tcp_input.c 153 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330
  1. /*
  2. * INET An implementation of the TCP/IP protocol suite for the LINUX
  3. * operating system. INET is implemented using the BSD Socket
  4. * interface as the means of communication with the user level.
  5. *
  6. * Implementation of the Transmission Control Protocol(TCP).
  7. *
  8. * Version: $Id: tcp_input.c,v 1.243 2002/02/01 22:01:04 davem Exp $
  9. *
  10. * Authors: Ross Biro
  11. * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  12. * Mark Evans, <evansmp@uhura.aston.ac.uk>
  13. * Corey Minyard <wf-rch!minyard@relay.EU.net>
  14. * Florian La Roche, <flla@stud.uni-sb.de>
  15. * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
  16. * Linus Torvalds, <torvalds@cs.helsinki.fi>
  17. * Alan Cox, <gw4pts@gw4pts.ampr.org>
  18. * Matthew Dillon, <dillon@apollo.west.oic.com>
  19. * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
  20. * Jorge Cwik, <jorge@laser.satlink.net>
  21. */
  22. /*
  23. * Changes:
  24. * Pedro Roque : Fast Retransmit/Recovery.
  25. * Two receive queues.
  26. * Retransmit queue handled by TCP.
  27. * Better retransmit timer handling.
  28. * New congestion avoidance.
  29. * Header prediction.
  30. * Variable renaming.
  31. *
  32. * Eric : Fast Retransmit.
  33. * Randy Scott : MSS option defines.
  34. * Eric Schenk : Fixes to slow start algorithm.
  35. * Eric Schenk : Yet another double ACK bug.
  36. * Eric Schenk : Delayed ACK bug fixes.
  37. * Eric Schenk : Floyd style fast retrans war avoidance.
  38. * David S. Miller : Don't allow zero congestion window.
  39. * Eric Schenk : Fix retransmitter so that it sends
  40. * next packet on ack of previous packet.
  41. * Andi Kleen : Moved open_request checking here
  42. * and process RSTs for open_requests.
  43. * Andi Kleen : Better prune_queue, and other fixes.
  44. * Andrey Savochkin: Fix RTT measurements in the presence of
  45. * timestamps.
  46. * Andrey Savochkin: Check sequence numbers correctly when
  47. * removing SACKs due to in sequence incoming
  48. * data segments.
  49. * Andi Kleen: Make sure we never ack data there is not
  50. * enough room for. Also make this condition
  51. * a fatal error if it might still happen.
  52. * Andi Kleen: Add tcp_measure_rcv_mss to make
  53. * connections with MSS<min(MTU,ann. MSS)
  54. * work without delayed acks.
  55. * Andi Kleen: Process packets with PSH set in the
  56. * fast path.
  57. * J Hadi Salim: ECN support
  58. * Andrei Gurtov,
  59. * Pasi Sarolahti,
  60. * Panu Kuhlberg: Experimental audit of TCP (re)transmission
  61. * engine. Lots of bugs are found.
  62. * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
  63. */
  64. #include <linux/mm.h>
  65. #include <linux/module.h>
  66. #include <linux/sysctl.h>
  67. #include <net/tcp.h>
  68. #include <net/inet_common.h>
  69. #include <linux/ipsec.h>
  70. #include <asm/unaligned.h>
  71. #include <net/netdma.h>
  72. int sysctl_tcp_timestamps __read_mostly = 1;
  73. int sysctl_tcp_window_scaling __read_mostly = 1;
  74. int sysctl_tcp_sack __read_mostly = 1;
  75. int sysctl_tcp_fack __read_mostly = 1;
  76. int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
  77. int sysctl_tcp_ecn __read_mostly;
  78. int sysctl_tcp_dsack __read_mostly = 1;
  79. int sysctl_tcp_app_win __read_mostly = 31;
  80. int sysctl_tcp_adv_win_scale __read_mostly = 2;
  81. int sysctl_tcp_stdurg __read_mostly;
  82. int sysctl_tcp_rfc1337 __read_mostly;
  83. int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
  84. int sysctl_tcp_frto __read_mostly = 2;
  85. int sysctl_tcp_frto_response __read_mostly;
  86. int sysctl_tcp_nometrics_save __read_mostly;
  87. int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
  88. int sysctl_tcp_abc __read_mostly;
  89. #define FLAG_DATA 0x01 /* Incoming frame contained data. */
  90. #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
  91. #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
  92. #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
  93. #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
  94. #define FLAG_DATA_SACKED 0x20 /* New SACK. */
  95. #define FLAG_ECE 0x40 /* ECE in this ACK */
  96. #define FLAG_DATA_LOST 0x80 /* SACK detected data lossage. */
  97. #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
  98. #define FLAG_ONLY_ORIG_SACKED 0x200 /* SACKs only non-rexmit sent before RTO */
  99. #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
  100. #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */
  101. #define FLAG_NONHEAD_RETRANS_ACKED 0x1000 /* Non-head rexmitted data was ACKed */
  102. #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
  103. #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
  104. #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE)
  105. #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
  106. #define FLAG_ANY_PROGRESS (FLAG_FORWARD_PROGRESS|FLAG_SND_UNA_ADVANCED)
  107. #define IsSackFrto() (sysctl_tcp_frto == 0x2)
  108. #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
  109. #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
  110. /* Adapt the MSS value used to make delayed ack decision to the
  111. * real world.
  112. */
  113. static void tcp_measure_rcv_mss(struct sock *sk,
  114. const struct sk_buff *skb)
  115. {
  116. struct inet_connection_sock *icsk = inet_csk(sk);
  117. const unsigned int lss = icsk->icsk_ack.last_seg_size;
  118. unsigned int len;
  119. icsk->icsk_ack.last_seg_size = 0;
  120. /* skb->len may jitter because of SACKs, even if peer
  121. * sends good full-sized frames.
  122. */
  123. len = skb_shinfo(skb)->gso_size ?: skb->len;
  124. if (len >= icsk->icsk_ack.rcv_mss) {
  125. icsk->icsk_ack.rcv_mss = len;
  126. } else {
  127. /* Otherwise, we make more careful check taking into account,
  128. * that SACKs block is variable.
  129. *
  130. * "len" is invariant segment length, including TCP header.
  131. */
  132. len += skb->data - skb_transport_header(skb);
  133. if (len >= TCP_MIN_RCVMSS + sizeof(struct tcphdr) ||
  134. /* If PSH is not set, packet should be
  135. * full sized, provided peer TCP is not badly broken.
  136. * This observation (if it is correct 8)) allows
  137. * to handle super-low mtu links fairly.
  138. */
  139. (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
  140. !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
  141. /* Subtract also invariant (if peer is RFC compliant),
  142. * tcp header plus fixed timestamp option length.
  143. * Resulting "len" is MSS free of SACK jitter.
  144. */
  145. len -= tcp_sk(sk)->tcp_header_len;
  146. icsk->icsk_ack.last_seg_size = len;
  147. if (len == lss) {
  148. icsk->icsk_ack.rcv_mss = len;
  149. return;
  150. }
  151. }
  152. if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
  153. icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
  154. icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
  155. }
  156. }
  157. static void tcp_incr_quickack(struct sock *sk)
  158. {
  159. struct inet_connection_sock *icsk = inet_csk(sk);
  160. unsigned quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
  161. if (quickacks==0)
  162. quickacks=2;
  163. if (quickacks > icsk->icsk_ack.quick)
  164. icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
  165. }
  166. void tcp_enter_quickack_mode(struct sock *sk)
  167. {
  168. struct inet_connection_sock *icsk = inet_csk(sk);
  169. tcp_incr_quickack(sk);
  170. icsk->icsk_ack.pingpong = 0;
  171. icsk->icsk_ack.ato = TCP_ATO_MIN;
  172. }
  173. /* Send ACKs quickly, if "quick" count is not exhausted
  174. * and the session is not interactive.
  175. */
  176. static inline int tcp_in_quickack_mode(const struct sock *sk)
  177. {
  178. const struct inet_connection_sock *icsk = inet_csk(sk);
  179. return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
  180. }
  181. static inline void TCP_ECN_queue_cwr(struct tcp_sock *tp)
  182. {
  183. if (tp->ecn_flags&TCP_ECN_OK)
  184. tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
  185. }
  186. static inline void TCP_ECN_accept_cwr(struct tcp_sock *tp, struct sk_buff *skb)
  187. {
  188. if (tcp_hdr(skb)->cwr)
  189. tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
  190. }
  191. static inline void TCP_ECN_withdraw_cwr(struct tcp_sock *tp)
  192. {
  193. tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
  194. }
  195. static inline void TCP_ECN_check_ce(struct tcp_sock *tp, struct sk_buff *skb)
  196. {
  197. if (tp->ecn_flags&TCP_ECN_OK) {
  198. if (INET_ECN_is_ce(TCP_SKB_CB(skb)->flags))
  199. tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
  200. /* Funny extension: if ECT is not set on a segment,
  201. * it is surely retransmit. It is not in ECN RFC,
  202. * but Linux follows this rule. */
  203. else if (INET_ECN_is_not_ect((TCP_SKB_CB(skb)->flags)))
  204. tcp_enter_quickack_mode((struct sock *)tp);
  205. }
  206. }
  207. static inline void TCP_ECN_rcv_synack(struct tcp_sock *tp, struct tcphdr *th)
  208. {
  209. if ((tp->ecn_flags&TCP_ECN_OK) && (!th->ece || th->cwr))
  210. tp->ecn_flags &= ~TCP_ECN_OK;
  211. }
  212. static inline void TCP_ECN_rcv_syn(struct tcp_sock *tp, struct tcphdr *th)
  213. {
  214. if ((tp->ecn_flags&TCP_ECN_OK) && (!th->ece || !th->cwr))
  215. tp->ecn_flags &= ~TCP_ECN_OK;
  216. }
  217. static inline int TCP_ECN_rcv_ecn_echo(struct tcp_sock *tp, struct tcphdr *th)
  218. {
  219. if (th->ece && !th->syn && (tp->ecn_flags&TCP_ECN_OK))
  220. return 1;
  221. return 0;
  222. }
  223. /* Buffer size and advertised window tuning.
  224. *
  225. * 1. Tuning sk->sk_sndbuf, when connection enters established state.
  226. */
  227. static void tcp_fixup_sndbuf(struct sock *sk)
  228. {
  229. int sndmem = tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER + 16 +
  230. sizeof(struct sk_buff);
  231. if (sk->sk_sndbuf < 3 * sndmem)
  232. sk->sk_sndbuf = min(3 * sndmem, sysctl_tcp_wmem[2]);
  233. }
  234. /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
  235. *
  236. * All tcp_full_space() is split to two parts: "network" buffer, allocated
  237. * forward and advertised in receiver window (tp->rcv_wnd) and
  238. * "application buffer", required to isolate scheduling/application
  239. * latencies from network.
  240. * window_clamp is maximal advertised window. It can be less than
  241. * tcp_full_space(), in this case tcp_full_space() - window_clamp
  242. * is reserved for "application" buffer. The less window_clamp is
  243. * the smoother our behaviour from viewpoint of network, but the lower
  244. * throughput and the higher sensitivity of the connection to losses. 8)
  245. *
  246. * rcv_ssthresh is more strict window_clamp used at "slow start"
  247. * phase to predict further behaviour of this connection.
  248. * It is used for two goals:
  249. * - to enforce header prediction at sender, even when application
  250. * requires some significant "application buffer". It is check #1.
  251. * - to prevent pruning of receive queue because of misprediction
  252. * of receiver window. Check #2.
  253. *
  254. * The scheme does not work when sender sends good segments opening
  255. * window and then starts to feed us spaghetti. But it should work
  256. * in common situations. Otherwise, we have to rely on queue collapsing.
  257. */
  258. /* Slow part of check#2. */
  259. static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
  260. {
  261. struct tcp_sock *tp = tcp_sk(sk);
  262. /* Optimize this! */
  263. int truesize = tcp_win_from_space(skb->truesize)/2;
  264. int window = tcp_win_from_space(sysctl_tcp_rmem[2])/2;
  265. while (tp->rcv_ssthresh <= window) {
  266. if (truesize <= skb->len)
  267. return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
  268. truesize >>= 1;
  269. window >>= 1;
  270. }
  271. return 0;
  272. }
  273. static void tcp_grow_window(struct sock *sk,
  274. struct sk_buff *skb)
  275. {
  276. struct tcp_sock *tp = tcp_sk(sk);
  277. /* Check #1 */
  278. if (tp->rcv_ssthresh < tp->window_clamp &&
  279. (int)tp->rcv_ssthresh < tcp_space(sk) &&
  280. !tcp_memory_pressure) {
  281. int incr;
  282. /* Check #2. Increase window, if skb with such overhead
  283. * will fit to rcvbuf in future.
  284. */
  285. if (tcp_win_from_space(skb->truesize) <= skb->len)
  286. incr = 2*tp->advmss;
  287. else
  288. incr = __tcp_grow_window(sk, skb);
  289. if (incr) {
  290. tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr, tp->window_clamp);
  291. inet_csk(sk)->icsk_ack.quick |= 1;
  292. }
  293. }
  294. }
  295. /* 3. Tuning rcvbuf, when connection enters established state. */
  296. static void tcp_fixup_rcvbuf(struct sock *sk)
  297. {
  298. struct tcp_sock *tp = tcp_sk(sk);
  299. int rcvmem = tp->advmss + MAX_TCP_HEADER + 16 + sizeof(struct sk_buff);
  300. /* Try to select rcvbuf so that 4 mss-sized segments
  301. * will fit to window and corresponding skbs will fit to our rcvbuf.
  302. * (was 3; 4 is minimum to allow fast retransmit to work.)
  303. */
  304. while (tcp_win_from_space(rcvmem) < tp->advmss)
  305. rcvmem += 128;
  306. if (sk->sk_rcvbuf < 4 * rcvmem)
  307. sk->sk_rcvbuf = min(4 * rcvmem, sysctl_tcp_rmem[2]);
  308. }
  309. /* 4. Try to fixup all. It is made immediately after connection enters
  310. * established state.
  311. */
  312. static void tcp_init_buffer_space(struct sock *sk)
  313. {
  314. struct tcp_sock *tp = tcp_sk(sk);
  315. int maxwin;
  316. if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
  317. tcp_fixup_rcvbuf(sk);
  318. if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
  319. tcp_fixup_sndbuf(sk);
  320. tp->rcvq_space.space = tp->rcv_wnd;
  321. maxwin = tcp_full_space(sk);
  322. if (tp->window_clamp >= maxwin) {
  323. tp->window_clamp = maxwin;
  324. if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
  325. tp->window_clamp = max(maxwin -
  326. (maxwin >> sysctl_tcp_app_win),
  327. 4 * tp->advmss);
  328. }
  329. /* Force reservation of one segment. */
  330. if (sysctl_tcp_app_win &&
  331. tp->window_clamp > 2 * tp->advmss &&
  332. tp->window_clamp + tp->advmss > maxwin)
  333. tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
  334. tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
  335. tp->snd_cwnd_stamp = tcp_time_stamp;
  336. }
  337. /* 5. Recalculate window clamp after socket hit its memory bounds. */
  338. static void tcp_clamp_window(struct sock *sk)
  339. {
  340. struct tcp_sock *tp = tcp_sk(sk);
  341. struct inet_connection_sock *icsk = inet_csk(sk);
  342. icsk->icsk_ack.quick = 0;
  343. if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
  344. !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
  345. !tcp_memory_pressure &&
  346. atomic_read(&tcp_memory_allocated) < sysctl_tcp_mem[0]) {
  347. sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
  348. sysctl_tcp_rmem[2]);
  349. }
  350. if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
  351. tp->rcv_ssthresh = min(tp->window_clamp, 2U*tp->advmss);
  352. }
  353. /* Initialize RCV_MSS value.
  354. * RCV_MSS is an our guess about MSS used by the peer.
  355. * We haven't any direct information about the MSS.
  356. * It's better to underestimate the RCV_MSS rather than overestimate.
  357. * Overestimations make us ACKing less frequently than needed.
  358. * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
  359. */
  360. void tcp_initialize_rcv_mss(struct sock *sk)
  361. {
  362. struct tcp_sock *tp = tcp_sk(sk);
  363. unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
  364. hint = min(hint, tp->rcv_wnd/2);
  365. hint = min(hint, TCP_MIN_RCVMSS);
  366. hint = max(hint, TCP_MIN_MSS);
  367. inet_csk(sk)->icsk_ack.rcv_mss = hint;
  368. }
  369. /* Receiver "autotuning" code.
  370. *
  371. * The algorithm for RTT estimation w/o timestamps is based on
  372. * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
  373. * <http://www.lanl.gov/radiant/website/pubs/drs/lacsi2001.ps>
  374. *
  375. * More detail on this code can be found at
  376. * <http://www.psc.edu/~jheffner/senior_thesis.ps>,
  377. * though this reference is out of date. A new paper
  378. * is pending.
  379. */
  380. static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
  381. {
  382. u32 new_sample = tp->rcv_rtt_est.rtt;
  383. long m = sample;
  384. if (m == 0)
  385. m = 1;
  386. if (new_sample != 0) {
  387. /* If we sample in larger samples in the non-timestamp
  388. * case, we could grossly overestimate the RTT especially
  389. * with chatty applications or bulk transfer apps which
  390. * are stalled on filesystem I/O.
  391. *
  392. * Also, since we are only going for a minimum in the
  393. * non-timestamp case, we do not smooth things out
  394. * else with timestamps disabled convergence takes too
  395. * long.
  396. */
  397. if (!win_dep) {
  398. m -= (new_sample >> 3);
  399. new_sample += m;
  400. } else if (m < new_sample)
  401. new_sample = m << 3;
  402. } else {
  403. /* No previous measure. */
  404. new_sample = m << 3;
  405. }
  406. if (tp->rcv_rtt_est.rtt != new_sample)
  407. tp->rcv_rtt_est.rtt = new_sample;
  408. }
  409. static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
  410. {
  411. if (tp->rcv_rtt_est.time == 0)
  412. goto new_measure;
  413. if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
  414. return;
  415. tcp_rcv_rtt_update(tp,
  416. jiffies - tp->rcv_rtt_est.time,
  417. 1);
  418. new_measure:
  419. tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
  420. tp->rcv_rtt_est.time = tcp_time_stamp;
  421. }
  422. static inline void tcp_rcv_rtt_measure_ts(struct sock *sk, const struct sk_buff *skb)
  423. {
  424. struct tcp_sock *tp = tcp_sk(sk);
  425. if (tp->rx_opt.rcv_tsecr &&
  426. (TCP_SKB_CB(skb)->end_seq -
  427. TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
  428. tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
  429. }
  430. /*
  431. * This function should be called every time data is copied to user space.
  432. * It calculates the appropriate TCP receive buffer space.
  433. */
  434. void tcp_rcv_space_adjust(struct sock *sk)
  435. {
  436. struct tcp_sock *tp = tcp_sk(sk);
  437. int time;
  438. int space;
  439. if (tp->rcvq_space.time == 0)
  440. goto new_measure;
  441. time = tcp_time_stamp - tp->rcvq_space.time;
  442. if (time < (tp->rcv_rtt_est.rtt >> 3) ||
  443. tp->rcv_rtt_est.rtt == 0)
  444. return;
  445. space = 2 * (tp->copied_seq - tp->rcvq_space.seq);
  446. space = max(tp->rcvq_space.space, space);
  447. if (tp->rcvq_space.space != space) {
  448. int rcvmem;
  449. tp->rcvq_space.space = space;
  450. if (sysctl_tcp_moderate_rcvbuf &&
  451. !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
  452. int new_clamp = space;
  453. /* Receive space grows, normalize in order to
  454. * take into account packet headers and sk_buff
  455. * structure overhead.
  456. */
  457. space /= tp->advmss;
  458. if (!space)
  459. space = 1;
  460. rcvmem = (tp->advmss + MAX_TCP_HEADER +
  461. 16 + sizeof(struct sk_buff));
  462. while (tcp_win_from_space(rcvmem) < tp->advmss)
  463. rcvmem += 128;
  464. space *= rcvmem;
  465. space = min(space, sysctl_tcp_rmem[2]);
  466. if (space > sk->sk_rcvbuf) {
  467. sk->sk_rcvbuf = space;
  468. /* Make the window clamp follow along. */
  469. tp->window_clamp = new_clamp;
  470. }
  471. }
  472. }
  473. new_measure:
  474. tp->rcvq_space.seq = tp->copied_seq;
  475. tp->rcvq_space.time = tcp_time_stamp;
  476. }
  477. /* There is something which you must keep in mind when you analyze the
  478. * behavior of the tp->ato delayed ack timeout interval. When a
  479. * connection starts up, we want to ack as quickly as possible. The
  480. * problem is that "good" TCP's do slow start at the beginning of data
  481. * transmission. The means that until we send the first few ACK's the
  482. * sender will sit on his end and only queue most of his data, because
  483. * he can only send snd_cwnd unacked packets at any given time. For
  484. * each ACK we send, he increments snd_cwnd and transmits more of his
  485. * queue. -DaveM
  486. */
  487. static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
  488. {
  489. struct tcp_sock *tp = tcp_sk(sk);
  490. struct inet_connection_sock *icsk = inet_csk(sk);
  491. u32 now;
  492. inet_csk_schedule_ack(sk);
  493. tcp_measure_rcv_mss(sk, skb);
  494. tcp_rcv_rtt_measure(tp);
  495. now = tcp_time_stamp;
  496. if (!icsk->icsk_ack.ato) {
  497. /* The _first_ data packet received, initialize
  498. * delayed ACK engine.
  499. */
  500. tcp_incr_quickack(sk);
  501. icsk->icsk_ack.ato = TCP_ATO_MIN;
  502. } else {
  503. int m = now - icsk->icsk_ack.lrcvtime;
  504. if (m <= TCP_ATO_MIN/2) {
  505. /* The fastest case is the first. */
  506. icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
  507. } else if (m < icsk->icsk_ack.ato) {
  508. icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
  509. if (icsk->icsk_ack.ato > icsk->icsk_rto)
  510. icsk->icsk_ack.ato = icsk->icsk_rto;
  511. } else if (m > icsk->icsk_rto) {
  512. /* Too long gap. Apparently sender failed to
  513. * restart window, so that we send ACKs quickly.
  514. */
  515. tcp_incr_quickack(sk);
  516. sk_stream_mem_reclaim(sk);
  517. }
  518. }
  519. icsk->icsk_ack.lrcvtime = now;
  520. TCP_ECN_check_ce(tp, skb);
  521. if (skb->len >= 128)
  522. tcp_grow_window(sk, skb);
  523. }
  524. static u32 tcp_rto_min(struct sock *sk)
  525. {
  526. struct dst_entry *dst = __sk_dst_get(sk);
  527. u32 rto_min = TCP_RTO_MIN;
  528. if (dst && dst_metric_locked(dst, RTAX_RTO_MIN))
  529. rto_min = dst->metrics[RTAX_RTO_MIN-1];
  530. return rto_min;
  531. }
  532. /* Called to compute a smoothed rtt estimate. The data fed to this
  533. * routine either comes from timestamps, or from segments that were
  534. * known _not_ to have been retransmitted [see Karn/Partridge
  535. * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
  536. * piece by Van Jacobson.
  537. * NOTE: the next three routines used to be one big routine.
  538. * To save cycles in the RFC 1323 implementation it was better to break
  539. * it up into three procedures. -- erics
  540. */
  541. static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt)
  542. {
  543. struct tcp_sock *tp = tcp_sk(sk);
  544. long m = mrtt; /* RTT */
  545. /* The following amusing code comes from Jacobson's
  546. * article in SIGCOMM '88. Note that rtt and mdev
  547. * are scaled versions of rtt and mean deviation.
  548. * This is designed to be as fast as possible
  549. * m stands for "measurement".
  550. *
  551. * On a 1990 paper the rto value is changed to:
  552. * RTO = rtt + 4 * mdev
  553. *
  554. * Funny. This algorithm seems to be very broken.
  555. * These formulae increase RTO, when it should be decreased, increase
  556. * too slowly, when it should be increased quickly, decrease too quickly
  557. * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
  558. * does not matter how to _calculate_ it. Seems, it was trap
  559. * that VJ failed to avoid. 8)
  560. */
  561. if (m == 0)
  562. m = 1;
  563. if (tp->srtt != 0) {
  564. m -= (tp->srtt >> 3); /* m is now error in rtt est */
  565. tp->srtt += m; /* rtt = 7/8 rtt + 1/8 new */
  566. if (m < 0) {
  567. m = -m; /* m is now abs(error) */
  568. m -= (tp->mdev >> 2); /* similar update on mdev */
  569. /* This is similar to one of Eifel findings.
  570. * Eifel blocks mdev updates when rtt decreases.
  571. * This solution is a bit different: we use finer gain
  572. * for mdev in this case (alpha*beta).
  573. * Like Eifel it also prevents growth of rto,
  574. * but also it limits too fast rto decreases,
  575. * happening in pure Eifel.
  576. */
  577. if (m > 0)
  578. m >>= 3;
  579. } else {
  580. m -= (tp->mdev >> 2); /* similar update on mdev */
  581. }
  582. tp->mdev += m; /* mdev = 3/4 mdev + 1/4 new */
  583. if (tp->mdev > tp->mdev_max) {
  584. tp->mdev_max = tp->mdev;
  585. if (tp->mdev_max > tp->rttvar)
  586. tp->rttvar = tp->mdev_max;
  587. }
  588. if (after(tp->snd_una, tp->rtt_seq)) {
  589. if (tp->mdev_max < tp->rttvar)
  590. tp->rttvar -= (tp->rttvar-tp->mdev_max)>>2;
  591. tp->rtt_seq = tp->snd_nxt;
  592. tp->mdev_max = tcp_rto_min(sk);
  593. }
  594. } else {
  595. /* no previous measure. */
  596. tp->srtt = m<<3; /* take the measured time to be rtt */
  597. tp->mdev = m<<1; /* make sure rto = 3*rtt */
  598. tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
  599. tp->rtt_seq = tp->snd_nxt;
  600. }
  601. }
  602. /* Calculate rto without backoff. This is the second half of Van Jacobson's
  603. * routine referred to above.
  604. */
  605. static inline void tcp_set_rto(struct sock *sk)
  606. {
  607. const struct tcp_sock *tp = tcp_sk(sk);
  608. /* Old crap is replaced with new one. 8)
  609. *
  610. * More seriously:
  611. * 1. If rtt variance happened to be less 50msec, it is hallucination.
  612. * It cannot be less due to utterly erratic ACK generation made
  613. * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
  614. * to do with delayed acks, because at cwnd>2 true delack timeout
  615. * is invisible. Actually, Linux-2.4 also generates erratic
  616. * ACKs in some circumstances.
  617. */
  618. inet_csk(sk)->icsk_rto = (tp->srtt >> 3) + tp->rttvar;
  619. /* 2. Fixups made earlier cannot be right.
  620. * If we do not estimate RTO correctly without them,
  621. * all the algo is pure shit and should be replaced
  622. * with correct one. It is exactly, which we pretend to do.
  623. */
  624. }
  625. /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
  626. * guarantees that rto is higher.
  627. */
  628. static inline void tcp_bound_rto(struct sock *sk)
  629. {
  630. if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
  631. inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
  632. }
  633. /* Save metrics learned by this TCP session.
  634. This function is called only, when TCP finishes successfully
  635. i.e. when it enters TIME-WAIT or goes from LAST-ACK to CLOSE.
  636. */
  637. void tcp_update_metrics(struct sock *sk)
  638. {
  639. struct tcp_sock *tp = tcp_sk(sk);
  640. struct dst_entry *dst = __sk_dst_get(sk);
  641. if (sysctl_tcp_nometrics_save)
  642. return;
  643. dst_confirm(dst);
  644. if (dst && (dst->flags&DST_HOST)) {
  645. const struct inet_connection_sock *icsk = inet_csk(sk);
  646. int m;
  647. if (icsk->icsk_backoff || !tp->srtt) {
  648. /* This session failed to estimate rtt. Why?
  649. * Probably, no packets returned in time.
  650. * Reset our results.
  651. */
  652. if (!(dst_metric_locked(dst, RTAX_RTT)))
  653. dst->metrics[RTAX_RTT-1] = 0;
  654. return;
  655. }
  656. m = dst_metric(dst, RTAX_RTT) - tp->srtt;
  657. /* If newly calculated rtt larger than stored one,
  658. * store new one. Otherwise, use EWMA. Remember,
  659. * rtt overestimation is always better than underestimation.
  660. */
  661. if (!(dst_metric_locked(dst, RTAX_RTT))) {
  662. if (m <= 0)
  663. dst->metrics[RTAX_RTT-1] = tp->srtt;
  664. else
  665. dst->metrics[RTAX_RTT-1] -= (m>>3);
  666. }
  667. if (!(dst_metric_locked(dst, RTAX_RTTVAR))) {
  668. if (m < 0)
  669. m = -m;
  670. /* Scale deviation to rttvar fixed point */
  671. m >>= 1;
  672. if (m < tp->mdev)
  673. m = tp->mdev;
  674. if (m >= dst_metric(dst, RTAX_RTTVAR))
  675. dst->metrics[RTAX_RTTVAR-1] = m;
  676. else
  677. dst->metrics[RTAX_RTTVAR-1] -=
  678. (dst->metrics[RTAX_RTTVAR-1] - m)>>2;
  679. }
  680. if (tp->snd_ssthresh >= 0xFFFF) {
  681. /* Slow start still did not finish. */
  682. if (dst_metric(dst, RTAX_SSTHRESH) &&
  683. !dst_metric_locked(dst, RTAX_SSTHRESH) &&
  684. (tp->snd_cwnd >> 1) > dst_metric(dst, RTAX_SSTHRESH))
  685. dst->metrics[RTAX_SSTHRESH-1] = tp->snd_cwnd >> 1;
  686. if (!dst_metric_locked(dst, RTAX_CWND) &&
  687. tp->snd_cwnd > dst_metric(dst, RTAX_CWND))
  688. dst->metrics[RTAX_CWND-1] = tp->snd_cwnd;
  689. } else if (tp->snd_cwnd > tp->snd_ssthresh &&
  690. icsk->icsk_ca_state == TCP_CA_Open) {
  691. /* Cong. avoidance phase, cwnd is reliable. */
  692. if (!dst_metric_locked(dst, RTAX_SSTHRESH))
  693. dst->metrics[RTAX_SSTHRESH-1] =
  694. max(tp->snd_cwnd >> 1, tp->snd_ssthresh);
  695. if (!dst_metric_locked(dst, RTAX_CWND))
  696. dst->metrics[RTAX_CWND-1] = (dst->metrics[RTAX_CWND-1] + tp->snd_cwnd) >> 1;
  697. } else {
  698. /* Else slow start did not finish, cwnd is non-sense,
  699. ssthresh may be also invalid.
  700. */
  701. if (!dst_metric_locked(dst, RTAX_CWND))
  702. dst->metrics[RTAX_CWND-1] = (dst->metrics[RTAX_CWND-1] + tp->snd_ssthresh) >> 1;
  703. if (dst->metrics[RTAX_SSTHRESH-1] &&
  704. !dst_metric_locked(dst, RTAX_SSTHRESH) &&
  705. tp->snd_ssthresh > dst->metrics[RTAX_SSTHRESH-1])
  706. dst->metrics[RTAX_SSTHRESH-1] = tp->snd_ssthresh;
  707. }
  708. if (!dst_metric_locked(dst, RTAX_REORDERING)) {
  709. if (dst->metrics[RTAX_REORDERING-1] < tp->reordering &&
  710. tp->reordering != sysctl_tcp_reordering)
  711. dst->metrics[RTAX_REORDERING-1] = tp->reordering;
  712. }
  713. }
  714. }
  715. /* Numbers are taken from RFC3390.
  716. *
  717. * John Heffner states:
  718. *
  719. * The RFC specifies a window of no more than 4380 bytes
  720. * unless 2*MSS > 4380. Reading the pseudocode in the RFC
  721. * is a bit misleading because they use a clamp at 4380 bytes
  722. * rather than use a multiplier in the relevant range.
  723. */
  724. __u32 tcp_init_cwnd(struct tcp_sock *tp, struct dst_entry *dst)
  725. {
  726. __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
  727. if (!cwnd) {
  728. if (tp->mss_cache > 1460)
  729. cwnd = 2;
  730. else
  731. cwnd = (tp->mss_cache > 1095) ? 3 : 4;
  732. }
  733. return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
  734. }
  735. /* Set slow start threshold and cwnd not falling to slow start */
  736. void tcp_enter_cwr(struct sock *sk, const int set_ssthresh)
  737. {
  738. struct tcp_sock *tp = tcp_sk(sk);
  739. const struct inet_connection_sock *icsk = inet_csk(sk);
  740. tp->prior_ssthresh = 0;
  741. tp->bytes_acked = 0;
  742. if (icsk->icsk_ca_state < TCP_CA_CWR) {
  743. tp->undo_marker = 0;
  744. if (set_ssthresh)
  745. tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
  746. tp->snd_cwnd = min(tp->snd_cwnd,
  747. tcp_packets_in_flight(tp) + 1U);
  748. tp->snd_cwnd_cnt = 0;
  749. tp->high_seq = tp->snd_nxt;
  750. tp->snd_cwnd_stamp = tcp_time_stamp;
  751. TCP_ECN_queue_cwr(tp);
  752. tcp_set_ca_state(sk, TCP_CA_CWR);
  753. }
  754. }
  755. /*
  756. * Packet counting of FACK is based on in-order assumptions, therefore TCP
  757. * disables it when reordering is detected
  758. */
  759. static void tcp_disable_fack(struct tcp_sock *tp)
  760. {
  761. /* RFC3517 uses different metric in lost marker => reset on change */
  762. if (tcp_is_fack(tp))
  763. tp->lost_skb_hint = NULL;
  764. tp->rx_opt.sack_ok &= ~2;
  765. }
  766. /* Take a notice that peer is sending D-SACKs */
  767. static void tcp_dsack_seen(struct tcp_sock *tp)
  768. {
  769. tp->rx_opt.sack_ok |= 4;
  770. }
  771. /* Initialize metrics on socket. */
  772. static void tcp_init_metrics(struct sock *sk)
  773. {
  774. struct tcp_sock *tp = tcp_sk(sk);
  775. struct dst_entry *dst = __sk_dst_get(sk);
  776. if (dst == NULL)
  777. goto reset;
  778. dst_confirm(dst);
  779. if (dst_metric_locked(dst, RTAX_CWND))
  780. tp->snd_cwnd_clamp = dst_metric(dst, RTAX_CWND);
  781. if (dst_metric(dst, RTAX_SSTHRESH)) {
  782. tp->snd_ssthresh = dst_metric(dst, RTAX_SSTHRESH);
  783. if (tp->snd_ssthresh > tp->snd_cwnd_clamp)
  784. tp->snd_ssthresh = tp->snd_cwnd_clamp;
  785. }
  786. if (dst_metric(dst, RTAX_REORDERING) &&
  787. tp->reordering != dst_metric(dst, RTAX_REORDERING)) {
  788. tcp_disable_fack(tp);
  789. tp->reordering = dst_metric(dst, RTAX_REORDERING);
  790. }
  791. if (dst_metric(dst, RTAX_RTT) == 0)
  792. goto reset;
  793. if (!tp->srtt && dst_metric(dst, RTAX_RTT) < (TCP_TIMEOUT_INIT << 3))
  794. goto reset;
  795. /* Initial rtt is determined from SYN,SYN-ACK.
  796. * The segment is small and rtt may appear much
  797. * less than real one. Use per-dst memory
  798. * to make it more realistic.
  799. *
  800. * A bit of theory. RTT is time passed after "normal" sized packet
  801. * is sent until it is ACKed. In normal circumstances sending small
  802. * packets force peer to delay ACKs and calculation is correct too.
  803. * The algorithm is adaptive and, provided we follow specs, it
  804. * NEVER underestimate RTT. BUT! If peer tries to make some clever
  805. * tricks sort of "quick acks" for time long enough to decrease RTT
  806. * to low value, and then abruptly stops to do it and starts to delay
  807. * ACKs, wait for troubles.
  808. */
  809. if (dst_metric(dst, RTAX_RTT) > tp->srtt) {
  810. tp->srtt = dst_metric(dst, RTAX_RTT);
  811. tp->rtt_seq = tp->snd_nxt;
  812. }
  813. if (dst_metric(dst, RTAX_RTTVAR) > tp->mdev) {
  814. tp->mdev = dst_metric(dst, RTAX_RTTVAR);
  815. tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
  816. }
  817. tcp_set_rto(sk);
  818. tcp_bound_rto(sk);
  819. if (inet_csk(sk)->icsk_rto < TCP_TIMEOUT_INIT && !tp->rx_opt.saw_tstamp)
  820. goto reset;
  821. tp->snd_cwnd = tcp_init_cwnd(tp, dst);
  822. tp->snd_cwnd_stamp = tcp_time_stamp;
  823. return;
  824. reset:
  825. /* Play conservative. If timestamps are not
  826. * supported, TCP will fail to recalculate correct
  827. * rtt, if initial rto is too small. FORGET ALL AND RESET!
  828. */
  829. if (!tp->rx_opt.saw_tstamp && tp->srtt) {
  830. tp->srtt = 0;
  831. tp->mdev = tp->mdev_max = tp->rttvar = TCP_TIMEOUT_INIT;
  832. inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT;
  833. }
  834. }
  835. static void tcp_update_reordering(struct sock *sk, const int metric,
  836. const int ts)
  837. {
  838. struct tcp_sock *tp = tcp_sk(sk);
  839. if (metric > tp->reordering) {
  840. tp->reordering = min(TCP_MAX_REORDERING, metric);
  841. /* This exciting event is worth to be remembered. 8) */
  842. if (ts)
  843. NET_INC_STATS_BH(LINUX_MIB_TCPTSREORDER);
  844. else if (tcp_is_reno(tp))
  845. NET_INC_STATS_BH(LINUX_MIB_TCPRENOREORDER);
  846. else if (tcp_is_fack(tp))
  847. NET_INC_STATS_BH(LINUX_MIB_TCPFACKREORDER);
  848. else
  849. NET_INC_STATS_BH(LINUX_MIB_TCPSACKREORDER);
  850. #if FASTRETRANS_DEBUG > 1
  851. printk(KERN_DEBUG "Disorder%d %d %u f%u s%u rr%d\n",
  852. tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
  853. tp->reordering,
  854. tp->fackets_out,
  855. tp->sacked_out,
  856. tp->undo_marker ? tp->undo_retrans : 0);
  857. #endif
  858. tcp_disable_fack(tp);
  859. }
  860. }
  861. /* This procedure tags the retransmission queue when SACKs arrive.
  862. *
  863. * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
  864. * Packets in queue with these bits set are counted in variables
  865. * sacked_out, retrans_out and lost_out, correspondingly.
  866. *
  867. * Valid combinations are:
  868. * Tag InFlight Description
  869. * 0 1 - orig segment is in flight.
  870. * S 0 - nothing flies, orig reached receiver.
  871. * L 0 - nothing flies, orig lost by net.
  872. * R 2 - both orig and retransmit are in flight.
  873. * L|R 1 - orig is lost, retransmit is in flight.
  874. * S|R 1 - orig reached receiver, retrans is still in flight.
  875. * (L|S|R is logically valid, it could occur when L|R is sacked,
  876. * but it is equivalent to plain S and code short-curcuits it to S.
  877. * L|S is logically invalid, it would mean -1 packet in flight 8))
  878. *
  879. * These 6 states form finite state machine, controlled by the following events:
  880. * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
  881. * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
  882. * 3. Loss detection event of one of three flavors:
  883. * A. Scoreboard estimator decided the packet is lost.
  884. * A'. Reno "three dupacks" marks head of queue lost.
  885. * A''. Its FACK modfication, head until snd.fack is lost.
  886. * B. SACK arrives sacking data transmitted after never retransmitted
  887. * hole was sent out.
  888. * C. SACK arrives sacking SND.NXT at the moment, when the
  889. * segment was retransmitted.
  890. * 4. D-SACK added new rule: D-SACK changes any tag to S.
  891. *
  892. * It is pleasant to note, that state diagram turns out to be commutative,
  893. * so that we are allowed not to be bothered by order of our actions,
  894. * when multiple events arrive simultaneously. (see the function below).
  895. *
  896. * Reordering detection.
  897. * --------------------
  898. * Reordering metric is maximal distance, which a packet can be displaced
  899. * in packet stream. With SACKs we can estimate it:
  900. *
  901. * 1. SACK fills old hole and the corresponding segment was not
  902. * ever retransmitted -> reordering. Alas, we cannot use it
  903. * when segment was retransmitted.
  904. * 2. The last flaw is solved with D-SACK. D-SACK arrives
  905. * for retransmitted and already SACKed segment -> reordering..
  906. * Both of these heuristics are not used in Loss state, when we cannot
  907. * account for retransmits accurately.
  908. *
  909. * SACK block validation.
  910. * ----------------------
  911. *
  912. * SACK block range validation checks that the received SACK block fits to
  913. * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
  914. * Note that SND.UNA is not included to the range though being valid because
  915. * it means that the receiver is rather inconsistent with itself reporting
  916. * SACK reneging when it should advance SND.UNA. Such SACK block this is
  917. * perfectly valid, however, in light of RFC2018 which explicitly states
  918. * that "SACK block MUST reflect the newest segment. Even if the newest
  919. * segment is going to be discarded ...", not that it looks very clever
  920. * in case of head skb. Due to potentional receiver driven attacks, we
  921. * choose to avoid immediate execution of a walk in write queue due to
  922. * reneging and defer head skb's loss recovery to standard loss recovery
  923. * procedure that will eventually trigger (nothing forbids us doing this).
  924. *
  925. * Implements also blockage to start_seq wrap-around. Problem lies in the
  926. * fact that though start_seq (s) is before end_seq (i.e., not reversed),
  927. * there's no guarantee that it will be before snd_nxt (n). The problem
  928. * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
  929. * wrap (s_w):
  930. *
  931. * <- outs wnd -> <- wrapzone ->
  932. * u e n u_w e_w s n_w
  933. * | | | | | | |
  934. * |<------------+------+----- TCP seqno space --------------+---------->|
  935. * ...-- <2^31 ->| |<--------...
  936. * ...---- >2^31 ------>| |<--------...
  937. *
  938. * Current code wouldn't be vulnerable but it's better still to discard such
  939. * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
  940. * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
  941. * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
  942. * equal to the ideal case (infinite seqno space without wrap caused issues).
  943. *
  944. * With D-SACK the lower bound is extended to cover sequence space below
  945. * SND.UNA down to undo_marker, which is the last point of interest. Yet
  946. * again, D-SACK block must not to go across snd_una (for the same reason as
  947. * for the normal SACK blocks, explained above). But there all simplicity
  948. * ends, TCP might receive valid D-SACKs below that. As long as they reside
  949. * fully below undo_marker they do not affect behavior in anyway and can
  950. * therefore be safely ignored. In rare cases (which are more or less
  951. * theoretical ones), the D-SACK will nicely cross that boundary due to skb
  952. * fragmentation and packet reordering past skb's retransmission. To consider
  953. * them correctly, the acceptable range must be extended even more though
  954. * the exact amount is rather hard to quantify. However, tp->max_window can
  955. * be used as an exaggerated estimate.
  956. */
  957. static int tcp_is_sackblock_valid(struct tcp_sock *tp, int is_dsack,
  958. u32 start_seq, u32 end_seq)
  959. {
  960. /* Too far in future, or reversed (interpretation is ambiguous) */
  961. if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
  962. return 0;
  963. /* Nasty start_seq wrap-around check (see comments above) */
  964. if (!before(start_seq, tp->snd_nxt))
  965. return 0;
  966. /* In outstanding window? ...This is valid exit for D-SACKs too.
  967. * start_seq == snd_una is non-sensical (see comments above)
  968. */
  969. if (after(start_seq, tp->snd_una))
  970. return 1;
  971. if (!is_dsack || !tp->undo_marker)
  972. return 0;
  973. /* ...Then it's D-SACK, and must reside below snd_una completely */
  974. if (!after(end_seq, tp->snd_una))
  975. return 0;
  976. if (!before(start_seq, tp->undo_marker))
  977. return 1;
  978. /* Too old */
  979. if (!after(end_seq, tp->undo_marker))
  980. return 0;
  981. /* Undo_marker boundary crossing (overestimates a lot). Known already:
  982. * start_seq < undo_marker and end_seq >= undo_marker.
  983. */
  984. return !before(start_seq, end_seq - tp->max_window);
  985. }
  986. /* Check for lost retransmit. This superb idea is borrowed from "ratehalving".
  987. * Event "C". Later note: FACK people cheated me again 8), we have to account
  988. * for reordering! Ugly, but should help.
  989. *
  990. * Search retransmitted skbs from write_queue that were sent when snd_nxt was
  991. * less than what is now known to be received by the other end (derived from
  992. * highest SACK block). Also calculate the lowest snd_nxt among the remaining
  993. * retransmitted skbs to avoid some costly processing per ACKs.
  994. */
  995. static void tcp_mark_lost_retrans(struct sock *sk)
  996. {
  997. const struct inet_connection_sock *icsk = inet_csk(sk);
  998. struct tcp_sock *tp = tcp_sk(sk);
  999. struct sk_buff *skb;
  1000. int cnt = 0;
  1001. u32 new_low_seq = tp->snd_nxt;
  1002. u32 received_upto = TCP_SKB_CB(tp->highest_sack)->end_seq;
  1003. if (!tcp_is_fack(tp) || !tp->retrans_out ||
  1004. !after(received_upto, tp->lost_retrans_low) ||
  1005. icsk->icsk_ca_state != TCP_CA_Recovery)
  1006. return;
  1007. tcp_for_write_queue(skb, sk) {
  1008. u32 ack_seq = TCP_SKB_CB(skb)->ack_seq;
  1009. if (skb == tcp_send_head(sk))
  1010. break;
  1011. if (cnt == tp->retrans_out)
  1012. break;
  1013. if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
  1014. continue;
  1015. if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS))
  1016. continue;
  1017. if (after(received_upto, ack_seq) &&
  1018. (tcp_is_fack(tp) ||
  1019. !before(received_upto,
  1020. ack_seq + tp->reordering * tp->mss_cache))) {
  1021. TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
  1022. tp->retrans_out -= tcp_skb_pcount(skb);
  1023. /* clear lost hint */
  1024. tp->retransmit_skb_hint = NULL;
  1025. if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
  1026. tp->lost_out += tcp_skb_pcount(skb);
  1027. TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
  1028. }
  1029. NET_INC_STATS_BH(LINUX_MIB_TCPLOSTRETRANSMIT);
  1030. } else {
  1031. if (before(ack_seq, new_low_seq))
  1032. new_low_seq = ack_seq;
  1033. cnt += tcp_skb_pcount(skb);
  1034. }
  1035. }
  1036. if (tp->retrans_out)
  1037. tp->lost_retrans_low = new_low_seq;
  1038. }
  1039. static int tcp_check_dsack(struct tcp_sock *tp, struct sk_buff *ack_skb,
  1040. struct tcp_sack_block_wire *sp, int num_sacks,
  1041. u32 prior_snd_una)
  1042. {
  1043. u32 start_seq_0 = ntohl(get_unaligned(&sp[0].start_seq));
  1044. u32 end_seq_0 = ntohl(get_unaligned(&sp[0].end_seq));
  1045. int dup_sack = 0;
  1046. if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
  1047. dup_sack = 1;
  1048. tcp_dsack_seen(tp);
  1049. NET_INC_STATS_BH(LINUX_MIB_TCPDSACKRECV);
  1050. } else if (num_sacks > 1) {
  1051. u32 end_seq_1 = ntohl(get_unaligned(&sp[1].end_seq));
  1052. u32 start_seq_1 = ntohl(get_unaligned(&sp[1].start_seq));
  1053. if (!after(end_seq_0, end_seq_1) &&
  1054. !before(start_seq_0, start_seq_1)) {
  1055. dup_sack = 1;
  1056. tcp_dsack_seen(tp);
  1057. NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOFORECV);
  1058. }
  1059. }
  1060. /* D-SACK for already forgotten data... Do dumb counting. */
  1061. if (dup_sack &&
  1062. !after(end_seq_0, prior_snd_una) &&
  1063. after(end_seq_0, tp->undo_marker))
  1064. tp->undo_retrans--;
  1065. return dup_sack;
  1066. }
  1067. /* Check if skb is fully within the SACK block. In presence of GSO skbs,
  1068. * the incoming SACK may not exactly match but we can find smaller MSS
  1069. * aligned portion of it that matches. Therefore we might need to fragment
  1070. * which may fail and creates some hassle (caller must handle error case
  1071. * returns).
  1072. */
  1073. static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
  1074. u32 start_seq, u32 end_seq)
  1075. {
  1076. int in_sack, err;
  1077. unsigned int pkt_len;
  1078. in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
  1079. !before(end_seq, TCP_SKB_CB(skb)->end_seq);
  1080. if (tcp_skb_pcount(skb) > 1 && !in_sack &&
  1081. after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
  1082. in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
  1083. if (!in_sack)
  1084. pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
  1085. else
  1086. pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
  1087. err = tcp_fragment(sk, skb, pkt_len, skb_shinfo(skb)->gso_size);
  1088. if (err < 0)
  1089. return err;
  1090. }
  1091. return in_sack;
  1092. }
  1093. static int tcp_sacktag_one(struct sk_buff *skb, struct tcp_sock *tp,
  1094. int *reord, int dup_sack, int fack_count)
  1095. {
  1096. u8 sacked = TCP_SKB_CB(skb)->sacked;
  1097. int flag = 0;
  1098. /* Account D-SACK for retransmitted packet. */
  1099. if (dup_sack && (sacked & TCPCB_RETRANS)) {
  1100. if (after(TCP_SKB_CB(skb)->end_seq, tp->undo_marker))
  1101. tp->undo_retrans--;
  1102. if (sacked & TCPCB_SACKED_ACKED)
  1103. *reord = min(fack_count, *reord);
  1104. }
  1105. /* Nothing to do; acked frame is about to be dropped (was ACKed). */
  1106. if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
  1107. return flag;
  1108. if (!(sacked & TCPCB_SACKED_ACKED)) {
  1109. if (sacked & TCPCB_SACKED_RETRANS) {
  1110. /* If the segment is not tagged as lost,
  1111. * we do not clear RETRANS, believing
  1112. * that retransmission is still in flight.
  1113. */
  1114. if (sacked & TCPCB_LOST) {
  1115. TCP_SKB_CB(skb)->sacked &=
  1116. ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
  1117. tp->lost_out -= tcp_skb_pcount(skb);
  1118. tp->retrans_out -= tcp_skb_pcount(skb);
  1119. /* clear lost hint */
  1120. tp->retransmit_skb_hint = NULL;
  1121. }
  1122. } else {
  1123. if (!(sacked & TCPCB_RETRANS)) {
  1124. /* New sack for not retransmitted frame,
  1125. * which was in hole. It is reordering.
  1126. */
  1127. if (before(TCP_SKB_CB(skb)->seq,
  1128. tcp_highest_sack_seq(tp)))
  1129. *reord = min(fack_count, *reord);
  1130. /* SACK enhanced F-RTO (RFC4138; Appendix B) */
  1131. if (!after(TCP_SKB_CB(skb)->end_seq, tp->frto_highmark))
  1132. flag |= FLAG_ONLY_ORIG_SACKED;
  1133. }
  1134. if (sacked & TCPCB_LOST) {
  1135. TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
  1136. tp->lost_out -= tcp_skb_pcount(skb);
  1137. /* clear lost hint */
  1138. tp->retransmit_skb_hint = NULL;
  1139. }
  1140. }
  1141. TCP_SKB_CB(skb)->sacked |= TCPCB_SACKED_ACKED;
  1142. flag |= FLAG_DATA_SACKED;
  1143. tp->sacked_out += tcp_skb_pcount(skb);
  1144. fack_count += tcp_skb_pcount(skb);
  1145. /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
  1146. if (!tcp_is_fack(tp) && (tp->lost_skb_hint != NULL) &&
  1147. before(TCP_SKB_CB(skb)->seq,
  1148. TCP_SKB_CB(tp->lost_skb_hint)->seq))
  1149. tp->lost_cnt_hint += tcp_skb_pcount(skb);
  1150. if (fack_count > tp->fackets_out)
  1151. tp->fackets_out = fack_count;
  1152. if (after(TCP_SKB_CB(skb)->seq, tcp_highest_sack_seq(tp)))
  1153. tp->highest_sack = skb;
  1154. }
  1155. /* D-SACK. We can detect redundant retransmission in S|R and plain R
  1156. * frames and clear it. undo_retrans is decreased above, L|R frames
  1157. * are accounted above as well.
  1158. */
  1159. if (dup_sack && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)) {
  1160. TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
  1161. tp->retrans_out -= tcp_skb_pcount(skb);
  1162. tp->retransmit_skb_hint = NULL;
  1163. }
  1164. return flag;
  1165. }
  1166. static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
  1167. struct tcp_sack_block *next_dup,
  1168. u32 start_seq, u32 end_seq,
  1169. int dup_sack_in, int *fack_count,
  1170. int *reord, int *flag)
  1171. {
  1172. struct tcp_sock *tp = tcp_sk(sk);
  1173. tcp_for_write_queue_from(skb, sk) {
  1174. int in_sack = 0;
  1175. int dup_sack = dup_sack_in;
  1176. if (skb == tcp_send_head(sk))
  1177. break;
  1178. /* queue is in-order => we can short-circuit the walk early */
  1179. if (!before(TCP_SKB_CB(skb)->seq, end_seq))
  1180. break;
  1181. if ((next_dup != NULL) &&
  1182. before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
  1183. in_sack = tcp_match_skb_to_sack(sk, skb,
  1184. next_dup->start_seq,
  1185. next_dup->end_seq);
  1186. if (in_sack > 0)
  1187. dup_sack = 1;
  1188. }
  1189. if (in_sack <= 0)
  1190. in_sack = tcp_match_skb_to_sack(sk, skb, start_seq, end_seq);
  1191. if (unlikely(in_sack < 0))
  1192. break;
  1193. if (in_sack)
  1194. *flag |= tcp_sacktag_one(skb, tp, reord, dup_sack, *fack_count);
  1195. *fack_count += tcp_skb_pcount(skb);
  1196. }
  1197. return skb;
  1198. }
  1199. /* Avoid all extra work that is being done by sacktag while walking in
  1200. * a normal way
  1201. */
  1202. static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
  1203. u32 skip_to_seq)
  1204. {
  1205. tcp_for_write_queue_from(skb, sk) {
  1206. if (skb == tcp_send_head(sk))
  1207. break;
  1208. if (!before(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
  1209. break;
  1210. }
  1211. return skb;
  1212. }
  1213. static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
  1214. struct sock *sk,
  1215. struct tcp_sack_block *next_dup,
  1216. u32 skip_to_seq,
  1217. int *fack_count, int *reord,
  1218. int *flag)
  1219. {
  1220. if (next_dup == NULL)
  1221. return skb;
  1222. if (before(next_dup->start_seq, skip_to_seq)) {
  1223. skb = tcp_sacktag_skip(skb, sk, next_dup->start_seq);
  1224. tcp_sacktag_walk(skb, sk, NULL,
  1225. next_dup->start_seq, next_dup->end_seq,
  1226. 1, fack_count, reord, flag);
  1227. }
  1228. return skb;
  1229. }
  1230. static int tcp_sack_cache_ok(struct tcp_sock *tp, struct tcp_sack_block *cache)
  1231. {
  1232. return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
  1233. }
  1234. static int
  1235. tcp_sacktag_write_queue(struct sock *sk, struct sk_buff *ack_skb, u32 prior_snd_una)
  1236. {
  1237. const struct inet_connection_sock *icsk = inet_csk(sk);
  1238. struct tcp_sock *tp = tcp_sk(sk);
  1239. unsigned char *ptr = (skb_transport_header(ack_skb) +
  1240. TCP_SKB_CB(ack_skb)->sacked);
  1241. struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
  1242. struct tcp_sack_block sp[4];
  1243. struct tcp_sack_block *cache;
  1244. struct sk_buff *skb;
  1245. int num_sacks = (ptr[1] - TCPOLEN_SACK_BASE)>>3;
  1246. int used_sacks;
  1247. int reord = tp->packets_out;
  1248. int flag = 0;
  1249. int found_dup_sack = 0;
  1250. int fack_count;
  1251. int i, j;
  1252. int first_sack_index;
  1253. if (!tp->sacked_out) {
  1254. if (WARN_ON(tp->fackets_out))
  1255. tp->fackets_out = 0;
  1256. tp->highest_sack = tcp_write_queue_head(sk);
  1257. }
  1258. found_dup_sack = tcp_check_dsack(tp, ack_skb, sp_wire,
  1259. num_sacks, prior_snd_una);
  1260. if (found_dup_sack)
  1261. flag |= FLAG_DSACKING_ACK;
  1262. /* Eliminate too old ACKs, but take into
  1263. * account more or less fresh ones, they can
  1264. * contain valid SACK info.
  1265. */
  1266. if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
  1267. return 0;
  1268. if (!tp->packets_out)
  1269. goto out;
  1270. used_sacks = 0;
  1271. first_sack_index = 0;
  1272. for (i = 0; i < num_sacks; i++) {
  1273. int dup_sack = !i && found_dup_sack;
  1274. sp[used_sacks].start_seq = ntohl(get_unaligned(&sp_wire[i].start_seq));
  1275. sp[used_sacks].end_seq = ntohl(get_unaligned(&sp_wire[i].end_seq));
  1276. if (!tcp_is_sackblock_valid(tp, dup_sack,
  1277. sp[used_sacks].start_seq,
  1278. sp[used_sacks].end_seq)) {
  1279. if (dup_sack) {
  1280. if (!tp->undo_marker)
  1281. NET_INC_STATS_BH(LINUX_MIB_TCPDSACKIGNOREDNOUNDO);
  1282. else
  1283. NET_INC_STATS_BH(LINUX_MIB_TCPDSACKIGNOREDOLD);
  1284. } else {
  1285. /* Don't count olds caused by ACK reordering */
  1286. if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
  1287. !after(sp[used_sacks].end_seq, tp->snd_una))
  1288. continue;
  1289. NET_INC_STATS_BH(LINUX_MIB_TCPSACKDISCARD);
  1290. }
  1291. if (i == 0)
  1292. first_sack_index = -1;
  1293. continue;
  1294. }
  1295. /* Ignore very old stuff early */
  1296. if (!after(sp[used_sacks].end_seq, prior_snd_una))
  1297. continue;
  1298. used_sacks++;
  1299. }
  1300. /* order SACK blocks to allow in order walk of the retrans queue */
  1301. for (i = used_sacks - 1; i > 0; i--) {
  1302. for (j = 0; j < i; j++){
  1303. if (after(sp[j].start_seq, sp[j+1].start_seq)) {
  1304. struct tcp_sack_block tmp;
  1305. tmp = sp[j];
  1306. sp[j] = sp[j+1];
  1307. sp[j+1] = tmp;
  1308. /* Track where the first SACK block goes to */
  1309. if (j == first_sack_index)
  1310. first_sack_index = j+1;
  1311. }
  1312. }
  1313. }
  1314. skb = tcp_write_queue_head(sk);
  1315. fack_count = 0;
  1316. i = 0;
  1317. if (!tp->sacked_out) {
  1318. /* It's already past, so skip checking against it */
  1319. cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
  1320. } else {
  1321. cache = tp->recv_sack_cache;
  1322. /* Skip empty blocks in at head of the cache */
  1323. while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
  1324. !cache->end_seq)
  1325. cache++;
  1326. }
  1327. while (i < used_sacks) {
  1328. u32 start_seq = sp[i].start_seq;
  1329. u32 end_seq = sp[i].end_seq;
  1330. int dup_sack = (found_dup_sack && (i == first_sack_index));
  1331. struct tcp_sack_block *next_dup = NULL;
  1332. if (found_dup_sack && ((i + 1) == first_sack_index))
  1333. next_dup = &sp[i + 1];
  1334. /* Event "B" in the comment above. */
  1335. if (after(end_seq, tp->high_seq))
  1336. flag |= FLAG_DATA_LOST;
  1337. /* Skip too early cached blocks */
  1338. while (tcp_sack_cache_ok(tp, cache) &&
  1339. !before(start_seq, cache->end_seq))
  1340. cache++;
  1341. /* Can skip some work by looking recv_sack_cache? */
  1342. if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
  1343. after(end_seq, cache->start_seq)) {
  1344. /* Head todo? */
  1345. if (before(start_seq, cache->start_seq)) {
  1346. skb = tcp_sacktag_skip(skb, sk, start_seq);
  1347. skb = tcp_sacktag_walk(skb, sk, next_dup, start_seq,
  1348. cache->start_seq, dup_sack,
  1349. &fack_count, &reord, &flag);
  1350. }
  1351. /* Rest of the block already fully processed? */
  1352. if (!after(end_seq, cache->end_seq))
  1353. goto advance_sp;
  1354. skb = tcp_maybe_skipping_dsack(skb, sk, next_dup, cache->end_seq,
  1355. &fack_count, &reord, &flag);
  1356. /* ...tail remains todo... */
  1357. if (TCP_SKB_CB(tp->highest_sack)->end_seq == cache->end_seq) {
  1358. /* ...but better entrypoint exists! */
  1359. skb = tcp_write_queue_next(sk, tp->highest_sack);
  1360. fack_count = tp->fackets_out;
  1361. cache++;
  1362. goto walk;
  1363. }
  1364. skb = tcp_sacktag_skip(skb, sk, cache->end_seq);
  1365. /* Check overlap against next cached too (past this one already) */
  1366. cache++;
  1367. continue;
  1368. }
  1369. if (tp->sacked_out && !before(start_seq, tcp_highest_sack_seq(tp))) {
  1370. skb = tcp_write_queue_next(sk, tp->highest_sack);
  1371. fack_count = tp->fackets_out;
  1372. }
  1373. skb = tcp_sacktag_skip(skb, sk, start_seq);
  1374. walk:
  1375. skb = tcp_sacktag_walk(skb, sk, next_dup, start_seq, end_seq,
  1376. dup_sack, &fack_count, &reord, &flag);
  1377. advance_sp:
  1378. /* SACK enhanced FRTO (RFC4138, Appendix B): Clearing correct
  1379. * due to in-order walk
  1380. */
  1381. if (after(end_seq, tp->frto_highmark))
  1382. flag &= ~FLAG_ONLY_ORIG_SACKED;
  1383. i++;
  1384. }
  1385. /* Clear the head of the cache sack blocks so we can skip it next time */
  1386. for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
  1387. tp->recv_sack_cache[i].start_seq = 0;
  1388. tp->recv_sack_cache[i].end_seq = 0;
  1389. }
  1390. for (j = 0; j < used_sacks; j++)
  1391. tp->recv_sack_cache[i++] = sp[j];
  1392. tcp_mark_lost_retrans(sk);
  1393. tcp_verify_left_out(tp);
  1394. if ((reord < tp->fackets_out) &&
  1395. ((icsk->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker) &&
  1396. (!tp->frto_highmark || after(tp->snd_una, tp->frto_highmark)))
  1397. tcp_update_reordering(sk, tp->fackets_out - reord, 0);
  1398. out:
  1399. #if FASTRETRANS_DEBUG > 0
  1400. BUG_TRAP((int)tp->sacked_out >= 0);
  1401. BUG_TRAP((int)tp->lost_out >= 0);
  1402. BUG_TRAP((int)tp->retrans_out >= 0);
  1403. BUG_TRAP((int)tcp_packets_in_flight(tp) >= 0);
  1404. #endif
  1405. return flag;
  1406. }
  1407. /* If we receive more dupacks than we expected counting segments
  1408. * in assumption of absent reordering, interpret this as reordering.
  1409. * The only another reason could be bug in receiver TCP.
  1410. */
  1411. static void tcp_check_reno_reordering(struct sock *sk, const int addend)
  1412. {
  1413. struct tcp_sock *tp = tcp_sk(sk);
  1414. u32 holes;
  1415. holes = max(tp->lost_out, 1U);
  1416. holes = min(holes, tp->packets_out);
  1417. if ((tp->sacked_out + holes) > tp->packets_out) {
  1418. tp->sacked_out = tp->packets_out - holes;
  1419. tcp_update_reordering(sk, tp->packets_out + addend, 0);
  1420. }
  1421. }
  1422. /* Emulate SACKs for SACKless connection: account for a new dupack. */
  1423. static void tcp_add_reno_sack(struct sock *sk)
  1424. {
  1425. struct tcp_sock *tp = tcp_sk(sk);
  1426. tp->sacked_out++;
  1427. tcp_check_reno_reordering(sk, 0);
  1428. tcp_verify_left_out(tp);
  1429. }
  1430. /* Account for ACK, ACKing some data in Reno Recovery phase. */
  1431. static void tcp_remove_reno_sacks(struct sock *sk, int acked)
  1432. {
  1433. struct tcp_sock *tp = tcp_sk(sk);
  1434. if (acked > 0) {
  1435. /* One ACK acked hole. The rest eat duplicate ACKs. */
  1436. if (acked-1 >= tp->sacked_out)
  1437. tp->sacked_out = 0;
  1438. else
  1439. tp->sacked_out -= acked-1;
  1440. }
  1441. tcp_check_reno_reordering(sk, acked);
  1442. tcp_verify_left_out(tp);
  1443. }
  1444. static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
  1445. {
  1446. tp->sacked_out = 0;
  1447. }
  1448. /* F-RTO can only be used if TCP has never retransmitted anything other than
  1449. * head (SACK enhanced variant from Appendix B of RFC4138 is more robust here)
  1450. */
  1451. int tcp_use_frto(struct sock *sk)
  1452. {
  1453. const struct tcp_sock *tp = tcp_sk(sk);
  1454. struct sk_buff *skb;
  1455. if (!sysctl_tcp_frto)
  1456. return 0;
  1457. if (IsSackFrto())
  1458. return 1;
  1459. /* Avoid expensive walking of rexmit queue if possible */
  1460. if (tp->retrans_out > 1)
  1461. return 0;
  1462. skb = tcp_write_queue_head(sk);
  1463. skb = tcp_write_queue_next(sk, skb); /* Skips head */
  1464. tcp_for_write_queue_from(skb, sk) {
  1465. if (skb == tcp_send_head(sk))
  1466. break;
  1467. if (TCP_SKB_CB(skb)->sacked&TCPCB_RETRANS)
  1468. return 0;
  1469. /* Short-circuit when first non-SACKed skb has been checked */
  1470. if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED))
  1471. break;
  1472. }
  1473. return 1;
  1474. }
  1475. /* RTO occurred, but do not yet enter Loss state. Instead, defer RTO
  1476. * recovery a bit and use heuristics in tcp_process_frto() to detect if
  1477. * the RTO was spurious. Only clear SACKED_RETRANS of the head here to
  1478. * keep retrans_out counting accurate (with SACK F-RTO, other than head
  1479. * may still have that bit set); TCPCB_LOST and remaining SACKED_RETRANS
  1480. * bits are handled if the Loss state is really to be entered (in
  1481. * tcp_enter_frto_loss).
  1482. *
  1483. * Do like tcp_enter_loss() would; when RTO expires the second time it
  1484. * does:
  1485. * "Reduce ssthresh if it has not yet been made inside this window."
  1486. */
  1487. void tcp_enter_frto(struct sock *sk)
  1488. {
  1489. const struct inet_connection_sock *icsk = inet_csk(sk);
  1490. struct tcp_sock *tp = tcp_sk(sk);
  1491. struct sk_buff *skb;
  1492. if ((!tp->frto_counter && icsk->icsk_ca_state <= TCP_CA_Disorder) ||
  1493. tp->snd_una == tp->high_seq ||
  1494. ((icsk->icsk_ca_state == TCP_CA_Loss || tp->frto_counter) &&
  1495. !icsk->icsk_retransmits)) {
  1496. tp->prior_ssthresh = tcp_current_ssthresh(sk);
  1497. /* Our state is too optimistic in ssthresh() call because cwnd
  1498. * is not reduced until tcp_enter_frto_loss() when previous F-RTO
  1499. * recovery has not yet completed. Pattern would be this: RTO,
  1500. * Cumulative ACK, RTO (2xRTO for the same segment does not end
  1501. * up here twice).
  1502. * RFC4138 should be more specific on what to do, even though
  1503. * RTO is quite unlikely to occur after the first Cumulative ACK
  1504. * due to back-off and complexity of triggering events ...
  1505. */
  1506. if (tp->frto_counter) {
  1507. u32 stored_cwnd;
  1508. stored_cwnd = tp->snd_cwnd;
  1509. tp->snd_cwnd = 2;
  1510. tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
  1511. tp->snd_cwnd = stored_cwnd;
  1512. } else {
  1513. tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
  1514. }
  1515. /* ... in theory, cong.control module could do "any tricks" in
  1516. * ssthresh(), which means that ca_state, lost bits and lost_out
  1517. * counter would have to be faked before the call occurs. We
  1518. * consider that too expensive, unlikely and hacky, so modules
  1519. * using these in ssthresh() must deal these incompatibility
  1520. * issues if they receives CA_EVENT_FRTO and frto_counter != 0
  1521. */
  1522. tcp_ca_event(sk, CA_EVENT_FRTO);
  1523. }
  1524. tp->undo_marker = tp->snd_una;
  1525. tp->undo_retrans = 0;
  1526. skb = tcp_write_queue_head(sk);
  1527. if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
  1528. tp->undo_marker = 0;
  1529. if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
  1530. TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
  1531. tp->retrans_out -= tcp_skb_pcount(skb);
  1532. }
  1533. tcp_verify_left_out(tp);
  1534. /* Too bad if TCP was application limited */
  1535. tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
  1536. /* Earlier loss recovery underway (see RFC4138; Appendix B).
  1537. * The last condition is necessary at least in tp->frto_counter case.
  1538. */
  1539. if (IsSackFrto() && (tp->frto_counter ||
  1540. ((1 << icsk->icsk_ca_state) & (TCPF_CA_Recovery|TCPF_CA_Loss))) &&
  1541. after(tp->high_seq, tp->snd_una)) {
  1542. tp->frto_highmark = tp->high_seq;
  1543. } else {
  1544. tp->frto_highmark = tp->snd_nxt;
  1545. }
  1546. tcp_set_ca_state(sk, TCP_CA_Disorder);
  1547. tp->high_seq = tp->snd_nxt;
  1548. tp->frto_counter = 1;
  1549. }
  1550. /* Enter Loss state after F-RTO was applied. Dupack arrived after RTO,
  1551. * which indicates that we should follow the traditional RTO recovery,
  1552. * i.e. mark everything lost and do go-back-N retransmission.
  1553. */
  1554. static void tcp_enter_frto_loss(struct sock *sk, int allowed_segments, int flag)
  1555. {
  1556. struct tcp_sock *tp = tcp_sk(sk);
  1557. struct sk_buff *skb;
  1558. tp->lost_out = 0;
  1559. tp->retrans_out = 0;
  1560. if (tcp_is_reno(tp))
  1561. tcp_reset_reno_sack(tp);
  1562. tcp_for_write_queue(skb, sk) {
  1563. if (skb == tcp_send_head(sk))
  1564. break;
  1565. TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
  1566. /*
  1567. * Count the retransmission made on RTO correctly (only when
  1568. * waiting for the first ACK and did not get it)...
  1569. */
  1570. if ((tp->frto_counter == 1) && !(flag&FLAG_DATA_ACKED)) {
  1571. /* For some reason this R-bit might get cleared? */
  1572. if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
  1573. tp->retrans_out += tcp_skb_pcount(skb);
  1574. /* ...enter this if branch just for the first segment */
  1575. flag |= FLAG_DATA_ACKED;
  1576. } else {
  1577. if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
  1578. tp->undo_marker = 0;
  1579. TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
  1580. }
  1581. /* Don't lost mark skbs that were fwd transmitted after RTO */
  1582. if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) &&
  1583. !after(TCP_SKB_CB(skb)->end_seq, tp->frto_highmark)) {
  1584. TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
  1585. tp->lost_out += tcp_skb_pcount(skb);
  1586. }
  1587. }
  1588. tcp_verify_left_out(tp);
  1589. tp->snd_cwnd = tcp_packets_in_flight(tp) + allowed_segments;
  1590. tp->snd_cwnd_cnt = 0;
  1591. tp->snd_cwnd_stamp = tcp_time_stamp;
  1592. tp->frto_counter = 0;
  1593. tp->bytes_acked = 0;
  1594. tp->reordering = min_t(unsigned int, tp->reordering,
  1595. sysctl_tcp_reordering);
  1596. tcp_set_ca_state(sk, TCP_CA_Loss);
  1597. tp->high_seq = tp->frto_highmark;
  1598. TCP_ECN_queue_cwr(tp);
  1599. tcp_clear_retrans_hints_partial(tp);
  1600. }
  1601. static void tcp_clear_retrans_partial(struct tcp_sock *tp)
  1602. {
  1603. tp->retrans_out = 0;
  1604. tp->lost_out = 0;
  1605. tp->undo_marker = 0;
  1606. tp->undo_retrans = 0;
  1607. }
  1608. void tcp_clear_retrans(struct tcp_sock *tp)
  1609. {
  1610. tcp_clear_retrans_partial(tp);
  1611. tp->fackets_out = 0;
  1612. tp->sacked_out = 0;
  1613. }
  1614. /* Enter Loss state. If "how" is not zero, forget all SACK information
  1615. * and reset tags completely, otherwise preserve SACKs. If receiver
  1616. * dropped its ofo queue, we will know this due to reneging detection.
  1617. */
  1618. void tcp_enter_loss(struct sock *sk, int how)
  1619. {
  1620. const struct inet_connection_sock *icsk = inet_csk(sk);
  1621. struct tcp_sock *tp = tcp_sk(sk);
  1622. struct sk_buff *skb;
  1623. /* Reduce ssthresh if it has not yet been made inside this window. */
  1624. if (icsk->icsk_ca_state <= TCP_CA_Disorder || tp->snd_una == tp->high_seq ||
  1625. (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
  1626. tp->prior_ssthresh = tcp_current_ssthresh(sk);
  1627. tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
  1628. tcp_ca_event(sk, CA_EVENT_LOSS);
  1629. }
  1630. tp->snd_cwnd = 1;
  1631. tp->snd_cwnd_cnt = 0;
  1632. tp->snd_cwnd_stamp = tcp_time_stamp;
  1633. tp->bytes_acked = 0;
  1634. tcp_clear_retrans_partial(tp);
  1635. if (tcp_is_reno(tp))
  1636. tcp_reset_reno_sack(tp);
  1637. if (!how) {
  1638. /* Push undo marker, if it was plain RTO and nothing
  1639. * was retransmitted. */
  1640. tp->undo_marker = tp->snd_una;
  1641. tcp_clear_retrans_hints_partial(tp);
  1642. } else {
  1643. tp->sacked_out = 0;
  1644. tp->fackets_out = 0;
  1645. tcp_clear_all_retrans_hints(tp);
  1646. }
  1647. tcp_for_write_queue(skb, sk) {
  1648. if (skb == tcp_send_head(sk))
  1649. break;
  1650. if (TCP_SKB_CB(skb)->sacked&TCPCB_RETRANS)
  1651. tp->undo_marker = 0;
  1652. TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
  1653. if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) {
  1654. TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
  1655. TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
  1656. tp->lost_out += tcp_skb_pcount(skb);
  1657. }
  1658. }
  1659. tcp_verify_left_out(tp);
  1660. tp->reordering = min_t(unsigned int, tp->reordering,
  1661. sysctl_tcp_reordering);
  1662. tcp_set_ca_state(sk, TCP_CA_Loss);
  1663. tp->high_seq = tp->snd_nxt;
  1664. TCP_ECN_queue_cwr(tp);
  1665. /* Abort F-RTO algorithm if one is in progress */
  1666. tp->frto_counter = 0;
  1667. }
  1668. static int tcp_check_sack_reneging(struct sock *sk)
  1669. {
  1670. struct sk_buff *skb;
  1671. /* If ACK arrived pointing to a remembered SACK,
  1672. * it means that our remembered SACKs do not reflect
  1673. * real state of receiver i.e.
  1674. * receiver _host_ is heavily congested (or buggy).
  1675. * Do processing similar to RTO timeout.
  1676. */
  1677. if ((skb = tcp_write_queue_head(sk)) != NULL &&
  1678. (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
  1679. struct inet_connection_sock *icsk = inet_csk(sk);
  1680. NET_INC_STATS_BH(LINUX_MIB_TCPSACKRENEGING);
  1681. tcp_enter_loss(sk, 1);
  1682. icsk->icsk_retransmits++;
  1683. tcp_retransmit_skb(sk, tcp_write_queue_head(sk));
  1684. inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
  1685. icsk->icsk_rto, TCP_RTO_MAX);
  1686. return 1;
  1687. }
  1688. return 0;
  1689. }
  1690. static inline int tcp_fackets_out(struct tcp_sock *tp)
  1691. {
  1692. return tcp_is_reno(tp) ? tp->sacked_out+1 : tp->fackets_out;
  1693. }
  1694. /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
  1695. * counter when SACK is enabled (without SACK, sacked_out is used for
  1696. * that purpose).
  1697. *
  1698. * Instead, with FACK TCP uses fackets_out that includes both SACKed
  1699. * segments up to the highest received SACK block so far and holes in
  1700. * between them.
  1701. *
  1702. * With reordering, holes may still be in flight, so RFC3517 recovery
  1703. * uses pure sacked_out (total number of SACKed segments) even though
  1704. * it violates the RFC that uses duplicate ACKs, often these are equal
  1705. * but when e.g. out-of-window ACKs or packet duplication occurs,
  1706. * they differ. Since neither occurs due to loss, TCP should really
  1707. * ignore them.
  1708. */
  1709. static inline int tcp_dupack_heurestics(struct tcp_sock *tp)
  1710. {
  1711. return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1;
  1712. }
  1713. static inline int tcp_skb_timedout(struct sock *sk, struct sk_buff *skb)
  1714. {
  1715. return (tcp_time_stamp - TCP_SKB_CB(skb)->when > inet_csk(sk)->icsk_rto);
  1716. }
  1717. static inline int tcp_head_timedout(struct sock *sk)
  1718. {
  1719. struct tcp_sock *tp = tcp_sk(sk);
  1720. return tp->packets_out &&
  1721. tcp_skb_timedout(sk, tcp_write_queue_head(sk));
  1722. }
  1723. /* Linux NewReno/SACK/FACK/ECN state machine.
  1724. * --------------------------------------
  1725. *
  1726. * "Open" Normal state, no dubious events, fast path.
  1727. * "Disorder" In all the respects it is "Open",
  1728. * but requires a bit more attention. It is entered when
  1729. * we see some SACKs or dupacks. It is split of "Open"
  1730. * mainly to move some processing from fast path to slow one.
  1731. * "CWR" CWND was reduced due to some Congestion Notification event.
  1732. * It can be ECN, ICMP source quench, local device congestion.
  1733. * "Recovery" CWND was reduced, we are fast-retransmitting.
  1734. * "Loss" CWND was reduced due to RTO timeout or SACK reneging.
  1735. *
  1736. * tcp_fastretrans_alert() is entered:
  1737. * - each incoming ACK, if state is not "Open"
  1738. * - when arrived ACK is unusual, namely:
  1739. * * SACK
  1740. * * Duplicate ACK.
  1741. * * ECN ECE.
  1742. *
  1743. * Counting packets in flight is pretty simple.
  1744. *
  1745. * in_flight = packets_out - left_out + retrans_out
  1746. *
  1747. * packets_out is SND.NXT-SND.UNA counted in packets.
  1748. *
  1749. * retrans_out is number of retransmitted segments.
  1750. *
  1751. * left_out is number of segments left network, but not ACKed yet.
  1752. *
  1753. * left_out = sacked_out + lost_out
  1754. *
  1755. * sacked_out: Packets, which arrived to receiver out of order
  1756. * and hence not ACKed. With SACKs this number is simply
  1757. * amount of SACKed data. Even without SACKs
  1758. * it is easy to give pretty reliable estimate of this number,
  1759. * counting duplicate ACKs.
  1760. *
  1761. * lost_out: Packets lost by network. TCP has no explicit
  1762. * "loss notification" feedback from network (for now).
  1763. * It means that this number can be only _guessed_.
  1764. * Actually, it is the heuristics to predict lossage that
  1765. * distinguishes different algorithms.
  1766. *
  1767. * F.e. after RTO, when all the queue is considered as lost,
  1768. * lost_out = packets_out and in_flight = retrans_out.
  1769. *
  1770. * Essentially, we have now two algorithms counting
  1771. * lost packets.
  1772. *
  1773. * FACK: It is the simplest heuristics. As soon as we decided
  1774. * that something is lost, we decide that _all_ not SACKed
  1775. * packets until the most forward SACK are lost. I.e.
  1776. * lost_out = fackets_out - sacked_out and left_out = fackets_out.
  1777. * It is absolutely correct estimate, if network does not reorder
  1778. * packets. And it loses any connection to reality when reordering
  1779. * takes place. We use FACK by default until reordering
  1780. * is suspected on the path to this destination.
  1781. *
  1782. * NewReno: when Recovery is entered, we assume that one segment
  1783. * is lost (classic Reno). While we are in Recovery and
  1784. * a partial ACK arrives, we assume that one more packet
  1785. * is lost (NewReno). This heuristics are the same in NewReno
  1786. * and SACK.
  1787. *
  1788. * Imagine, that's all! Forget about all this shamanism about CWND inflation
  1789. * deflation etc. CWND is real congestion window, never inflated, changes
  1790. * only according to classic VJ rules.
  1791. *
  1792. * Really tricky (and requiring careful tuning) part of algorithm
  1793. * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
  1794. * The first determines the moment _when_ we should reduce CWND and,
  1795. * hence, slow down forward transmission. In fact, it determines the moment
  1796. * when we decide that hole is caused by loss, rather than by a reorder.
  1797. *
  1798. * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
  1799. * holes, caused by lost packets.
  1800. *
  1801. * And the most logically complicated part of algorithm is undo
  1802. * heuristics. We detect false retransmits due to both too early
  1803. * fast retransmit (reordering) and underestimated RTO, analyzing
  1804. * timestamps and D-SACKs. When we detect that some segments were
  1805. * retransmitted by mistake and CWND reduction was wrong, we undo
  1806. * window reduction and abort recovery phase. This logic is hidden
  1807. * inside several functions named tcp_try_undo_<something>.
  1808. */
  1809. /* This function decides, when we should leave Disordered state
  1810. * and enter Recovery phase, reducing congestion window.
  1811. *
  1812. * Main question: may we further continue forward transmission
  1813. * with the same cwnd?
  1814. */
  1815. static int tcp_time_to_recover(struct sock *sk)
  1816. {
  1817. struct tcp_sock *tp = tcp_sk(sk);
  1818. __u32 packets_out;
  1819. /* Do not perform any recovery during F-RTO algorithm */
  1820. if (tp->frto_counter)
  1821. return 0;
  1822. /* Trick#1: The loss is proven. */
  1823. if (tp->lost_out)
  1824. return 1;
  1825. /* Not-A-Trick#2 : Classic rule... */
  1826. if (tcp_dupack_heurestics(tp) > tp->reordering)
  1827. return 1;
  1828. /* Trick#3 : when we use RFC2988 timer restart, fast
  1829. * retransmit can be triggered by timeout of queue head.
  1830. */
  1831. if (tcp_is_fack(tp) && tcp_head_timedout(sk))
  1832. return 1;
  1833. /* Trick#4: It is still not OK... But will it be useful to delay
  1834. * recovery more?
  1835. */
  1836. packets_out = tp->packets_out;
  1837. if (packets_out <= tp->reordering &&
  1838. tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
  1839. !tcp_may_send_now(sk)) {
  1840. /* We have nothing to send. This connection is limited
  1841. * either by receiver window or by application.
  1842. */
  1843. return 1;
  1844. }
  1845. return 0;
  1846. }
  1847. /* RFC: This is from the original, I doubt that this is necessary at all:
  1848. * clear xmit_retrans hint if seq of this skb is beyond hint. How could we
  1849. * retransmitted past LOST markings in the first place? I'm not fully sure
  1850. * about undo and end of connection cases, which can cause R without L?
  1851. */
  1852. static void tcp_verify_retransmit_hint(struct tcp_sock *tp,
  1853. struct sk_buff *skb)
  1854. {
  1855. if ((tp->retransmit_skb_hint != NULL) &&
  1856. before(TCP_SKB_CB(skb)->seq,
  1857. TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
  1858. tp->retransmit_skb_hint = NULL;
  1859. }
  1860. /* Mark head of queue up as lost. With RFC3517 SACK, the packets is
  1861. * is against sacked "cnt", otherwise it's against facked "cnt"
  1862. */
  1863. static void tcp_mark_head_lost(struct sock *sk, int packets, int fast_rexmit)
  1864. {
  1865. struct tcp_sock *tp = tcp_sk(sk);
  1866. struct sk_buff *skb;
  1867. int cnt;
  1868. BUG_TRAP(packets <= tp->packets_out);
  1869. if (tp->lost_skb_hint) {
  1870. skb = tp->lost_skb_hint;
  1871. cnt = tp->lost_cnt_hint;
  1872. } else {
  1873. skb = tcp_write_queue_head(sk);
  1874. cnt = 0;
  1875. }
  1876. tcp_for_write_queue_from(skb, sk) {
  1877. if (skb == tcp_send_head(sk))
  1878. break;
  1879. /* TODO: do this better */
  1880. /* this is not the most efficient way to do this... */
  1881. tp->lost_skb_hint = skb;
  1882. tp->lost_cnt_hint = cnt;
  1883. if (tcp_is_fack(tp) ||
  1884. (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
  1885. cnt += tcp_skb_pcount(skb);
  1886. if (((!fast_rexmit || (tp->lost_out > 0)) && (cnt > packets)) ||
  1887. after(TCP_SKB_CB(skb)->end_seq, tp->high_seq))
  1888. break;
  1889. if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_SACKED_ACKED|TCPCB_LOST))) {
  1890. TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
  1891. tp->lost_out += tcp_skb_pcount(skb);
  1892. tcp_verify_retransmit_hint(tp, skb);
  1893. }
  1894. }
  1895. tcp_verify_left_out(tp);
  1896. }
  1897. /* Account newly detected lost packet(s) */
  1898. static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
  1899. {
  1900. struct tcp_sock *tp = tcp_sk(sk);
  1901. if (tcp_is_reno(tp)) {
  1902. tcp_mark_head_lost(sk, 1, fast_rexmit);
  1903. } else if (tcp_is_fack(tp)) {
  1904. int lost = tp->fackets_out - tp->reordering;
  1905. if (lost <= 0)
  1906. lost = 1;
  1907. tcp_mark_head_lost(sk, lost, fast_rexmit);
  1908. } else {
  1909. int sacked_upto = tp->sacked_out - tp->reordering;
  1910. if (sacked_upto < 0)
  1911. sacked_upto = 0;
  1912. tcp_mark_head_lost(sk, sacked_upto, fast_rexmit);
  1913. }
  1914. /* New heuristics: it is possible only after we switched
  1915. * to restart timer each time when something is ACKed.
  1916. * Hence, we can detect timed out packets during fast
  1917. * retransmit without falling to slow start.
  1918. */
  1919. if (tcp_is_fack(tp) && tcp_head_timedout(sk)) {
  1920. struct sk_buff *skb;
  1921. skb = tp->scoreboard_skb_hint ? tp->scoreboard_skb_hint
  1922. : tcp_write_queue_head(sk);
  1923. tcp_for_write_queue_from(skb, sk) {
  1924. if (skb == tcp_send_head(sk))
  1925. break;
  1926. if (!tcp_skb_timedout(sk, skb))
  1927. break;
  1928. if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_SACKED_ACKED|TCPCB_LOST))) {
  1929. TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
  1930. tp->lost_out += tcp_skb_pcount(skb);
  1931. tcp_verify_retransmit_hint(tp, skb);
  1932. }
  1933. }
  1934. tp->scoreboard_skb_hint = skb;
  1935. tcp_verify_left_out(tp);
  1936. }
  1937. }
  1938. /* CWND moderation, preventing bursts due to too big ACKs
  1939. * in dubious situations.
  1940. */
  1941. static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
  1942. {
  1943. tp->snd_cwnd = min(tp->snd_cwnd,
  1944. tcp_packets_in_flight(tp)+tcp_max_burst(tp));
  1945. tp->snd_cwnd_stamp = tcp_time_stamp;
  1946. }
  1947. /* Lower bound on congestion window is slow start threshold
  1948. * unless congestion avoidance choice decides to overide it.
  1949. */
  1950. static inline u32 tcp_cwnd_min(const struct sock *sk)
  1951. {
  1952. const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
  1953. return ca_ops->min_cwnd ? ca_ops->min_cwnd(sk) : tcp_sk(sk)->snd_ssthresh;
  1954. }
  1955. /* Decrease cwnd each second ack. */
  1956. static void tcp_cwnd_down(struct sock *sk, int flag)
  1957. {
  1958. struct tcp_sock *tp = tcp_sk(sk);
  1959. int decr = tp->snd_cwnd_cnt + 1;
  1960. if ((flag&(FLAG_ANY_PROGRESS|FLAG_DSACKING_ACK)) ||
  1961. (tcp_is_reno(tp) && !(flag&FLAG_NOT_DUP))) {
  1962. tp->snd_cwnd_cnt = decr&1;
  1963. decr >>= 1;
  1964. if (decr && tp->snd_cwnd > tcp_cwnd_min(sk))
  1965. tp->snd_cwnd -= decr;
  1966. tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp)+1);
  1967. tp->snd_cwnd_stamp = tcp_time_stamp;
  1968. }
  1969. }
  1970. /* Nothing was retransmitted or returned timestamp is less
  1971. * than timestamp of the first retransmission.
  1972. */
  1973. static inline int tcp_packet_delayed(struct tcp_sock *tp)
  1974. {
  1975. return !tp->retrans_stamp ||
  1976. (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
  1977. (__s32)(tp->rx_opt.rcv_tsecr - tp->retrans_stamp) < 0);
  1978. }
  1979. /* Undo procedures. */
  1980. #if FASTRETRANS_DEBUG > 1
  1981. static void DBGUNDO(struct sock *sk, const char *msg)
  1982. {
  1983. struct tcp_sock *tp = tcp_sk(sk);
  1984. struct inet_sock *inet = inet_sk(sk);
  1985. printk(KERN_DEBUG "Undo %s %u.%u.%u.%u/%u c%u l%u ss%u/%u p%u\n",
  1986. msg,
  1987. NIPQUAD(inet->daddr), ntohs(inet->dport),
  1988. tp->snd_cwnd, tcp_left_out(tp),
  1989. tp->snd_ssthresh, tp->prior_ssthresh,
  1990. tp->packets_out);
  1991. }
  1992. #else
  1993. #define DBGUNDO(x...) do { } while (0)
  1994. #endif
  1995. static void tcp_undo_cwr(struct sock *sk, const int undo)
  1996. {
  1997. struct tcp_sock *tp = tcp_sk(sk);
  1998. if (tp->prior_ssthresh) {
  1999. const struct inet_connection_sock *icsk = inet_csk(sk);
  2000. if (icsk->icsk_ca_ops->undo_cwnd)
  2001. tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
  2002. else
  2003. tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh<<1);
  2004. if (undo && tp->prior_ssthresh > tp->snd_ssthresh) {
  2005. tp->snd_ssthresh = tp->prior_ssthresh;
  2006. TCP_ECN_withdraw_cwr(tp);
  2007. }
  2008. } else {
  2009. tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
  2010. }
  2011. tcp_moderate_cwnd(tp);
  2012. tp->snd_cwnd_stamp = tcp_time_stamp;
  2013. /* There is something screwy going on with the retrans hints after
  2014. an undo */
  2015. tcp_clear_all_retrans_hints(tp);
  2016. }
  2017. static inline int tcp_may_undo(struct tcp_sock *tp)
  2018. {
  2019. return tp->undo_marker &&
  2020. (!tp->undo_retrans || tcp_packet_delayed(tp));
  2021. }
  2022. /* People celebrate: "We love our President!" */
  2023. static int tcp_try_undo_recovery(struct sock *sk)
  2024. {
  2025. struct tcp_sock *tp = tcp_sk(sk);
  2026. if (tcp_may_undo(tp)) {
  2027. /* Happy end! We did not retransmit anything
  2028. * or our original transmission succeeded.
  2029. */
  2030. DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
  2031. tcp_undo_cwr(sk, 1);
  2032. if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
  2033. NET_INC_STATS_BH(LINUX_MIB_TCPLOSSUNDO);
  2034. else
  2035. NET_INC_STATS_BH(LINUX_MIB_TCPFULLUNDO);
  2036. tp->undo_marker = 0;
  2037. }
  2038. if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
  2039. /* Hold old state until something *above* high_seq
  2040. * is ACKed. For Reno it is MUST to prevent false
  2041. * fast retransmits (RFC2582). SACK TCP is safe. */
  2042. tcp_moderate_cwnd(tp);
  2043. return 1;
  2044. }
  2045. tcp_set_ca_state(sk, TCP_CA_Open);
  2046. return 0;
  2047. }
  2048. /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
  2049. static void tcp_try_undo_dsack(struct sock *sk)
  2050. {
  2051. struct tcp_sock *tp = tcp_sk(sk);
  2052. if (tp->undo_marker && !tp->undo_retrans) {
  2053. DBGUNDO(sk, "D-SACK");
  2054. tcp_undo_cwr(sk, 1);
  2055. tp->undo_marker = 0;
  2056. NET_INC_STATS_BH(LINUX_MIB_TCPDSACKUNDO);
  2057. }
  2058. }
  2059. /* Undo during fast recovery after partial ACK. */
  2060. static int tcp_try_undo_partial(struct sock *sk, int acked)
  2061. {
  2062. struct tcp_sock *tp = tcp_sk(sk);
  2063. /* Partial ACK arrived. Force Hoe's retransmit. */
  2064. int failed = tcp_is_reno(tp) || (tcp_fackets_out(tp) > tp->reordering);
  2065. if (tcp_may_undo(tp)) {
  2066. /* Plain luck! Hole if filled with delayed
  2067. * packet, rather than with a retransmit.
  2068. */
  2069. if (tp->retrans_out == 0)
  2070. tp->retrans_stamp = 0;
  2071. tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
  2072. DBGUNDO(sk, "Hoe");
  2073. tcp_undo_cwr(sk, 0);
  2074. NET_INC_STATS_BH(LINUX_MIB_TCPPARTIALUNDO);
  2075. /* So... Do not make Hoe's retransmit yet.
  2076. * If the first packet was delayed, the rest
  2077. * ones are most probably delayed as well.
  2078. */
  2079. failed = 0;
  2080. }
  2081. return failed;
  2082. }
  2083. /* Undo during loss recovery after partial ACK. */
  2084. static int tcp_try_undo_loss(struct sock *sk)
  2085. {
  2086. struct tcp_sock *tp = tcp_sk(sk);
  2087. if (tcp_may_undo(tp)) {
  2088. struct sk_buff *skb;
  2089. tcp_for_write_queue(skb, sk) {
  2090. if (skb == tcp_send_head(sk))
  2091. break;
  2092. TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
  2093. }
  2094. tcp_clear_all_retrans_hints(tp);
  2095. DBGUNDO(sk, "partial loss");
  2096. tp->lost_out = 0;
  2097. tcp_undo_cwr(sk, 1);
  2098. NET_INC_STATS_BH(LINUX_MIB_TCPLOSSUNDO);
  2099. inet_csk(sk)->icsk_retransmits = 0;
  2100. tp->undo_marker = 0;
  2101. if (tcp_is_sack(tp))
  2102. tcp_set_ca_state(sk, TCP_CA_Open);
  2103. return 1;
  2104. }
  2105. return 0;
  2106. }
  2107. static inline void tcp_complete_cwr(struct sock *sk)
  2108. {
  2109. struct tcp_sock *tp = tcp_sk(sk);
  2110. tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
  2111. tp->snd_cwnd_stamp = tcp_time_stamp;
  2112. tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
  2113. }
  2114. static void tcp_try_to_open(struct sock *sk, int flag)
  2115. {
  2116. struct tcp_sock *tp = tcp_sk(sk);
  2117. tcp_verify_left_out(tp);
  2118. if (tp->retrans_out == 0)
  2119. tp->retrans_stamp = 0;
  2120. if (flag&FLAG_ECE)
  2121. tcp_enter_cwr(sk, 1);
  2122. if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
  2123. int state = TCP_CA_Open;
  2124. if (tcp_left_out(tp) || tp->retrans_out || tp->undo_marker)
  2125. state = TCP_CA_Disorder;
  2126. if (inet_csk(sk)->icsk_ca_state != state) {
  2127. tcp_set_ca_state(sk, state);
  2128. tp->high_seq = tp->snd_nxt;
  2129. }
  2130. tcp_moderate_cwnd(tp);
  2131. } else {
  2132. tcp_cwnd_down(sk, flag);
  2133. }
  2134. }
  2135. static void tcp_mtup_probe_failed(struct sock *sk)
  2136. {
  2137. struct inet_connection_sock *icsk = inet_csk(sk);
  2138. icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
  2139. icsk->icsk_mtup.probe_size = 0;
  2140. }
  2141. static void tcp_mtup_probe_success(struct sock *sk, struct sk_buff *skb)
  2142. {
  2143. struct tcp_sock *tp = tcp_sk(sk);
  2144. struct inet_connection_sock *icsk = inet_csk(sk);
  2145. /* FIXME: breaks with very large cwnd */
  2146. tp->prior_ssthresh = tcp_current_ssthresh(sk);
  2147. tp->snd_cwnd = tp->snd_cwnd *
  2148. tcp_mss_to_mtu(sk, tp->mss_cache) /
  2149. icsk->icsk_mtup.probe_size;
  2150. tp->snd_cwnd_cnt = 0;
  2151. tp->snd_cwnd_stamp = tcp_time_stamp;
  2152. tp->rcv_ssthresh = tcp_current_ssthresh(sk);
  2153. icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
  2154. icsk->icsk_mtup.probe_size = 0;
  2155. tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
  2156. }
  2157. /* Process an event, which can update packets-in-flight not trivially.
  2158. * Main goal of this function is to calculate new estimate for left_out,
  2159. * taking into account both packets sitting in receiver's buffer and
  2160. * packets lost by network.
  2161. *
  2162. * Besides that it does CWND reduction, when packet loss is detected
  2163. * and changes state of machine.
  2164. *
  2165. * It does _not_ decide what to send, it is made in function
  2166. * tcp_xmit_retransmit_queue().
  2167. */
  2168. static void
  2169. tcp_fastretrans_alert(struct sock *sk, int pkts_acked, int flag)
  2170. {
  2171. struct inet_connection_sock *icsk = inet_csk(sk);
  2172. struct tcp_sock *tp = tcp_sk(sk);
  2173. int is_dupack = !(flag&(FLAG_SND_UNA_ADVANCED|FLAG_NOT_DUP));
  2174. int do_lost = is_dupack || ((flag&FLAG_DATA_SACKED) &&
  2175. (tcp_fackets_out(tp) > tp->reordering));
  2176. int fast_rexmit = 0;
  2177. /* Some technical things:
  2178. * 1. Reno does not count dupacks (sacked_out) automatically. */
  2179. if (!tp->packets_out)
  2180. tp->sacked_out = 0;
  2181. if (WARN_ON(!tp->sacked_out && tp->fackets_out))
  2182. tp->fackets_out = 0;
  2183. /* Now state machine starts.
  2184. * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
  2185. if (flag&FLAG_ECE)
  2186. tp->prior_ssthresh = 0;
  2187. /* B. In all the states check for reneging SACKs. */
  2188. if (tp->sacked_out && tcp_check_sack_reneging(sk))
  2189. return;
  2190. /* C. Process data loss notification, provided it is valid. */
  2191. if (tcp_is_fack(tp) && (flag & FLAG_DATA_LOST) &&
  2192. before(tp->snd_una, tp->high_seq) &&
  2193. icsk->icsk_ca_state != TCP_CA_Open &&
  2194. tp->fackets_out > tp->reordering) {
  2195. tcp_mark_head_lost(sk, tp->fackets_out-tp->reordering, 0);
  2196. NET_INC_STATS_BH(LINUX_MIB_TCPLOSS);
  2197. }
  2198. /* D. Check consistency of the current state. */
  2199. tcp_verify_left_out(tp);
  2200. /* E. Check state exit conditions. State can be terminated
  2201. * when high_seq is ACKed. */
  2202. if (icsk->icsk_ca_state == TCP_CA_Open) {
  2203. BUG_TRAP(tp->retrans_out == 0);
  2204. tp->retrans_stamp = 0;
  2205. } else if (!before(tp->snd_una, tp->high_seq)) {
  2206. switch (icsk->icsk_ca_state) {
  2207. case TCP_CA_Loss:
  2208. icsk->icsk_retransmits = 0;
  2209. if (tcp_try_undo_recovery(sk))
  2210. return;
  2211. break;
  2212. case TCP_CA_CWR:
  2213. /* CWR is to be held something *above* high_seq
  2214. * is ACKed for CWR bit to reach receiver. */
  2215. if (tp->snd_una != tp->high_seq) {
  2216. tcp_complete_cwr(sk);
  2217. tcp_set_ca_state(sk, TCP_CA_Open);
  2218. }
  2219. break;
  2220. case TCP_CA_Disorder:
  2221. tcp_try_undo_dsack(sk);
  2222. if (!tp->undo_marker ||
  2223. /* For SACK case do not Open to allow to undo
  2224. * catching for all duplicate ACKs. */
  2225. tcp_is_reno(tp) || tp->snd_una != tp->high_seq) {
  2226. tp->undo_marker = 0;
  2227. tcp_set_ca_state(sk, TCP_CA_Open);
  2228. }
  2229. break;
  2230. case TCP_CA_Recovery:
  2231. if (tcp_is_reno(tp))
  2232. tcp_reset_reno_sack(tp);
  2233. if (tcp_try_undo_recovery(sk))
  2234. return;
  2235. tcp_complete_cwr(sk);
  2236. break;
  2237. }
  2238. }
  2239. /* F. Process state. */
  2240. switch (icsk->icsk_ca_state) {
  2241. case TCP_CA_Recovery:
  2242. if (!(flag & FLAG_SND_UNA_ADVANCED)) {
  2243. if (tcp_is_reno(tp) && is_dupack)
  2244. tcp_add_reno_sack(sk);
  2245. } else
  2246. do_lost = tcp_try_undo_partial(sk, pkts_acked);
  2247. break;
  2248. case TCP_CA_Loss:
  2249. if (flag&FLAG_DATA_ACKED)
  2250. icsk->icsk_retransmits = 0;
  2251. if (!tcp_try_undo_loss(sk)) {
  2252. tcp_moderate_cwnd(tp);
  2253. tcp_xmit_retransmit_queue(sk);
  2254. return;
  2255. }
  2256. if (icsk->icsk_ca_state != TCP_CA_Open)
  2257. return;
  2258. /* Loss is undone; fall through to processing in Open state. */
  2259. default:
  2260. if (tcp_is_reno(tp)) {
  2261. if (flag & FLAG_SND_UNA_ADVANCED)
  2262. tcp_reset_reno_sack(tp);
  2263. if (is_dupack)
  2264. tcp_add_reno_sack(sk);
  2265. }
  2266. if (icsk->icsk_ca_state == TCP_CA_Disorder)
  2267. tcp_try_undo_dsack(sk);
  2268. if (!tcp_time_to_recover(sk)) {
  2269. tcp_try_to_open(sk, flag);
  2270. return;
  2271. }
  2272. /* MTU probe failure: don't reduce cwnd */
  2273. if (icsk->icsk_ca_state < TCP_CA_CWR &&
  2274. icsk->icsk_mtup.probe_size &&
  2275. tp->snd_una == tp->mtu_probe.probe_seq_start) {
  2276. tcp_mtup_probe_failed(sk);
  2277. /* Restores the reduction we did in tcp_mtup_probe() */
  2278. tp->snd_cwnd++;
  2279. tcp_simple_retransmit(sk);
  2280. return;
  2281. }
  2282. /* Otherwise enter Recovery state */
  2283. if (tcp_is_reno(tp))
  2284. NET_INC_STATS_BH(LINUX_MIB_TCPRENORECOVERY);
  2285. else
  2286. NET_INC_STATS_BH(LINUX_MIB_TCPSACKRECOVERY);
  2287. tp->high_seq = tp->snd_nxt;
  2288. tp->prior_ssthresh = 0;
  2289. tp->undo_marker = tp->snd_una;
  2290. tp->undo_retrans = tp->retrans_out;
  2291. if (icsk->icsk_ca_state < TCP_CA_CWR) {
  2292. if (!(flag&FLAG_ECE))
  2293. tp->prior_ssthresh = tcp_current_ssthresh(sk);
  2294. tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
  2295. TCP_ECN_queue_cwr(tp);
  2296. }
  2297. tp->bytes_acked = 0;
  2298. tp->snd_cwnd_cnt = 0;
  2299. tcp_set_ca_state(sk, TCP_CA_Recovery);
  2300. fast_rexmit = 1;
  2301. }
  2302. if (do_lost || (tcp_is_fack(tp) && tcp_head_timedout(sk)))
  2303. tcp_update_scoreboard(sk, fast_rexmit);
  2304. tcp_cwnd_down(sk, flag);
  2305. tcp_xmit_retransmit_queue(sk);
  2306. }
  2307. /* Read draft-ietf-tcplw-high-performance before mucking
  2308. * with this code. (Supersedes RFC1323)
  2309. */
  2310. static void tcp_ack_saw_tstamp(struct sock *sk, int flag)
  2311. {
  2312. /* RTTM Rule: A TSecr value received in a segment is used to
  2313. * update the averaged RTT measurement only if the segment
  2314. * acknowledges some new data, i.e., only if it advances the
  2315. * left edge of the send window.
  2316. *
  2317. * See draft-ietf-tcplw-high-performance-00, section 3.3.
  2318. * 1998/04/10 Andrey V. Savochkin <saw@msu.ru>
  2319. *
  2320. * Changed: reset backoff as soon as we see the first valid sample.
  2321. * If we do not, we get strongly overestimated rto. With timestamps
  2322. * samples are accepted even from very old segments: f.e., when rtt=1
  2323. * increases to 8, we retransmit 5 times and after 8 seconds delayed
  2324. * answer arrives rto becomes 120 seconds! If at least one of segments
  2325. * in window is lost... Voila. --ANK (010210)
  2326. */
  2327. struct tcp_sock *tp = tcp_sk(sk);
  2328. const __u32 seq_rtt = tcp_time_stamp - tp->rx_opt.rcv_tsecr;
  2329. tcp_rtt_estimator(sk, seq_rtt);
  2330. tcp_set_rto(sk);
  2331. inet_csk(sk)->icsk_backoff = 0;
  2332. tcp_bound_rto(sk);
  2333. }
  2334. static void tcp_ack_no_tstamp(struct sock *sk, u32 seq_rtt, int flag)
  2335. {
  2336. /* We don't have a timestamp. Can only use
  2337. * packets that are not retransmitted to determine
  2338. * rtt estimates. Also, we must not reset the
  2339. * backoff for rto until we get a non-retransmitted
  2340. * packet. This allows us to deal with a situation
  2341. * where the network delay has increased suddenly.
  2342. * I.e. Karn's algorithm. (SIGCOMM '87, p5.)
  2343. */
  2344. if (flag & FLAG_RETRANS_DATA_ACKED)
  2345. return;
  2346. tcp_rtt_estimator(sk, seq_rtt);
  2347. tcp_set_rto(sk);
  2348. inet_csk(sk)->icsk_backoff = 0;
  2349. tcp_bound_rto(sk);
  2350. }
  2351. static inline void tcp_ack_update_rtt(struct sock *sk, const int flag,
  2352. const s32 seq_rtt)
  2353. {
  2354. const struct tcp_sock *tp = tcp_sk(sk);
  2355. /* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */
  2356. if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
  2357. tcp_ack_saw_tstamp(sk, flag);
  2358. else if (seq_rtt >= 0)
  2359. tcp_ack_no_tstamp(sk, seq_rtt, flag);
  2360. }
  2361. static void tcp_cong_avoid(struct sock *sk, u32 ack,
  2362. u32 in_flight, int good)
  2363. {
  2364. const struct inet_connection_sock *icsk = inet_csk(sk);
  2365. icsk->icsk_ca_ops->cong_avoid(sk, ack, in_flight, good);
  2366. tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
  2367. }
  2368. /* Restart timer after forward progress on connection.
  2369. * RFC2988 recommends to restart timer to now+rto.
  2370. */
  2371. static void tcp_rearm_rto(struct sock *sk)
  2372. {
  2373. struct tcp_sock *tp = tcp_sk(sk);
  2374. if (!tp->packets_out) {
  2375. inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
  2376. } else {
  2377. inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
  2378. }
  2379. }
  2380. /* If we get here, the whole TSO packet has not been acked. */
  2381. static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
  2382. {
  2383. struct tcp_sock *tp = tcp_sk(sk);
  2384. u32 packets_acked;
  2385. BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
  2386. packets_acked = tcp_skb_pcount(skb);
  2387. if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
  2388. return 0;
  2389. packets_acked -= tcp_skb_pcount(skb);
  2390. if (packets_acked) {
  2391. BUG_ON(tcp_skb_pcount(skb) == 0);
  2392. BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
  2393. }
  2394. return packets_acked;
  2395. }
  2396. /* Remove acknowledged frames from the retransmission queue. If our packet
  2397. * is before the ack sequence we can discard it as it's confirmed to have
  2398. * arrived at the other end.
  2399. */
  2400. static int tcp_clean_rtx_queue(struct sock *sk, s32 *seq_rtt_p,
  2401. int prior_fackets)
  2402. {
  2403. struct tcp_sock *tp = tcp_sk(sk);
  2404. const struct inet_connection_sock *icsk = inet_csk(sk);
  2405. struct sk_buff *skb;
  2406. u32 now = tcp_time_stamp;
  2407. int fully_acked = 1;
  2408. int flag = 0;
  2409. int prior_packets = tp->packets_out;
  2410. u32 cnt = 0;
  2411. u32 reord = tp->packets_out;
  2412. s32 seq_rtt = -1;
  2413. s32 ca_seq_rtt = -1;
  2414. ktime_t last_ackt = net_invalid_timestamp();
  2415. while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) {
  2416. struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
  2417. u32 end_seq;
  2418. u32 packets_acked;
  2419. u8 sacked = scb->sacked;
  2420. /* Determine how many packets and what bytes were acked, tso and else */
  2421. if (after(scb->end_seq, tp->snd_una)) {
  2422. if (tcp_skb_pcount(skb) == 1 ||
  2423. !after(tp->snd_una, scb->seq))
  2424. break;
  2425. packets_acked = tcp_tso_acked(sk, skb);
  2426. if (!packets_acked)
  2427. break;
  2428. fully_acked = 0;
  2429. end_seq = tp->snd_una;
  2430. } else {
  2431. packets_acked = tcp_skb_pcount(skb);
  2432. end_seq = scb->end_seq;
  2433. }
  2434. /* MTU probing checks */
  2435. if (fully_acked && icsk->icsk_mtup.probe_size &&
  2436. !after(tp->mtu_probe.probe_seq_end, scb->end_seq)) {
  2437. tcp_mtup_probe_success(sk, skb);
  2438. }
  2439. if (sacked) {
  2440. if (sacked & TCPCB_RETRANS) {
  2441. if (sacked & TCPCB_SACKED_RETRANS)
  2442. tp->retrans_out -= packets_acked;
  2443. flag |= FLAG_RETRANS_DATA_ACKED;
  2444. ca_seq_rtt = -1;
  2445. seq_rtt = -1;
  2446. if ((flag & FLAG_DATA_ACKED) ||
  2447. (packets_acked > 1))
  2448. flag |= FLAG_NONHEAD_RETRANS_ACKED;
  2449. } else {
  2450. ca_seq_rtt = now - scb->when;
  2451. last_ackt = skb->tstamp;
  2452. if (seq_rtt < 0) {
  2453. seq_rtt = ca_seq_rtt;
  2454. }
  2455. if (!(sacked & TCPCB_SACKED_ACKED))
  2456. reord = min(cnt, reord);
  2457. }
  2458. if (sacked & TCPCB_SACKED_ACKED)
  2459. tp->sacked_out -= packets_acked;
  2460. if (sacked & TCPCB_LOST)
  2461. tp->lost_out -= packets_acked;
  2462. if ((sacked & TCPCB_URG) && tp->urg_mode &&
  2463. !before(end_seq, tp->snd_up))
  2464. tp->urg_mode = 0;
  2465. } else {
  2466. ca_seq_rtt = now - scb->when;
  2467. last_ackt = skb->tstamp;
  2468. if (seq_rtt < 0) {
  2469. seq_rtt = ca_seq_rtt;
  2470. }
  2471. reord = min(cnt, reord);
  2472. }
  2473. tp->packets_out -= packets_acked;
  2474. cnt += packets_acked;
  2475. /* Initial outgoing SYN's get put onto the write_queue
  2476. * just like anything else we transmit. It is not
  2477. * true data, and if we misinform our callers that
  2478. * this ACK acks real data, we will erroneously exit
  2479. * connection startup slow start one packet too
  2480. * quickly. This is severely frowned upon behavior.
  2481. */
  2482. if (!(scb->flags & TCPCB_FLAG_SYN)) {
  2483. flag |= FLAG_DATA_ACKED;
  2484. } else {
  2485. flag |= FLAG_SYN_ACKED;
  2486. tp->retrans_stamp = 0;
  2487. }
  2488. if (!fully_acked)
  2489. break;
  2490. tcp_unlink_write_queue(skb, sk);
  2491. sk_stream_free_skb(sk, skb);
  2492. tcp_clear_all_retrans_hints(tp);
  2493. }
  2494. if (flag & FLAG_ACKED) {
  2495. u32 pkts_acked = prior_packets - tp->packets_out;
  2496. const struct tcp_congestion_ops *ca_ops
  2497. = inet_csk(sk)->icsk_ca_ops;
  2498. tcp_ack_update_rtt(sk, flag, seq_rtt);
  2499. tcp_rearm_rto(sk);
  2500. if (tcp_is_reno(tp)) {
  2501. tcp_remove_reno_sacks(sk, pkts_acked);
  2502. } else {
  2503. /* Non-retransmitted hole got filled? That's reordering */
  2504. if (reord < prior_fackets)
  2505. tcp_update_reordering(sk, tp->fackets_out - reord, 0);
  2506. }
  2507. tp->fackets_out -= min(pkts_acked, tp->fackets_out);
  2508. if (ca_ops->pkts_acked) {
  2509. s32 rtt_us = -1;
  2510. /* Is the ACK triggering packet unambiguous? */
  2511. if (!(flag & FLAG_RETRANS_DATA_ACKED)) {
  2512. /* High resolution needed and available? */
  2513. if (ca_ops->flags & TCP_CONG_RTT_STAMP &&
  2514. !ktime_equal(last_ackt,
  2515. net_invalid_timestamp()))
  2516. rtt_us = ktime_us_delta(ktime_get_real(),
  2517. last_ackt);
  2518. else if (ca_seq_rtt > 0)
  2519. rtt_us = jiffies_to_usecs(ca_seq_rtt);
  2520. }
  2521. ca_ops->pkts_acked(sk, pkts_acked, rtt_us);
  2522. }
  2523. }
  2524. #if FASTRETRANS_DEBUG > 0
  2525. BUG_TRAP((int)tp->sacked_out >= 0);
  2526. BUG_TRAP((int)tp->lost_out >= 0);
  2527. BUG_TRAP((int)tp->retrans_out >= 0);
  2528. if (!tp->packets_out && tcp_is_sack(tp)) {
  2529. icsk = inet_csk(sk);
  2530. if (tp->lost_out) {
  2531. printk(KERN_DEBUG "Leak l=%u %d\n",
  2532. tp->lost_out, icsk->icsk_ca_state);
  2533. tp->lost_out = 0;
  2534. }
  2535. if (tp->sacked_out) {
  2536. printk(KERN_DEBUG "Leak s=%u %d\n",
  2537. tp->sacked_out, icsk->icsk_ca_state);
  2538. tp->sacked_out = 0;
  2539. }
  2540. if (tp->retrans_out) {
  2541. printk(KERN_DEBUG "Leak r=%u %d\n",
  2542. tp->retrans_out, icsk->icsk_ca_state);
  2543. tp->retrans_out = 0;
  2544. }
  2545. }
  2546. #endif
  2547. *seq_rtt_p = seq_rtt;
  2548. return flag;
  2549. }
  2550. static void tcp_ack_probe(struct sock *sk)
  2551. {
  2552. const struct tcp_sock *tp = tcp_sk(sk);
  2553. struct inet_connection_sock *icsk = inet_csk(sk);
  2554. /* Was it a usable window open? */
  2555. if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq,
  2556. tp->snd_una + tp->snd_wnd)) {
  2557. icsk->icsk_backoff = 0;
  2558. inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
  2559. /* Socket must be waked up by subsequent tcp_data_snd_check().
  2560. * This function is not for random using!
  2561. */
  2562. } else {
  2563. inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
  2564. min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
  2565. TCP_RTO_MAX);
  2566. }
  2567. }
  2568. static inline int tcp_ack_is_dubious(const struct sock *sk, const int flag)
  2569. {
  2570. return (!(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
  2571. inet_csk(sk)->icsk_ca_state != TCP_CA_Open);
  2572. }
  2573. static inline int tcp_may_raise_cwnd(const struct sock *sk, const int flag)
  2574. {
  2575. const struct tcp_sock *tp = tcp_sk(sk);
  2576. return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) &&
  2577. !((1 << inet_csk(sk)->icsk_ca_state) & (TCPF_CA_Recovery | TCPF_CA_CWR));
  2578. }
  2579. /* Check that window update is acceptable.
  2580. * The function assumes that snd_una<=ack<=snd_next.
  2581. */
  2582. static inline int tcp_may_update_window(const struct tcp_sock *tp, const u32 ack,
  2583. const u32 ack_seq, const u32 nwin)
  2584. {
  2585. return (after(ack, tp->snd_una) ||
  2586. after(ack_seq, tp->snd_wl1) ||
  2587. (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd));
  2588. }
  2589. /* Update our send window.
  2590. *
  2591. * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
  2592. * and in FreeBSD. NetBSD's one is even worse.) is wrong.
  2593. */
  2594. static int tcp_ack_update_window(struct sock *sk, struct sk_buff *skb, u32 ack,
  2595. u32 ack_seq)
  2596. {
  2597. struct tcp_sock *tp = tcp_sk(sk);
  2598. int flag = 0;
  2599. u32 nwin = ntohs(tcp_hdr(skb)->window);
  2600. if (likely(!tcp_hdr(skb)->syn))
  2601. nwin <<= tp->rx_opt.snd_wscale;
  2602. if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
  2603. flag |= FLAG_WIN_UPDATE;
  2604. tcp_update_wl(tp, ack, ack_seq);
  2605. if (tp->snd_wnd != nwin) {
  2606. tp->snd_wnd = nwin;
  2607. /* Note, it is the only place, where
  2608. * fast path is recovered for sending TCP.
  2609. */
  2610. tp->pred_flags = 0;
  2611. tcp_fast_path_check(sk);
  2612. if (nwin > tp->max_window) {
  2613. tp->max_window = nwin;
  2614. tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
  2615. }
  2616. }
  2617. }
  2618. tp->snd_una = ack;
  2619. return flag;
  2620. }
  2621. /* A very conservative spurious RTO response algorithm: reduce cwnd and
  2622. * continue in congestion avoidance.
  2623. */
  2624. static void tcp_conservative_spur_to_response(struct tcp_sock *tp)
  2625. {
  2626. tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
  2627. tp->snd_cwnd_cnt = 0;
  2628. tp->bytes_acked = 0;
  2629. TCP_ECN_queue_cwr(tp);
  2630. tcp_moderate_cwnd(tp);
  2631. }
  2632. /* A conservative spurious RTO response algorithm: reduce cwnd using
  2633. * rate halving and continue in congestion avoidance.
  2634. */
  2635. static void tcp_ratehalving_spur_to_response(struct sock *sk)
  2636. {
  2637. tcp_enter_cwr(sk, 0);
  2638. }
  2639. static void tcp_undo_spur_to_response(struct sock *sk, int flag)
  2640. {
  2641. if (flag&FLAG_ECE)
  2642. tcp_ratehalving_spur_to_response(sk);
  2643. else
  2644. tcp_undo_cwr(sk, 1);
  2645. }
  2646. /* F-RTO spurious RTO detection algorithm (RFC4138)
  2647. *
  2648. * F-RTO affects during two new ACKs following RTO (well, almost, see inline
  2649. * comments). State (ACK number) is kept in frto_counter. When ACK advances
  2650. * window (but not to or beyond highest sequence sent before RTO):
  2651. * On First ACK, send two new segments out.
  2652. * On Second ACK, RTO was likely spurious. Do spurious response (response
  2653. * algorithm is not part of the F-RTO detection algorithm
  2654. * given in RFC4138 but can be selected separately).
  2655. * Otherwise (basically on duplicate ACK), RTO was (likely) caused by a loss
  2656. * and TCP falls back to conventional RTO recovery. F-RTO allows overriding
  2657. * of Nagle, this is done using frto_counter states 2 and 3, when a new data
  2658. * segment of any size sent during F-RTO, state 2 is upgraded to 3.
  2659. *
  2660. * Rationale: if the RTO was spurious, new ACKs should arrive from the
  2661. * original window even after we transmit two new data segments.
  2662. *
  2663. * SACK version:
  2664. * on first step, wait until first cumulative ACK arrives, then move to
  2665. * the second step. In second step, the next ACK decides.
  2666. *
  2667. * F-RTO is implemented (mainly) in four functions:
  2668. * - tcp_use_frto() is used to determine if TCP is can use F-RTO
  2669. * - tcp_enter_frto() prepares TCP state on RTO if F-RTO is used, it is
  2670. * called when tcp_use_frto() showed green light
  2671. * - tcp_process_frto() handles incoming ACKs during F-RTO algorithm
  2672. * - tcp_enter_frto_loss() is called if there is not enough evidence
  2673. * to prove that the RTO is indeed spurious. It transfers the control
  2674. * from F-RTO to the conventional RTO recovery
  2675. */
  2676. static int tcp_process_frto(struct sock *sk, int flag)
  2677. {
  2678. struct tcp_sock *tp = tcp_sk(sk);
  2679. tcp_verify_left_out(tp);
  2680. /* Duplicate the behavior from Loss state (fastretrans_alert) */
  2681. if (flag&FLAG_DATA_ACKED)
  2682. inet_csk(sk)->icsk_retransmits = 0;
  2683. if ((flag & FLAG_NONHEAD_RETRANS_ACKED) ||
  2684. ((tp->frto_counter >= 2) && (flag & FLAG_RETRANS_DATA_ACKED)))
  2685. tp->undo_marker = 0;
  2686. if (!before(tp->snd_una, tp->frto_highmark)) {
  2687. tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 2 : 3), flag);
  2688. return 1;
  2689. }
  2690. if (!IsSackFrto() || tcp_is_reno(tp)) {
  2691. /* RFC4138 shortcoming in step 2; should also have case c):
  2692. * ACK isn't duplicate nor advances window, e.g., opposite dir
  2693. * data, winupdate
  2694. */
  2695. if (!(flag&FLAG_ANY_PROGRESS) && (flag&FLAG_NOT_DUP))
  2696. return 1;
  2697. if (!(flag&FLAG_DATA_ACKED)) {
  2698. tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 0 : 3),
  2699. flag);
  2700. return 1;
  2701. }
  2702. } else {
  2703. if (!(flag&FLAG_DATA_ACKED) && (tp->frto_counter == 1)) {
  2704. /* Prevent sending of new data. */
  2705. tp->snd_cwnd = min(tp->snd_cwnd,
  2706. tcp_packets_in_flight(tp));
  2707. return 1;
  2708. }
  2709. if ((tp->frto_counter >= 2) &&
  2710. (!(flag&FLAG_FORWARD_PROGRESS) ||
  2711. ((flag&FLAG_DATA_SACKED) && !(flag&FLAG_ONLY_ORIG_SACKED)))) {
  2712. /* RFC4138 shortcoming (see comment above) */
  2713. if (!(flag&FLAG_FORWARD_PROGRESS) && (flag&FLAG_NOT_DUP))
  2714. return 1;
  2715. tcp_enter_frto_loss(sk, 3, flag);
  2716. return 1;
  2717. }
  2718. }
  2719. if (tp->frto_counter == 1) {
  2720. /* tcp_may_send_now needs to see updated state */
  2721. tp->snd_cwnd = tcp_packets_in_flight(tp) + 2;
  2722. tp->frto_counter = 2;
  2723. if (!tcp_may_send_now(sk))
  2724. tcp_enter_frto_loss(sk, 2, flag);
  2725. return 1;
  2726. } else {
  2727. switch (sysctl_tcp_frto_response) {
  2728. case 2:
  2729. tcp_undo_spur_to_response(sk, flag);
  2730. break;
  2731. case 1:
  2732. tcp_conservative_spur_to_response(tp);
  2733. break;
  2734. default:
  2735. tcp_ratehalving_spur_to_response(sk);
  2736. break;
  2737. }
  2738. tp->frto_counter = 0;
  2739. tp->undo_marker = 0;
  2740. NET_INC_STATS_BH(LINUX_MIB_TCPSPURIOUSRTOS);
  2741. }
  2742. return 0;
  2743. }
  2744. /* This routine deals with incoming acks, but not outgoing ones. */
  2745. static int tcp_ack(struct sock *sk, struct sk_buff *skb, int flag)
  2746. {
  2747. struct inet_connection_sock *icsk = inet_csk(sk);
  2748. struct tcp_sock *tp = tcp_sk(sk);
  2749. u32 prior_snd_una = tp->snd_una;
  2750. u32 ack_seq = TCP_SKB_CB(skb)->seq;
  2751. u32 ack = TCP_SKB_CB(skb)->ack_seq;
  2752. u32 prior_in_flight;
  2753. u32 prior_fackets;
  2754. s32 seq_rtt;
  2755. int prior_packets;
  2756. int frto_cwnd = 0;
  2757. /* If the ack is newer than sent or older than previous acks
  2758. * then we can probably ignore it.
  2759. */
  2760. if (after(ack, tp->snd_nxt))
  2761. goto uninteresting_ack;
  2762. if (before(ack, prior_snd_una))
  2763. goto old_ack;
  2764. if (after(ack, prior_snd_una))
  2765. flag |= FLAG_SND_UNA_ADVANCED;
  2766. if (sysctl_tcp_abc) {
  2767. if (icsk->icsk_ca_state < TCP_CA_CWR)
  2768. tp->bytes_acked += ack - prior_snd_una;
  2769. else if (icsk->icsk_ca_state == TCP_CA_Loss)
  2770. /* we assume just one segment left network */
  2771. tp->bytes_acked += min(ack - prior_snd_una, tp->mss_cache);
  2772. }
  2773. prior_fackets = tp->fackets_out;
  2774. prior_in_flight = tcp_packets_in_flight(tp);
  2775. if (!(flag&FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
  2776. /* Window is constant, pure forward advance.
  2777. * No more checks are required.
  2778. * Note, we use the fact that SND.UNA>=SND.WL2.
  2779. */
  2780. tcp_update_wl(tp, ack, ack_seq);
  2781. tp->snd_una = ack;
  2782. flag |= FLAG_WIN_UPDATE;
  2783. tcp_ca_event(sk, CA_EVENT_FAST_ACK);
  2784. NET_INC_STATS_BH(LINUX_MIB_TCPHPACKS);
  2785. } else {
  2786. if (ack_seq != TCP_SKB_CB(skb)->end_seq)
  2787. flag |= FLAG_DATA;
  2788. else
  2789. NET_INC_STATS_BH(LINUX_MIB_TCPPUREACKS);
  2790. flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
  2791. if (TCP_SKB_CB(skb)->sacked)
  2792. flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
  2793. if (TCP_ECN_rcv_ecn_echo(tp, tcp_hdr(skb)))
  2794. flag |= FLAG_ECE;
  2795. tcp_ca_event(sk, CA_EVENT_SLOW_ACK);
  2796. }
  2797. /* We passed data and got it acked, remove any soft error
  2798. * log. Something worked...
  2799. */
  2800. sk->sk_err_soft = 0;
  2801. tp->rcv_tstamp = tcp_time_stamp;
  2802. prior_packets = tp->packets_out;
  2803. if (!prior_packets)
  2804. goto no_queue;
  2805. /* See if we can take anything off of the retransmit queue. */
  2806. flag |= tcp_clean_rtx_queue(sk, &seq_rtt, prior_fackets);
  2807. if (tp->frto_counter)
  2808. frto_cwnd = tcp_process_frto(sk, flag);
  2809. /* Guarantee sacktag reordering detection against wrap-arounds */
  2810. if (before(tp->frto_highmark, tp->snd_una))
  2811. tp->frto_highmark = 0;
  2812. if (tcp_ack_is_dubious(sk, flag)) {
  2813. /* Advance CWND, if state allows this. */
  2814. if ((flag & FLAG_DATA_ACKED) && !frto_cwnd &&
  2815. tcp_may_raise_cwnd(sk, flag))
  2816. tcp_cong_avoid(sk, ack, prior_in_flight, 0);
  2817. tcp_fastretrans_alert(sk, prior_packets - tp->packets_out, flag);
  2818. } else {
  2819. if ((flag & FLAG_DATA_ACKED) && !frto_cwnd)
  2820. tcp_cong_avoid(sk, ack, prior_in_flight, 1);
  2821. }
  2822. if ((flag & FLAG_FORWARD_PROGRESS) || !(flag&FLAG_NOT_DUP))
  2823. dst_confirm(sk->sk_dst_cache);
  2824. return 1;
  2825. no_queue:
  2826. icsk->icsk_probes_out = 0;
  2827. /* If this ack opens up a zero window, clear backoff. It was
  2828. * being used to time the probes, and is probably far higher than
  2829. * it needs to be for normal retransmission.
  2830. */
  2831. if (tcp_send_head(sk))
  2832. tcp_ack_probe(sk);
  2833. return 1;
  2834. old_ack:
  2835. if (TCP_SKB_CB(skb)->sacked)
  2836. tcp_sacktag_write_queue(sk, skb, prior_snd_una);
  2837. uninteresting_ack:
  2838. SOCK_DEBUG(sk, "Ack %u out of %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
  2839. return 0;
  2840. }
  2841. /* Look for tcp options. Normally only called on SYN and SYNACK packets.
  2842. * But, this can also be called on packets in the established flow when
  2843. * the fast version below fails.
  2844. */
  2845. void tcp_parse_options(struct sk_buff *skb, struct tcp_options_received *opt_rx, int estab)
  2846. {
  2847. unsigned char *ptr;
  2848. struct tcphdr *th = tcp_hdr(skb);
  2849. int length=(th->doff*4)-sizeof(struct tcphdr);
  2850. ptr = (unsigned char *)(th + 1);
  2851. opt_rx->saw_tstamp = 0;
  2852. while (length > 0) {
  2853. int opcode=*ptr++;
  2854. int opsize;
  2855. switch (opcode) {
  2856. case TCPOPT_EOL:
  2857. return;
  2858. case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */
  2859. length--;
  2860. continue;
  2861. default:
  2862. opsize=*ptr++;
  2863. if (opsize < 2) /* "silly options" */
  2864. return;
  2865. if (opsize > length)
  2866. return; /* don't parse partial options */
  2867. switch (opcode) {
  2868. case TCPOPT_MSS:
  2869. if (opsize==TCPOLEN_MSS && th->syn && !estab) {
  2870. u16 in_mss = ntohs(get_unaligned((__be16 *)ptr));
  2871. if (in_mss) {
  2872. if (opt_rx->user_mss && opt_rx->user_mss < in_mss)
  2873. in_mss = opt_rx->user_mss;
  2874. opt_rx->mss_clamp = in_mss;
  2875. }
  2876. }
  2877. break;
  2878. case TCPOPT_WINDOW:
  2879. if (opsize==TCPOLEN_WINDOW && th->syn && !estab)
  2880. if (sysctl_tcp_window_scaling) {
  2881. __u8 snd_wscale = *(__u8 *) ptr;
  2882. opt_rx->wscale_ok = 1;
  2883. if (snd_wscale > 14) {
  2884. if (net_ratelimit())
  2885. printk(KERN_INFO "tcp_parse_options: Illegal window "
  2886. "scaling value %d >14 received.\n",
  2887. snd_wscale);
  2888. snd_wscale = 14;
  2889. }
  2890. opt_rx->snd_wscale = snd_wscale;
  2891. }
  2892. break;
  2893. case TCPOPT_TIMESTAMP:
  2894. if (opsize==TCPOLEN_TIMESTAMP) {
  2895. if ((estab && opt_rx->tstamp_ok) ||
  2896. (!estab && sysctl_tcp_timestamps)) {
  2897. opt_rx->saw_tstamp = 1;
  2898. opt_rx->rcv_tsval = ntohl(get_unaligned((__be32 *)ptr));
  2899. opt_rx->rcv_tsecr = ntohl(get_unaligned((__be32 *)(ptr+4)));
  2900. }
  2901. }
  2902. break;
  2903. case TCPOPT_SACK_PERM:
  2904. if (opsize==TCPOLEN_SACK_PERM && th->syn && !estab) {
  2905. if (sysctl_tcp_sack) {
  2906. opt_rx->sack_ok = 1;
  2907. tcp_sack_reset(opt_rx);
  2908. }
  2909. }
  2910. break;
  2911. case TCPOPT_SACK:
  2912. if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
  2913. !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
  2914. opt_rx->sack_ok) {
  2915. TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
  2916. }
  2917. break;
  2918. #ifdef CONFIG_TCP_MD5SIG
  2919. case TCPOPT_MD5SIG:
  2920. /*
  2921. * The MD5 Hash has already been
  2922. * checked (see tcp_v{4,6}_do_rcv()).
  2923. */
  2924. break;
  2925. #endif
  2926. }
  2927. ptr+=opsize-2;
  2928. length-=opsize;
  2929. }
  2930. }
  2931. }
  2932. /* Fast parse options. This hopes to only see timestamps.
  2933. * If it is wrong it falls back on tcp_parse_options().
  2934. */
  2935. static int tcp_fast_parse_options(struct sk_buff *skb, struct tcphdr *th,
  2936. struct tcp_sock *tp)
  2937. {
  2938. if (th->doff == sizeof(struct tcphdr)>>2) {
  2939. tp->rx_opt.saw_tstamp = 0;
  2940. return 0;
  2941. } else if (tp->rx_opt.tstamp_ok &&
  2942. th->doff == (sizeof(struct tcphdr)>>2)+(TCPOLEN_TSTAMP_ALIGNED>>2)) {
  2943. __be32 *ptr = (__be32 *)(th + 1);
  2944. if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
  2945. | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
  2946. tp->rx_opt.saw_tstamp = 1;
  2947. ++ptr;
  2948. tp->rx_opt.rcv_tsval = ntohl(*ptr);
  2949. ++ptr;
  2950. tp->rx_opt.rcv_tsecr = ntohl(*ptr);
  2951. return 1;
  2952. }
  2953. }
  2954. tcp_parse_options(skb, &tp->rx_opt, 1);
  2955. return 1;
  2956. }
  2957. static inline void tcp_store_ts_recent(struct tcp_sock *tp)
  2958. {
  2959. tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
  2960. tp->rx_opt.ts_recent_stamp = get_seconds();
  2961. }
  2962. static inline void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
  2963. {
  2964. if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
  2965. /* PAWS bug workaround wrt. ACK frames, the PAWS discard
  2966. * extra check below makes sure this can only happen
  2967. * for pure ACK frames. -DaveM
  2968. *
  2969. * Not only, also it occurs for expired timestamps.
  2970. */
  2971. if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) >= 0 ||
  2972. get_seconds() >= tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS)
  2973. tcp_store_ts_recent(tp);
  2974. }
  2975. }
  2976. /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
  2977. *
  2978. * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
  2979. * it can pass through stack. So, the following predicate verifies that
  2980. * this segment is not used for anything but congestion avoidance or
  2981. * fast retransmit. Moreover, we even are able to eliminate most of such
  2982. * second order effects, if we apply some small "replay" window (~RTO)
  2983. * to timestamp space.
  2984. *
  2985. * All these measures still do not guarantee that we reject wrapped ACKs
  2986. * on networks with high bandwidth, when sequence space is recycled fastly,
  2987. * but it guarantees that such events will be very rare and do not affect
  2988. * connection seriously. This doesn't look nice, but alas, PAWS is really
  2989. * buggy extension.
  2990. *
  2991. * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
  2992. * states that events when retransmit arrives after original data are rare.
  2993. * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
  2994. * the biggest problem on large power networks even with minor reordering.
  2995. * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
  2996. * up to bandwidth of 18Gigabit/sec. 8) ]
  2997. */
  2998. static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
  2999. {
  3000. struct tcp_sock *tp = tcp_sk(sk);
  3001. struct tcphdr *th = tcp_hdr(skb);
  3002. u32 seq = TCP_SKB_CB(skb)->seq;
  3003. u32 ack = TCP_SKB_CB(skb)->ack_seq;
  3004. return (/* 1. Pure ACK with correct sequence number. */
  3005. (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
  3006. /* 2. ... and duplicate ACK. */
  3007. ack == tp->snd_una &&
  3008. /* 3. ... and does not update window. */
  3009. !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
  3010. /* 4. ... and sits in replay window. */
  3011. (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
  3012. }
  3013. static inline int tcp_paws_discard(const struct sock *sk, const struct sk_buff *skb)
  3014. {
  3015. const struct tcp_sock *tp = tcp_sk(sk);
  3016. return ((s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) > TCP_PAWS_WINDOW &&
  3017. get_seconds() < tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS &&
  3018. !tcp_disordered_ack(sk, skb));
  3019. }
  3020. /* Check segment sequence number for validity.
  3021. *
  3022. * Segment controls are considered valid, if the segment
  3023. * fits to the window after truncation to the window. Acceptability
  3024. * of data (and SYN, FIN, of course) is checked separately.
  3025. * See tcp_data_queue(), for example.
  3026. *
  3027. * Also, controls (RST is main one) are accepted using RCV.WUP instead
  3028. * of RCV.NXT. Peer still did not advance his SND.UNA when we
  3029. * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
  3030. * (borrowed from freebsd)
  3031. */
  3032. static inline int tcp_sequence(struct tcp_sock *tp, u32 seq, u32 end_seq)
  3033. {
  3034. return !before(end_seq, tp->rcv_wup) &&
  3035. !after(seq, tp->rcv_nxt + tcp_receive_window(tp));
  3036. }
  3037. /* When we get a reset we do this. */
  3038. static void tcp_reset(struct sock *sk)
  3039. {
  3040. /* We want the right error as BSD sees it (and indeed as we do). */
  3041. switch (sk->sk_state) {
  3042. case TCP_SYN_SENT:
  3043. sk->sk_err = ECONNREFUSED;
  3044. break;
  3045. case TCP_CLOSE_WAIT:
  3046. sk->sk_err = EPIPE;
  3047. break;
  3048. case TCP_CLOSE:
  3049. return;
  3050. default:
  3051. sk->sk_err = ECONNRESET;
  3052. }
  3053. if (!sock_flag(sk, SOCK_DEAD))
  3054. sk->sk_error_report(sk);
  3055. tcp_done(sk);
  3056. }
  3057. /*
  3058. * Process the FIN bit. This now behaves as it is supposed to work
  3059. * and the FIN takes effect when it is validly part of sequence
  3060. * space. Not before when we get holes.
  3061. *
  3062. * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
  3063. * (and thence onto LAST-ACK and finally, CLOSE, we never enter
  3064. * TIME-WAIT)
  3065. *
  3066. * If we are in FINWAIT-1, a received FIN indicates simultaneous
  3067. * close and we go into CLOSING (and later onto TIME-WAIT)
  3068. *
  3069. * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
  3070. */
  3071. static void tcp_fin(struct sk_buff *skb, struct sock *sk, struct tcphdr *th)
  3072. {
  3073. struct tcp_sock *tp = tcp_sk(sk);
  3074. inet_csk_schedule_ack(sk);
  3075. sk->sk_shutdown |= RCV_SHUTDOWN;
  3076. sock_set_flag(sk, SOCK_DONE);
  3077. switch (sk->sk_state) {
  3078. case TCP_SYN_RECV:
  3079. case TCP_ESTABLISHED:
  3080. /* Move to CLOSE_WAIT */
  3081. tcp_set_state(sk, TCP_CLOSE_WAIT);
  3082. inet_csk(sk)->icsk_ack.pingpong = 1;
  3083. break;
  3084. case TCP_CLOSE_WAIT:
  3085. case TCP_CLOSING:
  3086. /* Received a retransmission of the FIN, do
  3087. * nothing.
  3088. */
  3089. break;
  3090. case TCP_LAST_ACK:
  3091. /* RFC793: Remain in the LAST-ACK state. */
  3092. break;
  3093. case TCP_FIN_WAIT1:
  3094. /* This case occurs when a simultaneous close
  3095. * happens, we must ack the received FIN and
  3096. * enter the CLOSING state.
  3097. */
  3098. tcp_send_ack(sk);
  3099. tcp_set_state(sk, TCP_CLOSING);
  3100. break;
  3101. case TCP_FIN_WAIT2:
  3102. /* Received a FIN -- send ACK and enter TIME_WAIT. */
  3103. tcp_send_ack(sk);
  3104. tcp_time_wait(sk, TCP_TIME_WAIT, 0);
  3105. break;
  3106. default:
  3107. /* Only TCP_LISTEN and TCP_CLOSE are left, in these
  3108. * cases we should never reach this piece of code.
  3109. */
  3110. printk(KERN_ERR "%s: Impossible, sk->sk_state=%d\n",
  3111. __FUNCTION__, sk->sk_state);
  3112. break;
  3113. }
  3114. /* It _is_ possible, that we have something out-of-order _after_ FIN.
  3115. * Probably, we should reset in this case. For now drop them.
  3116. */
  3117. __skb_queue_purge(&tp->out_of_order_queue);
  3118. if (tcp_is_sack(tp))
  3119. tcp_sack_reset(&tp->rx_opt);
  3120. sk_stream_mem_reclaim(sk);
  3121. if (!sock_flag(sk, SOCK_DEAD)) {
  3122. sk->sk_state_change(sk);
  3123. /* Do not send POLL_HUP for half duplex close. */
  3124. if (sk->sk_shutdown == SHUTDOWN_MASK ||
  3125. sk->sk_state == TCP_CLOSE)
  3126. sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
  3127. else
  3128. sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
  3129. }
  3130. }
  3131. static inline int tcp_sack_extend(struct tcp_sack_block *sp, u32 seq, u32 end_seq)
  3132. {
  3133. if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
  3134. if (before(seq, sp->start_seq))
  3135. sp->start_seq = seq;
  3136. if (after(end_seq, sp->end_seq))
  3137. sp->end_seq = end_seq;
  3138. return 1;
  3139. }
  3140. return 0;
  3141. }
  3142. static void tcp_dsack_set(struct tcp_sock *tp, u32 seq, u32 end_seq)
  3143. {
  3144. if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
  3145. if (before(seq, tp->rcv_nxt))
  3146. NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOLDSENT);
  3147. else
  3148. NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOFOSENT);
  3149. tp->rx_opt.dsack = 1;
  3150. tp->duplicate_sack[0].start_seq = seq;
  3151. tp->duplicate_sack[0].end_seq = end_seq;
  3152. tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + 1, 4 - tp->rx_opt.tstamp_ok);
  3153. }
  3154. }
  3155. static void tcp_dsack_extend(struct tcp_sock *tp, u32 seq, u32 end_seq)
  3156. {
  3157. if (!tp->rx_opt.dsack)
  3158. tcp_dsack_set(tp, seq, end_seq);
  3159. else
  3160. tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
  3161. }
  3162. static void tcp_send_dupack(struct sock *sk, struct sk_buff *skb)
  3163. {
  3164. struct tcp_sock *tp = tcp_sk(sk);
  3165. if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
  3166. before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
  3167. NET_INC_STATS_BH(LINUX_MIB_DELAYEDACKLOST);
  3168. tcp_enter_quickack_mode(sk);
  3169. if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
  3170. u32 end_seq = TCP_SKB_CB(skb)->end_seq;
  3171. if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
  3172. end_seq = tp->rcv_nxt;
  3173. tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, end_seq);
  3174. }
  3175. }
  3176. tcp_send_ack(sk);
  3177. }
  3178. /* These routines update the SACK block as out-of-order packets arrive or
  3179. * in-order packets close up the sequence space.
  3180. */
  3181. static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
  3182. {
  3183. int this_sack;
  3184. struct tcp_sack_block *sp = &tp->selective_acks[0];
  3185. struct tcp_sack_block *swalk = sp+1;
  3186. /* See if the recent change to the first SACK eats into
  3187. * or hits the sequence space of other SACK blocks, if so coalesce.
  3188. */
  3189. for (this_sack = 1; this_sack < tp->rx_opt.num_sacks; ) {
  3190. if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
  3191. int i;
  3192. /* Zap SWALK, by moving every further SACK up by one slot.
  3193. * Decrease num_sacks.
  3194. */
  3195. tp->rx_opt.num_sacks--;
  3196. tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok);
  3197. for (i=this_sack; i < tp->rx_opt.num_sacks; i++)
  3198. sp[i] = sp[i+1];
  3199. continue;
  3200. }
  3201. this_sack++, swalk++;
  3202. }
  3203. }
  3204. static inline void tcp_sack_swap(struct tcp_sack_block *sack1, struct tcp_sack_block *sack2)
  3205. {
  3206. __u32 tmp;
  3207. tmp = sack1->start_seq;
  3208. sack1->start_seq = sack2->start_seq;
  3209. sack2->start_seq = tmp;
  3210. tmp = sack1->end_seq;
  3211. sack1->end_seq = sack2->end_seq;
  3212. sack2->end_seq = tmp;
  3213. }
  3214. static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
  3215. {
  3216. struct tcp_sock *tp = tcp_sk(sk);
  3217. struct tcp_sack_block *sp = &tp->selective_acks[0];
  3218. int cur_sacks = tp->rx_opt.num_sacks;
  3219. int this_sack;
  3220. if (!cur_sacks)
  3221. goto new_sack;
  3222. for (this_sack=0; this_sack<cur_sacks; this_sack++, sp++) {
  3223. if (tcp_sack_extend(sp, seq, end_seq)) {
  3224. /* Rotate this_sack to the first one. */
  3225. for (; this_sack>0; this_sack--, sp--)
  3226. tcp_sack_swap(sp, sp-1);
  3227. if (cur_sacks > 1)
  3228. tcp_sack_maybe_coalesce(tp);
  3229. return;
  3230. }
  3231. }
  3232. /* Could not find an adjacent existing SACK, build a new one,
  3233. * put it at the front, and shift everyone else down. We
  3234. * always know there is at least one SACK present already here.
  3235. *
  3236. * If the sack array is full, forget about the last one.
  3237. */
  3238. if (this_sack >= 4) {
  3239. this_sack--;
  3240. tp->rx_opt.num_sacks--;
  3241. sp--;
  3242. }
  3243. for (; this_sack > 0; this_sack--, sp--)
  3244. *sp = *(sp-1);
  3245. new_sack:
  3246. /* Build the new head SACK, and we're done. */
  3247. sp->start_seq = seq;
  3248. sp->end_seq = end_seq;
  3249. tp->rx_opt.num_sacks++;
  3250. tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok);
  3251. }
  3252. /* RCV.NXT advances, some SACKs should be eaten. */
  3253. static void tcp_sack_remove(struct tcp_sock *tp)
  3254. {
  3255. struct tcp_sack_block *sp = &tp->selective_acks[0];
  3256. int num_sacks = tp->rx_opt.num_sacks;
  3257. int this_sack;
  3258. /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
  3259. if (skb_queue_empty(&tp->out_of_order_queue)) {
  3260. tp->rx_opt.num_sacks = 0;
  3261. tp->rx_opt.eff_sacks = tp->rx_opt.dsack;
  3262. return;
  3263. }
  3264. for (this_sack = 0; this_sack < num_sacks; ) {
  3265. /* Check if the start of the sack is covered by RCV.NXT. */
  3266. if (!before(tp->rcv_nxt, sp->start_seq)) {
  3267. int i;
  3268. /* RCV.NXT must cover all the block! */
  3269. BUG_TRAP(!before(tp->rcv_nxt, sp->end_seq));
  3270. /* Zap this SACK, by moving forward any other SACKS. */
  3271. for (i=this_sack+1; i < num_sacks; i++)
  3272. tp->selective_acks[i-1] = tp->selective_acks[i];
  3273. num_sacks--;
  3274. continue;
  3275. }
  3276. this_sack++;
  3277. sp++;
  3278. }
  3279. if (num_sacks != tp->rx_opt.num_sacks) {
  3280. tp->rx_opt.num_sacks = num_sacks;
  3281. tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok);
  3282. }
  3283. }
  3284. /* This one checks to see if we can put data from the
  3285. * out_of_order queue into the receive_queue.
  3286. */
  3287. static void tcp_ofo_queue(struct sock *sk)
  3288. {
  3289. struct tcp_sock *tp = tcp_sk(sk);
  3290. __u32 dsack_high = tp->rcv_nxt;
  3291. struct sk_buff *skb;
  3292. while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
  3293. if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
  3294. break;
  3295. if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
  3296. __u32 dsack = dsack_high;
  3297. if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
  3298. dsack_high = TCP_SKB_CB(skb)->end_seq;
  3299. tcp_dsack_extend(tp, TCP_SKB_CB(skb)->seq, dsack);
  3300. }
  3301. if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
  3302. SOCK_DEBUG(sk, "ofo packet was already received \n");
  3303. __skb_unlink(skb, &tp->out_of_order_queue);
  3304. __kfree_skb(skb);
  3305. continue;
  3306. }
  3307. SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
  3308. tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
  3309. TCP_SKB_CB(skb)->end_seq);
  3310. __skb_unlink(skb, &tp->out_of_order_queue);
  3311. __skb_queue_tail(&sk->sk_receive_queue, skb);
  3312. tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
  3313. if (tcp_hdr(skb)->fin)
  3314. tcp_fin(skb, sk, tcp_hdr(skb));
  3315. }
  3316. }
  3317. static int tcp_prune_queue(struct sock *sk);
  3318. static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
  3319. {
  3320. struct tcphdr *th = tcp_hdr(skb);
  3321. struct tcp_sock *tp = tcp_sk(sk);
  3322. int eaten = -1;
  3323. if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
  3324. goto drop;
  3325. __skb_pull(skb, th->doff*4);
  3326. TCP_ECN_accept_cwr(tp, skb);
  3327. if (tp->rx_opt.dsack) {
  3328. tp->rx_opt.dsack = 0;
  3329. tp->rx_opt.eff_sacks = min_t(unsigned int, tp->rx_opt.num_sacks,
  3330. 4 - tp->rx_opt.tstamp_ok);
  3331. }
  3332. /* Queue data for delivery to the user.
  3333. * Packets in sequence go to the receive queue.
  3334. * Out of sequence packets to the out_of_order_queue.
  3335. */
  3336. if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
  3337. if (tcp_receive_window(tp) == 0)
  3338. goto out_of_window;
  3339. /* Ok. In sequence. In window. */
  3340. if (tp->ucopy.task == current &&
  3341. tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
  3342. sock_owned_by_user(sk) && !tp->urg_data) {
  3343. int chunk = min_t(unsigned int, skb->len,
  3344. tp->ucopy.len);
  3345. __set_current_state(TASK_RUNNING);
  3346. local_bh_enable();
  3347. if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) {
  3348. tp->ucopy.len -= chunk;
  3349. tp->copied_seq += chunk;
  3350. eaten = (chunk == skb->len && !th->fin);
  3351. tcp_rcv_space_adjust(sk);
  3352. }
  3353. local_bh_disable();
  3354. }
  3355. if (eaten <= 0) {
  3356. queue_and_out:
  3357. if (eaten < 0 &&
  3358. (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
  3359. !sk_stream_rmem_schedule(sk, skb))) {
  3360. if (tcp_prune_queue(sk) < 0 ||
  3361. !sk_stream_rmem_schedule(sk, skb))
  3362. goto drop;
  3363. }
  3364. sk_stream_set_owner_r(skb, sk);
  3365. __skb_queue_tail(&sk->sk_receive_queue, skb);
  3366. }
  3367. tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
  3368. if (skb->len)
  3369. tcp_event_data_recv(sk, skb);
  3370. if (th->fin)
  3371. tcp_fin(skb, sk, th);
  3372. if (!skb_queue_empty(&tp->out_of_order_queue)) {
  3373. tcp_ofo_queue(sk);
  3374. /* RFC2581. 4.2. SHOULD send immediate ACK, when
  3375. * gap in queue is filled.
  3376. */
  3377. if (skb_queue_empty(&tp->out_of_order_queue))
  3378. inet_csk(sk)->icsk_ack.pingpong = 0;
  3379. }
  3380. if (tp->rx_opt.num_sacks)
  3381. tcp_sack_remove(tp);
  3382. tcp_fast_path_check(sk);
  3383. if (eaten > 0)
  3384. __kfree_skb(skb);
  3385. else if (!sock_flag(sk, SOCK_DEAD))
  3386. sk->sk_data_ready(sk, 0);
  3387. return;
  3388. }
  3389. if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
  3390. /* A retransmit, 2nd most common case. Force an immediate ack. */
  3391. NET_INC_STATS_BH(LINUX_MIB_DELAYEDACKLOST);
  3392. tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
  3393. out_of_window:
  3394. tcp_enter_quickack_mode(sk);
  3395. inet_csk_schedule_ack(sk);
  3396. drop:
  3397. __kfree_skb(skb);
  3398. return;
  3399. }
  3400. /* Out of window. F.e. zero window probe. */
  3401. if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
  3402. goto out_of_window;
  3403. tcp_enter_quickack_mode(sk);
  3404. if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
  3405. /* Partial packet, seq < rcv_next < end_seq */
  3406. SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
  3407. tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
  3408. TCP_SKB_CB(skb)->end_seq);
  3409. tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
  3410. /* If window is closed, drop tail of packet. But after
  3411. * remembering D-SACK for its head made in previous line.
  3412. */
  3413. if (!tcp_receive_window(tp))
  3414. goto out_of_window;
  3415. goto queue_and_out;
  3416. }
  3417. TCP_ECN_check_ce(tp, skb);
  3418. if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
  3419. !sk_stream_rmem_schedule(sk, skb)) {
  3420. if (tcp_prune_queue(sk) < 0 ||
  3421. !sk_stream_rmem_schedule(sk, skb))
  3422. goto drop;
  3423. }
  3424. /* Disable header prediction. */
  3425. tp->pred_flags = 0;
  3426. inet_csk_schedule_ack(sk);
  3427. SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
  3428. tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
  3429. sk_stream_set_owner_r(skb, sk);
  3430. if (!skb_peek(&tp->out_of_order_queue)) {
  3431. /* Initial out of order segment, build 1 SACK. */
  3432. if (tcp_is_sack(tp)) {
  3433. tp->rx_opt.num_sacks = 1;
  3434. tp->rx_opt.dsack = 0;
  3435. tp->rx_opt.eff_sacks = 1;
  3436. tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
  3437. tp->selective_acks[0].end_seq =
  3438. TCP_SKB_CB(skb)->end_seq;
  3439. }
  3440. __skb_queue_head(&tp->out_of_order_queue,skb);
  3441. } else {
  3442. struct sk_buff *skb1 = tp->out_of_order_queue.prev;
  3443. u32 seq = TCP_SKB_CB(skb)->seq;
  3444. u32 end_seq = TCP_SKB_CB(skb)->end_seq;
  3445. if (seq == TCP_SKB_CB(skb1)->end_seq) {
  3446. __skb_append(skb1, skb, &tp->out_of_order_queue);
  3447. if (!tp->rx_opt.num_sacks ||
  3448. tp->selective_acks[0].end_seq != seq)
  3449. goto add_sack;
  3450. /* Common case: data arrive in order after hole. */
  3451. tp->selective_acks[0].end_seq = end_seq;
  3452. return;
  3453. }
  3454. /* Find place to insert this segment. */
  3455. do {
  3456. if (!after(TCP_SKB_CB(skb1)->seq, seq))
  3457. break;
  3458. } while ((skb1 = skb1->prev) !=
  3459. (struct sk_buff*)&tp->out_of_order_queue);
  3460. /* Do skb overlap to previous one? */
  3461. if (skb1 != (struct sk_buff*)&tp->out_of_order_queue &&
  3462. before(seq, TCP_SKB_CB(skb1)->end_seq)) {
  3463. if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
  3464. /* All the bits are present. Drop. */
  3465. __kfree_skb(skb);
  3466. tcp_dsack_set(tp, seq, end_seq);
  3467. goto add_sack;
  3468. }
  3469. if (after(seq, TCP_SKB_CB(skb1)->seq)) {
  3470. /* Partial overlap. */
  3471. tcp_dsack_set(tp, seq, TCP_SKB_CB(skb1)->end_seq);
  3472. } else {
  3473. skb1 = skb1->prev;
  3474. }
  3475. }
  3476. __skb_insert(skb, skb1, skb1->next, &tp->out_of_order_queue);
  3477. /* And clean segments covered by new one as whole. */
  3478. while ((skb1 = skb->next) !=
  3479. (struct sk_buff*)&tp->out_of_order_queue &&
  3480. after(end_seq, TCP_SKB_CB(skb1)->seq)) {
  3481. if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
  3482. tcp_dsack_extend(tp, TCP_SKB_CB(skb1)->seq, end_seq);
  3483. break;
  3484. }
  3485. __skb_unlink(skb1, &tp->out_of_order_queue);
  3486. tcp_dsack_extend(tp, TCP_SKB_CB(skb1)->seq, TCP_SKB_CB(skb1)->end_seq);
  3487. __kfree_skb(skb1);
  3488. }
  3489. add_sack:
  3490. if (tcp_is_sack(tp))
  3491. tcp_sack_new_ofo_skb(sk, seq, end_seq);
  3492. }
  3493. }
  3494. /* Collapse contiguous sequence of skbs head..tail with
  3495. * sequence numbers start..end.
  3496. * Segments with FIN/SYN are not collapsed (only because this
  3497. * simplifies code)
  3498. */
  3499. static void
  3500. tcp_collapse(struct sock *sk, struct sk_buff_head *list,
  3501. struct sk_buff *head, struct sk_buff *tail,
  3502. u32 start, u32 end)
  3503. {
  3504. struct sk_buff *skb;
  3505. /* First, check that queue is collapsible and find
  3506. * the point where collapsing can be useful. */
  3507. for (skb = head; skb != tail; ) {
  3508. /* No new bits? It is possible on ofo queue. */
  3509. if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
  3510. struct sk_buff *next = skb->next;
  3511. __skb_unlink(skb, list);
  3512. __kfree_skb(skb);
  3513. NET_INC_STATS_BH(LINUX_MIB_TCPRCVCOLLAPSED);
  3514. skb = next;
  3515. continue;
  3516. }
  3517. /* The first skb to collapse is:
  3518. * - not SYN/FIN and
  3519. * - bloated or contains data before "start" or
  3520. * overlaps to the next one.
  3521. */
  3522. if (!tcp_hdr(skb)->syn && !tcp_hdr(skb)->fin &&
  3523. (tcp_win_from_space(skb->truesize) > skb->len ||
  3524. before(TCP_SKB_CB(skb)->seq, start) ||
  3525. (skb->next != tail &&
  3526. TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb->next)->seq)))
  3527. break;
  3528. /* Decided to skip this, advance start seq. */
  3529. start = TCP_SKB_CB(skb)->end_seq;
  3530. skb = skb->next;
  3531. }
  3532. if (skb == tail || tcp_hdr(skb)->syn || tcp_hdr(skb)->fin)
  3533. return;
  3534. while (before(start, end)) {
  3535. struct sk_buff *nskb;
  3536. unsigned int header = skb_headroom(skb);
  3537. int copy = SKB_MAX_ORDER(header, 0);
  3538. /* Too big header? This can happen with IPv6. */
  3539. if (copy < 0)
  3540. return;
  3541. if (end-start < copy)
  3542. copy = end-start;
  3543. nskb = alloc_skb(copy+header, GFP_ATOMIC);
  3544. if (!nskb)
  3545. return;
  3546. skb_set_mac_header(nskb, skb_mac_header(skb) - skb->head);
  3547. skb_set_network_header(nskb, (skb_network_header(skb) -
  3548. skb->head));
  3549. skb_set_transport_header(nskb, (skb_transport_header(skb) -
  3550. skb->head));
  3551. skb_reserve(nskb, header);
  3552. memcpy(nskb->head, skb->head, header);
  3553. memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
  3554. TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
  3555. __skb_insert(nskb, skb->prev, skb, list);
  3556. sk_stream_set_owner_r(nskb, sk);
  3557. /* Copy data, releasing collapsed skbs. */
  3558. while (copy > 0) {
  3559. int offset = start - TCP_SKB_CB(skb)->seq;
  3560. int size = TCP_SKB_CB(skb)->end_seq - start;
  3561. BUG_ON(offset < 0);
  3562. if (size > 0) {
  3563. size = min(copy, size);
  3564. if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
  3565. BUG();
  3566. TCP_SKB_CB(nskb)->end_seq += size;
  3567. copy -= size;
  3568. start += size;
  3569. }
  3570. if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
  3571. struct sk_buff *next = skb->next;
  3572. __skb_unlink(skb, list);
  3573. __kfree_skb(skb);
  3574. NET_INC_STATS_BH(LINUX_MIB_TCPRCVCOLLAPSED);
  3575. skb = next;
  3576. if (skb == tail ||
  3577. tcp_hdr(skb)->syn ||
  3578. tcp_hdr(skb)->fin)
  3579. return;
  3580. }
  3581. }
  3582. }
  3583. }
  3584. /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
  3585. * and tcp_collapse() them until all the queue is collapsed.
  3586. */
  3587. static void tcp_collapse_ofo_queue(struct sock *sk)
  3588. {
  3589. struct tcp_sock *tp = tcp_sk(sk);
  3590. struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
  3591. struct sk_buff *head;
  3592. u32 start, end;
  3593. if (skb == NULL)
  3594. return;
  3595. start = TCP_SKB_CB(skb)->seq;
  3596. end = TCP_SKB_CB(skb)->end_seq;
  3597. head = skb;
  3598. for (;;) {
  3599. skb = skb->next;
  3600. /* Segment is terminated when we see gap or when
  3601. * we are at the end of all the queue. */
  3602. if (skb == (struct sk_buff *)&tp->out_of_order_queue ||
  3603. after(TCP_SKB_CB(skb)->seq, end) ||
  3604. before(TCP_SKB_CB(skb)->end_seq, start)) {
  3605. tcp_collapse(sk, &tp->out_of_order_queue,
  3606. head, skb, start, end);
  3607. head = skb;
  3608. if (skb == (struct sk_buff *)&tp->out_of_order_queue)
  3609. break;
  3610. /* Start new segment */
  3611. start = TCP_SKB_CB(skb)->seq;
  3612. end = TCP_SKB_CB(skb)->end_seq;
  3613. } else {
  3614. if (before(TCP_SKB_CB(skb)->seq, start))
  3615. start = TCP_SKB_CB(skb)->seq;
  3616. if (after(TCP_SKB_CB(skb)->end_seq, end))
  3617. end = TCP_SKB_CB(skb)->end_seq;
  3618. }
  3619. }
  3620. }
  3621. /* Reduce allocated memory if we can, trying to get
  3622. * the socket within its memory limits again.
  3623. *
  3624. * Return less than zero if we should start dropping frames
  3625. * until the socket owning process reads some of the data
  3626. * to stabilize the situation.
  3627. */
  3628. static int tcp_prune_queue(struct sock *sk)
  3629. {
  3630. struct tcp_sock *tp = tcp_sk(sk);
  3631. SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
  3632. NET_INC_STATS_BH(LINUX_MIB_PRUNECALLED);
  3633. if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
  3634. tcp_clamp_window(sk);
  3635. else if (tcp_memory_pressure)
  3636. tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
  3637. tcp_collapse_ofo_queue(sk);
  3638. tcp_collapse(sk, &sk->sk_receive_queue,
  3639. sk->sk_receive_queue.next,
  3640. (struct sk_buff*)&sk->sk_receive_queue,
  3641. tp->copied_seq, tp->rcv_nxt);
  3642. sk_stream_mem_reclaim(sk);
  3643. if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
  3644. return 0;
  3645. /* Collapsing did not help, destructive actions follow.
  3646. * This must not ever occur. */
  3647. /* First, purge the out_of_order queue. */
  3648. if (!skb_queue_empty(&tp->out_of_order_queue)) {
  3649. NET_INC_STATS_BH(LINUX_MIB_OFOPRUNED);
  3650. __skb_queue_purge(&tp->out_of_order_queue);
  3651. /* Reset SACK state. A conforming SACK implementation will
  3652. * do the same at a timeout based retransmit. When a connection
  3653. * is in a sad state like this, we care only about integrity
  3654. * of the connection not performance.
  3655. */
  3656. if (tcp_is_sack(tp))
  3657. tcp_sack_reset(&tp->rx_opt);
  3658. sk_stream_mem_reclaim(sk);
  3659. }
  3660. if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
  3661. return 0;
  3662. /* If we are really being abused, tell the caller to silently
  3663. * drop receive data on the floor. It will get retransmitted
  3664. * and hopefully then we'll have sufficient space.
  3665. */
  3666. NET_INC_STATS_BH(LINUX_MIB_RCVPRUNED);
  3667. /* Massive buffer overcommit. */
  3668. tp->pred_flags = 0;
  3669. return -1;
  3670. }
  3671. /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
  3672. * As additional protections, we do not touch cwnd in retransmission phases,
  3673. * and if application hit its sndbuf limit recently.
  3674. */
  3675. void tcp_cwnd_application_limited(struct sock *sk)
  3676. {
  3677. struct tcp_sock *tp = tcp_sk(sk);
  3678. if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
  3679. sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
  3680. /* Limited by application or receiver window. */
  3681. u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
  3682. u32 win_used = max(tp->snd_cwnd_used, init_win);
  3683. if (win_used < tp->snd_cwnd) {
  3684. tp->snd_ssthresh = tcp_current_ssthresh(sk);
  3685. tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
  3686. }
  3687. tp->snd_cwnd_used = 0;
  3688. }
  3689. tp->snd_cwnd_stamp = tcp_time_stamp;
  3690. }
  3691. static int tcp_should_expand_sndbuf(struct sock *sk)
  3692. {
  3693. struct tcp_sock *tp = tcp_sk(sk);
  3694. /* If the user specified a specific send buffer setting, do
  3695. * not modify it.
  3696. */
  3697. if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
  3698. return 0;
  3699. /* If we are under global TCP memory pressure, do not expand. */
  3700. if (tcp_memory_pressure)
  3701. return 0;
  3702. /* If we are under soft global TCP memory pressure, do not expand. */
  3703. if (atomic_read(&tcp_memory_allocated) >= sysctl_tcp_mem[0])
  3704. return 0;
  3705. /* If we filled the congestion window, do not expand. */
  3706. if (tp->packets_out >= tp->snd_cwnd)
  3707. return 0;
  3708. return 1;
  3709. }
  3710. /* When incoming ACK allowed to free some skb from write_queue,
  3711. * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
  3712. * on the exit from tcp input handler.
  3713. *
  3714. * PROBLEM: sndbuf expansion does not work well with largesend.
  3715. */
  3716. static void tcp_new_space(struct sock *sk)
  3717. {
  3718. struct tcp_sock *tp = tcp_sk(sk);
  3719. if (tcp_should_expand_sndbuf(sk)) {
  3720. int sndmem = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
  3721. MAX_TCP_HEADER + 16 + sizeof(struct sk_buff),
  3722. demanded = max_t(unsigned int, tp->snd_cwnd,
  3723. tp->reordering + 1);
  3724. sndmem *= 2*demanded;
  3725. if (sndmem > sk->sk_sndbuf)
  3726. sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
  3727. tp->snd_cwnd_stamp = tcp_time_stamp;
  3728. }
  3729. sk->sk_write_space(sk);
  3730. }
  3731. static void tcp_check_space(struct sock *sk)
  3732. {
  3733. if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
  3734. sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
  3735. if (sk->sk_socket &&
  3736. test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
  3737. tcp_new_space(sk);
  3738. }
  3739. }
  3740. static inline void tcp_data_snd_check(struct sock *sk)
  3741. {
  3742. tcp_push_pending_frames(sk);
  3743. tcp_check_space(sk);
  3744. }
  3745. /*
  3746. * Check if sending an ack is needed.
  3747. */
  3748. static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
  3749. {
  3750. struct tcp_sock *tp = tcp_sk(sk);
  3751. /* More than one full frame received... */
  3752. if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss
  3753. /* ... and right edge of window advances far enough.
  3754. * (tcp_recvmsg() will send ACK otherwise). Or...
  3755. */
  3756. && __tcp_select_window(sk) >= tp->rcv_wnd) ||
  3757. /* We ACK each frame or... */
  3758. tcp_in_quickack_mode(sk) ||
  3759. /* We have out of order data. */
  3760. (ofo_possible &&
  3761. skb_peek(&tp->out_of_order_queue))) {
  3762. /* Then ack it now */
  3763. tcp_send_ack(sk);
  3764. } else {
  3765. /* Else, send delayed ack. */
  3766. tcp_send_delayed_ack(sk);
  3767. }
  3768. }
  3769. static inline void tcp_ack_snd_check(struct sock *sk)
  3770. {
  3771. if (!inet_csk_ack_scheduled(sk)) {
  3772. /* We sent a data segment already. */
  3773. return;
  3774. }
  3775. __tcp_ack_snd_check(sk, 1);
  3776. }
  3777. /*
  3778. * This routine is only called when we have urgent data
  3779. * signaled. Its the 'slow' part of tcp_urg. It could be
  3780. * moved inline now as tcp_urg is only called from one
  3781. * place. We handle URGent data wrong. We have to - as
  3782. * BSD still doesn't use the correction from RFC961.
  3783. * For 1003.1g we should support a new option TCP_STDURG to permit
  3784. * either form (or just set the sysctl tcp_stdurg).
  3785. */
  3786. static void tcp_check_urg(struct sock * sk, struct tcphdr * th)
  3787. {
  3788. struct tcp_sock *tp = tcp_sk(sk);
  3789. u32 ptr = ntohs(th->urg_ptr);
  3790. if (ptr && !sysctl_tcp_stdurg)
  3791. ptr--;
  3792. ptr += ntohl(th->seq);
  3793. /* Ignore urgent data that we've already seen and read. */
  3794. if (after(tp->copied_seq, ptr))
  3795. return;
  3796. /* Do not replay urg ptr.
  3797. *
  3798. * NOTE: interesting situation not covered by specs.
  3799. * Misbehaving sender may send urg ptr, pointing to segment,
  3800. * which we already have in ofo queue. We are not able to fetch
  3801. * such data and will stay in TCP_URG_NOTYET until will be eaten
  3802. * by recvmsg(). Seems, we are not obliged to handle such wicked
  3803. * situations. But it is worth to think about possibility of some
  3804. * DoSes using some hypothetical application level deadlock.
  3805. */
  3806. if (before(ptr, tp->rcv_nxt))
  3807. return;
  3808. /* Do we already have a newer (or duplicate) urgent pointer? */
  3809. if (tp->urg_data && !after(ptr, tp->urg_seq))
  3810. return;
  3811. /* Tell the world about our new urgent pointer. */
  3812. sk_send_sigurg(sk);
  3813. /* We may be adding urgent data when the last byte read was
  3814. * urgent. To do this requires some care. We cannot just ignore
  3815. * tp->copied_seq since we would read the last urgent byte again
  3816. * as data, nor can we alter copied_seq until this data arrives
  3817. * or we break the semantics of SIOCATMARK (and thus sockatmark())
  3818. *
  3819. * NOTE. Double Dutch. Rendering to plain English: author of comment
  3820. * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB);
  3821. * and expect that both A and B disappear from stream. This is _wrong_.
  3822. * Though this happens in BSD with high probability, this is occasional.
  3823. * Any application relying on this is buggy. Note also, that fix "works"
  3824. * only in this artificial test. Insert some normal data between A and B and we will
  3825. * decline of BSD again. Verdict: it is better to remove to trap
  3826. * buggy users.
  3827. */
  3828. if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
  3829. !sock_flag(sk, SOCK_URGINLINE) &&
  3830. tp->copied_seq != tp->rcv_nxt) {
  3831. struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
  3832. tp->copied_seq++;
  3833. if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
  3834. __skb_unlink(skb, &sk->sk_receive_queue);
  3835. __kfree_skb(skb);
  3836. }
  3837. }
  3838. tp->urg_data = TCP_URG_NOTYET;
  3839. tp->urg_seq = ptr;
  3840. /* Disable header prediction. */
  3841. tp->pred_flags = 0;
  3842. }
  3843. /* This is the 'fast' part of urgent handling. */
  3844. static void tcp_urg(struct sock *sk, struct sk_buff *skb, struct tcphdr *th)
  3845. {
  3846. struct tcp_sock *tp = tcp_sk(sk);
  3847. /* Check if we get a new urgent pointer - normally not. */
  3848. if (th->urg)
  3849. tcp_check_urg(sk,th);
  3850. /* Do we wait for any urgent data? - normally not... */
  3851. if (tp->urg_data == TCP_URG_NOTYET) {
  3852. u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
  3853. th->syn;
  3854. /* Is the urgent pointer pointing into this packet? */
  3855. if (ptr < skb->len) {
  3856. u8 tmp;
  3857. if (skb_copy_bits(skb, ptr, &tmp, 1))
  3858. BUG();
  3859. tp->urg_data = TCP_URG_VALID | tmp;
  3860. if (!sock_flag(sk, SOCK_DEAD))
  3861. sk->sk_data_ready(sk, 0);
  3862. }
  3863. }
  3864. }
  3865. static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
  3866. {
  3867. struct tcp_sock *tp = tcp_sk(sk);
  3868. int chunk = skb->len - hlen;
  3869. int err;
  3870. local_bh_enable();
  3871. if (skb_csum_unnecessary(skb))
  3872. err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk);
  3873. else
  3874. err = skb_copy_and_csum_datagram_iovec(skb, hlen,
  3875. tp->ucopy.iov);
  3876. if (!err) {
  3877. tp->ucopy.len -= chunk;
  3878. tp->copied_seq += chunk;
  3879. tcp_rcv_space_adjust(sk);
  3880. }
  3881. local_bh_disable();
  3882. return err;
  3883. }
  3884. static __sum16 __tcp_checksum_complete_user(struct sock *sk, struct sk_buff *skb)
  3885. {
  3886. __sum16 result;
  3887. if (sock_owned_by_user(sk)) {
  3888. local_bh_enable();
  3889. result = __tcp_checksum_complete(skb);
  3890. local_bh_disable();
  3891. } else {
  3892. result = __tcp_checksum_complete(skb);
  3893. }
  3894. return result;
  3895. }
  3896. static inline int tcp_checksum_complete_user(struct sock *sk, struct sk_buff *skb)
  3897. {
  3898. return !skb_csum_unnecessary(skb) &&
  3899. __tcp_checksum_complete_user(sk, skb);
  3900. }
  3901. #ifdef CONFIG_NET_DMA
  3902. static int tcp_dma_try_early_copy(struct sock *sk, struct sk_buff *skb, int hlen)
  3903. {
  3904. struct tcp_sock *tp = tcp_sk(sk);
  3905. int chunk = skb->len - hlen;
  3906. int dma_cookie;
  3907. int copied_early = 0;
  3908. if (tp->ucopy.wakeup)
  3909. return 0;
  3910. if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
  3911. tp->ucopy.dma_chan = get_softnet_dma();
  3912. if (tp->ucopy.dma_chan && skb_csum_unnecessary(skb)) {
  3913. dma_cookie = dma_skb_copy_datagram_iovec(tp->ucopy.dma_chan,
  3914. skb, hlen, tp->ucopy.iov, chunk, tp->ucopy.pinned_list);
  3915. if (dma_cookie < 0)
  3916. goto out;
  3917. tp->ucopy.dma_cookie = dma_cookie;
  3918. copied_early = 1;
  3919. tp->ucopy.len -= chunk;
  3920. tp->copied_seq += chunk;
  3921. tcp_rcv_space_adjust(sk);
  3922. if ((tp->ucopy.len == 0) ||
  3923. (tcp_flag_word(tcp_hdr(skb)) & TCP_FLAG_PSH) ||
  3924. (atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1))) {
  3925. tp->ucopy.wakeup = 1;
  3926. sk->sk_data_ready(sk, 0);
  3927. }
  3928. } else if (chunk > 0) {
  3929. tp->ucopy.wakeup = 1;
  3930. sk->sk_data_ready(sk, 0);
  3931. }
  3932. out:
  3933. return copied_early;
  3934. }
  3935. #endif /* CONFIG_NET_DMA */
  3936. /*
  3937. * TCP receive function for the ESTABLISHED state.
  3938. *
  3939. * It is split into a fast path and a slow path. The fast path is
  3940. * disabled when:
  3941. * - A zero window was announced from us - zero window probing
  3942. * is only handled properly in the slow path.
  3943. * - Out of order segments arrived.
  3944. * - Urgent data is expected.
  3945. * - There is no buffer space left
  3946. * - Unexpected TCP flags/window values/header lengths are received
  3947. * (detected by checking the TCP header against pred_flags)
  3948. * - Data is sent in both directions. Fast path only supports pure senders
  3949. * or pure receivers (this means either the sequence number or the ack
  3950. * value must stay constant)
  3951. * - Unexpected TCP option.
  3952. *
  3953. * When these conditions are not satisfied it drops into a standard
  3954. * receive procedure patterned after RFC793 to handle all cases.
  3955. * The first three cases are guaranteed by proper pred_flags setting,
  3956. * the rest is checked inline. Fast processing is turned on in
  3957. * tcp_data_queue when everything is OK.
  3958. */
  3959. int tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
  3960. struct tcphdr *th, unsigned len)
  3961. {
  3962. struct tcp_sock *tp = tcp_sk(sk);
  3963. /*
  3964. * Header prediction.
  3965. * The code loosely follows the one in the famous
  3966. * "30 instruction TCP receive" Van Jacobson mail.
  3967. *
  3968. * Van's trick is to deposit buffers into socket queue
  3969. * on a device interrupt, to call tcp_recv function
  3970. * on the receive process context and checksum and copy
  3971. * the buffer to user space. smart...
  3972. *
  3973. * Our current scheme is not silly either but we take the
  3974. * extra cost of the net_bh soft interrupt processing...
  3975. * We do checksum and copy also but from device to kernel.
  3976. */
  3977. tp->rx_opt.saw_tstamp = 0;
  3978. /* pred_flags is 0xS?10 << 16 + snd_wnd
  3979. * if header_prediction is to be made
  3980. * 'S' will always be tp->tcp_header_len >> 2
  3981. * '?' will be 0 for the fast path, otherwise pred_flags is 0 to
  3982. * turn it off (when there are holes in the receive
  3983. * space for instance)
  3984. * PSH flag is ignored.
  3985. */
  3986. if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
  3987. TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
  3988. int tcp_header_len = tp->tcp_header_len;
  3989. /* Timestamp header prediction: tcp_header_len
  3990. * is automatically equal to th->doff*4 due to pred_flags
  3991. * match.
  3992. */
  3993. /* Check timestamp */
  3994. if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
  3995. __be32 *ptr = (__be32 *)(th + 1);
  3996. /* No? Slow path! */
  3997. if (*ptr != htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
  3998. | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP))
  3999. goto slow_path;
  4000. tp->rx_opt.saw_tstamp = 1;
  4001. ++ptr;
  4002. tp->rx_opt.rcv_tsval = ntohl(*ptr);
  4003. ++ptr;
  4004. tp->rx_opt.rcv_tsecr = ntohl(*ptr);
  4005. /* If PAWS failed, check it more carefully in slow path */
  4006. if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
  4007. goto slow_path;
  4008. /* DO NOT update ts_recent here, if checksum fails
  4009. * and timestamp was corrupted part, it will result
  4010. * in a hung connection since we will drop all
  4011. * future packets due to the PAWS test.
  4012. */
  4013. }
  4014. if (len <= tcp_header_len) {
  4015. /* Bulk data transfer: sender */
  4016. if (len == tcp_header_len) {
  4017. /* Predicted packet is in window by definition.
  4018. * seq == rcv_nxt and rcv_wup <= rcv_nxt.
  4019. * Hence, check seq<=rcv_wup reduces to:
  4020. */
  4021. if (tcp_header_len ==
  4022. (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
  4023. tp->rcv_nxt == tp->rcv_wup)
  4024. tcp_store_ts_recent(tp);
  4025. /* We know that such packets are checksummed
  4026. * on entry.
  4027. */
  4028. tcp_ack(sk, skb, 0);
  4029. __kfree_skb(skb);
  4030. tcp_data_snd_check(sk);
  4031. return 0;
  4032. } else { /* Header too small */
  4033. TCP_INC_STATS_BH(TCP_MIB_INERRS);
  4034. goto discard;
  4035. }
  4036. } else {
  4037. int eaten = 0;
  4038. int copied_early = 0;
  4039. if (tp->copied_seq == tp->rcv_nxt &&
  4040. len - tcp_header_len <= tp->ucopy.len) {
  4041. #ifdef CONFIG_NET_DMA
  4042. if (tcp_dma_try_early_copy(sk, skb, tcp_header_len)) {
  4043. copied_early = 1;
  4044. eaten = 1;
  4045. }
  4046. #endif
  4047. if (tp->ucopy.task == current && sock_owned_by_user(sk) && !copied_early) {
  4048. __set_current_state(TASK_RUNNING);
  4049. if (!tcp_copy_to_iovec(sk, skb, tcp_header_len))
  4050. eaten = 1;
  4051. }
  4052. if (eaten) {
  4053. /* Predicted packet is in window by definition.
  4054. * seq == rcv_nxt and rcv_wup <= rcv_nxt.
  4055. * Hence, check seq<=rcv_wup reduces to:
  4056. */
  4057. if (tcp_header_len ==
  4058. (sizeof(struct tcphdr) +
  4059. TCPOLEN_TSTAMP_ALIGNED) &&
  4060. tp->rcv_nxt == tp->rcv_wup)
  4061. tcp_store_ts_recent(tp);
  4062. tcp_rcv_rtt_measure_ts(sk, skb);
  4063. __skb_pull(skb, tcp_header_len);
  4064. tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
  4065. NET_INC_STATS_BH(LINUX_MIB_TCPHPHITSTOUSER);
  4066. }
  4067. if (copied_early)
  4068. tcp_cleanup_rbuf(sk, skb->len);
  4069. }
  4070. if (!eaten) {
  4071. if (tcp_checksum_complete_user(sk, skb))
  4072. goto csum_error;
  4073. /* Predicted packet is in window by definition.
  4074. * seq == rcv_nxt and rcv_wup <= rcv_nxt.
  4075. * Hence, check seq<=rcv_wup reduces to:
  4076. */
  4077. if (tcp_header_len ==
  4078. (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
  4079. tp->rcv_nxt == tp->rcv_wup)
  4080. tcp_store_ts_recent(tp);
  4081. tcp_rcv_rtt_measure_ts(sk, skb);
  4082. if ((int)skb->truesize > sk->sk_forward_alloc)
  4083. goto step5;
  4084. NET_INC_STATS_BH(LINUX_MIB_TCPHPHITS);
  4085. /* Bulk data transfer: receiver */
  4086. __skb_pull(skb,tcp_header_len);
  4087. __skb_queue_tail(&sk->sk_receive_queue, skb);
  4088. sk_stream_set_owner_r(skb, sk);
  4089. tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
  4090. }
  4091. tcp_event_data_recv(sk, skb);
  4092. if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
  4093. /* Well, only one small jumplet in fast path... */
  4094. tcp_ack(sk, skb, FLAG_DATA);
  4095. tcp_data_snd_check(sk);
  4096. if (!inet_csk_ack_scheduled(sk))
  4097. goto no_ack;
  4098. }
  4099. __tcp_ack_snd_check(sk, 0);
  4100. no_ack:
  4101. #ifdef CONFIG_NET_DMA
  4102. if (copied_early)
  4103. __skb_queue_tail(&sk->sk_async_wait_queue, skb);
  4104. else
  4105. #endif
  4106. if (eaten)
  4107. __kfree_skb(skb);
  4108. else
  4109. sk->sk_data_ready(sk, 0);
  4110. return 0;
  4111. }
  4112. }
  4113. slow_path:
  4114. if (len < (th->doff<<2) || tcp_checksum_complete_user(sk, skb))
  4115. goto csum_error;
  4116. /*
  4117. * RFC1323: H1. Apply PAWS check first.
  4118. */
  4119. if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
  4120. tcp_paws_discard(sk, skb)) {
  4121. if (!th->rst) {
  4122. NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED);
  4123. tcp_send_dupack(sk, skb);
  4124. goto discard;
  4125. }
  4126. /* Resets are accepted even if PAWS failed.
  4127. ts_recent update must be made after we are sure
  4128. that the packet is in window.
  4129. */
  4130. }
  4131. /*
  4132. * Standard slow path.
  4133. */
  4134. if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
  4135. /* RFC793, page 37: "In all states except SYN-SENT, all reset
  4136. * (RST) segments are validated by checking their SEQ-fields."
  4137. * And page 69: "If an incoming segment is not acceptable,
  4138. * an acknowledgment should be sent in reply (unless the RST bit
  4139. * is set, if so drop the segment and return)".
  4140. */
  4141. if (!th->rst)
  4142. tcp_send_dupack(sk, skb);
  4143. goto discard;
  4144. }
  4145. if (th->rst) {
  4146. tcp_reset(sk);
  4147. goto discard;
  4148. }
  4149. tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
  4150. if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
  4151. TCP_INC_STATS_BH(TCP_MIB_INERRS);
  4152. NET_INC_STATS_BH(LINUX_MIB_TCPABORTONSYN);
  4153. tcp_reset(sk);
  4154. return 1;
  4155. }
  4156. step5:
  4157. if (th->ack)
  4158. tcp_ack(sk, skb, FLAG_SLOWPATH);
  4159. tcp_rcv_rtt_measure_ts(sk, skb);
  4160. /* Process urgent data. */
  4161. tcp_urg(sk, skb, th);
  4162. /* step 7: process the segment text */
  4163. tcp_data_queue(sk, skb);
  4164. tcp_data_snd_check(sk);
  4165. tcp_ack_snd_check(sk);
  4166. return 0;
  4167. csum_error:
  4168. TCP_INC_STATS_BH(TCP_MIB_INERRS);
  4169. discard:
  4170. __kfree_skb(skb);
  4171. return 0;
  4172. }
  4173. static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
  4174. struct tcphdr *th, unsigned len)
  4175. {
  4176. struct tcp_sock *tp = tcp_sk(sk);
  4177. struct inet_connection_sock *icsk = inet_csk(sk);
  4178. int saved_clamp = tp->rx_opt.mss_clamp;
  4179. tcp_parse_options(skb, &tp->rx_opt, 0);
  4180. if (th->ack) {
  4181. /* rfc793:
  4182. * "If the state is SYN-SENT then
  4183. * first check the ACK bit
  4184. * If the ACK bit is set
  4185. * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
  4186. * a reset (unless the RST bit is set, if so drop
  4187. * the segment and return)"
  4188. *
  4189. * We do not send data with SYN, so that RFC-correct
  4190. * test reduces to:
  4191. */
  4192. if (TCP_SKB_CB(skb)->ack_seq != tp->snd_nxt)
  4193. goto reset_and_undo;
  4194. if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
  4195. !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
  4196. tcp_time_stamp)) {
  4197. NET_INC_STATS_BH(LINUX_MIB_PAWSACTIVEREJECTED);
  4198. goto reset_and_undo;
  4199. }
  4200. /* Now ACK is acceptable.
  4201. *
  4202. * "If the RST bit is set
  4203. * If the ACK was acceptable then signal the user "error:
  4204. * connection reset", drop the segment, enter CLOSED state,
  4205. * delete TCB, and return."
  4206. */
  4207. if (th->rst) {
  4208. tcp_reset(sk);
  4209. goto discard;
  4210. }
  4211. /* rfc793:
  4212. * "fifth, if neither of the SYN or RST bits is set then
  4213. * drop the segment and return."
  4214. *
  4215. * See note below!
  4216. * --ANK(990513)
  4217. */
  4218. if (!th->syn)
  4219. goto discard_and_undo;
  4220. /* rfc793:
  4221. * "If the SYN bit is on ...
  4222. * are acceptable then ...
  4223. * (our SYN has been ACKed), change the connection
  4224. * state to ESTABLISHED..."
  4225. */
  4226. TCP_ECN_rcv_synack(tp, th);
  4227. tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
  4228. tcp_ack(sk, skb, FLAG_SLOWPATH);
  4229. /* Ok.. it's good. Set up sequence numbers and
  4230. * move to established.
  4231. */
  4232. tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
  4233. tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
  4234. /* RFC1323: The window in SYN & SYN/ACK segments is
  4235. * never scaled.
  4236. */
  4237. tp->snd_wnd = ntohs(th->window);
  4238. tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq, TCP_SKB_CB(skb)->seq);
  4239. if (!tp->rx_opt.wscale_ok) {
  4240. tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
  4241. tp->window_clamp = min(tp->window_clamp, 65535U);
  4242. }
  4243. if (tp->rx_opt.saw_tstamp) {
  4244. tp->rx_opt.tstamp_ok = 1;
  4245. tp->tcp_header_len =
  4246. sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
  4247. tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
  4248. tcp_store_ts_recent(tp);
  4249. } else {
  4250. tp->tcp_header_len = sizeof(struct tcphdr);
  4251. }
  4252. if (tcp_is_sack(tp) && sysctl_tcp_fack)
  4253. tcp_enable_fack(tp);
  4254. tcp_mtup_init(sk);
  4255. tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
  4256. tcp_initialize_rcv_mss(sk);
  4257. /* Remember, tcp_poll() does not lock socket!
  4258. * Change state from SYN-SENT only after copied_seq
  4259. * is initialized. */
  4260. tp->copied_seq = tp->rcv_nxt;
  4261. smp_mb();
  4262. tcp_set_state(sk, TCP_ESTABLISHED);
  4263. security_inet_conn_established(sk, skb);
  4264. /* Make sure socket is routed, for correct metrics. */
  4265. icsk->icsk_af_ops->rebuild_header(sk);
  4266. tcp_init_metrics(sk);
  4267. tcp_init_congestion_control(sk);
  4268. /* Prevent spurious tcp_cwnd_restart() on first data
  4269. * packet.
  4270. */
  4271. tp->lsndtime = tcp_time_stamp;
  4272. tcp_init_buffer_space(sk);
  4273. if (sock_flag(sk, SOCK_KEEPOPEN))
  4274. inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
  4275. if (!tp->rx_opt.snd_wscale)
  4276. __tcp_fast_path_on(tp, tp->snd_wnd);
  4277. else
  4278. tp->pred_flags = 0;
  4279. if (!sock_flag(sk, SOCK_DEAD)) {
  4280. sk->sk_state_change(sk);
  4281. sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
  4282. }
  4283. if (sk->sk_write_pending ||
  4284. icsk->icsk_accept_queue.rskq_defer_accept ||
  4285. icsk->icsk_ack.pingpong) {
  4286. /* Save one ACK. Data will be ready after
  4287. * several ticks, if write_pending is set.
  4288. *
  4289. * It may be deleted, but with this feature tcpdumps
  4290. * look so _wonderfully_ clever, that I was not able
  4291. * to stand against the temptation 8) --ANK
  4292. */
  4293. inet_csk_schedule_ack(sk);
  4294. icsk->icsk_ack.lrcvtime = tcp_time_stamp;
  4295. icsk->icsk_ack.ato = TCP_ATO_MIN;
  4296. tcp_incr_quickack(sk);
  4297. tcp_enter_quickack_mode(sk);
  4298. inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
  4299. TCP_DELACK_MAX, TCP_RTO_MAX);
  4300. discard:
  4301. __kfree_skb(skb);
  4302. return 0;
  4303. } else {
  4304. tcp_send_ack(sk);
  4305. }
  4306. return -1;
  4307. }
  4308. /* No ACK in the segment */
  4309. if (th->rst) {
  4310. /* rfc793:
  4311. * "If the RST bit is set
  4312. *
  4313. * Otherwise (no ACK) drop the segment and return."
  4314. */
  4315. goto discard_and_undo;
  4316. }
  4317. /* PAWS check. */
  4318. if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp && tcp_paws_check(&tp->rx_opt, 0))
  4319. goto discard_and_undo;
  4320. if (th->syn) {
  4321. /* We see SYN without ACK. It is attempt of
  4322. * simultaneous connect with crossed SYNs.
  4323. * Particularly, it can be connect to self.
  4324. */
  4325. tcp_set_state(sk, TCP_SYN_RECV);
  4326. if (tp->rx_opt.saw_tstamp) {
  4327. tp->rx_opt.tstamp_ok = 1;
  4328. tcp_store_ts_recent(tp);
  4329. tp->tcp_header_len =
  4330. sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
  4331. } else {
  4332. tp->tcp_header_len = sizeof(struct tcphdr);
  4333. }
  4334. tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
  4335. tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
  4336. /* RFC1323: The window in SYN & SYN/ACK segments is
  4337. * never scaled.
  4338. */
  4339. tp->snd_wnd = ntohs(th->window);
  4340. tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
  4341. tp->max_window = tp->snd_wnd;
  4342. TCP_ECN_rcv_syn(tp, th);
  4343. tcp_mtup_init(sk);
  4344. tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
  4345. tcp_initialize_rcv_mss(sk);
  4346. tcp_send_synack(sk);
  4347. #if 0
  4348. /* Note, we could accept data and URG from this segment.
  4349. * There are no obstacles to make this.
  4350. *
  4351. * However, if we ignore data in ACKless segments sometimes,
  4352. * we have no reasons to accept it sometimes.
  4353. * Also, seems the code doing it in step6 of tcp_rcv_state_process
  4354. * is not flawless. So, discard packet for sanity.
  4355. * Uncomment this return to process the data.
  4356. */
  4357. return -1;
  4358. #else
  4359. goto discard;
  4360. #endif
  4361. }
  4362. /* "fifth, if neither of the SYN or RST bits is set then
  4363. * drop the segment and return."
  4364. */
  4365. discard_and_undo:
  4366. tcp_clear_options(&tp->rx_opt);
  4367. tp->rx_opt.mss_clamp = saved_clamp;
  4368. goto discard;
  4369. reset_and_undo:
  4370. tcp_clear_options(&tp->rx_opt);
  4371. tp->rx_opt.mss_clamp = saved_clamp;
  4372. return 1;
  4373. }
  4374. /*
  4375. * This function implements the receiving procedure of RFC 793 for
  4376. * all states except ESTABLISHED and TIME_WAIT.
  4377. * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
  4378. * address independent.
  4379. */
  4380. int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
  4381. struct tcphdr *th, unsigned len)
  4382. {
  4383. struct tcp_sock *tp = tcp_sk(sk);
  4384. struct inet_connection_sock *icsk = inet_csk(sk);
  4385. int queued = 0;
  4386. tp->rx_opt.saw_tstamp = 0;
  4387. switch (sk->sk_state) {
  4388. case TCP_CLOSE:
  4389. goto discard;
  4390. case TCP_LISTEN:
  4391. if (th->ack)
  4392. return 1;
  4393. if (th->rst)
  4394. goto discard;
  4395. if (th->syn) {
  4396. if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
  4397. return 1;
  4398. /* Now we have several options: In theory there is
  4399. * nothing else in the frame. KA9Q has an option to
  4400. * send data with the syn, BSD accepts data with the
  4401. * syn up to the [to be] advertised window and
  4402. * Solaris 2.1 gives you a protocol error. For now
  4403. * we just ignore it, that fits the spec precisely
  4404. * and avoids incompatibilities. It would be nice in
  4405. * future to drop through and process the data.
  4406. *
  4407. * Now that TTCP is starting to be used we ought to
  4408. * queue this data.
  4409. * But, this leaves one open to an easy denial of
  4410. * service attack, and SYN cookies can't defend
  4411. * against this problem. So, we drop the data
  4412. * in the interest of security over speed unless
  4413. * it's still in use.
  4414. */
  4415. kfree_skb(skb);
  4416. return 0;
  4417. }
  4418. goto discard;
  4419. case TCP_SYN_SENT:
  4420. queued = tcp_rcv_synsent_state_process(sk, skb, th, len);
  4421. if (queued >= 0)
  4422. return queued;
  4423. /* Do step6 onward by hand. */
  4424. tcp_urg(sk, skb, th);
  4425. __kfree_skb(skb);
  4426. tcp_data_snd_check(sk);
  4427. return 0;
  4428. }
  4429. if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
  4430. tcp_paws_discard(sk, skb)) {
  4431. if (!th->rst) {
  4432. NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED);
  4433. tcp_send_dupack(sk, skb);
  4434. goto discard;
  4435. }
  4436. /* Reset is accepted even if it did not pass PAWS. */
  4437. }
  4438. /* step 1: check sequence number */
  4439. if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
  4440. if (!th->rst)
  4441. tcp_send_dupack(sk, skb);
  4442. goto discard;
  4443. }
  4444. /* step 2: check RST bit */
  4445. if (th->rst) {
  4446. tcp_reset(sk);
  4447. goto discard;
  4448. }
  4449. tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
  4450. /* step 3: check security and precedence [ignored] */
  4451. /* step 4:
  4452. *
  4453. * Check for a SYN in window.
  4454. */
  4455. if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
  4456. NET_INC_STATS_BH(LINUX_MIB_TCPABORTONSYN);
  4457. tcp_reset(sk);
  4458. return 1;
  4459. }
  4460. /* step 5: check the ACK field */
  4461. if (th->ack) {
  4462. int acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH);
  4463. switch (sk->sk_state) {
  4464. case TCP_SYN_RECV:
  4465. if (acceptable) {
  4466. tp->copied_seq = tp->rcv_nxt;
  4467. smp_mb();
  4468. tcp_set_state(sk, TCP_ESTABLISHED);
  4469. sk->sk_state_change(sk);
  4470. /* Note, that this wakeup is only for marginal
  4471. * crossed SYN case. Passively open sockets
  4472. * are not waked up, because sk->sk_sleep ==
  4473. * NULL and sk->sk_socket == NULL.
  4474. */
  4475. if (sk->sk_socket)
  4476. sk_wake_async(sk,
  4477. SOCK_WAKE_IO, POLL_OUT);
  4478. tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
  4479. tp->snd_wnd = ntohs(th->window) <<
  4480. tp->rx_opt.snd_wscale;
  4481. tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq,
  4482. TCP_SKB_CB(skb)->seq);
  4483. /* tcp_ack considers this ACK as duplicate
  4484. * and does not calculate rtt.
  4485. * Fix it at least with timestamps.
  4486. */
  4487. if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
  4488. !tp->srtt)
  4489. tcp_ack_saw_tstamp(sk, 0);
  4490. if (tp->rx_opt.tstamp_ok)
  4491. tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
  4492. /* Make sure socket is routed, for
  4493. * correct metrics.
  4494. */
  4495. icsk->icsk_af_ops->rebuild_header(sk);
  4496. tcp_init_metrics(sk);
  4497. tcp_init_congestion_control(sk);
  4498. /* Prevent spurious tcp_cwnd_restart() on
  4499. * first data packet.
  4500. */
  4501. tp->lsndtime = tcp_time_stamp;
  4502. tcp_mtup_init(sk);
  4503. tcp_initialize_rcv_mss(sk);
  4504. tcp_init_buffer_space(sk);
  4505. tcp_fast_path_on(tp);
  4506. } else {
  4507. return 1;
  4508. }
  4509. break;
  4510. case TCP_FIN_WAIT1:
  4511. if (tp->snd_una == tp->write_seq) {
  4512. tcp_set_state(sk, TCP_FIN_WAIT2);
  4513. sk->sk_shutdown |= SEND_SHUTDOWN;
  4514. dst_confirm(sk->sk_dst_cache);
  4515. if (!sock_flag(sk, SOCK_DEAD))
  4516. /* Wake up lingering close() */
  4517. sk->sk_state_change(sk);
  4518. else {
  4519. int tmo;
  4520. if (tp->linger2 < 0 ||
  4521. (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
  4522. after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
  4523. tcp_done(sk);
  4524. NET_INC_STATS_BH(LINUX_MIB_TCPABORTONDATA);
  4525. return 1;
  4526. }
  4527. tmo = tcp_fin_time(sk);
  4528. if (tmo > TCP_TIMEWAIT_LEN) {
  4529. inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
  4530. } else if (th->fin || sock_owned_by_user(sk)) {
  4531. /* Bad case. We could lose such FIN otherwise.
  4532. * It is not a big problem, but it looks confusing
  4533. * and not so rare event. We still can lose it now,
  4534. * if it spins in bh_lock_sock(), but it is really
  4535. * marginal case.
  4536. */
  4537. inet_csk_reset_keepalive_timer(sk, tmo);
  4538. } else {
  4539. tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
  4540. goto discard;
  4541. }
  4542. }
  4543. }
  4544. break;
  4545. case TCP_CLOSING:
  4546. if (tp->snd_una == tp->write_seq) {
  4547. tcp_time_wait(sk, TCP_TIME_WAIT, 0);
  4548. goto discard;
  4549. }
  4550. break;
  4551. case TCP_LAST_ACK:
  4552. if (tp->snd_una == tp->write_seq) {
  4553. tcp_update_metrics(sk);
  4554. tcp_done(sk);
  4555. goto discard;
  4556. }
  4557. break;
  4558. }
  4559. } else
  4560. goto discard;
  4561. /* step 6: check the URG bit */
  4562. tcp_urg(sk, skb, th);
  4563. /* step 7: process the segment text */
  4564. switch (sk->sk_state) {
  4565. case TCP_CLOSE_WAIT:
  4566. case TCP_CLOSING:
  4567. case TCP_LAST_ACK:
  4568. if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
  4569. break;
  4570. case TCP_FIN_WAIT1:
  4571. case TCP_FIN_WAIT2:
  4572. /* RFC 793 says to queue data in these states,
  4573. * RFC 1122 says we MUST send a reset.
  4574. * BSD 4.4 also does reset.
  4575. */
  4576. if (sk->sk_shutdown & RCV_SHUTDOWN) {
  4577. if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
  4578. after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
  4579. NET_INC_STATS_BH(LINUX_MIB_TCPABORTONDATA);
  4580. tcp_reset(sk);
  4581. return 1;
  4582. }
  4583. }
  4584. /* Fall through */
  4585. case TCP_ESTABLISHED:
  4586. tcp_data_queue(sk, skb);
  4587. queued = 1;
  4588. break;
  4589. }
  4590. /* tcp_data could move socket to TIME-WAIT */
  4591. if (sk->sk_state != TCP_CLOSE) {
  4592. tcp_data_snd_check(sk);
  4593. tcp_ack_snd_check(sk);
  4594. }
  4595. if (!queued) {
  4596. discard:
  4597. __kfree_skb(skb);
  4598. }
  4599. return 0;
  4600. }
  4601. EXPORT_SYMBOL(sysctl_tcp_ecn);
  4602. EXPORT_SYMBOL(sysctl_tcp_reordering);
  4603. EXPORT_SYMBOL(tcp_parse_options);
  4604. EXPORT_SYMBOL(tcp_rcv_established);
  4605. EXPORT_SYMBOL(tcp_rcv_state_process);
  4606. EXPORT_SYMBOL(tcp_initialize_rcv_mss);