SHIFT;
  95. BUG_ON(!(pgd_flags(gpgd) & _PAGE_PRESENT));
  96. return gpage + ((vaddr>>PAGE_SHIFT) % PTRS_PER_PTE) * sizeof(pte_t);
  97. }
  98. /*H:350 This routine takes a page number given by the Guest and converts it to
  99. * an actual, physical page number. It can fail for several reasons: the
  100. * virtual address might not be mapped by the Launcher, the write flag is set
  101. * and the page is read-only, or the write flag was set and the page was
  102. * shared so had to be copied, but we ran out of memory.
  103. *
  104. * This holds a reference to the page, so release_pte() is careful to
  105. * put that back. */
  106. static unsigned long get_pfn(unsigned long virtpfn, int write)
  107. {
  108. struct page *page;
  109. /* This value indicates failure. */
  110. unsigned long ret = -1UL;
  111. /* get_user_pages() is a complex interface: it gets the "struct
  112. * vm_area_struct" and "struct page" assocated with a range of pages.
  113. * It also needs the task's mmap_sem held, and is not very quick.
  114. * It returns the number of pages it got. */
  115. down_read(&current->mm->mmap_sem);
  116. if (get_user_pages(current, current->mm, virtpfn << PAGE_SHIFT,
  117. 1, write, 1, &page, NULL) == 1)
  118. ret = page_to_pfn(page);
  119. up_read(&current->mm->mmap_sem);
  120. return ret;
  121. }
  122. /*H:340 Converting a Guest page table entry to a shadow (ie. real) page table
  123. * entry can be a little tricky. The flags are (almost) the same, but the
  124. * Guest PTE contains a virtual page number: the CPU needs the real page
  125. * number. */
  126. static pte_t gpte_to_spte(struct lguest *lg, pte_t gpte, int write)
  127. {
  128. unsigned long pfn, base, flags;
  129. /* The Guest sets the global flag, because it thinks that it is using
  130. * PGE. We only told it to use PGE so it would tell us whether it was
  131. * flushing a kernel mapping or a userspace mapping. We don't actually
  132. * use the global bit, so throw it away. */
  133. flags = (pte_flags(gpte) & ~_PAGE_GLOBAL);
  134. /* The Guest's pages are offset inside the Launcher. */
  135. base = (unsigned long)lg->mem_base / PAGE_SIZE;
  136. /* We need a temporary "unsigned long" variable to hold the answer from
  137. * get_pfn(), because it returns 0xFFFFFFFF on failure, which wouldn't
  138. * fit in spte.pfn. get_pfn() finds the real physical number of the
  139. * page, given the virtual number. */
  140. pfn = get_pfn(base + pte_pfn(gpte), write);
  141. if (pfn == -1UL) {
  142. kill_guest(lg, "failed to get page %lu", pte_pfn(gpte));
  143. /* When we destroy the Guest, we'll go through the shadow page
  144. * tables and release_pte() them. Make sure we don't think
  145. * this one is valid! */
  146. flags = 0;
  147. }
  148. /* Now we assemble our shadow PTE from the page number and flags. */
  149. return pfn_pte(pfn, __pgprot(flags));
  150. }
  151. /*H:460 And to complete the chain, release_pte() looks like this: */
  152. static void release_pte(pte_t pte)
  153. {
  154. /* Remember that get_user_pages() took a reference to the page, in
  155. * get_pfn()? We have to put it back now. */
  156. if (pte_flags(pte) & _PAGE_PRESENT)
  157. put_page(pfn_to_page(pte_pfn(pte)));
  158. }
  159. /*:*/
  160. static void check_gpte(struct lguest *lg, pte_t gpte)
  161. {
  162. if ((pte_flags(gpte) & (_PAGE_PWT|_PAGE_PSE))
  163. || pte_pfn(gpte) >= lg->pfn_limit)
  164. kill_guest(lg, "bad page table entry");
  165. }
  166. static void check_gpgd(struct lguest *lg, pgd_t gpgd)
  167. {
  168. if ((pgd_flags(gpgd) & ~_PAGE_TABLE) || pgd_pfn(gpgd) >= lg->pfn_limit)
  169. kill_guest(lg, "bad page directory entry");
  170. }
  171. /*H:330
  172. * (i) Setting up a page table entry for the Guest when it faults
  173. *
  174. * We saw this call in run_guest(): when we see a page fault in the Guest, we
  175. * come here. That's because we only set up the shadow page tables lazily as
  176. * they're needed, so we get page faults all the time and quietly fix them up
  177. * and return to the Guest without it knowing.
  178. *
  179. * If we fixed up the fault (ie. we mapped the address), this routine returns
  180. * true. */
  181. int demand_page(struct lguest *lg, unsigned long vaddr, int errcode)
  182. {
  183. pgd_t gpgd;
  184. pgd_t *spgd;
  185. unsigned long gpte_ptr;
  186. pte_t gpte;
  187. pte_t *spte;
  188. /* First step: get the top-level Guest page table entry. */
  189. gpgd = __pgd(lgread_u32(lg, gpgd_addr(lg, vaddr)));
  190. /* Toplevel not present? We can't map it in. */
  191. if (!(pgd_flags(gpgd) & _PAGE_PRESENT))
  192. return 0;
  193. /* Now look at the matching shadow entry. */
  194. spgd = spgd_addr(lg, lg->pgdidx, vaddr);
  195. if (!(pgd_flags(*spgd) & _PAGE_PRESENT)) {
  196. /* No shadow entry: allocate a new shadow PTE page. */
  197. unsigned long ptepage = get_zeroed_page(GFP_KERNEL);
  198. /* This is not really the Guest's fault, but killing it is
  199. * simple for this corner case. */
  200. if (!ptepage) {
  201. kill_guest(lg, "out of memory allocating pte page");
  202. return 0;
  203. }
  204. /* We check that the Guest pgd is OK. */
  205. check_gpgd(lg, gpgd);
  206. /* And we copy the flags to the shadow PGD entry. The page
  207. * number in the shadow PGD is the page we just allocated. */
  208. *spgd = __pgd(__pa(ptepage) | pgd_flags(gpgd));
  209. }
  210. /* OK, now we look at the lower level in the Guest page table: keep its
  211. * address, because we might update it later. */
  212. gpte_ptr = gpte_addr(lg, gpgd, vaddr);
  213. gpte = __pte(lgread_u32(lg, gpte_ptr));
  214. /* If this page isn't in the Guest page tables, we can't page it in. */
  215. if (!(pte_flags(gpte) & _PAGE_PRESENT))
  216. return 0;
  217. /* Check they're not trying to write to a page the Guest wants
  218. * read-only (bit 2 of errcode == write). */
  219. if ((errcode & 2) && !(pte_flags(gpte) & _PAGE_RW))
  220. return 0;
  221. /* User access to a kernel page? (bit 3 == user access) */
  222. if ((errcode & 4) && !(pte_flags(gpte) & _PAGE_USER))
  223. return 0;
  224. /* Check that the Guest PTE flags are OK, and the page number is below
  225. * the pfn_limit (ie. not mapping the Launcher binary). */
  226. check_gpte(lg, gpte);
  227. /* Add the _PAGE_ACCESSED and (for a write) _PAGE_DIRTY flag */
  228. gpte = pte_mkyoung(gpte);
  229. if (errcode & 2)
  230. gpte = pte_mkdirty(gpte);
  231. /* Get the pointer to the shadow PTE entry we're going to set. */
  232. spte = spte_addr(lg, *spgd, vaddr);
  233. /* If there was a valid shadow PTE entry here before, we release it.
  234. * This can happen with a write to a previously read-only entry. */
  235. release_pte(*spte);
  236. /* If this is a write, we insist that the Guest page is writable (the
  237. * final arg to gpte_to_spte()). */
  238. if (pte_dirty(gpte))
  239. *spte = gpte_to_spte(lg, gpte, 1);
  240. else
  241. /* If this is a read, don't set the "writable" bit in the page
  242. * table entry, even if the Guest says it's writable. That way
  243. * we come back here when a write does actually ocur, so we can
  244. * update the Guest's _PAGE_DIRTY flag. */
  245. *spte = gpte_to_spte(lg, pte_wrprotect(gpte), 0);
  246. /* Finally, we write the Guest PTE entry back: we've set the
  247. * _PAGE_ACCESSED and maybe the _PAGE_DIRTY flags. */
  248. lgwrite_u32(lg, gpte_ptr, pte_val(gpte));
  249. /* We succeeded in mapping the page! */
  250. return 1;
  251. }
  252. /*H:360 (ii) Setting up the page table entry for the Guest stack.
  253. *
  254. * Remember pin_stack_pages() which makes sure the stack is mapped? It could
  255. * simply call demand_page(), but as we've seen that logic is quite long, and
  256. * usually the stack pages are already mapped anyway, so it's not required.
  257. *
  258. * This is a quick version which answers the question: is this virtual address
  259. * mapped by the shadow page tables, and is it writable? */
  260. static int page_writable(struct lguest *lg, unsigned long vaddr)
  261. {
  262. pgd_t *spgd;
  263. unsigned long flags;
  264. /* Look at the top level entry: is it present? */
  265. spgd = spgd_addr(lg, lg->pgdidx, vaddr);
  266. if (!(pgd_flags(*spgd) & _PAGE_PRESENT))
  267. return 0;
  268. /* Check the flags on the pte entry itself: it must be present and
  269. * writable. */
  270. flags = pte_flags(*(spte_addr(lg, *spgd, vaddr)));
  271. return (flags & (_PAGE_PRESENT|_PAGE_RW)) == (_PAGE_PRESENT|_PAGE_RW);
  272. }
  273. /* So, when pin_stack_pages() asks us to pin a page, we check if it's already
  274. * in the page tables, and if not, we call demand_page() with error code 2
  275. * (meaning "write"). */
  276. void pin_page(struct lguest *lg, unsigned long vaddr)
  277. {
  278. if (!page_writable(lg, vaddr) && !demand_page(lg, vaddr, 2))
  279. kill_guest(lg, "bad stack page %#lx", vaddr);
  280. }
  281. /*H:450 If we chase down the release_pgd() code, it looks like this: */
  282. static void release_pgd(struct lguest *lg, pgd_t *spgd)
  283. {
  284. /* If the entry's not present, there's nothing to release. */
  285. if (pgd_flags(*spgd) & _PAGE_PRESENT) {
  286. unsigned int i;
  287. /* Converting the pfn to find the actual PTE page is easy: turn
  288. * the page number into a physical address, then convert to a
  289. * virtual address (easy for kernel pages like this one). */
  290. pte_t *ptepage = __va(pgd_pfn(*spgd) << PAGE_SHIFT);
  291. /* For each entry in the page, we might need to release it. */
  292. for (i = 0; i < PTRS_PER_PTE; i++)
  293. release_pte(ptepage[i]);
  294. /* Now we can free the page of PTEs */
  295. free_page((long)ptepage);
  296. /* And zero out the PGD entry we we never release it twice. */
  297. *spgd = __pgd(0);
  298. }
  299. }
  300. /*H:440 (v) Flushing (thowing away) page tables,
  301. *
  302. * We saw flush_user_mappings() called when we re-used a top-level pgdir page.
  303. * It simply releases every PTE page from 0 up to the kernel address. */
  304. static void flush_user_mappings(struct lguest *lg, int idx)
  305. {
  306. unsigned int i;
  307. /* Release every pgd entry up to the kernel's address. */
  308. for (i = 0; i < pgd_index(lg->page_offset); i++)
  309. release_pgd(lg, lg->pgdirs[idx].pgdir + i);
  310. }
  311. /* The Guest also has a hypercall to do this manually: it's used when a large
  312. * number of mappings have been changed. */
  313. void guest_pagetable_flush_user(struct lguest *lg)
  314. {
  315. /* Drop the userspace part of the current page table. */
  316. flush_user_mappings(lg, lg->pgdidx);
  317. }
  318. /*:*/
  319. /* We keep several page tables. This is a simple routine to find the page
  320. * table (if any) corresponding to this top-level address the Guest has given
  321. * us. */
  322. static unsigned int find_pgdir(struct lguest *lg, unsigned long pgtable)
  323. {
  324. unsigned int i;
  325. for (i = 0; i < ARRAY_SIZE(lg->pgdirs); i++)
  326. if (lg->pgdirs[i].gpgdir == pgtable)
  327. break;
  328. return i;
  329. }
  330. /*H:435 And this is us, creating the new page directory. If we really do
  331. * allocate a new one (and so the kernel parts are not there), we set
  332. * blank_pgdir. */
  333. static unsigned int new_pgdir(struct lguest *lg,
  334. unsigned long gpgdir,
  335. int *blank_pgdir)
  336. {
  337. unsigned int next;
  338. /* We pick one entry at random to throw out. Choosing the Least
  339. * Recently Used might be better, but this is easy. */
  340. next = random32() % ARRAY_SIZE(lg->pgdirs);
  341. /* If it's never been allocated at all before, try now. */
  342. if (!lg->pgdirs[next].pgdir) {
  343. lg->pgdirs[next].pgdir = (pgd_t *)get_zeroed_page(GFP_KERNEL);
  344. /* If the allocation fails, just keep using the one we have */
  345. if (!lg->pgdirs[next].pgdir)
  346. next = lg->pgdidx;
  347. else
  348. /* This is a blank page, so there are no kernel
  349. * mappings: caller must map the stack! */
  350. *blank_pgdir = 1;
  351. }
  352. /* Record which Guest toplevel this shadows. */
  353. lg->pgdirs[next].gpgdir = gpgdir;
  354. /* Release all the non-kernel mappings. */
  355. flush_user_mappings(lg, next);
  356. return next;
  357. }
  358. /*H:430 (iv) Switching page tables
  359. *
  360. * This is what happens when the Guest changes page tables (ie. changes the
  361. * top-level pgdir). This happens on almost every context switch. */
  362. void guest_new_pagetable(struct lguest *lg, unsigned long pgtable)
  363. {
  364. int newpgdir, repin = 0;
  365. /* Look to see if we have this one already. */
  366. newpgdir = find_pgdir(lg, pgtable);
  367. /* If not, we allocate or mug an existing one: if it's a fresh one,
  368. * repin gets set to 1. */
  369. if (newpgdir == ARRAY_SIZE(lg->pgdirs))
  370. newpgdir = new_pgdir(lg, pgtable, &repin);
  371. /* Change the current pgd index to the new one. */
  372. lg->pgdidx = newpgdir;
  373. /* If it was completely blank, we map in the Guest kernel stack */
  374. if (repin)
  375. pin_stack_pages(lg);
  376. }
  377. /*H:470 Finally, a routine which throws away everything: all PGD entries in all
  378. * the shadow page tables. This is used when we destroy the Guest. */
  379. static void release_all_pagetables(struct lguest *lg)
  380. {
  381. unsigned int i, j;
  382. /* Every shadow pagetable this Guest has */
  383. for (i = 0; i < ARRAY_SIZE(lg->pgdirs); i++)
  384. if (lg->pgdirs[i].pgdir)
  385. /* Every PGD entry except the Switcher at the top */
  386. for (j = 0; j < SWITCHER_PGD_INDEX; j++)
  387. release_pgd(lg, lg->pgdirs[i].pgdir + j);
  388. }
  389. /* We also throw away everything when a Guest tells us it's changed a kernel
  390. * mapping. Since kernel mappings are in every page table, it's easiest to
  391. * throw them all away. This is amazingly slow, but thankfully rare. */
  392. void guest_pagetable_clear_all(struct lguest *lg)
  393. {
  394. release_all_pagetables(lg);
  395. /* We need the Guest kernel stack mapped again. */
  396. pin_stack_pages(lg);
  397. }
  398. /*H:420 This is the routine which actually sets the page table entry for then
  399. * "idx"'th shadow page table.
  400. *
  401. * Normally, we can just throw out the old entry and replace it with 0: if they
  402. * use it demand_page() will put the new entry in. We need to do this anyway:
  403. * The Guest expects _PAGE_ACCESSED to be set on its PTE the first time a page
  404. * is read from, and _PAGE_DIRTY when it's written to.
  405. *
  406. * But Avi Kivity pointed out that most Operating Systems (Linux included) set
  407. * these bits on PTEs immediately anyway. This is done to save the CPU from
  408. * having to update them, but it helps us the same way: if they set
  409. * _PAGE_ACCESSED then we can put a read-only PTE entry in immediately, and if
  410. * they set _PAGE_DIRTY then we can put a writable PTE entry in immediately.
  411. */
  412. static void do_set_pte(struct lguest *lg, int idx,
  413. unsigned long vaddr, pte_t gpte)
  414. {
  415. /* Look up the matching shadow page directot entry. */
  416. pgd_t *spgd = spgd_addr(lg, idx, vaddr);
  417. /* If the top level isn't present, there's no entry to update. */
  418. if (pgd_flags(*spgd) & _PAGE_PRESENT) {
  419. /* Otherwise, we start by releasing the existing entry. */
  420. pte_t *spte = spte_addr(lg, *spgd, vaddr);
  421. release_pte(*spte);
  422. /* If they're setting this entry as dirty or accessed, we might
  423. * as well put that entry they've given us in now. This shaves
  424. * 10% off a copy-on-write micro-benchmark. */
  425. if (pte_flags(gpte) & (_PAGE_DIRTY | _PAGE_ACCESSED)) {
  426. check_gpte(lg, gpte);
  427. *spte = gpte_to_spte(lg, gpte,
  428. pte_flags(gpte) & _PAGE_DIRTY);
  429. } else
  430. /* Otherwise we can demand_page() it in later. */
  431. *spte = __pte(0);
  432. }
  433. }
  434. /*H:410 Updating a PTE entry is a little trickier.
  435. *
  436. * We keep track of several different page tables (the Guest uses one for each
  437. * process, so it makes sense to cache at least a few). Each of these have
  438. * identical kernel parts: ie. every mapping above PAGE_OFFSET is the same for
  439. * all processes. So when the page table above that address changes, we update
  440. * all the page tables, not just the current one. This is rare.
  441. *
  442. * The benefit is that when we have to track a new page table, we can copy keep
  443. * all the kernel mappings. This speeds up context switch immensely. */
  444. void guest_set_pte(struct lguest *lg,
  445. unsigned long gpgdir, unsigned long vaddr, pte_t gpte)
  446. {
  447. /* Kernel mappings must be changed on all top levels. Slow, but
  448. * doesn't happen often. */
  449. if (vaddr >= lg->page_offset) {
  450. unsigned int i;
  451. for (i = 0; i < ARRAY_SIZE(lg->pgdirs); i++)
  452. if (lg->pgdirs[i].pgdir)
  453. do_set_pte(lg, i, vaddr, gpte);
  454. } else {
  455. /* Is this page table one we have a shadow for? */
  456. int pgdir = find_pgdir(lg, gpgdir);
  457. if (pgdir != ARRAY_SIZE(lg->pgdirs))
  458. /* If so, do the update. */
  459. do_set_pte(lg, pgdir, vaddr, gpte);
  460. }
  461. }
  462. /*H:400
  463. * (iii) Setting up a page table entry when the Guest tells us it has changed.
  464. *
  465. * Just like we did in interrupts_and_traps.c, it makes sense for us to deal
  466. * with the other side of page tables while we're here: what happens when the
  467. * Guest asks for a page table to be updated?
  468. *
  469. * We already saw that demand_page() will fill in the shadow page tables when
  470. * needed, so we can simply remove shadow page table entries whenever the Guest
  471. * tells us they've changed. When the Guest tries to use the new entry it will
  472. * fault and demand_page() will fix it up.
  473. *
  474. * So with that in mind here's our code to to update a (top-level) PGD entry:
  475. */
  476. void guest_set_pmd(struct lguest *lg, unsigned long gpgdir, u32 idx)
  477. {
  478. int pgdir;
  479. /* The kernel seems to try to initialize this early on: we ignore its
  480. * attempts to map over the Switcher. */
  481. if (idx >= SWITCHER_PGD_INDEX)
  482. return;
  483. /* If they're talking about a page table we have a shadow for... */
  484. pgdir = find_pgdir(lg, gpgdir);
  485. if (pgdir < ARRAY_SIZE(lg->pgdirs))
  486. /* ... throw it away. */
  487. release_pgd(lg, lg->pgdirs[pgdir].pgdir + idx);
  488. }
  489. /*H:500 (vii) Setting up the page tables initially.
  490. *
  491. * When a Guest is first created, the Launcher tells us where the toplevel of
  492. * its first page table is. We set some things up here: */
  493. int init_guest_pagetable(struct lguest *lg, unsigned long pgtable)
  494. {
  495. /* In flush_user_mappings() we loop from 0 to
  496. * "pgd_index(lg->page_offset)". This assumes it won't hit
  497. * the Switcher mappings, so check that now. */
  498. if (pgd_index(lg->page_offset) >= SWITCHER_PGD_INDEX)
  499. return -EINVAL;
  500. /* We start on the first shadow page table, and give it a blank PGD
  501. * page. */
  502. lg->pgdidx = 0;
  503. lg->pgdirs[lg->pgdidx].gpgdir = pgtable;
  504. lg->pgdirs[lg->pgdidx].pgdir = (pgd_t*)get_zeroed_page(GFP_KERNEL);
  505. if (!lg->pgdirs[lg->pgdidx].pgdir)
  506. return -ENOMEM;
  507. return 0;
  508. }
  509. /* When a Guest dies, our cleanup is fairly simple. */
  510. void free_guest_pagetable(struct lguest *lg)
  511. {
  512. unsigned int i;
  513. /* Throw away all page table pages. */
  514. release_all_pagetables(lg);
  515. /* Now free the top levels: free_page() can handle 0 just fine. */
  516. for (i = 0; i < ARRAY_SIZE(lg->pgdirs); i++)
  517. free_page((long)lg->pgdirs[i].pgdir);
  518. }
  519. /*H:480 (vi) Mapping the Switcher when the Guest is about to run.
  520. *
  521. * The Switcher and the two pages for this CPU need to be available to the
  522. * Guest (and not the pages for other CPUs). We have the appropriate PTE pages
  523. * for each CPU already set up, we just need to hook them in. */
  524. void map_switcher_in_guest(struct lguest *lg, struct lguest_pages *pages)
  525. {
  526. pte_t *switcher_pte_page = __get_cpu_var(switcher_pte_pages);
  527. pgd_t switcher_pgd;
  528. pte_t regs_pte;
  529. /* Make the last PGD entry for this Guest point to the Switcher's PTE
  530. * page for this CPU (with appropriate flags). */
  531. switcher_pgd = __pgd(__pa(switcher_pte_page) | _PAGE_KERNEL);
  532. lg->pgdirs[lg->pgdidx].pgdir[SWITCHER_PGD_INDEX] = switcher_pgd;
  533. /* We also change the Switcher PTE page. When we're running the Guest,
  534. * we want the Guest's "regs" page to appear where the first Switcher
  535. * page for this CPU is. This is an optimization: when the Switcher
  536. * saves the Guest registers, it saves them into the first page of this
  537. * CPU's "struct lguest_pages": if we make sure the Guest's register
  538. * page is already mapped there, we don't have to copy them out
  539. * again. */
  540. regs_pte = pfn_pte (__pa(lg->regs_page) >> PAGE_SHIFT, __pgprot(_PAGE_KERNEL));
  541. switcher_pte_page[(unsigned long)pages/PAGE_SIZE%PTRS_PER_PTE] = regs_pte;
  542. }
  543. /*:*/
  544. static void free_switcher_pte_pages(void)
  545. {
  546. unsigned int i;
  547. for_each_possible_cpu(i)
  548. free_page((long)switcher_pte_page(i));
  549. }
  550. /*H:520 Setting up the Switcher PTE page for given CPU is fairly easy, given
  551. * the CPU number and the "struct page"s for the Switcher code itself.
  552. *
  553. * Currently the Switcher is less than a page long, so "pages" is always 1. */
  554. static __init void populate_switcher_pte_page(unsigned int cpu,
  555. struct page *switcher_page[],
  556. unsigned int pages)
  557. {
  558. unsigned int i;
  559. pte_t *pte = switcher_pte_page(cpu);
  560. /* The first entries are easy: they map the Switcher code. */
  561. for (i = 0; i < pages; i++) {
  562. pte[i] = mk_pte(switcher_page[i],
  563. __pgprot(_PAGE_PRESENT|_PAGE_ACCESSED));
  564. }
  565. /* The only other thing we map is this CPU's pair of pages. */
  566. i = pages + cpu*2;
  567. /* First page (Guest registers) is writable from the Guest */
  568. pte[i] = pfn_pte(page_to_pfn(switcher_page[i]),
  569. __pgprot(_PAGE_PRESENT|_PAGE_ACCESSED|_PAGE_RW));
  570. /* The second page contains the "struct lguest_ro_state", and is
  571. * read-only. */
  572. pte[i+1] = pfn_pte(page_to_pfn(switcher_page[i+1]),
  573. __pgprot(_PAGE_PRESENT|_PAGE_ACCESSED));
  574. }
  575. /*H:510 At boot or module load time, init_pagetables() allocates and populates
  576. * the Switcher PTE page for each CPU. */
  577. __init int init_pagetables(struct page **switcher_page, unsigned int pages)
  578. {
  579. unsigned int i;
  580. for_each_possible_cpu(i) {
  581. switcher_pte_page(i) = (pte_t *)get_zeroed_page(GFP_KERNEL);
  582. if (!switcher_pte_page(i)) {
  583. free_switcher_pte_pages();
  584. return -ENOMEM;
  585. }
  586. populate_switcher_pte_page(i, switcher_page, pages);
  587. }
  588. return 0;
  589. }
  590. /*:*/
  591. /* Cleaning up simply involves freeing the PTE page for each CPU. */
  592. void free_pagetables(void)
  593. {
  594. free_switcher_pte_pages();
  595. }