file.c 67 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594
  1. /*
  2. * Copyright (C) 2007 Oracle. All rights reserved.
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU General Public
  6. * License v2 as published by the Free Software Foundation.
  7. *
  8. * This program is distributed in the hope that it will be useful,
  9. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  11. * General Public License for more details.
  12. *
  13. * You should have received a copy of the GNU General Public
  14. * License along with this program; if not, write to the
  15. * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16. * Boston, MA 021110-1307, USA.
  17. */
  18. #include <linux/fs.h>
  19. #include <linux/pagemap.h>
  20. #include <linux/highmem.h>
  21. #include <linux/time.h>
  22. #include <linux/init.h>
  23. #include <linux/string.h>
  24. #include <linux/backing-dev.h>
  25. #include <linux/mpage.h>
  26. #include <linux/aio.h>
  27. #include <linux/falloc.h>
  28. #include <linux/swap.h>
  29. #include <linux/writeback.h>
  30. #include <linux/statfs.h>
  31. #include <linux/compat.h>
  32. #include <linux/slab.h>
  33. #include <linux/btrfs.h>
  34. #include "ctree.h"
  35. #include "disk-io.h"
  36. #include "transaction.h"
  37. #include "btrfs_inode.h"
  38. #include "print-tree.h"
  39. #include "tree-log.h"
  40. #include "locking.h"
  41. #include "compat.h"
  42. #include "volumes.h"
  43. static struct kmem_cache *btrfs_inode_defrag_cachep;
  44. /*
  45. * when auto defrag is enabled we
  46. * queue up these defrag structs to remember which
  47. * inodes need defragging passes
  48. */
  49. struct inode_defrag {
  50. struct rb_node rb_node;
  51. /* objectid */
  52. u64 ino;
  53. /*
  54. * transid where the defrag was added, we search for
  55. * extents newer than this
  56. */
  57. u64 transid;
  58. /* root objectid */
  59. u64 root;
  60. /* last offset we were able to defrag */
  61. u64 last_offset;
  62. /* if we've wrapped around back to zero once already */
  63. int cycled;
  64. };
  65. static int __compare_inode_defrag(struct inode_defrag *defrag1,
  66. struct inode_defrag *defrag2)
  67. {
  68. if (defrag1->root > defrag2->root)
  69. return 1;
  70. else if (defrag1->root < defrag2->root)
  71. return -1;
  72. else if (defrag1->ino > defrag2->ino)
  73. return 1;
  74. else if (defrag1->ino < defrag2->ino)
  75. return -1;
  76. else
  77. return 0;
  78. }
  79. /* pop a record for an inode into the defrag tree. The lock
  80. * must be held already
  81. *
  82. * If you're inserting a record for an older transid than an
  83. * existing record, the transid already in the tree is lowered
  84. *
  85. * If an existing record is found the defrag item you
  86. * pass in is freed
  87. */
  88. static int __btrfs_add_inode_defrag(struct inode *inode,
  89. struct inode_defrag *defrag)
  90. {
  91. struct btrfs_root *root = BTRFS_I(inode)->root;
  92. struct inode_defrag *entry;
  93. struct rb_node **p;
  94. struct rb_node *parent = NULL;
  95. int ret;
  96. p = &root->fs_info->defrag_inodes.rb_node;
  97. while (*p) {
  98. parent = *p;
  99. entry = rb_entry(parent, struct inode_defrag, rb_node);
  100. ret = __compare_inode_defrag(defrag, entry);
  101. if (ret < 0)
  102. p = &parent->rb_left;
  103. else if (ret > 0)
  104. p = &parent->rb_right;
  105. else {
  106. /* if we're reinserting an entry for
  107. * an old defrag run, make sure to
  108. * lower the transid of our existing record
  109. */
  110. if (defrag->transid < entry->transid)
  111. entry->transid = defrag->transid;
  112. if (defrag->last_offset > entry->last_offset)
  113. entry->last_offset = defrag->last_offset;
  114. return -EEXIST;
  115. }
  116. }
  117. set_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags);
  118. rb_link_node(&defrag->rb_node, parent, p);
  119. rb_insert_color(&defrag->rb_node, &root->fs_info->defrag_inodes);
  120. return 0;
  121. }
  122. static inline int __need_auto_defrag(struct btrfs_root *root)
  123. {
  124. if (!btrfs_test_opt(root, AUTO_DEFRAG))
  125. return 0;
  126. if (btrfs_fs_closing(root->fs_info))
  127. return 0;
  128. return 1;
  129. }
  130. /*
  131. * insert a defrag record for this inode if auto defrag is
  132. * enabled
  133. */
  134. int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans,
  135. struct inode *inode)
  136. {
  137. struct btrfs_root *root = BTRFS_I(inode)->root;
  138. struct inode_defrag *defrag;
  139. u64 transid;
  140. int ret;
  141. if (!__need_auto_defrag(root))
  142. return 0;
  143. if (test_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags))
  144. return 0;
  145. if (trans)
  146. transid = trans->transid;
  147. else
  148. transid = BTRFS_I(inode)->root->last_trans;
  149. defrag = kmem_cache_zalloc(btrfs_inode_defrag_cachep, GFP_NOFS);
  150. if (!defrag)
  151. return -ENOMEM;
  152. defrag->ino = btrfs_ino(inode);
  153. defrag->transid = transid;
  154. defrag->root = root->root_key.objectid;
  155. spin_lock(&root->fs_info->defrag_inodes_lock);
  156. if (!test_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags)) {
  157. /*
  158. * If we set IN_DEFRAG flag and evict the inode from memory,
  159. * and then re-read this inode, this new inode doesn't have
  160. * IN_DEFRAG flag. At the case, we may find the existed defrag.
  161. */
  162. ret = __btrfs_add_inode_defrag(inode, defrag);
  163. if (ret)
  164. kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
  165. } else {
  166. kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
  167. }
  168. spin_unlock(&root->fs_info->defrag_inodes_lock);
  169. return 0;
  170. }
  171. /*
  172. * Requeue the defrag object. If there is a defrag object that points to
  173. * the same inode in the tree, we will merge them together (by
  174. * __btrfs_add_inode_defrag()) and free the one that we want to requeue.
  175. */
  176. static void btrfs_requeue_inode_defrag(struct inode *inode,
  177. struct inode_defrag *defrag)
  178. {
  179. struct btrfs_root *root = BTRFS_I(inode)->root;
  180. int ret;
  181. if (!__need_auto_defrag(root))
  182. goto out;
  183. /*
  184. * Here we don't check the IN_DEFRAG flag, because we need merge
  185. * them together.
  186. */
  187. spin_lock(&root->fs_info->defrag_inodes_lock);
  188. ret = __btrfs_add_inode_defrag(inode, defrag);
  189. spin_unlock(&root->fs_info->defrag_inodes_lock);
  190. if (ret)
  191. goto out;
  192. return;
  193. out:
  194. kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
  195. }
  196. /*
  197. * pick the defragable inode that we want, if it doesn't exist, we will get
  198. * the next one.
  199. */
  200. static struct inode_defrag *
  201. btrfs_pick_defrag_inode(struct btrfs_fs_info *fs_info, u64 root, u64 ino)
  202. {
  203. struct inode_defrag *entry = NULL;
  204. struct inode_defrag tmp;
  205. struct rb_node *p;
  206. struct rb_node *parent = NULL;
  207. int ret;
  208. tmp.ino = ino;
  209. tmp.root = root;
  210. spin_lock(&fs_info->defrag_inodes_lock);
  211. p = fs_info->defrag_inodes.rb_node;
  212. while (p) {
  213. parent = p;
  214. entry = rb_entry(parent, struct inode_defrag, rb_node);
  215. ret = __compare_inode_defrag(&tmp, entry);
  216. if (ret < 0)
  217. p = parent->rb_left;
  218. else if (ret > 0)
  219. p = parent->rb_right;
  220. else
  221. goto out;
  222. }
  223. if (parent && __compare_inode_defrag(&tmp, entry) > 0) {
  224. parent = rb_next(parent);
  225. if (parent)
  226. entry = rb_entry(parent, struct inode_defrag, rb_node);
  227. else
  228. entry = NULL;
  229. }
  230. out:
  231. if (entry)
  232. rb_erase(parent, &fs_info->defrag_inodes);
  233. spin_unlock(&fs_info->defrag_inodes_lock);
  234. return entry;
  235. }
  236. void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info)
  237. {
  238. struct inode_defrag *defrag;
  239. struct rb_node *node;
  240. spin_lock(&fs_info->defrag_inodes_lock);
  241. node = rb_first(&fs_info->defrag_inodes);
  242. while (node) {
  243. rb_erase(node, &fs_info->defrag_inodes);
  244. defrag = rb_entry(node, struct inode_defrag, rb_node);
  245. kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
  246. if (need_resched()) {
  247. spin_unlock(&fs_info->defrag_inodes_lock);
  248. cond_resched();
  249. spin_lock(&fs_info->defrag_inodes_lock);
  250. }
  251. node = rb_first(&fs_info->defrag_inodes);
  252. }
  253. spin_unlock(&fs_info->defrag_inodes_lock);
  254. }
  255. #define BTRFS_DEFRAG_BATCH 1024
  256. static int __btrfs_run_defrag_inode(struct btrfs_fs_info *fs_info,
  257. struct inode_defrag *defrag)
  258. {
  259. struct btrfs_root *inode_root;
  260. struct inode *inode;
  261. struct btrfs_key key;
  262. struct btrfs_ioctl_defrag_range_args range;
  263. int num_defrag;
  264. int index;
  265. int ret;
  266. /* get the inode */
  267. key.objectid = defrag->root;
  268. btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY);
  269. key.offset = (u64)-1;
  270. index = srcu_read_lock(&fs_info->subvol_srcu);
  271. inode_root = btrfs_read_fs_root_no_name(fs_info, &key);
  272. if (IS_ERR(inode_root)) {
  273. ret = PTR_ERR(inode_root);
  274. goto cleanup;
  275. }
  276. key.objectid = defrag->ino;
  277. btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
  278. key.offset = 0;
  279. inode = btrfs_iget(fs_info->sb, &key, inode_root, NULL);
  280. if (IS_ERR(inode)) {
  281. ret = PTR_ERR(inode);
  282. goto cleanup;
  283. }
  284. srcu_read_unlock(&fs_info->subvol_srcu, index);
  285. /* do a chunk of defrag */
  286. clear_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags);
  287. memset(&range, 0, sizeof(range));
  288. range.len = (u64)-1;
  289. range.start = defrag->last_offset;
  290. sb_start_write(fs_info->sb);
  291. num_defrag = btrfs_defrag_file(inode, NULL, &range, defrag->transid,
  292. BTRFS_DEFRAG_BATCH);
  293. sb_end_write(fs_info->sb);
  294. /*
  295. * if we filled the whole defrag batch, there
  296. * must be more work to do. Queue this defrag
  297. * again
  298. */
  299. if (num_defrag == BTRFS_DEFRAG_BATCH) {
  300. defrag->last_offset = range.start;
  301. btrfs_requeue_inode_defrag(inode, defrag);
  302. } else if (defrag->last_offset && !defrag->cycled) {
  303. /*
  304. * we didn't fill our defrag batch, but
  305. * we didn't start at zero. Make sure we loop
  306. * around to the start of the file.
  307. */
  308. defrag->last_offset = 0;
  309. defrag->cycled = 1;
  310. btrfs_requeue_inode_defrag(inode, defrag);
  311. } else {
  312. kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
  313. }
  314. iput(inode);
  315. return 0;
  316. cleanup:
  317. srcu_read_unlock(&fs_info->subvol_srcu, index);
  318. kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
  319. return ret;
  320. }
  321. /*
  322. * run through the list of inodes in the FS that need
  323. * defragging
  324. */
  325. int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info)
  326. {
  327. struct inode_defrag *defrag;
  328. u64 first_ino = 0;
  329. u64 root_objectid = 0;
  330. atomic_inc(&fs_info->defrag_running);
  331. while(1) {
  332. /* Pause the auto defragger. */
  333. if (test_bit(BTRFS_FS_STATE_REMOUNTING,
  334. &fs_info->fs_state))
  335. break;
  336. if (!__need_auto_defrag(fs_info->tree_root))
  337. break;
  338. /* find an inode to defrag */
  339. defrag = btrfs_pick_defrag_inode(fs_info, root_objectid,
  340. first_ino);
  341. if (!defrag) {
  342. if (root_objectid || first_ino) {
  343. root_objectid = 0;
  344. first_ino = 0;
  345. continue;
  346. } else {
  347. break;
  348. }
  349. }
  350. first_ino = defrag->ino + 1;
  351. root_objectid = defrag->root;
  352. __btrfs_run_defrag_inode(fs_info, defrag);
  353. }
  354. atomic_dec(&fs_info->defrag_running);
  355. /*
  356. * during unmount, we use the transaction_wait queue to
  357. * wait for the defragger to stop
  358. */
  359. wake_up(&fs_info->transaction_wait);
  360. return 0;
  361. }
  362. /* simple helper to fault in pages and copy. This should go away
  363. * and be replaced with calls into generic code.
  364. */
  365. static noinline int btrfs_copy_from_user(loff_t pos, int num_pages,
  366. size_t write_bytes,
  367. struct page **prepared_pages,
  368. struct iov_iter *i)
  369. {
  370. size_t copied = 0;
  371. size_t total_copied = 0;
  372. int pg = 0;
  373. int offset = pos & (PAGE_CACHE_SIZE - 1);
  374. while (write_bytes > 0) {
  375. size_t count = min_t(size_t,
  376. PAGE_CACHE_SIZE - offset, write_bytes);
  377. struct page *page = prepared_pages[pg];
  378. /*
  379. * Copy data from userspace to the current page
  380. *
  381. * Disable pagefault to avoid recursive lock since
  382. * the pages are already locked
  383. */
  384. pagefault_disable();
  385. copied = iov_iter_copy_from_user_atomic(page, i, offset, count);
  386. pagefault_enable();
  387. /* Flush processor's dcache for this page */
  388. flush_dcache_page(page);
  389. /*
  390. * if we get a partial write, we can end up with
  391. * partially up to date pages. These add
  392. * a lot of complexity, so make sure they don't
  393. * happen by forcing this copy to be retried.
  394. *
  395. * The rest of the btrfs_file_write code will fall
  396. * back to page at a time copies after we return 0.
  397. */
  398. if (!PageUptodate(page) && copied < count)
  399. copied = 0;
  400. iov_iter_advance(i, copied);
  401. write_bytes -= copied;
  402. total_copied += copied;
  403. /* Return to btrfs_file_aio_write to fault page */
  404. if (unlikely(copied == 0))
  405. break;
  406. if (unlikely(copied < PAGE_CACHE_SIZE - offset)) {
  407. offset += copied;
  408. } else {
  409. pg++;
  410. offset = 0;
  411. }
  412. }
  413. return total_copied;
  414. }
  415. /*
  416. * unlocks pages after btrfs_file_write is done with them
  417. */
  418. static void btrfs_drop_pages(struct page **pages, size_t num_pages)
  419. {
  420. size_t i;
  421. for (i = 0; i < num_pages; i++) {
  422. /* page checked is some magic around finding pages that
  423. * have been modified without going through btrfs_set_page_dirty
  424. * clear it here
  425. */
  426. ClearPageChecked(pages[i]);
  427. unlock_page(pages[i]);
  428. mark_page_accessed(pages[i]);
  429. page_cache_release(pages[i]);
  430. }
  431. }
  432. /*
  433. * after copy_from_user, pages need to be dirtied and we need to make
  434. * sure holes are created between the current EOF and the start of
  435. * any next extents (if required).
  436. *
  437. * this also makes the decision about creating an inline extent vs
  438. * doing real data extents, marking pages dirty and delalloc as required.
  439. */
  440. int btrfs_dirty_pages(struct btrfs_root *root, struct inode *inode,
  441. struct page **pages, size_t num_pages,
  442. loff_t pos, size_t write_bytes,
  443. struct extent_state **cached)
  444. {
  445. int err = 0;
  446. int i;
  447. u64 num_bytes;
  448. u64 start_pos;
  449. u64 end_of_last_block;
  450. u64 end_pos = pos + write_bytes;
  451. loff_t isize = i_size_read(inode);
  452. start_pos = pos & ~((u64)root->sectorsize - 1);
  453. num_bytes = ALIGN(write_bytes + pos - start_pos, root->sectorsize);
  454. end_of_last_block = start_pos + num_bytes - 1;
  455. err = btrfs_set_extent_delalloc(inode, start_pos, end_of_last_block,
  456. cached);
  457. if (err)
  458. return err;
  459. for (i = 0; i < num_pages; i++) {
  460. struct page *p = pages[i];
  461. SetPageUptodate(p);
  462. ClearPageChecked(p);
  463. set_page_dirty(p);
  464. }
  465. /*
  466. * we've only changed i_size in ram, and we haven't updated
  467. * the disk i_size. There is no need to log the inode
  468. * at this time.
  469. */
  470. if (end_pos > isize)
  471. i_size_write(inode, end_pos);
  472. return 0;
  473. }
  474. /*
  475. * this drops all the extents in the cache that intersect the range
  476. * [start, end]. Existing extents are split as required.
  477. */
  478. void btrfs_drop_extent_cache(struct inode *inode, u64 start, u64 end,
  479. int skip_pinned)
  480. {
  481. struct extent_map *em;
  482. struct extent_map *split = NULL;
  483. struct extent_map *split2 = NULL;
  484. struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
  485. u64 len = end - start + 1;
  486. u64 gen;
  487. int ret;
  488. int testend = 1;
  489. unsigned long flags;
  490. int compressed = 0;
  491. bool modified;
  492. WARN_ON(end < start);
  493. if (end == (u64)-1) {
  494. len = (u64)-1;
  495. testend = 0;
  496. }
  497. while (1) {
  498. int no_splits = 0;
  499. modified = false;
  500. if (!split)
  501. split = alloc_extent_map();
  502. if (!split2)
  503. split2 = alloc_extent_map();
  504. if (!split || !split2)
  505. no_splits = 1;
  506. write_lock(&em_tree->lock);
  507. em = lookup_extent_mapping(em_tree, start, len);
  508. if (!em) {
  509. write_unlock(&em_tree->lock);
  510. break;
  511. }
  512. flags = em->flags;
  513. gen = em->generation;
  514. if (skip_pinned && test_bit(EXTENT_FLAG_PINNED, &em->flags)) {
  515. if (testend && em->start + em->len >= start + len) {
  516. free_extent_map(em);
  517. write_unlock(&em_tree->lock);
  518. break;
  519. }
  520. start = em->start + em->len;
  521. if (testend)
  522. len = start + len - (em->start + em->len);
  523. free_extent_map(em);
  524. write_unlock(&em_tree->lock);
  525. continue;
  526. }
  527. compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
  528. clear_bit(EXTENT_FLAG_PINNED, &em->flags);
  529. clear_bit(EXTENT_FLAG_LOGGING, &flags);
  530. modified = !list_empty(&em->list);
  531. remove_extent_mapping(em_tree, em);
  532. if (no_splits)
  533. goto next;
  534. if (em->start < start) {
  535. split->start = em->start;
  536. split->len = start - em->start;
  537. if (em->block_start < EXTENT_MAP_LAST_BYTE) {
  538. split->orig_start = em->orig_start;
  539. split->block_start = em->block_start;
  540. if (compressed)
  541. split->block_len = em->block_len;
  542. else
  543. split->block_len = split->len;
  544. split->orig_block_len = max(split->block_len,
  545. em->orig_block_len);
  546. split->ram_bytes = em->ram_bytes;
  547. } else {
  548. split->orig_start = split->start;
  549. split->block_len = 0;
  550. split->block_start = em->block_start;
  551. split->orig_block_len = 0;
  552. split->ram_bytes = split->len;
  553. }
  554. split->generation = gen;
  555. split->bdev = em->bdev;
  556. split->flags = flags;
  557. split->compress_type = em->compress_type;
  558. ret = add_extent_mapping(em_tree, split, modified);
  559. BUG_ON(ret); /* Logic error */
  560. free_extent_map(split);
  561. split = split2;
  562. split2 = NULL;
  563. }
  564. if (testend && em->start + em->len > start + len) {
  565. u64 diff = start + len - em->start;
  566. split->start = start + len;
  567. split->len = em->start + em->len - (start + len);
  568. split->bdev = em->bdev;
  569. split->flags = flags;
  570. split->compress_type = em->compress_type;
  571. split->generation = gen;
  572. if (em->block_start < EXTENT_MAP_LAST_BYTE) {
  573. split->orig_block_len = max(em->block_len,
  574. em->orig_block_len);
  575. split->ram_bytes = em->ram_bytes;
  576. if (compressed) {
  577. split->block_len = em->block_len;
  578. split->block_start = em->block_start;
  579. split->orig_start = em->orig_start;
  580. } else {
  581. split->block_len = split->len;
  582. split->block_start = em->block_start
  583. + diff;
  584. split->orig_start = em->orig_start;
  585. }
  586. } else {
  587. split->ram_bytes = split->len;
  588. split->orig_start = split->start;
  589. split->block_len = 0;
  590. split->block_start = em->block_start;
  591. split->orig_block_len = 0;
  592. }
  593. ret = add_extent_mapping(em_tree, split, modified);
  594. BUG_ON(ret); /* Logic error */
  595. free_extent_map(split);
  596. split = NULL;
  597. }
  598. next:
  599. write_unlock(&em_tree->lock);
  600. /* once for us */
  601. free_extent_map(em);
  602. /* once for the tree*/
  603. free_extent_map(em);
  604. }
  605. if (split)
  606. free_extent_map(split);
  607. if (split2)
  608. free_extent_map(split2);
  609. }
  610. /*
  611. * this is very complex, but the basic idea is to drop all extents
  612. * in the range start - end. hint_block is filled in with a block number
  613. * that would be a good hint to the block allocator for this file.
  614. *
  615. * If an extent intersects the range but is not entirely inside the range
  616. * it is either truncated or split. Anything entirely inside the range
  617. * is deleted from the tree.
  618. */
  619. int __btrfs_drop_extents(struct btrfs_trans_handle *trans,
  620. struct btrfs_root *root, struct inode *inode,
  621. struct btrfs_path *path, u64 start, u64 end,
  622. u64 *drop_end, int drop_cache)
  623. {
  624. struct extent_buffer *leaf;
  625. struct btrfs_file_extent_item *fi;
  626. struct btrfs_key key;
  627. struct btrfs_key new_key;
  628. u64 ino = btrfs_ino(inode);
  629. u64 search_start = start;
  630. u64 disk_bytenr = 0;
  631. u64 num_bytes = 0;
  632. u64 extent_offset = 0;
  633. u64 extent_end = 0;
  634. int del_nr = 0;
  635. int del_slot = 0;
  636. int extent_type;
  637. int recow;
  638. int ret;
  639. int modify_tree = -1;
  640. int update_refs = (root->ref_cows || root == root->fs_info->tree_root);
  641. int found = 0;
  642. if (drop_cache)
  643. btrfs_drop_extent_cache(inode, start, end - 1, 0);
  644. if (start >= BTRFS_I(inode)->disk_i_size)
  645. modify_tree = 0;
  646. while (1) {
  647. recow = 0;
  648. ret = btrfs_lookup_file_extent(trans, root, path, ino,
  649. search_start, modify_tree);
  650. if (ret < 0)
  651. break;
  652. if (ret > 0 && path->slots[0] > 0 && search_start == start) {
  653. leaf = path->nodes[0];
  654. btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
  655. if (key.objectid == ino &&
  656. key.type == BTRFS_EXTENT_DATA_KEY)
  657. path->slots[0]--;
  658. }
  659. ret = 0;
  660. next_slot:
  661. leaf = path->nodes[0];
  662. if (path->slots[0] >= btrfs_header_nritems(leaf)) {
  663. BUG_ON(del_nr > 0);
  664. ret = btrfs_next_leaf(root, path);
  665. if (ret < 0)
  666. break;
  667. if (ret > 0) {
  668. ret = 0;
  669. break;
  670. }
  671. leaf = path->nodes[0];
  672. recow = 1;
  673. }
  674. btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
  675. if (key.objectid > ino ||
  676. key.type > BTRFS_EXTENT_DATA_KEY || key.offset >= end)
  677. break;
  678. fi = btrfs_item_ptr(leaf, path->slots[0],
  679. struct btrfs_file_extent_item);
  680. extent_type = btrfs_file_extent_type(leaf, fi);
  681. if (extent_type == BTRFS_FILE_EXTENT_REG ||
  682. extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
  683. disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
  684. num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
  685. extent_offset = btrfs_file_extent_offset(leaf, fi);
  686. extent_end = key.offset +
  687. btrfs_file_extent_num_bytes(leaf, fi);
  688. } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
  689. extent_end = key.offset +
  690. btrfs_file_extent_inline_len(leaf, fi);
  691. } else {
  692. WARN_ON(1);
  693. extent_end = search_start;
  694. }
  695. if (extent_end <= search_start) {
  696. path->slots[0]++;
  697. goto next_slot;
  698. }
  699. found = 1;
  700. search_start = max(key.offset, start);
  701. if (recow || !modify_tree) {
  702. modify_tree = -1;
  703. btrfs_release_path(path);
  704. continue;
  705. }
  706. /*
  707. * | - range to drop - |
  708. * | -------- extent -------- |
  709. */
  710. if (start > key.offset && end < extent_end) {
  711. BUG_ON(del_nr > 0);
  712. BUG_ON(extent_type == BTRFS_FILE_EXTENT_INLINE);
  713. memcpy(&new_key, &key, sizeof(new_key));
  714. new_key.offset = start;
  715. ret = btrfs_duplicate_item(trans, root, path,
  716. &new_key);
  717. if (ret == -EAGAIN) {
  718. btrfs_release_path(path);
  719. continue;
  720. }
  721. if (ret < 0)
  722. break;
  723. leaf = path->nodes[0];
  724. fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
  725. struct btrfs_file_extent_item);
  726. btrfs_set_file_extent_num_bytes(leaf, fi,
  727. start - key.offset);
  728. fi = btrfs_item_ptr(leaf, path->slots[0],
  729. struct btrfs_file_extent_item);
  730. extent_offset += start - key.offset;
  731. btrfs_set_file_extent_offset(leaf, fi, extent_offset);
  732. btrfs_set_file_extent_num_bytes(leaf, fi,
  733. extent_end - start);
  734. btrfs_mark_buffer_dirty(leaf);
  735. if (update_refs && disk_bytenr > 0) {
  736. ret = btrfs_inc_extent_ref(trans, root,
  737. disk_bytenr, num_bytes, 0,
  738. root->root_key.objectid,
  739. new_key.objectid,
  740. start - extent_offset, 0);
  741. BUG_ON(ret); /* -ENOMEM */
  742. }
  743. key.offset = start;
  744. }
  745. /*
  746. * | ---- range to drop ----- |
  747. * | -------- extent -------- |
  748. */
  749. if (start <= key.offset && end < extent_end) {
  750. BUG_ON(extent_type == BTRFS_FILE_EXTENT_INLINE);
  751. memcpy(&new_key, &key, sizeof(new_key));
  752. new_key.offset = end;
  753. btrfs_set_item_key_safe(root, path, &new_key);
  754. extent_offset += end - key.offset;
  755. btrfs_set_file_extent_offset(leaf, fi, extent_offset);
  756. btrfs_set_file_extent_num_bytes(leaf, fi,
  757. extent_end - end);
  758. btrfs_mark_buffer_dirty(leaf);
  759. if (update_refs && disk_bytenr > 0)
  760. inode_sub_bytes(inode, end - key.offset);
  761. break;
  762. }
  763. search_start = extent_end;
  764. /*
  765. * | ---- range to drop ----- |
  766. * | -------- extent -------- |
  767. */
  768. if (start > key.offset && end >= extent_end) {
  769. BUG_ON(del_nr > 0);
  770. BUG_ON(extent_type == BTRFS_FILE_EXTENT_INLINE);
  771. btrfs_set_file_extent_num_bytes(leaf, fi,
  772. start - key.offset);
  773. btrfs_mark_buffer_dirty(leaf);
  774. if (update_refs && disk_bytenr > 0)
  775. inode_sub_bytes(inode, extent_end - start);
  776. if (end == extent_end)
  777. break;
  778. path->slots[0]++;
  779. goto next_slot;
  780. }
  781. /*
  782. * | ---- range to drop ----- |
  783. * | ------ extent ------ |
  784. */
  785. if (start <= key.offset && end >= extent_end) {
  786. if (del_nr == 0) {
  787. del_slot = path->slots[0];
  788. del_nr = 1;
  789. } else {
  790. BUG_ON(del_slot + del_nr != path->slots[0]);
  791. del_nr++;
  792. }
  793. if (update_refs &&
  794. extent_type == BTRFS_FILE_EXTENT_INLINE) {
  795. inode_sub_bytes(inode,
  796. extent_end - key.offset);
  797. extent_end = ALIGN(extent_end,
  798. root->sectorsize);
  799. } else if (update_refs && disk_bytenr > 0) {
  800. ret = btrfs_free_extent(trans, root,
  801. disk_bytenr, num_bytes, 0,
  802. root->root_key.objectid,
  803. key.objectid, key.offset -
  804. extent_offset, 0);
  805. BUG_ON(ret); /* -ENOMEM */
  806. inode_sub_bytes(inode,
  807. extent_end - key.offset);
  808. }
  809. if (end == extent_end)
  810. break;
  811. if (path->slots[0] + 1 < btrfs_header_nritems(leaf)) {
  812. path->slots[0]++;
  813. goto next_slot;
  814. }
  815. ret = btrfs_del_items(trans, root, path, del_slot,
  816. del_nr);
  817. if (ret) {
  818. btrfs_abort_transaction(trans, root, ret);
  819. break;
  820. }
  821. del_nr = 0;
  822. del_slot = 0;
  823. btrfs_release_path(path);
  824. continue;
  825. }
  826. BUG_ON(1);
  827. }
  828. if (!ret && del_nr > 0) {
  829. ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
  830. if (ret)
  831. btrfs_abort_transaction(trans, root, ret);
  832. }
  833. if (drop_end)
  834. *drop_end = found ? min(end, extent_end) : end;
  835. btrfs_release_path(path);
  836. return ret;
  837. }
  838. int btrfs_drop_extents(struct btrfs_trans_handle *trans,
  839. struct btrfs_root *root, struct inode *inode, u64 start,
  840. u64 end, int drop_cache)
  841. {
  842. struct btrfs_path *path;
  843. int ret;
  844. path = btrfs_alloc_path();
  845. if (!path)
  846. return -ENOMEM;
  847. ret = __btrfs_drop_extents(trans, root, inode, path, start, end, NULL,
  848. drop_cache);
  849. btrfs_free_path(path);
  850. return ret;
  851. }
  852. static int extent_mergeable(struct extent_buffer *leaf, int slot,
  853. u64 objectid, u64 bytenr, u64 orig_offset,
  854. u64 *start, u64 *end)
  855. {
  856. struct btrfs_file_extent_item *fi;
  857. struct btrfs_key key;
  858. u64 extent_end;
  859. if (slot < 0 || slot >= btrfs_header_nritems(leaf))
  860. return 0;
  861. btrfs_item_key_to_cpu(leaf, &key, slot);
  862. if (key.objectid != objectid || key.type != BTRFS_EXTENT_DATA_KEY)
  863. return 0;
  864. fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
  865. if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG ||
  866. btrfs_file_extent_disk_bytenr(leaf, fi) != bytenr ||
  867. btrfs_file_extent_offset(leaf, fi) != key.offset - orig_offset ||
  868. btrfs_file_extent_compression(leaf, fi) ||
  869. btrfs_file_extent_encryption(leaf, fi) ||
  870. btrfs_file_extent_other_encoding(leaf, fi))
  871. return 0;
  872. extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
  873. if ((*start && *start != key.offset) || (*end && *end != extent_end))
  874. return 0;
  875. *start = key.offset;
  876. *end = extent_end;
  877. return 1;
  878. }
  879. /*
  880. * Mark extent in the range start - end as written.
  881. *
  882. * This changes extent type from 'pre-allocated' to 'regular'. If only
  883. * part of extent is marked as written, the extent will be split into
  884. * two or three.
  885. */
  886. int btrfs_mark_extent_written(struct btrfs_trans_handle *trans,
  887. struct inode *inode, u64 start, u64 end)
  888. {
  889. struct btrfs_root *root = BTRFS_I(inode)->root;
  890. struct extent_buffer *leaf;
  891. struct btrfs_path *path;
  892. struct btrfs_file_extent_item *fi;
  893. struct btrfs_key key;
  894. struct btrfs_key new_key;
  895. u64 bytenr;
  896. u64 num_bytes;
  897. u64 extent_end;
  898. u64 orig_offset;
  899. u64 other_start;
  900. u64 other_end;
  901. u64 split;
  902. int del_nr = 0;
  903. int del_slot = 0;
  904. int recow;
  905. int ret;
  906. u64 ino = btrfs_ino(inode);
  907. path = btrfs_alloc_path();
  908. if (!path)
  909. return -ENOMEM;
  910. again:
  911. recow = 0;
  912. split = start;
  913. key.objectid = ino;
  914. key.type = BTRFS_EXTENT_DATA_KEY;
  915. key.offset = split;
  916. ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
  917. if (ret < 0)
  918. goto out;
  919. if (ret > 0 && path->slots[0] > 0)
  920. path->slots[0]--;
  921. leaf = path->nodes[0];
  922. btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
  923. BUG_ON(key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY);
  924. fi = btrfs_item_ptr(leaf, path->slots[0],
  925. struct btrfs_file_extent_item);
  926. BUG_ON(btrfs_file_extent_type(leaf, fi) !=
  927. BTRFS_FILE_EXTENT_PREALLOC);
  928. extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
  929. BUG_ON(key.offset > start || extent_end < end);
  930. bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
  931. num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
  932. orig_offset = key.offset - btrfs_file_extent_offset(leaf, fi);
  933. memcpy(&new_key, &key, sizeof(new_key));
  934. if (start == key.offset && end < extent_end) {
  935. other_start = 0;
  936. other_end = start;
  937. if (extent_mergeable(leaf, path->slots[0] - 1,
  938. ino, bytenr, orig_offset,
  939. &other_start, &other_end)) {
  940. new_key.offset = end;
  941. btrfs_set_item_key_safe(root, path, &new_key);
  942. fi = btrfs_item_ptr(leaf, path->slots[0],
  943. struct btrfs_file_extent_item);
  944. btrfs_set_file_extent_generation(leaf, fi,
  945. trans->transid);
  946. btrfs_set_file_extent_num_bytes(leaf, fi,
  947. extent_end - end);
  948. btrfs_set_file_extent_offset(leaf, fi,
  949. end - orig_offset);
  950. fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
  951. struct btrfs_file_extent_item);
  952. btrfs_set_file_extent_generation(leaf, fi,
  953. trans->transid);
  954. btrfs_set_file_extent_num_bytes(leaf, fi,
  955. end - other_start);
  956. btrfs_mark_buffer_dirty(leaf);
  957. goto out;
  958. }
  959. }
  960. if (start > key.offset && end == extent_end) {
  961. other_start = end;
  962. other_end = 0;
  963. if (extent_mergeable(leaf, path->slots[0] + 1,
  964. ino, bytenr, orig_offset,
  965. &other_start, &other_end)) {
  966. fi = btrfs_item_ptr(leaf, path->slots[0],
  967. struct btrfs_file_extent_item);
  968. btrfs_set_file_extent_num_bytes(leaf, fi,
  969. start - key.offset);
  970. btrfs_set_file_extent_generation(leaf, fi,
  971. trans->transid);
  972. path->slots[0]++;
  973. new_key.offset = start;
  974. btrfs_set_item_key_safe(root, path, &new_key);
  975. fi = btrfs_item_ptr(leaf, path->slots[0],
  976. struct btrfs_file_extent_item);
  977. btrfs_set_file_extent_generation(leaf, fi,
  978. trans->transid);
  979. btrfs_set_file_extent_num_bytes(leaf, fi,
  980. other_end - start);
  981. btrfs_set_file_extent_offset(leaf, fi,
  982. start - orig_offset);
  983. btrfs_mark_buffer_dirty(leaf);
  984. goto out;
  985. }
  986. }
  987. while (start > key.offset || end < extent_end) {
  988. if (key.offset == start)
  989. split = end;
  990. new_key.offset = split;
  991. ret = btrfs_duplicate_item(trans, root, path, &new_key);
  992. if (ret == -EAGAIN) {
  993. btrfs_release_path(path);
  994. goto again;
  995. }
  996. if (ret < 0) {
  997. btrfs_abort_transaction(trans, root, ret);
  998. goto out;
  999. }
  1000. leaf = path->nodes[0];
  1001. fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
  1002. struct btrfs_file_extent_item);
  1003. btrfs_set_file_extent_generation(leaf, fi, trans->transid);
  1004. btrfs_set_file_extent_num_bytes(leaf, fi,
  1005. split - key.offset);
  1006. fi = btrfs_item_ptr(leaf, path->slots[0],
  1007. struct btrfs_file_extent_item);
  1008. btrfs_set_file_extent_generation(leaf, fi, trans->transid);
  1009. btrfs_set_file_extent_offset(leaf, fi, split - orig_offset);
  1010. btrfs_set_file_extent_num_bytes(leaf, fi,
  1011. extent_end - split);
  1012. btrfs_mark_buffer_dirty(leaf);
  1013. ret = btrfs_inc_extent_ref(trans, root, bytenr, num_bytes, 0,
  1014. root->root_key.objectid,
  1015. ino, orig_offset, 0);
  1016. BUG_ON(ret); /* -ENOMEM */
  1017. if (split == start) {
  1018. key.offset = start;
  1019. } else {
  1020. BUG_ON(start != key.offset);
  1021. path->slots[0]--;
  1022. extent_end = end;
  1023. }
  1024. recow = 1;
  1025. }
  1026. other_start = end;
  1027. other_end = 0;
  1028. if (extent_mergeable(leaf, path->slots[0] + 1,
  1029. ino, bytenr, orig_offset,
  1030. &other_start, &other_end)) {
  1031. if (recow) {
  1032. btrfs_release_path(path);
  1033. goto again;
  1034. }
  1035. extent_end = other_end;
  1036. del_slot = path->slots[0] + 1;
  1037. del_nr++;
  1038. ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
  1039. 0, root->root_key.objectid,
  1040. ino, orig_offset, 0);
  1041. BUG_ON(ret); /* -ENOMEM */
  1042. }
  1043. other_start = 0;
  1044. other_end = start;
  1045. if (extent_mergeable(leaf, path->slots[0] - 1,
  1046. ino, bytenr, orig_offset,
  1047. &other_start, &other_end)) {
  1048. if (recow) {
  1049. btrfs_release_path(path);
  1050. goto again;
  1051. }
  1052. key.offset = other_start;
  1053. del_slot = path->slots[0];
  1054. del_nr++;
  1055. ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
  1056. 0, root->root_key.objectid,
  1057. ino, orig_offset, 0);
  1058. BUG_ON(ret); /* -ENOMEM */
  1059. }
  1060. if (del_nr == 0) {
  1061. fi = btrfs_item_ptr(leaf, path->slots[0],
  1062. struct btrfs_file_extent_item);
  1063. btrfs_set_file_extent_type(leaf, fi,
  1064. BTRFS_FILE_EXTENT_REG);
  1065. btrfs_set_file_extent_generation(leaf, fi, trans->transid);
  1066. btrfs_mark_buffer_dirty(leaf);
  1067. } else {
  1068. fi = btrfs_item_ptr(leaf, del_slot - 1,
  1069. struct btrfs_file_extent_item);
  1070. btrfs_set_file_extent_type(leaf, fi,
  1071. BTRFS_FILE_EXTENT_REG);
  1072. btrfs_set_file_extent_generation(leaf, fi, trans->transid);
  1073. btrfs_set_file_extent_num_bytes(leaf, fi,
  1074. extent_end - key.offset);
  1075. btrfs_mark_buffer_dirty(leaf);
  1076. ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
  1077. if (ret < 0) {
  1078. btrfs_abort_transaction(trans, root, ret);
  1079. goto out;
  1080. }
  1081. }
  1082. out:
  1083. btrfs_free_path(path);
  1084. return 0;
  1085. }
  1086. /*
  1087. * on error we return an unlocked page and the error value
  1088. * on success we return a locked page and 0
  1089. */
  1090. static int prepare_uptodate_page(struct page *page, u64 pos,
  1091. bool force_uptodate)
  1092. {
  1093. int ret = 0;
  1094. if (((pos & (PAGE_CACHE_SIZE - 1)) || force_uptodate) &&
  1095. !PageUptodate(page)) {
  1096. ret = btrfs_readpage(NULL, page);
  1097. if (ret)
  1098. return ret;
  1099. lock_page(page);
  1100. if (!PageUptodate(page)) {
  1101. unlock_page(page);
  1102. return -EIO;
  1103. }
  1104. }
  1105. return 0;
  1106. }
  1107. /*
  1108. * this gets pages into the page cache and locks them down, it also properly
  1109. * waits for data=ordered extents to finish before allowing the pages to be
  1110. * modified.
  1111. */
  1112. static noinline int prepare_pages(struct btrfs_root *root, struct file *file,
  1113. struct page **pages, size_t num_pages,
  1114. loff_t pos, unsigned long first_index,
  1115. size_t write_bytes, bool force_uptodate)
  1116. {
  1117. struct extent_state *cached_state = NULL;
  1118. int i;
  1119. unsigned long index = pos >> PAGE_CACHE_SHIFT;
  1120. struct inode *inode = file_inode(file);
  1121. gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
  1122. int err = 0;
  1123. int faili = 0;
  1124. u64 start_pos;
  1125. u64 last_pos;
  1126. start_pos = pos & ~((u64)root->sectorsize - 1);
  1127. last_pos = ((u64)index + num_pages) << PAGE_CACHE_SHIFT;
  1128. again:
  1129. for (i = 0; i < num_pages; i++) {
  1130. pages[i] = find_or_create_page(inode->i_mapping, index + i,
  1131. mask | __GFP_WRITE);
  1132. if (!pages[i]) {
  1133. faili = i - 1;
  1134. err = -ENOMEM;
  1135. goto fail;
  1136. }
  1137. if (i == 0)
  1138. err = prepare_uptodate_page(pages[i], pos,
  1139. force_uptodate);
  1140. if (i == num_pages - 1)
  1141. err = prepare_uptodate_page(pages[i],
  1142. pos + write_bytes, false);
  1143. if (err) {
  1144. page_cache_release(pages[i]);
  1145. faili = i - 1;
  1146. goto fail;
  1147. }
  1148. wait_on_page_writeback(pages[i]);
  1149. }
  1150. err = 0;
  1151. if (start_pos < inode->i_size) {
  1152. struct btrfs_ordered_extent *ordered;
  1153. lock_extent_bits(&BTRFS_I(inode)->io_tree,
  1154. start_pos, last_pos - 1, 0, &cached_state);
  1155. ordered = btrfs_lookup_first_ordered_extent(inode,
  1156. last_pos - 1);
  1157. if (ordered &&
  1158. ordered->file_offset + ordered->len > start_pos &&
  1159. ordered->file_offset < last_pos) {
  1160. btrfs_put_ordered_extent(ordered);
  1161. unlock_extent_cached(&BTRFS_I(inode)->io_tree,
  1162. start_pos, last_pos - 1,
  1163. &cached_state, GFP_NOFS);
  1164. for (i = 0; i < num_pages; i++) {
  1165. unlock_page(pages[i]);
  1166. page_cache_release(pages[i]);
  1167. }
  1168. btrfs_wait_ordered_range(inode, start_pos,
  1169. last_pos - start_pos);
  1170. goto again;
  1171. }
  1172. if (ordered)
  1173. btrfs_put_ordered_extent(ordered);
  1174. clear_extent_bit(&BTRFS_I(inode)->io_tree, start_pos,
  1175. last_pos - 1, EXTENT_DIRTY | EXTENT_DELALLOC |
  1176. EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
  1177. 0, 0, &cached_state, GFP_NOFS);
  1178. unlock_extent_cached(&BTRFS_I(inode)->io_tree,
  1179. start_pos, last_pos - 1, &cached_state,
  1180. GFP_NOFS);
  1181. }
  1182. for (i = 0; i < num_pages; i++) {
  1183. if (clear_page_dirty_for_io(pages[i]))
  1184. account_page_redirty(pages[i]);
  1185. set_page_extent_mapped(pages[i]);
  1186. WARN_ON(!PageLocked(pages[i]));
  1187. }
  1188. return 0;
  1189. fail:
  1190. while (faili >= 0) {
  1191. unlock_page(pages[faili]);
  1192. page_cache_release(pages[faili]);
  1193. faili--;
  1194. }
  1195. return err;
  1196. }
  1197. static noinline int check_can_nocow(struct inode *inode, loff_t pos,
  1198. size_t *write_bytes)
  1199. {
  1200. struct btrfs_trans_handle *trans;
  1201. struct btrfs_root *root = BTRFS_I(inode)->root;
  1202. struct btrfs_ordered_extent *ordered;
  1203. u64 lockstart, lockend;
  1204. u64 num_bytes;
  1205. int ret;
  1206. lockstart = round_down(pos, root->sectorsize);
  1207. lockend = lockstart + round_up(*write_bytes, root->sectorsize) - 1;
  1208. while (1) {
  1209. lock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend);
  1210. ordered = btrfs_lookup_ordered_range(inode, lockstart,
  1211. lockend - lockstart + 1);
  1212. if (!ordered) {
  1213. break;
  1214. }
  1215. unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend);
  1216. btrfs_start_ordered_extent(inode, ordered, 1);
  1217. btrfs_put_ordered_extent(ordered);
  1218. }
  1219. trans = btrfs_join_transaction(root);
  1220. if (IS_ERR(trans)) {
  1221. unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend);
  1222. return PTR_ERR(trans);
  1223. }
  1224. num_bytes = lockend - lockstart + 1;
  1225. ret = can_nocow_extent(trans, inode, lockstart, &num_bytes, NULL, NULL,
  1226. NULL);
  1227. btrfs_end_transaction(trans, root);
  1228. if (ret <= 0) {
  1229. ret = 0;
  1230. } else {
  1231. clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
  1232. EXTENT_DIRTY | EXTENT_DELALLOC |
  1233. EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 0, 0,
  1234. NULL, GFP_NOFS);
  1235. *write_bytes = min_t(size_t, *write_bytes, num_bytes);
  1236. }
  1237. unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend);
  1238. return ret;
  1239. }
  1240. static noinline ssize_t __btrfs_buffered_write(struct file *file,
  1241. struct iov_iter *i,
  1242. loff_t pos)
  1243. {
  1244. struct inode *inode = file_inode(file);
  1245. struct btrfs_root *root = BTRFS_I(inode)->root;
  1246. struct page **pages = NULL;
  1247. u64 release_bytes = 0;
  1248. unsigned long first_index;
  1249. size_t num_written = 0;
  1250. int nrptrs;
  1251. int ret = 0;
  1252. bool only_release_metadata = false;
  1253. bool force_page_uptodate = false;
  1254. nrptrs = min((iov_iter_count(i) + PAGE_CACHE_SIZE - 1) /
  1255. PAGE_CACHE_SIZE, PAGE_CACHE_SIZE /
  1256. (sizeof(struct page *)));
  1257. nrptrs = min(nrptrs, current->nr_dirtied_pause - current->nr_dirtied);
  1258. nrptrs = max(nrptrs, 8);
  1259. pages = kmalloc(nrptrs * sizeof(struct page *), GFP_KERNEL);
  1260. if (!pages)
  1261. return -ENOMEM;
  1262. first_index = pos >> PAGE_CACHE_SHIFT;
  1263. while (iov_iter_count(i) > 0) {
  1264. size_t offset = pos & (PAGE_CACHE_SIZE - 1);
  1265. size_t write_bytes = min(iov_iter_count(i),
  1266. nrptrs * (size_t)PAGE_CACHE_SIZE -
  1267. offset);
  1268. size_t num_pages = (write_bytes + offset +
  1269. PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
  1270. size_t reserve_bytes;
  1271. size_t dirty_pages;
  1272. size_t copied;
  1273. WARN_ON(num_pages > nrptrs);
  1274. /*
  1275. * Fault pages before locking them in prepare_pages
  1276. * to avoid recursive lock
  1277. */
  1278. if (unlikely(iov_iter_fault_in_readable(i, write_bytes))) {
  1279. ret = -EFAULT;
  1280. break;
  1281. }
  1282. reserve_bytes = num_pages << PAGE_CACHE_SHIFT;
  1283. ret = btrfs_check_data_free_space(inode, reserve_bytes);
  1284. if (ret == -ENOSPC &&
  1285. (BTRFS_I(inode)->flags & (BTRFS_INODE_NODATACOW |
  1286. BTRFS_INODE_PREALLOC))) {
  1287. ret = check_can_nocow(inode, pos, &write_bytes);
  1288. if (ret > 0) {
  1289. only_release_metadata = true;
  1290. /*
  1291. * our prealloc extent may be smaller than
  1292. * write_bytes, so scale down.
  1293. */
  1294. num_pages = (write_bytes + offset +
  1295. PAGE_CACHE_SIZE - 1) >>
  1296. PAGE_CACHE_SHIFT;
  1297. reserve_bytes = num_pages << PAGE_CACHE_SHIFT;
  1298. ret = 0;
  1299. } else {
  1300. ret = -ENOSPC;
  1301. }
  1302. }
  1303. if (ret)
  1304. break;
  1305. ret = btrfs_delalloc_reserve_metadata(inode, reserve_bytes);
  1306. if (ret) {
  1307. if (!only_release_metadata)
  1308. btrfs_free_reserved_data_space(inode,
  1309. reserve_bytes);
  1310. break;
  1311. }
  1312. release_bytes = reserve_bytes;
  1313. /*
  1314. * This is going to setup the pages array with the number of
  1315. * pages we want, so we don't really need to worry about the
  1316. * contents of pages from loop to loop
  1317. */
  1318. ret = prepare_pages(root, file, pages, num_pages,
  1319. pos, first_index, write_bytes,
  1320. force_page_uptodate);
  1321. if (ret)
  1322. break;
  1323. copied = btrfs_copy_from_user(pos, num_pages,
  1324. write_bytes, pages, i);
  1325. /*
  1326. * if we have trouble faulting in the pages, fall
  1327. * back to one page at a time
  1328. */
  1329. if (copied < write_bytes)
  1330. nrptrs = 1;
  1331. if (copied == 0) {
  1332. force_page_uptodate = true;
  1333. dirty_pages = 0;
  1334. } else {
  1335. force_page_uptodate = false;
  1336. dirty_pages = (copied + offset +
  1337. PAGE_CACHE_SIZE - 1) >>
  1338. PAGE_CACHE_SHIFT;
  1339. }
  1340. /*
  1341. * If we had a short copy we need to release the excess delaloc
  1342. * bytes we reserved. We need to increment outstanding_extents
  1343. * because btrfs_delalloc_release_space will decrement it, but
  1344. * we still have an outstanding extent for the chunk we actually
  1345. * managed to copy.
  1346. */
  1347. if (num_pages > dirty_pages) {
  1348. release_bytes = (num_pages - dirty_pages) <<
  1349. PAGE_CACHE_SHIFT;
  1350. if (copied > 0) {
  1351. spin_lock(&BTRFS_I(inode)->lock);
  1352. BTRFS_I(inode)->outstanding_extents++;
  1353. spin_unlock(&BTRFS_I(inode)->lock);
  1354. }
  1355. if (only_release_metadata)
  1356. btrfs_delalloc_release_metadata(inode,
  1357. release_bytes);
  1358. else
  1359. btrfs_delalloc_release_space(inode,
  1360. release_bytes);
  1361. }
  1362. release_bytes = dirty_pages << PAGE_CACHE_SHIFT;
  1363. if (copied > 0) {
  1364. ret = btrfs_dirty_pages(root, inode, pages,
  1365. dirty_pages, pos, copied,
  1366. NULL);
  1367. if (ret) {
  1368. btrfs_drop_pages(pages, num_pages);
  1369. break;
  1370. }
  1371. }
  1372. release_bytes = 0;
  1373. btrfs_drop_pages(pages, num_pages);
  1374. if (only_release_metadata && copied > 0) {
  1375. u64 lockstart = round_down(pos, root->sectorsize);
  1376. u64 lockend = lockstart +
  1377. (dirty_pages << PAGE_CACHE_SHIFT) - 1;
  1378. set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
  1379. lockend, EXTENT_NORESERVE, NULL,
  1380. NULL, GFP_NOFS);
  1381. only_release_metadata = false;
  1382. }
  1383. cond_resched();
  1384. balance_dirty_pages_ratelimited(inode->i_mapping);
  1385. if (dirty_pages < (root->leafsize >> PAGE_CACHE_SHIFT) + 1)
  1386. btrfs_btree_balance_dirty(root);
  1387. pos += copied;
  1388. num_written += copied;
  1389. }
  1390. kfree(pages);
  1391. if (release_bytes) {
  1392. if (only_release_metadata)
  1393. btrfs_delalloc_release_metadata(inode, release_bytes);
  1394. else
  1395. btrfs_delalloc_release_space(inode, release_bytes);
  1396. }
  1397. return num_written ? num_written : ret;
  1398. }
  1399. static ssize_t __btrfs_direct_write(struct kiocb *iocb,
  1400. const struct iovec *iov,
  1401. unsigned long nr_segs, loff_t pos,
  1402. loff_t *ppos, size_t count, size_t ocount)
  1403. {
  1404. struct file *file = iocb->ki_filp;
  1405. struct iov_iter i;
  1406. ssize_t written;
  1407. ssize_t written_buffered;
  1408. loff_t endbyte;
  1409. int err;
  1410. written = generic_file_direct_write(iocb, iov, &nr_segs, pos, ppos,
  1411. count, ocount);
  1412. if (written < 0 || written == count)
  1413. return written;
  1414. pos += written;
  1415. count -= written;
  1416. iov_iter_init(&i, iov, nr_segs, count, written);
  1417. written_buffered = __btrfs_buffered_write(file, &i, pos);
  1418. if (written_buffered < 0) {
  1419. err = written_buffered;
  1420. goto out;
  1421. }
  1422. endbyte = pos + written_buffered - 1;
  1423. err = filemap_write_and_wait_range(file->f_mapping, pos, endbyte);
  1424. if (err)
  1425. goto out;
  1426. written += written_buffered;
  1427. *ppos = pos + written_buffered;
  1428. invalidate_mapping_pages(file->f_mapping, pos >> PAGE_CACHE_SHIFT,
  1429. endbyte >> PAGE_CACHE_SHIFT);
  1430. out:
  1431. return written ? written : err;
  1432. }
  1433. static void update_time_for_write(struct inode *inode)
  1434. {
  1435. struct timespec now;
  1436. if (IS_NOCMTIME(inode))
  1437. return;
  1438. now = current_fs_time(inode->i_sb);
  1439. if (!timespec_equal(&inode->i_mtime, &now))
  1440. inode->i_mtime = now;
  1441. if (!timespec_equal(&inode->i_ctime, &now))
  1442. inode->i_ctime = now;
  1443. if (IS_I_VERSION(inode))
  1444. inode_inc_iversion(inode);
  1445. }
  1446. static ssize_t btrfs_file_aio_write(struct kiocb *iocb,
  1447. const struct iovec *iov,
  1448. unsigned long nr_segs, loff_t pos)
  1449. {
  1450. struct file *file = iocb->ki_filp;
  1451. struct inode *inode = file_inode(file);
  1452. struct btrfs_root *root = BTRFS_I(inode)->root;
  1453. loff_t *ppos = &iocb->ki_pos;
  1454. u64 start_pos;
  1455. ssize_t num_written = 0;
  1456. ssize_t err = 0;
  1457. size_t count, ocount;
  1458. bool sync = (file->f_flags & O_DSYNC) || IS_SYNC(file->f_mapping->host);
  1459. mutex_lock(&inode->i_mutex);
  1460. err = generic_segment_checks(iov, &nr_segs, &ocount, VERIFY_READ);
  1461. if (err) {
  1462. mutex_unlock(&inode->i_mutex);
  1463. goto out;
  1464. }
  1465. count = ocount;
  1466. current->backing_dev_info = inode->i_mapping->backing_dev_info;
  1467. err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
  1468. if (err) {
  1469. mutex_unlock(&inode->i_mutex);
  1470. goto out;
  1471. }
  1472. if (count == 0) {
  1473. mutex_unlock(&inode->i_mutex);
  1474. goto out;
  1475. }
  1476. err = file_remove_suid(file);
  1477. if (err) {
  1478. mutex_unlock(&inode->i_mutex);
  1479. goto out;
  1480. }
  1481. /*
  1482. * If BTRFS flips readonly due to some impossible error
  1483. * (fs_info->fs_state now has BTRFS_SUPER_FLAG_ERROR),
  1484. * although we have opened a file as writable, we have
  1485. * to stop this write operation to ensure FS consistency.
  1486. */
  1487. if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) {
  1488. mutex_unlock(&inode->i_mutex);
  1489. err = -EROFS;
  1490. goto out;
  1491. }
  1492. /*
  1493. * We reserve space for updating the inode when we reserve space for the
  1494. * extent we are going to write, so we will enospc out there. We don't
  1495. * need to start yet another transaction to update the inode as we will
  1496. * update the inode when we finish writing whatever data we write.
  1497. */
  1498. update_time_for_write(inode);
  1499. start_pos = round_down(pos, root->sectorsize);
  1500. if (start_pos > i_size_read(inode)) {
  1501. err = btrfs_cont_expand(inode, i_size_read(inode), start_pos);
  1502. if (err) {
  1503. mutex_unlock(&inode->i_mutex);
  1504. goto out;
  1505. }
  1506. }
  1507. if (sync)
  1508. atomic_inc(&BTRFS_I(inode)->sync_writers);
  1509. if (unlikely(file->f_flags & O_DIRECT)) {
  1510. num_written = __btrfs_direct_write(iocb, iov, nr_segs,
  1511. pos, ppos, count, ocount);
  1512. } else {
  1513. struct iov_iter i;
  1514. iov_iter_init(&i, iov, nr_segs, count, num_written);
  1515. num_written = __btrfs_buffered_write(file, &i, pos);
  1516. if (num_written > 0)
  1517. *ppos = pos + num_written;
  1518. }
  1519. mutex_unlock(&inode->i_mutex);
  1520. /*
  1521. * we want to make sure fsync finds this change
  1522. * but we haven't joined a transaction running right now.
  1523. *
  1524. * Later on, someone is sure to update the inode and get the
  1525. * real transid recorded.
  1526. *
  1527. * We set last_trans now to the fs_info generation + 1,
  1528. * this will either be one more than the running transaction
  1529. * or the generation used for the next transaction if there isn't
  1530. * one running right now.
  1531. *
  1532. * We also have to set last_sub_trans to the current log transid,
  1533. * otherwise subsequent syncs to a file that's been synced in this
  1534. * transaction will appear to have already occured.
  1535. */
  1536. BTRFS_I(inode)->last_trans = root->fs_info->generation + 1;
  1537. BTRFS_I(inode)->last_sub_trans = root->log_transid;
  1538. if (num_written > 0 || num_written == -EIOCBQUEUED) {
  1539. err = generic_write_sync(file, pos, num_written);
  1540. if (err < 0 && num_written > 0)
  1541. num_written = err;
  1542. }
  1543. if (sync)
  1544. atomic_dec(&BTRFS_I(inode)->sync_writers);
  1545. out:
  1546. current->backing_dev_info = NULL;
  1547. return num_written ? num_written : err;
  1548. }
  1549. int btrfs_release_file(struct inode *inode, struct file *filp)
  1550. {
  1551. /*
  1552. * ordered_data_close is set by settattr when we are about to truncate
  1553. * a file from a non-zero size to a zero size. This tries to
  1554. * flush down new bytes that may have been written if the
  1555. * application were using truncate to replace a file in place.
  1556. */
  1557. if (test_and_clear_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
  1558. &BTRFS_I(inode)->runtime_flags)) {
  1559. struct btrfs_trans_handle *trans;
  1560. struct btrfs_root *root = BTRFS_I(inode)->root;
  1561. /*
  1562. * We need to block on a committing transaction to keep us from
  1563. * throwing a ordered operation on to the list and causing
  1564. * something like sync to deadlock trying to flush out this
  1565. * inode.
  1566. */
  1567. trans = btrfs_start_transaction(root, 0);
  1568. if (IS_ERR(trans))
  1569. return PTR_ERR(trans);
  1570. btrfs_add_ordered_operation(trans, BTRFS_I(inode)->root, inode);
  1571. btrfs_end_transaction(trans, root);
  1572. if (inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT)
  1573. filemap_flush(inode->i_mapping);
  1574. }
  1575. if (filp->private_data)
  1576. btrfs_ioctl_trans_end(filp);
  1577. return 0;
  1578. }
  1579. /*
  1580. * fsync call for both files and directories. This logs the inode into
  1581. * the tree log instead of forcing full commits whenever possible.
  1582. *
  1583. * It needs to call filemap_fdatawait so that all ordered extent updates are
  1584. * in the metadata btree are up to date for copying to the log.
  1585. *
  1586. * It drops the inode mutex before doing the tree log commit. This is an
  1587. * important optimization for directories because holding the mutex prevents
  1588. * new operations on the dir while we write to disk.
  1589. */
  1590. int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
  1591. {
  1592. struct dentry *dentry = file->f_path.dentry;
  1593. struct inode *inode = dentry->d_inode;
  1594. struct btrfs_root *root = BTRFS_I(inode)->root;
  1595. int ret = 0;
  1596. struct btrfs_trans_handle *trans;
  1597. bool full_sync = 0;
  1598. trace_btrfs_sync_file(file, datasync);
  1599. /*
  1600. * We write the dirty pages in the range and wait until they complete
  1601. * out of the ->i_mutex. If so, we can flush the dirty pages by
  1602. * multi-task, and make the performance up. See
  1603. * btrfs_wait_ordered_range for an explanation of the ASYNC check.
  1604. */
  1605. atomic_inc(&BTRFS_I(inode)->sync_writers);
  1606. ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
  1607. if (!ret && test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
  1608. &BTRFS_I(inode)->runtime_flags))
  1609. ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
  1610. atomic_dec(&BTRFS_I(inode)->sync_writers);
  1611. if (ret)
  1612. return ret;
  1613. mutex_lock(&inode->i_mutex);
  1614. /*
  1615. * We flush the dirty pages again to avoid some dirty pages in the
  1616. * range being left.
  1617. */
  1618. atomic_inc(&root->log_batch);
  1619. full_sync = test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
  1620. &BTRFS_I(inode)->runtime_flags);
  1621. if (full_sync)
  1622. btrfs_wait_ordered_range(inode, start, end - start + 1);
  1623. atomic_inc(&root->log_batch);
  1624. /*
  1625. * check the transaction that last modified this inode
  1626. * and see if its already been committed
  1627. */
  1628. if (!BTRFS_I(inode)->last_trans) {
  1629. mutex_unlock(&inode->i_mutex);
  1630. goto out;
  1631. }
  1632. /*
  1633. * if the last transaction that changed this file was before
  1634. * the current transaction, we can bail out now without any
  1635. * syncing
  1636. */
  1637. smp_mb();
  1638. if (btrfs_inode_in_log(inode, root->fs_info->generation) ||
  1639. BTRFS_I(inode)->last_trans <=
  1640. root->fs_info->last_trans_committed) {
  1641. BTRFS_I(inode)->last_trans = 0;
  1642. /*
  1643. * We'v had everything committed since the last time we were
  1644. * modified so clear this flag in case it was set for whatever
  1645. * reason, it's no longer relevant.
  1646. */
  1647. clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
  1648. &BTRFS_I(inode)->runtime_flags);
  1649. mutex_unlock(&inode->i_mutex);
  1650. goto out;
  1651. }
  1652. /*
  1653. * ok we haven't committed the transaction yet, lets do a commit
  1654. */
  1655. if (file->private_data)
  1656. btrfs_ioctl_trans_end(file);
  1657. trans = btrfs_start_transaction(root, 0);
  1658. if (IS_ERR(trans)) {
  1659. ret = PTR_ERR(trans);
  1660. mutex_unlock(&inode->i_mutex);
  1661. goto out;
  1662. }
  1663. ret = btrfs_log_dentry_safe(trans, root, dentry);
  1664. if (ret < 0) {
  1665. mutex_unlock(&inode->i_mutex);
  1666. goto out;
  1667. }
  1668. /* we've logged all the items and now have a consistent
  1669. * version of the file in the log. It is possible that
  1670. * someone will come in and modify the file, but that's
  1671. * fine because the log is consistent on disk, and we
  1672. * have references to all of the file's extents
  1673. *
  1674. * It is possible that someone will come in and log the
  1675. * file again, but that will end up using the synchronization
  1676. * inside btrfs_sync_log to keep things safe.
  1677. */
  1678. mutex_unlock(&inode->i_mutex);
  1679. if (ret != BTRFS_NO_LOG_SYNC) {
  1680. if (ret > 0) {
  1681. /*
  1682. * If we didn't already wait for ordered extents we need
  1683. * to do that now.
  1684. */
  1685. if (!full_sync)
  1686. btrfs_wait_ordered_range(inode, start,
  1687. end - start + 1);
  1688. ret = btrfs_commit_transaction(trans, root);
  1689. } else {
  1690. ret = btrfs_sync_log(trans, root);
  1691. if (ret == 0) {
  1692. ret = btrfs_end_transaction(trans, root);
  1693. } else {
  1694. if (!full_sync)
  1695. btrfs_wait_ordered_range(inode, start,
  1696. end -
  1697. start + 1);
  1698. ret = btrfs_commit_transaction(trans, root);
  1699. }
  1700. }
  1701. } else {
  1702. ret = btrfs_end_transaction(trans, root);
  1703. }
  1704. out:
  1705. return ret > 0 ? -EIO : ret;
  1706. }
  1707. static const struct vm_operations_struct btrfs_file_vm_ops = {
  1708. .fault = filemap_fault,
  1709. .page_mkwrite = btrfs_page_mkwrite,
  1710. .remap_pages = generic_file_remap_pages,
  1711. };
  1712. static int btrfs_file_mmap(struct file *filp, struct vm_area_struct *vma)
  1713. {
  1714. struct address_space *mapping = filp->f_mapping;
  1715. if (!mapping->a_ops->readpage)
  1716. return -ENOEXEC;
  1717. file_accessed(filp);
  1718. vma->vm_ops = &btrfs_file_vm_ops;
  1719. return 0;
  1720. }
  1721. static int hole_mergeable(struct inode *inode, struct extent_buffer *leaf,
  1722. int slot, u64 start, u64 end)
  1723. {
  1724. struct btrfs_file_extent_item *fi;
  1725. struct btrfs_key key;
  1726. if (slot < 0 || slot >= btrfs_header_nritems(leaf))
  1727. return 0;
  1728. btrfs_item_key_to_cpu(leaf, &key, slot);
  1729. if (key.objectid != btrfs_ino(inode) ||
  1730. key.type != BTRFS_EXTENT_DATA_KEY)
  1731. return 0;
  1732. fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
  1733. if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
  1734. return 0;
  1735. if (btrfs_file_extent_disk_bytenr(leaf, fi))
  1736. return 0;
  1737. if (key.offset == end)
  1738. return 1;
  1739. if (key.offset + btrfs_file_extent_num_bytes(leaf, fi) == start)
  1740. return 1;
  1741. return 0;
  1742. }
  1743. static int fill_holes(struct btrfs_trans_handle *trans, struct inode *inode,
  1744. struct btrfs_path *path, u64 offset, u64 end)
  1745. {
  1746. struct btrfs_root *root = BTRFS_I(inode)->root;
  1747. struct extent_buffer *leaf;
  1748. struct btrfs_file_extent_item *fi;
  1749. struct extent_map *hole_em;
  1750. struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
  1751. struct btrfs_key key;
  1752. int ret;
  1753. key.objectid = btrfs_ino(inode);
  1754. key.type = BTRFS_EXTENT_DATA_KEY;
  1755. key.offset = offset;
  1756. ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
  1757. if (ret < 0)
  1758. return ret;
  1759. BUG_ON(!ret);
  1760. leaf = path->nodes[0];
  1761. if (hole_mergeable(inode, leaf, path->slots[0]-1, offset, end)) {
  1762. u64 num_bytes;
  1763. path->slots[0]--;
  1764. fi = btrfs_item_ptr(leaf, path->slots[0],
  1765. struct btrfs_file_extent_item);
  1766. num_bytes = btrfs_file_extent_num_bytes(leaf, fi) +
  1767. end - offset;
  1768. btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
  1769. btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
  1770. btrfs_set_file_extent_offset(leaf, fi, 0);
  1771. btrfs_mark_buffer_dirty(leaf);
  1772. goto out;
  1773. }
  1774. if (hole_mergeable(inode, leaf, path->slots[0]+1, offset, end)) {
  1775. u64 num_bytes;
  1776. path->slots[0]++;
  1777. key.offset = offset;
  1778. btrfs_set_item_key_safe(root, path, &key);
  1779. fi = btrfs_item_ptr(leaf, path->slots[0],
  1780. struct btrfs_file_extent_item);
  1781. num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + end -
  1782. offset;
  1783. btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
  1784. btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
  1785. btrfs_set_file_extent_offset(leaf, fi, 0);
  1786. btrfs_mark_buffer_dirty(leaf);
  1787. goto out;
  1788. }
  1789. btrfs_release_path(path);
  1790. ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode), offset,
  1791. 0, 0, end - offset, 0, end - offset,
  1792. 0, 0, 0);
  1793. if (ret)
  1794. return ret;
  1795. out:
  1796. btrfs_release_path(path);
  1797. hole_em = alloc_extent_map();
  1798. if (!hole_em) {
  1799. btrfs_drop_extent_cache(inode, offset, end - 1, 0);
  1800. set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
  1801. &BTRFS_I(inode)->runtime_flags);
  1802. } else {
  1803. hole_em->start = offset;
  1804. hole_em->len = end - offset;
  1805. hole_em->ram_bytes = hole_em->len;
  1806. hole_em->orig_start = offset;
  1807. hole_em->block_start = EXTENT_MAP_HOLE;
  1808. hole_em->block_len = 0;
  1809. hole_em->orig_block_len = 0;
  1810. hole_em->bdev = root->fs_info->fs_devices->latest_bdev;
  1811. hole_em->compress_type = BTRFS_COMPRESS_NONE;
  1812. hole_em->generation = trans->transid;
  1813. do {
  1814. btrfs_drop_extent_cache(inode, offset, end - 1, 0);
  1815. write_lock(&em_tree->lock);
  1816. ret = add_extent_mapping(em_tree, hole_em, 1);
  1817. write_unlock(&em_tree->lock);
  1818. } while (ret == -EEXIST);
  1819. free_extent_map(hole_em);
  1820. if (ret)
  1821. set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
  1822. &BTRFS_I(inode)->runtime_flags);
  1823. }
  1824. return 0;
  1825. }
  1826. static int btrfs_punch_hole(struct inode *inode, loff_t offset, loff_t len)
  1827. {
  1828. struct btrfs_root *root = BTRFS_I(inode)->root;
  1829. struct extent_state *cached_state = NULL;
  1830. struct btrfs_path *path;
  1831. struct btrfs_block_rsv *rsv;
  1832. struct btrfs_trans_handle *trans;
  1833. u64 lockstart = round_up(offset, BTRFS_I(inode)->root->sectorsize);
  1834. u64 lockend = round_down(offset + len,
  1835. BTRFS_I(inode)->root->sectorsize) - 1;
  1836. u64 cur_offset = lockstart;
  1837. u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
  1838. u64 drop_end;
  1839. int ret = 0;
  1840. int err = 0;
  1841. bool same_page = ((offset >> PAGE_CACHE_SHIFT) ==
  1842. ((offset + len - 1) >> PAGE_CACHE_SHIFT));
  1843. btrfs_wait_ordered_range(inode, offset, len);
  1844. mutex_lock(&inode->i_mutex);
  1845. /*
  1846. * We needn't truncate any page which is beyond the end of the file
  1847. * because we are sure there is no data there.
  1848. */
  1849. /*
  1850. * Only do this if we are in the same page and we aren't doing the
  1851. * entire page.
  1852. */
  1853. if (same_page && len < PAGE_CACHE_SIZE) {
  1854. if (offset < round_up(inode->i_size, PAGE_CACHE_SIZE))
  1855. ret = btrfs_truncate_page(inode, offset, len, 0);
  1856. mutex_unlock(&inode->i_mutex);
  1857. return ret;
  1858. }
  1859. /* zero back part of the first page */
  1860. if (offset < round_up(inode->i_size, PAGE_CACHE_SIZE)) {
  1861. ret = btrfs_truncate_page(inode, offset, 0, 0);
  1862. if (ret) {
  1863. mutex_unlock(&inode->i_mutex);
  1864. return ret;
  1865. }
  1866. }
  1867. /* zero the front end of the last page */
  1868. if (offset + len < round_up(inode->i_size, PAGE_CACHE_SIZE)) {
  1869. ret = btrfs_truncate_page(inode, offset + len, 0, 1);
  1870. if (ret) {
  1871. mutex_unlock(&inode->i_mutex);
  1872. return ret;
  1873. }
  1874. }
  1875. if (lockend < lockstart) {
  1876. mutex_unlock(&inode->i_mutex);
  1877. return 0;
  1878. }
  1879. while (1) {
  1880. struct btrfs_ordered_extent *ordered;
  1881. truncate_pagecache_range(inode, lockstart, lockend);
  1882. lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
  1883. 0, &cached_state);
  1884. ordered = btrfs_lookup_first_ordered_extent(inode, lockend);
  1885. /*
  1886. * We need to make sure we have no ordered extents in this range
  1887. * and nobody raced in and read a page in this range, if we did
  1888. * we need to try again.
  1889. */
  1890. if ((!ordered ||
  1891. (ordered->file_offset + ordered->len < lockstart ||
  1892. ordered->file_offset > lockend)) &&
  1893. !test_range_bit(&BTRFS_I(inode)->io_tree, lockstart,
  1894. lockend, EXTENT_UPTODATE, 0,
  1895. cached_state)) {
  1896. if (ordered)
  1897. btrfs_put_ordered_extent(ordered);
  1898. break;
  1899. }
  1900. if (ordered)
  1901. btrfs_put_ordered_extent(ordered);
  1902. unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart,
  1903. lockend, &cached_state, GFP_NOFS);
  1904. btrfs_wait_ordered_range(inode, lockstart,
  1905. lockend - lockstart + 1);
  1906. }
  1907. path = btrfs_alloc_path();
  1908. if (!path) {
  1909. ret = -ENOMEM;
  1910. goto out;
  1911. }
  1912. rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
  1913. if (!rsv) {
  1914. ret = -ENOMEM;
  1915. goto out_free;
  1916. }
  1917. rsv->size = btrfs_calc_trunc_metadata_size(root, 1);
  1918. rsv->failfast = 1;
  1919. /*
  1920. * 1 - update the inode
  1921. * 1 - removing the extents in the range
  1922. * 1 - adding the hole extent
  1923. */
  1924. trans = btrfs_start_transaction(root, 3);
  1925. if (IS_ERR(trans)) {
  1926. err = PTR_ERR(trans);
  1927. goto out_free;
  1928. }
  1929. ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, rsv,
  1930. min_size);
  1931. BUG_ON(ret);
  1932. trans->block_rsv = rsv;
  1933. while (cur_offset < lockend) {
  1934. ret = __btrfs_drop_extents(trans, root, inode, path,
  1935. cur_offset, lockend + 1,
  1936. &drop_end, 1);
  1937. if (ret != -ENOSPC)
  1938. break;
  1939. trans->block_rsv = &root->fs_info->trans_block_rsv;
  1940. ret = fill_holes(trans, inode, path, cur_offset, drop_end);
  1941. if (ret) {
  1942. err = ret;
  1943. break;
  1944. }
  1945. cur_offset = drop_end;
  1946. ret = btrfs_update_inode(trans, root, inode);
  1947. if (ret) {
  1948. err = ret;
  1949. break;
  1950. }
  1951. btrfs_end_transaction(trans, root);
  1952. btrfs_btree_balance_dirty(root);
  1953. trans = btrfs_start_transaction(root, 3);
  1954. if (IS_ERR(trans)) {
  1955. ret = PTR_ERR(trans);
  1956. trans = NULL;
  1957. break;
  1958. }
  1959. ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv,
  1960. rsv, min_size);
  1961. BUG_ON(ret); /* shouldn't happen */
  1962. trans->block_rsv = rsv;
  1963. }
  1964. if (ret) {
  1965. err = ret;
  1966. goto out_trans;
  1967. }
  1968. trans->block_rsv = &root->fs_info->trans_block_rsv;
  1969. ret = fill_holes(trans, inode, path, cur_offset, drop_end);
  1970. if (ret) {
  1971. err = ret;
  1972. goto out_trans;
  1973. }
  1974. out_trans:
  1975. if (!trans)
  1976. goto out_free;
  1977. inode_inc_iversion(inode);
  1978. inode->i_mtime = inode->i_ctime = CURRENT_TIME;
  1979. trans->block_rsv = &root->fs_info->trans_block_rsv;
  1980. ret = btrfs_update_inode(trans, root, inode);
  1981. btrfs_end_transaction(trans, root);
  1982. btrfs_btree_balance_dirty(root);
  1983. out_free:
  1984. btrfs_free_path(path);
  1985. btrfs_free_block_rsv(root, rsv);
  1986. out:
  1987. unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
  1988. &cached_state, GFP_NOFS);
  1989. mutex_unlock(&inode->i_mutex);
  1990. if (ret && !err)
  1991. err = ret;
  1992. return err;
  1993. }
  1994. static long btrfs_fallocate(struct file *file, int mode,
  1995. loff_t offset, loff_t len)
  1996. {
  1997. struct inode *inode = file_inode(file);
  1998. struct extent_state *cached_state = NULL;
  1999. struct btrfs_root *root = BTRFS_I(inode)->root;
  2000. u64 cur_offset;
  2001. u64 last_byte;
  2002. u64 alloc_start;
  2003. u64 alloc_end;
  2004. u64 alloc_hint = 0;
  2005. u64 locked_end;
  2006. struct extent_map *em;
  2007. int blocksize = BTRFS_I(inode)->root->sectorsize;
  2008. int ret;
  2009. alloc_start = round_down(offset, blocksize);
  2010. alloc_end = round_up(offset + len, blocksize);
  2011. /* Make sure we aren't being give some crap mode */
  2012. if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
  2013. return -EOPNOTSUPP;
  2014. if (mode & FALLOC_FL_PUNCH_HOLE)
  2015. return btrfs_punch_hole(inode, offset, len);
  2016. /*
  2017. * Make sure we have enough space before we do the
  2018. * allocation.
  2019. */
  2020. ret = btrfs_check_data_free_space(inode, alloc_end - alloc_start);
  2021. if (ret)
  2022. return ret;
  2023. if (root->fs_info->quota_enabled) {
  2024. ret = btrfs_qgroup_reserve(root, alloc_end - alloc_start);
  2025. if (ret)
  2026. goto out_reserve_fail;
  2027. }
  2028. mutex_lock(&inode->i_mutex);
  2029. ret = inode_newsize_ok(inode, alloc_end);
  2030. if (ret)
  2031. goto out;
  2032. if (alloc_start > inode->i_size) {
  2033. ret = btrfs_cont_expand(inode, i_size_read(inode),
  2034. alloc_start);
  2035. if (ret)
  2036. goto out;
  2037. } else {
  2038. /*
  2039. * If we are fallocating from the end of the file onward we
  2040. * need to zero out the end of the page if i_size lands in the
  2041. * middle of a page.
  2042. */
  2043. ret = btrfs_truncate_page(inode, inode->i_size, 0, 0);
  2044. if (ret)
  2045. goto out;
  2046. }
  2047. /*
  2048. * wait for ordered IO before we have any locks. We'll loop again
  2049. * below with the locks held.
  2050. */
  2051. btrfs_wait_ordered_range(inode, alloc_start, alloc_end - alloc_start);
  2052. locked_end = alloc_end - 1;
  2053. while (1) {
  2054. struct btrfs_ordered_extent *ordered;
  2055. /* the extent lock is ordered inside the running
  2056. * transaction
  2057. */
  2058. lock_extent_bits(&BTRFS_I(inode)->io_tree, alloc_start,
  2059. locked_end, 0, &cached_state);
  2060. ordered = btrfs_lookup_first_ordered_extent(inode,
  2061. alloc_end - 1);
  2062. if (ordered &&
  2063. ordered->file_offset + ordered->len > alloc_start &&
  2064. ordered->file_offset < alloc_end) {
  2065. btrfs_put_ordered_extent(ordered);
  2066. unlock_extent_cached(&BTRFS_I(inode)->io_tree,
  2067. alloc_start, locked_end,
  2068. &cached_state, GFP_NOFS);
  2069. /*
  2070. * we can't wait on the range with the transaction
  2071. * running or with the extent lock held
  2072. */
  2073. btrfs_wait_ordered_range(inode, alloc_start,
  2074. alloc_end - alloc_start);
  2075. } else {
  2076. if (ordered)
  2077. btrfs_put_ordered_extent(ordered);
  2078. break;
  2079. }
  2080. }
  2081. cur_offset = alloc_start;
  2082. while (1) {
  2083. u64 actual_end;
  2084. em = btrfs_get_extent(inode, NULL, 0, cur_offset,
  2085. alloc_end - cur_offset, 0);
  2086. if (IS_ERR_OR_NULL(em)) {
  2087. if (!em)
  2088. ret = -ENOMEM;
  2089. else
  2090. ret = PTR_ERR(em);
  2091. break;
  2092. }
  2093. last_byte = min(extent_map_end(em), alloc_end);
  2094. actual_end = min_t(u64, extent_map_end(em), offset + len);
  2095. last_byte = ALIGN(last_byte, blocksize);
  2096. if (em->block_start == EXTENT_MAP_HOLE ||
  2097. (cur_offset >= inode->i_size &&
  2098. !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
  2099. ret = btrfs_prealloc_file_range(inode, mode, cur_offset,
  2100. last_byte - cur_offset,
  2101. 1 << inode->i_blkbits,
  2102. offset + len,
  2103. &alloc_hint);
  2104. if (ret < 0) {
  2105. free_extent_map(em);
  2106. break;
  2107. }
  2108. } else if (actual_end > inode->i_size &&
  2109. !(mode & FALLOC_FL_KEEP_SIZE)) {
  2110. /*
  2111. * We didn't need to allocate any more space, but we
  2112. * still extended the size of the file so we need to
  2113. * update i_size.
  2114. */
  2115. inode->i_ctime = CURRENT_TIME;
  2116. i_size_write(inode, actual_end);
  2117. btrfs_ordered_update_i_size(inode, actual_end, NULL);
  2118. }
  2119. free_extent_map(em);
  2120. cur_offset = last_byte;
  2121. if (cur_offset >= alloc_end) {
  2122. ret = 0;
  2123. break;
  2124. }
  2125. }
  2126. unlock_extent_cached(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
  2127. &cached_state, GFP_NOFS);
  2128. out:
  2129. mutex_unlock(&inode->i_mutex);
  2130. if (root->fs_info->quota_enabled)
  2131. btrfs_qgroup_free(root, alloc_end - alloc_start);
  2132. out_reserve_fail:
  2133. /* Let go of our reservation. */
  2134. btrfs_free_reserved_data_space(inode, alloc_end - alloc_start);
  2135. return ret;
  2136. }
  2137. static int find_desired_extent(struct inode *inode, loff_t *offset, int whence)
  2138. {
  2139. struct btrfs_root *root = BTRFS_I(inode)->root;
  2140. struct extent_map *em;
  2141. struct extent_state *cached_state = NULL;
  2142. u64 lockstart = *offset;
  2143. u64 lockend = i_size_read(inode);
  2144. u64 start = *offset;
  2145. u64 orig_start = *offset;
  2146. u64 len = i_size_read(inode);
  2147. u64 last_end = 0;
  2148. int ret = 0;
  2149. lockend = max_t(u64, root->sectorsize, lockend);
  2150. if (lockend <= lockstart)
  2151. lockend = lockstart + root->sectorsize;
  2152. lockend--;
  2153. len = lockend - lockstart + 1;
  2154. len = max_t(u64, len, root->sectorsize);
  2155. if (inode->i_size == 0)
  2156. return -ENXIO;
  2157. lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend, 0,
  2158. &cached_state);
  2159. /*
  2160. * Delalloc is such a pain. If we have a hole and we have pending
  2161. * delalloc for a portion of the hole we will get back a hole that
  2162. * exists for the entire range since it hasn't been actually written
  2163. * yet. So to take care of this case we need to look for an extent just
  2164. * before the position we want in case there is outstanding delalloc
  2165. * going on here.
  2166. */
  2167. if (whence == SEEK_HOLE && start != 0) {
  2168. if (start <= root->sectorsize)
  2169. em = btrfs_get_extent_fiemap(inode, NULL, 0, 0,
  2170. root->sectorsize, 0);
  2171. else
  2172. em = btrfs_get_extent_fiemap(inode, NULL, 0,
  2173. start - root->sectorsize,
  2174. root->sectorsize, 0);
  2175. if (IS_ERR(em)) {
  2176. ret = PTR_ERR(em);
  2177. goto out;
  2178. }
  2179. last_end = em->start + em->len;
  2180. if (em->block_start == EXTENT_MAP_DELALLOC)
  2181. last_end = min_t(u64, last_end, inode->i_size);
  2182. free_extent_map(em);
  2183. }
  2184. while (1) {
  2185. em = btrfs_get_extent_fiemap(inode, NULL, 0, start, len, 0);
  2186. if (IS_ERR(em)) {
  2187. ret = PTR_ERR(em);
  2188. break;
  2189. }
  2190. if (em->block_start == EXTENT_MAP_HOLE) {
  2191. if (test_bit(EXTENT_FLAG_VACANCY, &em->flags)) {
  2192. if (last_end <= orig_start) {
  2193. free_extent_map(em);
  2194. ret = -ENXIO;
  2195. break;
  2196. }
  2197. }
  2198. if (whence == SEEK_HOLE) {
  2199. *offset = start;
  2200. free_extent_map(em);
  2201. break;
  2202. }
  2203. } else {
  2204. if (whence == SEEK_DATA) {
  2205. if (em->block_start == EXTENT_MAP_DELALLOC) {
  2206. if (start >= inode->i_size) {
  2207. free_extent_map(em);
  2208. ret = -ENXIO;
  2209. break;
  2210. }
  2211. }
  2212. if (!test_bit(EXTENT_FLAG_PREALLOC,
  2213. &em->flags)) {
  2214. *offset = start;
  2215. free_extent_map(em);
  2216. break;
  2217. }
  2218. }
  2219. }
  2220. start = em->start + em->len;
  2221. last_end = em->start + em->len;
  2222. if (em->block_start == EXTENT_MAP_DELALLOC)
  2223. last_end = min_t(u64, last_end, inode->i_size);
  2224. if (test_bit(EXTENT_FLAG_VACANCY, &em->flags)) {
  2225. free_extent_map(em);
  2226. ret = -ENXIO;
  2227. break;
  2228. }
  2229. free_extent_map(em);
  2230. cond_resched();
  2231. }
  2232. if (!ret)
  2233. *offset = min(*offset, inode->i_size);
  2234. out:
  2235. unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
  2236. &cached_state, GFP_NOFS);
  2237. return ret;
  2238. }
  2239. static loff_t btrfs_file_llseek(struct file *file, loff_t offset, int whence)
  2240. {
  2241. struct inode *inode = file->f_mapping->host;
  2242. int ret;
  2243. mutex_lock(&inode->i_mutex);
  2244. switch (whence) {
  2245. case SEEK_END:
  2246. case SEEK_CUR:
  2247. offset = generic_file_llseek(file, offset, whence);
  2248. goto out;
  2249. case SEEK_DATA:
  2250. case SEEK_HOLE:
  2251. if (offset >= i_size_read(inode)) {
  2252. mutex_unlock(&inode->i_mutex);
  2253. return -ENXIO;
  2254. }
  2255. ret = find_desired_extent(inode, &offset, whence);
  2256. if (ret) {
  2257. mutex_unlock(&inode->i_mutex);
  2258. return ret;
  2259. }
  2260. }
  2261. offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
  2262. out:
  2263. mutex_unlock(&inode->i_mutex);
  2264. return offset;
  2265. }
  2266. const struct file_operations btrfs_file_operations = {
  2267. .llseek = btrfs_file_llseek,
  2268. .read = do_sync_read,
  2269. .write = do_sync_write,
  2270. .aio_read = generic_file_aio_read,
  2271. .splice_read = generic_file_splice_read,
  2272. .aio_write = btrfs_file_aio_write,
  2273. .mmap = btrfs_file_mmap,
  2274. .open = generic_file_open,
  2275. .release = btrfs_release_file,
  2276. .fsync = btrfs_sync_file,
  2277. .fallocate = btrfs_fallocate,
  2278. .unlocked_ioctl = btrfs_ioctl,
  2279. #ifdef CONFIG_COMPAT
  2280. .compat_ioctl = btrfs_ioctl,
  2281. #endif
  2282. };
  2283. void btrfs_auto_defrag_exit(void)
  2284. {
  2285. if (btrfs_inode_defrag_cachep)
  2286. kmem_cache_destroy(btrfs_inode_defrag_cachep);
  2287. }
  2288. int btrfs_auto_defrag_init(void)
  2289. {
  2290. btrfs_inode_defrag_cachep = kmem_cache_create("btrfs_inode_defrag",
  2291. sizeof(struct inode_defrag), 0,
  2292. SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
  2293. NULL);
  2294. if (!btrfs_inode_defrag_cachep)
  2295. return -ENOMEM;
  2296. return 0;
  2297. }