intel_pm.c 162 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883
  1. /*
  2. * Copyright © 2012 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eugeni Dodonov <eugeni.dodonov@intel.com>
  25. *
  26. */
  27. #include <linux/cpufreq.h>
  28. #include "i915_drv.h"
  29. #include "intel_drv.h"
  30. #include "../../../platform/x86/intel_ips.h"
  31. #include <linux/module.h>
  32. #include <drm/i915_powerwell.h>
  33. /* FBC, or Frame Buffer Compression, is a technique employed to compress the
  34. * framebuffer contents in-memory, aiming at reducing the required bandwidth
  35. * during in-memory transfers and, therefore, reduce the power packet.
  36. *
  37. * The benefits of FBC are mostly visible with solid backgrounds and
  38. * variation-less patterns.
  39. *
  40. * FBC-related functionality can be enabled by the means of the
  41. * i915.i915_enable_fbc parameter
  42. */
  43. static void i8xx_disable_fbc(struct drm_device *dev)
  44. {
  45. struct drm_i915_private *dev_priv = dev->dev_private;
  46. u32 fbc_ctl;
  47. /* Disable compression */
  48. fbc_ctl = I915_READ(FBC_CONTROL);
  49. if ((fbc_ctl & FBC_CTL_EN) == 0)
  50. return;
  51. fbc_ctl &= ~FBC_CTL_EN;
  52. I915_WRITE(FBC_CONTROL, fbc_ctl);
  53. /* Wait for compressing bit to clear */
  54. if (wait_for((I915_READ(FBC_STATUS) & FBC_STAT_COMPRESSING) == 0, 10)) {
  55. DRM_DEBUG_KMS("FBC idle timed out\n");
  56. return;
  57. }
  58. DRM_DEBUG_KMS("disabled FBC\n");
  59. }
  60. static void i8xx_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
  61. {
  62. struct drm_device *dev = crtc->dev;
  63. struct drm_i915_private *dev_priv = dev->dev_private;
  64. struct drm_framebuffer *fb = crtc->fb;
  65. struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
  66. struct drm_i915_gem_object *obj = intel_fb->obj;
  67. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  68. int cfb_pitch;
  69. int plane, i;
  70. u32 fbc_ctl, fbc_ctl2;
  71. cfb_pitch = dev_priv->fbc.size / FBC_LL_SIZE;
  72. if (fb->pitches[0] < cfb_pitch)
  73. cfb_pitch = fb->pitches[0];
  74. /* FBC_CTL wants 64B units */
  75. cfb_pitch = (cfb_pitch / 64) - 1;
  76. plane = intel_crtc->plane == 0 ? FBC_CTL_PLANEA : FBC_CTL_PLANEB;
  77. /* Clear old tags */
  78. for (i = 0; i < (FBC_LL_SIZE / 32) + 1; i++)
  79. I915_WRITE(FBC_TAG + (i * 4), 0);
  80. /* Set it up... */
  81. fbc_ctl2 = FBC_CTL_FENCE_DBL | FBC_CTL_IDLE_IMM | FBC_CTL_CPU_FENCE;
  82. fbc_ctl2 |= plane;
  83. I915_WRITE(FBC_CONTROL2, fbc_ctl2);
  84. I915_WRITE(FBC_FENCE_OFF, crtc->y);
  85. /* enable it... */
  86. fbc_ctl = FBC_CTL_EN | FBC_CTL_PERIODIC;
  87. if (IS_I945GM(dev))
  88. fbc_ctl |= FBC_CTL_C3_IDLE; /* 945 needs special SR handling */
  89. fbc_ctl |= (cfb_pitch & 0xff) << FBC_CTL_STRIDE_SHIFT;
  90. fbc_ctl |= (interval & 0x2fff) << FBC_CTL_INTERVAL_SHIFT;
  91. fbc_ctl |= obj->fence_reg;
  92. I915_WRITE(FBC_CONTROL, fbc_ctl);
  93. DRM_DEBUG_KMS("enabled FBC, pitch %d, yoff %d, plane %c, ",
  94. cfb_pitch, crtc->y, plane_name(intel_crtc->plane));
  95. }
  96. static bool i8xx_fbc_enabled(struct drm_device *dev)
  97. {
  98. struct drm_i915_private *dev_priv = dev->dev_private;
  99. return I915_READ(FBC_CONTROL) & FBC_CTL_EN;
  100. }
  101. static void g4x_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
  102. {
  103. struct drm_device *dev = crtc->dev;
  104. struct drm_i915_private *dev_priv = dev->dev_private;
  105. struct drm_framebuffer *fb = crtc->fb;
  106. struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
  107. struct drm_i915_gem_object *obj = intel_fb->obj;
  108. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  109. int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
  110. unsigned long stall_watermark = 200;
  111. u32 dpfc_ctl;
  112. dpfc_ctl = plane | DPFC_SR_EN | DPFC_CTL_LIMIT_1X;
  113. dpfc_ctl |= DPFC_CTL_FENCE_EN | obj->fence_reg;
  114. I915_WRITE(DPFC_CHICKEN, DPFC_HT_MODIFY);
  115. I915_WRITE(DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
  116. (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
  117. (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
  118. I915_WRITE(DPFC_FENCE_YOFF, crtc->y);
  119. /* enable it... */
  120. I915_WRITE(DPFC_CONTROL, I915_READ(DPFC_CONTROL) | DPFC_CTL_EN);
  121. DRM_DEBUG_KMS("enabled fbc on plane %c\n", plane_name(intel_crtc->plane));
  122. }
  123. static void g4x_disable_fbc(struct drm_device *dev)
  124. {
  125. struct drm_i915_private *dev_priv = dev->dev_private;
  126. u32 dpfc_ctl;
  127. /* Disable compression */
  128. dpfc_ctl = I915_READ(DPFC_CONTROL);
  129. if (dpfc_ctl & DPFC_CTL_EN) {
  130. dpfc_ctl &= ~DPFC_CTL_EN;
  131. I915_WRITE(DPFC_CONTROL, dpfc_ctl);
  132. DRM_DEBUG_KMS("disabled FBC\n");
  133. }
  134. }
  135. static bool g4x_fbc_enabled(struct drm_device *dev)
  136. {
  137. struct drm_i915_private *dev_priv = dev->dev_private;
  138. return I915_READ(DPFC_CONTROL) & DPFC_CTL_EN;
  139. }
  140. static void sandybridge_blit_fbc_update(struct drm_device *dev)
  141. {
  142. struct drm_i915_private *dev_priv = dev->dev_private;
  143. u32 blt_ecoskpd;
  144. /* Make sure blitter notifies FBC of writes */
  145. gen6_gt_force_wake_get(dev_priv);
  146. blt_ecoskpd = I915_READ(GEN6_BLITTER_ECOSKPD);
  147. blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY <<
  148. GEN6_BLITTER_LOCK_SHIFT;
  149. I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
  150. blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY;
  151. I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
  152. blt_ecoskpd &= ~(GEN6_BLITTER_FBC_NOTIFY <<
  153. GEN6_BLITTER_LOCK_SHIFT);
  154. I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
  155. POSTING_READ(GEN6_BLITTER_ECOSKPD);
  156. gen6_gt_force_wake_put(dev_priv);
  157. }
  158. static void ironlake_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
  159. {
  160. struct drm_device *dev = crtc->dev;
  161. struct drm_i915_private *dev_priv = dev->dev_private;
  162. struct drm_framebuffer *fb = crtc->fb;
  163. struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
  164. struct drm_i915_gem_object *obj = intel_fb->obj;
  165. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  166. int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
  167. unsigned long stall_watermark = 200;
  168. u32 dpfc_ctl;
  169. dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
  170. dpfc_ctl &= DPFC_RESERVED;
  171. dpfc_ctl |= (plane | DPFC_CTL_LIMIT_1X);
  172. /* Set persistent mode for front-buffer rendering, ala X. */
  173. dpfc_ctl |= DPFC_CTL_PERSISTENT_MODE;
  174. dpfc_ctl |= (DPFC_CTL_FENCE_EN | obj->fence_reg);
  175. I915_WRITE(ILK_DPFC_CHICKEN, DPFC_HT_MODIFY);
  176. I915_WRITE(ILK_DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
  177. (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
  178. (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
  179. I915_WRITE(ILK_DPFC_FENCE_YOFF, crtc->y);
  180. I915_WRITE(ILK_FBC_RT_BASE, i915_gem_obj_ggtt_offset(obj) | ILK_FBC_RT_VALID);
  181. /* enable it... */
  182. I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
  183. if (IS_GEN6(dev)) {
  184. I915_WRITE(SNB_DPFC_CTL_SA,
  185. SNB_CPU_FENCE_ENABLE | obj->fence_reg);
  186. I915_WRITE(DPFC_CPU_FENCE_OFFSET, crtc->y);
  187. sandybridge_blit_fbc_update(dev);
  188. }
  189. DRM_DEBUG_KMS("enabled fbc on plane %c\n", plane_name(intel_crtc->plane));
  190. }
  191. static void ironlake_disable_fbc(struct drm_device *dev)
  192. {
  193. struct drm_i915_private *dev_priv = dev->dev_private;
  194. u32 dpfc_ctl;
  195. /* Disable compression */
  196. dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
  197. if (dpfc_ctl & DPFC_CTL_EN) {
  198. dpfc_ctl &= ~DPFC_CTL_EN;
  199. I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl);
  200. if (IS_IVYBRIDGE(dev))
  201. /* WaFbcDisableDpfcClockGating:ivb */
  202. I915_WRITE(ILK_DSPCLK_GATE_D,
  203. I915_READ(ILK_DSPCLK_GATE_D) &
  204. ~ILK_DPFCUNIT_CLOCK_GATE_DISABLE);
  205. if (IS_HASWELL(dev))
  206. /* WaFbcDisableDpfcClockGating:hsw */
  207. I915_WRITE(HSW_CLKGATE_DISABLE_PART_1,
  208. I915_READ(HSW_CLKGATE_DISABLE_PART_1) &
  209. ~HSW_DPFC_GATING_DISABLE);
  210. DRM_DEBUG_KMS("disabled FBC\n");
  211. }
  212. }
  213. static bool ironlake_fbc_enabled(struct drm_device *dev)
  214. {
  215. struct drm_i915_private *dev_priv = dev->dev_private;
  216. return I915_READ(ILK_DPFC_CONTROL) & DPFC_CTL_EN;
  217. }
  218. static void gen7_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
  219. {
  220. struct drm_device *dev = crtc->dev;
  221. struct drm_i915_private *dev_priv = dev->dev_private;
  222. struct drm_framebuffer *fb = crtc->fb;
  223. struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
  224. struct drm_i915_gem_object *obj = intel_fb->obj;
  225. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  226. I915_WRITE(IVB_FBC_RT_BASE, i915_gem_obj_ggtt_offset(obj));
  227. I915_WRITE(ILK_DPFC_CONTROL, DPFC_CTL_EN | DPFC_CTL_LIMIT_1X |
  228. IVB_DPFC_CTL_FENCE_EN |
  229. intel_crtc->plane << IVB_DPFC_CTL_PLANE_SHIFT);
  230. if (IS_IVYBRIDGE(dev)) {
  231. /* WaFbcAsynchFlipDisableFbcQueue:ivb */
  232. I915_WRITE(ILK_DISPLAY_CHICKEN1, ILK_FBCQ_DIS);
  233. /* WaFbcDisableDpfcClockGating:ivb */
  234. I915_WRITE(ILK_DSPCLK_GATE_D,
  235. I915_READ(ILK_DSPCLK_GATE_D) |
  236. ILK_DPFCUNIT_CLOCK_GATE_DISABLE);
  237. } else {
  238. /* WaFbcAsynchFlipDisableFbcQueue:hsw */
  239. I915_WRITE(HSW_PIPE_SLICE_CHICKEN_1(intel_crtc->pipe),
  240. HSW_BYPASS_FBC_QUEUE);
  241. /* WaFbcDisableDpfcClockGating:hsw */
  242. I915_WRITE(HSW_CLKGATE_DISABLE_PART_1,
  243. I915_READ(HSW_CLKGATE_DISABLE_PART_1) |
  244. HSW_DPFC_GATING_DISABLE);
  245. }
  246. I915_WRITE(SNB_DPFC_CTL_SA,
  247. SNB_CPU_FENCE_ENABLE | obj->fence_reg);
  248. I915_WRITE(DPFC_CPU_FENCE_OFFSET, crtc->y);
  249. sandybridge_blit_fbc_update(dev);
  250. DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
  251. }
  252. bool intel_fbc_enabled(struct drm_device *dev)
  253. {
  254. struct drm_i915_private *dev_priv = dev->dev_private;
  255. if (!dev_priv->display.fbc_enabled)
  256. return false;
  257. return dev_priv->display.fbc_enabled(dev);
  258. }
  259. static void intel_fbc_work_fn(struct work_struct *__work)
  260. {
  261. struct intel_fbc_work *work =
  262. container_of(to_delayed_work(__work),
  263. struct intel_fbc_work, work);
  264. struct drm_device *dev = work->crtc->dev;
  265. struct drm_i915_private *dev_priv = dev->dev_private;
  266. mutex_lock(&dev->struct_mutex);
  267. if (work == dev_priv->fbc.fbc_work) {
  268. /* Double check that we haven't switched fb without cancelling
  269. * the prior work.
  270. */
  271. if (work->crtc->fb == work->fb) {
  272. dev_priv->display.enable_fbc(work->crtc,
  273. work->interval);
  274. dev_priv->fbc.plane = to_intel_crtc(work->crtc)->plane;
  275. dev_priv->fbc.fb_id = work->crtc->fb->base.id;
  276. dev_priv->fbc.y = work->crtc->y;
  277. }
  278. dev_priv->fbc.fbc_work = NULL;
  279. }
  280. mutex_unlock(&dev->struct_mutex);
  281. kfree(work);
  282. }
  283. static void intel_cancel_fbc_work(struct drm_i915_private *dev_priv)
  284. {
  285. if (dev_priv->fbc.fbc_work == NULL)
  286. return;
  287. DRM_DEBUG_KMS("cancelling pending FBC enable\n");
  288. /* Synchronisation is provided by struct_mutex and checking of
  289. * dev_priv->fbc.fbc_work, so we can perform the cancellation
  290. * entirely asynchronously.
  291. */
  292. if (cancel_delayed_work(&dev_priv->fbc.fbc_work->work))
  293. /* tasklet was killed before being run, clean up */
  294. kfree(dev_priv->fbc.fbc_work);
  295. /* Mark the work as no longer wanted so that if it does
  296. * wake-up (because the work was already running and waiting
  297. * for our mutex), it will discover that is no longer
  298. * necessary to run.
  299. */
  300. dev_priv->fbc.fbc_work = NULL;
  301. }
  302. static void intel_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
  303. {
  304. struct intel_fbc_work *work;
  305. struct drm_device *dev = crtc->dev;
  306. struct drm_i915_private *dev_priv = dev->dev_private;
  307. if (!dev_priv->display.enable_fbc)
  308. return;
  309. intel_cancel_fbc_work(dev_priv);
  310. work = kzalloc(sizeof(*work), GFP_KERNEL);
  311. if (work == NULL) {
  312. DRM_ERROR("Failed to allocate FBC work structure\n");
  313. dev_priv->display.enable_fbc(crtc, interval);
  314. return;
  315. }
  316. work->crtc = crtc;
  317. work->fb = crtc->fb;
  318. work->interval = interval;
  319. INIT_DELAYED_WORK(&work->work, intel_fbc_work_fn);
  320. dev_priv->fbc.fbc_work = work;
  321. /* Delay the actual enabling to let pageflipping cease and the
  322. * display to settle before starting the compression. Note that
  323. * this delay also serves a second purpose: it allows for a
  324. * vblank to pass after disabling the FBC before we attempt
  325. * to modify the control registers.
  326. *
  327. * A more complicated solution would involve tracking vblanks
  328. * following the termination of the page-flipping sequence
  329. * and indeed performing the enable as a co-routine and not
  330. * waiting synchronously upon the vblank.
  331. *
  332. * WaFbcWaitForVBlankBeforeEnable:ilk,snb
  333. */
  334. schedule_delayed_work(&work->work, msecs_to_jiffies(50));
  335. }
  336. void intel_disable_fbc(struct drm_device *dev)
  337. {
  338. struct drm_i915_private *dev_priv = dev->dev_private;
  339. intel_cancel_fbc_work(dev_priv);
  340. if (!dev_priv->display.disable_fbc)
  341. return;
  342. dev_priv->display.disable_fbc(dev);
  343. dev_priv->fbc.plane = -1;
  344. }
  345. static bool set_no_fbc_reason(struct drm_i915_private *dev_priv,
  346. enum no_fbc_reason reason)
  347. {
  348. if (dev_priv->fbc.no_fbc_reason == reason)
  349. return false;
  350. dev_priv->fbc.no_fbc_reason = reason;
  351. return true;
  352. }
  353. /**
  354. * intel_update_fbc - enable/disable FBC as needed
  355. * @dev: the drm_device
  356. *
  357. * Set up the framebuffer compression hardware at mode set time. We
  358. * enable it if possible:
  359. * - plane A only (on pre-965)
  360. * - no pixel mulitply/line duplication
  361. * - no alpha buffer discard
  362. * - no dual wide
  363. * - framebuffer <= max_hdisplay in width, max_vdisplay in height
  364. *
  365. * We can't assume that any compression will take place (worst case),
  366. * so the compressed buffer has to be the same size as the uncompressed
  367. * one. It also must reside (along with the line length buffer) in
  368. * stolen memory.
  369. *
  370. * We need to enable/disable FBC on a global basis.
  371. */
  372. void intel_update_fbc(struct drm_device *dev)
  373. {
  374. struct drm_i915_private *dev_priv = dev->dev_private;
  375. struct drm_crtc *crtc = NULL, *tmp_crtc;
  376. struct intel_crtc *intel_crtc;
  377. struct drm_framebuffer *fb;
  378. struct intel_framebuffer *intel_fb;
  379. struct drm_i915_gem_object *obj;
  380. const struct drm_display_mode *adjusted_mode;
  381. unsigned int max_width, max_height;
  382. if (!I915_HAS_FBC(dev)) {
  383. set_no_fbc_reason(dev_priv, FBC_UNSUPPORTED);
  384. return;
  385. }
  386. if (!i915_powersave) {
  387. if (set_no_fbc_reason(dev_priv, FBC_MODULE_PARAM))
  388. DRM_DEBUG_KMS("fbc disabled per module param\n");
  389. return;
  390. }
  391. /*
  392. * If FBC is already on, we just have to verify that we can
  393. * keep it that way...
  394. * Need to disable if:
  395. * - more than one pipe is active
  396. * - changing FBC params (stride, fence, mode)
  397. * - new fb is too large to fit in compressed buffer
  398. * - going to an unsupported config (interlace, pixel multiply, etc.)
  399. */
  400. list_for_each_entry(tmp_crtc, &dev->mode_config.crtc_list, head) {
  401. if (intel_crtc_active(tmp_crtc) &&
  402. !to_intel_crtc(tmp_crtc)->primary_disabled) {
  403. if (crtc) {
  404. if (set_no_fbc_reason(dev_priv, FBC_MULTIPLE_PIPES))
  405. DRM_DEBUG_KMS("more than one pipe active, disabling compression\n");
  406. goto out_disable;
  407. }
  408. crtc = tmp_crtc;
  409. }
  410. }
  411. if (!crtc || crtc->fb == NULL) {
  412. if (set_no_fbc_reason(dev_priv, FBC_NO_OUTPUT))
  413. DRM_DEBUG_KMS("no output, disabling\n");
  414. goto out_disable;
  415. }
  416. intel_crtc = to_intel_crtc(crtc);
  417. fb = crtc->fb;
  418. intel_fb = to_intel_framebuffer(fb);
  419. obj = intel_fb->obj;
  420. adjusted_mode = &intel_crtc->config.adjusted_mode;
  421. if (i915_enable_fbc < 0 &&
  422. INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev)) {
  423. if (set_no_fbc_reason(dev_priv, FBC_CHIP_DEFAULT))
  424. DRM_DEBUG_KMS("disabled per chip default\n");
  425. goto out_disable;
  426. }
  427. if (!i915_enable_fbc) {
  428. if (set_no_fbc_reason(dev_priv, FBC_MODULE_PARAM))
  429. DRM_DEBUG_KMS("fbc disabled per module param\n");
  430. goto out_disable;
  431. }
  432. if ((adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) ||
  433. (adjusted_mode->flags & DRM_MODE_FLAG_DBLSCAN)) {
  434. if (set_no_fbc_reason(dev_priv, FBC_UNSUPPORTED_MODE))
  435. DRM_DEBUG_KMS("mode incompatible with compression, "
  436. "disabling\n");
  437. goto out_disable;
  438. }
  439. if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
  440. max_width = 4096;
  441. max_height = 2048;
  442. } else {
  443. max_width = 2048;
  444. max_height = 1536;
  445. }
  446. if (intel_crtc->config.pipe_src_w > max_width ||
  447. intel_crtc->config.pipe_src_h > max_height) {
  448. if (set_no_fbc_reason(dev_priv, FBC_MODE_TOO_LARGE))
  449. DRM_DEBUG_KMS("mode too large for compression, disabling\n");
  450. goto out_disable;
  451. }
  452. if ((IS_I915GM(dev) || IS_I945GM(dev) || IS_HASWELL(dev)) &&
  453. intel_crtc->plane != 0) {
  454. if (set_no_fbc_reason(dev_priv, FBC_BAD_PLANE))
  455. DRM_DEBUG_KMS("plane not 0, disabling compression\n");
  456. goto out_disable;
  457. }
  458. /* The use of a CPU fence is mandatory in order to detect writes
  459. * by the CPU to the scanout and trigger updates to the FBC.
  460. */
  461. if (obj->tiling_mode != I915_TILING_X ||
  462. obj->fence_reg == I915_FENCE_REG_NONE) {
  463. if (set_no_fbc_reason(dev_priv, FBC_NOT_TILED))
  464. DRM_DEBUG_KMS("framebuffer not tiled or fenced, disabling compression\n");
  465. goto out_disable;
  466. }
  467. /* If the kernel debugger is active, always disable compression */
  468. if (in_dbg_master())
  469. goto out_disable;
  470. if (i915_gem_stolen_setup_compression(dev, intel_fb->obj->base.size)) {
  471. if (set_no_fbc_reason(dev_priv, FBC_STOLEN_TOO_SMALL))
  472. DRM_DEBUG_KMS("framebuffer too large, disabling compression\n");
  473. goto out_disable;
  474. }
  475. /* If the scanout has not changed, don't modify the FBC settings.
  476. * Note that we make the fundamental assumption that the fb->obj
  477. * cannot be unpinned (and have its GTT offset and fence revoked)
  478. * without first being decoupled from the scanout and FBC disabled.
  479. */
  480. if (dev_priv->fbc.plane == intel_crtc->plane &&
  481. dev_priv->fbc.fb_id == fb->base.id &&
  482. dev_priv->fbc.y == crtc->y)
  483. return;
  484. if (intel_fbc_enabled(dev)) {
  485. /* We update FBC along two paths, after changing fb/crtc
  486. * configuration (modeswitching) and after page-flipping
  487. * finishes. For the latter, we know that not only did
  488. * we disable the FBC at the start of the page-flip
  489. * sequence, but also more than one vblank has passed.
  490. *
  491. * For the former case of modeswitching, it is possible
  492. * to switch between two FBC valid configurations
  493. * instantaneously so we do need to disable the FBC
  494. * before we can modify its control registers. We also
  495. * have to wait for the next vblank for that to take
  496. * effect. However, since we delay enabling FBC we can
  497. * assume that a vblank has passed since disabling and
  498. * that we can safely alter the registers in the deferred
  499. * callback.
  500. *
  501. * In the scenario that we go from a valid to invalid
  502. * and then back to valid FBC configuration we have
  503. * no strict enforcement that a vblank occurred since
  504. * disabling the FBC. However, along all current pipe
  505. * disabling paths we do need to wait for a vblank at
  506. * some point. And we wait before enabling FBC anyway.
  507. */
  508. DRM_DEBUG_KMS("disabling active FBC for update\n");
  509. intel_disable_fbc(dev);
  510. }
  511. intel_enable_fbc(crtc, 500);
  512. dev_priv->fbc.no_fbc_reason = FBC_OK;
  513. return;
  514. out_disable:
  515. /* Multiple disables should be harmless */
  516. if (intel_fbc_enabled(dev)) {
  517. DRM_DEBUG_KMS("unsupported config, disabling FBC\n");
  518. intel_disable_fbc(dev);
  519. }
  520. i915_gem_stolen_cleanup_compression(dev);
  521. }
  522. static void i915_pineview_get_mem_freq(struct drm_device *dev)
  523. {
  524. drm_i915_private_t *dev_priv = dev->dev_private;
  525. u32 tmp;
  526. tmp = I915_READ(CLKCFG);
  527. switch (tmp & CLKCFG_FSB_MASK) {
  528. case CLKCFG_FSB_533:
  529. dev_priv->fsb_freq = 533; /* 133*4 */
  530. break;
  531. case CLKCFG_FSB_800:
  532. dev_priv->fsb_freq = 800; /* 200*4 */
  533. break;
  534. case CLKCFG_FSB_667:
  535. dev_priv->fsb_freq = 667; /* 167*4 */
  536. break;
  537. case CLKCFG_FSB_400:
  538. dev_priv->fsb_freq = 400; /* 100*4 */
  539. break;
  540. }
  541. switch (tmp & CLKCFG_MEM_MASK) {
  542. case CLKCFG_MEM_533:
  543. dev_priv->mem_freq = 533;
  544. break;
  545. case CLKCFG_MEM_667:
  546. dev_priv->mem_freq = 667;
  547. break;
  548. case CLKCFG_MEM_800:
  549. dev_priv->mem_freq = 800;
  550. break;
  551. }
  552. /* detect pineview DDR3 setting */
  553. tmp = I915_READ(CSHRDDR3CTL);
  554. dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
  555. }
  556. static void i915_ironlake_get_mem_freq(struct drm_device *dev)
  557. {
  558. drm_i915_private_t *dev_priv = dev->dev_private;
  559. u16 ddrpll, csipll;
  560. ddrpll = I915_READ16(DDRMPLL1);
  561. csipll = I915_READ16(CSIPLL0);
  562. switch (ddrpll & 0xff) {
  563. case 0xc:
  564. dev_priv->mem_freq = 800;
  565. break;
  566. case 0x10:
  567. dev_priv->mem_freq = 1066;
  568. break;
  569. case 0x14:
  570. dev_priv->mem_freq = 1333;
  571. break;
  572. case 0x18:
  573. dev_priv->mem_freq = 1600;
  574. break;
  575. default:
  576. DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
  577. ddrpll & 0xff);
  578. dev_priv->mem_freq = 0;
  579. break;
  580. }
  581. dev_priv->ips.r_t = dev_priv->mem_freq;
  582. switch (csipll & 0x3ff) {
  583. case 0x00c:
  584. dev_priv->fsb_freq = 3200;
  585. break;
  586. case 0x00e:
  587. dev_priv->fsb_freq = 3733;
  588. break;
  589. case 0x010:
  590. dev_priv->fsb_freq = 4266;
  591. break;
  592. case 0x012:
  593. dev_priv->fsb_freq = 4800;
  594. break;
  595. case 0x014:
  596. dev_priv->fsb_freq = 5333;
  597. break;
  598. case 0x016:
  599. dev_priv->fsb_freq = 5866;
  600. break;
  601. case 0x018:
  602. dev_priv->fsb_freq = 6400;
  603. break;
  604. default:
  605. DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
  606. csipll & 0x3ff);
  607. dev_priv->fsb_freq = 0;
  608. break;
  609. }
  610. if (dev_priv->fsb_freq == 3200) {
  611. dev_priv->ips.c_m = 0;
  612. } else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
  613. dev_priv->ips.c_m = 1;
  614. } else {
  615. dev_priv->ips.c_m = 2;
  616. }
  617. }
  618. static const struct cxsr_latency cxsr_latency_table[] = {
  619. {1, 0, 800, 400, 3382, 33382, 3983, 33983}, /* DDR2-400 SC */
  620. {1, 0, 800, 667, 3354, 33354, 3807, 33807}, /* DDR2-667 SC */
  621. {1, 0, 800, 800, 3347, 33347, 3763, 33763}, /* DDR2-800 SC */
  622. {1, 1, 800, 667, 6420, 36420, 6873, 36873}, /* DDR3-667 SC */
  623. {1, 1, 800, 800, 5902, 35902, 6318, 36318}, /* DDR3-800 SC */
  624. {1, 0, 667, 400, 3400, 33400, 4021, 34021}, /* DDR2-400 SC */
  625. {1, 0, 667, 667, 3372, 33372, 3845, 33845}, /* DDR2-667 SC */
  626. {1, 0, 667, 800, 3386, 33386, 3822, 33822}, /* DDR2-800 SC */
  627. {1, 1, 667, 667, 6438, 36438, 6911, 36911}, /* DDR3-667 SC */
  628. {1, 1, 667, 800, 5941, 35941, 6377, 36377}, /* DDR3-800 SC */
  629. {1, 0, 400, 400, 3472, 33472, 4173, 34173}, /* DDR2-400 SC */
  630. {1, 0, 400, 667, 3443, 33443, 3996, 33996}, /* DDR2-667 SC */
  631. {1, 0, 400, 800, 3430, 33430, 3946, 33946}, /* DDR2-800 SC */
  632. {1, 1, 400, 667, 6509, 36509, 7062, 37062}, /* DDR3-667 SC */
  633. {1, 1, 400, 800, 5985, 35985, 6501, 36501}, /* DDR3-800 SC */
  634. {0, 0, 800, 400, 3438, 33438, 4065, 34065}, /* DDR2-400 SC */
  635. {0, 0, 800, 667, 3410, 33410, 3889, 33889}, /* DDR2-667 SC */
  636. {0, 0, 800, 800, 3403, 33403, 3845, 33845}, /* DDR2-800 SC */
  637. {0, 1, 800, 667, 6476, 36476, 6955, 36955}, /* DDR3-667 SC */
  638. {0, 1, 800, 800, 5958, 35958, 6400, 36400}, /* DDR3-800 SC */
  639. {0, 0, 667, 400, 3456, 33456, 4103, 34106}, /* DDR2-400 SC */
  640. {0, 0, 667, 667, 3428, 33428, 3927, 33927}, /* DDR2-667 SC */
  641. {0, 0, 667, 800, 3443, 33443, 3905, 33905}, /* DDR2-800 SC */
  642. {0, 1, 667, 667, 6494, 36494, 6993, 36993}, /* DDR3-667 SC */
  643. {0, 1, 667, 800, 5998, 35998, 6460, 36460}, /* DDR3-800 SC */
  644. {0, 0, 400, 400, 3528, 33528, 4255, 34255}, /* DDR2-400 SC */
  645. {0, 0, 400, 667, 3500, 33500, 4079, 34079}, /* DDR2-667 SC */
  646. {0, 0, 400, 800, 3487, 33487, 4029, 34029}, /* DDR2-800 SC */
  647. {0, 1, 400, 667, 6566, 36566, 7145, 37145}, /* DDR3-667 SC */
  648. {0, 1, 400, 800, 6042, 36042, 6584, 36584}, /* DDR3-800 SC */
  649. };
  650. static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
  651. int is_ddr3,
  652. int fsb,
  653. int mem)
  654. {
  655. const struct cxsr_latency *latency;
  656. int i;
  657. if (fsb == 0 || mem == 0)
  658. return NULL;
  659. for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
  660. latency = &cxsr_latency_table[i];
  661. if (is_desktop == latency->is_desktop &&
  662. is_ddr3 == latency->is_ddr3 &&
  663. fsb == latency->fsb_freq && mem == latency->mem_freq)
  664. return latency;
  665. }
  666. DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
  667. return NULL;
  668. }
  669. static void pineview_disable_cxsr(struct drm_device *dev)
  670. {
  671. struct drm_i915_private *dev_priv = dev->dev_private;
  672. /* deactivate cxsr */
  673. I915_WRITE(DSPFW3, I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN);
  674. }
  675. /*
  676. * Latency for FIFO fetches is dependent on several factors:
  677. * - memory configuration (speed, channels)
  678. * - chipset
  679. * - current MCH state
  680. * It can be fairly high in some situations, so here we assume a fairly
  681. * pessimal value. It's a tradeoff between extra memory fetches (if we
  682. * set this value too high, the FIFO will fetch frequently to stay full)
  683. * and power consumption (set it too low to save power and we might see
  684. * FIFO underruns and display "flicker").
  685. *
  686. * A value of 5us seems to be a good balance; safe for very low end
  687. * platforms but not overly aggressive on lower latency configs.
  688. */
  689. static const int latency_ns = 5000;
  690. static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
  691. {
  692. struct drm_i915_private *dev_priv = dev->dev_private;
  693. uint32_t dsparb = I915_READ(DSPARB);
  694. int size;
  695. size = dsparb & 0x7f;
  696. if (plane)
  697. size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
  698. DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
  699. plane ? "B" : "A", size);
  700. return size;
  701. }
  702. static int i85x_get_fifo_size(struct drm_device *dev, int plane)
  703. {
  704. struct drm_i915_private *dev_priv = dev->dev_private;
  705. uint32_t dsparb = I915_READ(DSPARB);
  706. int size;
  707. size = dsparb & 0x1ff;
  708. if (plane)
  709. size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
  710. size >>= 1; /* Convert to cachelines */
  711. DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
  712. plane ? "B" : "A", size);
  713. return size;
  714. }
  715. static int i845_get_fifo_size(struct drm_device *dev, int plane)
  716. {
  717. struct drm_i915_private *dev_priv = dev->dev_private;
  718. uint32_t dsparb = I915_READ(DSPARB);
  719. int size;
  720. size = dsparb & 0x7f;
  721. size >>= 2; /* Convert to cachelines */
  722. DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
  723. plane ? "B" : "A",
  724. size);
  725. return size;
  726. }
  727. static int i830_get_fifo_size(struct drm_device *dev, int plane)
  728. {
  729. struct drm_i915_private *dev_priv = dev->dev_private;
  730. uint32_t dsparb = I915_READ(DSPARB);
  731. int size;
  732. size = dsparb & 0x7f;
  733. size >>= 1; /* Convert to cachelines */
  734. DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
  735. plane ? "B" : "A", size);
  736. return size;
  737. }
  738. /* Pineview has different values for various configs */
  739. static const struct intel_watermark_params pineview_display_wm = {
  740. PINEVIEW_DISPLAY_FIFO,
  741. PINEVIEW_MAX_WM,
  742. PINEVIEW_DFT_WM,
  743. PINEVIEW_GUARD_WM,
  744. PINEVIEW_FIFO_LINE_SIZE
  745. };
  746. static const struct intel_watermark_params pineview_display_hplloff_wm = {
  747. PINEVIEW_DISPLAY_FIFO,
  748. PINEVIEW_MAX_WM,
  749. PINEVIEW_DFT_HPLLOFF_WM,
  750. PINEVIEW_GUARD_WM,
  751. PINEVIEW_FIFO_LINE_SIZE
  752. };
  753. static const struct intel_watermark_params pineview_cursor_wm = {
  754. PINEVIEW_CURSOR_FIFO,
  755. PINEVIEW_CURSOR_MAX_WM,
  756. PINEVIEW_CURSOR_DFT_WM,
  757. PINEVIEW_CURSOR_GUARD_WM,
  758. PINEVIEW_FIFO_LINE_SIZE,
  759. };
  760. static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
  761. PINEVIEW_CURSOR_FIFO,
  762. PINEVIEW_CURSOR_MAX_WM,
  763. PINEVIEW_CURSOR_DFT_WM,
  764. PINEVIEW_CURSOR_GUARD_WM,
  765. PINEVIEW_FIFO_LINE_SIZE
  766. };
  767. static const struct intel_watermark_params g4x_wm_info = {
  768. G4X_FIFO_SIZE,
  769. G4X_MAX_WM,
  770. G4X_MAX_WM,
  771. 2,
  772. G4X_FIFO_LINE_SIZE,
  773. };
  774. static const struct intel_watermark_params g4x_cursor_wm_info = {
  775. I965_CURSOR_FIFO,
  776. I965_CURSOR_MAX_WM,
  777. I965_CURSOR_DFT_WM,
  778. 2,
  779. G4X_FIFO_LINE_SIZE,
  780. };
  781. static const struct intel_watermark_params valleyview_wm_info = {
  782. VALLEYVIEW_FIFO_SIZE,
  783. VALLEYVIEW_MAX_WM,
  784. VALLEYVIEW_MAX_WM,
  785. 2,
  786. G4X_FIFO_LINE_SIZE,
  787. };
  788. static const struct intel_watermark_params valleyview_cursor_wm_info = {
  789. I965_CURSOR_FIFO,
  790. VALLEYVIEW_CURSOR_MAX_WM,
  791. I965_CURSOR_DFT_WM,
  792. 2,
  793. G4X_FIFO_LINE_SIZE,
  794. };
  795. static const struct intel_watermark_params i965_cursor_wm_info = {
  796. I965_CURSOR_FIFO,
  797. I965_CURSOR_MAX_WM,
  798. I965_CURSOR_DFT_WM,
  799. 2,
  800. I915_FIFO_LINE_SIZE,
  801. };
  802. static const struct intel_watermark_params i945_wm_info = {
  803. I945_FIFO_SIZE,
  804. I915_MAX_WM,
  805. 1,
  806. 2,
  807. I915_FIFO_LINE_SIZE
  808. };
  809. static const struct intel_watermark_params i915_wm_info = {
  810. I915_FIFO_SIZE,
  811. I915_MAX_WM,
  812. 1,
  813. 2,
  814. I915_FIFO_LINE_SIZE
  815. };
  816. static const struct intel_watermark_params i855_wm_info = {
  817. I855GM_FIFO_SIZE,
  818. I915_MAX_WM,
  819. 1,
  820. 2,
  821. I830_FIFO_LINE_SIZE
  822. };
  823. static const struct intel_watermark_params i830_wm_info = {
  824. I830_FIFO_SIZE,
  825. I915_MAX_WM,
  826. 1,
  827. 2,
  828. I830_FIFO_LINE_SIZE
  829. };
  830. static const struct intel_watermark_params ironlake_display_wm_info = {
  831. ILK_DISPLAY_FIFO,
  832. ILK_DISPLAY_MAXWM,
  833. ILK_DISPLAY_DFTWM,
  834. 2,
  835. ILK_FIFO_LINE_SIZE
  836. };
  837. static const struct intel_watermark_params ironlake_cursor_wm_info = {
  838. ILK_CURSOR_FIFO,
  839. ILK_CURSOR_MAXWM,
  840. ILK_CURSOR_DFTWM,
  841. 2,
  842. ILK_FIFO_LINE_SIZE
  843. };
  844. static const struct intel_watermark_params ironlake_display_srwm_info = {
  845. ILK_DISPLAY_SR_FIFO,
  846. ILK_DISPLAY_MAX_SRWM,
  847. ILK_DISPLAY_DFT_SRWM,
  848. 2,
  849. ILK_FIFO_LINE_SIZE
  850. };
  851. static const struct intel_watermark_params ironlake_cursor_srwm_info = {
  852. ILK_CURSOR_SR_FIFO,
  853. ILK_CURSOR_MAX_SRWM,
  854. ILK_CURSOR_DFT_SRWM,
  855. 2,
  856. ILK_FIFO_LINE_SIZE
  857. };
  858. static const struct intel_watermark_params sandybridge_display_wm_info = {
  859. SNB_DISPLAY_FIFO,
  860. SNB_DISPLAY_MAXWM,
  861. SNB_DISPLAY_DFTWM,
  862. 2,
  863. SNB_FIFO_LINE_SIZE
  864. };
  865. static const struct intel_watermark_params sandybridge_cursor_wm_info = {
  866. SNB_CURSOR_FIFO,
  867. SNB_CURSOR_MAXWM,
  868. SNB_CURSOR_DFTWM,
  869. 2,
  870. SNB_FIFO_LINE_SIZE
  871. };
  872. static const struct intel_watermark_params sandybridge_display_srwm_info = {
  873. SNB_DISPLAY_SR_FIFO,
  874. SNB_DISPLAY_MAX_SRWM,
  875. SNB_DISPLAY_DFT_SRWM,
  876. 2,
  877. SNB_FIFO_LINE_SIZE
  878. };
  879. static const struct intel_watermark_params sandybridge_cursor_srwm_info = {
  880. SNB_CURSOR_SR_FIFO,
  881. SNB_CURSOR_MAX_SRWM,
  882. SNB_CURSOR_DFT_SRWM,
  883. 2,
  884. SNB_FIFO_LINE_SIZE
  885. };
  886. /**
  887. * intel_calculate_wm - calculate watermark level
  888. * @clock_in_khz: pixel clock
  889. * @wm: chip FIFO params
  890. * @pixel_size: display pixel size
  891. * @latency_ns: memory latency for the platform
  892. *
  893. * Calculate the watermark level (the level at which the display plane will
  894. * start fetching from memory again). Each chip has a different display
  895. * FIFO size and allocation, so the caller needs to figure that out and pass
  896. * in the correct intel_watermark_params structure.
  897. *
  898. * As the pixel clock runs, the FIFO will be drained at a rate that depends
  899. * on the pixel size. When it reaches the watermark level, it'll start
  900. * fetching FIFO line sized based chunks from memory until the FIFO fills
  901. * past the watermark point. If the FIFO drains completely, a FIFO underrun
  902. * will occur, and a display engine hang could result.
  903. */
  904. static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
  905. const struct intel_watermark_params *wm,
  906. int fifo_size,
  907. int pixel_size,
  908. unsigned long latency_ns)
  909. {
  910. long entries_required, wm_size;
  911. /*
  912. * Note: we need to make sure we don't overflow for various clock &
  913. * latency values.
  914. * clocks go from a few thousand to several hundred thousand.
  915. * latency is usually a few thousand
  916. */
  917. entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
  918. 1000;
  919. entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);
  920. DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);
  921. wm_size = fifo_size - (entries_required + wm->guard_size);
  922. DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);
  923. /* Don't promote wm_size to unsigned... */
  924. if (wm_size > (long)wm->max_wm)
  925. wm_size = wm->max_wm;
  926. if (wm_size <= 0)
  927. wm_size = wm->default_wm;
  928. return wm_size;
  929. }
  930. static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
  931. {
  932. struct drm_crtc *crtc, *enabled = NULL;
  933. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  934. if (intel_crtc_active(crtc)) {
  935. if (enabled)
  936. return NULL;
  937. enabled = crtc;
  938. }
  939. }
  940. return enabled;
  941. }
  942. static void pineview_update_wm(struct drm_crtc *unused_crtc)
  943. {
  944. struct drm_device *dev = unused_crtc->dev;
  945. struct drm_i915_private *dev_priv = dev->dev_private;
  946. struct drm_crtc *crtc;
  947. const struct cxsr_latency *latency;
  948. u32 reg;
  949. unsigned long wm;
  950. latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
  951. dev_priv->fsb_freq, dev_priv->mem_freq);
  952. if (!latency) {
  953. DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
  954. pineview_disable_cxsr(dev);
  955. return;
  956. }
  957. crtc = single_enabled_crtc(dev);
  958. if (crtc) {
  959. const struct drm_display_mode *adjusted_mode;
  960. int pixel_size = crtc->fb->bits_per_pixel / 8;
  961. int clock;
  962. adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
  963. clock = adjusted_mode->crtc_clock;
  964. /* Display SR */
  965. wm = intel_calculate_wm(clock, &pineview_display_wm,
  966. pineview_display_wm.fifo_size,
  967. pixel_size, latency->display_sr);
  968. reg = I915_READ(DSPFW1);
  969. reg &= ~DSPFW_SR_MASK;
  970. reg |= wm << DSPFW_SR_SHIFT;
  971. I915_WRITE(DSPFW1, reg);
  972. DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
  973. /* cursor SR */
  974. wm = intel_calculate_wm(clock, &pineview_cursor_wm,
  975. pineview_display_wm.fifo_size,
  976. pixel_size, latency->cursor_sr);
  977. reg = I915_READ(DSPFW3);
  978. reg &= ~DSPFW_CURSOR_SR_MASK;
  979. reg |= (wm & 0x3f) << DSPFW_CURSOR_SR_SHIFT;
  980. I915_WRITE(DSPFW3, reg);
  981. /* Display HPLL off SR */
  982. wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
  983. pineview_display_hplloff_wm.fifo_size,
  984. pixel_size, latency->display_hpll_disable);
  985. reg = I915_READ(DSPFW3);
  986. reg &= ~DSPFW_HPLL_SR_MASK;
  987. reg |= wm & DSPFW_HPLL_SR_MASK;
  988. I915_WRITE(DSPFW3, reg);
  989. /* cursor HPLL off SR */
  990. wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
  991. pineview_display_hplloff_wm.fifo_size,
  992. pixel_size, latency->cursor_hpll_disable);
  993. reg = I915_READ(DSPFW3);
  994. reg &= ~DSPFW_HPLL_CURSOR_MASK;
  995. reg |= (wm & 0x3f) << DSPFW_HPLL_CURSOR_SHIFT;
  996. I915_WRITE(DSPFW3, reg);
  997. DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
  998. /* activate cxsr */
  999. I915_WRITE(DSPFW3,
  1000. I915_READ(DSPFW3) | PINEVIEW_SELF_REFRESH_EN);
  1001. DRM_DEBUG_KMS("Self-refresh is enabled\n");
  1002. } else {
  1003. pineview_disable_cxsr(dev);
  1004. DRM_DEBUG_KMS("Self-refresh is disabled\n");
  1005. }
  1006. }
  1007. static bool g4x_compute_wm0(struct drm_device *dev,
  1008. int plane,
  1009. const struct intel_watermark_params *display,
  1010. int display_latency_ns,
  1011. const struct intel_watermark_params *cursor,
  1012. int cursor_latency_ns,
  1013. int *plane_wm,
  1014. int *cursor_wm)
  1015. {
  1016. struct drm_crtc *crtc;
  1017. const struct drm_display_mode *adjusted_mode;
  1018. int htotal, hdisplay, clock, pixel_size;
  1019. int line_time_us, line_count;
  1020. int entries, tlb_miss;
  1021. crtc = intel_get_crtc_for_plane(dev, plane);
  1022. if (!intel_crtc_active(crtc)) {
  1023. *cursor_wm = cursor->guard_size;
  1024. *plane_wm = display->guard_size;
  1025. return false;
  1026. }
  1027. adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
  1028. clock = adjusted_mode->crtc_clock;
  1029. htotal = adjusted_mode->htotal;
  1030. hdisplay = to_intel_crtc(crtc)->config.pipe_src_w;
  1031. pixel_size = crtc->fb->bits_per_pixel / 8;
  1032. /* Use the small buffer method to calculate plane watermark */
  1033. entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
  1034. tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
  1035. if (tlb_miss > 0)
  1036. entries += tlb_miss;
  1037. entries = DIV_ROUND_UP(entries, display->cacheline_size);
  1038. *plane_wm = entries + display->guard_size;
  1039. if (*plane_wm > (int)display->max_wm)
  1040. *plane_wm = display->max_wm;
  1041. /* Use the large buffer method to calculate cursor watermark */
  1042. line_time_us = ((htotal * 1000) / clock);
  1043. line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
  1044. entries = line_count * 64 * pixel_size;
  1045. tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
  1046. if (tlb_miss > 0)
  1047. entries += tlb_miss;
  1048. entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
  1049. *cursor_wm = entries + cursor->guard_size;
  1050. if (*cursor_wm > (int)cursor->max_wm)
  1051. *cursor_wm = (int)cursor->max_wm;
  1052. return true;
  1053. }
  1054. /*
  1055. * Check the wm result.
  1056. *
  1057. * If any calculated watermark values is larger than the maximum value that
  1058. * can be programmed into the associated watermark register, that watermark
  1059. * must be disabled.
  1060. */
  1061. static bool g4x_check_srwm(struct drm_device *dev,
  1062. int display_wm, int cursor_wm,
  1063. const struct intel_watermark_params *display,
  1064. const struct intel_watermark_params *cursor)
  1065. {
  1066. DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
  1067. display_wm, cursor_wm);
  1068. if (display_wm > display->max_wm) {
  1069. DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
  1070. display_wm, display->max_wm);
  1071. return false;
  1072. }
  1073. if (cursor_wm > cursor->max_wm) {
  1074. DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
  1075. cursor_wm, cursor->max_wm);
  1076. return false;
  1077. }
  1078. if (!(display_wm || cursor_wm)) {
  1079. DRM_DEBUG_KMS("SR latency is 0, disabling\n");
  1080. return false;
  1081. }
  1082. return true;
  1083. }
  1084. static bool g4x_compute_srwm(struct drm_device *dev,
  1085. int plane,
  1086. int latency_ns,
  1087. const struct intel_watermark_params *display,
  1088. const struct intel_watermark_params *cursor,
  1089. int *display_wm, int *cursor_wm)
  1090. {
  1091. struct drm_crtc *crtc;
  1092. const struct drm_display_mode *adjusted_mode;
  1093. int hdisplay, htotal, pixel_size, clock;
  1094. unsigned long line_time_us;
  1095. int line_count, line_size;
  1096. int small, large;
  1097. int entries;
  1098. if (!latency_ns) {
  1099. *display_wm = *cursor_wm = 0;
  1100. return false;
  1101. }
  1102. crtc = intel_get_crtc_for_plane(dev, plane);
  1103. adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
  1104. clock = adjusted_mode->crtc_clock;
  1105. htotal = adjusted_mode->htotal;
  1106. hdisplay = to_intel_crtc(crtc)->config.pipe_src_w;
  1107. pixel_size = crtc->fb->bits_per_pixel / 8;
  1108. line_time_us = (htotal * 1000) / clock;
  1109. line_count = (latency_ns / line_time_us + 1000) / 1000;
  1110. line_size = hdisplay * pixel_size;
  1111. /* Use the minimum of the small and large buffer method for primary */
  1112. small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
  1113. large = line_count * line_size;
  1114. entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
  1115. *display_wm = entries + display->guard_size;
  1116. /* calculate the self-refresh watermark for display cursor */
  1117. entries = line_count * pixel_size * 64;
  1118. entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
  1119. *cursor_wm = entries + cursor->guard_size;
  1120. return g4x_check_srwm(dev,
  1121. *display_wm, *cursor_wm,
  1122. display, cursor);
  1123. }
  1124. static bool vlv_compute_drain_latency(struct drm_device *dev,
  1125. int plane,
  1126. int *plane_prec_mult,
  1127. int *plane_dl,
  1128. int *cursor_prec_mult,
  1129. int *cursor_dl)
  1130. {
  1131. struct drm_crtc *crtc;
  1132. int clock, pixel_size;
  1133. int entries;
  1134. crtc = intel_get_crtc_for_plane(dev, plane);
  1135. if (!intel_crtc_active(crtc))
  1136. return false;
  1137. clock = to_intel_crtc(crtc)->config.adjusted_mode.crtc_clock;
  1138. pixel_size = crtc->fb->bits_per_pixel / 8; /* BPP */
  1139. entries = (clock / 1000) * pixel_size;
  1140. *plane_prec_mult = (entries > 256) ?
  1141. DRAIN_LATENCY_PRECISION_32 : DRAIN_LATENCY_PRECISION_16;
  1142. *plane_dl = (64 * (*plane_prec_mult) * 4) / ((clock / 1000) *
  1143. pixel_size);
  1144. entries = (clock / 1000) * 4; /* BPP is always 4 for cursor */
  1145. *cursor_prec_mult = (entries > 256) ?
  1146. DRAIN_LATENCY_PRECISION_32 : DRAIN_LATENCY_PRECISION_16;
  1147. *cursor_dl = (64 * (*cursor_prec_mult) * 4) / ((clock / 1000) * 4);
  1148. return true;
  1149. }
  1150. /*
  1151. * Update drain latency registers of memory arbiter
  1152. *
  1153. * Valleyview SoC has a new memory arbiter and needs drain latency registers
  1154. * to be programmed. Each plane has a drain latency multiplier and a drain
  1155. * latency value.
  1156. */
  1157. static void vlv_update_drain_latency(struct drm_device *dev)
  1158. {
  1159. struct drm_i915_private *dev_priv = dev->dev_private;
  1160. int planea_prec, planea_dl, planeb_prec, planeb_dl;
  1161. int cursora_prec, cursora_dl, cursorb_prec, cursorb_dl;
  1162. int plane_prec_mult, cursor_prec_mult; /* Precision multiplier is
  1163. either 16 or 32 */
  1164. /* For plane A, Cursor A */
  1165. if (vlv_compute_drain_latency(dev, 0, &plane_prec_mult, &planea_dl,
  1166. &cursor_prec_mult, &cursora_dl)) {
  1167. cursora_prec = (cursor_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
  1168. DDL_CURSORA_PRECISION_32 : DDL_CURSORA_PRECISION_16;
  1169. planea_prec = (plane_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
  1170. DDL_PLANEA_PRECISION_32 : DDL_PLANEA_PRECISION_16;
  1171. I915_WRITE(VLV_DDL1, cursora_prec |
  1172. (cursora_dl << DDL_CURSORA_SHIFT) |
  1173. planea_prec | planea_dl);
  1174. }
  1175. /* For plane B, Cursor B */
  1176. if (vlv_compute_drain_latency(dev, 1, &plane_prec_mult, &planeb_dl,
  1177. &cursor_prec_mult, &cursorb_dl)) {
  1178. cursorb_prec = (cursor_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
  1179. DDL_CURSORB_PRECISION_32 : DDL_CURSORB_PRECISION_16;
  1180. planeb_prec = (plane_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
  1181. DDL_PLANEB_PRECISION_32 : DDL_PLANEB_PRECISION_16;
  1182. I915_WRITE(VLV_DDL2, cursorb_prec |
  1183. (cursorb_dl << DDL_CURSORB_SHIFT) |
  1184. planeb_prec | planeb_dl);
  1185. }
  1186. }
  1187. #define single_plane_enabled(mask) is_power_of_2(mask)
  1188. static void valleyview_update_wm(struct drm_crtc *crtc)
  1189. {
  1190. struct drm_device *dev = crtc->dev;
  1191. static const int sr_latency_ns = 12000;
  1192. struct drm_i915_private *dev_priv = dev->dev_private;
  1193. int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
  1194. int plane_sr, cursor_sr;
  1195. int ignore_plane_sr, ignore_cursor_sr;
  1196. unsigned int enabled = 0;
  1197. vlv_update_drain_latency(dev);
  1198. if (g4x_compute_wm0(dev, PIPE_A,
  1199. &valleyview_wm_info, latency_ns,
  1200. &valleyview_cursor_wm_info, latency_ns,
  1201. &planea_wm, &cursora_wm))
  1202. enabled |= 1 << PIPE_A;
  1203. if (g4x_compute_wm0(dev, PIPE_B,
  1204. &valleyview_wm_info, latency_ns,
  1205. &valleyview_cursor_wm_info, latency_ns,
  1206. &planeb_wm, &cursorb_wm))
  1207. enabled |= 1 << PIPE_B;
  1208. if (single_plane_enabled(enabled) &&
  1209. g4x_compute_srwm(dev, ffs(enabled) - 1,
  1210. sr_latency_ns,
  1211. &valleyview_wm_info,
  1212. &valleyview_cursor_wm_info,
  1213. &plane_sr, &ignore_cursor_sr) &&
  1214. g4x_compute_srwm(dev, ffs(enabled) - 1,
  1215. 2*sr_latency_ns,
  1216. &valleyview_wm_info,
  1217. &valleyview_cursor_wm_info,
  1218. &ignore_plane_sr, &cursor_sr)) {
  1219. I915_WRITE(FW_BLC_SELF_VLV, FW_CSPWRDWNEN);
  1220. } else {
  1221. I915_WRITE(FW_BLC_SELF_VLV,
  1222. I915_READ(FW_BLC_SELF_VLV) & ~FW_CSPWRDWNEN);
  1223. plane_sr = cursor_sr = 0;
  1224. }
  1225. DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
  1226. planea_wm, cursora_wm,
  1227. planeb_wm, cursorb_wm,
  1228. plane_sr, cursor_sr);
  1229. I915_WRITE(DSPFW1,
  1230. (plane_sr << DSPFW_SR_SHIFT) |
  1231. (cursorb_wm << DSPFW_CURSORB_SHIFT) |
  1232. (planeb_wm << DSPFW_PLANEB_SHIFT) |
  1233. planea_wm);
  1234. I915_WRITE(DSPFW2,
  1235. (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
  1236. (cursora_wm << DSPFW_CURSORA_SHIFT));
  1237. I915_WRITE(DSPFW3,
  1238. (I915_READ(DSPFW3) & ~DSPFW_CURSOR_SR_MASK) |
  1239. (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
  1240. }
  1241. static void g4x_update_wm(struct drm_crtc *crtc)
  1242. {
  1243. struct drm_device *dev = crtc->dev;
  1244. static const int sr_latency_ns = 12000;
  1245. struct drm_i915_private *dev_priv = dev->dev_private;
  1246. int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
  1247. int plane_sr, cursor_sr;
  1248. unsigned int enabled = 0;
  1249. if (g4x_compute_wm0(dev, PIPE_A,
  1250. &g4x_wm_info, latency_ns,
  1251. &g4x_cursor_wm_info, latency_ns,
  1252. &planea_wm, &cursora_wm))
  1253. enabled |= 1 << PIPE_A;
  1254. if (g4x_compute_wm0(dev, PIPE_B,
  1255. &g4x_wm_info, latency_ns,
  1256. &g4x_cursor_wm_info, latency_ns,
  1257. &planeb_wm, &cursorb_wm))
  1258. enabled |= 1 << PIPE_B;
  1259. if (single_plane_enabled(enabled) &&
  1260. g4x_compute_srwm(dev, ffs(enabled) - 1,
  1261. sr_latency_ns,
  1262. &g4x_wm_info,
  1263. &g4x_cursor_wm_info,
  1264. &plane_sr, &cursor_sr)) {
  1265. I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
  1266. } else {
  1267. I915_WRITE(FW_BLC_SELF,
  1268. I915_READ(FW_BLC_SELF) & ~FW_BLC_SELF_EN);
  1269. plane_sr = cursor_sr = 0;
  1270. }
  1271. DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
  1272. planea_wm, cursora_wm,
  1273. planeb_wm, cursorb_wm,
  1274. plane_sr, cursor_sr);
  1275. I915_WRITE(DSPFW1,
  1276. (plane_sr << DSPFW_SR_SHIFT) |
  1277. (cursorb_wm << DSPFW_CURSORB_SHIFT) |
  1278. (planeb_wm << DSPFW_PLANEB_SHIFT) |
  1279. planea_wm);
  1280. I915_WRITE(DSPFW2,
  1281. (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
  1282. (cursora_wm << DSPFW_CURSORA_SHIFT));
  1283. /* HPLL off in SR has some issues on G4x... disable it */
  1284. I915_WRITE(DSPFW3,
  1285. (I915_READ(DSPFW3) & ~(DSPFW_HPLL_SR_EN | DSPFW_CURSOR_SR_MASK)) |
  1286. (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
  1287. }
  1288. static void i965_update_wm(struct drm_crtc *unused_crtc)
  1289. {
  1290. struct drm_device *dev = unused_crtc->dev;
  1291. struct drm_i915_private *dev_priv = dev->dev_private;
  1292. struct drm_crtc *crtc;
  1293. int srwm = 1;
  1294. int cursor_sr = 16;
  1295. /* Calc sr entries for one plane configs */
  1296. crtc = single_enabled_crtc(dev);
  1297. if (crtc) {
  1298. /* self-refresh has much higher latency */
  1299. static const int sr_latency_ns = 12000;
  1300. const struct drm_display_mode *adjusted_mode =
  1301. &to_intel_crtc(crtc)->config.adjusted_mode;
  1302. int clock = adjusted_mode->crtc_clock;
  1303. int htotal = adjusted_mode->htotal;
  1304. int hdisplay = to_intel_crtc(crtc)->config.pipe_src_w;
  1305. int pixel_size = crtc->fb->bits_per_pixel / 8;
  1306. unsigned long line_time_us;
  1307. int entries;
  1308. line_time_us = ((htotal * 1000) / clock);
  1309. /* Use ns/us then divide to preserve precision */
  1310. entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
  1311. pixel_size * hdisplay;
  1312. entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
  1313. srwm = I965_FIFO_SIZE - entries;
  1314. if (srwm < 0)
  1315. srwm = 1;
  1316. srwm &= 0x1ff;
  1317. DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
  1318. entries, srwm);
  1319. entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
  1320. pixel_size * 64;
  1321. entries = DIV_ROUND_UP(entries,
  1322. i965_cursor_wm_info.cacheline_size);
  1323. cursor_sr = i965_cursor_wm_info.fifo_size -
  1324. (entries + i965_cursor_wm_info.guard_size);
  1325. if (cursor_sr > i965_cursor_wm_info.max_wm)
  1326. cursor_sr = i965_cursor_wm_info.max_wm;
  1327. DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
  1328. "cursor %d\n", srwm, cursor_sr);
  1329. if (IS_CRESTLINE(dev))
  1330. I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
  1331. } else {
  1332. /* Turn off self refresh if both pipes are enabled */
  1333. if (IS_CRESTLINE(dev))
  1334. I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
  1335. & ~FW_BLC_SELF_EN);
  1336. }
  1337. DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
  1338. srwm);
  1339. /* 965 has limitations... */
  1340. I915_WRITE(DSPFW1, (srwm << DSPFW_SR_SHIFT) |
  1341. (8 << 16) | (8 << 8) | (8 << 0));
  1342. I915_WRITE(DSPFW2, (8 << 8) | (8 << 0));
  1343. /* update cursor SR watermark */
  1344. I915_WRITE(DSPFW3, (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
  1345. }
  1346. static void i9xx_update_wm(struct drm_crtc *unused_crtc)
  1347. {
  1348. struct drm_device *dev = unused_crtc->dev;
  1349. struct drm_i915_private *dev_priv = dev->dev_private;
  1350. const struct intel_watermark_params *wm_info;
  1351. uint32_t fwater_lo;
  1352. uint32_t fwater_hi;
  1353. int cwm, srwm = 1;
  1354. int fifo_size;
  1355. int planea_wm, planeb_wm;
  1356. struct drm_crtc *crtc, *enabled = NULL;
  1357. if (IS_I945GM(dev))
  1358. wm_info = &i945_wm_info;
  1359. else if (!IS_GEN2(dev))
  1360. wm_info = &i915_wm_info;
  1361. else
  1362. wm_info = &i855_wm_info;
  1363. fifo_size = dev_priv->display.get_fifo_size(dev, 0);
  1364. crtc = intel_get_crtc_for_plane(dev, 0);
  1365. if (intel_crtc_active(crtc)) {
  1366. const struct drm_display_mode *adjusted_mode;
  1367. int cpp = crtc->fb->bits_per_pixel / 8;
  1368. if (IS_GEN2(dev))
  1369. cpp = 4;
  1370. adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
  1371. planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
  1372. wm_info, fifo_size, cpp,
  1373. latency_ns);
  1374. enabled = crtc;
  1375. } else
  1376. planea_wm = fifo_size - wm_info->guard_size;
  1377. fifo_size = dev_priv->display.get_fifo_size(dev, 1);
  1378. crtc = intel_get_crtc_for_plane(dev, 1);
  1379. if (intel_crtc_active(crtc)) {
  1380. const struct drm_display_mode *adjusted_mode;
  1381. int cpp = crtc->fb->bits_per_pixel / 8;
  1382. if (IS_GEN2(dev))
  1383. cpp = 4;
  1384. adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
  1385. planeb_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
  1386. wm_info, fifo_size, cpp,
  1387. latency_ns);
  1388. if (enabled == NULL)
  1389. enabled = crtc;
  1390. else
  1391. enabled = NULL;
  1392. } else
  1393. planeb_wm = fifo_size - wm_info->guard_size;
  1394. DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
  1395. /*
  1396. * Overlay gets an aggressive default since video jitter is bad.
  1397. */
  1398. cwm = 2;
  1399. /* Play safe and disable self-refresh before adjusting watermarks. */
  1400. if (IS_I945G(dev) || IS_I945GM(dev))
  1401. I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN_MASK | 0);
  1402. else if (IS_I915GM(dev))
  1403. I915_WRITE(INSTPM, I915_READ(INSTPM) & ~INSTPM_SELF_EN);
  1404. /* Calc sr entries for one plane configs */
  1405. if (HAS_FW_BLC(dev) && enabled) {
  1406. /* self-refresh has much higher latency */
  1407. static const int sr_latency_ns = 6000;
  1408. const struct drm_display_mode *adjusted_mode =
  1409. &to_intel_crtc(enabled)->config.adjusted_mode;
  1410. int clock = adjusted_mode->crtc_clock;
  1411. int htotal = adjusted_mode->htotal;
  1412. int hdisplay = to_intel_crtc(crtc)->config.pipe_src_w;
  1413. int pixel_size = enabled->fb->bits_per_pixel / 8;
  1414. unsigned long line_time_us;
  1415. int entries;
  1416. line_time_us = (htotal * 1000) / clock;
  1417. /* Use ns/us then divide to preserve precision */
  1418. entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
  1419. pixel_size * hdisplay;
  1420. entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
  1421. DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
  1422. srwm = wm_info->fifo_size - entries;
  1423. if (srwm < 0)
  1424. srwm = 1;
  1425. if (IS_I945G(dev) || IS_I945GM(dev))
  1426. I915_WRITE(FW_BLC_SELF,
  1427. FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
  1428. else if (IS_I915GM(dev))
  1429. I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
  1430. }
  1431. DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
  1432. planea_wm, planeb_wm, cwm, srwm);
  1433. fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
  1434. fwater_hi = (cwm & 0x1f);
  1435. /* Set request length to 8 cachelines per fetch */
  1436. fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
  1437. fwater_hi = fwater_hi | (1 << 8);
  1438. I915_WRITE(FW_BLC, fwater_lo);
  1439. I915_WRITE(FW_BLC2, fwater_hi);
  1440. if (HAS_FW_BLC(dev)) {
  1441. if (enabled) {
  1442. if (IS_I945G(dev) || IS_I945GM(dev))
  1443. I915_WRITE(FW_BLC_SELF,
  1444. FW_BLC_SELF_EN_MASK | FW_BLC_SELF_EN);
  1445. else if (IS_I915GM(dev))
  1446. I915_WRITE(INSTPM, I915_READ(INSTPM) | INSTPM_SELF_EN);
  1447. DRM_DEBUG_KMS("memory self refresh enabled\n");
  1448. } else
  1449. DRM_DEBUG_KMS("memory self refresh disabled\n");
  1450. }
  1451. }
  1452. static void i830_update_wm(struct drm_crtc *unused_crtc)
  1453. {
  1454. struct drm_device *dev = unused_crtc->dev;
  1455. struct drm_i915_private *dev_priv = dev->dev_private;
  1456. struct drm_crtc *crtc;
  1457. const struct drm_display_mode *adjusted_mode;
  1458. uint32_t fwater_lo;
  1459. int planea_wm;
  1460. crtc = single_enabled_crtc(dev);
  1461. if (crtc == NULL)
  1462. return;
  1463. adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
  1464. planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
  1465. &i830_wm_info,
  1466. dev_priv->display.get_fifo_size(dev, 0),
  1467. 4, latency_ns);
  1468. fwater_lo = I915_READ(FW_BLC) & ~0xfff;
  1469. fwater_lo |= (3<<8) | planea_wm;
  1470. DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
  1471. I915_WRITE(FW_BLC, fwater_lo);
  1472. }
  1473. /*
  1474. * Check the wm result.
  1475. *
  1476. * If any calculated watermark values is larger than the maximum value that
  1477. * can be programmed into the associated watermark register, that watermark
  1478. * must be disabled.
  1479. */
  1480. static bool ironlake_check_srwm(struct drm_device *dev, int level,
  1481. int fbc_wm, int display_wm, int cursor_wm,
  1482. const struct intel_watermark_params *display,
  1483. const struct intel_watermark_params *cursor)
  1484. {
  1485. struct drm_i915_private *dev_priv = dev->dev_private;
  1486. DRM_DEBUG_KMS("watermark %d: display plane %d, fbc lines %d,"
  1487. " cursor %d\n", level, display_wm, fbc_wm, cursor_wm);
  1488. if (fbc_wm > SNB_FBC_MAX_SRWM) {
  1489. DRM_DEBUG_KMS("fbc watermark(%d) is too large(%d), disabling wm%d+\n",
  1490. fbc_wm, SNB_FBC_MAX_SRWM, level);
  1491. /* fbc has it's own way to disable FBC WM */
  1492. I915_WRITE(DISP_ARB_CTL,
  1493. I915_READ(DISP_ARB_CTL) | DISP_FBC_WM_DIS);
  1494. return false;
  1495. } else if (INTEL_INFO(dev)->gen >= 6) {
  1496. /* enable FBC WM (except on ILK, where it must remain off) */
  1497. I915_WRITE(DISP_ARB_CTL,
  1498. I915_READ(DISP_ARB_CTL) & ~DISP_FBC_WM_DIS);
  1499. }
  1500. if (display_wm > display->max_wm) {
  1501. DRM_DEBUG_KMS("display watermark(%d) is too large(%d), disabling wm%d+\n",
  1502. display_wm, SNB_DISPLAY_MAX_SRWM, level);
  1503. return false;
  1504. }
  1505. if (cursor_wm > cursor->max_wm) {
  1506. DRM_DEBUG_KMS("cursor watermark(%d) is too large(%d), disabling wm%d+\n",
  1507. cursor_wm, SNB_CURSOR_MAX_SRWM, level);
  1508. return false;
  1509. }
  1510. if (!(fbc_wm || display_wm || cursor_wm)) {
  1511. DRM_DEBUG_KMS("latency %d is 0, disabling wm%d+\n", level, level);
  1512. return false;
  1513. }
  1514. return true;
  1515. }
  1516. /*
  1517. * Compute watermark values of WM[1-3],
  1518. */
  1519. static bool ironlake_compute_srwm(struct drm_device *dev, int level, int plane,
  1520. int latency_ns,
  1521. const struct intel_watermark_params *display,
  1522. const struct intel_watermark_params *cursor,
  1523. int *fbc_wm, int *display_wm, int *cursor_wm)
  1524. {
  1525. struct drm_crtc *crtc;
  1526. const struct drm_display_mode *adjusted_mode;
  1527. unsigned long line_time_us;
  1528. int hdisplay, htotal, pixel_size, clock;
  1529. int line_count, line_size;
  1530. int small, large;
  1531. int entries;
  1532. if (!latency_ns) {
  1533. *fbc_wm = *display_wm = *cursor_wm = 0;
  1534. return false;
  1535. }
  1536. crtc = intel_get_crtc_for_plane(dev, plane);
  1537. adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
  1538. clock = adjusted_mode->crtc_clock;
  1539. htotal = adjusted_mode->htotal;
  1540. hdisplay = to_intel_crtc(crtc)->config.pipe_src_w;
  1541. pixel_size = crtc->fb->bits_per_pixel / 8;
  1542. line_time_us = (htotal * 1000) / clock;
  1543. line_count = (latency_ns / line_time_us + 1000) / 1000;
  1544. line_size = hdisplay * pixel_size;
  1545. /* Use the minimum of the small and large buffer method for primary */
  1546. small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
  1547. large = line_count * line_size;
  1548. entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
  1549. *display_wm = entries + display->guard_size;
  1550. /*
  1551. * Spec says:
  1552. * FBC WM = ((Final Primary WM * 64) / number of bytes per line) + 2
  1553. */
  1554. *fbc_wm = DIV_ROUND_UP(*display_wm * 64, line_size) + 2;
  1555. /* calculate the self-refresh watermark for display cursor */
  1556. entries = line_count * pixel_size * 64;
  1557. entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
  1558. *cursor_wm = entries + cursor->guard_size;
  1559. return ironlake_check_srwm(dev, level,
  1560. *fbc_wm, *display_wm, *cursor_wm,
  1561. display, cursor);
  1562. }
  1563. static void ironlake_update_wm(struct drm_crtc *crtc)
  1564. {
  1565. struct drm_device *dev = crtc->dev;
  1566. struct drm_i915_private *dev_priv = dev->dev_private;
  1567. int fbc_wm, plane_wm, cursor_wm;
  1568. unsigned int enabled;
  1569. enabled = 0;
  1570. if (g4x_compute_wm0(dev, PIPE_A,
  1571. &ironlake_display_wm_info,
  1572. dev_priv->wm.pri_latency[0] * 100,
  1573. &ironlake_cursor_wm_info,
  1574. dev_priv->wm.cur_latency[0] * 100,
  1575. &plane_wm, &cursor_wm)) {
  1576. I915_WRITE(WM0_PIPEA_ILK,
  1577. (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
  1578. DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
  1579. " plane %d, " "cursor: %d\n",
  1580. plane_wm, cursor_wm);
  1581. enabled |= 1 << PIPE_A;
  1582. }
  1583. if (g4x_compute_wm0(dev, PIPE_B,
  1584. &ironlake_display_wm_info,
  1585. dev_priv->wm.pri_latency[0] * 100,
  1586. &ironlake_cursor_wm_info,
  1587. dev_priv->wm.cur_latency[0] * 100,
  1588. &plane_wm, &cursor_wm)) {
  1589. I915_WRITE(WM0_PIPEB_ILK,
  1590. (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
  1591. DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
  1592. " plane %d, cursor: %d\n",
  1593. plane_wm, cursor_wm);
  1594. enabled |= 1 << PIPE_B;
  1595. }
  1596. /*
  1597. * Calculate and update the self-refresh watermark only when one
  1598. * display plane is used.
  1599. */
  1600. I915_WRITE(WM3_LP_ILK, 0);
  1601. I915_WRITE(WM2_LP_ILK, 0);
  1602. I915_WRITE(WM1_LP_ILK, 0);
  1603. if (!single_plane_enabled(enabled))
  1604. return;
  1605. enabled = ffs(enabled) - 1;
  1606. /* WM1 */
  1607. if (!ironlake_compute_srwm(dev, 1, enabled,
  1608. dev_priv->wm.pri_latency[1] * 500,
  1609. &ironlake_display_srwm_info,
  1610. &ironlake_cursor_srwm_info,
  1611. &fbc_wm, &plane_wm, &cursor_wm))
  1612. return;
  1613. I915_WRITE(WM1_LP_ILK,
  1614. WM1_LP_SR_EN |
  1615. (dev_priv->wm.pri_latency[1] << WM1_LP_LATENCY_SHIFT) |
  1616. (fbc_wm << WM1_LP_FBC_SHIFT) |
  1617. (plane_wm << WM1_LP_SR_SHIFT) |
  1618. cursor_wm);
  1619. /* WM2 */
  1620. if (!ironlake_compute_srwm(dev, 2, enabled,
  1621. dev_priv->wm.pri_latency[2] * 500,
  1622. &ironlake_display_srwm_info,
  1623. &ironlake_cursor_srwm_info,
  1624. &fbc_wm, &plane_wm, &cursor_wm))
  1625. return;
  1626. I915_WRITE(WM2_LP_ILK,
  1627. WM2_LP_EN |
  1628. (dev_priv->wm.pri_latency[2] << WM1_LP_LATENCY_SHIFT) |
  1629. (fbc_wm << WM1_LP_FBC_SHIFT) |
  1630. (plane_wm << WM1_LP_SR_SHIFT) |
  1631. cursor_wm);
  1632. /*
  1633. * WM3 is unsupported on ILK, probably because we don't have latency
  1634. * data for that power state
  1635. */
  1636. }
  1637. static void sandybridge_update_wm(struct drm_crtc *crtc)
  1638. {
  1639. struct drm_device *dev = crtc->dev;
  1640. struct drm_i915_private *dev_priv = dev->dev_private;
  1641. int latency = dev_priv->wm.pri_latency[0] * 100; /* In unit 0.1us */
  1642. u32 val;
  1643. int fbc_wm, plane_wm, cursor_wm;
  1644. unsigned int enabled;
  1645. enabled = 0;
  1646. if (g4x_compute_wm0(dev, PIPE_A,
  1647. &sandybridge_display_wm_info, latency,
  1648. &sandybridge_cursor_wm_info, latency,
  1649. &plane_wm, &cursor_wm)) {
  1650. val = I915_READ(WM0_PIPEA_ILK);
  1651. val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
  1652. I915_WRITE(WM0_PIPEA_ILK, val |
  1653. ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
  1654. DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
  1655. " plane %d, " "cursor: %d\n",
  1656. plane_wm, cursor_wm);
  1657. enabled |= 1 << PIPE_A;
  1658. }
  1659. if (g4x_compute_wm0(dev, PIPE_B,
  1660. &sandybridge_display_wm_info, latency,
  1661. &sandybridge_cursor_wm_info, latency,
  1662. &plane_wm, &cursor_wm)) {
  1663. val = I915_READ(WM0_PIPEB_ILK);
  1664. val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
  1665. I915_WRITE(WM0_PIPEB_ILK, val |
  1666. ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
  1667. DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
  1668. " plane %d, cursor: %d\n",
  1669. plane_wm, cursor_wm);
  1670. enabled |= 1 << PIPE_B;
  1671. }
  1672. /*
  1673. * Calculate and update the self-refresh watermark only when one
  1674. * display plane is used.
  1675. *
  1676. * SNB support 3 levels of watermark.
  1677. *
  1678. * WM1/WM2/WM2 watermarks have to be enabled in the ascending order,
  1679. * and disabled in the descending order
  1680. *
  1681. */
  1682. I915_WRITE(WM3_LP_ILK, 0);
  1683. I915_WRITE(WM2_LP_ILK, 0);
  1684. I915_WRITE(WM1_LP_ILK, 0);
  1685. if (!single_plane_enabled(enabled) ||
  1686. dev_priv->sprite_scaling_enabled)
  1687. return;
  1688. enabled = ffs(enabled) - 1;
  1689. /* WM1 */
  1690. if (!ironlake_compute_srwm(dev, 1, enabled,
  1691. dev_priv->wm.pri_latency[1] * 500,
  1692. &sandybridge_display_srwm_info,
  1693. &sandybridge_cursor_srwm_info,
  1694. &fbc_wm, &plane_wm, &cursor_wm))
  1695. return;
  1696. I915_WRITE(WM1_LP_ILK,
  1697. WM1_LP_SR_EN |
  1698. (dev_priv->wm.pri_latency[1] << WM1_LP_LATENCY_SHIFT) |
  1699. (fbc_wm << WM1_LP_FBC_SHIFT) |
  1700. (plane_wm << WM1_LP_SR_SHIFT) |
  1701. cursor_wm);
  1702. /* WM2 */
  1703. if (!ironlake_compute_srwm(dev, 2, enabled,
  1704. dev_priv->wm.pri_latency[2] * 500,
  1705. &sandybridge_display_srwm_info,
  1706. &sandybridge_cursor_srwm_info,
  1707. &fbc_wm, &plane_wm, &cursor_wm))
  1708. return;
  1709. I915_WRITE(WM2_LP_ILK,
  1710. WM2_LP_EN |
  1711. (dev_priv->wm.pri_latency[2] << WM1_LP_LATENCY_SHIFT) |
  1712. (fbc_wm << WM1_LP_FBC_SHIFT) |
  1713. (plane_wm << WM1_LP_SR_SHIFT) |
  1714. cursor_wm);
  1715. /* WM3 */
  1716. if (!ironlake_compute_srwm(dev, 3, enabled,
  1717. dev_priv->wm.pri_latency[3] * 500,
  1718. &sandybridge_display_srwm_info,
  1719. &sandybridge_cursor_srwm_info,
  1720. &fbc_wm, &plane_wm, &cursor_wm))
  1721. return;
  1722. I915_WRITE(WM3_LP_ILK,
  1723. WM3_LP_EN |
  1724. (dev_priv->wm.pri_latency[3] << WM1_LP_LATENCY_SHIFT) |
  1725. (fbc_wm << WM1_LP_FBC_SHIFT) |
  1726. (plane_wm << WM1_LP_SR_SHIFT) |
  1727. cursor_wm);
  1728. }
  1729. static void ivybridge_update_wm(struct drm_crtc *crtc)
  1730. {
  1731. struct drm_device *dev = crtc->dev;
  1732. struct drm_i915_private *dev_priv = dev->dev_private;
  1733. int latency = dev_priv->wm.pri_latency[0] * 100; /* In unit 0.1us */
  1734. u32 val;
  1735. int fbc_wm, plane_wm, cursor_wm;
  1736. int ignore_fbc_wm, ignore_plane_wm, ignore_cursor_wm;
  1737. unsigned int enabled;
  1738. enabled = 0;
  1739. if (g4x_compute_wm0(dev, PIPE_A,
  1740. &sandybridge_display_wm_info, latency,
  1741. &sandybridge_cursor_wm_info, latency,
  1742. &plane_wm, &cursor_wm)) {
  1743. val = I915_READ(WM0_PIPEA_ILK);
  1744. val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
  1745. I915_WRITE(WM0_PIPEA_ILK, val |
  1746. ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
  1747. DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
  1748. " plane %d, " "cursor: %d\n",
  1749. plane_wm, cursor_wm);
  1750. enabled |= 1 << PIPE_A;
  1751. }
  1752. if (g4x_compute_wm0(dev, PIPE_B,
  1753. &sandybridge_display_wm_info, latency,
  1754. &sandybridge_cursor_wm_info, latency,
  1755. &plane_wm, &cursor_wm)) {
  1756. val = I915_READ(WM0_PIPEB_ILK);
  1757. val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
  1758. I915_WRITE(WM0_PIPEB_ILK, val |
  1759. ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
  1760. DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
  1761. " plane %d, cursor: %d\n",
  1762. plane_wm, cursor_wm);
  1763. enabled |= 1 << PIPE_B;
  1764. }
  1765. if (g4x_compute_wm0(dev, PIPE_C,
  1766. &sandybridge_display_wm_info, latency,
  1767. &sandybridge_cursor_wm_info, latency,
  1768. &plane_wm, &cursor_wm)) {
  1769. val = I915_READ(WM0_PIPEC_IVB);
  1770. val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
  1771. I915_WRITE(WM0_PIPEC_IVB, val |
  1772. ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
  1773. DRM_DEBUG_KMS("FIFO watermarks For pipe C -"
  1774. " plane %d, cursor: %d\n",
  1775. plane_wm, cursor_wm);
  1776. enabled |= 1 << PIPE_C;
  1777. }
  1778. /*
  1779. * Calculate and update the self-refresh watermark only when one
  1780. * display plane is used.
  1781. *
  1782. * SNB support 3 levels of watermark.
  1783. *
  1784. * WM1/WM2/WM2 watermarks have to be enabled in the ascending order,
  1785. * and disabled in the descending order
  1786. *
  1787. */
  1788. I915_WRITE(WM3_LP_ILK, 0);
  1789. I915_WRITE(WM2_LP_ILK, 0);
  1790. I915_WRITE(WM1_LP_ILK, 0);
  1791. if (!single_plane_enabled(enabled) ||
  1792. dev_priv->sprite_scaling_enabled)
  1793. return;
  1794. enabled = ffs(enabled) - 1;
  1795. /* WM1 */
  1796. if (!ironlake_compute_srwm(dev, 1, enabled,
  1797. dev_priv->wm.pri_latency[1] * 500,
  1798. &sandybridge_display_srwm_info,
  1799. &sandybridge_cursor_srwm_info,
  1800. &fbc_wm, &plane_wm, &cursor_wm))
  1801. return;
  1802. I915_WRITE(WM1_LP_ILK,
  1803. WM1_LP_SR_EN |
  1804. (dev_priv->wm.pri_latency[1] << WM1_LP_LATENCY_SHIFT) |
  1805. (fbc_wm << WM1_LP_FBC_SHIFT) |
  1806. (plane_wm << WM1_LP_SR_SHIFT) |
  1807. cursor_wm);
  1808. /* WM2 */
  1809. if (!ironlake_compute_srwm(dev, 2, enabled,
  1810. dev_priv->wm.pri_latency[2] * 500,
  1811. &sandybridge_display_srwm_info,
  1812. &sandybridge_cursor_srwm_info,
  1813. &fbc_wm, &plane_wm, &cursor_wm))
  1814. return;
  1815. I915_WRITE(WM2_LP_ILK,
  1816. WM2_LP_EN |
  1817. (dev_priv->wm.pri_latency[2] << WM1_LP_LATENCY_SHIFT) |
  1818. (fbc_wm << WM1_LP_FBC_SHIFT) |
  1819. (plane_wm << WM1_LP_SR_SHIFT) |
  1820. cursor_wm);
  1821. /* WM3, note we have to correct the cursor latency */
  1822. if (!ironlake_compute_srwm(dev, 3, enabled,
  1823. dev_priv->wm.pri_latency[3] * 500,
  1824. &sandybridge_display_srwm_info,
  1825. &sandybridge_cursor_srwm_info,
  1826. &fbc_wm, &plane_wm, &ignore_cursor_wm) ||
  1827. !ironlake_compute_srwm(dev, 3, enabled,
  1828. dev_priv->wm.cur_latency[3] * 500,
  1829. &sandybridge_display_srwm_info,
  1830. &sandybridge_cursor_srwm_info,
  1831. &ignore_fbc_wm, &ignore_plane_wm, &cursor_wm))
  1832. return;
  1833. I915_WRITE(WM3_LP_ILK,
  1834. WM3_LP_EN |
  1835. (dev_priv->wm.pri_latency[3] << WM1_LP_LATENCY_SHIFT) |
  1836. (fbc_wm << WM1_LP_FBC_SHIFT) |
  1837. (plane_wm << WM1_LP_SR_SHIFT) |
  1838. cursor_wm);
  1839. }
  1840. static uint32_t ilk_pipe_pixel_rate(struct drm_device *dev,
  1841. struct drm_crtc *crtc)
  1842. {
  1843. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1844. uint32_t pixel_rate;
  1845. pixel_rate = intel_crtc->config.adjusted_mode.crtc_clock;
  1846. /* We only use IF-ID interlacing. If we ever use PF-ID we'll need to
  1847. * adjust the pixel_rate here. */
  1848. if (intel_crtc->config.pch_pfit.enabled) {
  1849. uint64_t pipe_w, pipe_h, pfit_w, pfit_h;
  1850. uint32_t pfit_size = intel_crtc->config.pch_pfit.size;
  1851. pipe_w = intel_crtc->config.pipe_src_w;
  1852. pipe_h = intel_crtc->config.pipe_src_h;
  1853. pfit_w = (pfit_size >> 16) & 0xFFFF;
  1854. pfit_h = pfit_size & 0xFFFF;
  1855. if (pipe_w < pfit_w)
  1856. pipe_w = pfit_w;
  1857. if (pipe_h < pfit_h)
  1858. pipe_h = pfit_h;
  1859. pixel_rate = div_u64((uint64_t) pixel_rate * pipe_w * pipe_h,
  1860. pfit_w * pfit_h);
  1861. }
  1862. return pixel_rate;
  1863. }
  1864. /* latency must be in 0.1us units. */
  1865. static uint32_t ilk_wm_method1(uint32_t pixel_rate, uint8_t bytes_per_pixel,
  1866. uint32_t latency)
  1867. {
  1868. uint64_t ret;
  1869. if (WARN(latency == 0, "Latency value missing\n"))
  1870. return UINT_MAX;
  1871. ret = (uint64_t) pixel_rate * bytes_per_pixel * latency;
  1872. ret = DIV_ROUND_UP_ULL(ret, 64 * 10000) + 2;
  1873. return ret;
  1874. }
  1875. /* latency must be in 0.1us units. */
  1876. static uint32_t ilk_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
  1877. uint32_t horiz_pixels, uint8_t bytes_per_pixel,
  1878. uint32_t latency)
  1879. {
  1880. uint32_t ret;
  1881. if (WARN(latency == 0, "Latency value missing\n"))
  1882. return UINT_MAX;
  1883. ret = (latency * pixel_rate) / (pipe_htotal * 10000);
  1884. ret = (ret + 1) * horiz_pixels * bytes_per_pixel;
  1885. ret = DIV_ROUND_UP(ret, 64) + 2;
  1886. return ret;
  1887. }
  1888. static uint32_t ilk_wm_fbc(uint32_t pri_val, uint32_t horiz_pixels,
  1889. uint8_t bytes_per_pixel)
  1890. {
  1891. return DIV_ROUND_UP(pri_val * 64, horiz_pixels * bytes_per_pixel) + 2;
  1892. }
  1893. struct hsw_pipe_wm_parameters {
  1894. bool active;
  1895. uint32_t pipe_htotal;
  1896. uint32_t pixel_rate;
  1897. struct intel_plane_wm_parameters pri;
  1898. struct intel_plane_wm_parameters spr;
  1899. struct intel_plane_wm_parameters cur;
  1900. };
  1901. struct hsw_wm_maximums {
  1902. uint16_t pri;
  1903. uint16_t spr;
  1904. uint16_t cur;
  1905. uint16_t fbc;
  1906. };
  1907. struct hsw_wm_values {
  1908. uint32_t wm_pipe[3];
  1909. uint32_t wm_lp[3];
  1910. uint32_t wm_lp_spr[3];
  1911. uint32_t wm_linetime[3];
  1912. bool enable_fbc_wm;
  1913. };
  1914. /* used in computing the new watermarks state */
  1915. struct intel_wm_config {
  1916. unsigned int num_pipes_active;
  1917. bool sprites_enabled;
  1918. bool sprites_scaled;
  1919. bool fbc_wm_enabled;
  1920. };
  1921. /*
  1922. * For both WM_PIPE and WM_LP.
  1923. * mem_value must be in 0.1us units.
  1924. */
  1925. static uint32_t ilk_compute_pri_wm(const struct hsw_pipe_wm_parameters *params,
  1926. uint32_t mem_value,
  1927. bool is_lp)
  1928. {
  1929. uint32_t method1, method2;
  1930. if (!params->active || !params->pri.enabled)
  1931. return 0;
  1932. method1 = ilk_wm_method1(params->pixel_rate,
  1933. params->pri.bytes_per_pixel,
  1934. mem_value);
  1935. if (!is_lp)
  1936. return method1;
  1937. method2 = ilk_wm_method2(params->pixel_rate,
  1938. params->pipe_htotal,
  1939. params->pri.horiz_pixels,
  1940. params->pri.bytes_per_pixel,
  1941. mem_value);
  1942. return min(method1, method2);
  1943. }
  1944. /*
  1945. * For both WM_PIPE and WM_LP.
  1946. * mem_value must be in 0.1us units.
  1947. */
  1948. static uint32_t ilk_compute_spr_wm(const struct hsw_pipe_wm_parameters *params,
  1949. uint32_t mem_value)
  1950. {
  1951. uint32_t method1, method2;
  1952. if (!params->active || !params->spr.enabled)
  1953. return 0;
  1954. method1 = ilk_wm_method1(params->pixel_rate,
  1955. params->spr.bytes_per_pixel,
  1956. mem_value);
  1957. method2 = ilk_wm_method2(params->pixel_rate,
  1958. params->pipe_htotal,
  1959. params->spr.horiz_pixels,
  1960. params->spr.bytes_per_pixel,
  1961. mem_value);
  1962. return min(method1, method2);
  1963. }
  1964. /*
  1965. * For both WM_PIPE and WM_LP.
  1966. * mem_value must be in 0.1us units.
  1967. */
  1968. static uint32_t ilk_compute_cur_wm(const struct hsw_pipe_wm_parameters *params,
  1969. uint32_t mem_value)
  1970. {
  1971. if (!params->active || !params->cur.enabled)
  1972. return 0;
  1973. return ilk_wm_method2(params->pixel_rate,
  1974. params->pipe_htotal,
  1975. params->cur.horiz_pixels,
  1976. params->cur.bytes_per_pixel,
  1977. mem_value);
  1978. }
  1979. /* Only for WM_LP. */
  1980. static uint32_t ilk_compute_fbc_wm(const struct hsw_pipe_wm_parameters *params,
  1981. uint32_t pri_val)
  1982. {
  1983. if (!params->active || !params->pri.enabled)
  1984. return 0;
  1985. return ilk_wm_fbc(pri_val,
  1986. params->pri.horiz_pixels,
  1987. params->pri.bytes_per_pixel);
  1988. }
  1989. static unsigned int ilk_display_fifo_size(const struct drm_device *dev)
  1990. {
  1991. if (INTEL_INFO(dev)->gen >= 7)
  1992. return 768;
  1993. else
  1994. return 512;
  1995. }
  1996. /* Calculate the maximum primary/sprite plane watermark */
  1997. static unsigned int ilk_plane_wm_max(const struct drm_device *dev,
  1998. int level,
  1999. const struct intel_wm_config *config,
  2000. enum intel_ddb_partitioning ddb_partitioning,
  2001. bool is_sprite)
  2002. {
  2003. unsigned int fifo_size = ilk_display_fifo_size(dev);
  2004. unsigned int max;
  2005. /* if sprites aren't enabled, sprites get nothing */
  2006. if (is_sprite && !config->sprites_enabled)
  2007. return 0;
  2008. /* HSW allows LP1+ watermarks even with multiple pipes */
  2009. if (level == 0 || config->num_pipes_active > 1) {
  2010. fifo_size /= INTEL_INFO(dev)->num_pipes;
  2011. /*
  2012. * For some reason the non self refresh
  2013. * FIFO size is only half of the self
  2014. * refresh FIFO size on ILK/SNB.
  2015. */
  2016. if (INTEL_INFO(dev)->gen <= 6)
  2017. fifo_size /= 2;
  2018. }
  2019. if (config->sprites_enabled) {
  2020. /* level 0 is always calculated with 1:1 split */
  2021. if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
  2022. if (is_sprite)
  2023. fifo_size *= 5;
  2024. fifo_size /= 6;
  2025. } else {
  2026. fifo_size /= 2;
  2027. }
  2028. }
  2029. /* clamp to max that the registers can hold */
  2030. if (INTEL_INFO(dev)->gen >= 7)
  2031. /* IVB/HSW primary/sprite plane watermarks */
  2032. max = level == 0 ? 127 : 1023;
  2033. else if (!is_sprite)
  2034. /* ILK/SNB primary plane watermarks */
  2035. max = level == 0 ? 127 : 511;
  2036. else
  2037. /* ILK/SNB sprite plane watermarks */
  2038. max = level == 0 ? 63 : 255;
  2039. return min(fifo_size, max);
  2040. }
  2041. /* Calculate the maximum cursor plane watermark */
  2042. static unsigned int ilk_cursor_wm_max(const struct drm_device *dev,
  2043. int level,
  2044. const struct intel_wm_config *config)
  2045. {
  2046. /* HSW LP1+ watermarks w/ multiple pipes */
  2047. if (level > 0 && config->num_pipes_active > 1)
  2048. return 64;
  2049. /* otherwise just report max that registers can hold */
  2050. if (INTEL_INFO(dev)->gen >= 7)
  2051. return level == 0 ? 63 : 255;
  2052. else
  2053. return level == 0 ? 31 : 63;
  2054. }
  2055. /* Calculate the maximum FBC watermark */
  2056. static unsigned int ilk_fbc_wm_max(void)
  2057. {
  2058. /* max that registers can hold */
  2059. return 15;
  2060. }
  2061. static void ilk_wm_max(struct drm_device *dev,
  2062. int level,
  2063. const struct intel_wm_config *config,
  2064. enum intel_ddb_partitioning ddb_partitioning,
  2065. struct hsw_wm_maximums *max)
  2066. {
  2067. max->pri = ilk_plane_wm_max(dev, level, config, ddb_partitioning, false);
  2068. max->spr = ilk_plane_wm_max(dev, level, config, ddb_partitioning, true);
  2069. max->cur = ilk_cursor_wm_max(dev, level, config);
  2070. max->fbc = ilk_fbc_wm_max();
  2071. }
  2072. static bool ilk_check_wm(int level,
  2073. const struct hsw_wm_maximums *max,
  2074. struct intel_wm_level *result)
  2075. {
  2076. bool ret;
  2077. /* already determined to be invalid? */
  2078. if (!result->enable)
  2079. return false;
  2080. result->enable = result->pri_val <= max->pri &&
  2081. result->spr_val <= max->spr &&
  2082. result->cur_val <= max->cur;
  2083. ret = result->enable;
  2084. /*
  2085. * HACK until we can pre-compute everything,
  2086. * and thus fail gracefully if LP0 watermarks
  2087. * are exceeded...
  2088. */
  2089. if (level == 0 && !result->enable) {
  2090. if (result->pri_val > max->pri)
  2091. DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
  2092. level, result->pri_val, max->pri);
  2093. if (result->spr_val > max->spr)
  2094. DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
  2095. level, result->spr_val, max->spr);
  2096. if (result->cur_val > max->cur)
  2097. DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
  2098. level, result->cur_val, max->cur);
  2099. result->pri_val = min_t(uint32_t, result->pri_val, max->pri);
  2100. result->spr_val = min_t(uint32_t, result->spr_val, max->spr);
  2101. result->cur_val = min_t(uint32_t, result->cur_val, max->cur);
  2102. result->enable = true;
  2103. }
  2104. DRM_DEBUG_KMS("WM%d: %sabled\n", level, result->enable ? "en" : "dis");
  2105. return ret;
  2106. }
  2107. static void ilk_compute_wm_level(struct drm_i915_private *dev_priv,
  2108. int level,
  2109. const struct hsw_pipe_wm_parameters *p,
  2110. struct intel_wm_level *result)
  2111. {
  2112. uint16_t pri_latency = dev_priv->wm.pri_latency[level];
  2113. uint16_t spr_latency = dev_priv->wm.spr_latency[level];
  2114. uint16_t cur_latency = dev_priv->wm.cur_latency[level];
  2115. /* WM1+ latency values stored in 0.5us units */
  2116. if (level > 0) {
  2117. pri_latency *= 5;
  2118. spr_latency *= 5;
  2119. cur_latency *= 5;
  2120. }
  2121. result->pri_val = ilk_compute_pri_wm(p, pri_latency, level);
  2122. result->spr_val = ilk_compute_spr_wm(p, spr_latency);
  2123. result->cur_val = ilk_compute_cur_wm(p, cur_latency);
  2124. result->fbc_val = ilk_compute_fbc_wm(p, result->pri_val);
  2125. result->enable = true;
  2126. }
  2127. static bool hsw_compute_lp_wm(struct drm_i915_private *dev_priv,
  2128. int level, const struct hsw_wm_maximums *max,
  2129. const struct hsw_pipe_wm_parameters *params,
  2130. struct intel_wm_level *result)
  2131. {
  2132. enum pipe pipe;
  2133. struct intel_wm_level res[3];
  2134. for (pipe = PIPE_A; pipe <= PIPE_C; pipe++)
  2135. ilk_compute_wm_level(dev_priv, level, &params[pipe], &res[pipe]);
  2136. result->pri_val = max3(res[0].pri_val, res[1].pri_val, res[2].pri_val);
  2137. result->spr_val = max3(res[0].spr_val, res[1].spr_val, res[2].spr_val);
  2138. result->cur_val = max3(res[0].cur_val, res[1].cur_val, res[2].cur_val);
  2139. result->fbc_val = max3(res[0].fbc_val, res[1].fbc_val, res[2].fbc_val);
  2140. result->enable = true;
  2141. return ilk_check_wm(level, max, result);
  2142. }
  2143. static uint32_t hsw_compute_wm_pipe(struct drm_device *dev,
  2144. const struct hsw_pipe_wm_parameters *params)
  2145. {
  2146. struct drm_i915_private *dev_priv = dev->dev_private;
  2147. struct intel_wm_config config = {
  2148. .num_pipes_active = 1,
  2149. .sprites_enabled = params->spr.enabled,
  2150. .sprites_scaled = params->spr.scaled,
  2151. };
  2152. struct hsw_wm_maximums max;
  2153. struct intel_wm_level res;
  2154. if (!params->active)
  2155. return 0;
  2156. ilk_wm_max(dev, 0, &config, INTEL_DDB_PART_1_2, &max);
  2157. ilk_compute_wm_level(dev_priv, 0, params, &res);
  2158. ilk_check_wm(0, &max, &res);
  2159. return (res.pri_val << WM0_PIPE_PLANE_SHIFT) |
  2160. (res.spr_val << WM0_PIPE_SPRITE_SHIFT) |
  2161. res.cur_val;
  2162. }
  2163. static uint32_t
  2164. hsw_compute_linetime_wm(struct drm_device *dev, struct drm_crtc *crtc)
  2165. {
  2166. struct drm_i915_private *dev_priv = dev->dev_private;
  2167. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2168. struct drm_display_mode *mode = &intel_crtc->config.adjusted_mode;
  2169. u32 linetime, ips_linetime;
  2170. if (!intel_crtc_active(crtc))
  2171. return 0;
  2172. /* The WM are computed with base on how long it takes to fill a single
  2173. * row at the given clock rate, multiplied by 8.
  2174. * */
  2175. linetime = DIV_ROUND_CLOSEST(mode->htotal * 1000 * 8, mode->clock);
  2176. ips_linetime = DIV_ROUND_CLOSEST(mode->htotal * 1000 * 8,
  2177. intel_ddi_get_cdclk_freq(dev_priv));
  2178. return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) |
  2179. PIPE_WM_LINETIME_TIME(linetime);
  2180. }
  2181. static void intel_read_wm_latency(struct drm_device *dev, uint16_t wm[5])
  2182. {
  2183. struct drm_i915_private *dev_priv = dev->dev_private;
  2184. if (IS_HASWELL(dev)) {
  2185. uint64_t sskpd = I915_READ64(MCH_SSKPD);
  2186. wm[0] = (sskpd >> 56) & 0xFF;
  2187. if (wm[0] == 0)
  2188. wm[0] = sskpd & 0xF;
  2189. wm[1] = (sskpd >> 4) & 0xFF;
  2190. wm[2] = (sskpd >> 12) & 0xFF;
  2191. wm[3] = (sskpd >> 20) & 0x1FF;
  2192. wm[4] = (sskpd >> 32) & 0x1FF;
  2193. } else if (INTEL_INFO(dev)->gen >= 6) {
  2194. uint32_t sskpd = I915_READ(MCH_SSKPD);
  2195. wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
  2196. wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
  2197. wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
  2198. wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
  2199. } else if (INTEL_INFO(dev)->gen >= 5) {
  2200. uint32_t mltr = I915_READ(MLTR_ILK);
  2201. /* ILK primary LP0 latency is 700 ns */
  2202. wm[0] = 7;
  2203. wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
  2204. wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
  2205. }
  2206. }
  2207. static void intel_fixup_spr_wm_latency(struct drm_device *dev, uint16_t wm[5])
  2208. {
  2209. /* ILK sprite LP0 latency is 1300 ns */
  2210. if (INTEL_INFO(dev)->gen == 5)
  2211. wm[0] = 13;
  2212. }
  2213. static void intel_fixup_cur_wm_latency(struct drm_device *dev, uint16_t wm[5])
  2214. {
  2215. /* ILK cursor LP0 latency is 1300 ns */
  2216. if (INTEL_INFO(dev)->gen == 5)
  2217. wm[0] = 13;
  2218. /* WaDoubleCursorLP3Latency:ivb */
  2219. if (IS_IVYBRIDGE(dev))
  2220. wm[3] *= 2;
  2221. }
  2222. static int ilk_wm_max_level(const struct drm_device *dev)
  2223. {
  2224. /* how many WM levels are we expecting */
  2225. if (IS_HASWELL(dev))
  2226. return 4;
  2227. else if (INTEL_INFO(dev)->gen >= 6)
  2228. return 3;
  2229. else
  2230. return 2;
  2231. }
  2232. static void intel_print_wm_latency(struct drm_device *dev,
  2233. const char *name,
  2234. const uint16_t wm[5])
  2235. {
  2236. int level, max_level = ilk_wm_max_level(dev);
  2237. for (level = 0; level <= max_level; level++) {
  2238. unsigned int latency = wm[level];
  2239. if (latency == 0) {
  2240. DRM_ERROR("%s WM%d latency not provided\n",
  2241. name, level);
  2242. continue;
  2243. }
  2244. /* WM1+ latency values in 0.5us units */
  2245. if (level > 0)
  2246. latency *= 5;
  2247. DRM_DEBUG_KMS("%s WM%d latency %u (%u.%u usec)\n",
  2248. name, level, wm[level],
  2249. latency / 10, latency % 10);
  2250. }
  2251. }
  2252. static void intel_setup_wm_latency(struct drm_device *dev)
  2253. {
  2254. struct drm_i915_private *dev_priv = dev->dev_private;
  2255. intel_read_wm_latency(dev, dev_priv->wm.pri_latency);
  2256. memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
  2257. sizeof(dev_priv->wm.pri_latency));
  2258. memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
  2259. sizeof(dev_priv->wm.pri_latency));
  2260. intel_fixup_spr_wm_latency(dev, dev_priv->wm.spr_latency);
  2261. intel_fixup_cur_wm_latency(dev, dev_priv->wm.cur_latency);
  2262. intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
  2263. intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
  2264. intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
  2265. }
  2266. static void hsw_compute_wm_parameters(struct drm_device *dev,
  2267. struct hsw_pipe_wm_parameters *params,
  2268. struct hsw_wm_maximums *lp_max_1_2,
  2269. struct hsw_wm_maximums *lp_max_5_6)
  2270. {
  2271. struct drm_crtc *crtc;
  2272. struct drm_plane *plane;
  2273. enum pipe pipe;
  2274. struct intel_wm_config config = {};
  2275. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  2276. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2277. struct hsw_pipe_wm_parameters *p;
  2278. pipe = intel_crtc->pipe;
  2279. p = &params[pipe];
  2280. p->active = intel_crtc_active(crtc);
  2281. if (!p->active)
  2282. continue;
  2283. config.num_pipes_active++;
  2284. p->pipe_htotal = intel_crtc->config.adjusted_mode.htotal;
  2285. p->pixel_rate = ilk_pipe_pixel_rate(dev, crtc);
  2286. p->pri.bytes_per_pixel = crtc->fb->bits_per_pixel / 8;
  2287. p->cur.bytes_per_pixel = 4;
  2288. p->pri.horiz_pixels = intel_crtc->config.pipe_src_w;
  2289. p->cur.horiz_pixels = 64;
  2290. /* TODO: for now, assume primary and cursor planes are always enabled. */
  2291. p->pri.enabled = true;
  2292. p->cur.enabled = true;
  2293. }
  2294. list_for_each_entry(plane, &dev->mode_config.plane_list, head) {
  2295. struct intel_plane *intel_plane = to_intel_plane(plane);
  2296. struct hsw_pipe_wm_parameters *p;
  2297. pipe = intel_plane->pipe;
  2298. p = &params[pipe];
  2299. p->spr = intel_plane->wm;
  2300. config.sprites_enabled |= p->spr.enabled;
  2301. config.sprites_scaled |= p->spr.scaled;
  2302. }
  2303. ilk_wm_max(dev, 1, &config, INTEL_DDB_PART_1_2, lp_max_1_2);
  2304. /* 5/6 split only in single pipe config on IVB+ */
  2305. if (INTEL_INFO(dev)->gen >= 7 && config.num_pipes_active <= 1)
  2306. ilk_wm_max(dev, 1, &config, INTEL_DDB_PART_5_6, lp_max_5_6);
  2307. else
  2308. *lp_max_5_6 = *lp_max_1_2;
  2309. }
  2310. static void hsw_compute_wm_results(struct drm_device *dev,
  2311. const struct hsw_pipe_wm_parameters *params,
  2312. const struct hsw_wm_maximums *lp_maximums,
  2313. struct hsw_wm_values *results)
  2314. {
  2315. struct drm_i915_private *dev_priv = dev->dev_private;
  2316. struct drm_crtc *crtc;
  2317. struct intel_wm_level lp_results[4] = {};
  2318. enum pipe pipe;
  2319. int level, max_level, wm_lp;
  2320. for (level = 1; level <= 4; level++)
  2321. if (!hsw_compute_lp_wm(dev_priv, level,
  2322. lp_maximums, params,
  2323. &lp_results[level - 1]))
  2324. break;
  2325. max_level = level - 1;
  2326. memset(results, 0, sizeof(*results));
  2327. /* The spec says it is preferred to disable FBC WMs instead of disabling
  2328. * a WM level. */
  2329. results->enable_fbc_wm = true;
  2330. for (level = 1; level <= max_level; level++) {
  2331. if (lp_results[level - 1].fbc_val > lp_maximums->fbc) {
  2332. results->enable_fbc_wm = false;
  2333. lp_results[level - 1].fbc_val = 0;
  2334. }
  2335. }
  2336. for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
  2337. const struct intel_wm_level *r;
  2338. level = (max_level == 4 && wm_lp > 1) ? wm_lp + 1 : wm_lp;
  2339. if (level > max_level)
  2340. break;
  2341. r = &lp_results[level - 1];
  2342. results->wm_lp[wm_lp - 1] = HSW_WM_LP_VAL(level * 2,
  2343. r->fbc_val,
  2344. r->pri_val,
  2345. r->cur_val);
  2346. results->wm_lp_spr[wm_lp - 1] = r->spr_val;
  2347. }
  2348. for_each_pipe(pipe)
  2349. results->wm_pipe[pipe] = hsw_compute_wm_pipe(dev,
  2350. &params[pipe]);
  2351. for_each_pipe(pipe) {
  2352. crtc = dev_priv->pipe_to_crtc_mapping[pipe];
  2353. results->wm_linetime[pipe] = hsw_compute_linetime_wm(dev, crtc);
  2354. }
  2355. }
  2356. /* Find the result with the highest level enabled. Check for enable_fbc_wm in
  2357. * case both are at the same level. Prefer r1 in case they're the same. */
  2358. static struct hsw_wm_values *hsw_find_best_result(struct hsw_wm_values *r1,
  2359. struct hsw_wm_values *r2)
  2360. {
  2361. int i, val_r1 = 0, val_r2 = 0;
  2362. for (i = 0; i < 3; i++) {
  2363. if (r1->wm_lp[i] & WM3_LP_EN)
  2364. val_r1 = r1->wm_lp[i] & WM1_LP_LATENCY_MASK;
  2365. if (r2->wm_lp[i] & WM3_LP_EN)
  2366. val_r2 = r2->wm_lp[i] & WM1_LP_LATENCY_MASK;
  2367. }
  2368. if (val_r1 == val_r2) {
  2369. if (r2->enable_fbc_wm && !r1->enable_fbc_wm)
  2370. return r2;
  2371. else
  2372. return r1;
  2373. } else if (val_r1 > val_r2) {
  2374. return r1;
  2375. } else {
  2376. return r2;
  2377. }
  2378. }
  2379. /*
  2380. * The spec says we shouldn't write when we don't need, because every write
  2381. * causes WMs to be re-evaluated, expending some power.
  2382. */
  2383. static void hsw_write_wm_values(struct drm_i915_private *dev_priv,
  2384. struct hsw_wm_values *results,
  2385. enum intel_ddb_partitioning partitioning)
  2386. {
  2387. struct hsw_wm_values previous;
  2388. uint32_t val;
  2389. enum intel_ddb_partitioning prev_partitioning;
  2390. bool prev_enable_fbc_wm;
  2391. previous.wm_pipe[0] = I915_READ(WM0_PIPEA_ILK);
  2392. previous.wm_pipe[1] = I915_READ(WM0_PIPEB_ILK);
  2393. previous.wm_pipe[2] = I915_READ(WM0_PIPEC_IVB);
  2394. previous.wm_lp[0] = I915_READ(WM1_LP_ILK);
  2395. previous.wm_lp[1] = I915_READ(WM2_LP_ILK);
  2396. previous.wm_lp[2] = I915_READ(WM3_LP_ILK);
  2397. previous.wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
  2398. previous.wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
  2399. previous.wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
  2400. previous.wm_linetime[0] = I915_READ(PIPE_WM_LINETIME(PIPE_A));
  2401. previous.wm_linetime[1] = I915_READ(PIPE_WM_LINETIME(PIPE_B));
  2402. previous.wm_linetime[2] = I915_READ(PIPE_WM_LINETIME(PIPE_C));
  2403. prev_partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
  2404. INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
  2405. prev_enable_fbc_wm = !(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
  2406. if (memcmp(results->wm_pipe, previous.wm_pipe,
  2407. sizeof(results->wm_pipe)) == 0 &&
  2408. memcmp(results->wm_lp, previous.wm_lp,
  2409. sizeof(results->wm_lp)) == 0 &&
  2410. memcmp(results->wm_lp_spr, previous.wm_lp_spr,
  2411. sizeof(results->wm_lp_spr)) == 0 &&
  2412. memcmp(results->wm_linetime, previous.wm_linetime,
  2413. sizeof(results->wm_linetime)) == 0 &&
  2414. partitioning == prev_partitioning &&
  2415. results->enable_fbc_wm == prev_enable_fbc_wm)
  2416. return;
  2417. if (previous.wm_lp[2] != 0)
  2418. I915_WRITE(WM3_LP_ILK, 0);
  2419. if (previous.wm_lp[1] != 0)
  2420. I915_WRITE(WM2_LP_ILK, 0);
  2421. if (previous.wm_lp[0] != 0)
  2422. I915_WRITE(WM1_LP_ILK, 0);
  2423. if (previous.wm_pipe[0] != results->wm_pipe[0])
  2424. I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
  2425. if (previous.wm_pipe[1] != results->wm_pipe[1])
  2426. I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
  2427. if (previous.wm_pipe[2] != results->wm_pipe[2])
  2428. I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);
  2429. if (previous.wm_linetime[0] != results->wm_linetime[0])
  2430. I915_WRITE(PIPE_WM_LINETIME(PIPE_A), results->wm_linetime[0]);
  2431. if (previous.wm_linetime[1] != results->wm_linetime[1])
  2432. I915_WRITE(PIPE_WM_LINETIME(PIPE_B), results->wm_linetime[1]);
  2433. if (previous.wm_linetime[2] != results->wm_linetime[2])
  2434. I915_WRITE(PIPE_WM_LINETIME(PIPE_C), results->wm_linetime[2]);
  2435. if (prev_partitioning != partitioning) {
  2436. val = I915_READ(WM_MISC);
  2437. if (partitioning == INTEL_DDB_PART_1_2)
  2438. val &= ~WM_MISC_DATA_PARTITION_5_6;
  2439. else
  2440. val |= WM_MISC_DATA_PARTITION_5_6;
  2441. I915_WRITE(WM_MISC, val);
  2442. }
  2443. if (prev_enable_fbc_wm != results->enable_fbc_wm) {
  2444. val = I915_READ(DISP_ARB_CTL);
  2445. if (results->enable_fbc_wm)
  2446. val &= ~DISP_FBC_WM_DIS;
  2447. else
  2448. val |= DISP_FBC_WM_DIS;
  2449. I915_WRITE(DISP_ARB_CTL, val);
  2450. }
  2451. if (previous.wm_lp_spr[0] != results->wm_lp_spr[0])
  2452. I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);
  2453. if (previous.wm_lp_spr[1] != results->wm_lp_spr[1])
  2454. I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
  2455. if (previous.wm_lp_spr[2] != results->wm_lp_spr[2])
  2456. I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
  2457. if (results->wm_lp[0] != 0)
  2458. I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
  2459. if (results->wm_lp[1] != 0)
  2460. I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
  2461. if (results->wm_lp[2] != 0)
  2462. I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
  2463. }
  2464. static void haswell_update_wm(struct drm_crtc *crtc)
  2465. {
  2466. struct drm_device *dev = crtc->dev;
  2467. struct drm_i915_private *dev_priv = dev->dev_private;
  2468. struct hsw_wm_maximums lp_max_1_2, lp_max_5_6;
  2469. struct hsw_pipe_wm_parameters params[3];
  2470. struct hsw_wm_values results_1_2, results_5_6, *best_results;
  2471. enum intel_ddb_partitioning partitioning;
  2472. hsw_compute_wm_parameters(dev, params, &lp_max_1_2, &lp_max_5_6);
  2473. hsw_compute_wm_results(dev, params,
  2474. &lp_max_1_2, &results_1_2);
  2475. if (lp_max_1_2.pri != lp_max_5_6.pri) {
  2476. hsw_compute_wm_results(dev, params,
  2477. &lp_max_5_6, &results_5_6);
  2478. best_results = hsw_find_best_result(&results_1_2, &results_5_6);
  2479. } else {
  2480. best_results = &results_1_2;
  2481. }
  2482. partitioning = (best_results == &results_1_2) ?
  2483. INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
  2484. hsw_write_wm_values(dev_priv, best_results, partitioning);
  2485. }
  2486. static void haswell_update_sprite_wm(struct drm_plane *plane,
  2487. struct drm_crtc *crtc,
  2488. uint32_t sprite_width, int pixel_size,
  2489. bool enabled, bool scaled)
  2490. {
  2491. struct intel_plane *intel_plane = to_intel_plane(plane);
  2492. intel_plane->wm.enabled = enabled;
  2493. intel_plane->wm.scaled = scaled;
  2494. intel_plane->wm.horiz_pixels = sprite_width;
  2495. intel_plane->wm.bytes_per_pixel = pixel_size;
  2496. haswell_update_wm(crtc);
  2497. }
  2498. static bool
  2499. sandybridge_compute_sprite_wm(struct drm_device *dev, int plane,
  2500. uint32_t sprite_width, int pixel_size,
  2501. const struct intel_watermark_params *display,
  2502. int display_latency_ns, int *sprite_wm)
  2503. {
  2504. struct drm_crtc *crtc;
  2505. int clock;
  2506. int entries, tlb_miss;
  2507. crtc = intel_get_crtc_for_plane(dev, plane);
  2508. if (!intel_crtc_active(crtc)) {
  2509. *sprite_wm = display->guard_size;
  2510. return false;
  2511. }
  2512. clock = to_intel_crtc(crtc)->config.adjusted_mode.crtc_clock;
  2513. /* Use the small buffer method to calculate the sprite watermark */
  2514. entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
  2515. tlb_miss = display->fifo_size*display->cacheline_size -
  2516. sprite_width * 8;
  2517. if (tlb_miss > 0)
  2518. entries += tlb_miss;
  2519. entries = DIV_ROUND_UP(entries, display->cacheline_size);
  2520. *sprite_wm = entries + display->guard_size;
  2521. if (*sprite_wm > (int)display->max_wm)
  2522. *sprite_wm = display->max_wm;
  2523. return true;
  2524. }
  2525. static bool
  2526. sandybridge_compute_sprite_srwm(struct drm_device *dev, int plane,
  2527. uint32_t sprite_width, int pixel_size,
  2528. const struct intel_watermark_params *display,
  2529. int latency_ns, int *sprite_wm)
  2530. {
  2531. struct drm_crtc *crtc;
  2532. unsigned long line_time_us;
  2533. int clock;
  2534. int line_count, line_size;
  2535. int small, large;
  2536. int entries;
  2537. if (!latency_ns) {
  2538. *sprite_wm = 0;
  2539. return false;
  2540. }
  2541. crtc = intel_get_crtc_for_plane(dev, plane);
  2542. clock = to_intel_crtc(crtc)->config.adjusted_mode.crtc_clock;
  2543. if (!clock) {
  2544. *sprite_wm = 0;
  2545. return false;
  2546. }
  2547. line_time_us = (sprite_width * 1000) / clock;
  2548. if (!line_time_us) {
  2549. *sprite_wm = 0;
  2550. return false;
  2551. }
  2552. line_count = (latency_ns / line_time_us + 1000) / 1000;
  2553. line_size = sprite_width * pixel_size;
  2554. /* Use the minimum of the small and large buffer method for primary */
  2555. small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
  2556. large = line_count * line_size;
  2557. entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
  2558. *sprite_wm = entries + display->guard_size;
  2559. return *sprite_wm > 0x3ff ? false : true;
  2560. }
  2561. static void sandybridge_update_sprite_wm(struct drm_plane *plane,
  2562. struct drm_crtc *crtc,
  2563. uint32_t sprite_width, int pixel_size,
  2564. bool enabled, bool scaled)
  2565. {
  2566. struct drm_device *dev = plane->dev;
  2567. struct drm_i915_private *dev_priv = dev->dev_private;
  2568. int pipe = to_intel_plane(plane)->pipe;
  2569. int latency = dev_priv->wm.spr_latency[0] * 100; /* In unit 0.1us */
  2570. u32 val;
  2571. int sprite_wm, reg;
  2572. int ret;
  2573. if (!enabled)
  2574. return;
  2575. switch (pipe) {
  2576. case 0:
  2577. reg = WM0_PIPEA_ILK;
  2578. break;
  2579. case 1:
  2580. reg = WM0_PIPEB_ILK;
  2581. break;
  2582. case 2:
  2583. reg = WM0_PIPEC_IVB;
  2584. break;
  2585. default:
  2586. return; /* bad pipe */
  2587. }
  2588. ret = sandybridge_compute_sprite_wm(dev, pipe, sprite_width, pixel_size,
  2589. &sandybridge_display_wm_info,
  2590. latency, &sprite_wm);
  2591. if (!ret) {
  2592. DRM_DEBUG_KMS("failed to compute sprite wm for pipe %c\n",
  2593. pipe_name(pipe));
  2594. return;
  2595. }
  2596. val = I915_READ(reg);
  2597. val &= ~WM0_PIPE_SPRITE_MASK;
  2598. I915_WRITE(reg, val | (sprite_wm << WM0_PIPE_SPRITE_SHIFT));
  2599. DRM_DEBUG_KMS("sprite watermarks For pipe %c - %d\n", pipe_name(pipe), sprite_wm);
  2600. ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
  2601. pixel_size,
  2602. &sandybridge_display_srwm_info,
  2603. dev_priv->wm.spr_latency[1] * 500,
  2604. &sprite_wm);
  2605. if (!ret) {
  2606. DRM_DEBUG_KMS("failed to compute sprite lp1 wm on pipe %c\n",
  2607. pipe_name(pipe));
  2608. return;
  2609. }
  2610. I915_WRITE(WM1S_LP_ILK, sprite_wm);
  2611. /* Only IVB has two more LP watermarks for sprite */
  2612. if (!IS_IVYBRIDGE(dev))
  2613. return;
  2614. ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
  2615. pixel_size,
  2616. &sandybridge_display_srwm_info,
  2617. dev_priv->wm.spr_latency[2] * 500,
  2618. &sprite_wm);
  2619. if (!ret) {
  2620. DRM_DEBUG_KMS("failed to compute sprite lp2 wm on pipe %c\n",
  2621. pipe_name(pipe));
  2622. return;
  2623. }
  2624. I915_WRITE(WM2S_LP_IVB, sprite_wm);
  2625. ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
  2626. pixel_size,
  2627. &sandybridge_display_srwm_info,
  2628. dev_priv->wm.spr_latency[3] * 500,
  2629. &sprite_wm);
  2630. if (!ret) {
  2631. DRM_DEBUG_KMS("failed to compute sprite lp3 wm on pipe %c\n",
  2632. pipe_name(pipe));
  2633. return;
  2634. }
  2635. I915_WRITE(WM3S_LP_IVB, sprite_wm);
  2636. }
  2637. /**
  2638. * intel_update_watermarks - update FIFO watermark values based on current modes
  2639. *
  2640. * Calculate watermark values for the various WM regs based on current mode
  2641. * and plane configuration.
  2642. *
  2643. * There are several cases to deal with here:
  2644. * - normal (i.e. non-self-refresh)
  2645. * - self-refresh (SR) mode
  2646. * - lines are large relative to FIFO size (buffer can hold up to 2)
  2647. * - lines are small relative to FIFO size (buffer can hold more than 2
  2648. * lines), so need to account for TLB latency
  2649. *
  2650. * The normal calculation is:
  2651. * watermark = dotclock * bytes per pixel * latency
  2652. * where latency is platform & configuration dependent (we assume pessimal
  2653. * values here).
  2654. *
  2655. * The SR calculation is:
  2656. * watermark = (trunc(latency/line time)+1) * surface width *
  2657. * bytes per pixel
  2658. * where
  2659. * line time = htotal / dotclock
  2660. * surface width = hdisplay for normal plane and 64 for cursor
  2661. * and latency is assumed to be high, as above.
  2662. *
  2663. * The final value programmed to the register should always be rounded up,
  2664. * and include an extra 2 entries to account for clock crossings.
  2665. *
  2666. * We don't use the sprite, so we can ignore that. And on Crestline we have
  2667. * to set the non-SR watermarks to 8.
  2668. */
  2669. void intel_update_watermarks(struct drm_crtc *crtc)
  2670. {
  2671. struct drm_i915_private *dev_priv = crtc->dev->dev_private;
  2672. if (dev_priv->display.update_wm)
  2673. dev_priv->display.update_wm(crtc);
  2674. }
  2675. void intel_update_sprite_watermarks(struct drm_plane *plane,
  2676. struct drm_crtc *crtc,
  2677. uint32_t sprite_width, int pixel_size,
  2678. bool enabled, bool scaled)
  2679. {
  2680. struct drm_i915_private *dev_priv = plane->dev->dev_private;
  2681. if (dev_priv->display.update_sprite_wm)
  2682. dev_priv->display.update_sprite_wm(plane, crtc, sprite_width,
  2683. pixel_size, enabled, scaled);
  2684. }
  2685. static struct drm_i915_gem_object *
  2686. intel_alloc_context_page(struct drm_device *dev)
  2687. {
  2688. struct drm_i915_gem_object *ctx;
  2689. int ret;
  2690. WARN_ON(!mutex_is_locked(&dev->struct_mutex));
  2691. ctx = i915_gem_alloc_object(dev, 4096);
  2692. if (!ctx) {
  2693. DRM_DEBUG("failed to alloc power context, RC6 disabled\n");
  2694. return NULL;
  2695. }
  2696. ret = i915_gem_obj_ggtt_pin(ctx, 4096, true, false);
  2697. if (ret) {
  2698. DRM_ERROR("failed to pin power context: %d\n", ret);
  2699. goto err_unref;
  2700. }
  2701. ret = i915_gem_object_set_to_gtt_domain(ctx, 1);
  2702. if (ret) {
  2703. DRM_ERROR("failed to set-domain on power context: %d\n", ret);
  2704. goto err_unpin;
  2705. }
  2706. return ctx;
  2707. err_unpin:
  2708. i915_gem_object_unpin(ctx);
  2709. err_unref:
  2710. drm_gem_object_unreference(&ctx->base);
  2711. return NULL;
  2712. }
  2713. /**
  2714. * Lock protecting IPS related data structures
  2715. */
  2716. DEFINE_SPINLOCK(mchdev_lock);
  2717. /* Global for IPS driver to get at the current i915 device. Protected by
  2718. * mchdev_lock. */
  2719. static struct drm_i915_private *i915_mch_dev;
  2720. bool ironlake_set_drps(struct drm_device *dev, u8 val)
  2721. {
  2722. struct drm_i915_private *dev_priv = dev->dev_private;
  2723. u16 rgvswctl;
  2724. assert_spin_locked(&mchdev_lock);
  2725. rgvswctl = I915_READ16(MEMSWCTL);
  2726. if (rgvswctl & MEMCTL_CMD_STS) {
  2727. DRM_DEBUG("gpu busy, RCS change rejected\n");
  2728. return false; /* still busy with another command */
  2729. }
  2730. rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
  2731. (val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
  2732. I915_WRITE16(MEMSWCTL, rgvswctl);
  2733. POSTING_READ16(MEMSWCTL);
  2734. rgvswctl |= MEMCTL_CMD_STS;
  2735. I915_WRITE16(MEMSWCTL, rgvswctl);
  2736. return true;
  2737. }
  2738. static void ironlake_enable_drps(struct drm_device *dev)
  2739. {
  2740. struct drm_i915_private *dev_priv = dev->dev_private;
  2741. u32 rgvmodectl = I915_READ(MEMMODECTL);
  2742. u8 fmax, fmin, fstart, vstart;
  2743. spin_lock_irq(&mchdev_lock);
  2744. /* Enable temp reporting */
  2745. I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
  2746. I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
  2747. /* 100ms RC evaluation intervals */
  2748. I915_WRITE(RCUPEI, 100000);
  2749. I915_WRITE(RCDNEI, 100000);
  2750. /* Set max/min thresholds to 90ms and 80ms respectively */
  2751. I915_WRITE(RCBMAXAVG, 90000);
  2752. I915_WRITE(RCBMINAVG, 80000);
  2753. I915_WRITE(MEMIHYST, 1);
  2754. /* Set up min, max, and cur for interrupt handling */
  2755. fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
  2756. fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
  2757. fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
  2758. MEMMODE_FSTART_SHIFT;
  2759. vstart = (I915_READ(PXVFREQ_BASE + (fstart * 4)) & PXVFREQ_PX_MASK) >>
  2760. PXVFREQ_PX_SHIFT;
  2761. dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
  2762. dev_priv->ips.fstart = fstart;
  2763. dev_priv->ips.max_delay = fstart;
  2764. dev_priv->ips.min_delay = fmin;
  2765. dev_priv->ips.cur_delay = fstart;
  2766. DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
  2767. fmax, fmin, fstart);
  2768. I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
  2769. /*
  2770. * Interrupts will be enabled in ironlake_irq_postinstall
  2771. */
  2772. I915_WRITE(VIDSTART, vstart);
  2773. POSTING_READ(VIDSTART);
  2774. rgvmodectl |= MEMMODE_SWMODE_EN;
  2775. I915_WRITE(MEMMODECTL, rgvmodectl);
  2776. if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
  2777. DRM_ERROR("stuck trying to change perf mode\n");
  2778. mdelay(1);
  2779. ironlake_set_drps(dev, fstart);
  2780. dev_priv->ips.last_count1 = I915_READ(0x112e4) + I915_READ(0x112e8) +
  2781. I915_READ(0x112e0);
  2782. dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
  2783. dev_priv->ips.last_count2 = I915_READ(0x112f4);
  2784. getrawmonotonic(&dev_priv->ips.last_time2);
  2785. spin_unlock_irq(&mchdev_lock);
  2786. }
  2787. static void ironlake_disable_drps(struct drm_device *dev)
  2788. {
  2789. struct drm_i915_private *dev_priv = dev->dev_private;
  2790. u16 rgvswctl;
  2791. spin_lock_irq(&mchdev_lock);
  2792. rgvswctl = I915_READ16(MEMSWCTL);
  2793. /* Ack interrupts, disable EFC interrupt */
  2794. I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
  2795. I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
  2796. I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
  2797. I915_WRITE(DEIIR, DE_PCU_EVENT);
  2798. I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
  2799. /* Go back to the starting frequency */
  2800. ironlake_set_drps(dev, dev_priv->ips.fstart);
  2801. mdelay(1);
  2802. rgvswctl |= MEMCTL_CMD_STS;
  2803. I915_WRITE(MEMSWCTL, rgvswctl);
  2804. mdelay(1);
  2805. spin_unlock_irq(&mchdev_lock);
  2806. }
  2807. /* There's a funny hw issue where the hw returns all 0 when reading from
  2808. * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
  2809. * ourselves, instead of doing a rmw cycle (which might result in us clearing
  2810. * all limits and the gpu stuck at whatever frequency it is at atm).
  2811. */
  2812. static u32 gen6_rps_limits(struct drm_i915_private *dev_priv, u8 *val)
  2813. {
  2814. u32 limits;
  2815. limits = 0;
  2816. if (*val >= dev_priv->rps.max_delay)
  2817. *val = dev_priv->rps.max_delay;
  2818. limits |= dev_priv->rps.max_delay << 24;
  2819. /* Only set the down limit when we've reached the lowest level to avoid
  2820. * getting more interrupts, otherwise leave this clear. This prevents a
  2821. * race in the hw when coming out of rc6: There's a tiny window where
  2822. * the hw runs at the minimal clock before selecting the desired
  2823. * frequency, if the down threshold expires in that window we will not
  2824. * receive a down interrupt. */
  2825. if (*val <= dev_priv->rps.min_delay) {
  2826. *val = dev_priv->rps.min_delay;
  2827. limits |= dev_priv->rps.min_delay << 16;
  2828. }
  2829. return limits;
  2830. }
  2831. static void gen6_set_rps_thresholds(struct drm_i915_private *dev_priv, u8 val)
  2832. {
  2833. int new_power;
  2834. new_power = dev_priv->rps.power;
  2835. switch (dev_priv->rps.power) {
  2836. case LOW_POWER:
  2837. if (val > dev_priv->rps.rpe_delay + 1 && val > dev_priv->rps.cur_delay)
  2838. new_power = BETWEEN;
  2839. break;
  2840. case BETWEEN:
  2841. if (val <= dev_priv->rps.rpe_delay && val < dev_priv->rps.cur_delay)
  2842. new_power = LOW_POWER;
  2843. else if (val >= dev_priv->rps.rp0_delay && val > dev_priv->rps.cur_delay)
  2844. new_power = HIGH_POWER;
  2845. break;
  2846. case HIGH_POWER:
  2847. if (val < (dev_priv->rps.rp1_delay + dev_priv->rps.rp0_delay) >> 1 && val < dev_priv->rps.cur_delay)
  2848. new_power = BETWEEN;
  2849. break;
  2850. }
  2851. /* Max/min bins are special */
  2852. if (val == dev_priv->rps.min_delay)
  2853. new_power = LOW_POWER;
  2854. if (val == dev_priv->rps.max_delay)
  2855. new_power = HIGH_POWER;
  2856. if (new_power == dev_priv->rps.power)
  2857. return;
  2858. /* Note the units here are not exactly 1us, but 1280ns. */
  2859. switch (new_power) {
  2860. case LOW_POWER:
  2861. /* Upclock if more than 95% busy over 16ms */
  2862. I915_WRITE(GEN6_RP_UP_EI, 12500);
  2863. I915_WRITE(GEN6_RP_UP_THRESHOLD, 11800);
  2864. /* Downclock if less than 85% busy over 32ms */
  2865. I915_WRITE(GEN6_RP_DOWN_EI, 25000);
  2866. I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 21250);
  2867. I915_WRITE(GEN6_RP_CONTROL,
  2868. GEN6_RP_MEDIA_TURBO |
  2869. GEN6_RP_MEDIA_HW_NORMAL_MODE |
  2870. GEN6_RP_MEDIA_IS_GFX |
  2871. GEN6_RP_ENABLE |
  2872. GEN6_RP_UP_BUSY_AVG |
  2873. GEN6_RP_DOWN_IDLE_AVG);
  2874. break;
  2875. case BETWEEN:
  2876. /* Upclock if more than 90% busy over 13ms */
  2877. I915_WRITE(GEN6_RP_UP_EI, 10250);
  2878. I915_WRITE(GEN6_RP_UP_THRESHOLD, 9225);
  2879. /* Downclock if less than 75% busy over 32ms */
  2880. I915_WRITE(GEN6_RP_DOWN_EI, 25000);
  2881. I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 18750);
  2882. I915_WRITE(GEN6_RP_CONTROL,
  2883. GEN6_RP_MEDIA_TURBO |
  2884. GEN6_RP_MEDIA_HW_NORMAL_MODE |
  2885. GEN6_RP_MEDIA_IS_GFX |
  2886. GEN6_RP_ENABLE |
  2887. GEN6_RP_UP_BUSY_AVG |
  2888. GEN6_RP_DOWN_IDLE_AVG);
  2889. break;
  2890. case HIGH_POWER:
  2891. /* Upclock if more than 85% busy over 10ms */
  2892. I915_WRITE(GEN6_RP_UP_EI, 8000);
  2893. I915_WRITE(GEN6_RP_UP_THRESHOLD, 6800);
  2894. /* Downclock if less than 60% busy over 32ms */
  2895. I915_WRITE(GEN6_RP_DOWN_EI, 25000);
  2896. I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 15000);
  2897. I915_WRITE(GEN6_RP_CONTROL,
  2898. GEN6_RP_MEDIA_TURBO |
  2899. GEN6_RP_MEDIA_HW_NORMAL_MODE |
  2900. GEN6_RP_MEDIA_IS_GFX |
  2901. GEN6_RP_ENABLE |
  2902. GEN6_RP_UP_BUSY_AVG |
  2903. GEN6_RP_DOWN_IDLE_AVG);
  2904. break;
  2905. }
  2906. dev_priv->rps.power = new_power;
  2907. dev_priv->rps.last_adj = 0;
  2908. }
  2909. void gen6_set_rps(struct drm_device *dev, u8 val)
  2910. {
  2911. struct drm_i915_private *dev_priv = dev->dev_private;
  2912. u32 limits = gen6_rps_limits(dev_priv, &val);
  2913. WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
  2914. WARN_ON(val > dev_priv->rps.max_delay);
  2915. WARN_ON(val < dev_priv->rps.min_delay);
  2916. if (val == dev_priv->rps.cur_delay)
  2917. return;
  2918. gen6_set_rps_thresholds(dev_priv, val);
  2919. if (IS_HASWELL(dev))
  2920. I915_WRITE(GEN6_RPNSWREQ,
  2921. HSW_FREQUENCY(val));
  2922. else
  2923. I915_WRITE(GEN6_RPNSWREQ,
  2924. GEN6_FREQUENCY(val) |
  2925. GEN6_OFFSET(0) |
  2926. GEN6_AGGRESSIVE_TURBO);
  2927. /* Make sure we continue to get interrupts
  2928. * until we hit the minimum or maximum frequencies.
  2929. */
  2930. I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, limits);
  2931. POSTING_READ(GEN6_RPNSWREQ);
  2932. dev_priv->rps.cur_delay = val;
  2933. trace_intel_gpu_freq_change(val * 50);
  2934. }
  2935. void gen6_rps_idle(struct drm_i915_private *dev_priv)
  2936. {
  2937. mutex_lock(&dev_priv->rps.hw_lock);
  2938. if (dev_priv->info->is_valleyview)
  2939. valleyview_set_rps(dev_priv->dev, dev_priv->rps.min_delay);
  2940. else
  2941. gen6_set_rps(dev_priv->dev, dev_priv->rps.min_delay);
  2942. dev_priv->rps.last_adj = 0;
  2943. mutex_unlock(&dev_priv->rps.hw_lock);
  2944. }
  2945. void gen6_rps_boost(struct drm_i915_private *dev_priv)
  2946. {
  2947. mutex_lock(&dev_priv->rps.hw_lock);
  2948. if (dev_priv->info->is_valleyview)
  2949. valleyview_set_rps(dev_priv->dev, dev_priv->rps.max_delay);
  2950. else
  2951. gen6_set_rps(dev_priv->dev, dev_priv->rps.max_delay);
  2952. dev_priv->rps.last_adj = 0;
  2953. mutex_unlock(&dev_priv->rps.hw_lock);
  2954. }
  2955. /*
  2956. * Wait until the previous freq change has completed,
  2957. * or the timeout elapsed, and then update our notion
  2958. * of the current GPU frequency.
  2959. */
  2960. static void vlv_update_rps_cur_delay(struct drm_i915_private *dev_priv)
  2961. {
  2962. u32 pval;
  2963. WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
  2964. if (wait_for(((pval = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS)) & GENFREQSTATUS) == 0, 10))
  2965. DRM_DEBUG_DRIVER("timed out waiting for Punit\n");
  2966. pval >>= 8;
  2967. if (pval != dev_priv->rps.cur_delay)
  2968. DRM_DEBUG_DRIVER("Punit overrode GPU freq: %d MHz (%u) requested, but got %d Mhz (%u)\n",
  2969. vlv_gpu_freq(dev_priv->mem_freq, dev_priv->rps.cur_delay),
  2970. dev_priv->rps.cur_delay,
  2971. vlv_gpu_freq(dev_priv->mem_freq, pval), pval);
  2972. dev_priv->rps.cur_delay = pval;
  2973. }
  2974. void valleyview_set_rps(struct drm_device *dev, u8 val)
  2975. {
  2976. struct drm_i915_private *dev_priv = dev->dev_private;
  2977. gen6_rps_limits(dev_priv, &val);
  2978. WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
  2979. WARN_ON(val > dev_priv->rps.max_delay);
  2980. WARN_ON(val < dev_priv->rps.min_delay);
  2981. vlv_update_rps_cur_delay(dev_priv);
  2982. DRM_DEBUG_DRIVER("GPU freq request from %d MHz (%u) to %d MHz (%u)\n",
  2983. vlv_gpu_freq(dev_priv->mem_freq,
  2984. dev_priv->rps.cur_delay),
  2985. dev_priv->rps.cur_delay,
  2986. vlv_gpu_freq(dev_priv->mem_freq, val), val);
  2987. if (val == dev_priv->rps.cur_delay)
  2988. return;
  2989. vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
  2990. dev_priv->rps.cur_delay = val;
  2991. trace_intel_gpu_freq_change(vlv_gpu_freq(dev_priv->mem_freq, val));
  2992. }
  2993. static void gen6_disable_rps_interrupts(struct drm_device *dev)
  2994. {
  2995. struct drm_i915_private *dev_priv = dev->dev_private;
  2996. I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
  2997. I915_WRITE(GEN6_PMIER, I915_READ(GEN6_PMIER) & ~GEN6_PM_RPS_EVENTS);
  2998. /* Complete PM interrupt masking here doesn't race with the rps work
  2999. * item again unmasking PM interrupts because that is using a different
  3000. * register (PMIMR) to mask PM interrupts. The only risk is in leaving
  3001. * stale bits in PMIIR and PMIMR which gen6_enable_rps will clean up. */
  3002. spin_lock_irq(&dev_priv->irq_lock);
  3003. dev_priv->rps.pm_iir = 0;
  3004. spin_unlock_irq(&dev_priv->irq_lock);
  3005. I915_WRITE(GEN6_PMIIR, GEN6_PM_RPS_EVENTS);
  3006. }
  3007. static void gen6_disable_rps(struct drm_device *dev)
  3008. {
  3009. struct drm_i915_private *dev_priv = dev->dev_private;
  3010. I915_WRITE(GEN6_RC_CONTROL, 0);
  3011. I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
  3012. gen6_disable_rps_interrupts(dev);
  3013. }
  3014. static void valleyview_disable_rps(struct drm_device *dev)
  3015. {
  3016. struct drm_i915_private *dev_priv = dev->dev_private;
  3017. I915_WRITE(GEN6_RC_CONTROL, 0);
  3018. gen6_disable_rps_interrupts(dev);
  3019. if (dev_priv->vlv_pctx) {
  3020. drm_gem_object_unreference(&dev_priv->vlv_pctx->base);
  3021. dev_priv->vlv_pctx = NULL;
  3022. }
  3023. }
  3024. int intel_enable_rc6(const struct drm_device *dev)
  3025. {
  3026. /* No RC6 before Ironlake */
  3027. if (INTEL_INFO(dev)->gen < 5)
  3028. return 0;
  3029. /* Respect the kernel parameter if it is set */
  3030. if (i915_enable_rc6 >= 0)
  3031. return i915_enable_rc6;
  3032. /* Disable RC6 on Ironlake */
  3033. if (INTEL_INFO(dev)->gen == 5)
  3034. return 0;
  3035. if (IS_HASWELL(dev)) {
  3036. DRM_DEBUG_DRIVER("Haswell: only RC6 available\n");
  3037. return INTEL_RC6_ENABLE;
  3038. }
  3039. /* snb/ivb have more than one rc6 state. */
  3040. if (INTEL_INFO(dev)->gen == 6) {
  3041. DRM_DEBUG_DRIVER("Sandybridge: deep RC6 disabled\n");
  3042. return INTEL_RC6_ENABLE;
  3043. }
  3044. DRM_DEBUG_DRIVER("RC6 and deep RC6 enabled\n");
  3045. return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
  3046. }
  3047. static void gen6_enable_rps_interrupts(struct drm_device *dev)
  3048. {
  3049. struct drm_i915_private *dev_priv = dev->dev_private;
  3050. u32 enabled_intrs;
  3051. spin_lock_irq(&dev_priv->irq_lock);
  3052. WARN_ON(dev_priv->rps.pm_iir);
  3053. snb_enable_pm_irq(dev_priv, GEN6_PM_RPS_EVENTS);
  3054. I915_WRITE(GEN6_PMIIR, GEN6_PM_RPS_EVENTS);
  3055. spin_unlock_irq(&dev_priv->irq_lock);
  3056. /* only unmask PM interrupts we need. Mask all others. */
  3057. enabled_intrs = GEN6_PM_RPS_EVENTS;
  3058. /* IVB and SNB hard hangs on looping batchbuffer
  3059. * if GEN6_PM_UP_EI_EXPIRED is masked.
  3060. */
  3061. if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
  3062. enabled_intrs |= GEN6_PM_RP_UP_EI_EXPIRED;
  3063. I915_WRITE(GEN6_PMINTRMSK, ~enabled_intrs);
  3064. }
  3065. static void gen6_enable_rps(struct drm_device *dev)
  3066. {
  3067. struct drm_i915_private *dev_priv = dev->dev_private;
  3068. struct intel_ring_buffer *ring;
  3069. u32 rp_state_cap;
  3070. u32 gt_perf_status;
  3071. u32 rc6vids, pcu_mbox, rc6_mask = 0;
  3072. u32 gtfifodbg;
  3073. int rc6_mode;
  3074. int i, ret;
  3075. WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
  3076. /* Here begins a magic sequence of register writes to enable
  3077. * auto-downclocking.
  3078. *
  3079. * Perhaps there might be some value in exposing these to
  3080. * userspace...
  3081. */
  3082. I915_WRITE(GEN6_RC_STATE, 0);
  3083. /* Clear the DBG now so we don't confuse earlier errors */
  3084. if ((gtfifodbg = I915_READ(GTFIFODBG))) {
  3085. DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
  3086. I915_WRITE(GTFIFODBG, gtfifodbg);
  3087. }
  3088. gen6_gt_force_wake_get(dev_priv);
  3089. rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
  3090. gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);
  3091. /* In units of 50MHz */
  3092. dev_priv->rps.hw_max = dev_priv->rps.max_delay = rp_state_cap & 0xff;
  3093. dev_priv->rps.min_delay = (rp_state_cap >> 16) & 0xff;
  3094. dev_priv->rps.rp1_delay = (rp_state_cap >> 8) & 0xff;
  3095. dev_priv->rps.rp0_delay = (rp_state_cap >> 0) & 0xff;
  3096. dev_priv->rps.rpe_delay = dev_priv->rps.rp1_delay;
  3097. dev_priv->rps.cur_delay = 0;
  3098. /* disable the counters and set deterministic thresholds */
  3099. I915_WRITE(GEN6_RC_CONTROL, 0);
  3100. I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
  3101. I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
  3102. I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
  3103. I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
  3104. I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
  3105. for_each_ring(ring, dev_priv, i)
  3106. I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
  3107. I915_WRITE(GEN6_RC_SLEEP, 0);
  3108. I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
  3109. if (INTEL_INFO(dev)->gen <= 6 || IS_IVYBRIDGE(dev))
  3110. I915_WRITE(GEN6_RC6_THRESHOLD, 125000);
  3111. else
  3112. I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
  3113. I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
  3114. I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */
  3115. /* Check if we are enabling RC6 */
  3116. rc6_mode = intel_enable_rc6(dev_priv->dev);
  3117. if (rc6_mode & INTEL_RC6_ENABLE)
  3118. rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;
  3119. /* We don't use those on Haswell */
  3120. if (!IS_HASWELL(dev)) {
  3121. if (rc6_mode & INTEL_RC6p_ENABLE)
  3122. rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
  3123. if (rc6_mode & INTEL_RC6pp_ENABLE)
  3124. rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
  3125. }
  3126. DRM_INFO("Enabling RC6 states: RC6 %s, RC6p %s, RC6pp %s\n",
  3127. (rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ? "on" : "off",
  3128. (rc6_mask & GEN6_RC_CTL_RC6p_ENABLE) ? "on" : "off",
  3129. (rc6_mask & GEN6_RC_CTL_RC6pp_ENABLE) ? "on" : "off");
  3130. I915_WRITE(GEN6_RC_CONTROL,
  3131. rc6_mask |
  3132. GEN6_RC_CTL_EI_MODE(1) |
  3133. GEN6_RC_CTL_HW_ENABLE);
  3134. /* Power down if completely idle for over 50ms */
  3135. I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 50000);
  3136. I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
  3137. ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_MIN_FREQ_TABLE, 0);
  3138. if (!ret) {
  3139. pcu_mbox = 0;
  3140. ret = sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &pcu_mbox);
  3141. if (!ret && (pcu_mbox & (1<<31))) { /* OC supported */
  3142. DRM_DEBUG_DRIVER("Overclocking supported. Max: %dMHz, Overclock max: %dMHz\n",
  3143. (dev_priv->rps.max_delay & 0xff) * 50,
  3144. (pcu_mbox & 0xff) * 50);
  3145. dev_priv->rps.hw_max = pcu_mbox & 0xff;
  3146. }
  3147. } else {
  3148. DRM_DEBUG_DRIVER("Failed to set the min frequency\n");
  3149. }
  3150. dev_priv->rps.power = HIGH_POWER; /* force a reset */
  3151. gen6_set_rps(dev_priv->dev, dev_priv->rps.min_delay);
  3152. gen6_enable_rps_interrupts(dev);
  3153. rc6vids = 0;
  3154. ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
  3155. if (IS_GEN6(dev) && ret) {
  3156. DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
  3157. } else if (IS_GEN6(dev) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
  3158. DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
  3159. GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
  3160. rc6vids &= 0xffff00;
  3161. rc6vids |= GEN6_ENCODE_RC6_VID(450);
  3162. ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
  3163. if (ret)
  3164. DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
  3165. }
  3166. gen6_gt_force_wake_put(dev_priv);
  3167. }
  3168. void gen6_update_ring_freq(struct drm_device *dev)
  3169. {
  3170. struct drm_i915_private *dev_priv = dev->dev_private;
  3171. int min_freq = 15;
  3172. unsigned int gpu_freq;
  3173. unsigned int max_ia_freq, min_ring_freq;
  3174. int scaling_factor = 180;
  3175. struct cpufreq_policy *policy;
  3176. WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
  3177. policy = cpufreq_cpu_get(0);
  3178. if (policy) {
  3179. max_ia_freq = policy->cpuinfo.max_freq;
  3180. cpufreq_cpu_put(policy);
  3181. } else {
  3182. /*
  3183. * Default to measured freq if none found, PCU will ensure we
  3184. * don't go over
  3185. */
  3186. max_ia_freq = tsc_khz;
  3187. }
  3188. /* Convert from kHz to MHz */
  3189. max_ia_freq /= 1000;
  3190. min_ring_freq = I915_READ(MCHBAR_MIRROR_BASE_SNB + DCLK) & 0xf;
  3191. /* convert DDR frequency from units of 266.6MHz to bandwidth */
  3192. min_ring_freq = mult_frac(min_ring_freq, 8, 3);
  3193. /*
  3194. * For each potential GPU frequency, load a ring frequency we'd like
  3195. * to use for memory access. We do this by specifying the IA frequency
  3196. * the PCU should use as a reference to determine the ring frequency.
  3197. */
  3198. for (gpu_freq = dev_priv->rps.max_delay; gpu_freq >= dev_priv->rps.min_delay;
  3199. gpu_freq--) {
  3200. int diff = dev_priv->rps.max_delay - gpu_freq;
  3201. unsigned int ia_freq = 0, ring_freq = 0;
  3202. if (IS_HASWELL(dev)) {
  3203. ring_freq = mult_frac(gpu_freq, 5, 4);
  3204. ring_freq = max(min_ring_freq, ring_freq);
  3205. /* leave ia_freq as the default, chosen by cpufreq */
  3206. } else {
  3207. /* On older processors, there is no separate ring
  3208. * clock domain, so in order to boost the bandwidth
  3209. * of the ring, we need to upclock the CPU (ia_freq).
  3210. *
  3211. * For GPU frequencies less than 750MHz,
  3212. * just use the lowest ring freq.
  3213. */
  3214. if (gpu_freq < min_freq)
  3215. ia_freq = 800;
  3216. else
  3217. ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
  3218. ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
  3219. }
  3220. sandybridge_pcode_write(dev_priv,
  3221. GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
  3222. ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
  3223. ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
  3224. gpu_freq);
  3225. }
  3226. }
  3227. int valleyview_rps_max_freq(struct drm_i915_private *dev_priv)
  3228. {
  3229. u32 val, rp0;
  3230. val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
  3231. rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
  3232. /* Clamp to max */
  3233. rp0 = min_t(u32, rp0, 0xea);
  3234. return rp0;
  3235. }
  3236. static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv)
  3237. {
  3238. u32 val, rpe;
  3239. val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
  3240. rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
  3241. val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
  3242. rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;
  3243. return rpe;
  3244. }
  3245. int valleyview_rps_min_freq(struct drm_i915_private *dev_priv)
  3246. {
  3247. return vlv_punit_read(dev_priv, PUNIT_REG_GPU_LFM) & 0xff;
  3248. }
  3249. static void valleyview_setup_pctx(struct drm_device *dev)
  3250. {
  3251. struct drm_i915_private *dev_priv = dev->dev_private;
  3252. struct drm_i915_gem_object *pctx;
  3253. unsigned long pctx_paddr;
  3254. u32 pcbr;
  3255. int pctx_size = 24*1024;
  3256. pcbr = I915_READ(VLV_PCBR);
  3257. if (pcbr) {
  3258. /* BIOS set it up already, grab the pre-alloc'd space */
  3259. int pcbr_offset;
  3260. pcbr_offset = (pcbr & (~4095)) - dev_priv->mm.stolen_base;
  3261. pctx = i915_gem_object_create_stolen_for_preallocated(dev_priv->dev,
  3262. pcbr_offset,
  3263. I915_GTT_OFFSET_NONE,
  3264. pctx_size);
  3265. goto out;
  3266. }
  3267. /*
  3268. * From the Gunit register HAS:
  3269. * The Gfx driver is expected to program this register and ensure
  3270. * proper allocation within Gfx stolen memory. For example, this
  3271. * register should be programmed such than the PCBR range does not
  3272. * overlap with other ranges, such as the frame buffer, protected
  3273. * memory, or any other relevant ranges.
  3274. */
  3275. pctx = i915_gem_object_create_stolen(dev, pctx_size);
  3276. if (!pctx) {
  3277. DRM_DEBUG("not enough stolen space for PCTX, disabling\n");
  3278. return;
  3279. }
  3280. pctx_paddr = dev_priv->mm.stolen_base + pctx->stolen->start;
  3281. I915_WRITE(VLV_PCBR, pctx_paddr);
  3282. out:
  3283. dev_priv->vlv_pctx = pctx;
  3284. }
  3285. static void valleyview_enable_rps(struct drm_device *dev)
  3286. {
  3287. struct drm_i915_private *dev_priv = dev->dev_private;
  3288. struct intel_ring_buffer *ring;
  3289. u32 gtfifodbg, val, rc6_mode = 0;
  3290. int i;
  3291. WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
  3292. if ((gtfifodbg = I915_READ(GTFIFODBG))) {
  3293. DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
  3294. gtfifodbg);
  3295. I915_WRITE(GTFIFODBG, gtfifodbg);
  3296. }
  3297. valleyview_setup_pctx(dev);
  3298. gen6_gt_force_wake_get(dev_priv);
  3299. I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
  3300. I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
  3301. I915_WRITE(GEN6_RP_UP_EI, 66000);
  3302. I915_WRITE(GEN6_RP_DOWN_EI, 350000);
  3303. I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
  3304. I915_WRITE(GEN6_RP_CONTROL,
  3305. GEN6_RP_MEDIA_TURBO |
  3306. GEN6_RP_MEDIA_HW_NORMAL_MODE |
  3307. GEN6_RP_MEDIA_IS_GFX |
  3308. GEN6_RP_ENABLE |
  3309. GEN6_RP_UP_BUSY_AVG |
  3310. GEN6_RP_DOWN_IDLE_CONT);
  3311. I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000);
  3312. I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
  3313. I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
  3314. for_each_ring(ring, dev_priv, i)
  3315. I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
  3316. I915_WRITE(GEN6_RC6_THRESHOLD, 0xc350);
  3317. /* allows RC6 residency counter to work */
  3318. I915_WRITE(VLV_COUNTER_CONTROL,
  3319. _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
  3320. VLV_MEDIA_RC6_COUNT_EN |
  3321. VLV_RENDER_RC6_COUNT_EN));
  3322. if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
  3323. rc6_mode = GEN7_RC_CTL_TO_MODE;
  3324. I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
  3325. val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
  3326. switch ((val >> 6) & 3) {
  3327. case 0:
  3328. case 1:
  3329. dev_priv->mem_freq = 800;
  3330. break;
  3331. case 2:
  3332. dev_priv->mem_freq = 1066;
  3333. break;
  3334. case 3:
  3335. dev_priv->mem_freq = 1333;
  3336. break;
  3337. }
  3338. DRM_DEBUG_DRIVER("DDR speed: %d MHz", dev_priv->mem_freq);
  3339. DRM_DEBUG_DRIVER("GPLL enabled? %s\n", val & 0x10 ? "yes" : "no");
  3340. DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
  3341. dev_priv->rps.cur_delay = (val >> 8) & 0xff;
  3342. DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
  3343. vlv_gpu_freq(dev_priv->mem_freq,
  3344. dev_priv->rps.cur_delay),
  3345. dev_priv->rps.cur_delay);
  3346. dev_priv->rps.max_delay = valleyview_rps_max_freq(dev_priv);
  3347. dev_priv->rps.hw_max = dev_priv->rps.max_delay;
  3348. DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
  3349. vlv_gpu_freq(dev_priv->mem_freq,
  3350. dev_priv->rps.max_delay),
  3351. dev_priv->rps.max_delay);
  3352. dev_priv->rps.rpe_delay = valleyview_rps_rpe_freq(dev_priv);
  3353. DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
  3354. vlv_gpu_freq(dev_priv->mem_freq,
  3355. dev_priv->rps.rpe_delay),
  3356. dev_priv->rps.rpe_delay);
  3357. dev_priv->rps.min_delay = valleyview_rps_min_freq(dev_priv);
  3358. DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
  3359. vlv_gpu_freq(dev_priv->mem_freq,
  3360. dev_priv->rps.min_delay),
  3361. dev_priv->rps.min_delay);
  3362. DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
  3363. vlv_gpu_freq(dev_priv->mem_freq,
  3364. dev_priv->rps.rpe_delay),
  3365. dev_priv->rps.rpe_delay);
  3366. valleyview_set_rps(dev_priv->dev, dev_priv->rps.rpe_delay);
  3367. gen6_enable_rps_interrupts(dev);
  3368. gen6_gt_force_wake_put(dev_priv);
  3369. }
  3370. void ironlake_teardown_rc6(struct drm_device *dev)
  3371. {
  3372. struct drm_i915_private *dev_priv = dev->dev_private;
  3373. if (dev_priv->ips.renderctx) {
  3374. i915_gem_object_unpin(dev_priv->ips.renderctx);
  3375. drm_gem_object_unreference(&dev_priv->ips.renderctx->base);
  3376. dev_priv->ips.renderctx = NULL;
  3377. }
  3378. if (dev_priv->ips.pwrctx) {
  3379. i915_gem_object_unpin(dev_priv->ips.pwrctx);
  3380. drm_gem_object_unreference(&dev_priv->ips.pwrctx->base);
  3381. dev_priv->ips.pwrctx = NULL;
  3382. }
  3383. }
  3384. static void ironlake_disable_rc6(struct drm_device *dev)
  3385. {
  3386. struct drm_i915_private *dev_priv = dev->dev_private;
  3387. if (I915_READ(PWRCTXA)) {
  3388. /* Wake the GPU, prevent RC6, then restore RSTDBYCTL */
  3389. I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) | RCX_SW_EXIT);
  3390. wait_for(((I915_READ(RSTDBYCTL) & RSX_STATUS_MASK) == RSX_STATUS_ON),
  3391. 50);
  3392. I915_WRITE(PWRCTXA, 0);
  3393. POSTING_READ(PWRCTXA);
  3394. I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
  3395. POSTING_READ(RSTDBYCTL);
  3396. }
  3397. }
  3398. static int ironlake_setup_rc6(struct drm_device *dev)
  3399. {
  3400. struct drm_i915_private *dev_priv = dev->dev_private;
  3401. if (dev_priv->ips.renderctx == NULL)
  3402. dev_priv->ips.renderctx = intel_alloc_context_page(dev);
  3403. if (!dev_priv->ips.renderctx)
  3404. return -ENOMEM;
  3405. if (dev_priv->ips.pwrctx == NULL)
  3406. dev_priv->ips.pwrctx = intel_alloc_context_page(dev);
  3407. if (!dev_priv->ips.pwrctx) {
  3408. ironlake_teardown_rc6(dev);
  3409. return -ENOMEM;
  3410. }
  3411. return 0;
  3412. }
  3413. static void ironlake_enable_rc6(struct drm_device *dev)
  3414. {
  3415. struct drm_i915_private *dev_priv = dev->dev_private;
  3416. struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
  3417. bool was_interruptible;
  3418. int ret;
  3419. /* rc6 disabled by default due to repeated reports of hanging during
  3420. * boot and resume.
  3421. */
  3422. if (!intel_enable_rc6(dev))
  3423. return;
  3424. WARN_ON(!mutex_is_locked(&dev->struct_mutex));
  3425. ret = ironlake_setup_rc6(dev);
  3426. if (ret)
  3427. return;
  3428. was_interruptible = dev_priv->mm.interruptible;
  3429. dev_priv->mm.interruptible = false;
  3430. /*
  3431. * GPU can automatically power down the render unit if given a page
  3432. * to save state.
  3433. */
  3434. ret = intel_ring_begin(ring, 6);
  3435. if (ret) {
  3436. ironlake_teardown_rc6(dev);
  3437. dev_priv->mm.interruptible = was_interruptible;
  3438. return;
  3439. }
  3440. intel_ring_emit(ring, MI_SUSPEND_FLUSH | MI_SUSPEND_FLUSH_EN);
  3441. intel_ring_emit(ring, MI_SET_CONTEXT);
  3442. intel_ring_emit(ring, i915_gem_obj_ggtt_offset(dev_priv->ips.renderctx) |
  3443. MI_MM_SPACE_GTT |
  3444. MI_SAVE_EXT_STATE_EN |
  3445. MI_RESTORE_EXT_STATE_EN |
  3446. MI_RESTORE_INHIBIT);
  3447. intel_ring_emit(ring, MI_SUSPEND_FLUSH);
  3448. intel_ring_emit(ring, MI_NOOP);
  3449. intel_ring_emit(ring, MI_FLUSH);
  3450. intel_ring_advance(ring);
  3451. /*
  3452. * Wait for the command parser to advance past MI_SET_CONTEXT. The HW
  3453. * does an implicit flush, combined with MI_FLUSH above, it should be
  3454. * safe to assume that renderctx is valid
  3455. */
  3456. ret = intel_ring_idle(ring);
  3457. dev_priv->mm.interruptible = was_interruptible;
  3458. if (ret) {
  3459. DRM_ERROR("failed to enable ironlake power savings\n");
  3460. ironlake_teardown_rc6(dev);
  3461. return;
  3462. }
  3463. I915_WRITE(PWRCTXA, i915_gem_obj_ggtt_offset(dev_priv->ips.pwrctx) | PWRCTX_EN);
  3464. I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
  3465. }
  3466. static unsigned long intel_pxfreq(u32 vidfreq)
  3467. {
  3468. unsigned long freq;
  3469. int div = (vidfreq & 0x3f0000) >> 16;
  3470. int post = (vidfreq & 0x3000) >> 12;
  3471. int pre = (vidfreq & 0x7);
  3472. if (!pre)
  3473. return 0;
  3474. freq = ((div * 133333) / ((1<<post) * pre));
  3475. return freq;
  3476. }
  3477. static const struct cparams {
  3478. u16 i;
  3479. u16 t;
  3480. u16 m;
  3481. u16 c;
  3482. } cparams[] = {
  3483. { 1, 1333, 301, 28664 },
  3484. { 1, 1066, 294, 24460 },
  3485. { 1, 800, 294, 25192 },
  3486. { 0, 1333, 276, 27605 },
  3487. { 0, 1066, 276, 27605 },
  3488. { 0, 800, 231, 23784 },
  3489. };
  3490. static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
  3491. {
  3492. u64 total_count, diff, ret;
  3493. u32 count1, count2, count3, m = 0, c = 0;
  3494. unsigned long now = jiffies_to_msecs(jiffies), diff1;
  3495. int i;
  3496. assert_spin_locked(&mchdev_lock);
  3497. diff1 = now - dev_priv->ips.last_time1;
  3498. /* Prevent division-by-zero if we are asking too fast.
  3499. * Also, we don't get interesting results if we are polling
  3500. * faster than once in 10ms, so just return the saved value
  3501. * in such cases.
  3502. */
  3503. if (diff1 <= 10)
  3504. return dev_priv->ips.chipset_power;
  3505. count1 = I915_READ(DMIEC);
  3506. count2 = I915_READ(DDREC);
  3507. count3 = I915_READ(CSIEC);
  3508. total_count = count1 + count2 + count3;
  3509. /* FIXME: handle per-counter overflow */
  3510. if (total_count < dev_priv->ips.last_count1) {
  3511. diff = ~0UL - dev_priv->ips.last_count1;
  3512. diff += total_count;
  3513. } else {
  3514. diff = total_count - dev_priv->ips.last_count1;
  3515. }
  3516. for (i = 0; i < ARRAY_SIZE(cparams); i++) {
  3517. if (cparams[i].i == dev_priv->ips.c_m &&
  3518. cparams[i].t == dev_priv->ips.r_t) {
  3519. m = cparams[i].m;
  3520. c = cparams[i].c;
  3521. break;
  3522. }
  3523. }
  3524. diff = div_u64(diff, diff1);
  3525. ret = ((m * diff) + c);
  3526. ret = div_u64(ret, 10);
  3527. dev_priv->ips.last_count1 = total_count;
  3528. dev_priv->ips.last_time1 = now;
  3529. dev_priv->ips.chipset_power = ret;
  3530. return ret;
  3531. }
  3532. unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
  3533. {
  3534. unsigned long val;
  3535. if (dev_priv->info->gen != 5)
  3536. return 0;
  3537. spin_lock_irq(&mchdev_lock);
  3538. val = __i915_chipset_val(dev_priv);
  3539. spin_unlock_irq(&mchdev_lock);
  3540. return val;
  3541. }
  3542. unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
  3543. {
  3544. unsigned long m, x, b;
  3545. u32 tsfs;
  3546. tsfs = I915_READ(TSFS);
  3547. m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
  3548. x = I915_READ8(TR1);
  3549. b = tsfs & TSFS_INTR_MASK;
  3550. return ((m * x) / 127) - b;
  3551. }
  3552. static u16 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
  3553. {
  3554. static const struct v_table {
  3555. u16 vd; /* in .1 mil */
  3556. u16 vm; /* in .1 mil */
  3557. } v_table[] = {
  3558. { 0, 0, },
  3559. { 375, 0, },
  3560. { 500, 0, },
  3561. { 625, 0, },
  3562. { 750, 0, },
  3563. { 875, 0, },
  3564. { 1000, 0, },
  3565. { 1125, 0, },
  3566. { 4125, 3000, },
  3567. { 4125, 3000, },
  3568. { 4125, 3000, },
  3569. { 4125, 3000, },
  3570. { 4125, 3000, },
  3571. { 4125, 3000, },
  3572. { 4125, 3000, },
  3573. { 4125, 3000, },
  3574. { 4125, 3000, },
  3575. { 4125, 3000, },
  3576. { 4125, 3000, },
  3577. { 4125, 3000, },
  3578. { 4125, 3000, },
  3579. { 4125, 3000, },
  3580. { 4125, 3000, },
  3581. { 4125, 3000, },
  3582. { 4125, 3000, },
  3583. { 4125, 3000, },
  3584. { 4125, 3000, },
  3585. { 4125, 3000, },
  3586. { 4125, 3000, },
  3587. { 4125, 3000, },
  3588. { 4125, 3000, },
  3589. { 4125, 3000, },
  3590. { 4250, 3125, },
  3591. { 4375, 3250, },
  3592. { 4500, 3375, },
  3593. { 4625, 3500, },
  3594. { 4750, 3625, },
  3595. { 4875, 3750, },
  3596. { 5000, 3875, },
  3597. { 5125, 4000, },
  3598. { 5250, 4125, },
  3599. { 5375, 4250, },
  3600. { 5500, 4375, },
  3601. { 5625, 4500, },
  3602. { 5750, 4625, },
  3603. { 5875, 4750, },
  3604. { 6000, 4875, },
  3605. { 6125, 5000, },
  3606. { 6250, 5125, },
  3607. { 6375, 5250, },
  3608. { 6500, 5375, },
  3609. { 6625, 5500, },
  3610. { 6750, 5625, },
  3611. { 6875, 5750, },
  3612. { 7000, 5875, },
  3613. { 7125, 6000, },
  3614. { 7250, 6125, },
  3615. { 7375, 6250, },
  3616. { 7500, 6375, },
  3617. { 7625, 6500, },
  3618. { 7750, 6625, },
  3619. { 7875, 6750, },
  3620. { 8000, 6875, },
  3621. { 8125, 7000, },
  3622. { 8250, 7125, },
  3623. { 8375, 7250, },
  3624. { 8500, 7375, },
  3625. { 8625, 7500, },
  3626. { 8750, 7625, },
  3627. { 8875, 7750, },
  3628. { 9000, 7875, },
  3629. { 9125, 8000, },
  3630. { 9250, 8125, },
  3631. { 9375, 8250, },
  3632. { 9500, 8375, },
  3633. { 9625, 8500, },
  3634. { 9750, 8625, },
  3635. { 9875, 8750, },
  3636. { 10000, 8875, },
  3637. { 10125, 9000, },
  3638. { 10250, 9125, },
  3639. { 10375, 9250, },
  3640. { 10500, 9375, },
  3641. { 10625, 9500, },
  3642. { 10750, 9625, },
  3643. { 10875, 9750, },
  3644. { 11000, 9875, },
  3645. { 11125, 10000, },
  3646. { 11250, 10125, },
  3647. { 11375, 10250, },
  3648. { 11500, 10375, },
  3649. { 11625, 10500, },
  3650. { 11750, 10625, },
  3651. { 11875, 10750, },
  3652. { 12000, 10875, },
  3653. { 12125, 11000, },
  3654. { 12250, 11125, },
  3655. { 12375, 11250, },
  3656. { 12500, 11375, },
  3657. { 12625, 11500, },
  3658. { 12750, 11625, },
  3659. { 12875, 11750, },
  3660. { 13000, 11875, },
  3661. { 13125, 12000, },
  3662. { 13250, 12125, },
  3663. { 13375, 12250, },
  3664. { 13500, 12375, },
  3665. { 13625, 12500, },
  3666. { 13750, 12625, },
  3667. { 13875, 12750, },
  3668. { 14000, 12875, },
  3669. { 14125, 13000, },
  3670. { 14250, 13125, },
  3671. { 14375, 13250, },
  3672. { 14500, 13375, },
  3673. { 14625, 13500, },
  3674. { 14750, 13625, },
  3675. { 14875, 13750, },
  3676. { 15000, 13875, },
  3677. { 15125, 14000, },
  3678. { 15250, 14125, },
  3679. { 15375, 14250, },
  3680. { 15500, 14375, },
  3681. { 15625, 14500, },
  3682. { 15750, 14625, },
  3683. { 15875, 14750, },
  3684. { 16000, 14875, },
  3685. { 16125, 15000, },
  3686. };
  3687. if (dev_priv->info->is_mobile)
  3688. return v_table[pxvid].vm;
  3689. else
  3690. return v_table[pxvid].vd;
  3691. }
  3692. static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
  3693. {
  3694. struct timespec now, diff1;
  3695. u64 diff;
  3696. unsigned long diffms;
  3697. u32 count;
  3698. assert_spin_locked(&mchdev_lock);
  3699. getrawmonotonic(&now);
  3700. diff1 = timespec_sub(now, dev_priv->ips.last_time2);
  3701. /* Don't divide by 0 */
  3702. diffms = diff1.tv_sec * 1000 + diff1.tv_nsec / 1000000;
  3703. if (!diffms)
  3704. return;
  3705. count = I915_READ(GFXEC);
  3706. if (count < dev_priv->ips.last_count2) {
  3707. diff = ~0UL - dev_priv->ips.last_count2;
  3708. diff += count;
  3709. } else {
  3710. diff = count - dev_priv->ips.last_count2;
  3711. }
  3712. dev_priv->ips.last_count2 = count;
  3713. dev_priv->ips.last_time2 = now;
  3714. /* More magic constants... */
  3715. diff = diff * 1181;
  3716. diff = div_u64(diff, diffms * 10);
  3717. dev_priv->ips.gfx_power = diff;
  3718. }
  3719. void i915_update_gfx_val(struct drm_i915_private *dev_priv)
  3720. {
  3721. if (dev_priv->info->gen != 5)
  3722. return;
  3723. spin_lock_irq(&mchdev_lock);
  3724. __i915_update_gfx_val(dev_priv);
  3725. spin_unlock_irq(&mchdev_lock);
  3726. }
  3727. static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
  3728. {
  3729. unsigned long t, corr, state1, corr2, state2;
  3730. u32 pxvid, ext_v;
  3731. assert_spin_locked(&mchdev_lock);
  3732. pxvid = I915_READ(PXVFREQ_BASE + (dev_priv->rps.cur_delay * 4));
  3733. pxvid = (pxvid >> 24) & 0x7f;
  3734. ext_v = pvid_to_extvid(dev_priv, pxvid);
  3735. state1 = ext_v;
  3736. t = i915_mch_val(dev_priv);
  3737. /* Revel in the empirically derived constants */
  3738. /* Correction factor in 1/100000 units */
  3739. if (t > 80)
  3740. corr = ((t * 2349) + 135940);
  3741. else if (t >= 50)
  3742. corr = ((t * 964) + 29317);
  3743. else /* < 50 */
  3744. corr = ((t * 301) + 1004);
  3745. corr = corr * ((150142 * state1) / 10000 - 78642);
  3746. corr /= 100000;
  3747. corr2 = (corr * dev_priv->ips.corr);
  3748. state2 = (corr2 * state1) / 10000;
  3749. state2 /= 100; /* convert to mW */
  3750. __i915_update_gfx_val(dev_priv);
  3751. return dev_priv->ips.gfx_power + state2;
  3752. }
  3753. unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
  3754. {
  3755. unsigned long val;
  3756. if (dev_priv->info->gen != 5)
  3757. return 0;
  3758. spin_lock_irq(&mchdev_lock);
  3759. val = __i915_gfx_val(dev_priv);
  3760. spin_unlock_irq(&mchdev_lock);
  3761. return val;
  3762. }
  3763. /**
  3764. * i915_read_mch_val - return value for IPS use
  3765. *
  3766. * Calculate and return a value for the IPS driver to use when deciding whether
  3767. * we have thermal and power headroom to increase CPU or GPU power budget.
  3768. */
  3769. unsigned long i915_read_mch_val(void)
  3770. {
  3771. struct drm_i915_private *dev_priv;
  3772. unsigned long chipset_val, graphics_val, ret = 0;
  3773. spin_lock_irq(&mchdev_lock);
  3774. if (!i915_mch_dev)
  3775. goto out_unlock;
  3776. dev_priv = i915_mch_dev;
  3777. chipset_val = __i915_chipset_val(dev_priv);
  3778. graphics_val = __i915_gfx_val(dev_priv);
  3779. ret = chipset_val + graphics_val;
  3780. out_unlock:
  3781. spin_unlock_irq(&mchdev_lock);
  3782. return ret;
  3783. }
  3784. EXPORT_SYMBOL_GPL(i915_read_mch_val);
  3785. /**
  3786. * i915_gpu_raise - raise GPU frequency limit
  3787. *
  3788. * Raise the limit; IPS indicates we have thermal headroom.
  3789. */
  3790. bool i915_gpu_raise(void)
  3791. {
  3792. struct drm_i915_private *dev_priv;
  3793. bool ret = true;
  3794. spin_lock_irq(&mchdev_lock);
  3795. if (!i915_mch_dev) {
  3796. ret = false;
  3797. goto out_unlock;
  3798. }
  3799. dev_priv = i915_mch_dev;
  3800. if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
  3801. dev_priv->ips.max_delay--;
  3802. out_unlock:
  3803. spin_unlock_irq(&mchdev_lock);
  3804. return ret;
  3805. }
  3806. EXPORT_SYMBOL_GPL(i915_gpu_raise);
  3807. /**
  3808. * i915_gpu_lower - lower GPU frequency limit
  3809. *
  3810. * IPS indicates we're close to a thermal limit, so throttle back the GPU
  3811. * frequency maximum.
  3812. */
  3813. bool i915_gpu_lower(void)
  3814. {
  3815. struct drm_i915_private *dev_priv;
  3816. bool ret = true;
  3817. spin_lock_irq(&mchdev_lock);
  3818. if (!i915_mch_dev) {
  3819. ret = false;
  3820. goto out_unlock;
  3821. }
  3822. dev_priv = i915_mch_dev;
  3823. if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
  3824. dev_priv->ips.max_delay++;
  3825. out_unlock:
  3826. spin_unlock_irq(&mchdev_lock);
  3827. return ret;
  3828. }
  3829. EXPORT_SYMBOL_GPL(i915_gpu_lower);
  3830. /**
  3831. * i915_gpu_busy - indicate GPU business to IPS
  3832. *
  3833. * Tell the IPS driver whether or not the GPU is busy.
  3834. */
  3835. bool i915_gpu_busy(void)
  3836. {
  3837. struct drm_i915_private *dev_priv;
  3838. struct intel_ring_buffer *ring;
  3839. bool ret = false;
  3840. int i;
  3841. spin_lock_irq(&mchdev_lock);
  3842. if (!i915_mch_dev)
  3843. goto out_unlock;
  3844. dev_priv = i915_mch_dev;
  3845. for_each_ring(ring, dev_priv, i)
  3846. ret |= !list_empty(&ring->request_list);
  3847. out_unlock:
  3848. spin_unlock_irq(&mchdev_lock);
  3849. return ret;
  3850. }
  3851. EXPORT_SYMBOL_GPL(i915_gpu_busy);
  3852. /**
  3853. * i915_gpu_turbo_disable - disable graphics turbo
  3854. *
  3855. * Disable graphics turbo by resetting the max frequency and setting the
  3856. * current frequency to the default.
  3857. */
  3858. bool i915_gpu_turbo_disable(void)
  3859. {
  3860. struct drm_i915_private *dev_priv;
  3861. bool ret = true;
  3862. spin_lock_irq(&mchdev_lock);
  3863. if (!i915_mch_dev) {
  3864. ret = false;
  3865. goto out_unlock;
  3866. }
  3867. dev_priv = i915_mch_dev;
  3868. dev_priv->ips.max_delay = dev_priv->ips.fstart;
  3869. if (!ironlake_set_drps(dev_priv->dev, dev_priv->ips.fstart))
  3870. ret = false;
  3871. out_unlock:
  3872. spin_unlock_irq(&mchdev_lock);
  3873. return ret;
  3874. }
  3875. EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);
  3876. /**
  3877. * Tells the intel_ips driver that the i915 driver is now loaded, if
  3878. * IPS got loaded first.
  3879. *
  3880. * This awkward dance is so that neither module has to depend on the
  3881. * other in order for IPS to do the appropriate communication of
  3882. * GPU turbo limits to i915.
  3883. */
  3884. static void
  3885. ips_ping_for_i915_load(void)
  3886. {
  3887. void (*link)(void);
  3888. link = symbol_get(ips_link_to_i915_driver);
  3889. if (link) {
  3890. link();
  3891. symbol_put(ips_link_to_i915_driver);
  3892. }
  3893. }
  3894. void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
  3895. {
  3896. /* We only register the i915 ips part with intel-ips once everything is
  3897. * set up, to avoid intel-ips sneaking in and reading bogus values. */
  3898. spin_lock_irq(&mchdev_lock);
  3899. i915_mch_dev = dev_priv;
  3900. spin_unlock_irq(&mchdev_lock);
  3901. ips_ping_for_i915_load();
  3902. }
  3903. void intel_gpu_ips_teardown(void)
  3904. {
  3905. spin_lock_irq(&mchdev_lock);
  3906. i915_mch_dev = NULL;
  3907. spin_unlock_irq(&mchdev_lock);
  3908. }
  3909. static void intel_init_emon(struct drm_device *dev)
  3910. {
  3911. struct drm_i915_private *dev_priv = dev->dev_private;
  3912. u32 lcfuse;
  3913. u8 pxw[16];
  3914. int i;
  3915. /* Disable to program */
  3916. I915_WRITE(ECR, 0);
  3917. POSTING_READ(ECR);
  3918. /* Program energy weights for various events */
  3919. I915_WRITE(SDEW, 0x15040d00);
  3920. I915_WRITE(CSIEW0, 0x007f0000);
  3921. I915_WRITE(CSIEW1, 0x1e220004);
  3922. I915_WRITE(CSIEW2, 0x04000004);
  3923. for (i = 0; i < 5; i++)
  3924. I915_WRITE(PEW + (i * 4), 0);
  3925. for (i = 0; i < 3; i++)
  3926. I915_WRITE(DEW + (i * 4), 0);
  3927. /* Program P-state weights to account for frequency power adjustment */
  3928. for (i = 0; i < 16; i++) {
  3929. u32 pxvidfreq = I915_READ(PXVFREQ_BASE + (i * 4));
  3930. unsigned long freq = intel_pxfreq(pxvidfreq);
  3931. unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
  3932. PXVFREQ_PX_SHIFT;
  3933. unsigned long val;
  3934. val = vid * vid;
  3935. val *= (freq / 1000);
  3936. val *= 255;
  3937. val /= (127*127*900);
  3938. if (val > 0xff)
  3939. DRM_ERROR("bad pxval: %ld\n", val);
  3940. pxw[i] = val;
  3941. }
  3942. /* Render standby states get 0 weight */
  3943. pxw[14] = 0;
  3944. pxw[15] = 0;
  3945. for (i = 0; i < 4; i++) {
  3946. u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
  3947. (pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
  3948. I915_WRITE(PXW + (i * 4), val);
  3949. }
  3950. /* Adjust magic regs to magic values (more experimental results) */
  3951. I915_WRITE(OGW0, 0);
  3952. I915_WRITE(OGW1, 0);
  3953. I915_WRITE(EG0, 0x00007f00);
  3954. I915_WRITE(EG1, 0x0000000e);
  3955. I915_WRITE(EG2, 0x000e0000);
  3956. I915_WRITE(EG3, 0x68000300);
  3957. I915_WRITE(EG4, 0x42000000);
  3958. I915_WRITE(EG5, 0x00140031);
  3959. I915_WRITE(EG6, 0);
  3960. I915_WRITE(EG7, 0);
  3961. for (i = 0; i < 8; i++)
  3962. I915_WRITE(PXWL + (i * 4), 0);
  3963. /* Enable PMON + select events */
  3964. I915_WRITE(ECR, 0x80000019);
  3965. lcfuse = I915_READ(LCFUSE02);
  3966. dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
  3967. }
  3968. void intel_disable_gt_powersave(struct drm_device *dev)
  3969. {
  3970. struct drm_i915_private *dev_priv = dev->dev_private;
  3971. /* Interrupts should be disabled already to avoid re-arming. */
  3972. WARN_ON(dev->irq_enabled);
  3973. if (IS_IRONLAKE_M(dev)) {
  3974. ironlake_disable_drps(dev);
  3975. ironlake_disable_rc6(dev);
  3976. } else if (INTEL_INFO(dev)->gen >= 6) {
  3977. cancel_delayed_work_sync(&dev_priv->rps.delayed_resume_work);
  3978. cancel_work_sync(&dev_priv->rps.work);
  3979. mutex_lock(&dev_priv->rps.hw_lock);
  3980. if (IS_VALLEYVIEW(dev))
  3981. valleyview_disable_rps(dev);
  3982. else
  3983. gen6_disable_rps(dev);
  3984. mutex_unlock(&dev_priv->rps.hw_lock);
  3985. }
  3986. }
  3987. static void intel_gen6_powersave_work(struct work_struct *work)
  3988. {
  3989. struct drm_i915_private *dev_priv =
  3990. container_of(work, struct drm_i915_private,
  3991. rps.delayed_resume_work.work);
  3992. struct drm_device *dev = dev_priv->dev;
  3993. mutex_lock(&dev_priv->rps.hw_lock);
  3994. if (IS_VALLEYVIEW(dev)) {
  3995. valleyview_enable_rps(dev);
  3996. } else {
  3997. gen6_enable_rps(dev);
  3998. gen6_update_ring_freq(dev);
  3999. }
  4000. mutex_unlock(&dev_priv->rps.hw_lock);
  4001. }
  4002. void intel_enable_gt_powersave(struct drm_device *dev)
  4003. {
  4004. struct drm_i915_private *dev_priv = dev->dev_private;
  4005. if (IS_IRONLAKE_M(dev)) {
  4006. ironlake_enable_drps(dev);
  4007. ironlake_enable_rc6(dev);
  4008. intel_init_emon(dev);
  4009. } else if (IS_GEN6(dev) || IS_GEN7(dev)) {
  4010. /*
  4011. * PCU communication is slow and this doesn't need to be
  4012. * done at any specific time, so do this out of our fast path
  4013. * to make resume and init faster.
  4014. */
  4015. schedule_delayed_work(&dev_priv->rps.delayed_resume_work,
  4016. round_jiffies_up_relative(HZ));
  4017. }
  4018. }
  4019. static void ibx_init_clock_gating(struct drm_device *dev)
  4020. {
  4021. struct drm_i915_private *dev_priv = dev->dev_private;
  4022. /*
  4023. * On Ibex Peak and Cougar Point, we need to disable clock
  4024. * gating for the panel power sequencer or it will fail to
  4025. * start up when no ports are active.
  4026. */
  4027. I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
  4028. }
  4029. static void g4x_disable_trickle_feed(struct drm_device *dev)
  4030. {
  4031. struct drm_i915_private *dev_priv = dev->dev_private;
  4032. int pipe;
  4033. for_each_pipe(pipe) {
  4034. I915_WRITE(DSPCNTR(pipe),
  4035. I915_READ(DSPCNTR(pipe)) |
  4036. DISPPLANE_TRICKLE_FEED_DISABLE);
  4037. intel_flush_primary_plane(dev_priv, pipe);
  4038. }
  4039. }
  4040. static void ironlake_init_clock_gating(struct drm_device *dev)
  4041. {
  4042. struct drm_i915_private *dev_priv = dev->dev_private;
  4043. uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
  4044. /*
  4045. * Required for FBC
  4046. * WaFbcDisableDpfcClockGating:ilk
  4047. */
  4048. dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
  4049. ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
  4050. ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
  4051. I915_WRITE(PCH_3DCGDIS0,
  4052. MARIUNIT_CLOCK_GATE_DISABLE |
  4053. SVSMUNIT_CLOCK_GATE_DISABLE);
  4054. I915_WRITE(PCH_3DCGDIS1,
  4055. VFMUNIT_CLOCK_GATE_DISABLE);
  4056. /*
  4057. * According to the spec the following bits should be set in
  4058. * order to enable memory self-refresh
  4059. * The bit 22/21 of 0x42004
  4060. * The bit 5 of 0x42020
  4061. * The bit 15 of 0x45000
  4062. */
  4063. I915_WRITE(ILK_DISPLAY_CHICKEN2,
  4064. (I915_READ(ILK_DISPLAY_CHICKEN2) |
  4065. ILK_DPARB_GATE | ILK_VSDPFD_FULL));
  4066. dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
  4067. I915_WRITE(DISP_ARB_CTL,
  4068. (I915_READ(DISP_ARB_CTL) |
  4069. DISP_FBC_WM_DIS));
  4070. I915_WRITE(WM3_LP_ILK, 0);
  4071. I915_WRITE(WM2_LP_ILK, 0);
  4072. I915_WRITE(WM1_LP_ILK, 0);
  4073. /*
  4074. * Based on the document from hardware guys the following bits
  4075. * should be set unconditionally in order to enable FBC.
  4076. * The bit 22 of 0x42000
  4077. * The bit 22 of 0x42004
  4078. * The bit 7,8,9 of 0x42020.
  4079. */
  4080. if (IS_IRONLAKE_M(dev)) {
  4081. /* WaFbcAsynchFlipDisableFbcQueue:ilk */
  4082. I915_WRITE(ILK_DISPLAY_CHICKEN1,
  4083. I915_READ(ILK_DISPLAY_CHICKEN1) |
  4084. ILK_FBCQ_DIS);
  4085. I915_WRITE(ILK_DISPLAY_CHICKEN2,
  4086. I915_READ(ILK_DISPLAY_CHICKEN2) |
  4087. ILK_DPARB_GATE);
  4088. }
  4089. I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
  4090. I915_WRITE(ILK_DISPLAY_CHICKEN2,
  4091. I915_READ(ILK_DISPLAY_CHICKEN2) |
  4092. ILK_ELPIN_409_SELECT);
  4093. I915_WRITE(_3D_CHICKEN2,
  4094. _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
  4095. _3D_CHICKEN2_WM_READ_PIPELINED);
  4096. /* WaDisableRenderCachePipelinedFlush:ilk */
  4097. I915_WRITE(CACHE_MODE_0,
  4098. _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
  4099. g4x_disable_trickle_feed(dev);
  4100. ibx_init_clock_gating(dev);
  4101. }
  4102. static void cpt_init_clock_gating(struct drm_device *dev)
  4103. {
  4104. struct drm_i915_private *dev_priv = dev->dev_private;
  4105. int pipe;
  4106. uint32_t val;
  4107. /*
  4108. * On Ibex Peak and Cougar Point, we need to disable clock
  4109. * gating for the panel power sequencer or it will fail to
  4110. * start up when no ports are active.
  4111. */
  4112. I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
  4113. I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
  4114. DPLS_EDP_PPS_FIX_DIS);
  4115. /* The below fixes the weird display corruption, a few pixels shifted
  4116. * downward, on (only) LVDS of some HP laptops with IVY.
  4117. */
  4118. for_each_pipe(pipe) {
  4119. val = I915_READ(TRANS_CHICKEN2(pipe));
  4120. val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
  4121. val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
  4122. if (dev_priv->vbt.fdi_rx_polarity_inverted)
  4123. val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
  4124. val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
  4125. val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
  4126. val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
  4127. I915_WRITE(TRANS_CHICKEN2(pipe), val);
  4128. }
  4129. /* WADP0ClockGatingDisable */
  4130. for_each_pipe(pipe) {
  4131. I915_WRITE(TRANS_CHICKEN1(pipe),
  4132. TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
  4133. }
  4134. }
  4135. static void gen6_check_mch_setup(struct drm_device *dev)
  4136. {
  4137. struct drm_i915_private *dev_priv = dev->dev_private;
  4138. uint32_t tmp;
  4139. tmp = I915_READ(MCH_SSKPD);
  4140. if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL) {
  4141. DRM_INFO("Wrong MCH_SSKPD value: 0x%08x\n", tmp);
  4142. DRM_INFO("This can cause pipe underruns and display issues.\n");
  4143. DRM_INFO("Please upgrade your BIOS to fix this.\n");
  4144. }
  4145. }
  4146. static void gen6_init_clock_gating(struct drm_device *dev)
  4147. {
  4148. struct drm_i915_private *dev_priv = dev->dev_private;
  4149. uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
  4150. I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
  4151. I915_WRITE(ILK_DISPLAY_CHICKEN2,
  4152. I915_READ(ILK_DISPLAY_CHICKEN2) |
  4153. ILK_ELPIN_409_SELECT);
  4154. /* WaDisableHiZPlanesWhenMSAAEnabled:snb */
  4155. I915_WRITE(_3D_CHICKEN,
  4156. _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));
  4157. /* WaSetupGtModeTdRowDispatch:snb */
  4158. if (IS_SNB_GT1(dev))
  4159. I915_WRITE(GEN6_GT_MODE,
  4160. _MASKED_BIT_ENABLE(GEN6_TD_FOUR_ROW_DISPATCH_DISABLE));
  4161. I915_WRITE(WM3_LP_ILK, 0);
  4162. I915_WRITE(WM2_LP_ILK, 0);
  4163. I915_WRITE(WM1_LP_ILK, 0);
  4164. I915_WRITE(CACHE_MODE_0,
  4165. _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
  4166. I915_WRITE(GEN6_UCGCTL1,
  4167. I915_READ(GEN6_UCGCTL1) |
  4168. GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
  4169. GEN6_CSUNIT_CLOCK_GATE_DISABLE);
  4170. /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
  4171. * gating disable must be set. Failure to set it results in
  4172. * flickering pixels due to Z write ordering failures after
  4173. * some amount of runtime in the Mesa "fire" demo, and Unigine
  4174. * Sanctuary and Tropics, and apparently anything else with
  4175. * alpha test or pixel discard.
  4176. *
  4177. * According to the spec, bit 11 (RCCUNIT) must also be set,
  4178. * but we didn't debug actual testcases to find it out.
  4179. *
  4180. * Also apply WaDisableVDSUnitClockGating:snb and
  4181. * WaDisableRCPBUnitClockGating:snb.
  4182. */
  4183. I915_WRITE(GEN6_UCGCTL2,
  4184. GEN7_VDSUNIT_CLOCK_GATE_DISABLE |
  4185. GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
  4186. GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
  4187. /* Bspec says we need to always set all mask bits. */
  4188. I915_WRITE(_3D_CHICKEN3, (0xFFFF << 16) |
  4189. _3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL);
  4190. /*
  4191. * According to the spec the following bits should be
  4192. * set in order to enable memory self-refresh and fbc:
  4193. * The bit21 and bit22 of 0x42000
  4194. * The bit21 and bit22 of 0x42004
  4195. * The bit5 and bit7 of 0x42020
  4196. * The bit14 of 0x70180
  4197. * The bit14 of 0x71180
  4198. *
  4199. * WaFbcAsynchFlipDisableFbcQueue:snb
  4200. */
  4201. I915_WRITE(ILK_DISPLAY_CHICKEN1,
  4202. I915_READ(ILK_DISPLAY_CHICKEN1) |
  4203. ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
  4204. I915_WRITE(ILK_DISPLAY_CHICKEN2,
  4205. I915_READ(ILK_DISPLAY_CHICKEN2) |
  4206. ILK_DPARB_GATE | ILK_VSDPFD_FULL);
  4207. I915_WRITE(ILK_DSPCLK_GATE_D,
  4208. I915_READ(ILK_DSPCLK_GATE_D) |
  4209. ILK_DPARBUNIT_CLOCK_GATE_ENABLE |
  4210. ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
  4211. g4x_disable_trickle_feed(dev);
  4212. /* The default value should be 0x200 according to docs, but the two
  4213. * platforms I checked have a 0 for this. (Maybe BIOS overrides?) */
  4214. I915_WRITE(GEN6_GT_MODE, _MASKED_BIT_DISABLE(0xffff));
  4215. I915_WRITE(GEN6_GT_MODE, _MASKED_BIT_ENABLE(GEN6_GT_MODE_HI));
  4216. cpt_init_clock_gating(dev);
  4217. gen6_check_mch_setup(dev);
  4218. }
  4219. static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
  4220. {
  4221. uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);
  4222. reg &= ~GEN7_FF_SCHED_MASK;
  4223. reg |= GEN7_FF_TS_SCHED_HW;
  4224. reg |= GEN7_FF_VS_SCHED_HW;
  4225. reg |= GEN7_FF_DS_SCHED_HW;
  4226. if (IS_HASWELL(dev_priv->dev))
  4227. reg &= ~GEN7_FF_VS_REF_CNT_FFME;
  4228. I915_WRITE(GEN7_FF_THREAD_MODE, reg);
  4229. }
  4230. static void lpt_init_clock_gating(struct drm_device *dev)
  4231. {
  4232. struct drm_i915_private *dev_priv = dev->dev_private;
  4233. /*
  4234. * TODO: this bit should only be enabled when really needed, then
  4235. * disabled when not needed anymore in order to save power.
  4236. */
  4237. if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE)
  4238. I915_WRITE(SOUTH_DSPCLK_GATE_D,
  4239. I915_READ(SOUTH_DSPCLK_GATE_D) |
  4240. PCH_LP_PARTITION_LEVEL_DISABLE);
  4241. /* WADPOClockGatingDisable:hsw */
  4242. I915_WRITE(_TRANSA_CHICKEN1,
  4243. I915_READ(_TRANSA_CHICKEN1) |
  4244. TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
  4245. }
  4246. static void lpt_suspend_hw(struct drm_device *dev)
  4247. {
  4248. struct drm_i915_private *dev_priv = dev->dev_private;
  4249. if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
  4250. uint32_t val = I915_READ(SOUTH_DSPCLK_GATE_D);
  4251. val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
  4252. I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
  4253. }
  4254. }
  4255. static void haswell_init_clock_gating(struct drm_device *dev)
  4256. {
  4257. struct drm_i915_private *dev_priv = dev->dev_private;
  4258. I915_WRITE(WM3_LP_ILK, 0);
  4259. I915_WRITE(WM2_LP_ILK, 0);
  4260. I915_WRITE(WM1_LP_ILK, 0);
  4261. /* According to the spec, bit 13 (RCZUNIT) must be set on IVB.
  4262. * This implements the WaDisableRCZUnitClockGating:hsw workaround.
  4263. */
  4264. I915_WRITE(GEN6_UCGCTL2, GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
  4265. /* Apply the WaDisableRHWOOptimizationForRenderHang:hsw workaround. */
  4266. I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
  4267. GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
  4268. /* WaApplyL3ControlAndL3ChickenMode:hsw */
  4269. I915_WRITE(GEN7_L3CNTLREG1,
  4270. GEN7_WA_FOR_GEN7_L3_CONTROL);
  4271. I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
  4272. GEN7_WA_L3_CHICKEN_MODE);
  4273. /* This is required by WaCatErrorRejectionIssue:hsw */
  4274. I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
  4275. I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
  4276. GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
  4277. /* WaVSRefCountFullforceMissDisable:hsw */
  4278. gen7_setup_fixed_func_scheduler(dev_priv);
  4279. /* WaDisable4x2SubspanOptimization:hsw */
  4280. I915_WRITE(CACHE_MODE_1,
  4281. _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
  4282. /* WaSwitchSolVfFArbitrationPriority:hsw */
  4283. I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
  4284. /* WaRsPkgCStateDisplayPMReq:hsw */
  4285. I915_WRITE(CHICKEN_PAR1_1,
  4286. I915_READ(CHICKEN_PAR1_1) | FORCE_ARB_IDLE_PLANES);
  4287. lpt_init_clock_gating(dev);
  4288. }
  4289. static void ivybridge_init_clock_gating(struct drm_device *dev)
  4290. {
  4291. struct drm_i915_private *dev_priv = dev->dev_private;
  4292. uint32_t snpcr;
  4293. I915_WRITE(WM3_LP_ILK, 0);
  4294. I915_WRITE(WM2_LP_ILK, 0);
  4295. I915_WRITE(WM1_LP_ILK, 0);
  4296. I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
  4297. /* WaDisableEarlyCull:ivb */
  4298. I915_WRITE(_3D_CHICKEN3,
  4299. _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
  4300. /* WaDisableBackToBackFlipFix:ivb */
  4301. I915_WRITE(IVB_CHICKEN3,
  4302. CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
  4303. CHICKEN3_DGMG_DONE_FIX_DISABLE);
  4304. /* WaDisablePSDDualDispatchEnable:ivb */
  4305. if (IS_IVB_GT1(dev))
  4306. I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
  4307. _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
  4308. else
  4309. I915_WRITE(GEN7_HALF_SLICE_CHICKEN1_GT2,
  4310. _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
  4311. /* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
  4312. I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
  4313. GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
  4314. /* WaApplyL3ControlAndL3ChickenMode:ivb */
  4315. I915_WRITE(GEN7_L3CNTLREG1,
  4316. GEN7_WA_FOR_GEN7_L3_CONTROL);
  4317. I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
  4318. GEN7_WA_L3_CHICKEN_MODE);
  4319. if (IS_IVB_GT1(dev))
  4320. I915_WRITE(GEN7_ROW_CHICKEN2,
  4321. _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
  4322. else
  4323. I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
  4324. _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
  4325. /* WaForceL3Serialization:ivb */
  4326. I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
  4327. ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
  4328. /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
  4329. * gating disable must be set. Failure to set it results in
  4330. * flickering pixels due to Z write ordering failures after
  4331. * some amount of runtime in the Mesa "fire" demo, and Unigine
  4332. * Sanctuary and Tropics, and apparently anything else with
  4333. * alpha test or pixel discard.
  4334. *
  4335. * According to the spec, bit 11 (RCCUNIT) must also be set,
  4336. * but we didn't debug actual testcases to find it out.
  4337. *
  4338. * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
  4339. * This implements the WaDisableRCZUnitClockGating:ivb workaround.
  4340. */
  4341. I915_WRITE(GEN6_UCGCTL2,
  4342. GEN6_RCZUNIT_CLOCK_GATE_DISABLE |
  4343. GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
  4344. /* This is required by WaCatErrorRejectionIssue:ivb */
  4345. I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
  4346. I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
  4347. GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
  4348. g4x_disable_trickle_feed(dev);
  4349. /* WaVSRefCountFullforceMissDisable:ivb */
  4350. gen7_setup_fixed_func_scheduler(dev_priv);
  4351. /* WaDisable4x2SubspanOptimization:ivb */
  4352. I915_WRITE(CACHE_MODE_1,
  4353. _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
  4354. snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
  4355. snpcr &= ~GEN6_MBC_SNPCR_MASK;
  4356. snpcr |= GEN6_MBC_SNPCR_MED;
  4357. I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
  4358. if (!HAS_PCH_NOP(dev))
  4359. cpt_init_clock_gating(dev);
  4360. gen6_check_mch_setup(dev);
  4361. }
  4362. static void valleyview_init_clock_gating(struct drm_device *dev)
  4363. {
  4364. struct drm_i915_private *dev_priv = dev->dev_private;
  4365. I915_WRITE(DSPCLK_GATE_D, VRHUNIT_CLOCK_GATE_DISABLE);
  4366. /* WaDisableEarlyCull:vlv */
  4367. I915_WRITE(_3D_CHICKEN3,
  4368. _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
  4369. /* WaDisableBackToBackFlipFix:vlv */
  4370. I915_WRITE(IVB_CHICKEN3,
  4371. CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
  4372. CHICKEN3_DGMG_DONE_FIX_DISABLE);
  4373. /* WaDisablePSDDualDispatchEnable:vlv */
  4374. I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
  4375. _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
  4376. GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
  4377. /* Apply the WaDisableRHWOOptimizationForRenderHang:vlv workaround. */
  4378. I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
  4379. GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
  4380. /* WaApplyL3ControlAndL3ChickenMode:vlv */
  4381. I915_WRITE(GEN7_L3CNTLREG1, I915_READ(GEN7_L3CNTLREG1) | GEN7_L3AGDIS);
  4382. I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER, GEN7_WA_L3_CHICKEN_MODE);
  4383. /* WaForceL3Serialization:vlv */
  4384. I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
  4385. ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
  4386. /* WaDisableDopClockGating:vlv */
  4387. I915_WRITE(GEN7_ROW_CHICKEN2,
  4388. _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
  4389. /* This is required by WaCatErrorRejectionIssue:vlv */
  4390. I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
  4391. I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
  4392. GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
  4393. /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
  4394. * gating disable must be set. Failure to set it results in
  4395. * flickering pixels due to Z write ordering failures after
  4396. * some amount of runtime in the Mesa "fire" demo, and Unigine
  4397. * Sanctuary and Tropics, and apparently anything else with
  4398. * alpha test or pixel discard.
  4399. *
  4400. * According to the spec, bit 11 (RCCUNIT) must also be set,
  4401. * but we didn't debug actual testcases to find it out.
  4402. *
  4403. * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
  4404. * This implements the WaDisableRCZUnitClockGating:vlv workaround.
  4405. *
  4406. * Also apply WaDisableVDSUnitClockGating:vlv and
  4407. * WaDisableRCPBUnitClockGating:vlv.
  4408. */
  4409. I915_WRITE(GEN6_UCGCTL2,
  4410. GEN7_VDSUNIT_CLOCK_GATE_DISABLE |
  4411. GEN7_TDLUNIT_CLOCK_GATE_DISABLE |
  4412. GEN6_RCZUNIT_CLOCK_GATE_DISABLE |
  4413. GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
  4414. GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
  4415. I915_WRITE(GEN7_UCGCTL4, GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
  4416. I915_WRITE(MI_ARB_VLV, MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE);
  4417. I915_WRITE(CACHE_MODE_1,
  4418. _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
  4419. /*
  4420. * WaDisableVLVClockGating_VBIIssue:vlv
  4421. * Disable clock gating on th GCFG unit to prevent a delay
  4422. * in the reporting of vblank events.
  4423. */
  4424. I915_WRITE(VLV_GUNIT_CLOCK_GATE, 0xffffffff);
  4425. /* Conservative clock gating settings for now */
  4426. I915_WRITE(0x9400, 0xffffffff);
  4427. I915_WRITE(0x9404, 0xffffffff);
  4428. I915_WRITE(0x9408, 0xffffffff);
  4429. I915_WRITE(0x940c, 0xffffffff);
  4430. I915_WRITE(0x9410, 0xffffffff);
  4431. I915_WRITE(0x9414, 0xffffffff);
  4432. I915_WRITE(0x9418, 0xffffffff);
  4433. }
  4434. static void g4x_init_clock_gating(struct drm_device *dev)
  4435. {
  4436. struct drm_i915_private *dev_priv = dev->dev_private;
  4437. uint32_t dspclk_gate;
  4438. I915_WRITE(RENCLK_GATE_D1, 0);
  4439. I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
  4440. GS_UNIT_CLOCK_GATE_DISABLE |
  4441. CL_UNIT_CLOCK_GATE_DISABLE);
  4442. I915_WRITE(RAMCLK_GATE_D, 0);
  4443. dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
  4444. OVRUNIT_CLOCK_GATE_DISABLE |
  4445. OVCUNIT_CLOCK_GATE_DISABLE;
  4446. if (IS_GM45(dev))
  4447. dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
  4448. I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
  4449. /* WaDisableRenderCachePipelinedFlush */
  4450. I915_WRITE(CACHE_MODE_0,
  4451. _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
  4452. g4x_disable_trickle_feed(dev);
  4453. }
  4454. static void crestline_init_clock_gating(struct drm_device *dev)
  4455. {
  4456. struct drm_i915_private *dev_priv = dev->dev_private;
  4457. I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
  4458. I915_WRITE(RENCLK_GATE_D2, 0);
  4459. I915_WRITE(DSPCLK_GATE_D, 0);
  4460. I915_WRITE(RAMCLK_GATE_D, 0);
  4461. I915_WRITE16(DEUC, 0);
  4462. I915_WRITE(MI_ARB_STATE,
  4463. _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
  4464. }
  4465. static void broadwater_init_clock_gating(struct drm_device *dev)
  4466. {
  4467. struct drm_i915_private *dev_priv = dev->dev_private;
  4468. I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
  4469. I965_RCC_CLOCK_GATE_DISABLE |
  4470. I965_RCPB_CLOCK_GATE_DISABLE |
  4471. I965_ISC_CLOCK_GATE_DISABLE |
  4472. I965_FBC_CLOCK_GATE_DISABLE);
  4473. I915_WRITE(RENCLK_GATE_D2, 0);
  4474. I915_WRITE(MI_ARB_STATE,
  4475. _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
  4476. }
  4477. static void gen3_init_clock_gating(struct drm_device *dev)
  4478. {
  4479. struct drm_i915_private *dev_priv = dev->dev_private;
  4480. u32 dstate = I915_READ(D_STATE);
  4481. dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
  4482. DSTATE_DOT_CLOCK_GATING;
  4483. I915_WRITE(D_STATE, dstate);
  4484. if (IS_PINEVIEW(dev))
  4485. I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
  4486. /* IIR "flip pending" means done if this bit is set */
  4487. I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
  4488. }
  4489. static void i85x_init_clock_gating(struct drm_device *dev)
  4490. {
  4491. struct drm_i915_private *dev_priv = dev->dev_private;
  4492. I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
  4493. }
  4494. static void i830_init_clock_gating(struct drm_device *dev)
  4495. {
  4496. struct drm_i915_private *dev_priv = dev->dev_private;
  4497. I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
  4498. }
  4499. void intel_init_clock_gating(struct drm_device *dev)
  4500. {
  4501. struct drm_i915_private *dev_priv = dev->dev_private;
  4502. dev_priv->display.init_clock_gating(dev);
  4503. }
  4504. void intel_suspend_hw(struct drm_device *dev)
  4505. {
  4506. if (HAS_PCH_LPT(dev))
  4507. lpt_suspend_hw(dev);
  4508. }
  4509. /**
  4510. * We should only use the power well if we explicitly asked the hardware to
  4511. * enable it, so check if it's enabled and also check if we've requested it to
  4512. * be enabled.
  4513. */
  4514. bool intel_display_power_enabled(struct drm_device *dev,
  4515. enum intel_display_power_domain domain)
  4516. {
  4517. struct drm_i915_private *dev_priv = dev->dev_private;
  4518. if (!HAS_POWER_WELL(dev))
  4519. return true;
  4520. switch (domain) {
  4521. case POWER_DOMAIN_PIPE_A:
  4522. case POWER_DOMAIN_TRANSCODER_EDP:
  4523. return true;
  4524. case POWER_DOMAIN_VGA:
  4525. case POWER_DOMAIN_PIPE_B:
  4526. case POWER_DOMAIN_PIPE_C:
  4527. case POWER_DOMAIN_PIPE_A_PANEL_FITTER:
  4528. case POWER_DOMAIN_PIPE_B_PANEL_FITTER:
  4529. case POWER_DOMAIN_PIPE_C_PANEL_FITTER:
  4530. case POWER_DOMAIN_TRANSCODER_A:
  4531. case POWER_DOMAIN_TRANSCODER_B:
  4532. case POWER_DOMAIN_TRANSCODER_C:
  4533. return I915_READ(HSW_PWR_WELL_DRIVER) ==
  4534. (HSW_PWR_WELL_ENABLE_REQUEST | HSW_PWR_WELL_STATE_ENABLED);
  4535. default:
  4536. BUG();
  4537. }
  4538. }
  4539. static void __intel_set_power_well(struct drm_device *dev, bool enable)
  4540. {
  4541. struct drm_i915_private *dev_priv = dev->dev_private;
  4542. bool is_enabled, enable_requested;
  4543. uint32_t tmp;
  4544. tmp = I915_READ(HSW_PWR_WELL_DRIVER);
  4545. is_enabled = tmp & HSW_PWR_WELL_STATE_ENABLED;
  4546. enable_requested = tmp & HSW_PWR_WELL_ENABLE_REQUEST;
  4547. if (enable) {
  4548. if (!enable_requested)
  4549. I915_WRITE(HSW_PWR_WELL_DRIVER,
  4550. HSW_PWR_WELL_ENABLE_REQUEST);
  4551. if (!is_enabled) {
  4552. DRM_DEBUG_KMS("Enabling power well\n");
  4553. if (wait_for((I915_READ(HSW_PWR_WELL_DRIVER) &
  4554. HSW_PWR_WELL_STATE_ENABLED), 20))
  4555. DRM_ERROR("Timeout enabling power well\n");
  4556. }
  4557. } else {
  4558. if (enable_requested) {
  4559. unsigned long irqflags;
  4560. enum pipe p;
  4561. I915_WRITE(HSW_PWR_WELL_DRIVER, 0);
  4562. POSTING_READ(HSW_PWR_WELL_DRIVER);
  4563. DRM_DEBUG_KMS("Requesting to disable the power well\n");
  4564. /*
  4565. * After this, the registers on the pipes that are part
  4566. * of the power well will become zero, so we have to
  4567. * adjust our counters according to that.
  4568. *
  4569. * FIXME: Should we do this in general in
  4570. * drm_vblank_post_modeset?
  4571. */
  4572. spin_lock_irqsave(&dev->vbl_lock, irqflags);
  4573. for_each_pipe(p)
  4574. if (p != PIPE_A)
  4575. dev->vblank[p].last = 0;
  4576. spin_unlock_irqrestore(&dev->vbl_lock, irqflags);
  4577. }
  4578. }
  4579. }
  4580. static void __intel_power_well_get(struct i915_power_well *power_well)
  4581. {
  4582. if (!power_well->count++)
  4583. __intel_set_power_well(power_well->device, true);
  4584. }
  4585. static void __intel_power_well_put(struct i915_power_well *power_well)
  4586. {
  4587. WARN_ON(!power_well->count);
  4588. if (!--power_well->count)
  4589. __intel_set_power_well(power_well->device, false);
  4590. }
  4591. void intel_display_power_get(struct drm_device *dev,
  4592. enum intel_display_power_domain domain)
  4593. {
  4594. struct drm_i915_private *dev_priv = dev->dev_private;
  4595. struct i915_power_well *power_well = &dev_priv->power_well;
  4596. if (!HAS_POWER_WELL(dev))
  4597. return;
  4598. switch (domain) {
  4599. case POWER_DOMAIN_PIPE_A:
  4600. case POWER_DOMAIN_TRANSCODER_EDP:
  4601. return;
  4602. case POWER_DOMAIN_VGA:
  4603. case POWER_DOMAIN_PIPE_B:
  4604. case POWER_DOMAIN_PIPE_C:
  4605. case POWER_DOMAIN_PIPE_A_PANEL_FITTER:
  4606. case POWER_DOMAIN_PIPE_B_PANEL_FITTER:
  4607. case POWER_DOMAIN_PIPE_C_PANEL_FITTER:
  4608. case POWER_DOMAIN_TRANSCODER_A:
  4609. case POWER_DOMAIN_TRANSCODER_B:
  4610. case POWER_DOMAIN_TRANSCODER_C:
  4611. spin_lock_irq(&power_well->lock);
  4612. __intel_power_well_get(power_well);
  4613. spin_unlock_irq(&power_well->lock);
  4614. return;
  4615. default:
  4616. BUG();
  4617. }
  4618. }
  4619. void intel_display_power_put(struct drm_device *dev,
  4620. enum intel_display_power_domain domain)
  4621. {
  4622. struct drm_i915_private *dev_priv = dev->dev_private;
  4623. struct i915_power_well *power_well = &dev_priv->power_well;
  4624. if (!HAS_POWER_WELL(dev))
  4625. return;
  4626. switch (domain) {
  4627. case POWER_DOMAIN_PIPE_A:
  4628. case POWER_DOMAIN_TRANSCODER_EDP:
  4629. return;
  4630. case POWER_DOMAIN_VGA:
  4631. case POWER_DOMAIN_PIPE_B:
  4632. case POWER_DOMAIN_PIPE_C:
  4633. case POWER_DOMAIN_PIPE_A_PANEL_FITTER:
  4634. case POWER_DOMAIN_PIPE_B_PANEL_FITTER:
  4635. case POWER_DOMAIN_PIPE_C_PANEL_FITTER:
  4636. case POWER_DOMAIN_TRANSCODER_A:
  4637. case POWER_DOMAIN_TRANSCODER_B:
  4638. case POWER_DOMAIN_TRANSCODER_C:
  4639. spin_lock_irq(&power_well->lock);
  4640. __intel_power_well_put(power_well);
  4641. spin_unlock_irq(&power_well->lock);
  4642. return;
  4643. default:
  4644. BUG();
  4645. }
  4646. }
  4647. static struct i915_power_well *hsw_pwr;
  4648. /* Display audio driver power well request */
  4649. void i915_request_power_well(void)
  4650. {
  4651. if (WARN_ON(!hsw_pwr))
  4652. return;
  4653. spin_lock_irq(&hsw_pwr->lock);
  4654. __intel_power_well_get(hsw_pwr);
  4655. spin_unlock_irq(&hsw_pwr->lock);
  4656. }
  4657. EXPORT_SYMBOL_GPL(i915_request_power_well);
  4658. /* Display audio driver power well release */
  4659. void i915_release_power_well(void)
  4660. {
  4661. if (WARN_ON(!hsw_pwr))
  4662. return;
  4663. spin_lock_irq(&hsw_pwr->lock);
  4664. __intel_power_well_put(hsw_pwr);
  4665. spin_unlock_irq(&hsw_pwr->lock);
  4666. }
  4667. EXPORT_SYMBOL_GPL(i915_release_power_well);
  4668. int i915_init_power_well(struct drm_device *dev)
  4669. {
  4670. struct drm_i915_private *dev_priv = dev->dev_private;
  4671. hsw_pwr = &dev_priv->power_well;
  4672. hsw_pwr->device = dev;
  4673. spin_lock_init(&hsw_pwr->lock);
  4674. hsw_pwr->count = 0;
  4675. return 0;
  4676. }
  4677. void i915_remove_power_well(struct drm_device *dev)
  4678. {
  4679. hsw_pwr = NULL;
  4680. }
  4681. void intel_set_power_well(struct drm_device *dev, bool enable)
  4682. {
  4683. struct drm_i915_private *dev_priv = dev->dev_private;
  4684. struct i915_power_well *power_well = &dev_priv->power_well;
  4685. if (!HAS_POWER_WELL(dev))
  4686. return;
  4687. if (!i915_disable_power_well && !enable)
  4688. return;
  4689. spin_lock_irq(&power_well->lock);
  4690. /*
  4691. * This function will only ever contribute one
  4692. * to the power well reference count. i915_request
  4693. * is what tracks whether we have or have not
  4694. * added the one to the reference count.
  4695. */
  4696. if (power_well->i915_request == enable)
  4697. goto out;
  4698. power_well->i915_request = enable;
  4699. if (enable)
  4700. __intel_power_well_get(power_well);
  4701. else
  4702. __intel_power_well_put(power_well);
  4703. out:
  4704. spin_unlock_irq(&power_well->lock);
  4705. }
  4706. static void intel_resume_power_well(struct drm_device *dev)
  4707. {
  4708. struct drm_i915_private *dev_priv = dev->dev_private;
  4709. struct i915_power_well *power_well = &dev_priv->power_well;
  4710. if (!HAS_POWER_WELL(dev))
  4711. return;
  4712. spin_lock_irq(&power_well->lock);
  4713. __intel_set_power_well(dev, power_well->count > 0);
  4714. spin_unlock_irq(&power_well->lock);
  4715. }
  4716. /*
  4717. * Starting with Haswell, we have a "Power Down Well" that can be turned off
  4718. * when not needed anymore. We have 4 registers that can request the power well
  4719. * to be enabled, and it will only be disabled if none of the registers is
  4720. * requesting it to be enabled.
  4721. */
  4722. void intel_init_power_well(struct drm_device *dev)
  4723. {
  4724. struct drm_i915_private *dev_priv = dev->dev_private;
  4725. if (!HAS_POWER_WELL(dev))
  4726. return;
  4727. /* For now, we need the power well to be always enabled. */
  4728. intel_set_power_well(dev, true);
  4729. intel_resume_power_well(dev);
  4730. /* We're taking over the BIOS, so clear any requests made by it since
  4731. * the driver is in charge now. */
  4732. if (I915_READ(HSW_PWR_WELL_BIOS) & HSW_PWR_WELL_ENABLE_REQUEST)
  4733. I915_WRITE(HSW_PWR_WELL_BIOS, 0);
  4734. }
  4735. /* Disables PC8 so we can use the GMBUS and DP AUX interrupts. */
  4736. void intel_aux_display_runtime_get(struct drm_i915_private *dev_priv)
  4737. {
  4738. hsw_disable_package_c8(dev_priv);
  4739. }
  4740. void intel_aux_display_runtime_put(struct drm_i915_private *dev_priv)
  4741. {
  4742. hsw_enable_package_c8(dev_priv);
  4743. }
  4744. /* Set up chip specific power management-related functions */
  4745. void intel_init_pm(struct drm_device *dev)
  4746. {
  4747. struct drm_i915_private *dev_priv = dev->dev_private;
  4748. if (I915_HAS_FBC(dev)) {
  4749. if (HAS_PCH_SPLIT(dev)) {
  4750. dev_priv->display.fbc_enabled = ironlake_fbc_enabled;
  4751. if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
  4752. dev_priv->display.enable_fbc =
  4753. gen7_enable_fbc;
  4754. else
  4755. dev_priv->display.enable_fbc =
  4756. ironlake_enable_fbc;
  4757. dev_priv->display.disable_fbc = ironlake_disable_fbc;
  4758. } else if (IS_GM45(dev)) {
  4759. dev_priv->display.fbc_enabled = g4x_fbc_enabled;
  4760. dev_priv->display.enable_fbc = g4x_enable_fbc;
  4761. dev_priv->display.disable_fbc = g4x_disable_fbc;
  4762. } else if (IS_CRESTLINE(dev)) {
  4763. dev_priv->display.fbc_enabled = i8xx_fbc_enabled;
  4764. dev_priv->display.enable_fbc = i8xx_enable_fbc;
  4765. dev_priv->display.disable_fbc = i8xx_disable_fbc;
  4766. }
  4767. /* 855GM needs testing */
  4768. }
  4769. /* For cxsr */
  4770. if (IS_PINEVIEW(dev))
  4771. i915_pineview_get_mem_freq(dev);
  4772. else if (IS_GEN5(dev))
  4773. i915_ironlake_get_mem_freq(dev);
  4774. /* For FIFO watermark updates */
  4775. if (HAS_PCH_SPLIT(dev)) {
  4776. intel_setup_wm_latency(dev);
  4777. if (IS_GEN5(dev)) {
  4778. if (dev_priv->wm.pri_latency[1] &&
  4779. dev_priv->wm.spr_latency[1] &&
  4780. dev_priv->wm.cur_latency[1])
  4781. dev_priv->display.update_wm = ironlake_update_wm;
  4782. else {
  4783. DRM_DEBUG_KMS("Failed to get proper latency. "
  4784. "Disable CxSR\n");
  4785. dev_priv->display.update_wm = NULL;
  4786. }
  4787. dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
  4788. } else if (IS_GEN6(dev)) {
  4789. if (dev_priv->wm.pri_latency[0] &&
  4790. dev_priv->wm.spr_latency[0] &&
  4791. dev_priv->wm.cur_latency[0]) {
  4792. dev_priv->display.update_wm = sandybridge_update_wm;
  4793. dev_priv->display.update_sprite_wm = sandybridge_update_sprite_wm;
  4794. } else {
  4795. DRM_DEBUG_KMS("Failed to read display plane latency. "
  4796. "Disable CxSR\n");
  4797. dev_priv->display.update_wm = NULL;
  4798. }
  4799. dev_priv->display.init_clock_gating = gen6_init_clock_gating;
  4800. } else if (IS_IVYBRIDGE(dev)) {
  4801. if (dev_priv->wm.pri_latency[0] &&
  4802. dev_priv->wm.spr_latency[0] &&
  4803. dev_priv->wm.cur_latency[0]) {
  4804. dev_priv->display.update_wm = ivybridge_update_wm;
  4805. dev_priv->display.update_sprite_wm = sandybridge_update_sprite_wm;
  4806. } else {
  4807. DRM_DEBUG_KMS("Failed to read display plane latency. "
  4808. "Disable CxSR\n");
  4809. dev_priv->display.update_wm = NULL;
  4810. }
  4811. dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
  4812. } else if (IS_HASWELL(dev)) {
  4813. if (dev_priv->wm.pri_latency[0] &&
  4814. dev_priv->wm.spr_latency[0] &&
  4815. dev_priv->wm.cur_latency[0]) {
  4816. dev_priv->display.update_wm = haswell_update_wm;
  4817. dev_priv->display.update_sprite_wm =
  4818. haswell_update_sprite_wm;
  4819. } else {
  4820. DRM_DEBUG_KMS("Failed to read display plane latency. "
  4821. "Disable CxSR\n");
  4822. dev_priv->display.update_wm = NULL;
  4823. }
  4824. dev_priv->display.init_clock_gating = haswell_init_clock_gating;
  4825. } else
  4826. dev_priv->display.update_wm = NULL;
  4827. } else if (IS_VALLEYVIEW(dev)) {
  4828. dev_priv->display.update_wm = valleyview_update_wm;
  4829. dev_priv->display.init_clock_gating =
  4830. valleyview_init_clock_gating;
  4831. } else if (IS_PINEVIEW(dev)) {
  4832. if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
  4833. dev_priv->is_ddr3,
  4834. dev_priv->fsb_freq,
  4835. dev_priv->mem_freq)) {
  4836. DRM_INFO("failed to find known CxSR latency "
  4837. "(found ddr%s fsb freq %d, mem freq %d), "
  4838. "disabling CxSR\n",
  4839. (dev_priv->is_ddr3 == 1) ? "3" : "2",
  4840. dev_priv->fsb_freq, dev_priv->mem_freq);
  4841. /* Disable CxSR and never update its watermark again */
  4842. pineview_disable_cxsr(dev);
  4843. dev_priv->display.update_wm = NULL;
  4844. } else
  4845. dev_priv->display.update_wm = pineview_update_wm;
  4846. dev_priv->display.init_clock_gating = gen3_init_clock_gating;
  4847. } else if (IS_G4X(dev)) {
  4848. dev_priv->display.update_wm = g4x_update_wm;
  4849. dev_priv->display.init_clock_gating = g4x_init_clock_gating;
  4850. } else if (IS_GEN4(dev)) {
  4851. dev_priv->display.update_wm = i965_update_wm;
  4852. if (IS_CRESTLINE(dev))
  4853. dev_priv->display.init_clock_gating = crestline_init_clock_gating;
  4854. else if (IS_BROADWATER(dev))
  4855. dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
  4856. } else if (IS_GEN3(dev)) {
  4857. dev_priv->display.update_wm = i9xx_update_wm;
  4858. dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
  4859. dev_priv->display.init_clock_gating = gen3_init_clock_gating;
  4860. } else if (IS_I865G(dev)) {
  4861. dev_priv->display.update_wm = i830_update_wm;
  4862. dev_priv->display.init_clock_gating = i85x_init_clock_gating;
  4863. dev_priv->display.get_fifo_size = i830_get_fifo_size;
  4864. } else if (IS_I85X(dev)) {
  4865. dev_priv->display.update_wm = i9xx_update_wm;
  4866. dev_priv->display.get_fifo_size = i85x_get_fifo_size;
  4867. dev_priv->display.init_clock_gating = i85x_init_clock_gating;
  4868. } else {
  4869. dev_priv->display.update_wm = i830_update_wm;
  4870. dev_priv->display.init_clock_gating = i830_init_clock_gating;
  4871. if (IS_845G(dev))
  4872. dev_priv->display.get_fifo_size = i845_get_fifo_size;
  4873. else
  4874. dev_priv->display.get_fifo_size = i830_get_fifo_size;
  4875. }
  4876. }
  4877. int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u8 mbox, u32 *val)
  4878. {
  4879. WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
  4880. if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
  4881. DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed\n");
  4882. return -EAGAIN;
  4883. }
  4884. I915_WRITE(GEN6_PCODE_DATA, *val);
  4885. I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
  4886. if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
  4887. 500)) {
  4888. DRM_ERROR("timeout waiting for pcode read (%d) to finish\n", mbox);
  4889. return -ETIMEDOUT;
  4890. }
  4891. *val = I915_READ(GEN6_PCODE_DATA);
  4892. I915_WRITE(GEN6_PCODE_DATA, 0);
  4893. return 0;
  4894. }
  4895. int sandybridge_pcode_write(struct drm_i915_private *dev_priv, u8 mbox, u32 val)
  4896. {
  4897. WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
  4898. if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
  4899. DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed\n");
  4900. return -EAGAIN;
  4901. }
  4902. I915_WRITE(GEN6_PCODE_DATA, val);
  4903. I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
  4904. if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
  4905. 500)) {
  4906. DRM_ERROR("timeout waiting for pcode write (%d) to finish\n", mbox);
  4907. return -ETIMEDOUT;
  4908. }
  4909. I915_WRITE(GEN6_PCODE_DATA, 0);
  4910. return 0;
  4911. }
  4912. int vlv_gpu_freq(int ddr_freq, int val)
  4913. {
  4914. int mult, base;
  4915. switch (ddr_freq) {
  4916. case 800:
  4917. mult = 20;
  4918. base = 120;
  4919. break;
  4920. case 1066:
  4921. mult = 22;
  4922. base = 133;
  4923. break;
  4924. case 1333:
  4925. mult = 21;
  4926. base = 125;
  4927. break;
  4928. default:
  4929. return -1;
  4930. }
  4931. return ((val - 0xbd) * mult) + base;
  4932. }
  4933. int vlv_freq_opcode(int ddr_freq, int val)
  4934. {
  4935. int mult, base;
  4936. switch (ddr_freq) {
  4937. case 800:
  4938. mult = 20;
  4939. base = 120;
  4940. break;
  4941. case 1066:
  4942. mult = 22;
  4943. base = 133;
  4944. break;
  4945. case 1333:
  4946. mult = 21;
  4947. base = 125;
  4948. break;
  4949. default:
  4950. return -1;
  4951. }
  4952. val /= mult;
  4953. val -= base / mult;
  4954. val += 0xbd;
  4955. if (val > 0xea)
  4956. val = 0xea;
  4957. return val;
  4958. }
  4959. void intel_pm_init(struct drm_device *dev)
  4960. {
  4961. struct drm_i915_private *dev_priv = dev->dev_private;
  4962. INIT_DELAYED_WORK(&dev_priv->rps.delayed_resume_work,
  4963. intel_gen6_powersave_work);
  4964. }