mm.h 50 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474
  1. #ifndef _LINUX_MM_H
  2. #define _LINUX_MM_H
  3. #include <linux/errno.h>
  4. #ifdef __KERNEL__
  5. #include <linux/gfp.h>
  6. #include <linux/list.h>
  7. #include <linux/mmzone.h>
  8. #include <linux/rbtree.h>
  9. #include <linux/prio_tree.h>
  10. #include <linux/debug_locks.h>
  11. #include <linux/mm_types.h>
  12. #include <linux/range.h>
  13. #include <linux/pfn.h>
  14. struct mempolicy;
  15. struct anon_vma;
  16. struct file_ra_state;
  17. struct user_struct;
  18. struct writeback_control;
  19. #ifndef CONFIG_DISCONTIGMEM /* Don't use mapnrs, do it properly */
  20. extern unsigned long max_mapnr;
  21. #endif
  22. extern unsigned long num_physpages;
  23. extern unsigned long totalram_pages;
  24. extern void * high_memory;
  25. extern int page_cluster;
  26. #ifdef CONFIG_SYSCTL
  27. extern int sysctl_legacy_va_layout;
  28. #else
  29. #define sysctl_legacy_va_layout 0
  30. #endif
  31. #include <asm/page.h>
  32. #include <asm/pgtable.h>
  33. #include <asm/processor.h>
  34. #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
  35. /* to align the pointer to the (next) page boundary */
  36. #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
  37. /*
  38. * Linux kernel virtual memory manager primitives.
  39. * The idea being to have a "virtual" mm in the same way
  40. * we have a virtual fs - giving a cleaner interface to the
  41. * mm details, and allowing different kinds of memory mappings
  42. * (from shared memory to executable loading to arbitrary
  43. * mmap() functions).
  44. */
  45. extern struct kmem_cache *vm_area_cachep;
  46. #ifndef CONFIG_MMU
  47. extern struct rb_root nommu_region_tree;
  48. extern struct rw_semaphore nommu_region_sem;
  49. extern unsigned int kobjsize(const void *objp);
  50. #endif
  51. /*
  52. * vm_flags in vm_area_struct, see mm_types.h.
  53. */
  54. #define VM_READ 0x00000001 /* currently active flags */
  55. #define VM_WRITE 0x00000002
  56. #define VM_EXEC 0x00000004
  57. #define VM_SHARED 0x00000008
  58. /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
  59. #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
  60. #define VM_MAYWRITE 0x00000020
  61. #define VM_MAYEXEC 0x00000040
  62. #define VM_MAYSHARE 0x00000080
  63. #define VM_GROWSDOWN 0x00000100 /* general info on the segment */
  64. #define VM_GROWSUP 0x00000200
  65. #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
  66. #define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
  67. #define VM_EXECUTABLE 0x00001000
  68. #define VM_LOCKED 0x00002000
  69. #define VM_IO 0x00004000 /* Memory mapped I/O or similar */
  70. /* Used by sys_madvise() */
  71. #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
  72. #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
  73. #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
  74. #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
  75. #define VM_RESERVED 0x00080000 /* Count as reserved_vm like IO */
  76. #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
  77. #define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
  78. #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
  79. #define VM_NONLINEAR 0x00800000 /* Is non-linear (remap_file_pages) */
  80. #define VM_MAPPED_COPY 0x01000000 /* T if mapped copy of data (nommu mmap) */
  81. #define VM_INSERTPAGE 0x02000000 /* The vma has had "vm_insert_page()" done on it */
  82. #define VM_ALWAYSDUMP 0x04000000 /* Always include in core dumps */
  83. #define VM_CAN_NONLINEAR 0x08000000 /* Has ->fault & does nonlinear pages */
  84. #define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
  85. #define VM_SAO 0x20000000 /* Strong Access Ordering (powerpc) */
  86. #define VM_PFN_AT_MMAP 0x40000000 /* PFNMAP vma that is fully mapped at mmap time */
  87. #define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
  88. /* Bits set in the VMA until the stack is in its final location */
  89. #define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
  90. #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
  91. #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
  92. #endif
  93. #ifdef CONFIG_STACK_GROWSUP
  94. #define VM_STACK_FLAGS (VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
  95. #else
  96. #define VM_STACK_FLAGS (VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
  97. #endif
  98. #define VM_READHINTMASK (VM_SEQ_READ | VM_RAND_READ)
  99. #define VM_ClearReadHint(v) (v)->vm_flags &= ~VM_READHINTMASK
  100. #define VM_NormalReadHint(v) (!((v)->vm_flags & VM_READHINTMASK))
  101. #define VM_SequentialReadHint(v) ((v)->vm_flags & VM_SEQ_READ)
  102. #define VM_RandomReadHint(v) ((v)->vm_flags & VM_RAND_READ)
  103. /*
  104. * special vmas that are non-mergable, non-mlock()able
  105. */
  106. #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_RESERVED | VM_PFNMAP)
  107. /*
  108. * mapping from the currently active vm_flags protection bits (the
  109. * low four bits) to a page protection mask..
  110. */
  111. extern pgprot_t protection_map[16];
  112. #define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */
  113. #define FAULT_FLAG_NONLINEAR 0x02 /* Fault was via a nonlinear mapping */
  114. #define FAULT_FLAG_MKWRITE 0x04 /* Fault was mkwrite of existing pte */
  115. /*
  116. * This interface is used by x86 PAT code to identify a pfn mapping that is
  117. * linear over entire vma. This is to optimize PAT code that deals with
  118. * marking the physical region with a particular prot. This is not for generic
  119. * mm use. Note also that this check will not work if the pfn mapping is
  120. * linear for a vma starting at physical address 0. In which case PAT code
  121. * falls back to slow path of reserving physical range page by page.
  122. */
  123. static inline int is_linear_pfn_mapping(struct vm_area_struct *vma)
  124. {
  125. return (vma->vm_flags & VM_PFN_AT_MMAP);
  126. }
  127. static inline int is_pfn_mapping(struct vm_area_struct *vma)
  128. {
  129. return (vma->vm_flags & VM_PFNMAP);
  130. }
  131. /*
  132. * vm_fault is filled by the the pagefault handler and passed to the vma's
  133. * ->fault function. The vma's ->fault is responsible for returning a bitmask
  134. * of VM_FAULT_xxx flags that give details about how the fault was handled.
  135. *
  136. * pgoff should be used in favour of virtual_address, if possible. If pgoff
  137. * is used, one may set VM_CAN_NONLINEAR in the vma->vm_flags to get nonlinear
  138. * mapping support.
  139. */
  140. struct vm_fault {
  141. unsigned int flags; /* FAULT_FLAG_xxx flags */
  142. pgoff_t pgoff; /* Logical page offset based on vma */
  143. void __user *virtual_address; /* Faulting virtual address */
  144. struct page *page; /* ->fault handlers should return a
  145. * page here, unless VM_FAULT_NOPAGE
  146. * is set (which is also implied by
  147. * VM_FAULT_ERROR).
  148. */
  149. };
  150. /*
  151. * These are the virtual MM functions - opening of an area, closing and
  152. * unmapping it (needed to keep files on disk up-to-date etc), pointer
  153. * to the functions called when a no-page or a wp-page exception occurs.
  154. */
  155. struct vm_operations_struct {
  156. void (*open)(struct vm_area_struct * area);
  157. void (*close)(struct vm_area_struct * area);
  158. int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf);
  159. /* notification that a previously read-only page is about to become
  160. * writable, if an error is returned it will cause a SIGBUS */
  161. int (*page_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);
  162. /* called by access_process_vm when get_user_pages() fails, typically
  163. * for use by special VMAs that can switch between memory and hardware
  164. */
  165. int (*access)(struct vm_area_struct *vma, unsigned long addr,
  166. void *buf, int len, int write);
  167. #ifdef CONFIG_NUMA
  168. /*
  169. * set_policy() op must add a reference to any non-NULL @new mempolicy
  170. * to hold the policy upon return. Caller should pass NULL @new to
  171. * remove a policy and fall back to surrounding context--i.e. do not
  172. * install a MPOL_DEFAULT policy, nor the task or system default
  173. * mempolicy.
  174. */
  175. int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
  176. /*
  177. * get_policy() op must add reference [mpol_get()] to any policy at
  178. * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
  179. * in mm/mempolicy.c will do this automatically.
  180. * get_policy() must NOT add a ref if the policy at (vma,addr) is not
  181. * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
  182. * If no [shared/vma] mempolicy exists at the addr, get_policy() op
  183. * must return NULL--i.e., do not "fallback" to task or system default
  184. * policy.
  185. */
  186. struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
  187. unsigned long addr);
  188. int (*migrate)(struct vm_area_struct *vma, const nodemask_t *from,
  189. const nodemask_t *to, unsigned long flags);
  190. #endif
  191. };
  192. struct mmu_gather;
  193. struct inode;
  194. #define page_private(page) ((page)->private)
  195. #define set_page_private(page, v) ((page)->private = (v))
  196. /*
  197. * FIXME: take this include out, include page-flags.h in
  198. * files which need it (119 of them)
  199. */
  200. #include <linux/page-flags.h>
  201. /*
  202. * Methods to modify the page usage count.
  203. *
  204. * What counts for a page usage:
  205. * - cache mapping (page->mapping)
  206. * - private data (page->private)
  207. * - page mapped in a task's page tables, each mapping
  208. * is counted separately
  209. *
  210. * Also, many kernel routines increase the page count before a critical
  211. * routine so they can be sure the page doesn't go away from under them.
  212. */
  213. /*
  214. * Drop a ref, return true if the refcount fell to zero (the page has no users)
  215. */
  216. static inline int put_page_testzero(struct page *page)
  217. {
  218. VM_BUG_ON(atomic_read(&page->_count) == 0);
  219. return atomic_dec_and_test(&page->_count);
  220. }
  221. /*
  222. * Try to grab a ref unless the page has a refcount of zero, return false if
  223. * that is the case.
  224. */
  225. static inline int get_page_unless_zero(struct page *page)
  226. {
  227. return atomic_inc_not_zero(&page->_count);
  228. }
  229. extern int page_is_ram(unsigned long pfn);
  230. /* Support for virtually mapped pages */
  231. struct page *vmalloc_to_page(const void *addr);
  232. unsigned long vmalloc_to_pfn(const void *addr);
  233. /*
  234. * Determine if an address is within the vmalloc range
  235. *
  236. * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
  237. * is no special casing required.
  238. */
  239. static inline int is_vmalloc_addr(const void *x)
  240. {
  241. #ifdef CONFIG_MMU
  242. unsigned long addr = (unsigned long)x;
  243. return addr >= VMALLOC_START && addr < VMALLOC_END;
  244. #else
  245. return 0;
  246. #endif
  247. }
  248. #ifdef CONFIG_MMU
  249. extern int is_vmalloc_or_module_addr(const void *x);
  250. #else
  251. static inline int is_vmalloc_or_module_addr(const void *x)
  252. {
  253. return 0;
  254. }
  255. #endif
  256. static inline struct page *compound_head(struct page *page)
  257. {
  258. if (unlikely(PageTail(page)))
  259. return page->first_page;
  260. return page;
  261. }
  262. static inline int page_count(struct page *page)
  263. {
  264. return atomic_read(&compound_head(page)->_count);
  265. }
  266. static inline void get_page(struct page *page)
  267. {
  268. page = compound_head(page);
  269. VM_BUG_ON(atomic_read(&page->_count) == 0);
  270. atomic_inc(&page->_count);
  271. }
  272. static inline struct page *virt_to_head_page(const void *x)
  273. {
  274. struct page *page = virt_to_page(x);
  275. return compound_head(page);
  276. }
  277. /*
  278. * Setup the page count before being freed into the page allocator for
  279. * the first time (boot or memory hotplug)
  280. */
  281. static inline void init_page_count(struct page *page)
  282. {
  283. atomic_set(&page->_count, 1);
  284. }
  285. void put_page(struct page *page);
  286. void put_pages_list(struct list_head *pages);
  287. void split_page(struct page *page, unsigned int order);
  288. int split_free_page(struct page *page);
  289. /*
  290. * Compound pages have a destructor function. Provide a
  291. * prototype for that function and accessor functions.
  292. * These are _only_ valid on the head of a PG_compound page.
  293. */
  294. typedef void compound_page_dtor(struct page *);
  295. static inline void set_compound_page_dtor(struct page *page,
  296. compound_page_dtor *dtor)
  297. {
  298. page[1].lru.next = (void *)dtor;
  299. }
  300. static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
  301. {
  302. return (compound_page_dtor *)page[1].lru.next;
  303. }
  304. static inline int compound_order(struct page *page)
  305. {
  306. if (!PageHead(page))
  307. return 0;
  308. return (unsigned long)page[1].lru.prev;
  309. }
  310. static inline void set_compound_order(struct page *page, unsigned long order)
  311. {
  312. page[1].lru.prev = (void *)order;
  313. }
  314. /*
  315. * Multiple processes may "see" the same page. E.g. for untouched
  316. * mappings of /dev/null, all processes see the same page full of
  317. * zeroes, and text pages of executables and shared libraries have
  318. * only one copy in memory, at most, normally.
  319. *
  320. * For the non-reserved pages, page_count(page) denotes a reference count.
  321. * page_count() == 0 means the page is free. page->lru is then used for
  322. * freelist management in the buddy allocator.
  323. * page_count() > 0 means the page has been allocated.
  324. *
  325. * Pages are allocated by the slab allocator in order to provide memory
  326. * to kmalloc and kmem_cache_alloc. In this case, the management of the
  327. * page, and the fields in 'struct page' are the responsibility of mm/slab.c
  328. * unless a particular usage is carefully commented. (the responsibility of
  329. * freeing the kmalloc memory is the caller's, of course).
  330. *
  331. * A page may be used by anyone else who does a __get_free_page().
  332. * In this case, page_count still tracks the references, and should only
  333. * be used through the normal accessor functions. The top bits of page->flags
  334. * and page->virtual store page management information, but all other fields
  335. * are unused and could be used privately, carefully. The management of this
  336. * page is the responsibility of the one who allocated it, and those who have
  337. * subsequently been given references to it.
  338. *
  339. * The other pages (we may call them "pagecache pages") are completely
  340. * managed by the Linux memory manager: I/O, buffers, swapping etc.
  341. * The following discussion applies only to them.
  342. *
  343. * A pagecache page contains an opaque `private' member, which belongs to the
  344. * page's address_space. Usually, this is the address of a circular list of
  345. * the page's disk buffers. PG_private must be set to tell the VM to call
  346. * into the filesystem to release these pages.
  347. *
  348. * A page may belong to an inode's memory mapping. In this case, page->mapping
  349. * is the pointer to the inode, and page->index is the file offset of the page,
  350. * in units of PAGE_CACHE_SIZE.
  351. *
  352. * If pagecache pages are not associated with an inode, they are said to be
  353. * anonymous pages. These may become associated with the swapcache, and in that
  354. * case PG_swapcache is set, and page->private is an offset into the swapcache.
  355. *
  356. * In either case (swapcache or inode backed), the pagecache itself holds one
  357. * reference to the page. Setting PG_private should also increment the
  358. * refcount. The each user mapping also has a reference to the page.
  359. *
  360. * The pagecache pages are stored in a per-mapping radix tree, which is
  361. * rooted at mapping->page_tree, and indexed by offset.
  362. * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
  363. * lists, we instead now tag pages as dirty/writeback in the radix tree.
  364. *
  365. * All pagecache pages may be subject to I/O:
  366. * - inode pages may need to be read from disk,
  367. * - inode pages which have been modified and are MAP_SHARED may need
  368. * to be written back to the inode on disk,
  369. * - anonymous pages (including MAP_PRIVATE file mappings) which have been
  370. * modified may need to be swapped out to swap space and (later) to be read
  371. * back into memory.
  372. */
  373. /*
  374. * The zone field is never updated after free_area_init_core()
  375. * sets it, so none of the operations on it need to be atomic.
  376. */
  377. /*
  378. * page->flags layout:
  379. *
  380. * There are three possibilities for how page->flags get
  381. * laid out. The first is for the normal case, without
  382. * sparsemem. The second is for sparsemem when there is
  383. * plenty of space for node and section. The last is when
  384. * we have run out of space and have to fall back to an
  385. * alternate (slower) way of determining the node.
  386. *
  387. * No sparsemem or sparsemem vmemmap: | NODE | ZONE | ... | FLAGS |
  388. * classic sparse with space for node:| SECTION | NODE | ZONE | ... | FLAGS |
  389. * classic sparse no space for node: | SECTION | ZONE | ... | FLAGS |
  390. */
  391. #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
  392. #define SECTIONS_WIDTH SECTIONS_SHIFT
  393. #else
  394. #define SECTIONS_WIDTH 0
  395. #endif
  396. #define ZONES_WIDTH ZONES_SHIFT
  397. #if SECTIONS_WIDTH+ZONES_WIDTH+NODES_SHIFT <= BITS_PER_LONG - NR_PAGEFLAGS
  398. #define NODES_WIDTH NODES_SHIFT
  399. #else
  400. #ifdef CONFIG_SPARSEMEM_VMEMMAP
  401. #error "Vmemmap: No space for nodes field in page flags"
  402. #endif
  403. #define NODES_WIDTH 0
  404. #endif
  405. /* Page flags: | [SECTION] | [NODE] | ZONE | ... | FLAGS | */
  406. #define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
  407. #define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
  408. #define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
  409. /*
  410. * We are going to use the flags for the page to node mapping if its in
  411. * there. This includes the case where there is no node, so it is implicit.
  412. */
  413. #if !(NODES_WIDTH > 0 || NODES_SHIFT == 0)
  414. #define NODE_NOT_IN_PAGE_FLAGS
  415. #endif
  416. #ifndef PFN_SECTION_SHIFT
  417. #define PFN_SECTION_SHIFT 0
  418. #endif
  419. /*
  420. * Define the bit shifts to access each section. For non-existant
  421. * sections we define the shift as 0; that plus a 0 mask ensures
  422. * the compiler will optimise away reference to them.
  423. */
  424. #define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
  425. #define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
  426. #define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
  427. /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allcator */
  428. #ifdef NODE_NOT_IN_PAGEFLAGS
  429. #define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
  430. #define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
  431. SECTIONS_PGOFF : ZONES_PGOFF)
  432. #else
  433. #define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
  434. #define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
  435. NODES_PGOFF : ZONES_PGOFF)
  436. #endif
  437. #define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
  438. #if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
  439. #error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
  440. #endif
  441. #define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
  442. #define NODES_MASK ((1UL << NODES_WIDTH) - 1)
  443. #define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
  444. #define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
  445. static inline enum zone_type page_zonenum(struct page *page)
  446. {
  447. return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
  448. }
  449. /*
  450. * The identification function is only used by the buddy allocator for
  451. * determining if two pages could be buddies. We are not really
  452. * identifying a zone since we could be using a the section number
  453. * id if we have not node id available in page flags.
  454. * We guarantee only that it will return the same value for two
  455. * combinable pages in a zone.
  456. */
  457. static inline int page_zone_id(struct page *page)
  458. {
  459. return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
  460. }
  461. static inline int zone_to_nid(struct zone *zone)
  462. {
  463. #ifdef CONFIG_NUMA
  464. return zone->node;
  465. #else
  466. return 0;
  467. #endif
  468. }
  469. #ifdef NODE_NOT_IN_PAGE_FLAGS
  470. extern int page_to_nid(struct page *page);
  471. #else
  472. static inline int page_to_nid(struct page *page)
  473. {
  474. return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
  475. }
  476. #endif
  477. static inline struct zone *page_zone(struct page *page)
  478. {
  479. return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
  480. }
  481. #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
  482. static inline unsigned long page_to_section(struct page *page)
  483. {
  484. return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
  485. }
  486. #endif
  487. static inline void set_page_zone(struct page *page, enum zone_type zone)
  488. {
  489. page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
  490. page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
  491. }
  492. static inline void set_page_node(struct page *page, unsigned long node)
  493. {
  494. page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
  495. page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
  496. }
  497. static inline void set_page_section(struct page *page, unsigned long section)
  498. {
  499. page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
  500. page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
  501. }
  502. static inline void set_page_links(struct page *page, enum zone_type zone,
  503. unsigned long node, unsigned long pfn)
  504. {
  505. set_page_zone(page, zone);
  506. set_page_node(page, node);
  507. set_page_section(page, pfn_to_section_nr(pfn));
  508. }
  509. /*
  510. * Some inline functions in vmstat.h depend on page_zone()
  511. */
  512. #include <linux/vmstat.h>
  513. static __always_inline void *lowmem_page_address(struct page *page)
  514. {
  515. return __va(PFN_PHYS(page_to_pfn(page)));
  516. }
  517. #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
  518. #define HASHED_PAGE_VIRTUAL
  519. #endif
  520. #if defined(WANT_PAGE_VIRTUAL)
  521. #define page_address(page) ((page)->virtual)
  522. #define set_page_address(page, address) \
  523. do { \
  524. (page)->virtual = (address); \
  525. } while(0)
  526. #define page_address_init() do { } while(0)
  527. #endif
  528. #if defined(HASHED_PAGE_VIRTUAL)
  529. void *page_address(struct page *page);
  530. void set_page_address(struct page *page, void *virtual);
  531. void page_address_init(void);
  532. #endif
  533. #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
  534. #define page_address(page) lowmem_page_address(page)
  535. #define set_page_address(page, address) do { } while(0)
  536. #define page_address_init() do { } while(0)
  537. #endif
  538. /*
  539. * On an anonymous page mapped into a user virtual memory area,
  540. * page->mapping points to its anon_vma, not to a struct address_space;
  541. * with the PAGE_MAPPING_ANON bit set to distinguish it. See rmap.h.
  542. *
  543. * On an anonymous page in a VM_MERGEABLE area, if CONFIG_KSM is enabled,
  544. * the PAGE_MAPPING_KSM bit may be set along with the PAGE_MAPPING_ANON bit;
  545. * and then page->mapping points, not to an anon_vma, but to a private
  546. * structure which KSM associates with that merged page. See ksm.h.
  547. *
  548. * PAGE_MAPPING_KSM without PAGE_MAPPING_ANON is currently never used.
  549. *
  550. * Please note that, confusingly, "page_mapping" refers to the inode
  551. * address_space which maps the page from disk; whereas "page_mapped"
  552. * refers to user virtual address space into which the page is mapped.
  553. */
  554. #define PAGE_MAPPING_ANON 1
  555. #define PAGE_MAPPING_KSM 2
  556. #define PAGE_MAPPING_FLAGS (PAGE_MAPPING_ANON | PAGE_MAPPING_KSM)
  557. extern struct address_space swapper_space;
  558. static inline struct address_space *page_mapping(struct page *page)
  559. {
  560. struct address_space *mapping = page->mapping;
  561. VM_BUG_ON(PageSlab(page));
  562. if (unlikely(PageSwapCache(page)))
  563. mapping = &swapper_space;
  564. else if (unlikely((unsigned long)mapping & PAGE_MAPPING_ANON))
  565. mapping = NULL;
  566. return mapping;
  567. }
  568. /* Neutral page->mapping pointer to address_space or anon_vma or other */
  569. static inline void *page_rmapping(struct page *page)
  570. {
  571. return (void *)((unsigned long)page->mapping & ~PAGE_MAPPING_FLAGS);
  572. }
  573. static inline int PageAnon(struct page *page)
  574. {
  575. return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0;
  576. }
  577. /*
  578. * Return the pagecache index of the passed page. Regular pagecache pages
  579. * use ->index whereas swapcache pages use ->private
  580. */
  581. static inline pgoff_t page_index(struct page *page)
  582. {
  583. if (unlikely(PageSwapCache(page)))
  584. return page_private(page);
  585. return page->index;
  586. }
  587. /*
  588. * The atomic page->_mapcount, like _count, starts from -1:
  589. * so that transitions both from it and to it can be tracked,
  590. * using atomic_inc_and_test and atomic_add_negative(-1).
  591. */
  592. static inline void reset_page_mapcount(struct page *page)
  593. {
  594. atomic_set(&(page)->_mapcount, -1);
  595. }
  596. static inline int page_mapcount(struct page *page)
  597. {
  598. return atomic_read(&(page)->_mapcount) + 1;
  599. }
  600. /*
  601. * Return true if this page is mapped into pagetables.
  602. */
  603. static inline int page_mapped(struct page *page)
  604. {
  605. return atomic_read(&(page)->_mapcount) >= 0;
  606. }
  607. /*
  608. * Different kinds of faults, as returned by handle_mm_fault().
  609. * Used to decide whether a process gets delivered SIGBUS or
  610. * just gets major/minor fault counters bumped up.
  611. */
  612. #define VM_FAULT_MINOR 0 /* For backwards compat. Remove me quickly. */
  613. #define VM_FAULT_OOM 0x0001
  614. #define VM_FAULT_SIGBUS 0x0002
  615. #define VM_FAULT_MAJOR 0x0004
  616. #define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */
  617. #define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned page */
  618. #define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */
  619. #define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */
  620. #define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_HWPOISON)
  621. /*
  622. * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
  623. */
  624. extern void pagefault_out_of_memory(void);
  625. #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
  626. extern void show_free_areas(void);
  627. int shmem_lock(struct file *file, int lock, struct user_struct *user);
  628. struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags);
  629. int shmem_zero_setup(struct vm_area_struct *);
  630. #ifndef CONFIG_MMU
  631. extern unsigned long shmem_get_unmapped_area(struct file *file,
  632. unsigned long addr,
  633. unsigned long len,
  634. unsigned long pgoff,
  635. unsigned long flags);
  636. #endif
  637. extern int can_do_mlock(void);
  638. extern int user_shm_lock(size_t, struct user_struct *);
  639. extern void user_shm_unlock(size_t, struct user_struct *);
  640. /*
  641. * Parameter block passed down to zap_pte_range in exceptional cases.
  642. */
  643. struct zap_details {
  644. struct vm_area_struct *nonlinear_vma; /* Check page->index if set */
  645. struct address_space *check_mapping; /* Check page->mapping if set */
  646. pgoff_t first_index; /* Lowest page->index to unmap */
  647. pgoff_t last_index; /* Highest page->index to unmap */
  648. spinlock_t *i_mmap_lock; /* For unmap_mapping_range: */
  649. unsigned long truncate_count; /* Compare vm_truncate_count */
  650. };
  651. struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
  652. pte_t pte);
  653. int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
  654. unsigned long size);
  655. unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
  656. unsigned long size, struct zap_details *);
  657. unsigned long unmap_vmas(struct mmu_gather **tlb,
  658. struct vm_area_struct *start_vma, unsigned long start_addr,
  659. unsigned long end_addr, unsigned long *nr_accounted,
  660. struct zap_details *);
  661. /**
  662. * mm_walk - callbacks for walk_page_range
  663. * @pgd_entry: if set, called for each non-empty PGD (top-level) entry
  664. * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry
  665. * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
  666. * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
  667. * @pte_hole: if set, called for each hole at all levels
  668. * @hugetlb_entry: if set, called for each hugetlb entry
  669. *
  670. * (see walk_page_range for more details)
  671. */
  672. struct mm_walk {
  673. int (*pgd_entry)(pgd_t *, unsigned long, unsigned long, struct mm_walk *);
  674. int (*pud_entry)(pud_t *, unsigned long, unsigned long, struct mm_walk *);
  675. int (*pmd_entry)(pmd_t *, unsigned long, unsigned long, struct mm_walk *);
  676. int (*pte_entry)(pte_t *, unsigned long, unsigned long, struct mm_walk *);
  677. int (*pte_hole)(unsigned long, unsigned long, struct mm_walk *);
  678. int (*hugetlb_entry)(pte_t *, unsigned long,
  679. unsigned long, unsigned long, struct mm_walk *);
  680. struct mm_struct *mm;
  681. void *private;
  682. };
  683. int walk_page_range(unsigned long addr, unsigned long end,
  684. struct mm_walk *walk);
  685. void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
  686. unsigned long end, unsigned long floor, unsigned long ceiling);
  687. int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
  688. struct vm_area_struct *vma);
  689. void unmap_mapping_range(struct address_space *mapping,
  690. loff_t const holebegin, loff_t const holelen, int even_cows);
  691. int follow_pfn(struct vm_area_struct *vma, unsigned long address,
  692. unsigned long *pfn);
  693. int follow_phys(struct vm_area_struct *vma, unsigned long address,
  694. unsigned int flags, unsigned long *prot, resource_size_t *phys);
  695. int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
  696. void *buf, int len, int write);
  697. static inline void unmap_shared_mapping_range(struct address_space *mapping,
  698. loff_t const holebegin, loff_t const holelen)
  699. {
  700. unmap_mapping_range(mapping, holebegin, holelen, 0);
  701. }
  702. extern void truncate_pagecache(struct inode *inode, loff_t old, loff_t new);
  703. extern int vmtruncate(struct inode *inode, loff_t offset);
  704. extern int vmtruncate_range(struct inode *inode, loff_t offset, loff_t end);
  705. int truncate_inode_page(struct address_space *mapping, struct page *page);
  706. int generic_error_remove_page(struct address_space *mapping, struct page *page);
  707. int invalidate_inode_page(struct page *page);
  708. #ifdef CONFIG_MMU
  709. extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
  710. unsigned long address, unsigned int flags);
  711. #else
  712. static inline int handle_mm_fault(struct mm_struct *mm,
  713. struct vm_area_struct *vma, unsigned long address,
  714. unsigned int flags)
  715. {
  716. /* should never happen if there's no MMU */
  717. BUG();
  718. return VM_FAULT_SIGBUS;
  719. }
  720. #endif
  721. extern int make_pages_present(unsigned long addr, unsigned long end);
  722. extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write);
  723. int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
  724. unsigned long start, int nr_pages, int write, int force,
  725. struct page **pages, struct vm_area_struct **vmas);
  726. int get_user_pages_fast(unsigned long start, int nr_pages, int write,
  727. struct page **pages);
  728. struct page *get_dump_page(unsigned long addr);
  729. extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
  730. extern void do_invalidatepage(struct page *page, unsigned long offset);
  731. int __set_page_dirty_nobuffers(struct page *page);
  732. int __set_page_dirty_no_writeback(struct page *page);
  733. int redirty_page_for_writepage(struct writeback_control *wbc,
  734. struct page *page);
  735. void account_page_dirtied(struct page *page, struct address_space *mapping);
  736. int set_page_dirty(struct page *page);
  737. int set_page_dirty_lock(struct page *page);
  738. int clear_page_dirty_for_io(struct page *page);
  739. extern unsigned long move_page_tables(struct vm_area_struct *vma,
  740. unsigned long old_addr, struct vm_area_struct *new_vma,
  741. unsigned long new_addr, unsigned long len);
  742. extern unsigned long do_mremap(unsigned long addr,
  743. unsigned long old_len, unsigned long new_len,
  744. unsigned long flags, unsigned long new_addr);
  745. extern int mprotect_fixup(struct vm_area_struct *vma,
  746. struct vm_area_struct **pprev, unsigned long start,
  747. unsigned long end, unsigned long newflags);
  748. /*
  749. * doesn't attempt to fault and will return short.
  750. */
  751. int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
  752. struct page **pages);
  753. /*
  754. * per-process(per-mm_struct) statistics.
  755. */
  756. #if defined(SPLIT_RSS_COUNTING)
  757. /*
  758. * The mm counters are not protected by its page_table_lock,
  759. * so must be incremented atomically.
  760. */
  761. static inline void set_mm_counter(struct mm_struct *mm, int member, long value)
  762. {
  763. atomic_long_set(&mm->rss_stat.count[member], value);
  764. }
  765. unsigned long get_mm_counter(struct mm_struct *mm, int member);
  766. static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
  767. {
  768. atomic_long_add(value, &mm->rss_stat.count[member]);
  769. }
  770. static inline void inc_mm_counter(struct mm_struct *mm, int member)
  771. {
  772. atomic_long_inc(&mm->rss_stat.count[member]);
  773. }
  774. static inline void dec_mm_counter(struct mm_struct *mm, int member)
  775. {
  776. atomic_long_dec(&mm->rss_stat.count[member]);
  777. }
  778. #else /* !USE_SPLIT_PTLOCKS */
  779. /*
  780. * The mm counters are protected by its page_table_lock,
  781. * so can be incremented directly.
  782. */
  783. static inline void set_mm_counter(struct mm_struct *mm, int member, long value)
  784. {
  785. mm->rss_stat.count[member] = value;
  786. }
  787. static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
  788. {
  789. return mm->rss_stat.count[member];
  790. }
  791. static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
  792. {
  793. mm->rss_stat.count[member] += value;
  794. }
  795. static inline void inc_mm_counter(struct mm_struct *mm, int member)
  796. {
  797. mm->rss_stat.count[member]++;
  798. }
  799. static inline void dec_mm_counter(struct mm_struct *mm, int member)
  800. {
  801. mm->rss_stat.count[member]--;
  802. }
  803. #endif /* !USE_SPLIT_PTLOCKS */
  804. static inline unsigned long get_mm_rss(struct mm_struct *mm)
  805. {
  806. return get_mm_counter(mm, MM_FILEPAGES) +
  807. get_mm_counter(mm, MM_ANONPAGES);
  808. }
  809. static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
  810. {
  811. return max(mm->hiwater_rss, get_mm_rss(mm));
  812. }
  813. static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
  814. {
  815. return max(mm->hiwater_vm, mm->total_vm);
  816. }
  817. static inline void update_hiwater_rss(struct mm_struct *mm)
  818. {
  819. unsigned long _rss = get_mm_rss(mm);
  820. if ((mm)->hiwater_rss < _rss)
  821. (mm)->hiwater_rss = _rss;
  822. }
  823. static inline void update_hiwater_vm(struct mm_struct *mm)
  824. {
  825. if (mm->hiwater_vm < mm->total_vm)
  826. mm->hiwater_vm = mm->total_vm;
  827. }
  828. static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
  829. struct mm_struct *mm)
  830. {
  831. unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
  832. if (*maxrss < hiwater_rss)
  833. *maxrss = hiwater_rss;
  834. }
  835. #if defined(SPLIT_RSS_COUNTING)
  836. void sync_mm_rss(struct task_struct *task, struct mm_struct *mm);
  837. #else
  838. static inline void sync_mm_rss(struct task_struct *task, struct mm_struct *mm)
  839. {
  840. }
  841. #endif
  842. /*
  843. * A callback you can register to apply pressure to ageable caches.
  844. *
  845. * 'shrink' is passed a count 'nr_to_scan' and a 'gfpmask'. It should
  846. * look through the least-recently-used 'nr_to_scan' entries and
  847. * attempt to free them up. It should return the number of objects
  848. * which remain in the cache. If it returns -1, it means it cannot do
  849. * any scanning at this time (eg. there is a risk of deadlock).
  850. *
  851. * The 'gfpmask' refers to the allocation we are currently trying to
  852. * fulfil.
  853. *
  854. * Note that 'shrink' will be passed nr_to_scan == 0 when the VM is
  855. * querying the cache size, so a fastpath for that case is appropriate.
  856. */
  857. struct shrinker {
  858. int (*shrink)(struct shrinker *, int nr_to_scan, gfp_t gfp_mask);
  859. int seeks; /* seeks to recreate an obj */
  860. /* These are for internal use */
  861. struct list_head list;
  862. long nr; /* objs pending delete */
  863. };
  864. #define DEFAULT_SEEKS 2 /* A good number if you don't know better. */
  865. extern void register_shrinker(struct shrinker *);
  866. extern void unregister_shrinker(struct shrinker *);
  867. int vma_wants_writenotify(struct vm_area_struct *vma);
  868. extern pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr, spinlock_t **ptl);
  869. #ifdef __PAGETABLE_PUD_FOLDED
  870. static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd,
  871. unsigned long address)
  872. {
  873. return 0;
  874. }
  875. #else
  876. int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
  877. #endif
  878. #ifdef __PAGETABLE_PMD_FOLDED
  879. static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
  880. unsigned long address)
  881. {
  882. return 0;
  883. }
  884. #else
  885. int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
  886. #endif
  887. int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address);
  888. int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
  889. /*
  890. * The following ifdef needed to get the 4level-fixup.h header to work.
  891. * Remove it when 4level-fixup.h has been removed.
  892. */
  893. #if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
  894. static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
  895. {
  896. return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))?
  897. NULL: pud_offset(pgd, address);
  898. }
  899. static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
  900. {
  901. return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
  902. NULL: pmd_offset(pud, address);
  903. }
  904. #endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
  905. #if USE_SPLIT_PTLOCKS
  906. /*
  907. * We tuck a spinlock to guard each pagetable page into its struct page,
  908. * at page->private, with BUILD_BUG_ON to make sure that this will not
  909. * overflow into the next struct page (as it might with DEBUG_SPINLOCK).
  910. * When freeing, reset page->mapping so free_pages_check won't complain.
  911. */
  912. #define __pte_lockptr(page) &((page)->ptl)
  913. #define pte_lock_init(_page) do { \
  914. spin_lock_init(__pte_lockptr(_page)); \
  915. } while (0)
  916. #define pte_lock_deinit(page) ((page)->mapping = NULL)
  917. #define pte_lockptr(mm, pmd) ({(void)(mm); __pte_lockptr(pmd_page(*(pmd)));})
  918. #else /* !USE_SPLIT_PTLOCKS */
  919. /*
  920. * We use mm->page_table_lock to guard all pagetable pages of the mm.
  921. */
  922. #define pte_lock_init(page) do {} while (0)
  923. #define pte_lock_deinit(page) do {} while (0)
  924. #define pte_lockptr(mm, pmd) ({(void)(pmd); &(mm)->page_table_lock;})
  925. #endif /* USE_SPLIT_PTLOCKS */
  926. static inline void pgtable_page_ctor(struct page *page)
  927. {
  928. pte_lock_init(page);
  929. inc_zone_page_state(page, NR_PAGETABLE);
  930. }
  931. static inline void pgtable_page_dtor(struct page *page)
  932. {
  933. pte_lock_deinit(page);
  934. dec_zone_page_state(page, NR_PAGETABLE);
  935. }
  936. #define pte_offset_map_lock(mm, pmd, address, ptlp) \
  937. ({ \
  938. spinlock_t *__ptl = pte_lockptr(mm, pmd); \
  939. pte_t *__pte = pte_offset_map(pmd, address); \
  940. *(ptlp) = __ptl; \
  941. spin_lock(__ptl); \
  942. __pte; \
  943. })
  944. #define pte_unmap_unlock(pte, ptl) do { \
  945. spin_unlock(ptl); \
  946. pte_unmap(pte); \
  947. } while (0)
  948. #define pte_alloc_map(mm, pmd, address) \
  949. ((unlikely(!pmd_present(*(pmd))) && __pte_alloc(mm, pmd, address))? \
  950. NULL: pte_offset_map(pmd, address))
  951. #define pte_alloc_map_lock(mm, pmd, address, ptlp) \
  952. ((unlikely(!pmd_present(*(pmd))) && __pte_alloc(mm, pmd, address))? \
  953. NULL: pte_offset_map_lock(mm, pmd, address, ptlp))
  954. #define pte_alloc_kernel(pmd, address) \
  955. ((unlikely(!pmd_present(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
  956. NULL: pte_offset_kernel(pmd, address))
  957. extern void free_area_init(unsigned long * zones_size);
  958. extern void free_area_init_node(int nid, unsigned long * zones_size,
  959. unsigned long zone_start_pfn, unsigned long *zholes_size);
  960. #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
  961. /*
  962. * With CONFIG_ARCH_POPULATES_NODE_MAP set, an architecture may initialise its
  963. * zones, allocate the backing mem_map and account for memory holes in a more
  964. * architecture independent manner. This is a substitute for creating the
  965. * zone_sizes[] and zholes_size[] arrays and passing them to
  966. * free_area_init_node()
  967. *
  968. * An architecture is expected to register range of page frames backed by
  969. * physical memory with add_active_range() before calling
  970. * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
  971. * usage, an architecture is expected to do something like
  972. *
  973. * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
  974. * max_highmem_pfn};
  975. * for_each_valid_physical_page_range()
  976. * add_active_range(node_id, start_pfn, end_pfn)
  977. * free_area_init_nodes(max_zone_pfns);
  978. *
  979. * If the architecture guarantees that there are no holes in the ranges
  980. * registered with add_active_range(), free_bootmem_active_regions()
  981. * will call free_bootmem_node() for each registered physical page range.
  982. * Similarly sparse_memory_present_with_active_regions() calls
  983. * memory_present() for each range when SPARSEMEM is enabled.
  984. *
  985. * See mm/page_alloc.c for more information on each function exposed by
  986. * CONFIG_ARCH_POPULATES_NODE_MAP
  987. */
  988. extern void free_area_init_nodes(unsigned long *max_zone_pfn);
  989. extern void add_active_range(unsigned int nid, unsigned long start_pfn,
  990. unsigned long end_pfn);
  991. extern void remove_active_range(unsigned int nid, unsigned long start_pfn,
  992. unsigned long end_pfn);
  993. extern void remove_all_active_ranges(void);
  994. void sort_node_map(void);
  995. unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
  996. unsigned long end_pfn);
  997. extern unsigned long absent_pages_in_range(unsigned long start_pfn,
  998. unsigned long end_pfn);
  999. extern void get_pfn_range_for_nid(unsigned int nid,
  1000. unsigned long *start_pfn, unsigned long *end_pfn);
  1001. extern unsigned long find_min_pfn_with_active_regions(void);
  1002. extern void free_bootmem_with_active_regions(int nid,
  1003. unsigned long max_low_pfn);
  1004. int add_from_early_node_map(struct range *range, int az,
  1005. int nr_range, int nid);
  1006. u64 __init find_memory_core_early(int nid, u64 size, u64 align,
  1007. u64 goal, u64 limit);
  1008. void *__alloc_memory_core_early(int nodeid, u64 size, u64 align,
  1009. u64 goal, u64 limit);
  1010. typedef int (*work_fn_t)(unsigned long, unsigned long, void *);
  1011. extern void work_with_active_regions(int nid, work_fn_t work_fn, void *data);
  1012. extern void sparse_memory_present_with_active_regions(int nid);
  1013. #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
  1014. #if !defined(CONFIG_ARCH_POPULATES_NODE_MAP) && \
  1015. !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
  1016. static inline int __early_pfn_to_nid(unsigned long pfn)
  1017. {
  1018. return 0;
  1019. }
  1020. #else
  1021. /* please see mm/page_alloc.c */
  1022. extern int __meminit early_pfn_to_nid(unsigned long pfn);
  1023. #ifdef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
  1024. /* there is a per-arch backend function. */
  1025. extern int __meminit __early_pfn_to_nid(unsigned long pfn);
  1026. #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
  1027. #endif
  1028. extern void set_dma_reserve(unsigned long new_dma_reserve);
  1029. extern void memmap_init_zone(unsigned long, int, unsigned long,
  1030. unsigned long, enum memmap_context);
  1031. extern void setup_per_zone_wmarks(void);
  1032. extern void calculate_zone_inactive_ratio(struct zone *zone);
  1033. extern void mem_init(void);
  1034. extern void __init mmap_init(void);
  1035. extern void show_mem(void);
  1036. extern void si_meminfo(struct sysinfo * val);
  1037. extern void si_meminfo_node(struct sysinfo *val, int nid);
  1038. extern int after_bootmem;
  1039. extern void setup_per_cpu_pageset(void);
  1040. extern void zone_pcp_update(struct zone *zone);
  1041. /* nommu.c */
  1042. extern atomic_long_t mmap_pages_allocated;
  1043. extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
  1044. /* prio_tree.c */
  1045. void vma_prio_tree_add(struct vm_area_struct *, struct vm_area_struct *old);
  1046. void vma_prio_tree_insert(struct vm_area_struct *, struct prio_tree_root *);
  1047. void vma_prio_tree_remove(struct vm_area_struct *, struct prio_tree_root *);
  1048. struct vm_area_struct *vma_prio_tree_next(struct vm_area_struct *vma,
  1049. struct prio_tree_iter *iter);
  1050. #define vma_prio_tree_foreach(vma, iter, root, begin, end) \
  1051. for (prio_tree_iter_init(iter, root, begin, end), vma = NULL; \
  1052. (vma = vma_prio_tree_next(vma, iter)); )
  1053. static inline void vma_nonlinear_insert(struct vm_area_struct *vma,
  1054. struct list_head *list)
  1055. {
  1056. vma->shared.vm_set.parent = NULL;
  1057. list_add_tail(&vma->shared.vm_set.list, list);
  1058. }
  1059. /* mmap.c */
  1060. extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
  1061. extern int vma_adjust(struct vm_area_struct *vma, unsigned long start,
  1062. unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert);
  1063. extern struct vm_area_struct *vma_merge(struct mm_struct *,
  1064. struct vm_area_struct *prev, unsigned long addr, unsigned long end,
  1065. unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
  1066. struct mempolicy *);
  1067. extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
  1068. extern int split_vma(struct mm_struct *,
  1069. struct vm_area_struct *, unsigned long addr, int new_below);
  1070. extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
  1071. extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
  1072. struct rb_node **, struct rb_node *);
  1073. extern void unlink_file_vma(struct vm_area_struct *);
  1074. extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
  1075. unsigned long addr, unsigned long len, pgoff_t pgoff);
  1076. extern void exit_mmap(struct mm_struct *);
  1077. extern int mm_take_all_locks(struct mm_struct *mm);
  1078. extern void mm_drop_all_locks(struct mm_struct *mm);
  1079. #ifdef CONFIG_PROC_FS
  1080. /* From fs/proc/base.c. callers must _not_ hold the mm's exe_file_lock */
  1081. extern void added_exe_file_vma(struct mm_struct *mm);
  1082. extern void removed_exe_file_vma(struct mm_struct *mm);
  1083. #else
  1084. static inline void added_exe_file_vma(struct mm_struct *mm)
  1085. {}
  1086. static inline void removed_exe_file_vma(struct mm_struct *mm)
  1087. {}
  1088. #endif /* CONFIG_PROC_FS */
  1089. extern int may_expand_vm(struct mm_struct *mm, unsigned long npages);
  1090. extern int install_special_mapping(struct mm_struct *mm,
  1091. unsigned long addr, unsigned long len,
  1092. unsigned long flags, struct page **pages);
  1093. extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
  1094. extern unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
  1095. unsigned long len, unsigned long prot,
  1096. unsigned long flag, unsigned long pgoff);
  1097. extern unsigned long mmap_region(struct file *file, unsigned long addr,
  1098. unsigned long len, unsigned long flags,
  1099. unsigned int vm_flags, unsigned long pgoff);
  1100. static inline unsigned long do_mmap(struct file *file, unsigned long addr,
  1101. unsigned long len, unsigned long prot,
  1102. unsigned long flag, unsigned long offset)
  1103. {
  1104. unsigned long ret = -EINVAL;
  1105. if ((offset + PAGE_ALIGN(len)) < offset)
  1106. goto out;
  1107. if (!(offset & ~PAGE_MASK))
  1108. ret = do_mmap_pgoff(file, addr, len, prot, flag, offset >> PAGE_SHIFT);
  1109. out:
  1110. return ret;
  1111. }
  1112. extern int do_munmap(struct mm_struct *, unsigned long, size_t);
  1113. extern unsigned long do_brk(unsigned long, unsigned long);
  1114. /* filemap.c */
  1115. extern unsigned long page_unuse(struct page *);
  1116. extern void truncate_inode_pages(struct address_space *, loff_t);
  1117. extern void truncate_inode_pages_range(struct address_space *,
  1118. loff_t lstart, loff_t lend);
  1119. /* generic vm_area_ops exported for stackable file systems */
  1120. extern int filemap_fault(struct vm_area_struct *, struct vm_fault *);
  1121. /* mm/page-writeback.c */
  1122. int write_one_page(struct page *page, int wait);
  1123. void task_dirty_inc(struct task_struct *tsk);
  1124. /* readahead.c */
  1125. #define VM_MAX_READAHEAD 128 /* kbytes */
  1126. #define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */
  1127. int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
  1128. pgoff_t offset, unsigned long nr_to_read);
  1129. void page_cache_sync_readahead(struct address_space *mapping,
  1130. struct file_ra_state *ra,
  1131. struct file *filp,
  1132. pgoff_t offset,
  1133. unsigned long size);
  1134. void page_cache_async_readahead(struct address_space *mapping,
  1135. struct file_ra_state *ra,
  1136. struct file *filp,
  1137. struct page *pg,
  1138. pgoff_t offset,
  1139. unsigned long size);
  1140. unsigned long max_sane_readahead(unsigned long nr);
  1141. unsigned long ra_submit(struct file_ra_state *ra,
  1142. struct address_space *mapping,
  1143. struct file *filp);
  1144. /* Do stack extension */
  1145. extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
  1146. #ifdef CONFIG_IA64
  1147. extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
  1148. #endif
  1149. extern int expand_stack_downwards(struct vm_area_struct *vma,
  1150. unsigned long address);
  1151. /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
  1152. extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
  1153. extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
  1154. struct vm_area_struct **pprev);
  1155. /* Look up the first VMA which intersects the interval start_addr..end_addr-1,
  1156. NULL if none. Assume start_addr < end_addr. */
  1157. static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
  1158. {
  1159. struct vm_area_struct * vma = find_vma(mm,start_addr);
  1160. if (vma && end_addr <= vma->vm_start)
  1161. vma = NULL;
  1162. return vma;
  1163. }
  1164. static inline unsigned long vma_pages(struct vm_area_struct *vma)
  1165. {
  1166. return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
  1167. }
  1168. pgprot_t vm_get_page_prot(unsigned long vm_flags);
  1169. struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
  1170. int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
  1171. unsigned long pfn, unsigned long size, pgprot_t);
  1172. int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
  1173. int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
  1174. unsigned long pfn);
  1175. int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
  1176. unsigned long pfn);
  1177. struct page *follow_page(struct vm_area_struct *, unsigned long address,
  1178. unsigned int foll_flags);
  1179. #define FOLL_WRITE 0x01 /* check pte is writable */
  1180. #define FOLL_TOUCH 0x02 /* mark page accessed */
  1181. #define FOLL_GET 0x04 /* do get_page on page */
  1182. #define FOLL_DUMP 0x08 /* give error on hole if it would be zero */
  1183. #define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */
  1184. typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
  1185. void *data);
  1186. extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
  1187. unsigned long size, pte_fn_t fn, void *data);
  1188. #ifdef CONFIG_PROC_FS
  1189. void vm_stat_account(struct mm_struct *, unsigned long, struct file *, long);
  1190. #else
  1191. static inline void vm_stat_account(struct mm_struct *mm,
  1192. unsigned long flags, struct file *file, long pages)
  1193. {
  1194. }
  1195. #endif /* CONFIG_PROC_FS */
  1196. #ifdef CONFIG_DEBUG_PAGEALLOC
  1197. extern int debug_pagealloc_enabled;
  1198. extern void kernel_map_pages(struct page *page, int numpages, int enable);
  1199. static inline void enable_debug_pagealloc(void)
  1200. {
  1201. debug_pagealloc_enabled = 1;
  1202. }
  1203. #ifdef CONFIG_HIBERNATION
  1204. extern bool kernel_page_present(struct page *page);
  1205. #endif /* CONFIG_HIBERNATION */
  1206. #else
  1207. static inline void
  1208. kernel_map_pages(struct page *page, int numpages, int enable) {}
  1209. static inline void enable_debug_pagealloc(void)
  1210. {
  1211. }
  1212. #ifdef CONFIG_HIBERNATION
  1213. static inline bool kernel_page_present(struct page *page) { return true; }
  1214. #endif /* CONFIG_HIBERNATION */
  1215. #endif
  1216. extern struct vm_area_struct *get_gate_vma(struct task_struct *tsk);
  1217. #ifdef __HAVE_ARCH_GATE_AREA
  1218. int in_gate_area_no_task(unsigned long addr);
  1219. int in_gate_area(struct task_struct *task, unsigned long addr);
  1220. #else
  1221. int in_gate_area_no_task(unsigned long addr);
  1222. #define in_gate_area(task, addr) ({(void)task; in_gate_area_no_task(addr);})
  1223. #endif /* __HAVE_ARCH_GATE_AREA */
  1224. int drop_caches_sysctl_handler(struct ctl_table *, int,
  1225. void __user *, size_t *, loff_t *);
  1226. unsigned long shrink_slab(unsigned long scanned, gfp_t gfp_mask,
  1227. unsigned long lru_pages);
  1228. #ifndef CONFIG_MMU
  1229. #define randomize_va_space 0
  1230. #else
  1231. extern int randomize_va_space;
  1232. #endif
  1233. const char * arch_vma_name(struct vm_area_struct *vma);
  1234. void print_vma_addr(char *prefix, unsigned long rip);
  1235. void sparse_mem_maps_populate_node(struct page **map_map,
  1236. unsigned long pnum_begin,
  1237. unsigned long pnum_end,
  1238. unsigned long map_count,
  1239. int nodeid);
  1240. struct page *sparse_mem_map_populate(unsigned long pnum, int nid);
  1241. pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
  1242. pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node);
  1243. pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
  1244. pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
  1245. void *vmemmap_alloc_block(unsigned long size, int node);
  1246. void *vmemmap_alloc_block_buf(unsigned long size, int node);
  1247. void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
  1248. int vmemmap_populate_basepages(struct page *start_page,
  1249. unsigned long pages, int node);
  1250. int vmemmap_populate(struct page *start_page, unsigned long pages, int node);
  1251. void vmemmap_populate_print_last(void);
  1252. enum mf_flags {
  1253. MF_COUNT_INCREASED = 1 << 0,
  1254. };
  1255. extern void memory_failure(unsigned long pfn, int trapno);
  1256. extern int __memory_failure(unsigned long pfn, int trapno, int flags);
  1257. extern int unpoison_memory(unsigned long pfn);
  1258. extern int sysctl_memory_failure_early_kill;
  1259. extern int sysctl_memory_failure_recovery;
  1260. extern void shake_page(struct page *p, int access);
  1261. extern atomic_long_t mce_bad_pages;
  1262. extern int soft_offline_page(struct page *page, int flags);
  1263. extern void dump_page(struct page *page);
  1264. #endif /* __KERNEL__ */
  1265. #endif /* _LINUX_MM_H */