intel_display.c 234 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555855685578558855985608561856285638564856585668567856885698570857185728573857485758576857785788579858085818582858385848585858685878588858985908591859285938594859585968597859885998600860186028603860486058606860786088609861086118612861386148615861686178618861986208621862286238624862586268627862886298630863186328633863486358636863786388639864086418642864386448645864686478648864986508651865286538654865586568657865886598660866186628663866486658666866786688669867086718672867386748675867686778678867986808681868286838684868586868687868886898690869186928693869486958696869786988699870087018702870387048705870687078708870987108711871287138714871587168717871887198720872187228723872487258726872787288729873087318732873387348735873687378738873987408741874287438744874587468747874887498750875187528753875487558756875787588759876087618762876387648765876687678768876987708771877287738774877587768777877887798780878187828783
  1. /*
  2. * Copyright © 2006-2007 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
  21. * DEALINGS IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eric Anholt <eric@anholt.net>
  25. */
  26. #include <linux/dmi.h>
  27. #include <linux/module.h>
  28. #include <linux/input.h>
  29. #include <linux/i2c.h>
  30. #include <linux/kernel.h>
  31. #include <linux/slab.h>
  32. #include <linux/vgaarb.h>
  33. #include <drm/drm_edid.h>
  34. #include "drmP.h"
  35. #include "intel_drv.h"
  36. #include "i915_drm.h"
  37. #include "i915_drv.h"
  38. #include "i915_trace.h"
  39. #include "drm_dp_helper.h"
  40. #include "drm_crtc_helper.h"
  41. #include <linux/dma_remapping.h>
  42. #define HAS_eDP (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
  43. bool intel_pipe_has_type(struct drm_crtc *crtc, int type);
  44. static void intel_increase_pllclock(struct drm_crtc *crtc);
  45. static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
  46. typedef struct {
  47. /* given values */
  48. int n;
  49. int m1, m2;
  50. int p1, p2;
  51. /* derived values */
  52. int dot;
  53. int vco;
  54. int m;
  55. int p;
  56. } intel_clock_t;
  57. typedef struct {
  58. int min, max;
  59. } intel_range_t;
  60. typedef struct {
  61. int dot_limit;
  62. int p2_slow, p2_fast;
  63. } intel_p2_t;
  64. #define INTEL_P2_NUM 2
  65. typedef struct intel_limit intel_limit_t;
  66. struct intel_limit {
  67. intel_range_t dot, vco, n, m, m1, m2, p, p1;
  68. intel_p2_t p2;
  69. bool (* find_pll)(const intel_limit_t *, struct drm_crtc *,
  70. int, int, intel_clock_t *, intel_clock_t *);
  71. };
  72. /* FDI */
  73. #define IRONLAKE_FDI_FREQ 2700000 /* in kHz for mode->clock */
  74. static bool
  75. intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
  76. int target, int refclk, intel_clock_t *match_clock,
  77. intel_clock_t *best_clock);
  78. static bool
  79. intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
  80. int target, int refclk, intel_clock_t *match_clock,
  81. intel_clock_t *best_clock);
  82. static bool
  83. intel_find_pll_g4x_dp(const intel_limit_t *, struct drm_crtc *crtc,
  84. int target, int refclk, intel_clock_t *match_clock,
  85. intel_clock_t *best_clock);
  86. static bool
  87. intel_find_pll_ironlake_dp(const intel_limit_t *, struct drm_crtc *crtc,
  88. int target, int refclk, intel_clock_t *match_clock,
  89. intel_clock_t *best_clock);
  90. static bool
  91. intel_vlv_find_best_pll(const intel_limit_t *limit, struct drm_crtc *crtc,
  92. int target, int refclk, intel_clock_t *match_clock,
  93. intel_clock_t *best_clock);
  94. static inline u32 /* units of 100MHz */
  95. intel_fdi_link_freq(struct drm_device *dev)
  96. {
  97. if (IS_GEN5(dev)) {
  98. struct drm_i915_private *dev_priv = dev->dev_private;
  99. return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
  100. } else
  101. return 27;
  102. }
  103. static const intel_limit_t intel_limits_i8xx_dvo = {
  104. .dot = { .min = 25000, .max = 350000 },
  105. .vco = { .min = 930000, .max = 1400000 },
  106. .n = { .min = 3, .max = 16 },
  107. .m = { .min = 96, .max = 140 },
  108. .m1 = { .min = 18, .max = 26 },
  109. .m2 = { .min = 6, .max = 16 },
  110. .p = { .min = 4, .max = 128 },
  111. .p1 = { .min = 2, .max = 33 },
  112. .p2 = { .dot_limit = 165000,
  113. .p2_slow = 4, .p2_fast = 2 },
  114. .find_pll = intel_find_best_PLL,
  115. };
  116. static const intel_limit_t intel_limits_i8xx_lvds = {
  117. .dot = { .min = 25000, .max = 350000 },
  118. .vco = { .min = 930000, .max = 1400000 },
  119. .n = { .min = 3, .max = 16 },
  120. .m = { .min = 96, .max = 140 },
  121. .m1 = { .min = 18, .max = 26 },
  122. .m2 = { .min = 6, .max = 16 },
  123. .p = { .min = 4, .max = 128 },
  124. .p1 = { .min = 1, .max = 6 },
  125. .p2 = { .dot_limit = 165000,
  126. .p2_slow = 14, .p2_fast = 7 },
  127. .find_pll = intel_find_best_PLL,
  128. };
  129. static const intel_limit_t intel_limits_i9xx_sdvo = {
  130. .dot = { .min = 20000, .max = 400000 },
  131. .vco = { .min = 1400000, .max = 2800000 },
  132. .n = { .min = 1, .max = 6 },
  133. .m = { .min = 70, .max = 120 },
  134. .m1 = { .min = 10, .max = 22 },
  135. .m2 = { .min = 5, .max = 9 },
  136. .p = { .min = 5, .max = 80 },
  137. .p1 = { .min = 1, .max = 8 },
  138. .p2 = { .dot_limit = 200000,
  139. .p2_slow = 10, .p2_fast = 5 },
  140. .find_pll = intel_find_best_PLL,
  141. };
  142. static const intel_limit_t intel_limits_i9xx_lvds = {
  143. .dot = { .min = 20000, .max = 400000 },
  144. .vco = { .min = 1400000, .max = 2800000 },
  145. .n = { .min = 1, .max = 6 },
  146. .m = { .min = 70, .max = 120 },
  147. .m1 = { .min = 10, .max = 22 },
  148. .m2 = { .min = 5, .max = 9 },
  149. .p = { .min = 7, .max = 98 },
  150. .p1 = { .min = 1, .max = 8 },
  151. .p2 = { .dot_limit = 112000,
  152. .p2_slow = 14, .p2_fast = 7 },
  153. .find_pll = intel_find_best_PLL,
  154. };
  155. static const intel_limit_t intel_limits_g4x_sdvo = {
  156. .dot = { .min = 25000, .max = 270000 },
  157. .vco = { .min = 1750000, .max = 3500000},
  158. .n = { .min = 1, .max = 4 },
  159. .m = { .min = 104, .max = 138 },
  160. .m1 = { .min = 17, .max = 23 },
  161. .m2 = { .min = 5, .max = 11 },
  162. .p = { .min = 10, .max = 30 },
  163. .p1 = { .min = 1, .max = 3},
  164. .p2 = { .dot_limit = 270000,
  165. .p2_slow = 10,
  166. .p2_fast = 10
  167. },
  168. .find_pll = intel_g4x_find_best_PLL,
  169. };
  170. static const intel_limit_t intel_limits_g4x_hdmi = {
  171. .dot = { .min = 22000, .max = 400000 },
  172. .vco = { .min = 1750000, .max = 3500000},
  173. .n = { .min = 1, .max = 4 },
  174. .m = { .min = 104, .max = 138 },
  175. .m1 = { .min = 16, .max = 23 },
  176. .m2 = { .min = 5, .max = 11 },
  177. .p = { .min = 5, .max = 80 },
  178. .p1 = { .min = 1, .max = 8},
  179. .p2 = { .dot_limit = 165000,
  180. .p2_slow = 10, .p2_fast = 5 },
  181. .find_pll = intel_g4x_find_best_PLL,
  182. };
  183. static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
  184. .dot = { .min = 20000, .max = 115000 },
  185. .vco = { .min = 1750000, .max = 3500000 },
  186. .n = { .min = 1, .max = 3 },
  187. .m = { .min = 104, .max = 138 },
  188. .m1 = { .min = 17, .max = 23 },
  189. .m2 = { .min = 5, .max = 11 },
  190. .p = { .min = 28, .max = 112 },
  191. .p1 = { .min = 2, .max = 8 },
  192. .p2 = { .dot_limit = 0,
  193. .p2_slow = 14, .p2_fast = 14
  194. },
  195. .find_pll = intel_g4x_find_best_PLL,
  196. };
  197. static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
  198. .dot = { .min = 80000, .max = 224000 },
  199. .vco = { .min = 1750000, .max = 3500000 },
  200. .n = { .min = 1, .max = 3 },
  201. .m = { .min = 104, .max = 138 },
  202. .m1 = { .min = 17, .max = 23 },
  203. .m2 = { .min = 5, .max = 11 },
  204. .p = { .min = 14, .max = 42 },
  205. .p1 = { .min = 2, .max = 6 },
  206. .p2 = { .dot_limit = 0,
  207. .p2_slow = 7, .p2_fast = 7
  208. },
  209. .find_pll = intel_g4x_find_best_PLL,
  210. };
  211. static const intel_limit_t intel_limits_g4x_display_port = {
  212. .dot = { .min = 161670, .max = 227000 },
  213. .vco = { .min = 1750000, .max = 3500000},
  214. .n = { .min = 1, .max = 2 },
  215. .m = { .min = 97, .max = 108 },
  216. .m1 = { .min = 0x10, .max = 0x12 },
  217. .m2 = { .min = 0x05, .max = 0x06 },
  218. .p = { .min = 10, .max = 20 },
  219. .p1 = { .min = 1, .max = 2},
  220. .p2 = { .dot_limit = 0,
  221. .p2_slow = 10, .p2_fast = 10 },
  222. .find_pll = intel_find_pll_g4x_dp,
  223. };
  224. static const intel_limit_t intel_limits_pineview_sdvo = {
  225. .dot = { .min = 20000, .max = 400000},
  226. .vco = { .min = 1700000, .max = 3500000 },
  227. /* Pineview's Ncounter is a ring counter */
  228. .n = { .min = 3, .max = 6 },
  229. .m = { .min = 2, .max = 256 },
  230. /* Pineview only has one combined m divider, which we treat as m2. */
  231. .m1 = { .min = 0, .max = 0 },
  232. .m2 = { .min = 0, .max = 254 },
  233. .p = { .min = 5, .max = 80 },
  234. .p1 = { .min = 1, .max = 8 },
  235. .p2 = { .dot_limit = 200000,
  236. .p2_slow = 10, .p2_fast = 5 },
  237. .find_pll = intel_find_best_PLL,
  238. };
  239. static const intel_limit_t intel_limits_pineview_lvds = {
  240. .dot = { .min = 20000, .max = 400000 },
  241. .vco = { .min = 1700000, .max = 3500000 },
  242. .n = { .min = 3, .max = 6 },
  243. .m = { .min = 2, .max = 256 },
  244. .m1 = { .min = 0, .max = 0 },
  245. .m2 = { .min = 0, .max = 254 },
  246. .p = { .min = 7, .max = 112 },
  247. .p1 = { .min = 1, .max = 8 },
  248. .p2 = { .dot_limit = 112000,
  249. .p2_slow = 14, .p2_fast = 14 },
  250. .find_pll = intel_find_best_PLL,
  251. };
  252. /* Ironlake / Sandybridge
  253. *
  254. * We calculate clock using (register_value + 2) for N/M1/M2, so here
  255. * the range value for them is (actual_value - 2).
  256. */
  257. static const intel_limit_t intel_limits_ironlake_dac = {
  258. .dot = { .min = 25000, .max = 350000 },
  259. .vco = { .min = 1760000, .max = 3510000 },
  260. .n = { .min = 1, .max = 5 },
  261. .m = { .min = 79, .max = 127 },
  262. .m1 = { .min = 12, .max = 22 },
  263. .m2 = { .min = 5, .max = 9 },
  264. .p = { .min = 5, .max = 80 },
  265. .p1 = { .min = 1, .max = 8 },
  266. .p2 = { .dot_limit = 225000,
  267. .p2_slow = 10, .p2_fast = 5 },
  268. .find_pll = intel_g4x_find_best_PLL,
  269. };
  270. static const intel_limit_t intel_limits_ironlake_single_lvds = {
  271. .dot = { .min = 25000, .max = 350000 },
  272. .vco = { .min = 1760000, .max = 3510000 },
  273. .n = { .min = 1, .max = 3 },
  274. .m = { .min = 79, .max = 118 },
  275. .m1 = { .min = 12, .max = 22 },
  276. .m2 = { .min = 5, .max = 9 },
  277. .p = { .min = 28, .max = 112 },
  278. .p1 = { .min = 2, .max = 8 },
  279. .p2 = { .dot_limit = 225000,
  280. .p2_slow = 14, .p2_fast = 14 },
  281. .find_pll = intel_g4x_find_best_PLL,
  282. };
  283. static const intel_limit_t intel_limits_ironlake_dual_lvds = {
  284. .dot = { .min = 25000, .max = 350000 },
  285. .vco = { .min = 1760000, .max = 3510000 },
  286. .n = { .min = 1, .max = 3 },
  287. .m = { .min = 79, .max = 127 },
  288. .m1 = { .min = 12, .max = 22 },
  289. .m2 = { .min = 5, .max = 9 },
  290. .p = { .min = 14, .max = 56 },
  291. .p1 = { .min = 2, .max = 8 },
  292. .p2 = { .dot_limit = 225000,
  293. .p2_slow = 7, .p2_fast = 7 },
  294. .find_pll = intel_g4x_find_best_PLL,
  295. };
  296. /* LVDS 100mhz refclk limits. */
  297. static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
  298. .dot = { .min = 25000, .max = 350000 },
  299. .vco = { .min = 1760000, .max = 3510000 },
  300. .n = { .min = 1, .max = 2 },
  301. .m = { .min = 79, .max = 126 },
  302. .m1 = { .min = 12, .max = 22 },
  303. .m2 = { .min = 5, .max = 9 },
  304. .p = { .min = 28, .max = 112 },
  305. .p1 = { .min = 2, .max = 8 },
  306. .p2 = { .dot_limit = 225000,
  307. .p2_slow = 14, .p2_fast = 14 },
  308. .find_pll = intel_g4x_find_best_PLL,
  309. };
  310. static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
  311. .dot = { .min = 25000, .max = 350000 },
  312. .vco = { .min = 1760000, .max = 3510000 },
  313. .n = { .min = 1, .max = 3 },
  314. .m = { .min = 79, .max = 126 },
  315. .m1 = { .min = 12, .max = 22 },
  316. .m2 = { .min = 5, .max = 9 },
  317. .p = { .min = 14, .max = 42 },
  318. .p1 = { .min = 2, .max = 6 },
  319. .p2 = { .dot_limit = 225000,
  320. .p2_slow = 7, .p2_fast = 7 },
  321. .find_pll = intel_g4x_find_best_PLL,
  322. };
  323. static const intel_limit_t intel_limits_ironlake_display_port = {
  324. .dot = { .min = 25000, .max = 350000 },
  325. .vco = { .min = 1760000, .max = 3510000},
  326. .n = { .min = 1, .max = 2 },
  327. .m = { .min = 81, .max = 90 },
  328. .m1 = { .min = 12, .max = 22 },
  329. .m2 = { .min = 5, .max = 9 },
  330. .p = { .min = 10, .max = 20 },
  331. .p1 = { .min = 1, .max = 2},
  332. .p2 = { .dot_limit = 0,
  333. .p2_slow = 10, .p2_fast = 10 },
  334. .find_pll = intel_find_pll_ironlake_dp,
  335. };
  336. static const intel_limit_t intel_limits_vlv_dac = {
  337. .dot = { .min = 25000, .max = 270000 },
  338. .vco = { .min = 4000000, .max = 6000000 },
  339. .n = { .min = 1, .max = 7 },
  340. .m = { .min = 22, .max = 450 }, /* guess */
  341. .m1 = { .min = 2, .max = 3 },
  342. .m2 = { .min = 11, .max = 156 },
  343. .p = { .min = 10, .max = 30 },
  344. .p1 = { .min = 2, .max = 3 },
  345. .p2 = { .dot_limit = 270000,
  346. .p2_slow = 2, .p2_fast = 20 },
  347. .find_pll = intel_vlv_find_best_pll,
  348. };
  349. static const intel_limit_t intel_limits_vlv_hdmi = {
  350. .dot = { .min = 20000, .max = 165000 },
  351. .vco = { .min = 4000000, .max = 5994000},
  352. .n = { .min = 1, .max = 7 },
  353. .m = { .min = 60, .max = 300 }, /* guess */
  354. .m1 = { .min = 2, .max = 3 },
  355. .m2 = { .min = 11, .max = 156 },
  356. .p = { .min = 10, .max = 30 },
  357. .p1 = { .min = 2, .max = 3 },
  358. .p2 = { .dot_limit = 270000,
  359. .p2_slow = 2, .p2_fast = 20 },
  360. .find_pll = intel_vlv_find_best_pll,
  361. };
  362. static const intel_limit_t intel_limits_vlv_dp = {
  363. .dot = { .min = 25000, .max = 270000 },
  364. .vco = { .min = 4000000, .max = 6000000 },
  365. .n = { .min = 1, .max = 7 },
  366. .m = { .min = 22, .max = 450 },
  367. .m1 = { .min = 2, .max = 3 },
  368. .m2 = { .min = 11, .max = 156 },
  369. .p = { .min = 10, .max = 30 },
  370. .p1 = { .min = 2, .max = 3 },
  371. .p2 = { .dot_limit = 270000,
  372. .p2_slow = 2, .p2_fast = 20 },
  373. .find_pll = intel_vlv_find_best_pll,
  374. };
  375. u32 intel_dpio_read(struct drm_i915_private *dev_priv, int reg)
  376. {
  377. unsigned long flags;
  378. u32 val = 0;
  379. spin_lock_irqsave(&dev_priv->dpio_lock, flags);
  380. if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
  381. DRM_ERROR("DPIO idle wait timed out\n");
  382. goto out_unlock;
  383. }
  384. I915_WRITE(DPIO_REG, reg);
  385. I915_WRITE(DPIO_PKT, DPIO_RID | DPIO_OP_READ | DPIO_PORTID |
  386. DPIO_BYTE);
  387. if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
  388. DRM_ERROR("DPIO read wait timed out\n");
  389. goto out_unlock;
  390. }
  391. val = I915_READ(DPIO_DATA);
  392. out_unlock:
  393. spin_unlock_irqrestore(&dev_priv->dpio_lock, flags);
  394. return val;
  395. }
  396. static void intel_dpio_write(struct drm_i915_private *dev_priv, int reg,
  397. u32 val)
  398. {
  399. unsigned long flags;
  400. spin_lock_irqsave(&dev_priv->dpio_lock, flags);
  401. if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
  402. DRM_ERROR("DPIO idle wait timed out\n");
  403. goto out_unlock;
  404. }
  405. I915_WRITE(DPIO_DATA, val);
  406. I915_WRITE(DPIO_REG, reg);
  407. I915_WRITE(DPIO_PKT, DPIO_RID | DPIO_OP_WRITE | DPIO_PORTID |
  408. DPIO_BYTE);
  409. if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100))
  410. DRM_ERROR("DPIO write wait timed out\n");
  411. out_unlock:
  412. spin_unlock_irqrestore(&dev_priv->dpio_lock, flags);
  413. }
  414. static void vlv_init_dpio(struct drm_device *dev)
  415. {
  416. struct drm_i915_private *dev_priv = dev->dev_private;
  417. /* Reset the DPIO config */
  418. I915_WRITE(DPIO_CTL, 0);
  419. POSTING_READ(DPIO_CTL);
  420. I915_WRITE(DPIO_CTL, 1);
  421. POSTING_READ(DPIO_CTL);
  422. }
  423. static int intel_dual_link_lvds_callback(const struct dmi_system_id *id)
  424. {
  425. DRM_INFO("Forcing lvds to dual link mode on %s\n", id->ident);
  426. return 1;
  427. }
  428. static const struct dmi_system_id intel_dual_link_lvds[] = {
  429. {
  430. .callback = intel_dual_link_lvds_callback,
  431. .ident = "Apple MacBook Pro (Core i5/i7 Series)",
  432. .matches = {
  433. DMI_MATCH(DMI_SYS_VENDOR, "Apple Inc."),
  434. DMI_MATCH(DMI_PRODUCT_NAME, "MacBookPro8,2"),
  435. },
  436. },
  437. { } /* terminating entry */
  438. };
  439. static bool is_dual_link_lvds(struct drm_i915_private *dev_priv,
  440. unsigned int reg)
  441. {
  442. unsigned int val;
  443. /* use the module option value if specified */
  444. if (i915_lvds_channel_mode > 0)
  445. return i915_lvds_channel_mode == 2;
  446. if (dmi_check_system(intel_dual_link_lvds))
  447. return true;
  448. if (dev_priv->lvds_val)
  449. val = dev_priv->lvds_val;
  450. else {
  451. /* BIOS should set the proper LVDS register value at boot, but
  452. * in reality, it doesn't set the value when the lid is closed;
  453. * we need to check "the value to be set" in VBT when LVDS
  454. * register is uninitialized.
  455. */
  456. val = I915_READ(reg);
  457. if (!(val & ~(LVDS_PIPE_MASK | LVDS_DETECTED)))
  458. val = dev_priv->bios_lvds_val;
  459. dev_priv->lvds_val = val;
  460. }
  461. return (val & LVDS_CLKB_POWER_MASK) == LVDS_CLKB_POWER_UP;
  462. }
  463. static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc,
  464. int refclk)
  465. {
  466. struct drm_device *dev = crtc->dev;
  467. struct drm_i915_private *dev_priv = dev->dev_private;
  468. const intel_limit_t *limit;
  469. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  470. if (is_dual_link_lvds(dev_priv, PCH_LVDS)) {
  471. /* LVDS dual channel */
  472. if (refclk == 100000)
  473. limit = &intel_limits_ironlake_dual_lvds_100m;
  474. else
  475. limit = &intel_limits_ironlake_dual_lvds;
  476. } else {
  477. if (refclk == 100000)
  478. limit = &intel_limits_ironlake_single_lvds_100m;
  479. else
  480. limit = &intel_limits_ironlake_single_lvds;
  481. }
  482. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
  483. HAS_eDP)
  484. limit = &intel_limits_ironlake_display_port;
  485. else
  486. limit = &intel_limits_ironlake_dac;
  487. return limit;
  488. }
  489. static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
  490. {
  491. struct drm_device *dev = crtc->dev;
  492. struct drm_i915_private *dev_priv = dev->dev_private;
  493. const intel_limit_t *limit;
  494. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  495. if (is_dual_link_lvds(dev_priv, LVDS))
  496. /* LVDS with dual channel */
  497. limit = &intel_limits_g4x_dual_channel_lvds;
  498. else
  499. /* LVDS with dual channel */
  500. limit = &intel_limits_g4x_single_channel_lvds;
  501. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
  502. intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
  503. limit = &intel_limits_g4x_hdmi;
  504. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
  505. limit = &intel_limits_g4x_sdvo;
  506. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
  507. limit = &intel_limits_g4x_display_port;
  508. } else /* The option is for other outputs */
  509. limit = &intel_limits_i9xx_sdvo;
  510. return limit;
  511. }
  512. static const intel_limit_t *intel_limit(struct drm_crtc *crtc, int refclk)
  513. {
  514. struct drm_device *dev = crtc->dev;
  515. const intel_limit_t *limit;
  516. if (HAS_PCH_SPLIT(dev))
  517. limit = intel_ironlake_limit(crtc, refclk);
  518. else if (IS_G4X(dev)) {
  519. limit = intel_g4x_limit(crtc);
  520. } else if (IS_PINEVIEW(dev)) {
  521. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
  522. limit = &intel_limits_pineview_lvds;
  523. else
  524. limit = &intel_limits_pineview_sdvo;
  525. } else if (IS_VALLEYVIEW(dev)) {
  526. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG))
  527. limit = &intel_limits_vlv_dac;
  528. else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
  529. limit = &intel_limits_vlv_hdmi;
  530. else
  531. limit = &intel_limits_vlv_dp;
  532. } else if (!IS_GEN2(dev)) {
  533. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
  534. limit = &intel_limits_i9xx_lvds;
  535. else
  536. limit = &intel_limits_i9xx_sdvo;
  537. } else {
  538. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
  539. limit = &intel_limits_i8xx_lvds;
  540. else
  541. limit = &intel_limits_i8xx_dvo;
  542. }
  543. return limit;
  544. }
  545. /* m1 is reserved as 0 in Pineview, n is a ring counter */
  546. static void pineview_clock(int refclk, intel_clock_t *clock)
  547. {
  548. clock->m = clock->m2 + 2;
  549. clock->p = clock->p1 * clock->p2;
  550. clock->vco = refclk * clock->m / clock->n;
  551. clock->dot = clock->vco / clock->p;
  552. }
  553. static void intel_clock(struct drm_device *dev, int refclk, intel_clock_t *clock)
  554. {
  555. if (IS_PINEVIEW(dev)) {
  556. pineview_clock(refclk, clock);
  557. return;
  558. }
  559. clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2);
  560. clock->p = clock->p1 * clock->p2;
  561. clock->vco = refclk * clock->m / (clock->n + 2);
  562. clock->dot = clock->vco / clock->p;
  563. }
  564. /**
  565. * Returns whether any output on the specified pipe is of the specified type
  566. */
  567. bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
  568. {
  569. struct drm_device *dev = crtc->dev;
  570. struct intel_encoder *encoder;
  571. for_each_encoder_on_crtc(dev, crtc, encoder)
  572. if (encoder->type == type)
  573. return true;
  574. return false;
  575. }
  576. #define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
  577. /**
  578. * Returns whether the given set of divisors are valid for a given refclk with
  579. * the given connectors.
  580. */
  581. static bool intel_PLL_is_valid(struct drm_device *dev,
  582. const intel_limit_t *limit,
  583. const intel_clock_t *clock)
  584. {
  585. if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
  586. INTELPllInvalid("p1 out of range\n");
  587. if (clock->p < limit->p.min || limit->p.max < clock->p)
  588. INTELPllInvalid("p out of range\n");
  589. if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
  590. INTELPllInvalid("m2 out of range\n");
  591. if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
  592. INTELPllInvalid("m1 out of range\n");
  593. if (clock->m1 <= clock->m2 && !IS_PINEVIEW(dev))
  594. INTELPllInvalid("m1 <= m2\n");
  595. if (clock->m < limit->m.min || limit->m.max < clock->m)
  596. INTELPllInvalid("m out of range\n");
  597. if (clock->n < limit->n.min || limit->n.max < clock->n)
  598. INTELPllInvalid("n out of range\n");
  599. if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
  600. INTELPllInvalid("vco out of range\n");
  601. /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
  602. * connector, etc., rather than just a single range.
  603. */
  604. if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
  605. INTELPllInvalid("dot out of range\n");
  606. return true;
  607. }
  608. static bool
  609. intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
  610. int target, int refclk, intel_clock_t *match_clock,
  611. intel_clock_t *best_clock)
  612. {
  613. struct drm_device *dev = crtc->dev;
  614. struct drm_i915_private *dev_priv = dev->dev_private;
  615. intel_clock_t clock;
  616. int err = target;
  617. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
  618. (I915_READ(LVDS)) != 0) {
  619. /*
  620. * For LVDS, if the panel is on, just rely on its current
  621. * settings for dual-channel. We haven't figured out how to
  622. * reliably set up different single/dual channel state, if we
  623. * even can.
  624. */
  625. if (is_dual_link_lvds(dev_priv, LVDS))
  626. clock.p2 = limit->p2.p2_fast;
  627. else
  628. clock.p2 = limit->p2.p2_slow;
  629. } else {
  630. if (target < limit->p2.dot_limit)
  631. clock.p2 = limit->p2.p2_slow;
  632. else
  633. clock.p2 = limit->p2.p2_fast;
  634. }
  635. memset(best_clock, 0, sizeof(*best_clock));
  636. for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
  637. clock.m1++) {
  638. for (clock.m2 = limit->m2.min;
  639. clock.m2 <= limit->m2.max; clock.m2++) {
  640. /* m1 is always 0 in Pineview */
  641. if (clock.m2 >= clock.m1 && !IS_PINEVIEW(dev))
  642. break;
  643. for (clock.n = limit->n.min;
  644. clock.n <= limit->n.max; clock.n++) {
  645. for (clock.p1 = limit->p1.min;
  646. clock.p1 <= limit->p1.max; clock.p1++) {
  647. int this_err;
  648. intel_clock(dev, refclk, &clock);
  649. if (!intel_PLL_is_valid(dev, limit,
  650. &clock))
  651. continue;
  652. if (match_clock &&
  653. clock.p != match_clock->p)
  654. continue;
  655. this_err = abs(clock.dot - target);
  656. if (this_err < err) {
  657. *best_clock = clock;
  658. err = this_err;
  659. }
  660. }
  661. }
  662. }
  663. }
  664. return (err != target);
  665. }
  666. static bool
  667. intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
  668. int target, int refclk, intel_clock_t *match_clock,
  669. intel_clock_t *best_clock)
  670. {
  671. struct drm_device *dev = crtc->dev;
  672. struct drm_i915_private *dev_priv = dev->dev_private;
  673. intel_clock_t clock;
  674. int max_n;
  675. bool found;
  676. /* approximately equals target * 0.00585 */
  677. int err_most = (target >> 8) + (target >> 9);
  678. found = false;
  679. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  680. int lvds_reg;
  681. if (HAS_PCH_SPLIT(dev))
  682. lvds_reg = PCH_LVDS;
  683. else
  684. lvds_reg = LVDS;
  685. if ((I915_READ(lvds_reg) & LVDS_CLKB_POWER_MASK) ==
  686. LVDS_CLKB_POWER_UP)
  687. clock.p2 = limit->p2.p2_fast;
  688. else
  689. clock.p2 = limit->p2.p2_slow;
  690. } else {
  691. if (target < limit->p2.dot_limit)
  692. clock.p2 = limit->p2.p2_slow;
  693. else
  694. clock.p2 = limit->p2.p2_fast;
  695. }
  696. memset(best_clock, 0, sizeof(*best_clock));
  697. max_n = limit->n.max;
  698. /* based on hardware requirement, prefer smaller n to precision */
  699. for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
  700. /* based on hardware requirement, prefere larger m1,m2 */
  701. for (clock.m1 = limit->m1.max;
  702. clock.m1 >= limit->m1.min; clock.m1--) {
  703. for (clock.m2 = limit->m2.max;
  704. clock.m2 >= limit->m2.min; clock.m2--) {
  705. for (clock.p1 = limit->p1.max;
  706. clock.p1 >= limit->p1.min; clock.p1--) {
  707. int this_err;
  708. intel_clock(dev, refclk, &clock);
  709. if (!intel_PLL_is_valid(dev, limit,
  710. &clock))
  711. continue;
  712. if (match_clock &&
  713. clock.p != match_clock->p)
  714. continue;
  715. this_err = abs(clock.dot - target);
  716. if (this_err < err_most) {
  717. *best_clock = clock;
  718. err_most = this_err;
  719. max_n = clock.n;
  720. found = true;
  721. }
  722. }
  723. }
  724. }
  725. }
  726. return found;
  727. }
  728. static bool
  729. intel_find_pll_ironlake_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
  730. int target, int refclk, intel_clock_t *match_clock,
  731. intel_clock_t *best_clock)
  732. {
  733. struct drm_device *dev = crtc->dev;
  734. intel_clock_t clock;
  735. if (target < 200000) {
  736. clock.n = 1;
  737. clock.p1 = 2;
  738. clock.p2 = 10;
  739. clock.m1 = 12;
  740. clock.m2 = 9;
  741. } else {
  742. clock.n = 2;
  743. clock.p1 = 1;
  744. clock.p2 = 10;
  745. clock.m1 = 14;
  746. clock.m2 = 8;
  747. }
  748. intel_clock(dev, refclk, &clock);
  749. memcpy(best_clock, &clock, sizeof(intel_clock_t));
  750. return true;
  751. }
  752. /* DisplayPort has only two frequencies, 162MHz and 270MHz */
  753. static bool
  754. intel_find_pll_g4x_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
  755. int target, int refclk, intel_clock_t *match_clock,
  756. intel_clock_t *best_clock)
  757. {
  758. intel_clock_t clock;
  759. if (target < 200000) {
  760. clock.p1 = 2;
  761. clock.p2 = 10;
  762. clock.n = 2;
  763. clock.m1 = 23;
  764. clock.m2 = 8;
  765. } else {
  766. clock.p1 = 1;
  767. clock.p2 = 10;
  768. clock.n = 1;
  769. clock.m1 = 14;
  770. clock.m2 = 2;
  771. }
  772. clock.m = 5 * (clock.m1 + 2) + (clock.m2 + 2);
  773. clock.p = (clock.p1 * clock.p2);
  774. clock.dot = 96000 * clock.m / (clock.n + 2) / clock.p;
  775. clock.vco = 0;
  776. memcpy(best_clock, &clock, sizeof(intel_clock_t));
  777. return true;
  778. }
  779. static bool
  780. intel_vlv_find_best_pll(const intel_limit_t *limit, struct drm_crtc *crtc,
  781. int target, int refclk, intel_clock_t *match_clock,
  782. intel_clock_t *best_clock)
  783. {
  784. u32 p1, p2, m1, m2, vco, bestn, bestm1, bestm2, bestp1, bestp2;
  785. u32 m, n, fastclk;
  786. u32 updrate, minupdate, fracbits, p;
  787. unsigned long bestppm, ppm, absppm;
  788. int dotclk, flag;
  789. flag = 0;
  790. dotclk = target * 1000;
  791. bestppm = 1000000;
  792. ppm = absppm = 0;
  793. fastclk = dotclk / (2*100);
  794. updrate = 0;
  795. minupdate = 19200;
  796. fracbits = 1;
  797. n = p = p1 = p2 = m = m1 = m2 = vco = bestn = 0;
  798. bestm1 = bestm2 = bestp1 = bestp2 = 0;
  799. /* based on hardware requirement, prefer smaller n to precision */
  800. for (n = limit->n.min; n <= ((refclk) / minupdate); n++) {
  801. updrate = refclk / n;
  802. for (p1 = limit->p1.max; p1 > limit->p1.min; p1--) {
  803. for (p2 = limit->p2.p2_fast+1; p2 > 0; p2--) {
  804. if (p2 > 10)
  805. p2 = p2 - 1;
  806. p = p1 * p2;
  807. /* based on hardware requirement, prefer bigger m1,m2 values */
  808. for (m1 = limit->m1.min; m1 <= limit->m1.max; m1++) {
  809. m2 = (((2*(fastclk * p * n / m1 )) +
  810. refclk) / (2*refclk));
  811. m = m1 * m2;
  812. vco = updrate * m;
  813. if (vco >= limit->vco.min && vco < limit->vco.max) {
  814. ppm = 1000000 * ((vco / p) - fastclk) / fastclk;
  815. absppm = (ppm > 0) ? ppm : (-ppm);
  816. if (absppm < 100 && ((p1 * p2) > (bestp1 * bestp2))) {
  817. bestppm = 0;
  818. flag = 1;
  819. }
  820. if (absppm < bestppm - 10) {
  821. bestppm = absppm;
  822. flag = 1;
  823. }
  824. if (flag) {
  825. bestn = n;
  826. bestm1 = m1;
  827. bestm2 = m2;
  828. bestp1 = p1;
  829. bestp2 = p2;
  830. flag = 0;
  831. }
  832. }
  833. }
  834. }
  835. }
  836. }
  837. best_clock->n = bestn;
  838. best_clock->m1 = bestm1;
  839. best_clock->m2 = bestm2;
  840. best_clock->p1 = bestp1;
  841. best_clock->p2 = bestp2;
  842. return true;
  843. }
  844. static void ironlake_wait_for_vblank(struct drm_device *dev, int pipe)
  845. {
  846. struct drm_i915_private *dev_priv = dev->dev_private;
  847. u32 frame, frame_reg = PIPEFRAME(pipe);
  848. frame = I915_READ(frame_reg);
  849. if (wait_for(I915_READ_NOTRACE(frame_reg) != frame, 50))
  850. DRM_DEBUG_KMS("vblank wait timed out\n");
  851. }
  852. /**
  853. * intel_wait_for_vblank - wait for vblank on a given pipe
  854. * @dev: drm device
  855. * @pipe: pipe to wait for
  856. *
  857. * Wait for vblank to occur on a given pipe. Needed for various bits of
  858. * mode setting code.
  859. */
  860. void intel_wait_for_vblank(struct drm_device *dev, int pipe)
  861. {
  862. struct drm_i915_private *dev_priv = dev->dev_private;
  863. int pipestat_reg = PIPESTAT(pipe);
  864. if (INTEL_INFO(dev)->gen >= 5) {
  865. ironlake_wait_for_vblank(dev, pipe);
  866. return;
  867. }
  868. /* Clear existing vblank status. Note this will clear any other
  869. * sticky status fields as well.
  870. *
  871. * This races with i915_driver_irq_handler() with the result
  872. * that either function could miss a vblank event. Here it is not
  873. * fatal, as we will either wait upon the next vblank interrupt or
  874. * timeout. Generally speaking intel_wait_for_vblank() is only
  875. * called during modeset at which time the GPU should be idle and
  876. * should *not* be performing page flips and thus not waiting on
  877. * vblanks...
  878. * Currently, the result of us stealing a vblank from the irq
  879. * handler is that a single frame will be skipped during swapbuffers.
  880. */
  881. I915_WRITE(pipestat_reg,
  882. I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
  883. /* Wait for vblank interrupt bit to set */
  884. if (wait_for(I915_READ(pipestat_reg) &
  885. PIPE_VBLANK_INTERRUPT_STATUS,
  886. 50))
  887. DRM_DEBUG_KMS("vblank wait timed out\n");
  888. }
  889. /*
  890. * intel_wait_for_pipe_off - wait for pipe to turn off
  891. * @dev: drm device
  892. * @pipe: pipe to wait for
  893. *
  894. * After disabling a pipe, we can't wait for vblank in the usual way,
  895. * spinning on the vblank interrupt status bit, since we won't actually
  896. * see an interrupt when the pipe is disabled.
  897. *
  898. * On Gen4 and above:
  899. * wait for the pipe register state bit to turn off
  900. *
  901. * Otherwise:
  902. * wait for the display line value to settle (it usually
  903. * ends up stopping at the start of the next frame).
  904. *
  905. */
  906. void intel_wait_for_pipe_off(struct drm_device *dev, int pipe)
  907. {
  908. struct drm_i915_private *dev_priv = dev->dev_private;
  909. if (INTEL_INFO(dev)->gen >= 4) {
  910. int reg = PIPECONF(pipe);
  911. /* Wait for the Pipe State to go off */
  912. if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
  913. 100))
  914. WARN(1, "pipe_off wait timed out\n");
  915. } else {
  916. u32 last_line, line_mask;
  917. int reg = PIPEDSL(pipe);
  918. unsigned long timeout = jiffies + msecs_to_jiffies(100);
  919. if (IS_GEN2(dev))
  920. line_mask = DSL_LINEMASK_GEN2;
  921. else
  922. line_mask = DSL_LINEMASK_GEN3;
  923. /* Wait for the display line to settle */
  924. do {
  925. last_line = I915_READ(reg) & line_mask;
  926. mdelay(5);
  927. } while (((I915_READ(reg) & line_mask) != last_line) &&
  928. time_after(timeout, jiffies));
  929. if (time_after(jiffies, timeout))
  930. WARN(1, "pipe_off wait timed out\n");
  931. }
  932. }
  933. static const char *state_string(bool enabled)
  934. {
  935. return enabled ? "on" : "off";
  936. }
  937. /* Only for pre-ILK configs */
  938. static void assert_pll(struct drm_i915_private *dev_priv,
  939. enum pipe pipe, bool state)
  940. {
  941. int reg;
  942. u32 val;
  943. bool cur_state;
  944. reg = DPLL(pipe);
  945. val = I915_READ(reg);
  946. cur_state = !!(val & DPLL_VCO_ENABLE);
  947. WARN(cur_state != state,
  948. "PLL state assertion failure (expected %s, current %s)\n",
  949. state_string(state), state_string(cur_state));
  950. }
  951. #define assert_pll_enabled(d, p) assert_pll(d, p, true)
  952. #define assert_pll_disabled(d, p) assert_pll(d, p, false)
  953. /* For ILK+ */
  954. static void assert_pch_pll(struct drm_i915_private *dev_priv,
  955. struct intel_pch_pll *pll,
  956. struct intel_crtc *crtc,
  957. bool state)
  958. {
  959. u32 val;
  960. bool cur_state;
  961. if (HAS_PCH_LPT(dev_priv->dev)) {
  962. DRM_DEBUG_DRIVER("LPT detected: skipping PCH PLL test\n");
  963. return;
  964. }
  965. if (WARN (!pll,
  966. "asserting PCH PLL %s with no PLL\n", state_string(state)))
  967. return;
  968. val = I915_READ(pll->pll_reg);
  969. cur_state = !!(val & DPLL_VCO_ENABLE);
  970. WARN(cur_state != state,
  971. "PCH PLL state for reg %x assertion failure (expected %s, current %s), val=%08x\n",
  972. pll->pll_reg, state_string(state), state_string(cur_state), val);
  973. /* Make sure the selected PLL is correctly attached to the transcoder */
  974. if (crtc && HAS_PCH_CPT(dev_priv->dev)) {
  975. u32 pch_dpll;
  976. pch_dpll = I915_READ(PCH_DPLL_SEL);
  977. cur_state = pll->pll_reg == _PCH_DPLL_B;
  978. if (!WARN(((pch_dpll >> (4 * crtc->pipe)) & 1) != cur_state,
  979. "PLL[%d] not attached to this transcoder %d: %08x\n",
  980. cur_state, crtc->pipe, pch_dpll)) {
  981. cur_state = !!(val >> (4*crtc->pipe + 3));
  982. WARN(cur_state != state,
  983. "PLL[%d] not %s on this transcoder %d: %08x\n",
  984. pll->pll_reg == _PCH_DPLL_B,
  985. state_string(state),
  986. crtc->pipe,
  987. val);
  988. }
  989. }
  990. }
  991. #define assert_pch_pll_enabled(d, p, c) assert_pch_pll(d, p, c, true)
  992. #define assert_pch_pll_disabled(d, p, c) assert_pch_pll(d, p, c, false)
  993. static void assert_fdi_tx(struct drm_i915_private *dev_priv,
  994. enum pipe pipe, bool state)
  995. {
  996. int reg;
  997. u32 val;
  998. bool cur_state;
  999. if (IS_HASWELL(dev_priv->dev)) {
  1000. /* On Haswell, DDI is used instead of FDI_TX_CTL */
  1001. reg = DDI_FUNC_CTL(pipe);
  1002. val = I915_READ(reg);
  1003. cur_state = !!(val & PIPE_DDI_FUNC_ENABLE);
  1004. } else {
  1005. reg = FDI_TX_CTL(pipe);
  1006. val = I915_READ(reg);
  1007. cur_state = !!(val & FDI_TX_ENABLE);
  1008. }
  1009. WARN(cur_state != state,
  1010. "FDI TX state assertion failure (expected %s, current %s)\n",
  1011. state_string(state), state_string(cur_state));
  1012. }
  1013. #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
  1014. #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
  1015. static void assert_fdi_rx(struct drm_i915_private *dev_priv,
  1016. enum pipe pipe, bool state)
  1017. {
  1018. int reg;
  1019. u32 val;
  1020. bool cur_state;
  1021. if (IS_HASWELL(dev_priv->dev) && pipe > 0) {
  1022. DRM_ERROR("Attempting to enable FDI_RX on Haswell pipe > 0\n");
  1023. return;
  1024. } else {
  1025. reg = FDI_RX_CTL(pipe);
  1026. val = I915_READ(reg);
  1027. cur_state = !!(val & FDI_RX_ENABLE);
  1028. }
  1029. WARN(cur_state != state,
  1030. "FDI RX state assertion failure (expected %s, current %s)\n",
  1031. state_string(state), state_string(cur_state));
  1032. }
  1033. #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
  1034. #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
  1035. static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
  1036. enum pipe pipe)
  1037. {
  1038. int reg;
  1039. u32 val;
  1040. /* ILK FDI PLL is always enabled */
  1041. if (dev_priv->info->gen == 5)
  1042. return;
  1043. /* On Haswell, DDI ports are responsible for the FDI PLL setup */
  1044. if (IS_HASWELL(dev_priv->dev))
  1045. return;
  1046. reg = FDI_TX_CTL(pipe);
  1047. val = I915_READ(reg);
  1048. WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
  1049. }
  1050. static void assert_fdi_rx_pll_enabled(struct drm_i915_private *dev_priv,
  1051. enum pipe pipe)
  1052. {
  1053. int reg;
  1054. u32 val;
  1055. if (IS_HASWELL(dev_priv->dev) && pipe > 0) {
  1056. DRM_ERROR("Attempting to enable FDI on Haswell with pipe > 0\n");
  1057. return;
  1058. }
  1059. reg = FDI_RX_CTL(pipe);
  1060. val = I915_READ(reg);
  1061. WARN(!(val & FDI_RX_PLL_ENABLE), "FDI RX PLL assertion failure, should be active but is disabled\n");
  1062. }
  1063. static void assert_panel_unlocked(struct drm_i915_private *dev_priv,
  1064. enum pipe pipe)
  1065. {
  1066. int pp_reg, lvds_reg;
  1067. u32 val;
  1068. enum pipe panel_pipe = PIPE_A;
  1069. bool locked = true;
  1070. if (HAS_PCH_SPLIT(dev_priv->dev)) {
  1071. pp_reg = PCH_PP_CONTROL;
  1072. lvds_reg = PCH_LVDS;
  1073. } else {
  1074. pp_reg = PP_CONTROL;
  1075. lvds_reg = LVDS;
  1076. }
  1077. val = I915_READ(pp_reg);
  1078. if (!(val & PANEL_POWER_ON) ||
  1079. ((val & PANEL_UNLOCK_REGS) == PANEL_UNLOCK_REGS))
  1080. locked = false;
  1081. if (I915_READ(lvds_reg) & LVDS_PIPEB_SELECT)
  1082. panel_pipe = PIPE_B;
  1083. WARN(panel_pipe == pipe && locked,
  1084. "panel assertion failure, pipe %c regs locked\n",
  1085. pipe_name(pipe));
  1086. }
  1087. void assert_pipe(struct drm_i915_private *dev_priv,
  1088. enum pipe pipe, bool state)
  1089. {
  1090. int reg;
  1091. u32 val;
  1092. bool cur_state;
  1093. /* if we need the pipe A quirk it must be always on */
  1094. if (pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
  1095. state = true;
  1096. reg = PIPECONF(pipe);
  1097. val = I915_READ(reg);
  1098. cur_state = !!(val & PIPECONF_ENABLE);
  1099. WARN(cur_state != state,
  1100. "pipe %c assertion failure (expected %s, current %s)\n",
  1101. pipe_name(pipe), state_string(state), state_string(cur_state));
  1102. }
  1103. static void assert_plane(struct drm_i915_private *dev_priv,
  1104. enum plane plane, bool state)
  1105. {
  1106. int reg;
  1107. u32 val;
  1108. bool cur_state;
  1109. reg = DSPCNTR(plane);
  1110. val = I915_READ(reg);
  1111. cur_state = !!(val & DISPLAY_PLANE_ENABLE);
  1112. WARN(cur_state != state,
  1113. "plane %c assertion failure (expected %s, current %s)\n",
  1114. plane_name(plane), state_string(state), state_string(cur_state));
  1115. }
  1116. #define assert_plane_enabled(d, p) assert_plane(d, p, true)
  1117. #define assert_plane_disabled(d, p) assert_plane(d, p, false)
  1118. static void assert_planes_disabled(struct drm_i915_private *dev_priv,
  1119. enum pipe pipe)
  1120. {
  1121. int reg, i;
  1122. u32 val;
  1123. int cur_pipe;
  1124. /* Planes are fixed to pipes on ILK+ */
  1125. if (HAS_PCH_SPLIT(dev_priv->dev)) {
  1126. reg = DSPCNTR(pipe);
  1127. val = I915_READ(reg);
  1128. WARN((val & DISPLAY_PLANE_ENABLE),
  1129. "plane %c assertion failure, should be disabled but not\n",
  1130. plane_name(pipe));
  1131. return;
  1132. }
  1133. /* Need to check both planes against the pipe */
  1134. for (i = 0; i < 2; i++) {
  1135. reg = DSPCNTR(i);
  1136. val = I915_READ(reg);
  1137. cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
  1138. DISPPLANE_SEL_PIPE_SHIFT;
  1139. WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
  1140. "plane %c assertion failure, should be off on pipe %c but is still active\n",
  1141. plane_name(i), pipe_name(pipe));
  1142. }
  1143. }
  1144. static void assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
  1145. {
  1146. u32 val;
  1147. bool enabled;
  1148. if (HAS_PCH_LPT(dev_priv->dev)) {
  1149. DRM_DEBUG_DRIVER("LPT does not has PCH refclk, skipping check\n");
  1150. return;
  1151. }
  1152. val = I915_READ(PCH_DREF_CONTROL);
  1153. enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
  1154. DREF_SUPERSPREAD_SOURCE_MASK));
  1155. WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
  1156. }
  1157. static void assert_transcoder_disabled(struct drm_i915_private *dev_priv,
  1158. enum pipe pipe)
  1159. {
  1160. int reg;
  1161. u32 val;
  1162. bool enabled;
  1163. reg = TRANSCONF(pipe);
  1164. val = I915_READ(reg);
  1165. enabled = !!(val & TRANS_ENABLE);
  1166. WARN(enabled,
  1167. "transcoder assertion failed, should be off on pipe %c but is still active\n",
  1168. pipe_name(pipe));
  1169. }
  1170. static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
  1171. enum pipe pipe, u32 port_sel, u32 val)
  1172. {
  1173. if ((val & DP_PORT_EN) == 0)
  1174. return false;
  1175. if (HAS_PCH_CPT(dev_priv->dev)) {
  1176. u32 trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
  1177. u32 trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
  1178. if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
  1179. return false;
  1180. } else {
  1181. if ((val & DP_PIPE_MASK) != (pipe << 30))
  1182. return false;
  1183. }
  1184. return true;
  1185. }
  1186. static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
  1187. enum pipe pipe, u32 val)
  1188. {
  1189. if ((val & PORT_ENABLE) == 0)
  1190. return false;
  1191. if (HAS_PCH_CPT(dev_priv->dev)) {
  1192. if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
  1193. return false;
  1194. } else {
  1195. if ((val & TRANSCODER_MASK) != TRANSCODER(pipe))
  1196. return false;
  1197. }
  1198. return true;
  1199. }
  1200. static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
  1201. enum pipe pipe, u32 val)
  1202. {
  1203. if ((val & LVDS_PORT_EN) == 0)
  1204. return false;
  1205. if (HAS_PCH_CPT(dev_priv->dev)) {
  1206. if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
  1207. return false;
  1208. } else {
  1209. if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
  1210. return false;
  1211. }
  1212. return true;
  1213. }
  1214. static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
  1215. enum pipe pipe, u32 val)
  1216. {
  1217. if ((val & ADPA_DAC_ENABLE) == 0)
  1218. return false;
  1219. if (HAS_PCH_CPT(dev_priv->dev)) {
  1220. if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
  1221. return false;
  1222. } else {
  1223. if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
  1224. return false;
  1225. }
  1226. return true;
  1227. }
  1228. static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
  1229. enum pipe pipe, int reg, u32 port_sel)
  1230. {
  1231. u32 val = I915_READ(reg);
  1232. WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
  1233. "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
  1234. reg, pipe_name(pipe));
  1235. WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
  1236. && (val & DP_PIPEB_SELECT),
  1237. "IBX PCH dp port still using transcoder B\n");
  1238. }
  1239. static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
  1240. enum pipe pipe, int reg)
  1241. {
  1242. u32 val = I915_READ(reg);
  1243. WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
  1244. "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
  1245. reg, pipe_name(pipe));
  1246. WARN(HAS_PCH_IBX(dev_priv->dev) && (val & PORT_ENABLE) == 0
  1247. && (val & SDVO_PIPE_B_SELECT),
  1248. "IBX PCH hdmi port still using transcoder B\n");
  1249. }
  1250. static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
  1251. enum pipe pipe)
  1252. {
  1253. int reg;
  1254. u32 val;
  1255. assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
  1256. assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
  1257. assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
  1258. reg = PCH_ADPA;
  1259. val = I915_READ(reg);
  1260. WARN(adpa_pipe_enabled(dev_priv, pipe, val),
  1261. "PCH VGA enabled on transcoder %c, should be disabled\n",
  1262. pipe_name(pipe));
  1263. reg = PCH_LVDS;
  1264. val = I915_READ(reg);
  1265. WARN(lvds_pipe_enabled(dev_priv, pipe, val),
  1266. "PCH LVDS enabled on transcoder %c, should be disabled\n",
  1267. pipe_name(pipe));
  1268. assert_pch_hdmi_disabled(dev_priv, pipe, HDMIB);
  1269. assert_pch_hdmi_disabled(dev_priv, pipe, HDMIC);
  1270. assert_pch_hdmi_disabled(dev_priv, pipe, HDMID);
  1271. }
  1272. /**
  1273. * intel_enable_pll - enable a PLL
  1274. * @dev_priv: i915 private structure
  1275. * @pipe: pipe PLL to enable
  1276. *
  1277. * Enable @pipe's PLL so we can start pumping pixels from a plane. Check to
  1278. * make sure the PLL reg is writable first though, since the panel write
  1279. * protect mechanism may be enabled.
  1280. *
  1281. * Note! This is for pre-ILK only.
  1282. *
  1283. * Unfortunately needed by dvo_ns2501 since the dvo depends on it running.
  1284. */
  1285. static void intel_enable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
  1286. {
  1287. int reg;
  1288. u32 val;
  1289. /* No really, not for ILK+ */
  1290. BUG_ON(!IS_VALLEYVIEW(dev_priv->dev) && dev_priv->info->gen >= 5);
  1291. /* PLL is protected by panel, make sure we can write it */
  1292. if (IS_MOBILE(dev_priv->dev) && !IS_I830(dev_priv->dev))
  1293. assert_panel_unlocked(dev_priv, pipe);
  1294. reg = DPLL(pipe);
  1295. val = I915_READ(reg);
  1296. val |= DPLL_VCO_ENABLE;
  1297. /* We do this three times for luck */
  1298. I915_WRITE(reg, val);
  1299. POSTING_READ(reg);
  1300. udelay(150); /* wait for warmup */
  1301. I915_WRITE(reg, val);
  1302. POSTING_READ(reg);
  1303. udelay(150); /* wait for warmup */
  1304. I915_WRITE(reg, val);
  1305. POSTING_READ(reg);
  1306. udelay(150); /* wait for warmup */
  1307. }
  1308. /**
  1309. * intel_disable_pll - disable a PLL
  1310. * @dev_priv: i915 private structure
  1311. * @pipe: pipe PLL to disable
  1312. *
  1313. * Disable the PLL for @pipe, making sure the pipe is off first.
  1314. *
  1315. * Note! This is for pre-ILK only.
  1316. */
  1317. static void intel_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
  1318. {
  1319. int reg;
  1320. u32 val;
  1321. /* Don't disable pipe A or pipe A PLLs if needed */
  1322. if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
  1323. return;
  1324. /* Make sure the pipe isn't still relying on us */
  1325. assert_pipe_disabled(dev_priv, pipe);
  1326. reg = DPLL(pipe);
  1327. val = I915_READ(reg);
  1328. val &= ~DPLL_VCO_ENABLE;
  1329. I915_WRITE(reg, val);
  1330. POSTING_READ(reg);
  1331. }
  1332. /* SBI access */
  1333. static void
  1334. intel_sbi_write(struct drm_i915_private *dev_priv, u16 reg, u32 value)
  1335. {
  1336. unsigned long flags;
  1337. spin_lock_irqsave(&dev_priv->dpio_lock, flags);
  1338. if (wait_for((I915_READ(SBI_CTL_STAT) & SBI_BUSY) == 0,
  1339. 100)) {
  1340. DRM_ERROR("timeout waiting for SBI to become ready\n");
  1341. goto out_unlock;
  1342. }
  1343. I915_WRITE(SBI_ADDR,
  1344. (reg << 16));
  1345. I915_WRITE(SBI_DATA,
  1346. value);
  1347. I915_WRITE(SBI_CTL_STAT,
  1348. SBI_BUSY |
  1349. SBI_CTL_OP_CRWR);
  1350. if (wait_for((I915_READ(SBI_CTL_STAT) & (SBI_BUSY | SBI_RESPONSE_FAIL)) == 0,
  1351. 100)) {
  1352. DRM_ERROR("timeout waiting for SBI to complete write transaction\n");
  1353. goto out_unlock;
  1354. }
  1355. out_unlock:
  1356. spin_unlock_irqrestore(&dev_priv->dpio_lock, flags);
  1357. }
  1358. static u32
  1359. intel_sbi_read(struct drm_i915_private *dev_priv, u16 reg)
  1360. {
  1361. unsigned long flags;
  1362. u32 value = 0;
  1363. spin_lock_irqsave(&dev_priv->dpio_lock, flags);
  1364. if (wait_for((I915_READ(SBI_CTL_STAT) & SBI_BUSY) == 0,
  1365. 100)) {
  1366. DRM_ERROR("timeout waiting for SBI to become ready\n");
  1367. goto out_unlock;
  1368. }
  1369. I915_WRITE(SBI_ADDR,
  1370. (reg << 16));
  1371. I915_WRITE(SBI_CTL_STAT,
  1372. SBI_BUSY |
  1373. SBI_CTL_OP_CRRD);
  1374. if (wait_for((I915_READ(SBI_CTL_STAT) & (SBI_BUSY | SBI_RESPONSE_FAIL)) == 0,
  1375. 100)) {
  1376. DRM_ERROR("timeout waiting for SBI to complete read transaction\n");
  1377. goto out_unlock;
  1378. }
  1379. value = I915_READ(SBI_DATA);
  1380. out_unlock:
  1381. spin_unlock_irqrestore(&dev_priv->dpio_lock, flags);
  1382. return value;
  1383. }
  1384. /**
  1385. * intel_enable_pch_pll - enable PCH PLL
  1386. * @dev_priv: i915 private structure
  1387. * @pipe: pipe PLL to enable
  1388. *
  1389. * The PCH PLL needs to be enabled before the PCH transcoder, since it
  1390. * drives the transcoder clock.
  1391. */
  1392. static void intel_enable_pch_pll(struct intel_crtc *intel_crtc)
  1393. {
  1394. struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
  1395. struct intel_pch_pll *pll;
  1396. int reg;
  1397. u32 val;
  1398. /* PCH PLLs only available on ILK, SNB and IVB */
  1399. BUG_ON(dev_priv->info->gen < 5);
  1400. pll = intel_crtc->pch_pll;
  1401. if (pll == NULL)
  1402. return;
  1403. if (WARN_ON(pll->refcount == 0))
  1404. return;
  1405. DRM_DEBUG_KMS("enable PCH PLL %x (active %d, on? %d)for crtc %d\n",
  1406. pll->pll_reg, pll->active, pll->on,
  1407. intel_crtc->base.base.id);
  1408. /* PCH refclock must be enabled first */
  1409. assert_pch_refclk_enabled(dev_priv);
  1410. if (pll->active++ && pll->on) {
  1411. assert_pch_pll_enabled(dev_priv, pll, NULL);
  1412. return;
  1413. }
  1414. DRM_DEBUG_KMS("enabling PCH PLL %x\n", pll->pll_reg);
  1415. reg = pll->pll_reg;
  1416. val = I915_READ(reg);
  1417. val |= DPLL_VCO_ENABLE;
  1418. I915_WRITE(reg, val);
  1419. POSTING_READ(reg);
  1420. udelay(200);
  1421. pll->on = true;
  1422. }
  1423. static void intel_disable_pch_pll(struct intel_crtc *intel_crtc)
  1424. {
  1425. struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
  1426. struct intel_pch_pll *pll = intel_crtc->pch_pll;
  1427. int reg;
  1428. u32 val;
  1429. /* PCH only available on ILK+ */
  1430. BUG_ON(dev_priv->info->gen < 5);
  1431. if (pll == NULL)
  1432. return;
  1433. if (WARN_ON(pll->refcount == 0))
  1434. return;
  1435. DRM_DEBUG_KMS("disable PCH PLL %x (active %d, on? %d) for crtc %d\n",
  1436. pll->pll_reg, pll->active, pll->on,
  1437. intel_crtc->base.base.id);
  1438. if (WARN_ON(pll->active == 0)) {
  1439. assert_pch_pll_disabled(dev_priv, pll, NULL);
  1440. return;
  1441. }
  1442. if (--pll->active) {
  1443. assert_pch_pll_enabled(dev_priv, pll, NULL);
  1444. return;
  1445. }
  1446. DRM_DEBUG_KMS("disabling PCH PLL %x\n", pll->pll_reg);
  1447. /* Make sure transcoder isn't still depending on us */
  1448. assert_transcoder_disabled(dev_priv, intel_crtc->pipe);
  1449. reg = pll->pll_reg;
  1450. val = I915_READ(reg);
  1451. val &= ~DPLL_VCO_ENABLE;
  1452. I915_WRITE(reg, val);
  1453. POSTING_READ(reg);
  1454. udelay(200);
  1455. pll->on = false;
  1456. }
  1457. static void intel_enable_transcoder(struct drm_i915_private *dev_priv,
  1458. enum pipe pipe)
  1459. {
  1460. int reg;
  1461. u32 val, pipeconf_val;
  1462. struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
  1463. /* PCH only available on ILK+ */
  1464. BUG_ON(dev_priv->info->gen < 5);
  1465. /* Make sure PCH DPLL is enabled */
  1466. assert_pch_pll_enabled(dev_priv,
  1467. to_intel_crtc(crtc)->pch_pll,
  1468. to_intel_crtc(crtc));
  1469. /* FDI must be feeding us bits for PCH ports */
  1470. assert_fdi_tx_enabled(dev_priv, pipe);
  1471. assert_fdi_rx_enabled(dev_priv, pipe);
  1472. if (IS_HASWELL(dev_priv->dev) && pipe > 0) {
  1473. DRM_ERROR("Attempting to enable transcoder on Haswell with pipe > 0\n");
  1474. return;
  1475. }
  1476. reg = TRANSCONF(pipe);
  1477. val = I915_READ(reg);
  1478. pipeconf_val = I915_READ(PIPECONF(pipe));
  1479. if (HAS_PCH_IBX(dev_priv->dev)) {
  1480. /*
  1481. * make the BPC in transcoder be consistent with
  1482. * that in pipeconf reg.
  1483. */
  1484. val &= ~PIPE_BPC_MASK;
  1485. val |= pipeconf_val & PIPE_BPC_MASK;
  1486. }
  1487. val &= ~TRANS_INTERLACE_MASK;
  1488. if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
  1489. if (HAS_PCH_IBX(dev_priv->dev) &&
  1490. intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO))
  1491. val |= TRANS_LEGACY_INTERLACED_ILK;
  1492. else
  1493. val |= TRANS_INTERLACED;
  1494. else
  1495. val |= TRANS_PROGRESSIVE;
  1496. I915_WRITE(reg, val | TRANS_ENABLE);
  1497. if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
  1498. DRM_ERROR("failed to enable transcoder %d\n", pipe);
  1499. }
  1500. static void intel_disable_transcoder(struct drm_i915_private *dev_priv,
  1501. enum pipe pipe)
  1502. {
  1503. int reg;
  1504. u32 val;
  1505. /* FDI relies on the transcoder */
  1506. assert_fdi_tx_disabled(dev_priv, pipe);
  1507. assert_fdi_rx_disabled(dev_priv, pipe);
  1508. /* Ports must be off as well */
  1509. assert_pch_ports_disabled(dev_priv, pipe);
  1510. reg = TRANSCONF(pipe);
  1511. val = I915_READ(reg);
  1512. val &= ~TRANS_ENABLE;
  1513. I915_WRITE(reg, val);
  1514. /* wait for PCH transcoder off, transcoder state */
  1515. if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
  1516. DRM_ERROR("failed to disable transcoder %d\n", pipe);
  1517. }
  1518. /**
  1519. * intel_enable_pipe - enable a pipe, asserting requirements
  1520. * @dev_priv: i915 private structure
  1521. * @pipe: pipe to enable
  1522. * @pch_port: on ILK+, is this pipe driving a PCH port or not
  1523. *
  1524. * Enable @pipe, making sure that various hardware specific requirements
  1525. * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
  1526. *
  1527. * @pipe should be %PIPE_A or %PIPE_B.
  1528. *
  1529. * Will wait until the pipe is actually running (i.e. first vblank) before
  1530. * returning.
  1531. */
  1532. static void intel_enable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe,
  1533. bool pch_port)
  1534. {
  1535. int reg;
  1536. u32 val;
  1537. /*
  1538. * A pipe without a PLL won't actually be able to drive bits from
  1539. * a plane. On ILK+ the pipe PLLs are integrated, so we don't
  1540. * need the check.
  1541. */
  1542. if (!HAS_PCH_SPLIT(dev_priv->dev))
  1543. assert_pll_enabled(dev_priv, pipe);
  1544. else {
  1545. if (pch_port) {
  1546. /* if driving the PCH, we need FDI enabled */
  1547. assert_fdi_rx_pll_enabled(dev_priv, pipe);
  1548. assert_fdi_tx_pll_enabled(dev_priv, pipe);
  1549. }
  1550. /* FIXME: assert CPU port conditions for SNB+ */
  1551. }
  1552. reg = PIPECONF(pipe);
  1553. val = I915_READ(reg);
  1554. if (val & PIPECONF_ENABLE)
  1555. return;
  1556. I915_WRITE(reg, val | PIPECONF_ENABLE);
  1557. intel_wait_for_vblank(dev_priv->dev, pipe);
  1558. }
  1559. /**
  1560. * intel_disable_pipe - disable a pipe, asserting requirements
  1561. * @dev_priv: i915 private structure
  1562. * @pipe: pipe to disable
  1563. *
  1564. * Disable @pipe, making sure that various hardware specific requirements
  1565. * are met, if applicable, e.g. plane disabled, panel fitter off, etc.
  1566. *
  1567. * @pipe should be %PIPE_A or %PIPE_B.
  1568. *
  1569. * Will wait until the pipe has shut down before returning.
  1570. */
  1571. static void intel_disable_pipe(struct drm_i915_private *dev_priv,
  1572. enum pipe pipe)
  1573. {
  1574. int reg;
  1575. u32 val;
  1576. /*
  1577. * Make sure planes won't keep trying to pump pixels to us,
  1578. * or we might hang the display.
  1579. */
  1580. assert_planes_disabled(dev_priv, pipe);
  1581. /* Don't disable pipe A or pipe A PLLs if needed */
  1582. if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
  1583. return;
  1584. reg = PIPECONF(pipe);
  1585. val = I915_READ(reg);
  1586. if ((val & PIPECONF_ENABLE) == 0)
  1587. return;
  1588. I915_WRITE(reg, val & ~PIPECONF_ENABLE);
  1589. intel_wait_for_pipe_off(dev_priv->dev, pipe);
  1590. }
  1591. /*
  1592. * Plane regs are double buffered, going from enabled->disabled needs a
  1593. * trigger in order to latch. The display address reg provides this.
  1594. */
  1595. void intel_flush_display_plane(struct drm_i915_private *dev_priv,
  1596. enum plane plane)
  1597. {
  1598. I915_WRITE(DSPADDR(plane), I915_READ(DSPADDR(plane)));
  1599. I915_WRITE(DSPSURF(plane), I915_READ(DSPSURF(plane)));
  1600. }
  1601. /**
  1602. * intel_enable_plane - enable a display plane on a given pipe
  1603. * @dev_priv: i915 private structure
  1604. * @plane: plane to enable
  1605. * @pipe: pipe being fed
  1606. *
  1607. * Enable @plane on @pipe, making sure that @pipe is running first.
  1608. */
  1609. static void intel_enable_plane(struct drm_i915_private *dev_priv,
  1610. enum plane plane, enum pipe pipe)
  1611. {
  1612. int reg;
  1613. u32 val;
  1614. /* If the pipe isn't enabled, we can't pump pixels and may hang */
  1615. assert_pipe_enabled(dev_priv, pipe);
  1616. reg = DSPCNTR(plane);
  1617. val = I915_READ(reg);
  1618. if (val & DISPLAY_PLANE_ENABLE)
  1619. return;
  1620. I915_WRITE(reg, val | DISPLAY_PLANE_ENABLE);
  1621. intel_flush_display_plane(dev_priv, plane);
  1622. intel_wait_for_vblank(dev_priv->dev, pipe);
  1623. }
  1624. /**
  1625. * intel_disable_plane - disable a display plane
  1626. * @dev_priv: i915 private structure
  1627. * @plane: plane to disable
  1628. * @pipe: pipe consuming the data
  1629. *
  1630. * Disable @plane; should be an independent operation.
  1631. */
  1632. static void intel_disable_plane(struct drm_i915_private *dev_priv,
  1633. enum plane plane, enum pipe pipe)
  1634. {
  1635. int reg;
  1636. u32 val;
  1637. reg = DSPCNTR(plane);
  1638. val = I915_READ(reg);
  1639. if ((val & DISPLAY_PLANE_ENABLE) == 0)
  1640. return;
  1641. I915_WRITE(reg, val & ~DISPLAY_PLANE_ENABLE);
  1642. intel_flush_display_plane(dev_priv, plane);
  1643. intel_wait_for_vblank(dev_priv->dev, pipe);
  1644. }
  1645. int
  1646. intel_pin_and_fence_fb_obj(struct drm_device *dev,
  1647. struct drm_i915_gem_object *obj,
  1648. struct intel_ring_buffer *pipelined)
  1649. {
  1650. struct drm_i915_private *dev_priv = dev->dev_private;
  1651. u32 alignment;
  1652. int ret;
  1653. switch (obj->tiling_mode) {
  1654. case I915_TILING_NONE:
  1655. if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
  1656. alignment = 128 * 1024;
  1657. else if (INTEL_INFO(dev)->gen >= 4)
  1658. alignment = 4 * 1024;
  1659. else
  1660. alignment = 64 * 1024;
  1661. break;
  1662. case I915_TILING_X:
  1663. /* pin() will align the object as required by fence */
  1664. alignment = 0;
  1665. break;
  1666. case I915_TILING_Y:
  1667. /* FIXME: Is this true? */
  1668. DRM_ERROR("Y tiled not allowed for scan out buffers\n");
  1669. return -EINVAL;
  1670. default:
  1671. BUG();
  1672. }
  1673. dev_priv->mm.interruptible = false;
  1674. ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
  1675. if (ret)
  1676. goto err_interruptible;
  1677. /* Install a fence for tiled scan-out. Pre-i965 always needs a
  1678. * fence, whereas 965+ only requires a fence if using
  1679. * framebuffer compression. For simplicity, we always install
  1680. * a fence as the cost is not that onerous.
  1681. */
  1682. ret = i915_gem_object_get_fence(obj);
  1683. if (ret)
  1684. goto err_unpin;
  1685. i915_gem_object_pin_fence(obj);
  1686. dev_priv->mm.interruptible = true;
  1687. return 0;
  1688. err_unpin:
  1689. i915_gem_object_unpin(obj);
  1690. err_interruptible:
  1691. dev_priv->mm.interruptible = true;
  1692. return ret;
  1693. }
  1694. void intel_unpin_fb_obj(struct drm_i915_gem_object *obj)
  1695. {
  1696. i915_gem_object_unpin_fence(obj);
  1697. i915_gem_object_unpin(obj);
  1698. }
  1699. /* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
  1700. * is assumed to be a power-of-two. */
  1701. static unsigned long gen4_compute_dspaddr_offset_xtiled(int *x, int *y,
  1702. unsigned int bpp,
  1703. unsigned int pitch)
  1704. {
  1705. int tile_rows, tiles;
  1706. tile_rows = *y / 8;
  1707. *y %= 8;
  1708. tiles = *x / (512/bpp);
  1709. *x %= 512/bpp;
  1710. return tile_rows * pitch * 8 + tiles * 4096;
  1711. }
  1712. static int i9xx_update_plane(struct drm_crtc *crtc, struct drm_framebuffer *fb,
  1713. int x, int y)
  1714. {
  1715. struct drm_device *dev = crtc->dev;
  1716. struct drm_i915_private *dev_priv = dev->dev_private;
  1717. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1718. struct intel_framebuffer *intel_fb;
  1719. struct drm_i915_gem_object *obj;
  1720. int plane = intel_crtc->plane;
  1721. unsigned long linear_offset;
  1722. u32 dspcntr;
  1723. u32 reg;
  1724. switch (plane) {
  1725. case 0:
  1726. case 1:
  1727. break;
  1728. default:
  1729. DRM_ERROR("Can't update plane %d in SAREA\n", plane);
  1730. return -EINVAL;
  1731. }
  1732. intel_fb = to_intel_framebuffer(fb);
  1733. obj = intel_fb->obj;
  1734. reg = DSPCNTR(plane);
  1735. dspcntr = I915_READ(reg);
  1736. /* Mask out pixel format bits in case we change it */
  1737. dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
  1738. switch (fb->bits_per_pixel) {
  1739. case 8:
  1740. dspcntr |= DISPPLANE_8BPP;
  1741. break;
  1742. case 16:
  1743. if (fb->depth == 15)
  1744. dspcntr |= DISPPLANE_15_16BPP;
  1745. else
  1746. dspcntr |= DISPPLANE_16BPP;
  1747. break;
  1748. case 24:
  1749. case 32:
  1750. dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
  1751. break;
  1752. default:
  1753. DRM_ERROR("Unknown color depth %d\n", fb->bits_per_pixel);
  1754. return -EINVAL;
  1755. }
  1756. if (INTEL_INFO(dev)->gen >= 4) {
  1757. if (obj->tiling_mode != I915_TILING_NONE)
  1758. dspcntr |= DISPPLANE_TILED;
  1759. else
  1760. dspcntr &= ~DISPPLANE_TILED;
  1761. }
  1762. I915_WRITE(reg, dspcntr);
  1763. linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
  1764. if (INTEL_INFO(dev)->gen >= 4) {
  1765. intel_crtc->dspaddr_offset =
  1766. gen4_compute_dspaddr_offset_xtiled(&x, &y,
  1767. fb->bits_per_pixel / 8,
  1768. fb->pitches[0]);
  1769. linear_offset -= intel_crtc->dspaddr_offset;
  1770. } else {
  1771. intel_crtc->dspaddr_offset = linear_offset;
  1772. }
  1773. DRM_DEBUG_KMS("Writing base %08X %08lX %d %d %d\n",
  1774. obj->gtt_offset, linear_offset, x, y, fb->pitches[0]);
  1775. I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
  1776. if (INTEL_INFO(dev)->gen >= 4) {
  1777. I915_MODIFY_DISPBASE(DSPSURF(plane),
  1778. obj->gtt_offset + intel_crtc->dspaddr_offset);
  1779. I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
  1780. I915_WRITE(DSPLINOFF(plane), linear_offset);
  1781. } else
  1782. I915_WRITE(DSPADDR(plane), obj->gtt_offset + linear_offset);
  1783. POSTING_READ(reg);
  1784. return 0;
  1785. }
  1786. static int ironlake_update_plane(struct drm_crtc *crtc,
  1787. struct drm_framebuffer *fb, int x, int y)
  1788. {
  1789. struct drm_device *dev = crtc->dev;
  1790. struct drm_i915_private *dev_priv = dev->dev_private;
  1791. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1792. struct intel_framebuffer *intel_fb;
  1793. struct drm_i915_gem_object *obj;
  1794. int plane = intel_crtc->plane;
  1795. unsigned long linear_offset;
  1796. u32 dspcntr;
  1797. u32 reg;
  1798. switch (plane) {
  1799. case 0:
  1800. case 1:
  1801. case 2:
  1802. break;
  1803. default:
  1804. DRM_ERROR("Can't update plane %d in SAREA\n", plane);
  1805. return -EINVAL;
  1806. }
  1807. intel_fb = to_intel_framebuffer(fb);
  1808. obj = intel_fb->obj;
  1809. reg = DSPCNTR(plane);
  1810. dspcntr = I915_READ(reg);
  1811. /* Mask out pixel format bits in case we change it */
  1812. dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
  1813. switch (fb->bits_per_pixel) {
  1814. case 8:
  1815. dspcntr |= DISPPLANE_8BPP;
  1816. break;
  1817. case 16:
  1818. if (fb->depth != 16)
  1819. return -EINVAL;
  1820. dspcntr |= DISPPLANE_16BPP;
  1821. break;
  1822. case 24:
  1823. case 32:
  1824. if (fb->depth == 24)
  1825. dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
  1826. else if (fb->depth == 30)
  1827. dspcntr |= DISPPLANE_32BPP_30BIT_NO_ALPHA;
  1828. else
  1829. return -EINVAL;
  1830. break;
  1831. default:
  1832. DRM_ERROR("Unknown color depth %d\n", fb->bits_per_pixel);
  1833. return -EINVAL;
  1834. }
  1835. if (obj->tiling_mode != I915_TILING_NONE)
  1836. dspcntr |= DISPPLANE_TILED;
  1837. else
  1838. dspcntr &= ~DISPPLANE_TILED;
  1839. /* must disable */
  1840. dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
  1841. I915_WRITE(reg, dspcntr);
  1842. linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
  1843. intel_crtc->dspaddr_offset =
  1844. gen4_compute_dspaddr_offset_xtiled(&x, &y,
  1845. fb->bits_per_pixel / 8,
  1846. fb->pitches[0]);
  1847. linear_offset -= intel_crtc->dspaddr_offset;
  1848. DRM_DEBUG_KMS("Writing base %08X %08lX %d %d %d\n",
  1849. obj->gtt_offset, linear_offset, x, y, fb->pitches[0]);
  1850. I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
  1851. I915_MODIFY_DISPBASE(DSPSURF(plane),
  1852. obj->gtt_offset + intel_crtc->dspaddr_offset);
  1853. I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
  1854. I915_WRITE(DSPLINOFF(plane), linear_offset);
  1855. POSTING_READ(reg);
  1856. return 0;
  1857. }
  1858. /* Assume fb object is pinned & idle & fenced and just update base pointers */
  1859. static int
  1860. intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
  1861. int x, int y, enum mode_set_atomic state)
  1862. {
  1863. struct drm_device *dev = crtc->dev;
  1864. struct drm_i915_private *dev_priv = dev->dev_private;
  1865. if (dev_priv->display.disable_fbc)
  1866. dev_priv->display.disable_fbc(dev);
  1867. intel_increase_pllclock(crtc);
  1868. return dev_priv->display.update_plane(crtc, fb, x, y);
  1869. }
  1870. static int
  1871. intel_finish_fb(struct drm_framebuffer *old_fb)
  1872. {
  1873. struct drm_i915_gem_object *obj = to_intel_framebuffer(old_fb)->obj;
  1874. struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
  1875. bool was_interruptible = dev_priv->mm.interruptible;
  1876. int ret;
  1877. wait_event(dev_priv->pending_flip_queue,
  1878. atomic_read(&dev_priv->mm.wedged) ||
  1879. atomic_read(&obj->pending_flip) == 0);
  1880. /* Big Hammer, we also need to ensure that any pending
  1881. * MI_WAIT_FOR_EVENT inside a user batch buffer on the
  1882. * current scanout is retired before unpinning the old
  1883. * framebuffer.
  1884. *
  1885. * This should only fail upon a hung GPU, in which case we
  1886. * can safely continue.
  1887. */
  1888. dev_priv->mm.interruptible = false;
  1889. ret = i915_gem_object_finish_gpu(obj);
  1890. dev_priv->mm.interruptible = was_interruptible;
  1891. return ret;
  1892. }
  1893. static int
  1894. intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
  1895. struct drm_framebuffer *fb)
  1896. {
  1897. struct drm_device *dev = crtc->dev;
  1898. struct drm_i915_private *dev_priv = dev->dev_private;
  1899. struct drm_i915_master_private *master_priv;
  1900. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1901. struct drm_framebuffer *old_fb;
  1902. int ret;
  1903. /* no fb bound */
  1904. if (!fb) {
  1905. DRM_ERROR("No FB bound\n");
  1906. return 0;
  1907. }
  1908. if(intel_crtc->plane > dev_priv->num_pipe) {
  1909. DRM_ERROR("no plane for crtc: plane %d, num_pipes %d\n",
  1910. intel_crtc->plane,
  1911. dev_priv->num_pipe);
  1912. return -EINVAL;
  1913. }
  1914. mutex_lock(&dev->struct_mutex);
  1915. ret = intel_pin_and_fence_fb_obj(dev,
  1916. to_intel_framebuffer(fb)->obj,
  1917. NULL);
  1918. if (ret != 0) {
  1919. mutex_unlock(&dev->struct_mutex);
  1920. DRM_ERROR("pin & fence failed\n");
  1921. return ret;
  1922. }
  1923. if (crtc->fb)
  1924. intel_finish_fb(crtc->fb);
  1925. ret = dev_priv->display.update_plane(crtc, fb, x, y);
  1926. if (ret) {
  1927. intel_unpin_fb_obj(to_intel_framebuffer(fb)->obj);
  1928. mutex_unlock(&dev->struct_mutex);
  1929. DRM_ERROR("failed to update base address\n");
  1930. return ret;
  1931. }
  1932. old_fb = crtc->fb;
  1933. crtc->fb = fb;
  1934. crtc->x = x;
  1935. crtc->y = y;
  1936. if (old_fb) {
  1937. intel_wait_for_vblank(dev, intel_crtc->pipe);
  1938. intel_unpin_fb_obj(to_intel_framebuffer(old_fb)->obj);
  1939. }
  1940. intel_update_fbc(dev);
  1941. mutex_unlock(&dev->struct_mutex);
  1942. if (!dev->primary->master)
  1943. return 0;
  1944. master_priv = dev->primary->master->driver_priv;
  1945. if (!master_priv->sarea_priv)
  1946. return 0;
  1947. if (intel_crtc->pipe) {
  1948. master_priv->sarea_priv->pipeB_x = x;
  1949. master_priv->sarea_priv->pipeB_y = y;
  1950. } else {
  1951. master_priv->sarea_priv->pipeA_x = x;
  1952. master_priv->sarea_priv->pipeA_y = y;
  1953. }
  1954. return 0;
  1955. }
  1956. static void ironlake_set_pll_edp(struct drm_crtc *crtc, int clock)
  1957. {
  1958. struct drm_device *dev = crtc->dev;
  1959. struct drm_i915_private *dev_priv = dev->dev_private;
  1960. u32 dpa_ctl;
  1961. DRM_DEBUG_KMS("eDP PLL enable for clock %d\n", clock);
  1962. dpa_ctl = I915_READ(DP_A);
  1963. dpa_ctl &= ~DP_PLL_FREQ_MASK;
  1964. if (clock < 200000) {
  1965. u32 temp;
  1966. dpa_ctl |= DP_PLL_FREQ_160MHZ;
  1967. /* workaround for 160Mhz:
  1968. 1) program 0x4600c bits 15:0 = 0x8124
  1969. 2) program 0x46010 bit 0 = 1
  1970. 3) program 0x46034 bit 24 = 1
  1971. 4) program 0x64000 bit 14 = 1
  1972. */
  1973. temp = I915_READ(0x4600c);
  1974. temp &= 0xffff0000;
  1975. I915_WRITE(0x4600c, temp | 0x8124);
  1976. temp = I915_READ(0x46010);
  1977. I915_WRITE(0x46010, temp | 1);
  1978. temp = I915_READ(0x46034);
  1979. I915_WRITE(0x46034, temp | (1 << 24));
  1980. } else {
  1981. dpa_ctl |= DP_PLL_FREQ_270MHZ;
  1982. }
  1983. I915_WRITE(DP_A, dpa_ctl);
  1984. POSTING_READ(DP_A);
  1985. udelay(500);
  1986. }
  1987. static void intel_fdi_normal_train(struct drm_crtc *crtc)
  1988. {
  1989. struct drm_device *dev = crtc->dev;
  1990. struct drm_i915_private *dev_priv = dev->dev_private;
  1991. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1992. int pipe = intel_crtc->pipe;
  1993. u32 reg, temp;
  1994. /* enable normal train */
  1995. reg = FDI_TX_CTL(pipe);
  1996. temp = I915_READ(reg);
  1997. if (IS_IVYBRIDGE(dev)) {
  1998. temp &= ~FDI_LINK_TRAIN_NONE_IVB;
  1999. temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
  2000. } else {
  2001. temp &= ~FDI_LINK_TRAIN_NONE;
  2002. temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
  2003. }
  2004. I915_WRITE(reg, temp);
  2005. reg = FDI_RX_CTL(pipe);
  2006. temp = I915_READ(reg);
  2007. if (HAS_PCH_CPT(dev)) {
  2008. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2009. temp |= FDI_LINK_TRAIN_NORMAL_CPT;
  2010. } else {
  2011. temp &= ~FDI_LINK_TRAIN_NONE;
  2012. temp |= FDI_LINK_TRAIN_NONE;
  2013. }
  2014. I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
  2015. /* wait one idle pattern time */
  2016. POSTING_READ(reg);
  2017. udelay(1000);
  2018. /* IVB wants error correction enabled */
  2019. if (IS_IVYBRIDGE(dev))
  2020. I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
  2021. FDI_FE_ERRC_ENABLE);
  2022. }
  2023. static void cpt_phase_pointer_enable(struct drm_device *dev, int pipe)
  2024. {
  2025. struct drm_i915_private *dev_priv = dev->dev_private;
  2026. u32 flags = I915_READ(SOUTH_CHICKEN1);
  2027. flags |= FDI_PHASE_SYNC_OVR(pipe);
  2028. I915_WRITE(SOUTH_CHICKEN1, flags); /* once to unlock... */
  2029. flags |= FDI_PHASE_SYNC_EN(pipe);
  2030. I915_WRITE(SOUTH_CHICKEN1, flags); /* then again to enable */
  2031. POSTING_READ(SOUTH_CHICKEN1);
  2032. }
  2033. /* The FDI link training functions for ILK/Ibexpeak. */
  2034. static void ironlake_fdi_link_train(struct drm_crtc *crtc)
  2035. {
  2036. struct drm_device *dev = crtc->dev;
  2037. struct drm_i915_private *dev_priv = dev->dev_private;
  2038. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2039. int pipe = intel_crtc->pipe;
  2040. int plane = intel_crtc->plane;
  2041. u32 reg, temp, tries;
  2042. /* FDI needs bits from pipe & plane first */
  2043. assert_pipe_enabled(dev_priv, pipe);
  2044. assert_plane_enabled(dev_priv, plane);
  2045. /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
  2046. for train result */
  2047. reg = FDI_RX_IMR(pipe);
  2048. temp = I915_READ(reg);
  2049. temp &= ~FDI_RX_SYMBOL_LOCK;
  2050. temp &= ~FDI_RX_BIT_LOCK;
  2051. I915_WRITE(reg, temp);
  2052. I915_READ(reg);
  2053. udelay(150);
  2054. /* enable CPU FDI TX and PCH FDI RX */
  2055. reg = FDI_TX_CTL(pipe);
  2056. temp = I915_READ(reg);
  2057. temp &= ~(7 << 19);
  2058. temp |= (intel_crtc->fdi_lanes - 1) << 19;
  2059. temp &= ~FDI_LINK_TRAIN_NONE;
  2060. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2061. I915_WRITE(reg, temp | FDI_TX_ENABLE);
  2062. reg = FDI_RX_CTL(pipe);
  2063. temp = I915_READ(reg);
  2064. temp &= ~FDI_LINK_TRAIN_NONE;
  2065. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2066. I915_WRITE(reg, temp | FDI_RX_ENABLE);
  2067. POSTING_READ(reg);
  2068. udelay(150);
  2069. /* Ironlake workaround, enable clock pointer after FDI enable*/
  2070. if (HAS_PCH_IBX(dev)) {
  2071. I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
  2072. I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
  2073. FDI_RX_PHASE_SYNC_POINTER_EN);
  2074. }
  2075. reg = FDI_RX_IIR(pipe);
  2076. for (tries = 0; tries < 5; tries++) {
  2077. temp = I915_READ(reg);
  2078. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2079. if ((temp & FDI_RX_BIT_LOCK)) {
  2080. DRM_DEBUG_KMS("FDI train 1 done.\n");
  2081. I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
  2082. break;
  2083. }
  2084. }
  2085. if (tries == 5)
  2086. DRM_ERROR("FDI train 1 fail!\n");
  2087. /* Train 2 */
  2088. reg = FDI_TX_CTL(pipe);
  2089. temp = I915_READ(reg);
  2090. temp &= ~FDI_LINK_TRAIN_NONE;
  2091. temp |= FDI_LINK_TRAIN_PATTERN_2;
  2092. I915_WRITE(reg, temp);
  2093. reg = FDI_RX_CTL(pipe);
  2094. temp = I915_READ(reg);
  2095. temp &= ~FDI_LINK_TRAIN_NONE;
  2096. temp |= FDI_LINK_TRAIN_PATTERN_2;
  2097. I915_WRITE(reg, temp);
  2098. POSTING_READ(reg);
  2099. udelay(150);
  2100. reg = FDI_RX_IIR(pipe);
  2101. for (tries = 0; tries < 5; tries++) {
  2102. temp = I915_READ(reg);
  2103. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2104. if (temp & FDI_RX_SYMBOL_LOCK) {
  2105. I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
  2106. DRM_DEBUG_KMS("FDI train 2 done.\n");
  2107. break;
  2108. }
  2109. }
  2110. if (tries == 5)
  2111. DRM_ERROR("FDI train 2 fail!\n");
  2112. DRM_DEBUG_KMS("FDI train done\n");
  2113. }
  2114. static const int snb_b_fdi_train_param[] = {
  2115. FDI_LINK_TRAIN_400MV_0DB_SNB_B,
  2116. FDI_LINK_TRAIN_400MV_6DB_SNB_B,
  2117. FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
  2118. FDI_LINK_TRAIN_800MV_0DB_SNB_B,
  2119. };
  2120. /* The FDI link training functions for SNB/Cougarpoint. */
  2121. static void gen6_fdi_link_train(struct drm_crtc *crtc)
  2122. {
  2123. struct drm_device *dev = crtc->dev;
  2124. struct drm_i915_private *dev_priv = dev->dev_private;
  2125. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2126. int pipe = intel_crtc->pipe;
  2127. u32 reg, temp, i, retry;
  2128. /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
  2129. for train result */
  2130. reg = FDI_RX_IMR(pipe);
  2131. temp = I915_READ(reg);
  2132. temp &= ~FDI_RX_SYMBOL_LOCK;
  2133. temp &= ~FDI_RX_BIT_LOCK;
  2134. I915_WRITE(reg, temp);
  2135. POSTING_READ(reg);
  2136. udelay(150);
  2137. /* enable CPU FDI TX and PCH FDI RX */
  2138. reg = FDI_TX_CTL(pipe);
  2139. temp = I915_READ(reg);
  2140. temp &= ~(7 << 19);
  2141. temp |= (intel_crtc->fdi_lanes - 1) << 19;
  2142. temp &= ~FDI_LINK_TRAIN_NONE;
  2143. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2144. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2145. /* SNB-B */
  2146. temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
  2147. I915_WRITE(reg, temp | FDI_TX_ENABLE);
  2148. reg = FDI_RX_CTL(pipe);
  2149. temp = I915_READ(reg);
  2150. if (HAS_PCH_CPT(dev)) {
  2151. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2152. temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
  2153. } else {
  2154. temp &= ~FDI_LINK_TRAIN_NONE;
  2155. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2156. }
  2157. I915_WRITE(reg, temp | FDI_RX_ENABLE);
  2158. POSTING_READ(reg);
  2159. udelay(150);
  2160. if (HAS_PCH_CPT(dev))
  2161. cpt_phase_pointer_enable(dev, pipe);
  2162. for (i = 0; i < 4; i++) {
  2163. reg = FDI_TX_CTL(pipe);
  2164. temp = I915_READ(reg);
  2165. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2166. temp |= snb_b_fdi_train_param[i];
  2167. I915_WRITE(reg, temp);
  2168. POSTING_READ(reg);
  2169. udelay(500);
  2170. for (retry = 0; retry < 5; retry++) {
  2171. reg = FDI_RX_IIR(pipe);
  2172. temp = I915_READ(reg);
  2173. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2174. if (temp & FDI_RX_BIT_LOCK) {
  2175. I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
  2176. DRM_DEBUG_KMS("FDI train 1 done.\n");
  2177. break;
  2178. }
  2179. udelay(50);
  2180. }
  2181. if (retry < 5)
  2182. break;
  2183. }
  2184. if (i == 4)
  2185. DRM_ERROR("FDI train 1 fail!\n");
  2186. /* Train 2 */
  2187. reg = FDI_TX_CTL(pipe);
  2188. temp = I915_READ(reg);
  2189. temp &= ~FDI_LINK_TRAIN_NONE;
  2190. temp |= FDI_LINK_TRAIN_PATTERN_2;
  2191. if (IS_GEN6(dev)) {
  2192. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2193. /* SNB-B */
  2194. temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
  2195. }
  2196. I915_WRITE(reg, temp);
  2197. reg = FDI_RX_CTL(pipe);
  2198. temp = I915_READ(reg);
  2199. if (HAS_PCH_CPT(dev)) {
  2200. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2201. temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
  2202. } else {
  2203. temp &= ~FDI_LINK_TRAIN_NONE;
  2204. temp |= FDI_LINK_TRAIN_PATTERN_2;
  2205. }
  2206. I915_WRITE(reg, temp);
  2207. POSTING_READ(reg);
  2208. udelay(150);
  2209. for (i = 0; i < 4; i++) {
  2210. reg = FDI_TX_CTL(pipe);
  2211. temp = I915_READ(reg);
  2212. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2213. temp |= snb_b_fdi_train_param[i];
  2214. I915_WRITE(reg, temp);
  2215. POSTING_READ(reg);
  2216. udelay(500);
  2217. for (retry = 0; retry < 5; retry++) {
  2218. reg = FDI_RX_IIR(pipe);
  2219. temp = I915_READ(reg);
  2220. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2221. if (temp & FDI_RX_SYMBOL_LOCK) {
  2222. I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
  2223. DRM_DEBUG_KMS("FDI train 2 done.\n");
  2224. break;
  2225. }
  2226. udelay(50);
  2227. }
  2228. if (retry < 5)
  2229. break;
  2230. }
  2231. if (i == 4)
  2232. DRM_ERROR("FDI train 2 fail!\n");
  2233. DRM_DEBUG_KMS("FDI train done.\n");
  2234. }
  2235. /* Manual link training for Ivy Bridge A0 parts */
  2236. static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
  2237. {
  2238. struct drm_device *dev = crtc->dev;
  2239. struct drm_i915_private *dev_priv = dev->dev_private;
  2240. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2241. int pipe = intel_crtc->pipe;
  2242. u32 reg, temp, i;
  2243. /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
  2244. for train result */
  2245. reg = FDI_RX_IMR(pipe);
  2246. temp = I915_READ(reg);
  2247. temp &= ~FDI_RX_SYMBOL_LOCK;
  2248. temp &= ~FDI_RX_BIT_LOCK;
  2249. I915_WRITE(reg, temp);
  2250. POSTING_READ(reg);
  2251. udelay(150);
  2252. /* enable CPU FDI TX and PCH FDI RX */
  2253. reg = FDI_TX_CTL(pipe);
  2254. temp = I915_READ(reg);
  2255. temp &= ~(7 << 19);
  2256. temp |= (intel_crtc->fdi_lanes - 1) << 19;
  2257. temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
  2258. temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
  2259. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2260. temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
  2261. temp |= FDI_COMPOSITE_SYNC;
  2262. I915_WRITE(reg, temp | FDI_TX_ENABLE);
  2263. reg = FDI_RX_CTL(pipe);
  2264. temp = I915_READ(reg);
  2265. temp &= ~FDI_LINK_TRAIN_AUTO;
  2266. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2267. temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
  2268. temp |= FDI_COMPOSITE_SYNC;
  2269. I915_WRITE(reg, temp | FDI_RX_ENABLE);
  2270. POSTING_READ(reg);
  2271. udelay(150);
  2272. if (HAS_PCH_CPT(dev))
  2273. cpt_phase_pointer_enable(dev, pipe);
  2274. for (i = 0; i < 4; i++) {
  2275. reg = FDI_TX_CTL(pipe);
  2276. temp = I915_READ(reg);
  2277. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2278. temp |= snb_b_fdi_train_param[i];
  2279. I915_WRITE(reg, temp);
  2280. POSTING_READ(reg);
  2281. udelay(500);
  2282. reg = FDI_RX_IIR(pipe);
  2283. temp = I915_READ(reg);
  2284. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2285. if (temp & FDI_RX_BIT_LOCK ||
  2286. (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
  2287. I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
  2288. DRM_DEBUG_KMS("FDI train 1 done.\n");
  2289. break;
  2290. }
  2291. }
  2292. if (i == 4)
  2293. DRM_ERROR("FDI train 1 fail!\n");
  2294. /* Train 2 */
  2295. reg = FDI_TX_CTL(pipe);
  2296. temp = I915_READ(reg);
  2297. temp &= ~FDI_LINK_TRAIN_NONE_IVB;
  2298. temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
  2299. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2300. temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
  2301. I915_WRITE(reg, temp);
  2302. reg = FDI_RX_CTL(pipe);
  2303. temp = I915_READ(reg);
  2304. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2305. temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
  2306. I915_WRITE(reg, temp);
  2307. POSTING_READ(reg);
  2308. udelay(150);
  2309. for (i = 0; i < 4; i++) {
  2310. reg = FDI_TX_CTL(pipe);
  2311. temp = I915_READ(reg);
  2312. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2313. temp |= snb_b_fdi_train_param[i];
  2314. I915_WRITE(reg, temp);
  2315. POSTING_READ(reg);
  2316. udelay(500);
  2317. reg = FDI_RX_IIR(pipe);
  2318. temp = I915_READ(reg);
  2319. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2320. if (temp & FDI_RX_SYMBOL_LOCK) {
  2321. I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
  2322. DRM_DEBUG_KMS("FDI train 2 done.\n");
  2323. break;
  2324. }
  2325. }
  2326. if (i == 4)
  2327. DRM_ERROR("FDI train 2 fail!\n");
  2328. DRM_DEBUG_KMS("FDI train done.\n");
  2329. }
  2330. static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
  2331. {
  2332. struct drm_device *dev = intel_crtc->base.dev;
  2333. struct drm_i915_private *dev_priv = dev->dev_private;
  2334. int pipe = intel_crtc->pipe;
  2335. u32 reg, temp;
  2336. /* Write the TU size bits so error detection works */
  2337. I915_WRITE(FDI_RX_TUSIZE1(pipe),
  2338. I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
  2339. /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
  2340. reg = FDI_RX_CTL(pipe);
  2341. temp = I915_READ(reg);
  2342. temp &= ~((0x7 << 19) | (0x7 << 16));
  2343. temp |= (intel_crtc->fdi_lanes - 1) << 19;
  2344. temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
  2345. I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
  2346. POSTING_READ(reg);
  2347. udelay(200);
  2348. /* Switch from Rawclk to PCDclk */
  2349. temp = I915_READ(reg);
  2350. I915_WRITE(reg, temp | FDI_PCDCLK);
  2351. POSTING_READ(reg);
  2352. udelay(200);
  2353. /* On Haswell, the PLL configuration for ports and pipes is handled
  2354. * separately, as part of DDI setup */
  2355. if (!IS_HASWELL(dev)) {
  2356. /* Enable CPU FDI TX PLL, always on for Ironlake */
  2357. reg = FDI_TX_CTL(pipe);
  2358. temp = I915_READ(reg);
  2359. if ((temp & FDI_TX_PLL_ENABLE) == 0) {
  2360. I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
  2361. POSTING_READ(reg);
  2362. udelay(100);
  2363. }
  2364. }
  2365. }
  2366. static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
  2367. {
  2368. struct drm_device *dev = intel_crtc->base.dev;
  2369. struct drm_i915_private *dev_priv = dev->dev_private;
  2370. int pipe = intel_crtc->pipe;
  2371. u32 reg, temp;
  2372. /* Switch from PCDclk to Rawclk */
  2373. reg = FDI_RX_CTL(pipe);
  2374. temp = I915_READ(reg);
  2375. I915_WRITE(reg, temp & ~FDI_PCDCLK);
  2376. /* Disable CPU FDI TX PLL */
  2377. reg = FDI_TX_CTL(pipe);
  2378. temp = I915_READ(reg);
  2379. I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
  2380. POSTING_READ(reg);
  2381. udelay(100);
  2382. reg = FDI_RX_CTL(pipe);
  2383. temp = I915_READ(reg);
  2384. I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
  2385. /* Wait for the clocks to turn off. */
  2386. POSTING_READ(reg);
  2387. udelay(100);
  2388. }
  2389. static void cpt_phase_pointer_disable(struct drm_device *dev, int pipe)
  2390. {
  2391. struct drm_i915_private *dev_priv = dev->dev_private;
  2392. u32 flags = I915_READ(SOUTH_CHICKEN1);
  2393. flags &= ~(FDI_PHASE_SYNC_EN(pipe));
  2394. I915_WRITE(SOUTH_CHICKEN1, flags); /* once to disable... */
  2395. flags &= ~(FDI_PHASE_SYNC_OVR(pipe));
  2396. I915_WRITE(SOUTH_CHICKEN1, flags); /* then again to lock */
  2397. POSTING_READ(SOUTH_CHICKEN1);
  2398. }
  2399. static void ironlake_fdi_disable(struct drm_crtc *crtc)
  2400. {
  2401. struct drm_device *dev = crtc->dev;
  2402. struct drm_i915_private *dev_priv = dev->dev_private;
  2403. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2404. int pipe = intel_crtc->pipe;
  2405. u32 reg, temp;
  2406. /* disable CPU FDI tx and PCH FDI rx */
  2407. reg = FDI_TX_CTL(pipe);
  2408. temp = I915_READ(reg);
  2409. I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
  2410. POSTING_READ(reg);
  2411. reg = FDI_RX_CTL(pipe);
  2412. temp = I915_READ(reg);
  2413. temp &= ~(0x7 << 16);
  2414. temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
  2415. I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
  2416. POSTING_READ(reg);
  2417. udelay(100);
  2418. /* Ironlake workaround, disable clock pointer after downing FDI */
  2419. if (HAS_PCH_IBX(dev)) {
  2420. I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
  2421. I915_WRITE(FDI_RX_CHICKEN(pipe),
  2422. I915_READ(FDI_RX_CHICKEN(pipe) &
  2423. ~FDI_RX_PHASE_SYNC_POINTER_EN));
  2424. } else if (HAS_PCH_CPT(dev)) {
  2425. cpt_phase_pointer_disable(dev, pipe);
  2426. }
  2427. /* still set train pattern 1 */
  2428. reg = FDI_TX_CTL(pipe);
  2429. temp = I915_READ(reg);
  2430. temp &= ~FDI_LINK_TRAIN_NONE;
  2431. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2432. I915_WRITE(reg, temp);
  2433. reg = FDI_RX_CTL(pipe);
  2434. temp = I915_READ(reg);
  2435. if (HAS_PCH_CPT(dev)) {
  2436. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2437. temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
  2438. } else {
  2439. temp &= ~FDI_LINK_TRAIN_NONE;
  2440. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2441. }
  2442. /* BPC in FDI rx is consistent with that in PIPECONF */
  2443. temp &= ~(0x07 << 16);
  2444. temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
  2445. I915_WRITE(reg, temp);
  2446. POSTING_READ(reg);
  2447. udelay(100);
  2448. }
  2449. static void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
  2450. {
  2451. struct drm_device *dev = crtc->dev;
  2452. if (crtc->fb == NULL)
  2453. return;
  2454. mutex_lock(&dev->struct_mutex);
  2455. intel_finish_fb(crtc->fb);
  2456. mutex_unlock(&dev->struct_mutex);
  2457. }
  2458. static bool intel_crtc_driving_pch(struct drm_crtc *crtc)
  2459. {
  2460. struct drm_device *dev = crtc->dev;
  2461. struct intel_encoder *intel_encoder;
  2462. /*
  2463. * If there's a non-PCH eDP on this crtc, it must be DP_A, and that
  2464. * must be driven by its own crtc; no sharing is possible.
  2465. */
  2466. for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
  2467. /* On Haswell, LPT PCH handles the VGA connection via FDI, and Haswell
  2468. * CPU handles all others */
  2469. if (IS_HASWELL(dev)) {
  2470. /* It is still unclear how this will work on PPT, so throw up a warning */
  2471. WARN_ON(!HAS_PCH_LPT(dev));
  2472. if (intel_encoder->type == INTEL_OUTPUT_ANALOG) {
  2473. DRM_DEBUG_KMS("Haswell detected DAC encoder, assuming is PCH\n");
  2474. return true;
  2475. } else {
  2476. DRM_DEBUG_KMS("Haswell detected encoder %d, assuming is CPU\n",
  2477. intel_encoder->type);
  2478. return false;
  2479. }
  2480. }
  2481. switch (intel_encoder->type) {
  2482. case INTEL_OUTPUT_EDP:
  2483. if (!intel_encoder_is_pch_edp(&intel_encoder->base))
  2484. return false;
  2485. continue;
  2486. }
  2487. }
  2488. return true;
  2489. }
  2490. /* Program iCLKIP clock to the desired frequency */
  2491. static void lpt_program_iclkip(struct drm_crtc *crtc)
  2492. {
  2493. struct drm_device *dev = crtc->dev;
  2494. struct drm_i915_private *dev_priv = dev->dev_private;
  2495. u32 divsel, phaseinc, auxdiv, phasedir = 0;
  2496. u32 temp;
  2497. /* It is necessary to ungate the pixclk gate prior to programming
  2498. * the divisors, and gate it back when it is done.
  2499. */
  2500. I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
  2501. /* Disable SSCCTL */
  2502. intel_sbi_write(dev_priv, SBI_SSCCTL6,
  2503. intel_sbi_read(dev_priv, SBI_SSCCTL6) |
  2504. SBI_SSCCTL_DISABLE);
  2505. /* 20MHz is a corner case which is out of range for the 7-bit divisor */
  2506. if (crtc->mode.clock == 20000) {
  2507. auxdiv = 1;
  2508. divsel = 0x41;
  2509. phaseinc = 0x20;
  2510. } else {
  2511. /* The iCLK virtual clock root frequency is in MHz,
  2512. * but the crtc->mode.clock in in KHz. To get the divisors,
  2513. * it is necessary to divide one by another, so we
  2514. * convert the virtual clock precision to KHz here for higher
  2515. * precision.
  2516. */
  2517. u32 iclk_virtual_root_freq = 172800 * 1000;
  2518. u32 iclk_pi_range = 64;
  2519. u32 desired_divisor, msb_divisor_value, pi_value;
  2520. desired_divisor = (iclk_virtual_root_freq / crtc->mode.clock);
  2521. msb_divisor_value = desired_divisor / iclk_pi_range;
  2522. pi_value = desired_divisor % iclk_pi_range;
  2523. auxdiv = 0;
  2524. divsel = msb_divisor_value - 2;
  2525. phaseinc = pi_value;
  2526. }
  2527. /* This should not happen with any sane values */
  2528. WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
  2529. ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
  2530. WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
  2531. ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
  2532. DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
  2533. crtc->mode.clock,
  2534. auxdiv,
  2535. divsel,
  2536. phasedir,
  2537. phaseinc);
  2538. /* Program SSCDIVINTPHASE6 */
  2539. temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6);
  2540. temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
  2541. temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
  2542. temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
  2543. temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
  2544. temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
  2545. temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
  2546. intel_sbi_write(dev_priv,
  2547. SBI_SSCDIVINTPHASE6,
  2548. temp);
  2549. /* Program SSCAUXDIV */
  2550. temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6);
  2551. temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
  2552. temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
  2553. intel_sbi_write(dev_priv,
  2554. SBI_SSCAUXDIV6,
  2555. temp);
  2556. /* Enable modulator and associated divider */
  2557. temp = intel_sbi_read(dev_priv, SBI_SSCCTL6);
  2558. temp &= ~SBI_SSCCTL_DISABLE;
  2559. intel_sbi_write(dev_priv,
  2560. SBI_SSCCTL6,
  2561. temp);
  2562. /* Wait for initialization time */
  2563. udelay(24);
  2564. I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
  2565. }
  2566. /*
  2567. * Enable PCH resources required for PCH ports:
  2568. * - PCH PLLs
  2569. * - FDI training & RX/TX
  2570. * - update transcoder timings
  2571. * - DP transcoding bits
  2572. * - transcoder
  2573. */
  2574. static void ironlake_pch_enable(struct drm_crtc *crtc)
  2575. {
  2576. struct drm_device *dev = crtc->dev;
  2577. struct drm_i915_private *dev_priv = dev->dev_private;
  2578. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2579. int pipe = intel_crtc->pipe;
  2580. u32 reg, temp;
  2581. assert_transcoder_disabled(dev_priv, pipe);
  2582. /* For PCH output, training FDI link */
  2583. dev_priv->display.fdi_link_train(crtc);
  2584. intel_enable_pch_pll(intel_crtc);
  2585. if (HAS_PCH_LPT(dev)) {
  2586. DRM_DEBUG_KMS("LPT detected: programming iCLKIP\n");
  2587. lpt_program_iclkip(crtc);
  2588. } else if (HAS_PCH_CPT(dev)) {
  2589. u32 sel;
  2590. temp = I915_READ(PCH_DPLL_SEL);
  2591. switch (pipe) {
  2592. default:
  2593. case 0:
  2594. temp |= TRANSA_DPLL_ENABLE;
  2595. sel = TRANSA_DPLLB_SEL;
  2596. break;
  2597. case 1:
  2598. temp |= TRANSB_DPLL_ENABLE;
  2599. sel = TRANSB_DPLLB_SEL;
  2600. break;
  2601. case 2:
  2602. temp |= TRANSC_DPLL_ENABLE;
  2603. sel = TRANSC_DPLLB_SEL;
  2604. break;
  2605. }
  2606. if (intel_crtc->pch_pll->pll_reg == _PCH_DPLL_B)
  2607. temp |= sel;
  2608. else
  2609. temp &= ~sel;
  2610. I915_WRITE(PCH_DPLL_SEL, temp);
  2611. }
  2612. /* set transcoder timing, panel must allow it */
  2613. assert_panel_unlocked(dev_priv, pipe);
  2614. I915_WRITE(TRANS_HTOTAL(pipe), I915_READ(HTOTAL(pipe)));
  2615. I915_WRITE(TRANS_HBLANK(pipe), I915_READ(HBLANK(pipe)));
  2616. I915_WRITE(TRANS_HSYNC(pipe), I915_READ(HSYNC(pipe)));
  2617. I915_WRITE(TRANS_VTOTAL(pipe), I915_READ(VTOTAL(pipe)));
  2618. I915_WRITE(TRANS_VBLANK(pipe), I915_READ(VBLANK(pipe)));
  2619. I915_WRITE(TRANS_VSYNC(pipe), I915_READ(VSYNC(pipe)));
  2620. I915_WRITE(TRANS_VSYNCSHIFT(pipe), I915_READ(VSYNCSHIFT(pipe)));
  2621. if (!IS_HASWELL(dev))
  2622. intel_fdi_normal_train(crtc);
  2623. /* For PCH DP, enable TRANS_DP_CTL */
  2624. if (HAS_PCH_CPT(dev) &&
  2625. (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
  2626. intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
  2627. u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) >> 5;
  2628. reg = TRANS_DP_CTL(pipe);
  2629. temp = I915_READ(reg);
  2630. temp &= ~(TRANS_DP_PORT_SEL_MASK |
  2631. TRANS_DP_SYNC_MASK |
  2632. TRANS_DP_BPC_MASK);
  2633. temp |= (TRANS_DP_OUTPUT_ENABLE |
  2634. TRANS_DP_ENH_FRAMING);
  2635. temp |= bpc << 9; /* same format but at 11:9 */
  2636. if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
  2637. temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
  2638. if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
  2639. temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
  2640. switch (intel_trans_dp_port_sel(crtc)) {
  2641. case PCH_DP_B:
  2642. temp |= TRANS_DP_PORT_SEL_B;
  2643. break;
  2644. case PCH_DP_C:
  2645. temp |= TRANS_DP_PORT_SEL_C;
  2646. break;
  2647. case PCH_DP_D:
  2648. temp |= TRANS_DP_PORT_SEL_D;
  2649. break;
  2650. default:
  2651. DRM_DEBUG_KMS("Wrong PCH DP port return. Guess port B\n");
  2652. temp |= TRANS_DP_PORT_SEL_B;
  2653. break;
  2654. }
  2655. I915_WRITE(reg, temp);
  2656. }
  2657. intel_enable_transcoder(dev_priv, pipe);
  2658. }
  2659. static void intel_put_pch_pll(struct intel_crtc *intel_crtc)
  2660. {
  2661. struct intel_pch_pll *pll = intel_crtc->pch_pll;
  2662. if (pll == NULL)
  2663. return;
  2664. if (pll->refcount == 0) {
  2665. WARN(1, "bad PCH PLL refcount\n");
  2666. return;
  2667. }
  2668. --pll->refcount;
  2669. intel_crtc->pch_pll = NULL;
  2670. }
  2671. static struct intel_pch_pll *intel_get_pch_pll(struct intel_crtc *intel_crtc, u32 dpll, u32 fp)
  2672. {
  2673. struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
  2674. struct intel_pch_pll *pll;
  2675. int i;
  2676. pll = intel_crtc->pch_pll;
  2677. if (pll) {
  2678. DRM_DEBUG_KMS("CRTC:%d reusing existing PCH PLL %x\n",
  2679. intel_crtc->base.base.id, pll->pll_reg);
  2680. goto prepare;
  2681. }
  2682. if (HAS_PCH_IBX(dev_priv->dev)) {
  2683. /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
  2684. i = intel_crtc->pipe;
  2685. pll = &dev_priv->pch_plls[i];
  2686. DRM_DEBUG_KMS("CRTC:%d using pre-allocated PCH PLL %x\n",
  2687. intel_crtc->base.base.id, pll->pll_reg);
  2688. goto found;
  2689. }
  2690. for (i = 0; i < dev_priv->num_pch_pll; i++) {
  2691. pll = &dev_priv->pch_plls[i];
  2692. /* Only want to check enabled timings first */
  2693. if (pll->refcount == 0)
  2694. continue;
  2695. if (dpll == (I915_READ(pll->pll_reg) & 0x7fffffff) &&
  2696. fp == I915_READ(pll->fp0_reg)) {
  2697. DRM_DEBUG_KMS("CRTC:%d sharing existing PCH PLL %x (refcount %d, ative %d)\n",
  2698. intel_crtc->base.base.id,
  2699. pll->pll_reg, pll->refcount, pll->active);
  2700. goto found;
  2701. }
  2702. }
  2703. /* Ok no matching timings, maybe there's a free one? */
  2704. for (i = 0; i < dev_priv->num_pch_pll; i++) {
  2705. pll = &dev_priv->pch_plls[i];
  2706. if (pll->refcount == 0) {
  2707. DRM_DEBUG_KMS("CRTC:%d allocated PCH PLL %x\n",
  2708. intel_crtc->base.base.id, pll->pll_reg);
  2709. goto found;
  2710. }
  2711. }
  2712. return NULL;
  2713. found:
  2714. intel_crtc->pch_pll = pll;
  2715. pll->refcount++;
  2716. DRM_DEBUG_DRIVER("using pll %d for pipe %d\n", i, intel_crtc->pipe);
  2717. prepare: /* separate function? */
  2718. DRM_DEBUG_DRIVER("switching PLL %x off\n", pll->pll_reg);
  2719. /* Wait for the clocks to stabilize before rewriting the regs */
  2720. I915_WRITE(pll->pll_reg, dpll & ~DPLL_VCO_ENABLE);
  2721. POSTING_READ(pll->pll_reg);
  2722. udelay(150);
  2723. I915_WRITE(pll->fp0_reg, fp);
  2724. I915_WRITE(pll->pll_reg, dpll & ~DPLL_VCO_ENABLE);
  2725. pll->on = false;
  2726. return pll;
  2727. }
  2728. void intel_cpt_verify_modeset(struct drm_device *dev, int pipe)
  2729. {
  2730. struct drm_i915_private *dev_priv = dev->dev_private;
  2731. int dslreg = PIPEDSL(pipe), tc2reg = TRANS_CHICKEN2(pipe);
  2732. u32 temp;
  2733. temp = I915_READ(dslreg);
  2734. udelay(500);
  2735. if (wait_for(I915_READ(dslreg) != temp, 5)) {
  2736. /* Without this, mode sets may fail silently on FDI */
  2737. I915_WRITE(tc2reg, TRANS_AUTOTRAIN_GEN_STALL_DIS);
  2738. udelay(250);
  2739. I915_WRITE(tc2reg, 0);
  2740. if (wait_for(I915_READ(dslreg) != temp, 5))
  2741. DRM_ERROR("mode set failed: pipe %d stuck\n", pipe);
  2742. }
  2743. }
  2744. static void ironlake_crtc_enable(struct drm_crtc *crtc)
  2745. {
  2746. struct drm_device *dev = crtc->dev;
  2747. struct drm_i915_private *dev_priv = dev->dev_private;
  2748. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2749. struct intel_encoder *encoder;
  2750. int pipe = intel_crtc->pipe;
  2751. int plane = intel_crtc->plane;
  2752. u32 temp;
  2753. bool is_pch_port;
  2754. WARN_ON(!crtc->enabled);
  2755. if (intel_crtc->active)
  2756. return;
  2757. intel_crtc->active = true;
  2758. intel_update_watermarks(dev);
  2759. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  2760. temp = I915_READ(PCH_LVDS);
  2761. if ((temp & LVDS_PORT_EN) == 0)
  2762. I915_WRITE(PCH_LVDS, temp | LVDS_PORT_EN);
  2763. }
  2764. is_pch_port = intel_crtc_driving_pch(crtc);
  2765. if (is_pch_port) {
  2766. ironlake_fdi_pll_enable(intel_crtc);
  2767. } else {
  2768. assert_fdi_tx_disabled(dev_priv, pipe);
  2769. assert_fdi_rx_disabled(dev_priv, pipe);
  2770. }
  2771. for_each_encoder_on_crtc(dev, crtc, encoder)
  2772. if (encoder->pre_enable)
  2773. encoder->pre_enable(encoder);
  2774. if (IS_HASWELL(dev))
  2775. intel_ddi_enable_pipe_clock(intel_crtc);
  2776. /* Enable panel fitting for LVDS */
  2777. if (dev_priv->pch_pf_size &&
  2778. (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) || HAS_eDP)) {
  2779. /* Force use of hard-coded filter coefficients
  2780. * as some pre-programmed values are broken,
  2781. * e.g. x201.
  2782. */
  2783. I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
  2784. I915_WRITE(PF_WIN_POS(pipe), dev_priv->pch_pf_pos);
  2785. I915_WRITE(PF_WIN_SZ(pipe), dev_priv->pch_pf_size);
  2786. }
  2787. /*
  2788. * On ILK+ LUT must be loaded before the pipe is running but with
  2789. * clocks enabled
  2790. */
  2791. intel_crtc_load_lut(crtc);
  2792. if (IS_HASWELL(dev))
  2793. intel_ddi_enable_pipe_func(crtc);
  2794. intel_enable_pipe(dev_priv, pipe, is_pch_port);
  2795. intel_enable_plane(dev_priv, plane, pipe);
  2796. if (is_pch_port)
  2797. ironlake_pch_enable(crtc);
  2798. mutex_lock(&dev->struct_mutex);
  2799. intel_update_fbc(dev);
  2800. mutex_unlock(&dev->struct_mutex);
  2801. intel_crtc_update_cursor(crtc, true);
  2802. for_each_encoder_on_crtc(dev, crtc, encoder)
  2803. encoder->enable(encoder);
  2804. if (HAS_PCH_CPT(dev))
  2805. intel_cpt_verify_modeset(dev, intel_crtc->pipe);
  2806. }
  2807. static void ironlake_crtc_disable(struct drm_crtc *crtc)
  2808. {
  2809. struct drm_device *dev = crtc->dev;
  2810. struct drm_i915_private *dev_priv = dev->dev_private;
  2811. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2812. struct intel_encoder *encoder;
  2813. int pipe = intel_crtc->pipe;
  2814. int plane = intel_crtc->plane;
  2815. u32 reg, temp;
  2816. if (!intel_crtc->active)
  2817. return;
  2818. for_each_encoder_on_crtc(dev, crtc, encoder)
  2819. encoder->disable(encoder);
  2820. intel_crtc_wait_for_pending_flips(crtc);
  2821. drm_vblank_off(dev, pipe);
  2822. intel_crtc_update_cursor(crtc, false);
  2823. intel_disable_plane(dev_priv, plane, pipe);
  2824. if (dev_priv->cfb_plane == plane)
  2825. intel_disable_fbc(dev);
  2826. intel_disable_pipe(dev_priv, pipe);
  2827. if (IS_HASWELL(dev))
  2828. intel_ddi_disable_pipe_func(dev_priv, pipe);
  2829. /* Disable PF */
  2830. I915_WRITE(PF_CTL(pipe), 0);
  2831. I915_WRITE(PF_WIN_SZ(pipe), 0);
  2832. if (IS_HASWELL(dev))
  2833. intel_ddi_disable_pipe_clock(intel_crtc);
  2834. for_each_encoder_on_crtc(dev, crtc, encoder)
  2835. if (encoder->post_disable)
  2836. encoder->post_disable(encoder);
  2837. ironlake_fdi_disable(crtc);
  2838. intel_disable_transcoder(dev_priv, pipe);
  2839. if (HAS_PCH_CPT(dev)) {
  2840. /* disable TRANS_DP_CTL */
  2841. reg = TRANS_DP_CTL(pipe);
  2842. temp = I915_READ(reg);
  2843. temp &= ~(TRANS_DP_OUTPUT_ENABLE | TRANS_DP_PORT_SEL_MASK);
  2844. temp |= TRANS_DP_PORT_SEL_NONE;
  2845. I915_WRITE(reg, temp);
  2846. /* disable DPLL_SEL */
  2847. temp = I915_READ(PCH_DPLL_SEL);
  2848. switch (pipe) {
  2849. case 0:
  2850. temp &= ~(TRANSA_DPLL_ENABLE | TRANSA_DPLLB_SEL);
  2851. break;
  2852. case 1:
  2853. temp &= ~(TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
  2854. break;
  2855. case 2:
  2856. /* C shares PLL A or B */
  2857. temp &= ~(TRANSC_DPLL_ENABLE | TRANSC_DPLLB_SEL);
  2858. break;
  2859. default:
  2860. BUG(); /* wtf */
  2861. }
  2862. I915_WRITE(PCH_DPLL_SEL, temp);
  2863. }
  2864. /* disable PCH DPLL */
  2865. intel_disable_pch_pll(intel_crtc);
  2866. ironlake_fdi_pll_disable(intel_crtc);
  2867. intel_crtc->active = false;
  2868. intel_update_watermarks(dev);
  2869. mutex_lock(&dev->struct_mutex);
  2870. intel_update_fbc(dev);
  2871. mutex_unlock(&dev->struct_mutex);
  2872. }
  2873. static void ironlake_crtc_off(struct drm_crtc *crtc)
  2874. {
  2875. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2876. intel_put_pch_pll(intel_crtc);
  2877. }
  2878. static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
  2879. {
  2880. if (!enable && intel_crtc->overlay) {
  2881. struct drm_device *dev = intel_crtc->base.dev;
  2882. struct drm_i915_private *dev_priv = dev->dev_private;
  2883. mutex_lock(&dev->struct_mutex);
  2884. dev_priv->mm.interruptible = false;
  2885. (void) intel_overlay_switch_off(intel_crtc->overlay);
  2886. dev_priv->mm.interruptible = true;
  2887. mutex_unlock(&dev->struct_mutex);
  2888. }
  2889. /* Let userspace switch the overlay on again. In most cases userspace
  2890. * has to recompute where to put it anyway.
  2891. */
  2892. }
  2893. static void i9xx_crtc_enable(struct drm_crtc *crtc)
  2894. {
  2895. struct drm_device *dev = crtc->dev;
  2896. struct drm_i915_private *dev_priv = dev->dev_private;
  2897. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2898. struct intel_encoder *encoder;
  2899. int pipe = intel_crtc->pipe;
  2900. int plane = intel_crtc->plane;
  2901. WARN_ON(!crtc->enabled);
  2902. if (intel_crtc->active)
  2903. return;
  2904. intel_crtc->active = true;
  2905. intel_update_watermarks(dev);
  2906. intel_enable_pll(dev_priv, pipe);
  2907. intel_enable_pipe(dev_priv, pipe, false);
  2908. intel_enable_plane(dev_priv, plane, pipe);
  2909. intel_crtc_load_lut(crtc);
  2910. intel_update_fbc(dev);
  2911. /* Give the overlay scaler a chance to enable if it's on this pipe */
  2912. intel_crtc_dpms_overlay(intel_crtc, true);
  2913. intel_crtc_update_cursor(crtc, true);
  2914. for_each_encoder_on_crtc(dev, crtc, encoder)
  2915. encoder->enable(encoder);
  2916. }
  2917. static void i9xx_crtc_disable(struct drm_crtc *crtc)
  2918. {
  2919. struct drm_device *dev = crtc->dev;
  2920. struct drm_i915_private *dev_priv = dev->dev_private;
  2921. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2922. struct intel_encoder *encoder;
  2923. int pipe = intel_crtc->pipe;
  2924. int plane = intel_crtc->plane;
  2925. if (!intel_crtc->active)
  2926. return;
  2927. for_each_encoder_on_crtc(dev, crtc, encoder)
  2928. encoder->disable(encoder);
  2929. /* Give the overlay scaler a chance to disable if it's on this pipe */
  2930. intel_crtc_wait_for_pending_flips(crtc);
  2931. drm_vblank_off(dev, pipe);
  2932. intel_crtc_dpms_overlay(intel_crtc, false);
  2933. intel_crtc_update_cursor(crtc, false);
  2934. if (dev_priv->cfb_plane == plane)
  2935. intel_disable_fbc(dev);
  2936. intel_disable_plane(dev_priv, plane, pipe);
  2937. intel_disable_pipe(dev_priv, pipe);
  2938. intel_disable_pll(dev_priv, pipe);
  2939. intel_crtc->active = false;
  2940. intel_update_fbc(dev);
  2941. intel_update_watermarks(dev);
  2942. }
  2943. static void i9xx_crtc_off(struct drm_crtc *crtc)
  2944. {
  2945. }
  2946. static void intel_crtc_update_sarea(struct drm_crtc *crtc,
  2947. bool enabled)
  2948. {
  2949. struct drm_device *dev = crtc->dev;
  2950. struct drm_i915_master_private *master_priv;
  2951. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2952. int pipe = intel_crtc->pipe;
  2953. if (!dev->primary->master)
  2954. return;
  2955. master_priv = dev->primary->master->driver_priv;
  2956. if (!master_priv->sarea_priv)
  2957. return;
  2958. switch (pipe) {
  2959. case 0:
  2960. master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
  2961. master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
  2962. break;
  2963. case 1:
  2964. master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
  2965. master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
  2966. break;
  2967. default:
  2968. DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe));
  2969. break;
  2970. }
  2971. }
  2972. /**
  2973. * Sets the power management mode of the pipe and plane.
  2974. */
  2975. void intel_crtc_update_dpms(struct drm_crtc *crtc)
  2976. {
  2977. struct drm_device *dev = crtc->dev;
  2978. struct drm_i915_private *dev_priv = dev->dev_private;
  2979. struct intel_encoder *intel_encoder;
  2980. bool enable = false;
  2981. for_each_encoder_on_crtc(dev, crtc, intel_encoder)
  2982. enable |= intel_encoder->connectors_active;
  2983. if (enable)
  2984. dev_priv->display.crtc_enable(crtc);
  2985. else
  2986. dev_priv->display.crtc_disable(crtc);
  2987. intel_crtc_update_sarea(crtc, enable);
  2988. }
  2989. static void intel_crtc_noop(struct drm_crtc *crtc)
  2990. {
  2991. }
  2992. static void intel_crtc_disable(struct drm_crtc *crtc)
  2993. {
  2994. struct drm_device *dev = crtc->dev;
  2995. struct drm_connector *connector;
  2996. struct drm_i915_private *dev_priv = dev->dev_private;
  2997. /* crtc should still be enabled when we disable it. */
  2998. WARN_ON(!crtc->enabled);
  2999. dev_priv->display.crtc_disable(crtc);
  3000. intel_crtc_update_sarea(crtc, false);
  3001. dev_priv->display.off(crtc);
  3002. assert_plane_disabled(dev->dev_private, to_intel_crtc(crtc)->plane);
  3003. assert_pipe_disabled(dev->dev_private, to_intel_crtc(crtc)->pipe);
  3004. if (crtc->fb) {
  3005. mutex_lock(&dev->struct_mutex);
  3006. intel_unpin_fb_obj(to_intel_framebuffer(crtc->fb)->obj);
  3007. mutex_unlock(&dev->struct_mutex);
  3008. crtc->fb = NULL;
  3009. }
  3010. /* Update computed state. */
  3011. list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
  3012. if (!connector->encoder || !connector->encoder->crtc)
  3013. continue;
  3014. if (connector->encoder->crtc != crtc)
  3015. continue;
  3016. connector->dpms = DRM_MODE_DPMS_OFF;
  3017. to_intel_encoder(connector->encoder)->connectors_active = false;
  3018. }
  3019. }
  3020. void intel_modeset_disable(struct drm_device *dev)
  3021. {
  3022. struct drm_crtc *crtc;
  3023. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  3024. if (crtc->enabled)
  3025. intel_crtc_disable(crtc);
  3026. }
  3027. }
  3028. void intel_encoder_noop(struct drm_encoder *encoder)
  3029. {
  3030. }
  3031. void intel_encoder_destroy(struct drm_encoder *encoder)
  3032. {
  3033. struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
  3034. drm_encoder_cleanup(encoder);
  3035. kfree(intel_encoder);
  3036. }
  3037. /* Simple dpms helper for encodres with just one connector, no cloning and only
  3038. * one kind of off state. It clamps all !ON modes to fully OFF and changes the
  3039. * state of the entire output pipe. */
  3040. void intel_encoder_dpms(struct intel_encoder *encoder, int mode)
  3041. {
  3042. if (mode == DRM_MODE_DPMS_ON) {
  3043. encoder->connectors_active = true;
  3044. intel_crtc_update_dpms(encoder->base.crtc);
  3045. } else {
  3046. encoder->connectors_active = false;
  3047. intel_crtc_update_dpms(encoder->base.crtc);
  3048. }
  3049. }
  3050. /* Cross check the actual hw state with our own modeset state tracking (and it's
  3051. * internal consistency). */
  3052. static void intel_connector_check_state(struct intel_connector *connector)
  3053. {
  3054. if (connector->get_hw_state(connector)) {
  3055. struct intel_encoder *encoder = connector->encoder;
  3056. struct drm_crtc *crtc;
  3057. bool encoder_enabled;
  3058. enum pipe pipe;
  3059. DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
  3060. connector->base.base.id,
  3061. drm_get_connector_name(&connector->base));
  3062. WARN(connector->base.dpms == DRM_MODE_DPMS_OFF,
  3063. "wrong connector dpms state\n");
  3064. WARN(connector->base.encoder != &encoder->base,
  3065. "active connector not linked to encoder\n");
  3066. WARN(!encoder->connectors_active,
  3067. "encoder->connectors_active not set\n");
  3068. encoder_enabled = encoder->get_hw_state(encoder, &pipe);
  3069. WARN(!encoder_enabled, "encoder not enabled\n");
  3070. if (WARN_ON(!encoder->base.crtc))
  3071. return;
  3072. crtc = encoder->base.crtc;
  3073. WARN(!crtc->enabled, "crtc not enabled\n");
  3074. WARN(!to_intel_crtc(crtc)->active, "crtc not active\n");
  3075. WARN(pipe != to_intel_crtc(crtc)->pipe,
  3076. "encoder active on the wrong pipe\n");
  3077. }
  3078. }
  3079. /* Even simpler default implementation, if there's really no special case to
  3080. * consider. */
  3081. void intel_connector_dpms(struct drm_connector *connector, int mode)
  3082. {
  3083. struct intel_encoder *encoder = intel_attached_encoder(connector);
  3084. /* All the simple cases only support two dpms states. */
  3085. if (mode != DRM_MODE_DPMS_ON)
  3086. mode = DRM_MODE_DPMS_OFF;
  3087. if (mode == connector->dpms)
  3088. return;
  3089. connector->dpms = mode;
  3090. /* Only need to change hw state when actually enabled */
  3091. if (encoder->base.crtc)
  3092. intel_encoder_dpms(encoder, mode);
  3093. else
  3094. WARN_ON(encoder->connectors_active != false);
  3095. intel_modeset_check_state(connector->dev);
  3096. }
  3097. /* Simple connector->get_hw_state implementation for encoders that support only
  3098. * one connector and no cloning and hence the encoder state determines the state
  3099. * of the connector. */
  3100. bool intel_connector_get_hw_state(struct intel_connector *connector)
  3101. {
  3102. enum pipe pipe = 0;
  3103. struct intel_encoder *encoder = connector->encoder;
  3104. return encoder->get_hw_state(encoder, &pipe);
  3105. }
  3106. static bool intel_crtc_mode_fixup(struct drm_crtc *crtc,
  3107. const struct drm_display_mode *mode,
  3108. struct drm_display_mode *adjusted_mode)
  3109. {
  3110. struct drm_device *dev = crtc->dev;
  3111. if (HAS_PCH_SPLIT(dev)) {
  3112. /* FDI link clock is fixed at 2.7G */
  3113. if (mode->clock * 3 > IRONLAKE_FDI_FREQ * 4)
  3114. return false;
  3115. }
  3116. /* All interlaced capable intel hw wants timings in frames. Note though
  3117. * that intel_lvds_mode_fixup does some funny tricks with the crtc
  3118. * timings, so we need to be careful not to clobber these.*/
  3119. if (!(adjusted_mode->private_flags & INTEL_MODE_CRTC_TIMINGS_SET))
  3120. drm_mode_set_crtcinfo(adjusted_mode, 0);
  3121. /* WaPruneModeWithIncorrectHsyncOffset: Cantiga+ cannot handle modes
  3122. * with a hsync front porch of 0.
  3123. */
  3124. if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
  3125. adjusted_mode->hsync_start == adjusted_mode->hdisplay)
  3126. return false;
  3127. return true;
  3128. }
  3129. static int valleyview_get_display_clock_speed(struct drm_device *dev)
  3130. {
  3131. return 400000; /* FIXME */
  3132. }
  3133. static int i945_get_display_clock_speed(struct drm_device *dev)
  3134. {
  3135. return 400000;
  3136. }
  3137. static int i915_get_display_clock_speed(struct drm_device *dev)
  3138. {
  3139. return 333000;
  3140. }
  3141. static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
  3142. {
  3143. return 200000;
  3144. }
  3145. static int i915gm_get_display_clock_speed(struct drm_device *dev)
  3146. {
  3147. u16 gcfgc = 0;
  3148. pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
  3149. if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
  3150. return 133000;
  3151. else {
  3152. switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
  3153. case GC_DISPLAY_CLOCK_333_MHZ:
  3154. return 333000;
  3155. default:
  3156. case GC_DISPLAY_CLOCK_190_200_MHZ:
  3157. return 190000;
  3158. }
  3159. }
  3160. }
  3161. static int i865_get_display_clock_speed(struct drm_device *dev)
  3162. {
  3163. return 266000;
  3164. }
  3165. static int i855_get_display_clock_speed(struct drm_device *dev)
  3166. {
  3167. u16 hpllcc = 0;
  3168. /* Assume that the hardware is in the high speed state. This
  3169. * should be the default.
  3170. */
  3171. switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
  3172. case GC_CLOCK_133_200:
  3173. case GC_CLOCK_100_200:
  3174. return 200000;
  3175. case GC_CLOCK_166_250:
  3176. return 250000;
  3177. case GC_CLOCK_100_133:
  3178. return 133000;
  3179. }
  3180. /* Shouldn't happen */
  3181. return 0;
  3182. }
  3183. static int i830_get_display_clock_speed(struct drm_device *dev)
  3184. {
  3185. return 133000;
  3186. }
  3187. struct fdi_m_n {
  3188. u32 tu;
  3189. u32 gmch_m;
  3190. u32 gmch_n;
  3191. u32 link_m;
  3192. u32 link_n;
  3193. };
  3194. static void
  3195. fdi_reduce_ratio(u32 *num, u32 *den)
  3196. {
  3197. while (*num > 0xffffff || *den > 0xffffff) {
  3198. *num >>= 1;
  3199. *den >>= 1;
  3200. }
  3201. }
  3202. static void
  3203. ironlake_compute_m_n(int bits_per_pixel, int nlanes, int pixel_clock,
  3204. int link_clock, struct fdi_m_n *m_n)
  3205. {
  3206. m_n->tu = 64; /* default size */
  3207. /* BUG_ON(pixel_clock > INT_MAX / 36); */
  3208. m_n->gmch_m = bits_per_pixel * pixel_clock;
  3209. m_n->gmch_n = link_clock * nlanes * 8;
  3210. fdi_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
  3211. m_n->link_m = pixel_clock;
  3212. m_n->link_n = link_clock;
  3213. fdi_reduce_ratio(&m_n->link_m, &m_n->link_n);
  3214. }
  3215. static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
  3216. {
  3217. if (i915_panel_use_ssc >= 0)
  3218. return i915_panel_use_ssc != 0;
  3219. return dev_priv->lvds_use_ssc
  3220. && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
  3221. }
  3222. /**
  3223. * intel_choose_pipe_bpp_dither - figure out what color depth the pipe should send
  3224. * @crtc: CRTC structure
  3225. * @mode: requested mode
  3226. *
  3227. * A pipe may be connected to one or more outputs. Based on the depth of the
  3228. * attached framebuffer, choose a good color depth to use on the pipe.
  3229. *
  3230. * If possible, match the pipe depth to the fb depth. In some cases, this
  3231. * isn't ideal, because the connected output supports a lesser or restricted
  3232. * set of depths. Resolve that here:
  3233. * LVDS typically supports only 6bpc, so clamp down in that case
  3234. * HDMI supports only 8bpc or 12bpc, so clamp to 8bpc with dither for 10bpc
  3235. * Displays may support a restricted set as well, check EDID and clamp as
  3236. * appropriate.
  3237. * DP may want to dither down to 6bpc to fit larger modes
  3238. *
  3239. * RETURNS:
  3240. * Dithering requirement (i.e. false if display bpc and pipe bpc match,
  3241. * true if they don't match).
  3242. */
  3243. static bool intel_choose_pipe_bpp_dither(struct drm_crtc *crtc,
  3244. struct drm_framebuffer *fb,
  3245. unsigned int *pipe_bpp,
  3246. struct drm_display_mode *mode)
  3247. {
  3248. struct drm_device *dev = crtc->dev;
  3249. struct drm_i915_private *dev_priv = dev->dev_private;
  3250. struct drm_connector *connector;
  3251. struct intel_encoder *intel_encoder;
  3252. unsigned int display_bpc = UINT_MAX, bpc;
  3253. /* Walk the encoders & connectors on this crtc, get min bpc */
  3254. for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
  3255. if (intel_encoder->type == INTEL_OUTPUT_LVDS) {
  3256. unsigned int lvds_bpc;
  3257. if ((I915_READ(PCH_LVDS) & LVDS_A3_POWER_MASK) ==
  3258. LVDS_A3_POWER_UP)
  3259. lvds_bpc = 8;
  3260. else
  3261. lvds_bpc = 6;
  3262. if (lvds_bpc < display_bpc) {
  3263. DRM_DEBUG_KMS("clamping display bpc (was %d) to LVDS (%d)\n", display_bpc, lvds_bpc);
  3264. display_bpc = lvds_bpc;
  3265. }
  3266. continue;
  3267. }
  3268. /* Not one of the known troublemakers, check the EDID */
  3269. list_for_each_entry(connector, &dev->mode_config.connector_list,
  3270. head) {
  3271. if (connector->encoder != &intel_encoder->base)
  3272. continue;
  3273. /* Don't use an invalid EDID bpc value */
  3274. if (connector->display_info.bpc &&
  3275. connector->display_info.bpc < display_bpc) {
  3276. DRM_DEBUG_KMS("clamping display bpc (was %d) to EDID reported max of %d\n", display_bpc, connector->display_info.bpc);
  3277. display_bpc = connector->display_info.bpc;
  3278. }
  3279. }
  3280. /*
  3281. * HDMI is either 12 or 8, so if the display lets 10bpc sneak
  3282. * through, clamp it down. (Note: >12bpc will be caught below.)
  3283. */
  3284. if (intel_encoder->type == INTEL_OUTPUT_HDMI) {
  3285. if (display_bpc > 8 && display_bpc < 12) {
  3286. DRM_DEBUG_KMS("forcing bpc to 12 for HDMI\n");
  3287. display_bpc = 12;
  3288. } else {
  3289. DRM_DEBUG_KMS("forcing bpc to 8 for HDMI\n");
  3290. display_bpc = 8;
  3291. }
  3292. }
  3293. }
  3294. if (mode->private_flags & INTEL_MODE_DP_FORCE_6BPC) {
  3295. DRM_DEBUG_KMS("Dithering DP to 6bpc\n");
  3296. display_bpc = 6;
  3297. }
  3298. /*
  3299. * We could just drive the pipe at the highest bpc all the time and
  3300. * enable dithering as needed, but that costs bandwidth. So choose
  3301. * the minimum value that expresses the full color range of the fb but
  3302. * also stays within the max display bpc discovered above.
  3303. */
  3304. switch (fb->depth) {
  3305. case 8:
  3306. bpc = 8; /* since we go through a colormap */
  3307. break;
  3308. case 15:
  3309. case 16:
  3310. bpc = 6; /* min is 18bpp */
  3311. break;
  3312. case 24:
  3313. bpc = 8;
  3314. break;
  3315. case 30:
  3316. bpc = 10;
  3317. break;
  3318. case 48:
  3319. bpc = 12;
  3320. break;
  3321. default:
  3322. DRM_DEBUG("unsupported depth, assuming 24 bits\n");
  3323. bpc = min((unsigned int)8, display_bpc);
  3324. break;
  3325. }
  3326. display_bpc = min(display_bpc, bpc);
  3327. DRM_DEBUG_KMS("setting pipe bpc to %d (max display bpc %d)\n",
  3328. bpc, display_bpc);
  3329. *pipe_bpp = display_bpc * 3;
  3330. return display_bpc != bpc;
  3331. }
  3332. static int vlv_get_refclk(struct drm_crtc *crtc)
  3333. {
  3334. struct drm_device *dev = crtc->dev;
  3335. struct drm_i915_private *dev_priv = dev->dev_private;
  3336. int refclk = 27000; /* for DP & HDMI */
  3337. return 100000; /* only one validated so far */
  3338. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
  3339. refclk = 96000;
  3340. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  3341. if (intel_panel_use_ssc(dev_priv))
  3342. refclk = 100000;
  3343. else
  3344. refclk = 96000;
  3345. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP)) {
  3346. refclk = 100000;
  3347. }
  3348. return refclk;
  3349. }
  3350. static int i9xx_get_refclk(struct drm_crtc *crtc, int num_connectors)
  3351. {
  3352. struct drm_device *dev = crtc->dev;
  3353. struct drm_i915_private *dev_priv = dev->dev_private;
  3354. int refclk;
  3355. if (IS_VALLEYVIEW(dev)) {
  3356. refclk = vlv_get_refclk(crtc);
  3357. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
  3358. intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
  3359. refclk = dev_priv->lvds_ssc_freq * 1000;
  3360. DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
  3361. refclk / 1000);
  3362. } else if (!IS_GEN2(dev)) {
  3363. refclk = 96000;
  3364. } else {
  3365. refclk = 48000;
  3366. }
  3367. return refclk;
  3368. }
  3369. static void i9xx_adjust_sdvo_tv_clock(struct drm_display_mode *adjusted_mode,
  3370. intel_clock_t *clock)
  3371. {
  3372. /* SDVO TV has fixed PLL values depend on its clock range,
  3373. this mirrors vbios setting. */
  3374. if (adjusted_mode->clock >= 100000
  3375. && adjusted_mode->clock < 140500) {
  3376. clock->p1 = 2;
  3377. clock->p2 = 10;
  3378. clock->n = 3;
  3379. clock->m1 = 16;
  3380. clock->m2 = 8;
  3381. } else if (adjusted_mode->clock >= 140500
  3382. && adjusted_mode->clock <= 200000) {
  3383. clock->p1 = 1;
  3384. clock->p2 = 10;
  3385. clock->n = 6;
  3386. clock->m1 = 12;
  3387. clock->m2 = 8;
  3388. }
  3389. }
  3390. static void i9xx_update_pll_dividers(struct drm_crtc *crtc,
  3391. intel_clock_t *clock,
  3392. intel_clock_t *reduced_clock)
  3393. {
  3394. struct drm_device *dev = crtc->dev;
  3395. struct drm_i915_private *dev_priv = dev->dev_private;
  3396. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3397. int pipe = intel_crtc->pipe;
  3398. u32 fp, fp2 = 0;
  3399. if (IS_PINEVIEW(dev)) {
  3400. fp = (1 << clock->n) << 16 | clock->m1 << 8 | clock->m2;
  3401. if (reduced_clock)
  3402. fp2 = (1 << reduced_clock->n) << 16 |
  3403. reduced_clock->m1 << 8 | reduced_clock->m2;
  3404. } else {
  3405. fp = clock->n << 16 | clock->m1 << 8 | clock->m2;
  3406. if (reduced_clock)
  3407. fp2 = reduced_clock->n << 16 | reduced_clock->m1 << 8 |
  3408. reduced_clock->m2;
  3409. }
  3410. I915_WRITE(FP0(pipe), fp);
  3411. intel_crtc->lowfreq_avail = false;
  3412. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
  3413. reduced_clock && i915_powersave) {
  3414. I915_WRITE(FP1(pipe), fp2);
  3415. intel_crtc->lowfreq_avail = true;
  3416. } else {
  3417. I915_WRITE(FP1(pipe), fp);
  3418. }
  3419. }
  3420. static void intel_update_lvds(struct drm_crtc *crtc, intel_clock_t *clock,
  3421. struct drm_display_mode *adjusted_mode)
  3422. {
  3423. struct drm_device *dev = crtc->dev;
  3424. struct drm_i915_private *dev_priv = dev->dev_private;
  3425. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3426. int pipe = intel_crtc->pipe;
  3427. u32 temp;
  3428. temp = I915_READ(LVDS);
  3429. temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
  3430. if (pipe == 1) {
  3431. temp |= LVDS_PIPEB_SELECT;
  3432. } else {
  3433. temp &= ~LVDS_PIPEB_SELECT;
  3434. }
  3435. /* set the corresponsding LVDS_BORDER bit */
  3436. temp |= dev_priv->lvds_border_bits;
  3437. /* Set the B0-B3 data pairs corresponding to whether we're going to
  3438. * set the DPLLs for dual-channel mode or not.
  3439. */
  3440. if (clock->p2 == 7)
  3441. temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
  3442. else
  3443. temp &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
  3444. /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
  3445. * appropriately here, but we need to look more thoroughly into how
  3446. * panels behave in the two modes.
  3447. */
  3448. /* set the dithering flag on LVDS as needed */
  3449. if (INTEL_INFO(dev)->gen >= 4) {
  3450. if (dev_priv->lvds_dither)
  3451. temp |= LVDS_ENABLE_DITHER;
  3452. else
  3453. temp &= ~LVDS_ENABLE_DITHER;
  3454. }
  3455. temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY);
  3456. if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
  3457. temp |= LVDS_HSYNC_POLARITY;
  3458. if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
  3459. temp |= LVDS_VSYNC_POLARITY;
  3460. I915_WRITE(LVDS, temp);
  3461. }
  3462. static void vlv_update_pll(struct drm_crtc *crtc,
  3463. struct drm_display_mode *mode,
  3464. struct drm_display_mode *adjusted_mode,
  3465. intel_clock_t *clock, intel_clock_t *reduced_clock,
  3466. int num_connectors)
  3467. {
  3468. struct drm_device *dev = crtc->dev;
  3469. struct drm_i915_private *dev_priv = dev->dev_private;
  3470. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3471. int pipe = intel_crtc->pipe;
  3472. u32 dpll, mdiv, pdiv;
  3473. u32 bestn, bestm1, bestm2, bestp1, bestp2;
  3474. bool is_sdvo;
  3475. u32 temp;
  3476. is_sdvo = intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO) ||
  3477. intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI);
  3478. dpll = DPLL_VGA_MODE_DIS;
  3479. dpll |= DPLL_EXT_BUFFER_ENABLE_VLV;
  3480. dpll |= DPLL_REFA_CLK_ENABLE_VLV;
  3481. dpll |= DPLL_INTEGRATED_CLOCK_VLV;
  3482. I915_WRITE(DPLL(pipe), dpll);
  3483. POSTING_READ(DPLL(pipe));
  3484. bestn = clock->n;
  3485. bestm1 = clock->m1;
  3486. bestm2 = clock->m2;
  3487. bestp1 = clock->p1;
  3488. bestp2 = clock->p2;
  3489. /*
  3490. * In Valleyview PLL and program lane counter registers are exposed
  3491. * through DPIO interface
  3492. */
  3493. mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
  3494. mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
  3495. mdiv |= ((bestn << DPIO_N_SHIFT));
  3496. mdiv |= (1 << DPIO_POST_DIV_SHIFT);
  3497. mdiv |= (1 << DPIO_K_SHIFT);
  3498. mdiv |= DPIO_ENABLE_CALIBRATION;
  3499. intel_dpio_write(dev_priv, DPIO_DIV(pipe), mdiv);
  3500. intel_dpio_write(dev_priv, DPIO_CORE_CLK(pipe), 0x01000000);
  3501. pdiv = (1 << DPIO_REFSEL_OVERRIDE) | (5 << DPIO_PLL_MODESEL_SHIFT) |
  3502. (3 << DPIO_BIAS_CURRENT_CTL_SHIFT) | (1<<20) |
  3503. (7 << DPIO_PLL_REFCLK_SEL_SHIFT) | (8 << DPIO_DRIVER_CTL_SHIFT) |
  3504. (5 << DPIO_CLK_BIAS_CTL_SHIFT);
  3505. intel_dpio_write(dev_priv, DPIO_REFSFR(pipe), pdiv);
  3506. intel_dpio_write(dev_priv, DPIO_LFP_COEFF(pipe), 0x005f003b);
  3507. dpll |= DPLL_VCO_ENABLE;
  3508. I915_WRITE(DPLL(pipe), dpll);
  3509. POSTING_READ(DPLL(pipe));
  3510. if (wait_for(((I915_READ(DPLL(pipe)) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
  3511. DRM_ERROR("DPLL %d failed to lock\n", pipe);
  3512. intel_dpio_write(dev_priv, DPIO_FASTCLK_DISABLE, 0x620);
  3513. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT))
  3514. intel_dp_set_m_n(crtc, mode, adjusted_mode);
  3515. I915_WRITE(DPLL(pipe), dpll);
  3516. /* Wait for the clocks to stabilize. */
  3517. POSTING_READ(DPLL(pipe));
  3518. udelay(150);
  3519. temp = 0;
  3520. if (is_sdvo) {
  3521. temp = intel_mode_get_pixel_multiplier(adjusted_mode);
  3522. if (temp > 1)
  3523. temp = (temp - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
  3524. else
  3525. temp = 0;
  3526. }
  3527. I915_WRITE(DPLL_MD(pipe), temp);
  3528. POSTING_READ(DPLL_MD(pipe));
  3529. /* Now program lane control registers */
  3530. if(intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)
  3531. || intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
  3532. {
  3533. temp = 0x1000C4;
  3534. if(pipe == 1)
  3535. temp |= (1 << 21);
  3536. intel_dpio_write(dev_priv, DPIO_DATA_CHANNEL1, temp);
  3537. }
  3538. if(intel_pipe_has_type(crtc,INTEL_OUTPUT_EDP))
  3539. {
  3540. temp = 0x1000C4;
  3541. if(pipe == 1)
  3542. temp |= (1 << 21);
  3543. intel_dpio_write(dev_priv, DPIO_DATA_CHANNEL2, temp);
  3544. }
  3545. }
  3546. static void i9xx_update_pll(struct drm_crtc *crtc,
  3547. struct drm_display_mode *mode,
  3548. struct drm_display_mode *adjusted_mode,
  3549. intel_clock_t *clock, intel_clock_t *reduced_clock,
  3550. int num_connectors)
  3551. {
  3552. struct drm_device *dev = crtc->dev;
  3553. struct drm_i915_private *dev_priv = dev->dev_private;
  3554. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3555. int pipe = intel_crtc->pipe;
  3556. u32 dpll;
  3557. bool is_sdvo;
  3558. i9xx_update_pll_dividers(crtc, clock, reduced_clock);
  3559. is_sdvo = intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO) ||
  3560. intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI);
  3561. dpll = DPLL_VGA_MODE_DIS;
  3562. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
  3563. dpll |= DPLLB_MODE_LVDS;
  3564. else
  3565. dpll |= DPLLB_MODE_DAC_SERIAL;
  3566. if (is_sdvo) {
  3567. int pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
  3568. if (pixel_multiplier > 1) {
  3569. if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
  3570. dpll |= (pixel_multiplier - 1) << SDVO_MULTIPLIER_SHIFT_HIRES;
  3571. }
  3572. dpll |= DPLL_DVO_HIGH_SPEED;
  3573. }
  3574. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT))
  3575. dpll |= DPLL_DVO_HIGH_SPEED;
  3576. /* compute bitmask from p1 value */
  3577. if (IS_PINEVIEW(dev))
  3578. dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
  3579. else {
  3580. dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
  3581. if (IS_G4X(dev) && reduced_clock)
  3582. dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
  3583. }
  3584. switch (clock->p2) {
  3585. case 5:
  3586. dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
  3587. break;
  3588. case 7:
  3589. dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
  3590. break;
  3591. case 10:
  3592. dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
  3593. break;
  3594. case 14:
  3595. dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
  3596. break;
  3597. }
  3598. if (INTEL_INFO(dev)->gen >= 4)
  3599. dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
  3600. if (is_sdvo && intel_pipe_has_type(crtc, INTEL_OUTPUT_TVOUT))
  3601. dpll |= PLL_REF_INPUT_TVCLKINBC;
  3602. else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_TVOUT))
  3603. /* XXX: just matching BIOS for now */
  3604. /* dpll |= PLL_REF_INPUT_TVCLKINBC; */
  3605. dpll |= 3;
  3606. else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
  3607. intel_panel_use_ssc(dev_priv) && num_connectors < 2)
  3608. dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
  3609. else
  3610. dpll |= PLL_REF_INPUT_DREFCLK;
  3611. dpll |= DPLL_VCO_ENABLE;
  3612. I915_WRITE(DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
  3613. POSTING_READ(DPLL(pipe));
  3614. udelay(150);
  3615. /* The LVDS pin pair needs to be on before the DPLLs are enabled.
  3616. * This is an exception to the general rule that mode_set doesn't turn
  3617. * things on.
  3618. */
  3619. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
  3620. intel_update_lvds(crtc, clock, adjusted_mode);
  3621. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT))
  3622. intel_dp_set_m_n(crtc, mode, adjusted_mode);
  3623. I915_WRITE(DPLL(pipe), dpll);
  3624. /* Wait for the clocks to stabilize. */
  3625. POSTING_READ(DPLL(pipe));
  3626. udelay(150);
  3627. if (INTEL_INFO(dev)->gen >= 4) {
  3628. u32 temp = 0;
  3629. if (is_sdvo) {
  3630. temp = intel_mode_get_pixel_multiplier(adjusted_mode);
  3631. if (temp > 1)
  3632. temp = (temp - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
  3633. else
  3634. temp = 0;
  3635. }
  3636. I915_WRITE(DPLL_MD(pipe), temp);
  3637. } else {
  3638. /* The pixel multiplier can only be updated once the
  3639. * DPLL is enabled and the clocks are stable.
  3640. *
  3641. * So write it again.
  3642. */
  3643. I915_WRITE(DPLL(pipe), dpll);
  3644. }
  3645. }
  3646. static void i8xx_update_pll(struct drm_crtc *crtc,
  3647. struct drm_display_mode *adjusted_mode,
  3648. intel_clock_t *clock, intel_clock_t *reduced_clock,
  3649. int num_connectors)
  3650. {
  3651. struct drm_device *dev = crtc->dev;
  3652. struct drm_i915_private *dev_priv = dev->dev_private;
  3653. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3654. int pipe = intel_crtc->pipe;
  3655. u32 dpll;
  3656. i9xx_update_pll_dividers(crtc, clock, reduced_clock);
  3657. dpll = DPLL_VGA_MODE_DIS;
  3658. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  3659. dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
  3660. } else {
  3661. if (clock->p1 == 2)
  3662. dpll |= PLL_P1_DIVIDE_BY_TWO;
  3663. else
  3664. dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
  3665. if (clock->p2 == 4)
  3666. dpll |= PLL_P2_DIVIDE_BY_4;
  3667. }
  3668. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_TVOUT))
  3669. /* XXX: just matching BIOS for now */
  3670. /* dpll |= PLL_REF_INPUT_TVCLKINBC; */
  3671. dpll |= 3;
  3672. else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
  3673. intel_panel_use_ssc(dev_priv) && num_connectors < 2)
  3674. dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
  3675. else
  3676. dpll |= PLL_REF_INPUT_DREFCLK;
  3677. dpll |= DPLL_VCO_ENABLE;
  3678. I915_WRITE(DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
  3679. POSTING_READ(DPLL(pipe));
  3680. udelay(150);
  3681. /* The LVDS pin pair needs to be on before the DPLLs are enabled.
  3682. * This is an exception to the general rule that mode_set doesn't turn
  3683. * things on.
  3684. */
  3685. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
  3686. intel_update_lvds(crtc, clock, adjusted_mode);
  3687. I915_WRITE(DPLL(pipe), dpll);
  3688. /* Wait for the clocks to stabilize. */
  3689. POSTING_READ(DPLL(pipe));
  3690. udelay(150);
  3691. /* The pixel multiplier can only be updated once the
  3692. * DPLL is enabled and the clocks are stable.
  3693. *
  3694. * So write it again.
  3695. */
  3696. I915_WRITE(DPLL(pipe), dpll);
  3697. }
  3698. static void intel_set_pipe_timings(struct intel_crtc *intel_crtc,
  3699. struct drm_display_mode *mode,
  3700. struct drm_display_mode *adjusted_mode)
  3701. {
  3702. struct drm_device *dev = intel_crtc->base.dev;
  3703. struct drm_i915_private *dev_priv = dev->dev_private;
  3704. enum pipe pipe = intel_crtc->pipe;
  3705. uint32_t vsyncshift;
  3706. if (!IS_GEN2(dev) && adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
  3707. /* the chip adds 2 halflines automatically */
  3708. adjusted_mode->crtc_vtotal -= 1;
  3709. adjusted_mode->crtc_vblank_end -= 1;
  3710. vsyncshift = adjusted_mode->crtc_hsync_start
  3711. - adjusted_mode->crtc_htotal / 2;
  3712. } else {
  3713. vsyncshift = 0;
  3714. }
  3715. if (INTEL_INFO(dev)->gen > 3)
  3716. I915_WRITE(VSYNCSHIFT(pipe), vsyncshift);
  3717. I915_WRITE(HTOTAL(pipe),
  3718. (adjusted_mode->crtc_hdisplay - 1) |
  3719. ((adjusted_mode->crtc_htotal - 1) << 16));
  3720. I915_WRITE(HBLANK(pipe),
  3721. (adjusted_mode->crtc_hblank_start - 1) |
  3722. ((adjusted_mode->crtc_hblank_end - 1) << 16));
  3723. I915_WRITE(HSYNC(pipe),
  3724. (adjusted_mode->crtc_hsync_start - 1) |
  3725. ((adjusted_mode->crtc_hsync_end - 1) << 16));
  3726. I915_WRITE(VTOTAL(pipe),
  3727. (adjusted_mode->crtc_vdisplay - 1) |
  3728. ((adjusted_mode->crtc_vtotal - 1) << 16));
  3729. I915_WRITE(VBLANK(pipe),
  3730. (adjusted_mode->crtc_vblank_start - 1) |
  3731. ((adjusted_mode->crtc_vblank_end - 1) << 16));
  3732. I915_WRITE(VSYNC(pipe),
  3733. (adjusted_mode->crtc_vsync_start - 1) |
  3734. ((adjusted_mode->crtc_vsync_end - 1) << 16));
  3735. /* pipesrc controls the size that is scaled from, which should
  3736. * always be the user's requested size.
  3737. */
  3738. I915_WRITE(PIPESRC(pipe),
  3739. ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
  3740. }
  3741. static int i9xx_crtc_mode_set(struct drm_crtc *crtc,
  3742. struct drm_display_mode *mode,
  3743. struct drm_display_mode *adjusted_mode,
  3744. int x, int y,
  3745. struct drm_framebuffer *fb)
  3746. {
  3747. struct drm_device *dev = crtc->dev;
  3748. struct drm_i915_private *dev_priv = dev->dev_private;
  3749. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3750. int pipe = intel_crtc->pipe;
  3751. int plane = intel_crtc->plane;
  3752. int refclk, num_connectors = 0;
  3753. intel_clock_t clock, reduced_clock;
  3754. u32 dspcntr, pipeconf;
  3755. bool ok, has_reduced_clock = false, is_sdvo = false;
  3756. bool is_lvds = false, is_tv = false, is_dp = false;
  3757. struct intel_encoder *encoder;
  3758. const intel_limit_t *limit;
  3759. int ret;
  3760. for_each_encoder_on_crtc(dev, crtc, encoder) {
  3761. switch (encoder->type) {
  3762. case INTEL_OUTPUT_LVDS:
  3763. is_lvds = true;
  3764. break;
  3765. case INTEL_OUTPUT_SDVO:
  3766. case INTEL_OUTPUT_HDMI:
  3767. is_sdvo = true;
  3768. if (encoder->needs_tv_clock)
  3769. is_tv = true;
  3770. break;
  3771. case INTEL_OUTPUT_TVOUT:
  3772. is_tv = true;
  3773. break;
  3774. case INTEL_OUTPUT_DISPLAYPORT:
  3775. is_dp = true;
  3776. break;
  3777. }
  3778. num_connectors++;
  3779. }
  3780. refclk = i9xx_get_refclk(crtc, num_connectors);
  3781. /*
  3782. * Returns a set of divisors for the desired target clock with the given
  3783. * refclk, or FALSE. The returned values represent the clock equation:
  3784. * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
  3785. */
  3786. limit = intel_limit(crtc, refclk);
  3787. ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, NULL,
  3788. &clock);
  3789. if (!ok) {
  3790. DRM_ERROR("Couldn't find PLL settings for mode!\n");
  3791. return -EINVAL;
  3792. }
  3793. /* Ensure that the cursor is valid for the new mode before changing... */
  3794. intel_crtc_update_cursor(crtc, true);
  3795. if (is_lvds && dev_priv->lvds_downclock_avail) {
  3796. /*
  3797. * Ensure we match the reduced clock's P to the target clock.
  3798. * If the clocks don't match, we can't switch the display clock
  3799. * by using the FP0/FP1. In such case we will disable the LVDS
  3800. * downclock feature.
  3801. */
  3802. has_reduced_clock = limit->find_pll(limit, crtc,
  3803. dev_priv->lvds_downclock,
  3804. refclk,
  3805. &clock,
  3806. &reduced_clock);
  3807. }
  3808. if (is_sdvo && is_tv)
  3809. i9xx_adjust_sdvo_tv_clock(adjusted_mode, &clock);
  3810. if (IS_GEN2(dev))
  3811. i8xx_update_pll(crtc, adjusted_mode, &clock,
  3812. has_reduced_clock ? &reduced_clock : NULL,
  3813. num_connectors);
  3814. else if (IS_VALLEYVIEW(dev))
  3815. vlv_update_pll(crtc, mode, adjusted_mode, &clock,
  3816. has_reduced_clock ? &reduced_clock : NULL,
  3817. num_connectors);
  3818. else
  3819. i9xx_update_pll(crtc, mode, adjusted_mode, &clock,
  3820. has_reduced_clock ? &reduced_clock : NULL,
  3821. num_connectors);
  3822. /* setup pipeconf */
  3823. pipeconf = I915_READ(PIPECONF(pipe));
  3824. /* Set up the display plane register */
  3825. dspcntr = DISPPLANE_GAMMA_ENABLE;
  3826. if (pipe == 0)
  3827. dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
  3828. else
  3829. dspcntr |= DISPPLANE_SEL_PIPE_B;
  3830. if (pipe == 0 && INTEL_INFO(dev)->gen < 4) {
  3831. /* Enable pixel doubling when the dot clock is > 90% of the (display)
  3832. * core speed.
  3833. *
  3834. * XXX: No double-wide on 915GM pipe B. Is that the only reason for the
  3835. * pipe == 0 check?
  3836. */
  3837. if (mode->clock >
  3838. dev_priv->display.get_display_clock_speed(dev) * 9 / 10)
  3839. pipeconf |= PIPECONF_DOUBLE_WIDE;
  3840. else
  3841. pipeconf &= ~PIPECONF_DOUBLE_WIDE;
  3842. }
  3843. /* default to 8bpc */
  3844. pipeconf &= ~(PIPECONF_BPP_MASK | PIPECONF_DITHER_EN);
  3845. if (is_dp) {
  3846. if (mode->private_flags & INTEL_MODE_DP_FORCE_6BPC) {
  3847. pipeconf |= PIPECONF_BPP_6 |
  3848. PIPECONF_DITHER_EN |
  3849. PIPECONF_DITHER_TYPE_SP;
  3850. }
  3851. }
  3852. if (IS_VALLEYVIEW(dev) && intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP)) {
  3853. if (adjusted_mode->private_flags & INTEL_MODE_DP_FORCE_6BPC) {
  3854. pipeconf |= PIPECONF_BPP_6 |
  3855. PIPECONF_ENABLE |
  3856. I965_PIPECONF_ACTIVE;
  3857. }
  3858. }
  3859. DRM_DEBUG_KMS("Mode for pipe %c:\n", pipe == 0 ? 'A' : 'B');
  3860. drm_mode_debug_printmodeline(mode);
  3861. if (HAS_PIPE_CXSR(dev)) {
  3862. if (intel_crtc->lowfreq_avail) {
  3863. DRM_DEBUG_KMS("enabling CxSR downclocking\n");
  3864. pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
  3865. } else {
  3866. DRM_DEBUG_KMS("disabling CxSR downclocking\n");
  3867. pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK;
  3868. }
  3869. }
  3870. pipeconf &= ~PIPECONF_INTERLACE_MASK;
  3871. if (!IS_GEN2(dev) &&
  3872. adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
  3873. pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
  3874. else
  3875. pipeconf |= PIPECONF_PROGRESSIVE;
  3876. intel_set_pipe_timings(intel_crtc, mode, adjusted_mode);
  3877. /* pipesrc and dspsize control the size that is scaled from,
  3878. * which should always be the user's requested size.
  3879. */
  3880. I915_WRITE(DSPSIZE(plane),
  3881. ((mode->vdisplay - 1) << 16) |
  3882. (mode->hdisplay - 1));
  3883. I915_WRITE(DSPPOS(plane), 0);
  3884. I915_WRITE(PIPECONF(pipe), pipeconf);
  3885. POSTING_READ(PIPECONF(pipe));
  3886. intel_enable_pipe(dev_priv, pipe, false);
  3887. intel_wait_for_vblank(dev, pipe);
  3888. I915_WRITE(DSPCNTR(plane), dspcntr);
  3889. POSTING_READ(DSPCNTR(plane));
  3890. ret = intel_pipe_set_base(crtc, x, y, fb);
  3891. intel_update_watermarks(dev);
  3892. return ret;
  3893. }
  3894. /*
  3895. * Initialize reference clocks when the driver loads
  3896. */
  3897. void ironlake_init_pch_refclk(struct drm_device *dev)
  3898. {
  3899. struct drm_i915_private *dev_priv = dev->dev_private;
  3900. struct drm_mode_config *mode_config = &dev->mode_config;
  3901. struct intel_encoder *encoder;
  3902. u32 temp;
  3903. bool has_lvds = false;
  3904. bool has_cpu_edp = false;
  3905. bool has_pch_edp = false;
  3906. bool has_panel = false;
  3907. bool has_ck505 = false;
  3908. bool can_ssc = false;
  3909. /* We need to take the global config into account */
  3910. list_for_each_entry(encoder, &mode_config->encoder_list,
  3911. base.head) {
  3912. switch (encoder->type) {
  3913. case INTEL_OUTPUT_LVDS:
  3914. has_panel = true;
  3915. has_lvds = true;
  3916. break;
  3917. case INTEL_OUTPUT_EDP:
  3918. has_panel = true;
  3919. if (intel_encoder_is_pch_edp(&encoder->base))
  3920. has_pch_edp = true;
  3921. else
  3922. has_cpu_edp = true;
  3923. break;
  3924. }
  3925. }
  3926. if (HAS_PCH_IBX(dev)) {
  3927. has_ck505 = dev_priv->display_clock_mode;
  3928. can_ssc = has_ck505;
  3929. } else {
  3930. has_ck505 = false;
  3931. can_ssc = true;
  3932. }
  3933. DRM_DEBUG_KMS("has_panel %d has_lvds %d has_pch_edp %d has_cpu_edp %d has_ck505 %d\n",
  3934. has_panel, has_lvds, has_pch_edp, has_cpu_edp,
  3935. has_ck505);
  3936. /* Ironlake: try to setup display ref clock before DPLL
  3937. * enabling. This is only under driver's control after
  3938. * PCH B stepping, previous chipset stepping should be
  3939. * ignoring this setting.
  3940. */
  3941. temp = I915_READ(PCH_DREF_CONTROL);
  3942. /* Always enable nonspread source */
  3943. temp &= ~DREF_NONSPREAD_SOURCE_MASK;
  3944. if (has_ck505)
  3945. temp |= DREF_NONSPREAD_CK505_ENABLE;
  3946. else
  3947. temp |= DREF_NONSPREAD_SOURCE_ENABLE;
  3948. if (has_panel) {
  3949. temp &= ~DREF_SSC_SOURCE_MASK;
  3950. temp |= DREF_SSC_SOURCE_ENABLE;
  3951. /* SSC must be turned on before enabling the CPU output */
  3952. if (intel_panel_use_ssc(dev_priv) && can_ssc) {
  3953. DRM_DEBUG_KMS("Using SSC on panel\n");
  3954. temp |= DREF_SSC1_ENABLE;
  3955. } else
  3956. temp &= ~DREF_SSC1_ENABLE;
  3957. /* Get SSC going before enabling the outputs */
  3958. I915_WRITE(PCH_DREF_CONTROL, temp);
  3959. POSTING_READ(PCH_DREF_CONTROL);
  3960. udelay(200);
  3961. temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
  3962. /* Enable CPU source on CPU attached eDP */
  3963. if (has_cpu_edp) {
  3964. if (intel_panel_use_ssc(dev_priv) && can_ssc) {
  3965. DRM_DEBUG_KMS("Using SSC on eDP\n");
  3966. temp |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
  3967. }
  3968. else
  3969. temp |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
  3970. } else
  3971. temp |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
  3972. I915_WRITE(PCH_DREF_CONTROL, temp);
  3973. POSTING_READ(PCH_DREF_CONTROL);
  3974. udelay(200);
  3975. } else {
  3976. DRM_DEBUG_KMS("Disabling SSC entirely\n");
  3977. temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
  3978. /* Turn off CPU output */
  3979. temp |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
  3980. I915_WRITE(PCH_DREF_CONTROL, temp);
  3981. POSTING_READ(PCH_DREF_CONTROL);
  3982. udelay(200);
  3983. /* Turn off the SSC source */
  3984. temp &= ~DREF_SSC_SOURCE_MASK;
  3985. temp |= DREF_SSC_SOURCE_DISABLE;
  3986. /* Turn off SSC1 */
  3987. temp &= ~ DREF_SSC1_ENABLE;
  3988. I915_WRITE(PCH_DREF_CONTROL, temp);
  3989. POSTING_READ(PCH_DREF_CONTROL);
  3990. udelay(200);
  3991. }
  3992. }
  3993. static int ironlake_get_refclk(struct drm_crtc *crtc)
  3994. {
  3995. struct drm_device *dev = crtc->dev;
  3996. struct drm_i915_private *dev_priv = dev->dev_private;
  3997. struct intel_encoder *encoder;
  3998. struct intel_encoder *edp_encoder = NULL;
  3999. int num_connectors = 0;
  4000. bool is_lvds = false;
  4001. for_each_encoder_on_crtc(dev, crtc, encoder) {
  4002. switch (encoder->type) {
  4003. case INTEL_OUTPUT_LVDS:
  4004. is_lvds = true;
  4005. break;
  4006. case INTEL_OUTPUT_EDP:
  4007. edp_encoder = encoder;
  4008. break;
  4009. }
  4010. num_connectors++;
  4011. }
  4012. if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
  4013. DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
  4014. dev_priv->lvds_ssc_freq);
  4015. return dev_priv->lvds_ssc_freq * 1000;
  4016. }
  4017. return 120000;
  4018. }
  4019. static void ironlake_set_pipeconf(struct drm_crtc *crtc,
  4020. struct drm_display_mode *adjusted_mode,
  4021. bool dither)
  4022. {
  4023. struct drm_i915_private *dev_priv = crtc->dev->dev_private;
  4024. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4025. int pipe = intel_crtc->pipe;
  4026. uint32_t val;
  4027. val = I915_READ(PIPECONF(pipe));
  4028. val &= ~PIPE_BPC_MASK;
  4029. switch (intel_crtc->bpp) {
  4030. case 18:
  4031. val |= PIPE_6BPC;
  4032. break;
  4033. case 24:
  4034. val |= PIPE_8BPC;
  4035. break;
  4036. case 30:
  4037. val |= PIPE_10BPC;
  4038. break;
  4039. case 36:
  4040. val |= PIPE_12BPC;
  4041. break;
  4042. default:
  4043. /* Case prevented by intel_choose_pipe_bpp_dither. */
  4044. BUG();
  4045. }
  4046. val &= ~(PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_MASK);
  4047. if (dither)
  4048. val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
  4049. val &= ~PIPECONF_INTERLACE_MASK;
  4050. if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
  4051. val |= PIPECONF_INTERLACED_ILK;
  4052. else
  4053. val |= PIPECONF_PROGRESSIVE;
  4054. I915_WRITE(PIPECONF(pipe), val);
  4055. POSTING_READ(PIPECONF(pipe));
  4056. }
  4057. static void haswell_set_pipeconf(struct drm_crtc *crtc,
  4058. struct drm_display_mode *adjusted_mode,
  4059. bool dither)
  4060. {
  4061. struct drm_i915_private *dev_priv = crtc->dev->dev_private;
  4062. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4063. int pipe = intel_crtc->pipe;
  4064. uint32_t val;
  4065. val = I915_READ(PIPECONF(pipe));
  4066. val &= ~(PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_MASK);
  4067. if (dither)
  4068. val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
  4069. val &= ~PIPECONF_INTERLACE_MASK_HSW;
  4070. if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
  4071. val |= PIPECONF_INTERLACED_ILK;
  4072. else
  4073. val |= PIPECONF_PROGRESSIVE;
  4074. I915_WRITE(PIPECONF(pipe), val);
  4075. POSTING_READ(PIPECONF(pipe));
  4076. }
  4077. static bool ironlake_compute_clocks(struct drm_crtc *crtc,
  4078. struct drm_display_mode *adjusted_mode,
  4079. intel_clock_t *clock,
  4080. bool *has_reduced_clock,
  4081. intel_clock_t *reduced_clock)
  4082. {
  4083. struct drm_device *dev = crtc->dev;
  4084. struct drm_i915_private *dev_priv = dev->dev_private;
  4085. struct intel_encoder *intel_encoder;
  4086. int refclk;
  4087. const intel_limit_t *limit;
  4088. bool ret, is_sdvo = false, is_tv = false, is_lvds = false;
  4089. for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
  4090. switch (intel_encoder->type) {
  4091. case INTEL_OUTPUT_LVDS:
  4092. is_lvds = true;
  4093. break;
  4094. case INTEL_OUTPUT_SDVO:
  4095. case INTEL_OUTPUT_HDMI:
  4096. is_sdvo = true;
  4097. if (intel_encoder->needs_tv_clock)
  4098. is_tv = true;
  4099. break;
  4100. case INTEL_OUTPUT_TVOUT:
  4101. is_tv = true;
  4102. break;
  4103. }
  4104. }
  4105. refclk = ironlake_get_refclk(crtc);
  4106. /*
  4107. * Returns a set of divisors for the desired target clock with the given
  4108. * refclk, or FALSE. The returned values represent the clock equation:
  4109. * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
  4110. */
  4111. limit = intel_limit(crtc, refclk);
  4112. ret = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, NULL,
  4113. clock);
  4114. if (!ret)
  4115. return false;
  4116. if (is_lvds && dev_priv->lvds_downclock_avail) {
  4117. /*
  4118. * Ensure we match the reduced clock's P to the target clock.
  4119. * If the clocks don't match, we can't switch the display clock
  4120. * by using the FP0/FP1. In such case we will disable the LVDS
  4121. * downclock feature.
  4122. */
  4123. *has_reduced_clock = limit->find_pll(limit, crtc,
  4124. dev_priv->lvds_downclock,
  4125. refclk,
  4126. clock,
  4127. reduced_clock);
  4128. }
  4129. if (is_sdvo && is_tv)
  4130. i9xx_adjust_sdvo_tv_clock(adjusted_mode, clock);
  4131. return true;
  4132. }
  4133. static void ironlake_set_m_n(struct drm_crtc *crtc,
  4134. struct drm_display_mode *mode,
  4135. struct drm_display_mode *adjusted_mode)
  4136. {
  4137. struct drm_device *dev = crtc->dev;
  4138. struct drm_i915_private *dev_priv = dev->dev_private;
  4139. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4140. enum pipe pipe = intel_crtc->pipe;
  4141. struct intel_encoder *intel_encoder, *edp_encoder = NULL;
  4142. struct fdi_m_n m_n = {0};
  4143. int target_clock, pixel_multiplier, lane, link_bw;
  4144. bool is_dp = false, is_cpu_edp = false;
  4145. for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
  4146. switch (intel_encoder->type) {
  4147. case INTEL_OUTPUT_DISPLAYPORT:
  4148. is_dp = true;
  4149. break;
  4150. case INTEL_OUTPUT_EDP:
  4151. is_dp = true;
  4152. if (!intel_encoder_is_pch_edp(&intel_encoder->base))
  4153. is_cpu_edp = true;
  4154. edp_encoder = intel_encoder;
  4155. break;
  4156. }
  4157. }
  4158. /* FDI link */
  4159. pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
  4160. lane = 0;
  4161. /* CPU eDP doesn't require FDI link, so just set DP M/N
  4162. according to current link config */
  4163. if (is_cpu_edp) {
  4164. intel_edp_link_config(edp_encoder, &lane, &link_bw);
  4165. } else {
  4166. /* FDI is a binary signal running at ~2.7GHz, encoding
  4167. * each output octet as 10 bits. The actual frequency
  4168. * is stored as a divider into a 100MHz clock, and the
  4169. * mode pixel clock is stored in units of 1KHz.
  4170. * Hence the bw of each lane in terms of the mode signal
  4171. * is:
  4172. */
  4173. link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
  4174. }
  4175. /* [e]DP over FDI requires target mode clock instead of link clock. */
  4176. if (edp_encoder)
  4177. target_clock = intel_edp_target_clock(edp_encoder, mode);
  4178. else if (is_dp)
  4179. target_clock = mode->clock;
  4180. else
  4181. target_clock = adjusted_mode->clock;
  4182. if (!lane) {
  4183. /*
  4184. * Account for spread spectrum to avoid
  4185. * oversubscribing the link. Max center spread
  4186. * is 2.5%; use 5% for safety's sake.
  4187. */
  4188. u32 bps = target_clock * intel_crtc->bpp * 21 / 20;
  4189. lane = bps / (link_bw * 8) + 1;
  4190. }
  4191. intel_crtc->fdi_lanes = lane;
  4192. if (pixel_multiplier > 1)
  4193. link_bw *= pixel_multiplier;
  4194. ironlake_compute_m_n(intel_crtc->bpp, lane, target_clock, link_bw,
  4195. &m_n);
  4196. I915_WRITE(PIPE_DATA_M1(pipe), TU_SIZE(m_n.tu) | m_n.gmch_m);
  4197. I915_WRITE(PIPE_DATA_N1(pipe), m_n.gmch_n);
  4198. I915_WRITE(PIPE_LINK_M1(pipe), m_n.link_m);
  4199. I915_WRITE(PIPE_LINK_N1(pipe), m_n.link_n);
  4200. }
  4201. static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
  4202. struct drm_display_mode *adjusted_mode,
  4203. intel_clock_t *clock, u32 fp)
  4204. {
  4205. struct drm_crtc *crtc = &intel_crtc->base;
  4206. struct drm_device *dev = crtc->dev;
  4207. struct drm_i915_private *dev_priv = dev->dev_private;
  4208. struct intel_encoder *intel_encoder;
  4209. uint32_t dpll;
  4210. int factor, pixel_multiplier, num_connectors = 0;
  4211. bool is_lvds = false, is_sdvo = false, is_tv = false;
  4212. bool is_dp = false, is_cpu_edp = false;
  4213. for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
  4214. switch (intel_encoder->type) {
  4215. case INTEL_OUTPUT_LVDS:
  4216. is_lvds = true;
  4217. break;
  4218. case INTEL_OUTPUT_SDVO:
  4219. case INTEL_OUTPUT_HDMI:
  4220. is_sdvo = true;
  4221. if (intel_encoder->needs_tv_clock)
  4222. is_tv = true;
  4223. break;
  4224. case INTEL_OUTPUT_TVOUT:
  4225. is_tv = true;
  4226. break;
  4227. case INTEL_OUTPUT_DISPLAYPORT:
  4228. is_dp = true;
  4229. break;
  4230. case INTEL_OUTPUT_EDP:
  4231. is_dp = true;
  4232. if (!intel_encoder_is_pch_edp(&intel_encoder->base))
  4233. is_cpu_edp = true;
  4234. break;
  4235. }
  4236. num_connectors++;
  4237. }
  4238. /* Enable autotuning of the PLL clock (if permissible) */
  4239. factor = 21;
  4240. if (is_lvds) {
  4241. if ((intel_panel_use_ssc(dev_priv) &&
  4242. dev_priv->lvds_ssc_freq == 100) ||
  4243. (I915_READ(PCH_LVDS) & LVDS_CLKB_POWER_MASK) == LVDS_CLKB_POWER_UP)
  4244. factor = 25;
  4245. } else if (is_sdvo && is_tv)
  4246. factor = 20;
  4247. if (clock->m < factor * clock->n)
  4248. fp |= FP_CB_TUNE;
  4249. dpll = 0;
  4250. if (is_lvds)
  4251. dpll |= DPLLB_MODE_LVDS;
  4252. else
  4253. dpll |= DPLLB_MODE_DAC_SERIAL;
  4254. if (is_sdvo) {
  4255. pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
  4256. if (pixel_multiplier > 1) {
  4257. dpll |= (pixel_multiplier - 1) << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
  4258. }
  4259. dpll |= DPLL_DVO_HIGH_SPEED;
  4260. }
  4261. if (is_dp && !is_cpu_edp)
  4262. dpll |= DPLL_DVO_HIGH_SPEED;
  4263. /* compute bitmask from p1 value */
  4264. dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
  4265. /* also FPA1 */
  4266. dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
  4267. switch (clock->p2) {
  4268. case 5:
  4269. dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
  4270. break;
  4271. case 7:
  4272. dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
  4273. break;
  4274. case 10:
  4275. dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
  4276. break;
  4277. case 14:
  4278. dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
  4279. break;
  4280. }
  4281. if (is_sdvo && is_tv)
  4282. dpll |= PLL_REF_INPUT_TVCLKINBC;
  4283. else if (is_tv)
  4284. /* XXX: just matching BIOS for now */
  4285. /* dpll |= PLL_REF_INPUT_TVCLKINBC; */
  4286. dpll |= 3;
  4287. else if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
  4288. dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
  4289. else
  4290. dpll |= PLL_REF_INPUT_DREFCLK;
  4291. return dpll;
  4292. }
  4293. static int ironlake_crtc_mode_set(struct drm_crtc *crtc,
  4294. struct drm_display_mode *mode,
  4295. struct drm_display_mode *adjusted_mode,
  4296. int x, int y,
  4297. struct drm_framebuffer *fb)
  4298. {
  4299. struct drm_device *dev = crtc->dev;
  4300. struct drm_i915_private *dev_priv = dev->dev_private;
  4301. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4302. int pipe = intel_crtc->pipe;
  4303. int plane = intel_crtc->plane;
  4304. int num_connectors = 0;
  4305. intel_clock_t clock, reduced_clock;
  4306. u32 dpll, fp = 0, fp2 = 0;
  4307. bool ok, has_reduced_clock = false;
  4308. bool is_lvds = false, is_dp = false, is_cpu_edp = false;
  4309. struct intel_encoder *encoder;
  4310. u32 temp;
  4311. int ret;
  4312. bool dither;
  4313. for_each_encoder_on_crtc(dev, crtc, encoder) {
  4314. switch (encoder->type) {
  4315. case INTEL_OUTPUT_LVDS:
  4316. is_lvds = true;
  4317. break;
  4318. case INTEL_OUTPUT_DISPLAYPORT:
  4319. is_dp = true;
  4320. break;
  4321. case INTEL_OUTPUT_EDP:
  4322. is_dp = true;
  4323. if (!intel_encoder_is_pch_edp(&encoder->base))
  4324. is_cpu_edp = true;
  4325. break;
  4326. }
  4327. num_connectors++;
  4328. }
  4329. WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
  4330. "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
  4331. ok = ironlake_compute_clocks(crtc, adjusted_mode, &clock,
  4332. &has_reduced_clock, &reduced_clock);
  4333. if (!ok) {
  4334. DRM_ERROR("Couldn't find PLL settings for mode!\n");
  4335. return -EINVAL;
  4336. }
  4337. /* Ensure that the cursor is valid for the new mode before changing... */
  4338. intel_crtc_update_cursor(crtc, true);
  4339. /* determine panel color depth */
  4340. dither = intel_choose_pipe_bpp_dither(crtc, fb, &intel_crtc->bpp, mode);
  4341. if (is_lvds && dev_priv->lvds_dither)
  4342. dither = true;
  4343. fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
  4344. if (has_reduced_clock)
  4345. fp2 = reduced_clock.n << 16 | reduced_clock.m1 << 8 |
  4346. reduced_clock.m2;
  4347. dpll = ironlake_compute_dpll(intel_crtc, adjusted_mode, &clock, fp);
  4348. DRM_DEBUG_KMS("Mode for pipe %d:\n", pipe);
  4349. drm_mode_debug_printmodeline(mode);
  4350. /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
  4351. if (!is_cpu_edp) {
  4352. struct intel_pch_pll *pll;
  4353. pll = intel_get_pch_pll(intel_crtc, dpll, fp);
  4354. if (pll == NULL) {
  4355. DRM_DEBUG_DRIVER("failed to find PLL for pipe %d\n",
  4356. pipe);
  4357. return -EINVAL;
  4358. }
  4359. } else
  4360. intel_put_pch_pll(intel_crtc);
  4361. /* The LVDS pin pair needs to be on before the DPLLs are enabled.
  4362. * This is an exception to the general rule that mode_set doesn't turn
  4363. * things on.
  4364. */
  4365. if (is_lvds) {
  4366. temp = I915_READ(PCH_LVDS);
  4367. temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
  4368. if (HAS_PCH_CPT(dev)) {
  4369. temp &= ~PORT_TRANS_SEL_MASK;
  4370. temp |= PORT_TRANS_SEL_CPT(pipe);
  4371. } else {
  4372. if (pipe == 1)
  4373. temp |= LVDS_PIPEB_SELECT;
  4374. else
  4375. temp &= ~LVDS_PIPEB_SELECT;
  4376. }
  4377. /* set the corresponsding LVDS_BORDER bit */
  4378. temp |= dev_priv->lvds_border_bits;
  4379. /* Set the B0-B3 data pairs corresponding to whether we're going to
  4380. * set the DPLLs for dual-channel mode or not.
  4381. */
  4382. if (clock.p2 == 7)
  4383. temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
  4384. else
  4385. temp &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
  4386. /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
  4387. * appropriately here, but we need to look more thoroughly into how
  4388. * panels behave in the two modes.
  4389. */
  4390. temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY);
  4391. if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
  4392. temp |= LVDS_HSYNC_POLARITY;
  4393. if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
  4394. temp |= LVDS_VSYNC_POLARITY;
  4395. I915_WRITE(PCH_LVDS, temp);
  4396. }
  4397. if (is_dp && !is_cpu_edp) {
  4398. intel_dp_set_m_n(crtc, mode, adjusted_mode);
  4399. } else {
  4400. /* For non-DP output, clear any trans DP clock recovery setting.*/
  4401. I915_WRITE(TRANSDATA_M1(pipe), 0);
  4402. I915_WRITE(TRANSDATA_N1(pipe), 0);
  4403. I915_WRITE(TRANSDPLINK_M1(pipe), 0);
  4404. I915_WRITE(TRANSDPLINK_N1(pipe), 0);
  4405. }
  4406. if (intel_crtc->pch_pll) {
  4407. I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
  4408. /* Wait for the clocks to stabilize. */
  4409. POSTING_READ(intel_crtc->pch_pll->pll_reg);
  4410. udelay(150);
  4411. /* The pixel multiplier can only be updated once the
  4412. * DPLL is enabled and the clocks are stable.
  4413. *
  4414. * So write it again.
  4415. */
  4416. I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
  4417. }
  4418. intel_crtc->lowfreq_avail = false;
  4419. if (intel_crtc->pch_pll) {
  4420. if (is_lvds && has_reduced_clock && i915_powersave) {
  4421. I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp2);
  4422. intel_crtc->lowfreq_avail = true;
  4423. } else {
  4424. I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp);
  4425. }
  4426. }
  4427. intel_set_pipe_timings(intel_crtc, mode, adjusted_mode);
  4428. ironlake_set_m_n(crtc, mode, adjusted_mode);
  4429. if (is_cpu_edp)
  4430. ironlake_set_pll_edp(crtc, adjusted_mode->clock);
  4431. ironlake_set_pipeconf(crtc, adjusted_mode, dither);
  4432. intel_wait_for_vblank(dev, pipe);
  4433. /* Set up the display plane register */
  4434. I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE);
  4435. POSTING_READ(DSPCNTR(plane));
  4436. ret = intel_pipe_set_base(crtc, x, y, fb);
  4437. intel_update_watermarks(dev);
  4438. intel_update_linetime_watermarks(dev, pipe, adjusted_mode);
  4439. return ret;
  4440. }
  4441. static int haswell_crtc_mode_set(struct drm_crtc *crtc,
  4442. struct drm_display_mode *mode,
  4443. struct drm_display_mode *adjusted_mode,
  4444. int x, int y,
  4445. struct drm_framebuffer *fb)
  4446. {
  4447. struct drm_device *dev = crtc->dev;
  4448. struct drm_i915_private *dev_priv = dev->dev_private;
  4449. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4450. int pipe = intel_crtc->pipe;
  4451. int plane = intel_crtc->plane;
  4452. int num_connectors = 0;
  4453. intel_clock_t clock, reduced_clock;
  4454. u32 dpll = 0, fp = 0, fp2 = 0;
  4455. bool ok, has_reduced_clock = false;
  4456. bool is_lvds = false, is_dp = false, is_cpu_edp = false;
  4457. struct intel_encoder *encoder;
  4458. u32 temp;
  4459. int ret;
  4460. bool dither;
  4461. for_each_encoder_on_crtc(dev, crtc, encoder) {
  4462. switch (encoder->type) {
  4463. case INTEL_OUTPUT_LVDS:
  4464. is_lvds = true;
  4465. break;
  4466. case INTEL_OUTPUT_DISPLAYPORT:
  4467. is_dp = true;
  4468. break;
  4469. case INTEL_OUTPUT_EDP:
  4470. is_dp = true;
  4471. if (!intel_encoder_is_pch_edp(&encoder->base))
  4472. is_cpu_edp = true;
  4473. break;
  4474. }
  4475. num_connectors++;
  4476. }
  4477. /* We are not sure yet this won't happen. */
  4478. WARN(!HAS_PCH_LPT(dev), "Unexpected PCH type %d\n",
  4479. INTEL_PCH_TYPE(dev));
  4480. WARN(num_connectors != 1, "%d connectors attached to pipe %c\n",
  4481. num_connectors, pipe_name(pipe));
  4482. if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
  4483. ok = ironlake_compute_clocks(crtc, adjusted_mode, &clock,
  4484. &has_reduced_clock,
  4485. &reduced_clock);
  4486. if (!ok) {
  4487. DRM_ERROR("Couldn't find PLL settings for mode!\n");
  4488. return -EINVAL;
  4489. }
  4490. }
  4491. /* Ensure that the cursor is valid for the new mode before changing... */
  4492. intel_crtc_update_cursor(crtc, true);
  4493. /* determine panel color depth */
  4494. dither = intel_choose_pipe_bpp_dither(crtc, fb, &intel_crtc->bpp, mode);
  4495. if (is_lvds && dev_priv->lvds_dither)
  4496. dither = true;
  4497. DRM_DEBUG_KMS("Mode for pipe %d:\n", pipe);
  4498. drm_mode_debug_printmodeline(mode);
  4499. if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
  4500. fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
  4501. if (has_reduced_clock)
  4502. fp2 = reduced_clock.n << 16 | reduced_clock.m1 << 8 |
  4503. reduced_clock.m2;
  4504. dpll = ironlake_compute_dpll(intel_crtc, adjusted_mode, &clock,
  4505. fp);
  4506. /* CPU eDP is the only output that doesn't need a PCH PLL of its
  4507. * own on pre-Haswell/LPT generation */
  4508. if (!is_cpu_edp) {
  4509. struct intel_pch_pll *pll;
  4510. pll = intel_get_pch_pll(intel_crtc, dpll, fp);
  4511. if (pll == NULL) {
  4512. DRM_DEBUG_DRIVER("failed to find PLL for pipe %d\n",
  4513. pipe);
  4514. return -EINVAL;
  4515. }
  4516. } else
  4517. intel_put_pch_pll(intel_crtc);
  4518. /* The LVDS pin pair needs to be on before the DPLLs are
  4519. * enabled. This is an exception to the general rule that
  4520. * mode_set doesn't turn things on.
  4521. */
  4522. if (is_lvds) {
  4523. temp = I915_READ(PCH_LVDS);
  4524. temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
  4525. if (HAS_PCH_CPT(dev)) {
  4526. temp &= ~PORT_TRANS_SEL_MASK;
  4527. temp |= PORT_TRANS_SEL_CPT(pipe);
  4528. } else {
  4529. if (pipe == 1)
  4530. temp |= LVDS_PIPEB_SELECT;
  4531. else
  4532. temp &= ~LVDS_PIPEB_SELECT;
  4533. }
  4534. /* set the corresponsding LVDS_BORDER bit */
  4535. temp |= dev_priv->lvds_border_bits;
  4536. /* Set the B0-B3 data pairs corresponding to whether
  4537. * we're going to set the DPLLs for dual-channel mode or
  4538. * not.
  4539. */
  4540. if (clock.p2 == 7)
  4541. temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
  4542. else
  4543. temp &= ~(LVDS_B0B3_POWER_UP |
  4544. LVDS_CLKB_POWER_UP);
  4545. /* It would be nice to set 24 vs 18-bit mode
  4546. * (LVDS_A3_POWER_UP) appropriately here, but we need to
  4547. * look more thoroughly into how panels behave in the
  4548. * two modes.
  4549. */
  4550. temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY);
  4551. if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
  4552. temp |= LVDS_HSYNC_POLARITY;
  4553. if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
  4554. temp |= LVDS_VSYNC_POLARITY;
  4555. I915_WRITE(PCH_LVDS, temp);
  4556. }
  4557. }
  4558. if (is_dp && !is_cpu_edp) {
  4559. intel_dp_set_m_n(crtc, mode, adjusted_mode);
  4560. } else {
  4561. if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
  4562. /* For non-DP output, clear any trans DP clock recovery
  4563. * setting.*/
  4564. I915_WRITE(TRANSDATA_M1(pipe), 0);
  4565. I915_WRITE(TRANSDATA_N1(pipe), 0);
  4566. I915_WRITE(TRANSDPLINK_M1(pipe), 0);
  4567. I915_WRITE(TRANSDPLINK_N1(pipe), 0);
  4568. }
  4569. }
  4570. intel_crtc->lowfreq_avail = false;
  4571. if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
  4572. if (intel_crtc->pch_pll) {
  4573. I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
  4574. /* Wait for the clocks to stabilize. */
  4575. POSTING_READ(intel_crtc->pch_pll->pll_reg);
  4576. udelay(150);
  4577. /* The pixel multiplier can only be updated once the
  4578. * DPLL is enabled and the clocks are stable.
  4579. *
  4580. * So write it again.
  4581. */
  4582. I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
  4583. }
  4584. if (intel_crtc->pch_pll) {
  4585. if (is_lvds && has_reduced_clock && i915_powersave) {
  4586. I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp2);
  4587. intel_crtc->lowfreq_avail = true;
  4588. } else {
  4589. I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp);
  4590. }
  4591. }
  4592. }
  4593. intel_set_pipe_timings(intel_crtc, mode, adjusted_mode);
  4594. ironlake_set_m_n(crtc, mode, adjusted_mode);
  4595. if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
  4596. if (is_cpu_edp)
  4597. ironlake_set_pll_edp(crtc, adjusted_mode->clock);
  4598. haswell_set_pipeconf(crtc, adjusted_mode, dither);
  4599. intel_wait_for_vblank(dev, pipe);
  4600. /* Set up the display plane register */
  4601. I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE);
  4602. POSTING_READ(DSPCNTR(plane));
  4603. ret = intel_pipe_set_base(crtc, x, y, fb);
  4604. intel_update_watermarks(dev);
  4605. intel_update_linetime_watermarks(dev, pipe, adjusted_mode);
  4606. return ret;
  4607. }
  4608. static int intel_crtc_mode_set(struct drm_crtc *crtc,
  4609. struct drm_display_mode *mode,
  4610. struct drm_display_mode *adjusted_mode,
  4611. int x, int y,
  4612. struct drm_framebuffer *fb)
  4613. {
  4614. struct drm_device *dev = crtc->dev;
  4615. struct drm_i915_private *dev_priv = dev->dev_private;
  4616. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4617. int pipe = intel_crtc->pipe;
  4618. int ret;
  4619. drm_vblank_pre_modeset(dev, pipe);
  4620. ret = dev_priv->display.crtc_mode_set(crtc, mode, adjusted_mode,
  4621. x, y, fb);
  4622. drm_vblank_post_modeset(dev, pipe);
  4623. return ret;
  4624. }
  4625. static bool intel_eld_uptodate(struct drm_connector *connector,
  4626. int reg_eldv, uint32_t bits_eldv,
  4627. int reg_elda, uint32_t bits_elda,
  4628. int reg_edid)
  4629. {
  4630. struct drm_i915_private *dev_priv = connector->dev->dev_private;
  4631. uint8_t *eld = connector->eld;
  4632. uint32_t i;
  4633. i = I915_READ(reg_eldv);
  4634. i &= bits_eldv;
  4635. if (!eld[0])
  4636. return !i;
  4637. if (!i)
  4638. return false;
  4639. i = I915_READ(reg_elda);
  4640. i &= ~bits_elda;
  4641. I915_WRITE(reg_elda, i);
  4642. for (i = 0; i < eld[2]; i++)
  4643. if (I915_READ(reg_edid) != *((uint32_t *)eld + i))
  4644. return false;
  4645. return true;
  4646. }
  4647. static void g4x_write_eld(struct drm_connector *connector,
  4648. struct drm_crtc *crtc)
  4649. {
  4650. struct drm_i915_private *dev_priv = connector->dev->dev_private;
  4651. uint8_t *eld = connector->eld;
  4652. uint32_t eldv;
  4653. uint32_t len;
  4654. uint32_t i;
  4655. i = I915_READ(G4X_AUD_VID_DID);
  4656. if (i == INTEL_AUDIO_DEVBLC || i == INTEL_AUDIO_DEVCL)
  4657. eldv = G4X_ELDV_DEVCL_DEVBLC;
  4658. else
  4659. eldv = G4X_ELDV_DEVCTG;
  4660. if (intel_eld_uptodate(connector,
  4661. G4X_AUD_CNTL_ST, eldv,
  4662. G4X_AUD_CNTL_ST, G4X_ELD_ADDR,
  4663. G4X_HDMIW_HDMIEDID))
  4664. return;
  4665. i = I915_READ(G4X_AUD_CNTL_ST);
  4666. i &= ~(eldv | G4X_ELD_ADDR);
  4667. len = (i >> 9) & 0x1f; /* ELD buffer size */
  4668. I915_WRITE(G4X_AUD_CNTL_ST, i);
  4669. if (!eld[0])
  4670. return;
  4671. len = min_t(uint8_t, eld[2], len);
  4672. DRM_DEBUG_DRIVER("ELD size %d\n", len);
  4673. for (i = 0; i < len; i++)
  4674. I915_WRITE(G4X_HDMIW_HDMIEDID, *((uint32_t *)eld + i));
  4675. i = I915_READ(G4X_AUD_CNTL_ST);
  4676. i |= eldv;
  4677. I915_WRITE(G4X_AUD_CNTL_ST, i);
  4678. }
  4679. static void haswell_write_eld(struct drm_connector *connector,
  4680. struct drm_crtc *crtc)
  4681. {
  4682. struct drm_i915_private *dev_priv = connector->dev->dev_private;
  4683. uint8_t *eld = connector->eld;
  4684. struct drm_device *dev = crtc->dev;
  4685. uint32_t eldv;
  4686. uint32_t i;
  4687. int len;
  4688. int pipe = to_intel_crtc(crtc)->pipe;
  4689. int tmp;
  4690. int hdmiw_hdmiedid = HSW_AUD_EDID_DATA(pipe);
  4691. int aud_cntl_st = HSW_AUD_DIP_ELD_CTRL(pipe);
  4692. int aud_config = HSW_AUD_CFG(pipe);
  4693. int aud_cntrl_st2 = HSW_AUD_PIN_ELD_CP_VLD;
  4694. DRM_DEBUG_DRIVER("HDMI: Haswell Audio initialize....\n");
  4695. /* Audio output enable */
  4696. DRM_DEBUG_DRIVER("HDMI audio: enable codec\n");
  4697. tmp = I915_READ(aud_cntrl_st2);
  4698. tmp |= (AUDIO_OUTPUT_ENABLE_A << (pipe * 4));
  4699. I915_WRITE(aud_cntrl_st2, tmp);
  4700. /* Wait for 1 vertical blank */
  4701. intel_wait_for_vblank(dev, pipe);
  4702. /* Set ELD valid state */
  4703. tmp = I915_READ(aud_cntrl_st2);
  4704. DRM_DEBUG_DRIVER("HDMI audio: pin eld vld status=0x%8x\n", tmp);
  4705. tmp |= (AUDIO_ELD_VALID_A << (pipe * 4));
  4706. I915_WRITE(aud_cntrl_st2, tmp);
  4707. tmp = I915_READ(aud_cntrl_st2);
  4708. DRM_DEBUG_DRIVER("HDMI audio: eld vld status=0x%8x\n", tmp);
  4709. /* Enable HDMI mode */
  4710. tmp = I915_READ(aud_config);
  4711. DRM_DEBUG_DRIVER("HDMI audio: audio conf: 0x%8x\n", tmp);
  4712. /* clear N_programing_enable and N_value_index */
  4713. tmp &= ~(AUD_CONFIG_N_VALUE_INDEX | AUD_CONFIG_N_PROG_ENABLE);
  4714. I915_WRITE(aud_config, tmp);
  4715. DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
  4716. eldv = AUDIO_ELD_VALID_A << (pipe * 4);
  4717. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
  4718. DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
  4719. eld[5] |= (1 << 2); /* Conn_Type, 0x1 = DisplayPort */
  4720. I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
  4721. } else
  4722. I915_WRITE(aud_config, 0);
  4723. if (intel_eld_uptodate(connector,
  4724. aud_cntrl_st2, eldv,
  4725. aud_cntl_st, IBX_ELD_ADDRESS,
  4726. hdmiw_hdmiedid))
  4727. return;
  4728. i = I915_READ(aud_cntrl_st2);
  4729. i &= ~eldv;
  4730. I915_WRITE(aud_cntrl_st2, i);
  4731. if (!eld[0])
  4732. return;
  4733. i = I915_READ(aud_cntl_st);
  4734. i &= ~IBX_ELD_ADDRESS;
  4735. I915_WRITE(aud_cntl_st, i);
  4736. i = (i >> 29) & DIP_PORT_SEL_MASK; /* DIP_Port_Select, 0x1 = PortB */
  4737. DRM_DEBUG_DRIVER("port num:%d\n", i);
  4738. len = min_t(uint8_t, eld[2], 21); /* 84 bytes of hw ELD buffer */
  4739. DRM_DEBUG_DRIVER("ELD size %d\n", len);
  4740. for (i = 0; i < len; i++)
  4741. I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
  4742. i = I915_READ(aud_cntrl_st2);
  4743. i |= eldv;
  4744. I915_WRITE(aud_cntrl_st2, i);
  4745. }
  4746. static void ironlake_write_eld(struct drm_connector *connector,
  4747. struct drm_crtc *crtc)
  4748. {
  4749. struct drm_i915_private *dev_priv = connector->dev->dev_private;
  4750. uint8_t *eld = connector->eld;
  4751. uint32_t eldv;
  4752. uint32_t i;
  4753. int len;
  4754. int hdmiw_hdmiedid;
  4755. int aud_config;
  4756. int aud_cntl_st;
  4757. int aud_cntrl_st2;
  4758. int pipe = to_intel_crtc(crtc)->pipe;
  4759. if (HAS_PCH_IBX(connector->dev)) {
  4760. hdmiw_hdmiedid = IBX_HDMIW_HDMIEDID(pipe);
  4761. aud_config = IBX_AUD_CFG(pipe);
  4762. aud_cntl_st = IBX_AUD_CNTL_ST(pipe);
  4763. aud_cntrl_st2 = IBX_AUD_CNTL_ST2;
  4764. } else {
  4765. hdmiw_hdmiedid = CPT_HDMIW_HDMIEDID(pipe);
  4766. aud_config = CPT_AUD_CFG(pipe);
  4767. aud_cntl_st = CPT_AUD_CNTL_ST(pipe);
  4768. aud_cntrl_st2 = CPT_AUD_CNTRL_ST2;
  4769. }
  4770. DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
  4771. i = I915_READ(aud_cntl_st);
  4772. i = (i >> 29) & DIP_PORT_SEL_MASK; /* DIP_Port_Select, 0x1 = PortB */
  4773. if (!i) {
  4774. DRM_DEBUG_DRIVER("Audio directed to unknown port\n");
  4775. /* operate blindly on all ports */
  4776. eldv = IBX_ELD_VALIDB;
  4777. eldv |= IBX_ELD_VALIDB << 4;
  4778. eldv |= IBX_ELD_VALIDB << 8;
  4779. } else {
  4780. DRM_DEBUG_DRIVER("ELD on port %c\n", 'A' + i);
  4781. eldv = IBX_ELD_VALIDB << ((i - 1) * 4);
  4782. }
  4783. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
  4784. DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
  4785. eld[5] |= (1 << 2); /* Conn_Type, 0x1 = DisplayPort */
  4786. I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
  4787. } else
  4788. I915_WRITE(aud_config, 0);
  4789. if (intel_eld_uptodate(connector,
  4790. aud_cntrl_st2, eldv,
  4791. aud_cntl_st, IBX_ELD_ADDRESS,
  4792. hdmiw_hdmiedid))
  4793. return;
  4794. i = I915_READ(aud_cntrl_st2);
  4795. i &= ~eldv;
  4796. I915_WRITE(aud_cntrl_st2, i);
  4797. if (!eld[0])
  4798. return;
  4799. i = I915_READ(aud_cntl_st);
  4800. i &= ~IBX_ELD_ADDRESS;
  4801. I915_WRITE(aud_cntl_st, i);
  4802. len = min_t(uint8_t, eld[2], 21); /* 84 bytes of hw ELD buffer */
  4803. DRM_DEBUG_DRIVER("ELD size %d\n", len);
  4804. for (i = 0; i < len; i++)
  4805. I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
  4806. i = I915_READ(aud_cntrl_st2);
  4807. i |= eldv;
  4808. I915_WRITE(aud_cntrl_st2, i);
  4809. }
  4810. void intel_write_eld(struct drm_encoder *encoder,
  4811. struct drm_display_mode *mode)
  4812. {
  4813. struct drm_crtc *crtc = encoder->crtc;
  4814. struct drm_connector *connector;
  4815. struct drm_device *dev = encoder->dev;
  4816. struct drm_i915_private *dev_priv = dev->dev_private;
  4817. connector = drm_select_eld(encoder, mode);
  4818. if (!connector)
  4819. return;
  4820. DRM_DEBUG_DRIVER("ELD on [CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
  4821. connector->base.id,
  4822. drm_get_connector_name(connector),
  4823. connector->encoder->base.id,
  4824. drm_get_encoder_name(connector->encoder));
  4825. connector->eld[6] = drm_av_sync_delay(connector, mode) / 2;
  4826. if (dev_priv->display.write_eld)
  4827. dev_priv->display.write_eld(connector, crtc);
  4828. }
  4829. /** Loads the palette/gamma unit for the CRTC with the prepared values */
  4830. void intel_crtc_load_lut(struct drm_crtc *crtc)
  4831. {
  4832. struct drm_device *dev = crtc->dev;
  4833. struct drm_i915_private *dev_priv = dev->dev_private;
  4834. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4835. int palreg = PALETTE(intel_crtc->pipe);
  4836. int i;
  4837. /* The clocks have to be on to load the palette. */
  4838. if (!crtc->enabled || !intel_crtc->active)
  4839. return;
  4840. /* use legacy palette for Ironlake */
  4841. if (HAS_PCH_SPLIT(dev))
  4842. palreg = LGC_PALETTE(intel_crtc->pipe);
  4843. for (i = 0; i < 256; i++) {
  4844. I915_WRITE(palreg + 4 * i,
  4845. (intel_crtc->lut_r[i] << 16) |
  4846. (intel_crtc->lut_g[i] << 8) |
  4847. intel_crtc->lut_b[i]);
  4848. }
  4849. }
  4850. static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
  4851. {
  4852. struct drm_device *dev = crtc->dev;
  4853. struct drm_i915_private *dev_priv = dev->dev_private;
  4854. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4855. bool visible = base != 0;
  4856. u32 cntl;
  4857. if (intel_crtc->cursor_visible == visible)
  4858. return;
  4859. cntl = I915_READ(_CURACNTR);
  4860. if (visible) {
  4861. /* On these chipsets we can only modify the base whilst
  4862. * the cursor is disabled.
  4863. */
  4864. I915_WRITE(_CURABASE, base);
  4865. cntl &= ~(CURSOR_FORMAT_MASK);
  4866. /* XXX width must be 64, stride 256 => 0x00 << 28 */
  4867. cntl |= CURSOR_ENABLE |
  4868. CURSOR_GAMMA_ENABLE |
  4869. CURSOR_FORMAT_ARGB;
  4870. } else
  4871. cntl &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
  4872. I915_WRITE(_CURACNTR, cntl);
  4873. intel_crtc->cursor_visible = visible;
  4874. }
  4875. static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
  4876. {
  4877. struct drm_device *dev = crtc->dev;
  4878. struct drm_i915_private *dev_priv = dev->dev_private;
  4879. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4880. int pipe = intel_crtc->pipe;
  4881. bool visible = base != 0;
  4882. if (intel_crtc->cursor_visible != visible) {
  4883. uint32_t cntl = I915_READ(CURCNTR(pipe));
  4884. if (base) {
  4885. cntl &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
  4886. cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
  4887. cntl |= pipe << 28; /* Connect to correct pipe */
  4888. } else {
  4889. cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
  4890. cntl |= CURSOR_MODE_DISABLE;
  4891. }
  4892. I915_WRITE(CURCNTR(pipe), cntl);
  4893. intel_crtc->cursor_visible = visible;
  4894. }
  4895. /* and commit changes on next vblank */
  4896. I915_WRITE(CURBASE(pipe), base);
  4897. }
  4898. static void ivb_update_cursor(struct drm_crtc *crtc, u32 base)
  4899. {
  4900. struct drm_device *dev = crtc->dev;
  4901. struct drm_i915_private *dev_priv = dev->dev_private;
  4902. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4903. int pipe = intel_crtc->pipe;
  4904. bool visible = base != 0;
  4905. if (intel_crtc->cursor_visible != visible) {
  4906. uint32_t cntl = I915_READ(CURCNTR_IVB(pipe));
  4907. if (base) {
  4908. cntl &= ~CURSOR_MODE;
  4909. cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
  4910. } else {
  4911. cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
  4912. cntl |= CURSOR_MODE_DISABLE;
  4913. }
  4914. I915_WRITE(CURCNTR_IVB(pipe), cntl);
  4915. intel_crtc->cursor_visible = visible;
  4916. }
  4917. /* and commit changes on next vblank */
  4918. I915_WRITE(CURBASE_IVB(pipe), base);
  4919. }
  4920. /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
  4921. static void intel_crtc_update_cursor(struct drm_crtc *crtc,
  4922. bool on)
  4923. {
  4924. struct drm_device *dev = crtc->dev;
  4925. struct drm_i915_private *dev_priv = dev->dev_private;
  4926. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4927. int pipe = intel_crtc->pipe;
  4928. int x = intel_crtc->cursor_x;
  4929. int y = intel_crtc->cursor_y;
  4930. u32 base, pos;
  4931. bool visible;
  4932. pos = 0;
  4933. if (on && crtc->enabled && crtc->fb) {
  4934. base = intel_crtc->cursor_addr;
  4935. if (x > (int) crtc->fb->width)
  4936. base = 0;
  4937. if (y > (int) crtc->fb->height)
  4938. base = 0;
  4939. } else
  4940. base = 0;
  4941. if (x < 0) {
  4942. if (x + intel_crtc->cursor_width < 0)
  4943. base = 0;
  4944. pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
  4945. x = -x;
  4946. }
  4947. pos |= x << CURSOR_X_SHIFT;
  4948. if (y < 0) {
  4949. if (y + intel_crtc->cursor_height < 0)
  4950. base = 0;
  4951. pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
  4952. y = -y;
  4953. }
  4954. pos |= y << CURSOR_Y_SHIFT;
  4955. visible = base != 0;
  4956. if (!visible && !intel_crtc->cursor_visible)
  4957. return;
  4958. if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
  4959. I915_WRITE(CURPOS_IVB(pipe), pos);
  4960. ivb_update_cursor(crtc, base);
  4961. } else {
  4962. I915_WRITE(CURPOS(pipe), pos);
  4963. if (IS_845G(dev) || IS_I865G(dev))
  4964. i845_update_cursor(crtc, base);
  4965. else
  4966. i9xx_update_cursor(crtc, base);
  4967. }
  4968. }
  4969. static int intel_crtc_cursor_set(struct drm_crtc *crtc,
  4970. struct drm_file *file,
  4971. uint32_t handle,
  4972. uint32_t width, uint32_t height)
  4973. {
  4974. struct drm_device *dev = crtc->dev;
  4975. struct drm_i915_private *dev_priv = dev->dev_private;
  4976. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4977. struct drm_i915_gem_object *obj;
  4978. uint32_t addr;
  4979. int ret;
  4980. /* if we want to turn off the cursor ignore width and height */
  4981. if (!handle) {
  4982. DRM_DEBUG_KMS("cursor off\n");
  4983. addr = 0;
  4984. obj = NULL;
  4985. mutex_lock(&dev->struct_mutex);
  4986. goto finish;
  4987. }
  4988. /* Currently we only support 64x64 cursors */
  4989. if (width != 64 || height != 64) {
  4990. DRM_ERROR("we currently only support 64x64 cursors\n");
  4991. return -EINVAL;
  4992. }
  4993. obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
  4994. if (&obj->base == NULL)
  4995. return -ENOENT;
  4996. if (obj->base.size < width * height * 4) {
  4997. DRM_ERROR("buffer is to small\n");
  4998. ret = -ENOMEM;
  4999. goto fail;
  5000. }
  5001. /* we only need to pin inside GTT if cursor is non-phy */
  5002. mutex_lock(&dev->struct_mutex);
  5003. if (!dev_priv->info->cursor_needs_physical) {
  5004. if (obj->tiling_mode) {
  5005. DRM_ERROR("cursor cannot be tiled\n");
  5006. ret = -EINVAL;
  5007. goto fail_locked;
  5008. }
  5009. ret = i915_gem_object_pin_to_display_plane(obj, 0, NULL);
  5010. if (ret) {
  5011. DRM_ERROR("failed to move cursor bo into the GTT\n");
  5012. goto fail_locked;
  5013. }
  5014. ret = i915_gem_object_put_fence(obj);
  5015. if (ret) {
  5016. DRM_ERROR("failed to release fence for cursor");
  5017. goto fail_unpin;
  5018. }
  5019. addr = obj->gtt_offset;
  5020. } else {
  5021. int align = IS_I830(dev) ? 16 * 1024 : 256;
  5022. ret = i915_gem_attach_phys_object(dev, obj,
  5023. (intel_crtc->pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1,
  5024. align);
  5025. if (ret) {
  5026. DRM_ERROR("failed to attach phys object\n");
  5027. goto fail_locked;
  5028. }
  5029. addr = obj->phys_obj->handle->busaddr;
  5030. }
  5031. if (IS_GEN2(dev))
  5032. I915_WRITE(CURSIZE, (height << 12) | width);
  5033. finish:
  5034. if (intel_crtc->cursor_bo) {
  5035. if (dev_priv->info->cursor_needs_physical) {
  5036. if (intel_crtc->cursor_bo != obj)
  5037. i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
  5038. } else
  5039. i915_gem_object_unpin(intel_crtc->cursor_bo);
  5040. drm_gem_object_unreference(&intel_crtc->cursor_bo->base);
  5041. }
  5042. mutex_unlock(&dev->struct_mutex);
  5043. intel_crtc->cursor_addr = addr;
  5044. intel_crtc->cursor_bo = obj;
  5045. intel_crtc->cursor_width = width;
  5046. intel_crtc->cursor_height = height;
  5047. intel_crtc_update_cursor(crtc, true);
  5048. return 0;
  5049. fail_unpin:
  5050. i915_gem_object_unpin(obj);
  5051. fail_locked:
  5052. mutex_unlock(&dev->struct_mutex);
  5053. fail:
  5054. drm_gem_object_unreference_unlocked(&obj->base);
  5055. return ret;
  5056. }
  5057. static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
  5058. {
  5059. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5060. intel_crtc->cursor_x = x;
  5061. intel_crtc->cursor_y = y;
  5062. intel_crtc_update_cursor(crtc, true);
  5063. return 0;
  5064. }
  5065. /** Sets the color ramps on behalf of RandR */
  5066. void intel_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
  5067. u16 blue, int regno)
  5068. {
  5069. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5070. intel_crtc->lut_r[regno] = red >> 8;
  5071. intel_crtc->lut_g[regno] = green >> 8;
  5072. intel_crtc->lut_b[regno] = blue >> 8;
  5073. }
  5074. void intel_crtc_fb_gamma_get(struct drm_crtc *crtc, u16 *red, u16 *green,
  5075. u16 *blue, int regno)
  5076. {
  5077. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5078. *red = intel_crtc->lut_r[regno] << 8;
  5079. *green = intel_crtc->lut_g[regno] << 8;
  5080. *blue = intel_crtc->lut_b[regno] << 8;
  5081. }
  5082. static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
  5083. u16 *blue, uint32_t start, uint32_t size)
  5084. {
  5085. int end = (start + size > 256) ? 256 : start + size, i;
  5086. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5087. for (i = start; i < end; i++) {
  5088. intel_crtc->lut_r[i] = red[i] >> 8;
  5089. intel_crtc->lut_g[i] = green[i] >> 8;
  5090. intel_crtc->lut_b[i] = blue[i] >> 8;
  5091. }
  5092. intel_crtc_load_lut(crtc);
  5093. }
  5094. /**
  5095. * Get a pipe with a simple mode set on it for doing load-based monitor
  5096. * detection.
  5097. *
  5098. * It will be up to the load-detect code to adjust the pipe as appropriate for
  5099. * its requirements. The pipe will be connected to no other encoders.
  5100. *
  5101. * Currently this code will only succeed if there is a pipe with no encoders
  5102. * configured for it. In the future, it could choose to temporarily disable
  5103. * some outputs to free up a pipe for its use.
  5104. *
  5105. * \return crtc, or NULL if no pipes are available.
  5106. */
  5107. /* VESA 640x480x72Hz mode to set on the pipe */
  5108. static struct drm_display_mode load_detect_mode = {
  5109. DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
  5110. 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
  5111. };
  5112. static struct drm_framebuffer *
  5113. intel_framebuffer_create(struct drm_device *dev,
  5114. struct drm_mode_fb_cmd2 *mode_cmd,
  5115. struct drm_i915_gem_object *obj)
  5116. {
  5117. struct intel_framebuffer *intel_fb;
  5118. int ret;
  5119. intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
  5120. if (!intel_fb) {
  5121. drm_gem_object_unreference_unlocked(&obj->base);
  5122. return ERR_PTR(-ENOMEM);
  5123. }
  5124. ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
  5125. if (ret) {
  5126. drm_gem_object_unreference_unlocked(&obj->base);
  5127. kfree(intel_fb);
  5128. return ERR_PTR(ret);
  5129. }
  5130. return &intel_fb->base;
  5131. }
  5132. static u32
  5133. intel_framebuffer_pitch_for_width(int width, int bpp)
  5134. {
  5135. u32 pitch = DIV_ROUND_UP(width * bpp, 8);
  5136. return ALIGN(pitch, 64);
  5137. }
  5138. static u32
  5139. intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
  5140. {
  5141. u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
  5142. return ALIGN(pitch * mode->vdisplay, PAGE_SIZE);
  5143. }
  5144. static struct drm_framebuffer *
  5145. intel_framebuffer_create_for_mode(struct drm_device *dev,
  5146. struct drm_display_mode *mode,
  5147. int depth, int bpp)
  5148. {
  5149. struct drm_i915_gem_object *obj;
  5150. struct drm_mode_fb_cmd2 mode_cmd;
  5151. obj = i915_gem_alloc_object(dev,
  5152. intel_framebuffer_size_for_mode(mode, bpp));
  5153. if (obj == NULL)
  5154. return ERR_PTR(-ENOMEM);
  5155. mode_cmd.width = mode->hdisplay;
  5156. mode_cmd.height = mode->vdisplay;
  5157. mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
  5158. bpp);
  5159. mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
  5160. return intel_framebuffer_create(dev, &mode_cmd, obj);
  5161. }
  5162. static struct drm_framebuffer *
  5163. mode_fits_in_fbdev(struct drm_device *dev,
  5164. struct drm_display_mode *mode)
  5165. {
  5166. struct drm_i915_private *dev_priv = dev->dev_private;
  5167. struct drm_i915_gem_object *obj;
  5168. struct drm_framebuffer *fb;
  5169. if (dev_priv->fbdev == NULL)
  5170. return NULL;
  5171. obj = dev_priv->fbdev->ifb.obj;
  5172. if (obj == NULL)
  5173. return NULL;
  5174. fb = &dev_priv->fbdev->ifb.base;
  5175. if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
  5176. fb->bits_per_pixel))
  5177. return NULL;
  5178. if (obj->base.size < mode->vdisplay * fb->pitches[0])
  5179. return NULL;
  5180. return fb;
  5181. }
  5182. bool intel_get_load_detect_pipe(struct drm_connector *connector,
  5183. struct drm_display_mode *mode,
  5184. struct intel_load_detect_pipe *old)
  5185. {
  5186. struct intel_crtc *intel_crtc;
  5187. struct intel_encoder *intel_encoder =
  5188. intel_attached_encoder(connector);
  5189. struct drm_crtc *possible_crtc;
  5190. struct drm_encoder *encoder = &intel_encoder->base;
  5191. struct drm_crtc *crtc = NULL;
  5192. struct drm_device *dev = encoder->dev;
  5193. struct drm_framebuffer *fb;
  5194. int i = -1;
  5195. DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
  5196. connector->base.id, drm_get_connector_name(connector),
  5197. encoder->base.id, drm_get_encoder_name(encoder));
  5198. /*
  5199. * Algorithm gets a little messy:
  5200. *
  5201. * - if the connector already has an assigned crtc, use it (but make
  5202. * sure it's on first)
  5203. *
  5204. * - try to find the first unused crtc that can drive this connector,
  5205. * and use that if we find one
  5206. */
  5207. /* See if we already have a CRTC for this connector */
  5208. if (encoder->crtc) {
  5209. crtc = encoder->crtc;
  5210. old->dpms_mode = connector->dpms;
  5211. old->load_detect_temp = false;
  5212. /* Make sure the crtc and connector are running */
  5213. if (connector->dpms != DRM_MODE_DPMS_ON)
  5214. connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
  5215. return true;
  5216. }
  5217. /* Find an unused one (if possible) */
  5218. list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
  5219. i++;
  5220. if (!(encoder->possible_crtcs & (1 << i)))
  5221. continue;
  5222. if (!possible_crtc->enabled) {
  5223. crtc = possible_crtc;
  5224. break;
  5225. }
  5226. }
  5227. /*
  5228. * If we didn't find an unused CRTC, don't use any.
  5229. */
  5230. if (!crtc) {
  5231. DRM_DEBUG_KMS("no pipe available for load-detect\n");
  5232. return false;
  5233. }
  5234. intel_encoder->new_crtc = to_intel_crtc(crtc);
  5235. to_intel_connector(connector)->new_encoder = intel_encoder;
  5236. intel_crtc = to_intel_crtc(crtc);
  5237. old->dpms_mode = connector->dpms;
  5238. old->load_detect_temp = true;
  5239. old->release_fb = NULL;
  5240. if (!mode)
  5241. mode = &load_detect_mode;
  5242. /* We need a framebuffer large enough to accommodate all accesses
  5243. * that the plane may generate whilst we perform load detection.
  5244. * We can not rely on the fbcon either being present (we get called
  5245. * during its initialisation to detect all boot displays, or it may
  5246. * not even exist) or that it is large enough to satisfy the
  5247. * requested mode.
  5248. */
  5249. fb = mode_fits_in_fbdev(dev, mode);
  5250. if (fb == NULL) {
  5251. DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
  5252. fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
  5253. old->release_fb = fb;
  5254. } else
  5255. DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
  5256. if (IS_ERR(fb)) {
  5257. DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
  5258. goto fail;
  5259. }
  5260. if (!intel_set_mode(crtc, mode, 0, 0, fb)) {
  5261. DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
  5262. if (old->release_fb)
  5263. old->release_fb->funcs->destroy(old->release_fb);
  5264. goto fail;
  5265. }
  5266. /* let the connector get through one full cycle before testing */
  5267. intel_wait_for_vblank(dev, intel_crtc->pipe);
  5268. return true;
  5269. fail:
  5270. connector->encoder = NULL;
  5271. encoder->crtc = NULL;
  5272. return false;
  5273. }
  5274. void intel_release_load_detect_pipe(struct drm_connector *connector,
  5275. struct intel_load_detect_pipe *old)
  5276. {
  5277. struct intel_encoder *intel_encoder =
  5278. intel_attached_encoder(connector);
  5279. struct drm_encoder *encoder = &intel_encoder->base;
  5280. DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
  5281. connector->base.id, drm_get_connector_name(connector),
  5282. encoder->base.id, drm_get_encoder_name(encoder));
  5283. if (old->load_detect_temp) {
  5284. struct drm_crtc *crtc = encoder->crtc;
  5285. to_intel_connector(connector)->new_encoder = NULL;
  5286. intel_encoder->new_crtc = NULL;
  5287. intel_set_mode(crtc, NULL, 0, 0, NULL);
  5288. if (old->release_fb)
  5289. old->release_fb->funcs->destroy(old->release_fb);
  5290. return;
  5291. }
  5292. /* Switch crtc and encoder back off if necessary */
  5293. if (old->dpms_mode != DRM_MODE_DPMS_ON)
  5294. connector->funcs->dpms(connector, old->dpms_mode);
  5295. }
  5296. /* Returns the clock of the currently programmed mode of the given pipe. */
  5297. static int intel_crtc_clock_get(struct drm_device *dev, struct drm_crtc *crtc)
  5298. {
  5299. struct drm_i915_private *dev_priv = dev->dev_private;
  5300. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5301. int pipe = intel_crtc->pipe;
  5302. u32 dpll = I915_READ(DPLL(pipe));
  5303. u32 fp;
  5304. intel_clock_t clock;
  5305. if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
  5306. fp = I915_READ(FP0(pipe));
  5307. else
  5308. fp = I915_READ(FP1(pipe));
  5309. clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
  5310. if (IS_PINEVIEW(dev)) {
  5311. clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
  5312. clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
  5313. } else {
  5314. clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
  5315. clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
  5316. }
  5317. if (!IS_GEN2(dev)) {
  5318. if (IS_PINEVIEW(dev))
  5319. clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
  5320. DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
  5321. else
  5322. clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
  5323. DPLL_FPA01_P1_POST_DIV_SHIFT);
  5324. switch (dpll & DPLL_MODE_MASK) {
  5325. case DPLLB_MODE_DAC_SERIAL:
  5326. clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
  5327. 5 : 10;
  5328. break;
  5329. case DPLLB_MODE_LVDS:
  5330. clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
  5331. 7 : 14;
  5332. break;
  5333. default:
  5334. DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
  5335. "mode\n", (int)(dpll & DPLL_MODE_MASK));
  5336. return 0;
  5337. }
  5338. /* XXX: Handle the 100Mhz refclk */
  5339. intel_clock(dev, 96000, &clock);
  5340. } else {
  5341. bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
  5342. if (is_lvds) {
  5343. clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
  5344. DPLL_FPA01_P1_POST_DIV_SHIFT);
  5345. clock.p2 = 14;
  5346. if ((dpll & PLL_REF_INPUT_MASK) ==
  5347. PLLB_REF_INPUT_SPREADSPECTRUMIN) {
  5348. /* XXX: might not be 66MHz */
  5349. intel_clock(dev, 66000, &clock);
  5350. } else
  5351. intel_clock(dev, 48000, &clock);
  5352. } else {
  5353. if (dpll & PLL_P1_DIVIDE_BY_TWO)
  5354. clock.p1 = 2;
  5355. else {
  5356. clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
  5357. DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
  5358. }
  5359. if (dpll & PLL_P2_DIVIDE_BY_4)
  5360. clock.p2 = 4;
  5361. else
  5362. clock.p2 = 2;
  5363. intel_clock(dev, 48000, &clock);
  5364. }
  5365. }
  5366. /* XXX: It would be nice to validate the clocks, but we can't reuse
  5367. * i830PllIsValid() because it relies on the xf86_config connector
  5368. * configuration being accurate, which it isn't necessarily.
  5369. */
  5370. return clock.dot;
  5371. }
  5372. /** Returns the currently programmed mode of the given pipe. */
  5373. struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
  5374. struct drm_crtc *crtc)
  5375. {
  5376. struct drm_i915_private *dev_priv = dev->dev_private;
  5377. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5378. int pipe = intel_crtc->pipe;
  5379. struct drm_display_mode *mode;
  5380. int htot = I915_READ(HTOTAL(pipe));
  5381. int hsync = I915_READ(HSYNC(pipe));
  5382. int vtot = I915_READ(VTOTAL(pipe));
  5383. int vsync = I915_READ(VSYNC(pipe));
  5384. mode = kzalloc(sizeof(*mode), GFP_KERNEL);
  5385. if (!mode)
  5386. return NULL;
  5387. mode->clock = intel_crtc_clock_get(dev, crtc);
  5388. mode->hdisplay = (htot & 0xffff) + 1;
  5389. mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
  5390. mode->hsync_start = (hsync & 0xffff) + 1;
  5391. mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
  5392. mode->vdisplay = (vtot & 0xffff) + 1;
  5393. mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
  5394. mode->vsync_start = (vsync & 0xffff) + 1;
  5395. mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
  5396. drm_mode_set_name(mode);
  5397. return mode;
  5398. }
  5399. static void intel_increase_pllclock(struct drm_crtc *crtc)
  5400. {
  5401. struct drm_device *dev = crtc->dev;
  5402. drm_i915_private_t *dev_priv = dev->dev_private;
  5403. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5404. int pipe = intel_crtc->pipe;
  5405. int dpll_reg = DPLL(pipe);
  5406. int dpll;
  5407. if (HAS_PCH_SPLIT(dev))
  5408. return;
  5409. if (!dev_priv->lvds_downclock_avail)
  5410. return;
  5411. dpll = I915_READ(dpll_reg);
  5412. if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
  5413. DRM_DEBUG_DRIVER("upclocking LVDS\n");
  5414. assert_panel_unlocked(dev_priv, pipe);
  5415. dpll &= ~DISPLAY_RATE_SELECT_FPA1;
  5416. I915_WRITE(dpll_reg, dpll);
  5417. intel_wait_for_vblank(dev, pipe);
  5418. dpll = I915_READ(dpll_reg);
  5419. if (dpll & DISPLAY_RATE_SELECT_FPA1)
  5420. DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
  5421. }
  5422. }
  5423. static void intel_decrease_pllclock(struct drm_crtc *crtc)
  5424. {
  5425. struct drm_device *dev = crtc->dev;
  5426. drm_i915_private_t *dev_priv = dev->dev_private;
  5427. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5428. if (HAS_PCH_SPLIT(dev))
  5429. return;
  5430. if (!dev_priv->lvds_downclock_avail)
  5431. return;
  5432. /*
  5433. * Since this is called by a timer, we should never get here in
  5434. * the manual case.
  5435. */
  5436. if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
  5437. int pipe = intel_crtc->pipe;
  5438. int dpll_reg = DPLL(pipe);
  5439. int dpll;
  5440. DRM_DEBUG_DRIVER("downclocking LVDS\n");
  5441. assert_panel_unlocked(dev_priv, pipe);
  5442. dpll = I915_READ(dpll_reg);
  5443. dpll |= DISPLAY_RATE_SELECT_FPA1;
  5444. I915_WRITE(dpll_reg, dpll);
  5445. intel_wait_for_vblank(dev, pipe);
  5446. dpll = I915_READ(dpll_reg);
  5447. if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
  5448. DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
  5449. }
  5450. }
  5451. void intel_mark_busy(struct drm_device *dev)
  5452. {
  5453. i915_update_gfx_val(dev->dev_private);
  5454. }
  5455. void intel_mark_idle(struct drm_device *dev)
  5456. {
  5457. }
  5458. void intel_mark_fb_busy(struct drm_i915_gem_object *obj)
  5459. {
  5460. struct drm_device *dev = obj->base.dev;
  5461. struct drm_crtc *crtc;
  5462. if (!i915_powersave)
  5463. return;
  5464. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  5465. if (!crtc->fb)
  5466. continue;
  5467. if (to_intel_framebuffer(crtc->fb)->obj == obj)
  5468. intel_increase_pllclock(crtc);
  5469. }
  5470. }
  5471. void intel_mark_fb_idle(struct drm_i915_gem_object *obj)
  5472. {
  5473. struct drm_device *dev = obj->base.dev;
  5474. struct drm_crtc *crtc;
  5475. if (!i915_powersave)
  5476. return;
  5477. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  5478. if (!crtc->fb)
  5479. continue;
  5480. if (to_intel_framebuffer(crtc->fb)->obj == obj)
  5481. intel_decrease_pllclock(crtc);
  5482. }
  5483. }
  5484. static void intel_crtc_destroy(struct drm_crtc *crtc)
  5485. {
  5486. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5487. struct drm_device *dev = crtc->dev;
  5488. struct intel_unpin_work *work;
  5489. unsigned long flags;
  5490. spin_lock_irqsave(&dev->event_lock, flags);
  5491. work = intel_crtc->unpin_work;
  5492. intel_crtc->unpin_work = NULL;
  5493. spin_unlock_irqrestore(&dev->event_lock, flags);
  5494. if (work) {
  5495. cancel_work_sync(&work->work);
  5496. kfree(work);
  5497. }
  5498. drm_crtc_cleanup(crtc);
  5499. kfree(intel_crtc);
  5500. }
  5501. static void intel_unpin_work_fn(struct work_struct *__work)
  5502. {
  5503. struct intel_unpin_work *work =
  5504. container_of(__work, struct intel_unpin_work, work);
  5505. mutex_lock(&work->dev->struct_mutex);
  5506. intel_unpin_fb_obj(work->old_fb_obj);
  5507. drm_gem_object_unreference(&work->pending_flip_obj->base);
  5508. drm_gem_object_unreference(&work->old_fb_obj->base);
  5509. intel_update_fbc(work->dev);
  5510. mutex_unlock(&work->dev->struct_mutex);
  5511. kfree(work);
  5512. }
  5513. static void do_intel_finish_page_flip(struct drm_device *dev,
  5514. struct drm_crtc *crtc)
  5515. {
  5516. drm_i915_private_t *dev_priv = dev->dev_private;
  5517. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5518. struct intel_unpin_work *work;
  5519. struct drm_i915_gem_object *obj;
  5520. struct drm_pending_vblank_event *e;
  5521. struct timeval tnow, tvbl;
  5522. unsigned long flags;
  5523. /* Ignore early vblank irqs */
  5524. if (intel_crtc == NULL)
  5525. return;
  5526. do_gettimeofday(&tnow);
  5527. spin_lock_irqsave(&dev->event_lock, flags);
  5528. work = intel_crtc->unpin_work;
  5529. if (work == NULL || !work->pending) {
  5530. spin_unlock_irqrestore(&dev->event_lock, flags);
  5531. return;
  5532. }
  5533. intel_crtc->unpin_work = NULL;
  5534. if (work->event) {
  5535. e = work->event;
  5536. e->event.sequence = drm_vblank_count_and_time(dev, intel_crtc->pipe, &tvbl);
  5537. /* Called before vblank count and timestamps have
  5538. * been updated for the vblank interval of flip
  5539. * completion? Need to increment vblank count and
  5540. * add one videorefresh duration to returned timestamp
  5541. * to account for this. We assume this happened if we
  5542. * get called over 0.9 frame durations after the last
  5543. * timestamped vblank.
  5544. *
  5545. * This calculation can not be used with vrefresh rates
  5546. * below 5Hz (10Hz to be on the safe side) without
  5547. * promoting to 64 integers.
  5548. */
  5549. if (10 * (timeval_to_ns(&tnow) - timeval_to_ns(&tvbl)) >
  5550. 9 * crtc->framedur_ns) {
  5551. e->event.sequence++;
  5552. tvbl = ns_to_timeval(timeval_to_ns(&tvbl) +
  5553. crtc->framedur_ns);
  5554. }
  5555. e->event.tv_sec = tvbl.tv_sec;
  5556. e->event.tv_usec = tvbl.tv_usec;
  5557. list_add_tail(&e->base.link,
  5558. &e->base.file_priv->event_list);
  5559. wake_up_interruptible(&e->base.file_priv->event_wait);
  5560. }
  5561. drm_vblank_put(dev, intel_crtc->pipe);
  5562. spin_unlock_irqrestore(&dev->event_lock, flags);
  5563. obj = work->old_fb_obj;
  5564. atomic_clear_mask(1 << intel_crtc->plane,
  5565. &obj->pending_flip.counter);
  5566. if (atomic_read(&obj->pending_flip) == 0)
  5567. wake_up(&dev_priv->pending_flip_queue);
  5568. schedule_work(&work->work);
  5569. trace_i915_flip_complete(intel_crtc->plane, work->pending_flip_obj);
  5570. }
  5571. void intel_finish_page_flip(struct drm_device *dev, int pipe)
  5572. {
  5573. drm_i915_private_t *dev_priv = dev->dev_private;
  5574. struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
  5575. do_intel_finish_page_flip(dev, crtc);
  5576. }
  5577. void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
  5578. {
  5579. drm_i915_private_t *dev_priv = dev->dev_private;
  5580. struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
  5581. do_intel_finish_page_flip(dev, crtc);
  5582. }
  5583. void intel_prepare_page_flip(struct drm_device *dev, int plane)
  5584. {
  5585. drm_i915_private_t *dev_priv = dev->dev_private;
  5586. struct intel_crtc *intel_crtc =
  5587. to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
  5588. unsigned long flags;
  5589. spin_lock_irqsave(&dev->event_lock, flags);
  5590. if (intel_crtc->unpin_work) {
  5591. if ((++intel_crtc->unpin_work->pending) > 1)
  5592. DRM_ERROR("Prepared flip multiple times\n");
  5593. } else {
  5594. DRM_DEBUG_DRIVER("preparing flip with no unpin work?\n");
  5595. }
  5596. spin_unlock_irqrestore(&dev->event_lock, flags);
  5597. }
  5598. static int intel_gen2_queue_flip(struct drm_device *dev,
  5599. struct drm_crtc *crtc,
  5600. struct drm_framebuffer *fb,
  5601. struct drm_i915_gem_object *obj)
  5602. {
  5603. struct drm_i915_private *dev_priv = dev->dev_private;
  5604. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5605. u32 flip_mask;
  5606. struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
  5607. int ret;
  5608. ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
  5609. if (ret)
  5610. goto err;
  5611. ret = intel_ring_begin(ring, 6);
  5612. if (ret)
  5613. goto err_unpin;
  5614. /* Can't queue multiple flips, so wait for the previous
  5615. * one to finish before executing the next.
  5616. */
  5617. if (intel_crtc->plane)
  5618. flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
  5619. else
  5620. flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
  5621. intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
  5622. intel_ring_emit(ring, MI_NOOP);
  5623. intel_ring_emit(ring, MI_DISPLAY_FLIP |
  5624. MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
  5625. intel_ring_emit(ring, fb->pitches[0]);
  5626. intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
  5627. intel_ring_emit(ring, 0); /* aux display base address, unused */
  5628. intel_ring_advance(ring);
  5629. return 0;
  5630. err_unpin:
  5631. intel_unpin_fb_obj(obj);
  5632. err:
  5633. return ret;
  5634. }
  5635. static int intel_gen3_queue_flip(struct drm_device *dev,
  5636. struct drm_crtc *crtc,
  5637. struct drm_framebuffer *fb,
  5638. struct drm_i915_gem_object *obj)
  5639. {
  5640. struct drm_i915_private *dev_priv = dev->dev_private;
  5641. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5642. u32 flip_mask;
  5643. struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
  5644. int ret;
  5645. ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
  5646. if (ret)
  5647. goto err;
  5648. ret = intel_ring_begin(ring, 6);
  5649. if (ret)
  5650. goto err_unpin;
  5651. if (intel_crtc->plane)
  5652. flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
  5653. else
  5654. flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
  5655. intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
  5656. intel_ring_emit(ring, MI_NOOP);
  5657. intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
  5658. MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
  5659. intel_ring_emit(ring, fb->pitches[0]);
  5660. intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
  5661. intel_ring_emit(ring, MI_NOOP);
  5662. intel_ring_advance(ring);
  5663. return 0;
  5664. err_unpin:
  5665. intel_unpin_fb_obj(obj);
  5666. err:
  5667. return ret;
  5668. }
  5669. static int intel_gen4_queue_flip(struct drm_device *dev,
  5670. struct drm_crtc *crtc,
  5671. struct drm_framebuffer *fb,
  5672. struct drm_i915_gem_object *obj)
  5673. {
  5674. struct drm_i915_private *dev_priv = dev->dev_private;
  5675. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5676. uint32_t pf, pipesrc;
  5677. struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
  5678. int ret;
  5679. ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
  5680. if (ret)
  5681. goto err;
  5682. ret = intel_ring_begin(ring, 4);
  5683. if (ret)
  5684. goto err_unpin;
  5685. /* i965+ uses the linear or tiled offsets from the
  5686. * Display Registers (which do not change across a page-flip)
  5687. * so we need only reprogram the base address.
  5688. */
  5689. intel_ring_emit(ring, MI_DISPLAY_FLIP |
  5690. MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
  5691. intel_ring_emit(ring, fb->pitches[0]);
  5692. intel_ring_emit(ring,
  5693. (obj->gtt_offset + intel_crtc->dspaddr_offset) |
  5694. obj->tiling_mode);
  5695. /* XXX Enabling the panel-fitter across page-flip is so far
  5696. * untested on non-native modes, so ignore it for now.
  5697. * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
  5698. */
  5699. pf = 0;
  5700. pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
  5701. intel_ring_emit(ring, pf | pipesrc);
  5702. intel_ring_advance(ring);
  5703. return 0;
  5704. err_unpin:
  5705. intel_unpin_fb_obj(obj);
  5706. err:
  5707. return ret;
  5708. }
  5709. static int intel_gen6_queue_flip(struct drm_device *dev,
  5710. struct drm_crtc *crtc,
  5711. struct drm_framebuffer *fb,
  5712. struct drm_i915_gem_object *obj)
  5713. {
  5714. struct drm_i915_private *dev_priv = dev->dev_private;
  5715. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5716. struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
  5717. uint32_t pf, pipesrc;
  5718. int ret;
  5719. ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
  5720. if (ret)
  5721. goto err;
  5722. ret = intel_ring_begin(ring, 4);
  5723. if (ret)
  5724. goto err_unpin;
  5725. intel_ring_emit(ring, MI_DISPLAY_FLIP |
  5726. MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
  5727. intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
  5728. intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
  5729. /* Contrary to the suggestions in the documentation,
  5730. * "Enable Panel Fitter" does not seem to be required when page
  5731. * flipping with a non-native mode, and worse causes a normal
  5732. * modeset to fail.
  5733. * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
  5734. */
  5735. pf = 0;
  5736. pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
  5737. intel_ring_emit(ring, pf | pipesrc);
  5738. intel_ring_advance(ring);
  5739. return 0;
  5740. err_unpin:
  5741. intel_unpin_fb_obj(obj);
  5742. err:
  5743. return ret;
  5744. }
  5745. /*
  5746. * On gen7 we currently use the blit ring because (in early silicon at least)
  5747. * the render ring doesn't give us interrpts for page flip completion, which
  5748. * means clients will hang after the first flip is queued. Fortunately the
  5749. * blit ring generates interrupts properly, so use it instead.
  5750. */
  5751. static int intel_gen7_queue_flip(struct drm_device *dev,
  5752. struct drm_crtc *crtc,
  5753. struct drm_framebuffer *fb,
  5754. struct drm_i915_gem_object *obj)
  5755. {
  5756. struct drm_i915_private *dev_priv = dev->dev_private;
  5757. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5758. struct intel_ring_buffer *ring = &dev_priv->ring[BCS];
  5759. uint32_t plane_bit = 0;
  5760. int ret;
  5761. ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
  5762. if (ret)
  5763. goto err;
  5764. switch(intel_crtc->plane) {
  5765. case PLANE_A:
  5766. plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
  5767. break;
  5768. case PLANE_B:
  5769. plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
  5770. break;
  5771. case PLANE_C:
  5772. plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
  5773. break;
  5774. default:
  5775. WARN_ONCE(1, "unknown plane in flip command\n");
  5776. ret = -ENODEV;
  5777. goto err_unpin;
  5778. }
  5779. ret = intel_ring_begin(ring, 4);
  5780. if (ret)
  5781. goto err_unpin;
  5782. intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
  5783. intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
  5784. intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
  5785. intel_ring_emit(ring, (MI_NOOP));
  5786. intel_ring_advance(ring);
  5787. return 0;
  5788. err_unpin:
  5789. intel_unpin_fb_obj(obj);
  5790. err:
  5791. return ret;
  5792. }
  5793. static int intel_default_queue_flip(struct drm_device *dev,
  5794. struct drm_crtc *crtc,
  5795. struct drm_framebuffer *fb,
  5796. struct drm_i915_gem_object *obj)
  5797. {
  5798. return -ENODEV;
  5799. }
  5800. static int intel_crtc_page_flip(struct drm_crtc *crtc,
  5801. struct drm_framebuffer *fb,
  5802. struct drm_pending_vblank_event *event)
  5803. {
  5804. struct drm_device *dev = crtc->dev;
  5805. struct drm_i915_private *dev_priv = dev->dev_private;
  5806. struct intel_framebuffer *intel_fb;
  5807. struct drm_i915_gem_object *obj;
  5808. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5809. struct intel_unpin_work *work;
  5810. unsigned long flags;
  5811. int ret;
  5812. /* Can't change pixel format via MI display flips. */
  5813. if (fb->pixel_format != crtc->fb->pixel_format)
  5814. return -EINVAL;
  5815. /*
  5816. * TILEOFF/LINOFF registers can't be changed via MI display flips.
  5817. * Note that pitch changes could also affect these register.
  5818. */
  5819. if (INTEL_INFO(dev)->gen > 3 &&
  5820. (fb->offsets[0] != crtc->fb->offsets[0] ||
  5821. fb->pitches[0] != crtc->fb->pitches[0]))
  5822. return -EINVAL;
  5823. work = kzalloc(sizeof *work, GFP_KERNEL);
  5824. if (work == NULL)
  5825. return -ENOMEM;
  5826. work->event = event;
  5827. work->dev = crtc->dev;
  5828. intel_fb = to_intel_framebuffer(crtc->fb);
  5829. work->old_fb_obj = intel_fb->obj;
  5830. INIT_WORK(&work->work, intel_unpin_work_fn);
  5831. ret = drm_vblank_get(dev, intel_crtc->pipe);
  5832. if (ret)
  5833. goto free_work;
  5834. /* We borrow the event spin lock for protecting unpin_work */
  5835. spin_lock_irqsave(&dev->event_lock, flags);
  5836. if (intel_crtc->unpin_work) {
  5837. spin_unlock_irqrestore(&dev->event_lock, flags);
  5838. kfree(work);
  5839. drm_vblank_put(dev, intel_crtc->pipe);
  5840. DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
  5841. return -EBUSY;
  5842. }
  5843. intel_crtc->unpin_work = work;
  5844. spin_unlock_irqrestore(&dev->event_lock, flags);
  5845. intel_fb = to_intel_framebuffer(fb);
  5846. obj = intel_fb->obj;
  5847. ret = i915_mutex_lock_interruptible(dev);
  5848. if (ret)
  5849. goto cleanup;
  5850. /* Reference the objects for the scheduled work. */
  5851. drm_gem_object_reference(&work->old_fb_obj->base);
  5852. drm_gem_object_reference(&obj->base);
  5853. crtc->fb = fb;
  5854. work->pending_flip_obj = obj;
  5855. work->enable_stall_check = true;
  5856. /* Block clients from rendering to the new back buffer until
  5857. * the flip occurs and the object is no longer visible.
  5858. */
  5859. atomic_add(1 << intel_crtc->plane, &work->old_fb_obj->pending_flip);
  5860. ret = dev_priv->display.queue_flip(dev, crtc, fb, obj);
  5861. if (ret)
  5862. goto cleanup_pending;
  5863. intel_disable_fbc(dev);
  5864. intel_mark_fb_busy(obj);
  5865. mutex_unlock(&dev->struct_mutex);
  5866. trace_i915_flip_request(intel_crtc->plane, obj);
  5867. return 0;
  5868. cleanup_pending:
  5869. atomic_sub(1 << intel_crtc->plane, &work->old_fb_obj->pending_flip);
  5870. drm_gem_object_unreference(&work->old_fb_obj->base);
  5871. drm_gem_object_unreference(&obj->base);
  5872. mutex_unlock(&dev->struct_mutex);
  5873. cleanup:
  5874. spin_lock_irqsave(&dev->event_lock, flags);
  5875. intel_crtc->unpin_work = NULL;
  5876. spin_unlock_irqrestore(&dev->event_lock, flags);
  5877. drm_vblank_put(dev, intel_crtc->pipe);
  5878. free_work:
  5879. kfree(work);
  5880. return ret;
  5881. }
  5882. static struct drm_crtc_helper_funcs intel_helper_funcs = {
  5883. .mode_set_base_atomic = intel_pipe_set_base_atomic,
  5884. .load_lut = intel_crtc_load_lut,
  5885. .disable = intel_crtc_noop,
  5886. };
  5887. bool intel_encoder_check_is_cloned(struct intel_encoder *encoder)
  5888. {
  5889. struct intel_encoder *other_encoder;
  5890. struct drm_crtc *crtc = &encoder->new_crtc->base;
  5891. if (WARN_ON(!crtc))
  5892. return false;
  5893. list_for_each_entry(other_encoder,
  5894. &crtc->dev->mode_config.encoder_list,
  5895. base.head) {
  5896. if (&other_encoder->new_crtc->base != crtc ||
  5897. encoder == other_encoder)
  5898. continue;
  5899. else
  5900. return true;
  5901. }
  5902. return false;
  5903. }
  5904. static bool intel_encoder_crtc_ok(struct drm_encoder *encoder,
  5905. struct drm_crtc *crtc)
  5906. {
  5907. struct drm_device *dev;
  5908. struct drm_crtc *tmp;
  5909. int crtc_mask = 1;
  5910. WARN(!crtc, "checking null crtc?\n");
  5911. dev = crtc->dev;
  5912. list_for_each_entry(tmp, &dev->mode_config.crtc_list, head) {
  5913. if (tmp == crtc)
  5914. break;
  5915. crtc_mask <<= 1;
  5916. }
  5917. if (encoder->possible_crtcs & crtc_mask)
  5918. return true;
  5919. return false;
  5920. }
  5921. /**
  5922. * intel_modeset_update_staged_output_state
  5923. *
  5924. * Updates the staged output configuration state, e.g. after we've read out the
  5925. * current hw state.
  5926. */
  5927. static void intel_modeset_update_staged_output_state(struct drm_device *dev)
  5928. {
  5929. struct intel_encoder *encoder;
  5930. struct intel_connector *connector;
  5931. list_for_each_entry(connector, &dev->mode_config.connector_list,
  5932. base.head) {
  5933. connector->new_encoder =
  5934. to_intel_encoder(connector->base.encoder);
  5935. }
  5936. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  5937. base.head) {
  5938. encoder->new_crtc =
  5939. to_intel_crtc(encoder->base.crtc);
  5940. }
  5941. }
  5942. /**
  5943. * intel_modeset_commit_output_state
  5944. *
  5945. * This function copies the stage display pipe configuration to the real one.
  5946. */
  5947. static void intel_modeset_commit_output_state(struct drm_device *dev)
  5948. {
  5949. struct intel_encoder *encoder;
  5950. struct intel_connector *connector;
  5951. list_for_each_entry(connector, &dev->mode_config.connector_list,
  5952. base.head) {
  5953. connector->base.encoder = &connector->new_encoder->base;
  5954. }
  5955. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  5956. base.head) {
  5957. encoder->base.crtc = &encoder->new_crtc->base;
  5958. }
  5959. }
  5960. static struct drm_display_mode *
  5961. intel_modeset_adjusted_mode(struct drm_crtc *crtc,
  5962. struct drm_display_mode *mode)
  5963. {
  5964. struct drm_device *dev = crtc->dev;
  5965. struct drm_display_mode *adjusted_mode;
  5966. struct drm_encoder_helper_funcs *encoder_funcs;
  5967. struct intel_encoder *encoder;
  5968. adjusted_mode = drm_mode_duplicate(dev, mode);
  5969. if (!adjusted_mode)
  5970. return ERR_PTR(-ENOMEM);
  5971. /* Pass our mode to the connectors and the CRTC to give them a chance to
  5972. * adjust it according to limitations or connector properties, and also
  5973. * a chance to reject the mode entirely.
  5974. */
  5975. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  5976. base.head) {
  5977. if (&encoder->new_crtc->base != crtc)
  5978. continue;
  5979. encoder_funcs = encoder->base.helper_private;
  5980. if (!(encoder_funcs->mode_fixup(&encoder->base, mode,
  5981. adjusted_mode))) {
  5982. DRM_DEBUG_KMS("Encoder fixup failed\n");
  5983. goto fail;
  5984. }
  5985. }
  5986. if (!(intel_crtc_mode_fixup(crtc, mode, adjusted_mode))) {
  5987. DRM_DEBUG_KMS("CRTC fixup failed\n");
  5988. goto fail;
  5989. }
  5990. DRM_DEBUG_KMS("[CRTC:%d]\n", crtc->base.id);
  5991. return adjusted_mode;
  5992. fail:
  5993. drm_mode_destroy(dev, adjusted_mode);
  5994. return ERR_PTR(-EINVAL);
  5995. }
  5996. /* Computes which crtcs are affected and sets the relevant bits in the mask. For
  5997. * simplicity we use the crtc's pipe number (because it's easier to obtain). */
  5998. static void
  5999. intel_modeset_affected_pipes(struct drm_crtc *crtc, unsigned *modeset_pipes,
  6000. unsigned *prepare_pipes, unsigned *disable_pipes)
  6001. {
  6002. struct intel_crtc *intel_crtc;
  6003. struct drm_device *dev = crtc->dev;
  6004. struct intel_encoder *encoder;
  6005. struct intel_connector *connector;
  6006. struct drm_crtc *tmp_crtc;
  6007. *disable_pipes = *modeset_pipes = *prepare_pipes = 0;
  6008. /* Check which crtcs have changed outputs connected to them, these need
  6009. * to be part of the prepare_pipes mask. We don't (yet) support global
  6010. * modeset across multiple crtcs, so modeset_pipes will only have one
  6011. * bit set at most. */
  6012. list_for_each_entry(connector, &dev->mode_config.connector_list,
  6013. base.head) {
  6014. if (connector->base.encoder == &connector->new_encoder->base)
  6015. continue;
  6016. if (connector->base.encoder) {
  6017. tmp_crtc = connector->base.encoder->crtc;
  6018. *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
  6019. }
  6020. if (connector->new_encoder)
  6021. *prepare_pipes |=
  6022. 1 << connector->new_encoder->new_crtc->pipe;
  6023. }
  6024. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  6025. base.head) {
  6026. if (encoder->base.crtc == &encoder->new_crtc->base)
  6027. continue;
  6028. if (encoder->base.crtc) {
  6029. tmp_crtc = encoder->base.crtc;
  6030. *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
  6031. }
  6032. if (encoder->new_crtc)
  6033. *prepare_pipes |= 1 << encoder->new_crtc->pipe;
  6034. }
  6035. /* Check for any pipes that will be fully disabled ... */
  6036. list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
  6037. base.head) {
  6038. bool used = false;
  6039. /* Don't try to disable disabled crtcs. */
  6040. if (!intel_crtc->base.enabled)
  6041. continue;
  6042. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  6043. base.head) {
  6044. if (encoder->new_crtc == intel_crtc)
  6045. used = true;
  6046. }
  6047. if (!used)
  6048. *disable_pipes |= 1 << intel_crtc->pipe;
  6049. }
  6050. /* set_mode is also used to update properties on life display pipes. */
  6051. intel_crtc = to_intel_crtc(crtc);
  6052. if (crtc->enabled)
  6053. *prepare_pipes |= 1 << intel_crtc->pipe;
  6054. /* We only support modeset on one single crtc, hence we need to do that
  6055. * only for the passed in crtc iff we change anything else than just
  6056. * disable crtcs.
  6057. *
  6058. * This is actually not true, to be fully compatible with the old crtc
  6059. * helper we automatically disable _any_ output (i.e. doesn't need to be
  6060. * connected to the crtc we're modesetting on) if it's disconnected.
  6061. * Which is a rather nutty api (since changed the output configuration
  6062. * without userspace's explicit request can lead to confusion), but
  6063. * alas. Hence we currently need to modeset on all pipes we prepare. */
  6064. if (*prepare_pipes)
  6065. *modeset_pipes = *prepare_pipes;
  6066. /* ... and mask these out. */
  6067. *modeset_pipes &= ~(*disable_pipes);
  6068. *prepare_pipes &= ~(*disable_pipes);
  6069. }
  6070. static bool intel_crtc_in_use(struct drm_crtc *crtc)
  6071. {
  6072. struct drm_encoder *encoder;
  6073. struct drm_device *dev = crtc->dev;
  6074. list_for_each_entry(encoder, &dev->mode_config.encoder_list, head)
  6075. if (encoder->crtc == crtc)
  6076. return true;
  6077. return false;
  6078. }
  6079. static void
  6080. intel_modeset_update_state(struct drm_device *dev, unsigned prepare_pipes)
  6081. {
  6082. struct intel_encoder *intel_encoder;
  6083. struct intel_crtc *intel_crtc;
  6084. struct drm_connector *connector;
  6085. list_for_each_entry(intel_encoder, &dev->mode_config.encoder_list,
  6086. base.head) {
  6087. if (!intel_encoder->base.crtc)
  6088. continue;
  6089. intel_crtc = to_intel_crtc(intel_encoder->base.crtc);
  6090. if (prepare_pipes & (1 << intel_crtc->pipe))
  6091. intel_encoder->connectors_active = false;
  6092. }
  6093. intel_modeset_commit_output_state(dev);
  6094. /* Update computed state. */
  6095. list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
  6096. base.head) {
  6097. intel_crtc->base.enabled = intel_crtc_in_use(&intel_crtc->base);
  6098. }
  6099. list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
  6100. if (!connector->encoder || !connector->encoder->crtc)
  6101. continue;
  6102. intel_crtc = to_intel_crtc(connector->encoder->crtc);
  6103. if (prepare_pipes & (1 << intel_crtc->pipe)) {
  6104. struct drm_property *dpms_property =
  6105. dev->mode_config.dpms_property;
  6106. connector->dpms = DRM_MODE_DPMS_ON;
  6107. drm_connector_property_set_value(connector,
  6108. dpms_property,
  6109. DRM_MODE_DPMS_ON);
  6110. intel_encoder = to_intel_encoder(connector->encoder);
  6111. intel_encoder->connectors_active = true;
  6112. }
  6113. }
  6114. }
  6115. #define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
  6116. list_for_each_entry((intel_crtc), \
  6117. &(dev)->mode_config.crtc_list, \
  6118. base.head) \
  6119. if (mask & (1 <<(intel_crtc)->pipe)) \
  6120. void
  6121. intel_modeset_check_state(struct drm_device *dev)
  6122. {
  6123. struct intel_crtc *crtc;
  6124. struct intel_encoder *encoder;
  6125. struct intel_connector *connector;
  6126. list_for_each_entry(connector, &dev->mode_config.connector_list,
  6127. base.head) {
  6128. /* This also checks the encoder/connector hw state with the
  6129. * ->get_hw_state callbacks. */
  6130. intel_connector_check_state(connector);
  6131. WARN(&connector->new_encoder->base != connector->base.encoder,
  6132. "connector's staged encoder doesn't match current encoder\n");
  6133. }
  6134. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  6135. base.head) {
  6136. bool enabled = false;
  6137. bool active = false;
  6138. enum pipe pipe, tracked_pipe;
  6139. DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
  6140. encoder->base.base.id,
  6141. drm_get_encoder_name(&encoder->base));
  6142. WARN(&encoder->new_crtc->base != encoder->base.crtc,
  6143. "encoder's stage crtc doesn't match current crtc\n");
  6144. WARN(encoder->connectors_active && !encoder->base.crtc,
  6145. "encoder's active_connectors set, but no crtc\n");
  6146. list_for_each_entry(connector, &dev->mode_config.connector_list,
  6147. base.head) {
  6148. if (connector->base.encoder != &encoder->base)
  6149. continue;
  6150. enabled = true;
  6151. if (connector->base.dpms != DRM_MODE_DPMS_OFF)
  6152. active = true;
  6153. }
  6154. WARN(!!encoder->base.crtc != enabled,
  6155. "encoder's enabled state mismatch "
  6156. "(expected %i, found %i)\n",
  6157. !!encoder->base.crtc, enabled);
  6158. WARN(active && !encoder->base.crtc,
  6159. "active encoder with no crtc\n");
  6160. WARN(encoder->connectors_active != active,
  6161. "encoder's computed active state doesn't match tracked active state "
  6162. "(expected %i, found %i)\n", active, encoder->connectors_active);
  6163. active = encoder->get_hw_state(encoder, &pipe);
  6164. WARN(active != encoder->connectors_active,
  6165. "encoder's hw state doesn't match sw tracking "
  6166. "(expected %i, found %i)\n",
  6167. encoder->connectors_active, active);
  6168. if (!encoder->base.crtc)
  6169. continue;
  6170. tracked_pipe = to_intel_crtc(encoder->base.crtc)->pipe;
  6171. WARN(active && pipe != tracked_pipe,
  6172. "active encoder's pipe doesn't match"
  6173. "(expected %i, found %i)\n",
  6174. tracked_pipe, pipe);
  6175. }
  6176. list_for_each_entry(crtc, &dev->mode_config.crtc_list,
  6177. base.head) {
  6178. bool enabled = false;
  6179. bool active = false;
  6180. DRM_DEBUG_KMS("[CRTC:%d]\n",
  6181. crtc->base.base.id);
  6182. WARN(crtc->active && !crtc->base.enabled,
  6183. "active crtc, but not enabled in sw tracking\n");
  6184. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  6185. base.head) {
  6186. if (encoder->base.crtc != &crtc->base)
  6187. continue;
  6188. enabled = true;
  6189. if (encoder->connectors_active)
  6190. active = true;
  6191. }
  6192. WARN(active != crtc->active,
  6193. "crtc's computed active state doesn't match tracked active state "
  6194. "(expected %i, found %i)\n", active, crtc->active);
  6195. WARN(enabled != crtc->base.enabled,
  6196. "crtc's computed enabled state doesn't match tracked enabled state "
  6197. "(expected %i, found %i)\n", enabled, crtc->base.enabled);
  6198. assert_pipe(dev->dev_private, crtc->pipe, crtc->active);
  6199. }
  6200. }
  6201. bool intel_set_mode(struct drm_crtc *crtc,
  6202. struct drm_display_mode *mode,
  6203. int x, int y, struct drm_framebuffer *fb)
  6204. {
  6205. struct drm_device *dev = crtc->dev;
  6206. drm_i915_private_t *dev_priv = dev->dev_private;
  6207. struct drm_display_mode *adjusted_mode, saved_mode, saved_hwmode;
  6208. struct drm_encoder_helper_funcs *encoder_funcs;
  6209. struct drm_encoder *encoder;
  6210. struct intel_crtc *intel_crtc;
  6211. unsigned disable_pipes, prepare_pipes, modeset_pipes;
  6212. bool ret = true;
  6213. intel_modeset_affected_pipes(crtc, &modeset_pipes,
  6214. &prepare_pipes, &disable_pipes);
  6215. DRM_DEBUG_KMS("set mode pipe masks: modeset: %x, prepare: %x, disable: %x\n",
  6216. modeset_pipes, prepare_pipes, disable_pipes);
  6217. for_each_intel_crtc_masked(dev, disable_pipes, intel_crtc)
  6218. intel_crtc_disable(&intel_crtc->base);
  6219. saved_hwmode = crtc->hwmode;
  6220. saved_mode = crtc->mode;
  6221. /* Hack: Because we don't (yet) support global modeset on multiple
  6222. * crtcs, we don't keep track of the new mode for more than one crtc.
  6223. * Hence simply check whether any bit is set in modeset_pipes in all the
  6224. * pieces of code that are not yet converted to deal with mutliple crtcs
  6225. * changing their mode at the same time. */
  6226. adjusted_mode = NULL;
  6227. if (modeset_pipes) {
  6228. adjusted_mode = intel_modeset_adjusted_mode(crtc, mode);
  6229. if (IS_ERR(adjusted_mode)) {
  6230. return false;
  6231. }
  6232. }
  6233. for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
  6234. if (intel_crtc->base.enabled)
  6235. dev_priv->display.crtc_disable(&intel_crtc->base);
  6236. }
  6237. /* crtc->mode is already used by the ->mode_set callbacks, hence we need
  6238. * to set it here already despite that we pass it down the callchain.
  6239. */
  6240. if (modeset_pipes)
  6241. crtc->mode = *mode;
  6242. /* Only after disabling all output pipelines that will be changed can we
  6243. * update the the output configuration. */
  6244. intel_modeset_update_state(dev, prepare_pipes);
  6245. /* Set up the DPLL and any encoders state that needs to adjust or depend
  6246. * on the DPLL.
  6247. */
  6248. for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
  6249. ret = !intel_crtc_mode_set(&intel_crtc->base,
  6250. mode, adjusted_mode,
  6251. x, y, fb);
  6252. if (!ret)
  6253. goto done;
  6254. list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
  6255. if (encoder->crtc != &intel_crtc->base)
  6256. continue;
  6257. DRM_DEBUG_KMS("[ENCODER:%d:%s] set [MODE:%d:%s]\n",
  6258. encoder->base.id, drm_get_encoder_name(encoder),
  6259. mode->base.id, mode->name);
  6260. encoder_funcs = encoder->helper_private;
  6261. encoder_funcs->mode_set(encoder, mode, adjusted_mode);
  6262. }
  6263. }
  6264. /* Now enable the clocks, plane, pipe, and connectors that we set up. */
  6265. for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc)
  6266. dev_priv->display.crtc_enable(&intel_crtc->base);
  6267. if (modeset_pipes) {
  6268. /* Store real post-adjustment hardware mode. */
  6269. crtc->hwmode = *adjusted_mode;
  6270. /* Calculate and store various constants which
  6271. * are later needed by vblank and swap-completion
  6272. * timestamping. They are derived from true hwmode.
  6273. */
  6274. drm_calc_timestamping_constants(crtc);
  6275. }
  6276. /* FIXME: add subpixel order */
  6277. done:
  6278. drm_mode_destroy(dev, adjusted_mode);
  6279. if (!ret && crtc->enabled) {
  6280. crtc->hwmode = saved_hwmode;
  6281. crtc->mode = saved_mode;
  6282. } else {
  6283. intel_modeset_check_state(dev);
  6284. }
  6285. return ret;
  6286. }
  6287. #undef for_each_intel_crtc_masked
  6288. static void intel_set_config_free(struct intel_set_config *config)
  6289. {
  6290. if (!config)
  6291. return;
  6292. kfree(config->save_connector_encoders);
  6293. kfree(config->save_encoder_crtcs);
  6294. kfree(config);
  6295. }
  6296. static int intel_set_config_save_state(struct drm_device *dev,
  6297. struct intel_set_config *config)
  6298. {
  6299. struct drm_encoder *encoder;
  6300. struct drm_connector *connector;
  6301. int count;
  6302. config->save_encoder_crtcs =
  6303. kcalloc(dev->mode_config.num_encoder,
  6304. sizeof(struct drm_crtc *), GFP_KERNEL);
  6305. if (!config->save_encoder_crtcs)
  6306. return -ENOMEM;
  6307. config->save_connector_encoders =
  6308. kcalloc(dev->mode_config.num_connector,
  6309. sizeof(struct drm_encoder *), GFP_KERNEL);
  6310. if (!config->save_connector_encoders)
  6311. return -ENOMEM;
  6312. /* Copy data. Note that driver private data is not affected.
  6313. * Should anything bad happen only the expected state is
  6314. * restored, not the drivers personal bookkeeping.
  6315. */
  6316. count = 0;
  6317. list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
  6318. config->save_encoder_crtcs[count++] = encoder->crtc;
  6319. }
  6320. count = 0;
  6321. list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
  6322. config->save_connector_encoders[count++] = connector->encoder;
  6323. }
  6324. return 0;
  6325. }
  6326. static void intel_set_config_restore_state(struct drm_device *dev,
  6327. struct intel_set_config *config)
  6328. {
  6329. struct intel_encoder *encoder;
  6330. struct intel_connector *connector;
  6331. int count;
  6332. count = 0;
  6333. list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
  6334. encoder->new_crtc =
  6335. to_intel_crtc(config->save_encoder_crtcs[count++]);
  6336. }
  6337. count = 0;
  6338. list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
  6339. connector->new_encoder =
  6340. to_intel_encoder(config->save_connector_encoders[count++]);
  6341. }
  6342. }
  6343. static void
  6344. intel_set_config_compute_mode_changes(struct drm_mode_set *set,
  6345. struct intel_set_config *config)
  6346. {
  6347. /* We should be able to check here if the fb has the same properties
  6348. * and then just flip_or_move it */
  6349. if (set->crtc->fb != set->fb) {
  6350. /* If we have no fb then treat it as a full mode set */
  6351. if (set->crtc->fb == NULL) {
  6352. DRM_DEBUG_KMS("crtc has no fb, full mode set\n");
  6353. config->mode_changed = true;
  6354. } else if (set->fb == NULL) {
  6355. config->mode_changed = true;
  6356. } else if (set->fb->depth != set->crtc->fb->depth) {
  6357. config->mode_changed = true;
  6358. } else if (set->fb->bits_per_pixel !=
  6359. set->crtc->fb->bits_per_pixel) {
  6360. config->mode_changed = true;
  6361. } else
  6362. config->fb_changed = true;
  6363. }
  6364. if (set->fb && (set->x != set->crtc->x || set->y != set->crtc->y))
  6365. config->fb_changed = true;
  6366. if (set->mode && !drm_mode_equal(set->mode, &set->crtc->mode)) {
  6367. DRM_DEBUG_KMS("modes are different, full mode set\n");
  6368. drm_mode_debug_printmodeline(&set->crtc->mode);
  6369. drm_mode_debug_printmodeline(set->mode);
  6370. config->mode_changed = true;
  6371. }
  6372. }
  6373. static int
  6374. intel_modeset_stage_output_state(struct drm_device *dev,
  6375. struct drm_mode_set *set,
  6376. struct intel_set_config *config)
  6377. {
  6378. struct drm_crtc *new_crtc;
  6379. struct intel_connector *connector;
  6380. struct intel_encoder *encoder;
  6381. int count, ro;
  6382. /* The upper layers ensure that we either disabl a crtc or have a list
  6383. * of connectors. For paranoia, double-check this. */
  6384. WARN_ON(!set->fb && (set->num_connectors != 0));
  6385. WARN_ON(set->fb && (set->num_connectors == 0));
  6386. count = 0;
  6387. list_for_each_entry(connector, &dev->mode_config.connector_list,
  6388. base.head) {
  6389. /* Otherwise traverse passed in connector list and get encoders
  6390. * for them. */
  6391. for (ro = 0; ro < set->num_connectors; ro++) {
  6392. if (set->connectors[ro] == &connector->base) {
  6393. connector->new_encoder = connector->encoder;
  6394. break;
  6395. }
  6396. }
  6397. /* If we disable the crtc, disable all its connectors. Also, if
  6398. * the connector is on the changing crtc but not on the new
  6399. * connector list, disable it. */
  6400. if ((!set->fb || ro == set->num_connectors) &&
  6401. connector->base.encoder &&
  6402. connector->base.encoder->crtc == set->crtc) {
  6403. connector->new_encoder = NULL;
  6404. DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [NOCRTC]\n",
  6405. connector->base.base.id,
  6406. drm_get_connector_name(&connector->base));
  6407. }
  6408. if (&connector->new_encoder->base != connector->base.encoder) {
  6409. DRM_DEBUG_KMS("encoder changed, full mode switch\n");
  6410. config->mode_changed = true;
  6411. }
  6412. /* Disable all disconnected encoders. */
  6413. if (connector->base.status == connector_status_disconnected)
  6414. connector->new_encoder = NULL;
  6415. }
  6416. /* connector->new_encoder is now updated for all connectors. */
  6417. /* Update crtc of enabled connectors. */
  6418. count = 0;
  6419. list_for_each_entry(connector, &dev->mode_config.connector_list,
  6420. base.head) {
  6421. if (!connector->new_encoder)
  6422. continue;
  6423. new_crtc = connector->new_encoder->base.crtc;
  6424. for (ro = 0; ro < set->num_connectors; ro++) {
  6425. if (set->connectors[ro] == &connector->base)
  6426. new_crtc = set->crtc;
  6427. }
  6428. /* Make sure the new CRTC will work with the encoder */
  6429. if (!intel_encoder_crtc_ok(&connector->new_encoder->base,
  6430. new_crtc)) {
  6431. return -EINVAL;
  6432. }
  6433. connector->encoder->new_crtc = to_intel_crtc(new_crtc);
  6434. DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [CRTC:%d]\n",
  6435. connector->base.base.id,
  6436. drm_get_connector_name(&connector->base),
  6437. new_crtc->base.id);
  6438. }
  6439. /* Check for any encoders that needs to be disabled. */
  6440. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  6441. base.head) {
  6442. list_for_each_entry(connector,
  6443. &dev->mode_config.connector_list,
  6444. base.head) {
  6445. if (connector->new_encoder == encoder) {
  6446. WARN_ON(!connector->new_encoder->new_crtc);
  6447. goto next_encoder;
  6448. }
  6449. }
  6450. encoder->new_crtc = NULL;
  6451. next_encoder:
  6452. /* Only now check for crtc changes so we don't miss encoders
  6453. * that will be disabled. */
  6454. if (&encoder->new_crtc->base != encoder->base.crtc) {
  6455. DRM_DEBUG_KMS("crtc changed, full mode switch\n");
  6456. config->mode_changed = true;
  6457. }
  6458. }
  6459. /* Now we've also updated encoder->new_crtc for all encoders. */
  6460. return 0;
  6461. }
  6462. static int intel_crtc_set_config(struct drm_mode_set *set)
  6463. {
  6464. struct drm_device *dev;
  6465. struct drm_mode_set save_set;
  6466. struct intel_set_config *config;
  6467. int ret;
  6468. BUG_ON(!set);
  6469. BUG_ON(!set->crtc);
  6470. BUG_ON(!set->crtc->helper_private);
  6471. if (!set->mode)
  6472. set->fb = NULL;
  6473. /* The fb helper likes to play gross jokes with ->mode_set_config.
  6474. * Unfortunately the crtc helper doesn't do much at all for this case,
  6475. * so we have to cope with this madness until the fb helper is fixed up. */
  6476. if (set->fb && set->num_connectors == 0)
  6477. return 0;
  6478. if (set->fb) {
  6479. DRM_DEBUG_KMS("[CRTC:%d] [FB:%d] #connectors=%d (x y) (%i %i)\n",
  6480. set->crtc->base.id, set->fb->base.id,
  6481. (int)set->num_connectors, set->x, set->y);
  6482. } else {
  6483. DRM_DEBUG_KMS("[CRTC:%d] [NOFB]\n", set->crtc->base.id);
  6484. }
  6485. dev = set->crtc->dev;
  6486. ret = -ENOMEM;
  6487. config = kzalloc(sizeof(*config), GFP_KERNEL);
  6488. if (!config)
  6489. goto out_config;
  6490. ret = intel_set_config_save_state(dev, config);
  6491. if (ret)
  6492. goto out_config;
  6493. save_set.crtc = set->crtc;
  6494. save_set.mode = &set->crtc->mode;
  6495. save_set.x = set->crtc->x;
  6496. save_set.y = set->crtc->y;
  6497. save_set.fb = set->crtc->fb;
  6498. /* Compute whether we need a full modeset, only an fb base update or no
  6499. * change at all. In the future we might also check whether only the
  6500. * mode changed, e.g. for LVDS where we only change the panel fitter in
  6501. * such cases. */
  6502. intel_set_config_compute_mode_changes(set, config);
  6503. ret = intel_modeset_stage_output_state(dev, set, config);
  6504. if (ret)
  6505. goto fail;
  6506. if (config->mode_changed) {
  6507. if (set->mode) {
  6508. DRM_DEBUG_KMS("attempting to set mode from"
  6509. " userspace\n");
  6510. drm_mode_debug_printmodeline(set->mode);
  6511. }
  6512. if (!intel_set_mode(set->crtc, set->mode,
  6513. set->x, set->y, set->fb)) {
  6514. DRM_ERROR("failed to set mode on [CRTC:%d]\n",
  6515. set->crtc->base.id);
  6516. ret = -EINVAL;
  6517. goto fail;
  6518. }
  6519. } else if (config->fb_changed) {
  6520. ret = intel_pipe_set_base(set->crtc,
  6521. set->x, set->y, set->fb);
  6522. }
  6523. intel_set_config_free(config);
  6524. return 0;
  6525. fail:
  6526. intel_set_config_restore_state(dev, config);
  6527. /* Try to restore the config */
  6528. if (config->mode_changed &&
  6529. !intel_set_mode(save_set.crtc, save_set.mode,
  6530. save_set.x, save_set.y, save_set.fb))
  6531. DRM_ERROR("failed to restore config after modeset failure\n");
  6532. out_config:
  6533. intel_set_config_free(config);
  6534. return ret;
  6535. }
  6536. static const struct drm_crtc_funcs intel_crtc_funcs = {
  6537. .cursor_set = intel_crtc_cursor_set,
  6538. .cursor_move = intel_crtc_cursor_move,
  6539. .gamma_set = intel_crtc_gamma_set,
  6540. .set_config = intel_crtc_set_config,
  6541. .destroy = intel_crtc_destroy,
  6542. .page_flip = intel_crtc_page_flip,
  6543. };
  6544. static void intel_cpu_pll_init(struct drm_device *dev)
  6545. {
  6546. if (IS_HASWELL(dev))
  6547. intel_ddi_pll_init(dev);
  6548. }
  6549. static void intel_pch_pll_init(struct drm_device *dev)
  6550. {
  6551. drm_i915_private_t *dev_priv = dev->dev_private;
  6552. int i;
  6553. if (dev_priv->num_pch_pll == 0) {
  6554. DRM_DEBUG_KMS("No PCH PLLs on this hardware, skipping initialisation\n");
  6555. return;
  6556. }
  6557. for (i = 0; i < dev_priv->num_pch_pll; i++) {
  6558. dev_priv->pch_plls[i].pll_reg = _PCH_DPLL(i);
  6559. dev_priv->pch_plls[i].fp0_reg = _PCH_FP0(i);
  6560. dev_priv->pch_plls[i].fp1_reg = _PCH_FP1(i);
  6561. }
  6562. }
  6563. static void intel_crtc_init(struct drm_device *dev, int pipe)
  6564. {
  6565. drm_i915_private_t *dev_priv = dev->dev_private;
  6566. struct intel_crtc *intel_crtc;
  6567. int i;
  6568. intel_crtc = kzalloc(sizeof(struct intel_crtc) + (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL);
  6569. if (intel_crtc == NULL)
  6570. return;
  6571. drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
  6572. drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
  6573. for (i = 0; i < 256; i++) {
  6574. intel_crtc->lut_r[i] = i;
  6575. intel_crtc->lut_g[i] = i;
  6576. intel_crtc->lut_b[i] = i;
  6577. }
  6578. /* Swap pipes & planes for FBC on pre-965 */
  6579. intel_crtc->pipe = pipe;
  6580. intel_crtc->plane = pipe;
  6581. if (IS_MOBILE(dev) && IS_GEN3(dev)) {
  6582. DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
  6583. intel_crtc->plane = !pipe;
  6584. }
  6585. BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
  6586. dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
  6587. dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
  6588. dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
  6589. intel_crtc->bpp = 24; /* default for pre-Ironlake */
  6590. drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
  6591. }
  6592. int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
  6593. struct drm_file *file)
  6594. {
  6595. struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
  6596. struct drm_mode_object *drmmode_obj;
  6597. struct intel_crtc *crtc;
  6598. if (!drm_core_check_feature(dev, DRIVER_MODESET))
  6599. return -ENODEV;
  6600. drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
  6601. DRM_MODE_OBJECT_CRTC);
  6602. if (!drmmode_obj) {
  6603. DRM_ERROR("no such CRTC id\n");
  6604. return -EINVAL;
  6605. }
  6606. crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
  6607. pipe_from_crtc_id->pipe = crtc->pipe;
  6608. return 0;
  6609. }
  6610. static int intel_encoder_clones(struct intel_encoder *encoder)
  6611. {
  6612. struct drm_device *dev = encoder->base.dev;
  6613. struct intel_encoder *source_encoder;
  6614. int index_mask = 0;
  6615. int entry = 0;
  6616. list_for_each_entry(source_encoder,
  6617. &dev->mode_config.encoder_list, base.head) {
  6618. if (encoder == source_encoder)
  6619. index_mask |= (1 << entry);
  6620. /* Intel hw has only one MUX where enocoders could be cloned. */
  6621. if (encoder->cloneable && source_encoder->cloneable)
  6622. index_mask |= (1 << entry);
  6623. entry++;
  6624. }
  6625. return index_mask;
  6626. }
  6627. static bool has_edp_a(struct drm_device *dev)
  6628. {
  6629. struct drm_i915_private *dev_priv = dev->dev_private;
  6630. if (!IS_MOBILE(dev))
  6631. return false;
  6632. if ((I915_READ(DP_A) & DP_DETECTED) == 0)
  6633. return false;
  6634. if (IS_GEN5(dev) &&
  6635. (I915_READ(ILK_DISPLAY_CHICKEN_FUSES) & ILK_eDP_A_DISABLE))
  6636. return false;
  6637. return true;
  6638. }
  6639. static void intel_setup_outputs(struct drm_device *dev)
  6640. {
  6641. struct drm_i915_private *dev_priv = dev->dev_private;
  6642. struct intel_encoder *encoder;
  6643. bool dpd_is_edp = false;
  6644. bool has_lvds;
  6645. has_lvds = intel_lvds_init(dev);
  6646. if (!has_lvds && !HAS_PCH_SPLIT(dev)) {
  6647. /* disable the panel fitter on everything but LVDS */
  6648. I915_WRITE(PFIT_CONTROL, 0);
  6649. }
  6650. if (HAS_PCH_SPLIT(dev)) {
  6651. dpd_is_edp = intel_dpd_is_edp(dev);
  6652. if (has_edp_a(dev))
  6653. intel_dp_init(dev, DP_A, PORT_A);
  6654. if (dpd_is_edp && (I915_READ(PCH_DP_D) & DP_DETECTED))
  6655. intel_dp_init(dev, PCH_DP_D, PORT_D);
  6656. }
  6657. intel_crt_init(dev);
  6658. if (IS_HASWELL(dev)) {
  6659. int found;
  6660. /* Haswell uses DDI functions to detect digital outputs */
  6661. found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED;
  6662. /* DDI A only supports eDP */
  6663. if (found)
  6664. intel_ddi_init(dev, PORT_A);
  6665. /* DDI B, C and D detection is indicated by the SFUSE_STRAP
  6666. * register */
  6667. found = I915_READ(SFUSE_STRAP);
  6668. if (found & SFUSE_STRAP_DDIB_DETECTED)
  6669. intel_ddi_init(dev, PORT_B);
  6670. if (found & SFUSE_STRAP_DDIC_DETECTED)
  6671. intel_ddi_init(dev, PORT_C);
  6672. if (found & SFUSE_STRAP_DDID_DETECTED)
  6673. intel_ddi_init(dev, PORT_D);
  6674. } else if (HAS_PCH_SPLIT(dev)) {
  6675. int found;
  6676. if (I915_READ(HDMIB) & PORT_DETECTED) {
  6677. /* PCH SDVOB multiplex with HDMIB */
  6678. found = intel_sdvo_init(dev, PCH_SDVOB, true);
  6679. if (!found)
  6680. intel_hdmi_init(dev, HDMIB, PORT_B);
  6681. if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
  6682. intel_dp_init(dev, PCH_DP_B, PORT_B);
  6683. }
  6684. if (I915_READ(HDMIC) & PORT_DETECTED)
  6685. intel_hdmi_init(dev, HDMIC, PORT_C);
  6686. if (!dpd_is_edp && I915_READ(HDMID) & PORT_DETECTED)
  6687. intel_hdmi_init(dev, HDMID, PORT_D);
  6688. if (I915_READ(PCH_DP_C) & DP_DETECTED)
  6689. intel_dp_init(dev, PCH_DP_C, PORT_C);
  6690. if (!dpd_is_edp && (I915_READ(PCH_DP_D) & DP_DETECTED))
  6691. intel_dp_init(dev, PCH_DP_D, PORT_D);
  6692. } else if (IS_VALLEYVIEW(dev)) {
  6693. int found;
  6694. /* Check for built-in panel first. Shares lanes with HDMI on SDVOC */
  6695. if (I915_READ(DP_C) & DP_DETECTED)
  6696. intel_dp_init(dev, DP_C, PORT_C);
  6697. if (I915_READ(SDVOB) & PORT_DETECTED) {
  6698. /* SDVOB multiplex with HDMIB */
  6699. found = intel_sdvo_init(dev, SDVOB, true);
  6700. if (!found)
  6701. intel_hdmi_init(dev, SDVOB, PORT_B);
  6702. if (!found && (I915_READ(DP_B) & DP_DETECTED))
  6703. intel_dp_init(dev, DP_B, PORT_B);
  6704. }
  6705. if (I915_READ(SDVOC) & PORT_DETECTED)
  6706. intel_hdmi_init(dev, SDVOC, PORT_C);
  6707. } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
  6708. bool found = false;
  6709. if (I915_READ(SDVOB) & SDVO_DETECTED) {
  6710. DRM_DEBUG_KMS("probing SDVOB\n");
  6711. found = intel_sdvo_init(dev, SDVOB, true);
  6712. if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
  6713. DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
  6714. intel_hdmi_init(dev, SDVOB, PORT_B);
  6715. }
  6716. if (!found && SUPPORTS_INTEGRATED_DP(dev)) {
  6717. DRM_DEBUG_KMS("probing DP_B\n");
  6718. intel_dp_init(dev, DP_B, PORT_B);
  6719. }
  6720. }
  6721. /* Before G4X SDVOC doesn't have its own detect register */
  6722. if (I915_READ(SDVOB) & SDVO_DETECTED) {
  6723. DRM_DEBUG_KMS("probing SDVOC\n");
  6724. found = intel_sdvo_init(dev, SDVOC, false);
  6725. }
  6726. if (!found && (I915_READ(SDVOC) & SDVO_DETECTED)) {
  6727. if (SUPPORTS_INTEGRATED_HDMI(dev)) {
  6728. DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
  6729. intel_hdmi_init(dev, SDVOC, PORT_C);
  6730. }
  6731. if (SUPPORTS_INTEGRATED_DP(dev)) {
  6732. DRM_DEBUG_KMS("probing DP_C\n");
  6733. intel_dp_init(dev, DP_C, PORT_C);
  6734. }
  6735. }
  6736. if (SUPPORTS_INTEGRATED_DP(dev) &&
  6737. (I915_READ(DP_D) & DP_DETECTED)) {
  6738. DRM_DEBUG_KMS("probing DP_D\n");
  6739. intel_dp_init(dev, DP_D, PORT_D);
  6740. }
  6741. } else if (IS_GEN2(dev))
  6742. intel_dvo_init(dev);
  6743. if (SUPPORTS_TV(dev))
  6744. intel_tv_init(dev);
  6745. list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
  6746. encoder->base.possible_crtcs = encoder->crtc_mask;
  6747. encoder->base.possible_clones =
  6748. intel_encoder_clones(encoder);
  6749. }
  6750. if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
  6751. ironlake_init_pch_refclk(dev);
  6752. }
  6753. static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
  6754. {
  6755. struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
  6756. drm_framebuffer_cleanup(fb);
  6757. drm_gem_object_unreference_unlocked(&intel_fb->obj->base);
  6758. kfree(intel_fb);
  6759. }
  6760. static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
  6761. struct drm_file *file,
  6762. unsigned int *handle)
  6763. {
  6764. struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
  6765. struct drm_i915_gem_object *obj = intel_fb->obj;
  6766. return drm_gem_handle_create(file, &obj->base, handle);
  6767. }
  6768. static const struct drm_framebuffer_funcs intel_fb_funcs = {
  6769. .destroy = intel_user_framebuffer_destroy,
  6770. .create_handle = intel_user_framebuffer_create_handle,
  6771. };
  6772. int intel_framebuffer_init(struct drm_device *dev,
  6773. struct intel_framebuffer *intel_fb,
  6774. struct drm_mode_fb_cmd2 *mode_cmd,
  6775. struct drm_i915_gem_object *obj)
  6776. {
  6777. int ret;
  6778. if (obj->tiling_mode == I915_TILING_Y)
  6779. return -EINVAL;
  6780. if (mode_cmd->pitches[0] & 63)
  6781. return -EINVAL;
  6782. switch (mode_cmd->pixel_format) {
  6783. case DRM_FORMAT_RGB332:
  6784. case DRM_FORMAT_RGB565:
  6785. case DRM_FORMAT_XRGB8888:
  6786. case DRM_FORMAT_XBGR8888:
  6787. case DRM_FORMAT_ARGB8888:
  6788. case DRM_FORMAT_XRGB2101010:
  6789. case DRM_FORMAT_ARGB2101010:
  6790. /* RGB formats are common across chipsets */
  6791. break;
  6792. case DRM_FORMAT_YUYV:
  6793. case DRM_FORMAT_UYVY:
  6794. case DRM_FORMAT_YVYU:
  6795. case DRM_FORMAT_VYUY:
  6796. break;
  6797. default:
  6798. DRM_DEBUG_KMS("unsupported pixel format %u\n",
  6799. mode_cmd->pixel_format);
  6800. return -EINVAL;
  6801. }
  6802. ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
  6803. if (ret) {
  6804. DRM_ERROR("framebuffer init failed %d\n", ret);
  6805. return ret;
  6806. }
  6807. drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
  6808. intel_fb->obj = obj;
  6809. return 0;
  6810. }
  6811. static struct drm_framebuffer *
  6812. intel_user_framebuffer_create(struct drm_device *dev,
  6813. struct drm_file *filp,
  6814. struct drm_mode_fb_cmd2 *mode_cmd)
  6815. {
  6816. struct drm_i915_gem_object *obj;
  6817. obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
  6818. mode_cmd->handles[0]));
  6819. if (&obj->base == NULL)
  6820. return ERR_PTR(-ENOENT);
  6821. return intel_framebuffer_create(dev, mode_cmd, obj);
  6822. }
  6823. static const struct drm_mode_config_funcs intel_mode_funcs = {
  6824. .fb_create = intel_user_framebuffer_create,
  6825. .output_poll_changed = intel_fb_output_poll_changed,
  6826. };
  6827. /* Set up chip specific display functions */
  6828. static void intel_init_display(struct drm_device *dev)
  6829. {
  6830. struct drm_i915_private *dev_priv = dev->dev_private;
  6831. /* We always want a DPMS function */
  6832. if (IS_HASWELL(dev)) {
  6833. dev_priv->display.crtc_mode_set = haswell_crtc_mode_set;
  6834. dev_priv->display.crtc_enable = ironlake_crtc_enable;
  6835. dev_priv->display.crtc_disable = ironlake_crtc_disable;
  6836. dev_priv->display.off = ironlake_crtc_off;
  6837. dev_priv->display.update_plane = ironlake_update_plane;
  6838. } else if (HAS_PCH_SPLIT(dev)) {
  6839. dev_priv->display.crtc_mode_set = ironlake_crtc_mode_set;
  6840. dev_priv->display.crtc_enable = ironlake_crtc_enable;
  6841. dev_priv->display.crtc_disable = ironlake_crtc_disable;
  6842. dev_priv->display.off = ironlake_crtc_off;
  6843. dev_priv->display.update_plane = ironlake_update_plane;
  6844. } else {
  6845. dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
  6846. dev_priv->display.crtc_enable = i9xx_crtc_enable;
  6847. dev_priv->display.crtc_disable = i9xx_crtc_disable;
  6848. dev_priv->display.off = i9xx_crtc_off;
  6849. dev_priv->display.update_plane = i9xx_update_plane;
  6850. }
  6851. /* Returns the core display clock speed */
  6852. if (IS_VALLEYVIEW(dev))
  6853. dev_priv->display.get_display_clock_speed =
  6854. valleyview_get_display_clock_speed;
  6855. else if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
  6856. dev_priv->display.get_display_clock_speed =
  6857. i945_get_display_clock_speed;
  6858. else if (IS_I915G(dev))
  6859. dev_priv->display.get_display_clock_speed =
  6860. i915_get_display_clock_speed;
  6861. else if (IS_I945GM(dev) || IS_845G(dev) || IS_PINEVIEW_M(dev))
  6862. dev_priv->display.get_display_clock_speed =
  6863. i9xx_misc_get_display_clock_speed;
  6864. else if (IS_I915GM(dev))
  6865. dev_priv->display.get_display_clock_speed =
  6866. i915gm_get_display_clock_speed;
  6867. else if (IS_I865G(dev))
  6868. dev_priv->display.get_display_clock_speed =
  6869. i865_get_display_clock_speed;
  6870. else if (IS_I85X(dev))
  6871. dev_priv->display.get_display_clock_speed =
  6872. i855_get_display_clock_speed;
  6873. else /* 852, 830 */
  6874. dev_priv->display.get_display_clock_speed =
  6875. i830_get_display_clock_speed;
  6876. if (HAS_PCH_SPLIT(dev)) {
  6877. if (IS_GEN5(dev)) {
  6878. dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
  6879. dev_priv->display.write_eld = ironlake_write_eld;
  6880. } else if (IS_GEN6(dev)) {
  6881. dev_priv->display.fdi_link_train = gen6_fdi_link_train;
  6882. dev_priv->display.write_eld = ironlake_write_eld;
  6883. } else if (IS_IVYBRIDGE(dev)) {
  6884. /* FIXME: detect B0+ stepping and use auto training */
  6885. dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
  6886. dev_priv->display.write_eld = ironlake_write_eld;
  6887. } else if (IS_HASWELL(dev)) {
  6888. dev_priv->display.fdi_link_train = hsw_fdi_link_train;
  6889. dev_priv->display.write_eld = haswell_write_eld;
  6890. } else
  6891. dev_priv->display.update_wm = NULL;
  6892. } else if (IS_G4X(dev)) {
  6893. dev_priv->display.write_eld = g4x_write_eld;
  6894. }
  6895. /* Default just returns -ENODEV to indicate unsupported */
  6896. dev_priv->display.queue_flip = intel_default_queue_flip;
  6897. switch (INTEL_INFO(dev)->gen) {
  6898. case 2:
  6899. dev_priv->display.queue_flip = intel_gen2_queue_flip;
  6900. break;
  6901. case 3:
  6902. dev_priv->display.queue_flip = intel_gen3_queue_flip;
  6903. break;
  6904. case 4:
  6905. case 5:
  6906. dev_priv->display.queue_flip = intel_gen4_queue_flip;
  6907. break;
  6908. case 6:
  6909. dev_priv->display.queue_flip = intel_gen6_queue_flip;
  6910. break;
  6911. case 7:
  6912. dev_priv->display.queue_flip = intel_gen7_queue_flip;
  6913. break;
  6914. }
  6915. }
  6916. /*
  6917. * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
  6918. * resume, or other times. This quirk makes sure that's the case for
  6919. * affected systems.
  6920. */
  6921. static void quirk_pipea_force(struct drm_device *dev)
  6922. {
  6923. struct drm_i915_private *dev_priv = dev->dev_private;
  6924. dev_priv->quirks |= QUIRK_PIPEA_FORCE;
  6925. DRM_INFO("applying pipe a force quirk\n");
  6926. }
  6927. /*
  6928. * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
  6929. */
  6930. static void quirk_ssc_force_disable(struct drm_device *dev)
  6931. {
  6932. struct drm_i915_private *dev_priv = dev->dev_private;
  6933. dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
  6934. DRM_INFO("applying lvds SSC disable quirk\n");
  6935. }
  6936. /*
  6937. * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
  6938. * brightness value
  6939. */
  6940. static void quirk_invert_brightness(struct drm_device *dev)
  6941. {
  6942. struct drm_i915_private *dev_priv = dev->dev_private;
  6943. dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
  6944. DRM_INFO("applying inverted panel brightness quirk\n");
  6945. }
  6946. struct intel_quirk {
  6947. int device;
  6948. int subsystem_vendor;
  6949. int subsystem_device;
  6950. void (*hook)(struct drm_device *dev);
  6951. };
  6952. static struct intel_quirk intel_quirks[] = {
  6953. /* HP Mini needs pipe A force quirk (LP: #322104) */
  6954. { 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
  6955. /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
  6956. { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
  6957. /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
  6958. { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
  6959. /* 855 & before need to leave pipe A & dpll A up */
  6960. { 0x3582, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
  6961. { 0x2562, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
  6962. { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
  6963. /* Lenovo U160 cannot use SSC on LVDS */
  6964. { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
  6965. /* Sony Vaio Y cannot use SSC on LVDS */
  6966. { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
  6967. /* Acer Aspire 5734Z must invert backlight brightness */
  6968. { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
  6969. };
  6970. static void intel_init_quirks(struct drm_device *dev)
  6971. {
  6972. struct pci_dev *d = dev->pdev;
  6973. int i;
  6974. for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
  6975. struct intel_quirk *q = &intel_quirks[i];
  6976. if (d->device == q->device &&
  6977. (d->subsystem_vendor == q->subsystem_vendor ||
  6978. q->subsystem_vendor == PCI_ANY_ID) &&
  6979. (d->subsystem_device == q->subsystem_device ||
  6980. q->subsystem_device == PCI_ANY_ID))
  6981. q->hook(dev);
  6982. }
  6983. }
  6984. /* Disable the VGA plane that we never use */
  6985. static void i915_disable_vga(struct drm_device *dev)
  6986. {
  6987. struct drm_i915_private *dev_priv = dev->dev_private;
  6988. u8 sr1;
  6989. u32 vga_reg;
  6990. if (HAS_PCH_SPLIT(dev))
  6991. vga_reg = CPU_VGACNTRL;
  6992. else
  6993. vga_reg = VGACNTRL;
  6994. vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
  6995. outb(SR01, VGA_SR_INDEX);
  6996. sr1 = inb(VGA_SR_DATA);
  6997. outb(sr1 | 1<<5, VGA_SR_DATA);
  6998. vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
  6999. udelay(300);
  7000. I915_WRITE(vga_reg, VGA_DISP_DISABLE);
  7001. POSTING_READ(vga_reg);
  7002. }
  7003. void intel_modeset_init_hw(struct drm_device *dev)
  7004. {
  7005. /* We attempt to init the necessary power wells early in the initialization
  7006. * time, so the subsystems that expect power to be enabled can work.
  7007. */
  7008. intel_init_power_wells(dev);
  7009. intel_prepare_ddi(dev);
  7010. intel_init_clock_gating(dev);
  7011. mutex_lock(&dev->struct_mutex);
  7012. intel_enable_gt_powersave(dev);
  7013. mutex_unlock(&dev->struct_mutex);
  7014. }
  7015. void intel_modeset_init(struct drm_device *dev)
  7016. {
  7017. struct drm_i915_private *dev_priv = dev->dev_private;
  7018. int i, ret;
  7019. drm_mode_config_init(dev);
  7020. dev->mode_config.min_width = 0;
  7021. dev->mode_config.min_height = 0;
  7022. dev->mode_config.preferred_depth = 24;
  7023. dev->mode_config.prefer_shadow = 1;
  7024. dev->mode_config.funcs = &intel_mode_funcs;
  7025. intel_init_quirks(dev);
  7026. intel_init_pm(dev);
  7027. intel_init_display(dev);
  7028. if (IS_GEN2(dev)) {
  7029. dev->mode_config.max_width = 2048;
  7030. dev->mode_config.max_height = 2048;
  7031. } else if (IS_GEN3(dev)) {
  7032. dev->mode_config.max_width = 4096;
  7033. dev->mode_config.max_height = 4096;
  7034. } else {
  7035. dev->mode_config.max_width = 8192;
  7036. dev->mode_config.max_height = 8192;
  7037. }
  7038. dev->mode_config.fb_base = dev_priv->mm.gtt_base_addr;
  7039. DRM_DEBUG_KMS("%d display pipe%s available.\n",
  7040. dev_priv->num_pipe, dev_priv->num_pipe > 1 ? "s" : "");
  7041. for (i = 0; i < dev_priv->num_pipe; i++) {
  7042. intel_crtc_init(dev, i);
  7043. ret = intel_plane_init(dev, i);
  7044. if (ret)
  7045. DRM_DEBUG_KMS("plane %d init failed: %d\n", i, ret);
  7046. }
  7047. intel_cpu_pll_init(dev);
  7048. intel_pch_pll_init(dev);
  7049. /* Just disable it once at startup */
  7050. i915_disable_vga(dev);
  7051. intel_setup_outputs(dev);
  7052. }
  7053. static void
  7054. intel_connector_break_all_links(struct intel_connector *connector)
  7055. {
  7056. connector->base.dpms = DRM_MODE_DPMS_OFF;
  7057. connector->base.encoder = NULL;
  7058. connector->encoder->connectors_active = false;
  7059. connector->encoder->base.crtc = NULL;
  7060. }
  7061. static void intel_enable_pipe_a(struct drm_device *dev)
  7062. {
  7063. struct intel_connector *connector;
  7064. struct drm_connector *crt = NULL;
  7065. struct intel_load_detect_pipe load_detect_temp;
  7066. /* We can't just switch on the pipe A, we need to set things up with a
  7067. * proper mode and output configuration. As a gross hack, enable pipe A
  7068. * by enabling the load detect pipe once. */
  7069. list_for_each_entry(connector,
  7070. &dev->mode_config.connector_list,
  7071. base.head) {
  7072. if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
  7073. crt = &connector->base;
  7074. break;
  7075. }
  7076. }
  7077. if (!crt)
  7078. return;
  7079. if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp))
  7080. intel_release_load_detect_pipe(crt, &load_detect_temp);
  7081. }
  7082. static void intel_sanitize_crtc(struct intel_crtc *crtc)
  7083. {
  7084. struct drm_device *dev = crtc->base.dev;
  7085. struct drm_i915_private *dev_priv = dev->dev_private;
  7086. u32 reg, val;
  7087. /* Clear any frame start delays used for debugging left by the BIOS */
  7088. reg = PIPECONF(crtc->pipe);
  7089. I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
  7090. /* We need to sanitize the plane -> pipe mapping first because this will
  7091. * disable the crtc (and hence change the state) if it is wrong. */
  7092. if (!HAS_PCH_SPLIT(dev)) {
  7093. struct intel_connector *connector;
  7094. bool plane;
  7095. reg = DSPCNTR(crtc->plane);
  7096. val = I915_READ(reg);
  7097. if ((val & DISPLAY_PLANE_ENABLE) == 0 &&
  7098. (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
  7099. goto ok;
  7100. DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
  7101. crtc->base.base.id);
  7102. /* Pipe has the wrong plane attached and the plane is active.
  7103. * Temporarily change the plane mapping and disable everything
  7104. * ... */
  7105. plane = crtc->plane;
  7106. crtc->plane = !plane;
  7107. dev_priv->display.crtc_disable(&crtc->base);
  7108. crtc->plane = plane;
  7109. /* ... and break all links. */
  7110. list_for_each_entry(connector, &dev->mode_config.connector_list,
  7111. base.head) {
  7112. if (connector->encoder->base.crtc != &crtc->base)
  7113. continue;
  7114. intel_connector_break_all_links(connector);
  7115. }
  7116. WARN_ON(crtc->active);
  7117. crtc->base.enabled = false;
  7118. }
  7119. ok:
  7120. if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
  7121. crtc->pipe == PIPE_A && !crtc->active) {
  7122. /* BIOS forgot to enable pipe A, this mostly happens after
  7123. * resume. Force-enable the pipe to fix this, the update_dpms
  7124. * call below we restore the pipe to the right state, but leave
  7125. * the required bits on. */
  7126. intel_enable_pipe_a(dev);
  7127. }
  7128. /* Adjust the state of the output pipe according to whether we
  7129. * have active connectors/encoders. */
  7130. intel_crtc_update_dpms(&crtc->base);
  7131. if (crtc->active != crtc->base.enabled) {
  7132. struct intel_encoder *encoder;
  7133. /* This can happen either due to bugs in the get_hw_state
  7134. * functions or because the pipe is force-enabled due to the
  7135. * pipe A quirk. */
  7136. DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
  7137. crtc->base.base.id,
  7138. crtc->base.enabled ? "enabled" : "disabled",
  7139. crtc->active ? "enabled" : "disabled");
  7140. crtc->base.enabled = crtc->active;
  7141. /* Because we only establish the connector -> encoder ->
  7142. * crtc links if something is active, this means the
  7143. * crtc is now deactivated. Break the links. connector
  7144. * -> encoder links are only establish when things are
  7145. * actually up, hence no need to break them. */
  7146. WARN_ON(crtc->active);
  7147. for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
  7148. WARN_ON(encoder->connectors_active);
  7149. encoder->base.crtc = NULL;
  7150. }
  7151. }
  7152. }
  7153. static void intel_sanitize_encoder(struct intel_encoder *encoder)
  7154. {
  7155. struct intel_connector *connector;
  7156. struct drm_device *dev = encoder->base.dev;
  7157. /* We need to check both for a crtc link (meaning that the
  7158. * encoder is active and trying to read from a pipe) and the
  7159. * pipe itself being active. */
  7160. bool has_active_crtc = encoder->base.crtc &&
  7161. to_intel_crtc(encoder->base.crtc)->active;
  7162. if (encoder->connectors_active && !has_active_crtc) {
  7163. DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
  7164. encoder->base.base.id,
  7165. drm_get_encoder_name(&encoder->base));
  7166. /* Connector is active, but has no active pipe. This is
  7167. * fallout from our resume register restoring. Disable
  7168. * the encoder manually again. */
  7169. if (encoder->base.crtc) {
  7170. DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
  7171. encoder->base.base.id,
  7172. drm_get_encoder_name(&encoder->base));
  7173. encoder->disable(encoder);
  7174. }
  7175. /* Inconsistent output/port/pipe state happens presumably due to
  7176. * a bug in one of the get_hw_state functions. Or someplace else
  7177. * in our code, like the register restore mess on resume. Clamp
  7178. * things to off as a safer default. */
  7179. list_for_each_entry(connector,
  7180. &dev->mode_config.connector_list,
  7181. base.head) {
  7182. if (connector->encoder != encoder)
  7183. continue;
  7184. intel_connector_break_all_links(connector);
  7185. }
  7186. }
  7187. /* Enabled encoders without active connectors will be fixed in
  7188. * the crtc fixup. */
  7189. }
  7190. /* Scan out the current hw modeset state, sanitizes it and maps it into the drm
  7191. * and i915 state tracking structures. */
  7192. void intel_modeset_setup_hw_state(struct drm_device *dev)
  7193. {
  7194. struct drm_i915_private *dev_priv = dev->dev_private;
  7195. enum pipe pipe;
  7196. u32 tmp;
  7197. struct intel_crtc *crtc;
  7198. struct intel_encoder *encoder;
  7199. struct intel_connector *connector;
  7200. for_each_pipe(pipe) {
  7201. crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
  7202. tmp = I915_READ(PIPECONF(pipe));
  7203. if (tmp & PIPECONF_ENABLE)
  7204. crtc->active = true;
  7205. else
  7206. crtc->active = false;
  7207. crtc->base.enabled = crtc->active;
  7208. DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
  7209. crtc->base.base.id,
  7210. crtc->active ? "enabled" : "disabled");
  7211. }
  7212. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  7213. base.head) {
  7214. pipe = 0;
  7215. if (encoder->get_hw_state(encoder, &pipe)) {
  7216. encoder->base.crtc =
  7217. dev_priv->pipe_to_crtc_mapping[pipe];
  7218. } else {
  7219. encoder->base.crtc = NULL;
  7220. }
  7221. encoder->connectors_active = false;
  7222. DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe=%i\n",
  7223. encoder->base.base.id,
  7224. drm_get_encoder_name(&encoder->base),
  7225. encoder->base.crtc ? "enabled" : "disabled",
  7226. pipe);
  7227. }
  7228. list_for_each_entry(connector, &dev->mode_config.connector_list,
  7229. base.head) {
  7230. if (connector->get_hw_state(connector)) {
  7231. connector->base.dpms = DRM_MODE_DPMS_ON;
  7232. connector->encoder->connectors_active = true;
  7233. connector->base.encoder = &connector->encoder->base;
  7234. } else {
  7235. connector->base.dpms = DRM_MODE_DPMS_OFF;
  7236. connector->base.encoder = NULL;
  7237. }
  7238. DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
  7239. connector->base.base.id,
  7240. drm_get_connector_name(&connector->base),
  7241. connector->base.encoder ? "enabled" : "disabled");
  7242. }
  7243. /* HW state is read out, now we need to sanitize this mess. */
  7244. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  7245. base.head) {
  7246. intel_sanitize_encoder(encoder);
  7247. }
  7248. for_each_pipe(pipe) {
  7249. crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
  7250. intel_sanitize_crtc(crtc);
  7251. }
  7252. intel_modeset_update_staged_output_state(dev);
  7253. intel_modeset_check_state(dev);
  7254. }
  7255. void intel_modeset_gem_init(struct drm_device *dev)
  7256. {
  7257. intel_modeset_init_hw(dev);
  7258. intel_setup_overlay(dev);
  7259. intel_modeset_setup_hw_state(dev);
  7260. }
  7261. void intel_modeset_cleanup(struct drm_device *dev)
  7262. {
  7263. struct drm_i915_private *dev_priv = dev->dev_private;
  7264. struct drm_crtc *crtc;
  7265. struct intel_crtc *intel_crtc;
  7266. drm_kms_helper_poll_fini(dev);
  7267. mutex_lock(&dev->struct_mutex);
  7268. intel_unregister_dsm_handler();
  7269. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  7270. /* Skip inactive CRTCs */
  7271. if (!crtc->fb)
  7272. continue;
  7273. intel_crtc = to_intel_crtc(crtc);
  7274. intel_increase_pllclock(crtc);
  7275. }
  7276. intel_disable_fbc(dev);
  7277. intel_disable_gt_powersave(dev);
  7278. ironlake_teardown_rc6(dev);
  7279. if (IS_VALLEYVIEW(dev))
  7280. vlv_init_dpio(dev);
  7281. mutex_unlock(&dev->struct_mutex);
  7282. /* Disable the irq before mode object teardown, for the irq might
  7283. * enqueue unpin/hotplug work. */
  7284. drm_irq_uninstall(dev);
  7285. cancel_work_sync(&dev_priv->hotplug_work);
  7286. cancel_work_sync(&dev_priv->rps.work);
  7287. /* flush any delayed tasks or pending work */
  7288. flush_scheduled_work();
  7289. drm_mode_config_cleanup(dev);
  7290. }
  7291. /*
  7292. * Return which encoder is currently attached for connector.
  7293. */
  7294. struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
  7295. {
  7296. return &intel_attached_encoder(connector)->base;
  7297. }
  7298. void intel_connector_attach_encoder(struct intel_connector *connector,
  7299. struct intel_encoder *encoder)
  7300. {
  7301. connector->encoder = encoder;
  7302. drm_mode_connector_attach_encoder(&connector->base,
  7303. &encoder->base);
  7304. }
  7305. /*
  7306. * set vga decode state - true == enable VGA decode
  7307. */
  7308. int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
  7309. {
  7310. struct drm_i915_private *dev_priv = dev->dev_private;
  7311. u16 gmch_ctrl;
  7312. pci_read_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, &gmch_ctrl);
  7313. if (state)
  7314. gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
  7315. else
  7316. gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
  7317. pci_write_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, gmch_ctrl);
  7318. return 0;
  7319. }
  7320. #ifdef CONFIG_DEBUG_FS
  7321. #include <linux/seq_file.h>
  7322. struct intel_display_error_state {
  7323. struct intel_cursor_error_state {
  7324. u32 control;
  7325. u32 position;
  7326. u32 base;
  7327. u32 size;
  7328. } cursor[I915_MAX_PIPES];
  7329. struct intel_pipe_error_state {
  7330. u32 conf;
  7331. u32 source;
  7332. u32 htotal;
  7333. u32 hblank;
  7334. u32 hsync;
  7335. u32 vtotal;
  7336. u32 vblank;
  7337. u32 vsync;
  7338. } pipe[I915_MAX_PIPES];
  7339. struct intel_plane_error_state {
  7340. u32 control;
  7341. u32 stride;
  7342. u32 size;
  7343. u32 pos;
  7344. u32 addr;
  7345. u32 surface;
  7346. u32 tile_offset;
  7347. } plane[I915_MAX_PIPES];
  7348. };
  7349. struct intel_display_error_state *
  7350. intel_display_capture_error_state(struct drm_device *dev)
  7351. {
  7352. drm_i915_private_t *dev_priv = dev->dev_private;
  7353. struct intel_display_error_state *error;
  7354. int i;
  7355. error = kmalloc(sizeof(*error), GFP_ATOMIC);
  7356. if (error == NULL)
  7357. return NULL;
  7358. for_each_pipe(i) {
  7359. error->cursor[i].control = I915_READ(CURCNTR(i));
  7360. error->cursor[i].position = I915_READ(CURPOS(i));
  7361. error->cursor[i].base = I915_READ(CURBASE(i));
  7362. error->plane[i].control = I915_READ(DSPCNTR(i));
  7363. error->plane[i].stride = I915_READ(DSPSTRIDE(i));
  7364. error->plane[i].size = I915_READ(DSPSIZE(i));
  7365. error->plane[i].pos = I915_READ(DSPPOS(i));
  7366. error->plane[i].addr = I915_READ(DSPADDR(i));
  7367. if (INTEL_INFO(dev)->gen >= 4) {
  7368. error->plane[i].surface = I915_READ(DSPSURF(i));
  7369. error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
  7370. }
  7371. error->pipe[i].conf = I915_READ(PIPECONF(i));
  7372. error->pipe[i].source = I915_READ(PIPESRC(i));
  7373. error->pipe[i].htotal = I915_READ(HTOTAL(i));
  7374. error->pipe[i].hblank = I915_READ(HBLANK(i));
  7375. error->pipe[i].hsync = I915_READ(HSYNC(i));
  7376. error->pipe[i].vtotal = I915_READ(VTOTAL(i));
  7377. error->pipe[i].vblank = I915_READ(VBLANK(i));
  7378. error->pipe[i].vsync = I915_READ(VSYNC(i));
  7379. }
  7380. return error;
  7381. }
  7382. void
  7383. intel_display_print_error_state(struct seq_file *m,
  7384. struct drm_device *dev,
  7385. struct intel_display_error_state *error)
  7386. {
  7387. drm_i915_private_t *dev_priv = dev->dev_private;
  7388. int i;
  7389. seq_printf(m, "Num Pipes: %d\n", dev_priv->num_pipe);
  7390. for_each_pipe(i) {
  7391. seq_printf(m, "Pipe [%d]:\n", i);
  7392. seq_printf(m, " CONF: %08x\n", error->pipe[i].conf);
  7393. seq_printf(m, " SRC: %08x\n", error->pipe[i].source);
  7394. seq_printf(m, " HTOTAL: %08x\n", error->pipe[i].htotal);
  7395. seq_printf(m, " HBLANK: %08x\n", error->pipe[i].hblank);
  7396. seq_printf(m, " HSYNC: %08x\n", error->pipe[i].hsync);
  7397. seq_printf(m, " VTOTAL: %08x\n", error->pipe[i].vtotal);
  7398. seq_printf(m, " VBLANK: %08x\n", error->pipe[i].vblank);
  7399. seq_printf(m, " VSYNC: %08x\n", error->pipe[i].vsync);
  7400. seq_printf(m, "Plane [%d]:\n", i);
  7401. seq_printf(m, " CNTR: %08x\n", error->plane[i].control);
  7402. seq_printf(m, " STRIDE: %08x\n", error->plane[i].stride);
  7403. seq_printf(m, " SIZE: %08x\n", error->plane[i].size);
  7404. seq_printf(m, " POS: %08x\n", error->plane[i].pos);
  7405. seq_printf(m, " ADDR: %08x\n", error->plane[i].addr);
  7406. if (INTEL_INFO(dev)->gen >= 4) {
  7407. seq_printf(m, " SURF: %08x\n", error->plane[i].surface);
  7408. seq_printf(m, " TILEOFF: %08x\n", error->plane[i].tile_offset);
  7409. }
  7410. seq_printf(m, "Cursor [%d]:\n", i);
  7411. seq_printf(m, " CNTR: %08x\n", error->cursor[i].control);
  7412. seq_printf(m, " POS: %08x\n", error->cursor[i].position);
  7413. seq_printf(m, " BASE: %08x\n", error->cursor[i].base);
  7414. }
  7415. }
  7416. #endif