cfq-iosched.c 105 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193
  1. /*
  2. * CFQ, or complete fairness queueing, disk scheduler.
  3. *
  4. * Based on ideas from a previously unfinished io
  5. * scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
  6. *
  7. * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
  8. */
  9. #include <linux/module.h>
  10. #include <linux/slab.h>
  11. #include <linux/blkdev.h>
  12. #include <linux/elevator.h>
  13. #include <linux/jiffies.h>
  14. #include <linux/rbtree.h>
  15. #include <linux/ioprio.h>
  16. #include <linux/blktrace_api.h>
  17. #include "cfq.h"
  18. /*
  19. * tunables
  20. */
  21. /* max queue in one round of service */
  22. static const int cfq_quantum = 8;
  23. static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
  24. /* maximum backwards seek, in KiB */
  25. static const int cfq_back_max = 16 * 1024;
  26. /* penalty of a backwards seek */
  27. static const int cfq_back_penalty = 2;
  28. static const int cfq_slice_sync = HZ / 10;
  29. static int cfq_slice_async = HZ / 25;
  30. static const int cfq_slice_async_rq = 2;
  31. static int cfq_slice_idle = HZ / 125;
  32. static int cfq_group_idle = HZ / 125;
  33. static const int cfq_target_latency = HZ * 3/10; /* 300 ms */
  34. static const int cfq_hist_divisor = 4;
  35. /*
  36. * offset from end of service tree
  37. */
  38. #define CFQ_IDLE_DELAY (HZ / 5)
  39. /*
  40. * below this threshold, we consider thinktime immediate
  41. */
  42. #define CFQ_MIN_TT (2)
  43. #define CFQ_SLICE_SCALE (5)
  44. #define CFQ_HW_QUEUE_MIN (5)
  45. #define CFQ_SERVICE_SHIFT 12
  46. #define CFQQ_SEEK_THR (sector_t)(8 * 100)
  47. #define CFQQ_CLOSE_THR (sector_t)(8 * 1024)
  48. #define CFQQ_SECT_THR_NONROT (sector_t)(2 * 32)
  49. #define CFQQ_SEEKY(cfqq) (hweight32(cfqq->seek_history) > 32/8)
  50. #define RQ_CIC(rq) \
  51. ((struct cfq_io_context *) (rq)->elevator_private[0])
  52. #define RQ_CFQQ(rq) (struct cfq_queue *) ((rq)->elevator_private[1])
  53. #define RQ_CFQG(rq) (struct cfq_group *) ((rq)->elevator_private[2])
  54. static struct kmem_cache *cfq_pool;
  55. static struct kmem_cache *cfq_ioc_pool;
  56. static DEFINE_PER_CPU(unsigned long, cfq_ioc_count);
  57. static struct completion *ioc_gone;
  58. static DEFINE_SPINLOCK(ioc_gone_lock);
  59. static DEFINE_SPINLOCK(cic_index_lock);
  60. static DEFINE_IDA(cic_index_ida);
  61. #define CFQ_PRIO_LISTS IOPRIO_BE_NR
  62. #define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
  63. #define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
  64. #define sample_valid(samples) ((samples) > 80)
  65. #define rb_entry_cfqg(node) rb_entry((node), struct cfq_group, rb_node)
  66. /*
  67. * Most of our rbtree usage is for sorting with min extraction, so
  68. * if we cache the leftmost node we don't have to walk down the tree
  69. * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
  70. * move this into the elevator for the rq sorting as well.
  71. */
  72. struct cfq_rb_root {
  73. struct rb_root rb;
  74. struct rb_node *left;
  75. unsigned count;
  76. unsigned total_weight;
  77. u64 min_vdisktime;
  78. };
  79. #define CFQ_RB_ROOT (struct cfq_rb_root) { .rb = RB_ROOT, .left = NULL, \
  80. .count = 0, .min_vdisktime = 0, }
  81. /*
  82. * Per process-grouping structure
  83. */
  84. struct cfq_queue {
  85. /* reference count */
  86. int ref;
  87. /* various state flags, see below */
  88. unsigned int flags;
  89. /* parent cfq_data */
  90. struct cfq_data *cfqd;
  91. /* service_tree member */
  92. struct rb_node rb_node;
  93. /* service_tree key */
  94. unsigned long rb_key;
  95. /* prio tree member */
  96. struct rb_node p_node;
  97. /* prio tree root we belong to, if any */
  98. struct rb_root *p_root;
  99. /* sorted list of pending requests */
  100. struct rb_root sort_list;
  101. /* if fifo isn't expired, next request to serve */
  102. struct request *next_rq;
  103. /* requests queued in sort_list */
  104. int queued[2];
  105. /* currently allocated requests */
  106. int allocated[2];
  107. /* fifo list of requests in sort_list */
  108. struct list_head fifo;
  109. /* time when queue got scheduled in to dispatch first request. */
  110. unsigned long dispatch_start;
  111. unsigned int allocated_slice;
  112. unsigned int slice_dispatch;
  113. /* time when first request from queue completed and slice started. */
  114. unsigned long slice_start;
  115. unsigned long slice_end;
  116. long slice_resid;
  117. /* pending metadata requests */
  118. int meta_pending;
  119. /* number of requests that are on the dispatch list or inside driver */
  120. int dispatched;
  121. /* io prio of this group */
  122. unsigned short ioprio, org_ioprio;
  123. unsigned short ioprio_class, org_ioprio_class;
  124. pid_t pid;
  125. u32 seek_history;
  126. sector_t last_request_pos;
  127. struct cfq_rb_root *service_tree;
  128. struct cfq_queue *new_cfqq;
  129. struct cfq_group *cfqg;
  130. /* Number of sectors dispatched from queue in single dispatch round */
  131. unsigned long nr_sectors;
  132. };
  133. /*
  134. * First index in the service_trees.
  135. * IDLE is handled separately, so it has negative index
  136. */
  137. enum wl_prio_t {
  138. BE_WORKLOAD = 0,
  139. RT_WORKLOAD = 1,
  140. IDLE_WORKLOAD = 2,
  141. CFQ_PRIO_NR,
  142. };
  143. /*
  144. * Second index in the service_trees.
  145. */
  146. enum wl_type_t {
  147. ASYNC_WORKLOAD = 0,
  148. SYNC_NOIDLE_WORKLOAD = 1,
  149. SYNC_WORKLOAD = 2
  150. };
  151. /* This is per cgroup per device grouping structure */
  152. struct cfq_group {
  153. /* group service_tree member */
  154. struct rb_node rb_node;
  155. /* group service_tree key */
  156. u64 vdisktime;
  157. unsigned int weight;
  158. unsigned int new_weight;
  159. bool needs_update;
  160. /* number of cfqq currently on this group */
  161. int nr_cfqq;
  162. /*
  163. * Per group busy queus average. Useful for workload slice calc. We
  164. * create the array for each prio class but at run time it is used
  165. * only for RT and BE class and slot for IDLE class remains unused.
  166. * This is primarily done to avoid confusion and a gcc warning.
  167. */
  168. unsigned int busy_queues_avg[CFQ_PRIO_NR];
  169. /*
  170. * rr lists of queues with requests. We maintain service trees for
  171. * RT and BE classes. These trees are subdivided in subclasses
  172. * of SYNC, SYNC_NOIDLE and ASYNC based on workload type. For IDLE
  173. * class there is no subclassification and all the cfq queues go on
  174. * a single tree service_tree_idle.
  175. * Counts are embedded in the cfq_rb_root
  176. */
  177. struct cfq_rb_root service_trees[2][3];
  178. struct cfq_rb_root service_tree_idle;
  179. unsigned long saved_workload_slice;
  180. enum wl_type_t saved_workload;
  181. enum wl_prio_t saved_serving_prio;
  182. struct blkio_group blkg;
  183. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  184. struct hlist_node cfqd_node;
  185. int ref;
  186. #endif
  187. /* number of requests that are on the dispatch list or inside driver */
  188. int dispatched;
  189. };
  190. /*
  191. * Per block device queue structure
  192. */
  193. struct cfq_data {
  194. struct request_queue *queue;
  195. /* Root service tree for cfq_groups */
  196. struct cfq_rb_root grp_service_tree;
  197. struct cfq_group root_group;
  198. /*
  199. * The priority currently being served
  200. */
  201. enum wl_prio_t serving_prio;
  202. enum wl_type_t serving_type;
  203. unsigned long workload_expires;
  204. struct cfq_group *serving_group;
  205. /*
  206. * Each priority tree is sorted by next_request position. These
  207. * trees are used when determining if two or more queues are
  208. * interleaving requests (see cfq_close_cooperator).
  209. */
  210. struct rb_root prio_trees[CFQ_PRIO_LISTS];
  211. unsigned int busy_queues;
  212. unsigned int busy_sync_queues;
  213. int rq_in_driver;
  214. int rq_in_flight[2];
  215. /*
  216. * queue-depth detection
  217. */
  218. int rq_queued;
  219. int hw_tag;
  220. /*
  221. * hw_tag can be
  222. * -1 => indeterminate, (cfq will behave as if NCQ is present, to allow better detection)
  223. * 1 => NCQ is present (hw_tag_est_depth is the estimated max depth)
  224. * 0 => no NCQ
  225. */
  226. int hw_tag_est_depth;
  227. unsigned int hw_tag_samples;
  228. /*
  229. * idle window management
  230. */
  231. struct timer_list idle_slice_timer;
  232. struct work_struct unplug_work;
  233. struct cfq_queue *active_queue;
  234. struct cfq_io_context *active_cic;
  235. /*
  236. * async queue for each priority case
  237. */
  238. struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
  239. struct cfq_queue *async_idle_cfqq;
  240. sector_t last_position;
  241. /*
  242. * tunables, see top of file
  243. */
  244. unsigned int cfq_quantum;
  245. unsigned int cfq_fifo_expire[2];
  246. unsigned int cfq_back_penalty;
  247. unsigned int cfq_back_max;
  248. unsigned int cfq_slice[2];
  249. unsigned int cfq_slice_async_rq;
  250. unsigned int cfq_slice_idle;
  251. unsigned int cfq_group_idle;
  252. unsigned int cfq_latency;
  253. unsigned int cic_index;
  254. struct list_head cic_list;
  255. /*
  256. * Fallback dummy cfqq for extreme OOM conditions
  257. */
  258. struct cfq_queue oom_cfqq;
  259. unsigned long last_delayed_sync;
  260. /* List of cfq groups being managed on this device*/
  261. struct hlist_head cfqg_list;
  262. struct rcu_head rcu;
  263. };
  264. static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd);
  265. static struct cfq_rb_root *service_tree_for(struct cfq_group *cfqg,
  266. enum wl_prio_t prio,
  267. enum wl_type_t type)
  268. {
  269. if (!cfqg)
  270. return NULL;
  271. if (prio == IDLE_WORKLOAD)
  272. return &cfqg->service_tree_idle;
  273. return &cfqg->service_trees[prio][type];
  274. }
  275. enum cfqq_state_flags {
  276. CFQ_CFQQ_FLAG_on_rr = 0, /* on round-robin busy list */
  277. CFQ_CFQQ_FLAG_wait_request, /* waiting for a request */
  278. CFQ_CFQQ_FLAG_must_dispatch, /* must be allowed a dispatch */
  279. CFQ_CFQQ_FLAG_must_alloc_slice, /* per-slice must_alloc flag */
  280. CFQ_CFQQ_FLAG_fifo_expire, /* FIFO checked in this slice */
  281. CFQ_CFQQ_FLAG_idle_window, /* slice idling enabled */
  282. CFQ_CFQQ_FLAG_prio_changed, /* task priority has changed */
  283. CFQ_CFQQ_FLAG_slice_new, /* no requests dispatched in slice */
  284. CFQ_CFQQ_FLAG_sync, /* synchronous queue */
  285. CFQ_CFQQ_FLAG_coop, /* cfqq is shared */
  286. CFQ_CFQQ_FLAG_split_coop, /* shared cfqq will be splitted */
  287. CFQ_CFQQ_FLAG_deep, /* sync cfqq experienced large depth */
  288. CFQ_CFQQ_FLAG_wait_busy, /* Waiting for next request */
  289. };
  290. #define CFQ_CFQQ_FNS(name) \
  291. static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq) \
  292. { \
  293. (cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name); \
  294. } \
  295. static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq) \
  296. { \
  297. (cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name); \
  298. } \
  299. static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq) \
  300. { \
  301. return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0; \
  302. }
  303. CFQ_CFQQ_FNS(on_rr);
  304. CFQ_CFQQ_FNS(wait_request);
  305. CFQ_CFQQ_FNS(must_dispatch);
  306. CFQ_CFQQ_FNS(must_alloc_slice);
  307. CFQ_CFQQ_FNS(fifo_expire);
  308. CFQ_CFQQ_FNS(idle_window);
  309. CFQ_CFQQ_FNS(prio_changed);
  310. CFQ_CFQQ_FNS(slice_new);
  311. CFQ_CFQQ_FNS(sync);
  312. CFQ_CFQQ_FNS(coop);
  313. CFQ_CFQQ_FNS(split_coop);
  314. CFQ_CFQQ_FNS(deep);
  315. CFQ_CFQQ_FNS(wait_busy);
  316. #undef CFQ_CFQQ_FNS
  317. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  318. #define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
  319. blk_add_trace_msg((cfqd)->queue, "cfq%d%c %s " fmt, (cfqq)->pid, \
  320. cfq_cfqq_sync((cfqq)) ? 'S' : 'A', \
  321. blkg_path(&(cfqq)->cfqg->blkg), ##args);
  322. #define cfq_log_cfqg(cfqd, cfqg, fmt, args...) \
  323. blk_add_trace_msg((cfqd)->queue, "%s " fmt, \
  324. blkg_path(&(cfqg)->blkg), ##args); \
  325. #else
  326. #define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
  327. blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)
  328. #define cfq_log_cfqg(cfqd, cfqg, fmt, args...) do {} while (0);
  329. #endif
  330. #define cfq_log(cfqd, fmt, args...) \
  331. blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
  332. /* Traverses through cfq group service trees */
  333. #define for_each_cfqg_st(cfqg, i, j, st) \
  334. for (i = 0; i <= IDLE_WORKLOAD; i++) \
  335. for (j = 0, st = i < IDLE_WORKLOAD ? &cfqg->service_trees[i][j]\
  336. : &cfqg->service_tree_idle; \
  337. (i < IDLE_WORKLOAD && j <= SYNC_WORKLOAD) || \
  338. (i == IDLE_WORKLOAD && j == 0); \
  339. j++, st = i < IDLE_WORKLOAD ? \
  340. &cfqg->service_trees[i][j]: NULL) \
  341. static inline bool iops_mode(struct cfq_data *cfqd)
  342. {
  343. /*
  344. * If we are not idling on queues and it is a NCQ drive, parallel
  345. * execution of requests is on and measuring time is not possible
  346. * in most of the cases until and unless we drive shallower queue
  347. * depths and that becomes a performance bottleneck. In such cases
  348. * switch to start providing fairness in terms of number of IOs.
  349. */
  350. if (!cfqd->cfq_slice_idle && cfqd->hw_tag)
  351. return true;
  352. else
  353. return false;
  354. }
  355. static inline enum wl_prio_t cfqq_prio(struct cfq_queue *cfqq)
  356. {
  357. if (cfq_class_idle(cfqq))
  358. return IDLE_WORKLOAD;
  359. if (cfq_class_rt(cfqq))
  360. return RT_WORKLOAD;
  361. return BE_WORKLOAD;
  362. }
  363. static enum wl_type_t cfqq_type(struct cfq_queue *cfqq)
  364. {
  365. if (!cfq_cfqq_sync(cfqq))
  366. return ASYNC_WORKLOAD;
  367. if (!cfq_cfqq_idle_window(cfqq))
  368. return SYNC_NOIDLE_WORKLOAD;
  369. return SYNC_WORKLOAD;
  370. }
  371. static inline int cfq_group_busy_queues_wl(enum wl_prio_t wl,
  372. struct cfq_data *cfqd,
  373. struct cfq_group *cfqg)
  374. {
  375. if (wl == IDLE_WORKLOAD)
  376. return cfqg->service_tree_idle.count;
  377. return cfqg->service_trees[wl][ASYNC_WORKLOAD].count
  378. + cfqg->service_trees[wl][SYNC_NOIDLE_WORKLOAD].count
  379. + cfqg->service_trees[wl][SYNC_WORKLOAD].count;
  380. }
  381. static inline int cfqg_busy_async_queues(struct cfq_data *cfqd,
  382. struct cfq_group *cfqg)
  383. {
  384. return cfqg->service_trees[RT_WORKLOAD][ASYNC_WORKLOAD].count
  385. + cfqg->service_trees[BE_WORKLOAD][ASYNC_WORKLOAD].count;
  386. }
  387. static void cfq_dispatch_insert(struct request_queue *, struct request *);
  388. static struct cfq_queue *cfq_get_queue(struct cfq_data *, bool,
  389. struct io_context *, gfp_t);
  390. static struct cfq_io_context *cfq_cic_lookup(struct cfq_data *,
  391. struct io_context *);
  392. static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_context *cic,
  393. bool is_sync)
  394. {
  395. return cic->cfqq[is_sync];
  396. }
  397. static inline void cic_set_cfqq(struct cfq_io_context *cic,
  398. struct cfq_queue *cfqq, bool is_sync)
  399. {
  400. cic->cfqq[is_sync] = cfqq;
  401. }
  402. #define CIC_DEAD_KEY 1ul
  403. #define CIC_DEAD_INDEX_SHIFT 1
  404. static inline void *cfqd_dead_key(struct cfq_data *cfqd)
  405. {
  406. return (void *)(cfqd->cic_index << CIC_DEAD_INDEX_SHIFT | CIC_DEAD_KEY);
  407. }
  408. static inline struct cfq_data *cic_to_cfqd(struct cfq_io_context *cic)
  409. {
  410. struct cfq_data *cfqd = cic->key;
  411. if (unlikely((unsigned long) cfqd & CIC_DEAD_KEY))
  412. return NULL;
  413. return cfqd;
  414. }
  415. /*
  416. * We regard a request as SYNC, if it's either a read or has the SYNC bit
  417. * set (in which case it could also be direct WRITE).
  418. */
  419. static inline bool cfq_bio_sync(struct bio *bio)
  420. {
  421. return bio_data_dir(bio) == READ || (bio->bi_rw & REQ_SYNC);
  422. }
  423. /*
  424. * scheduler run of queue, if there are requests pending and no one in the
  425. * driver that will restart queueing
  426. */
  427. static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
  428. {
  429. if (cfqd->busy_queues) {
  430. cfq_log(cfqd, "schedule dispatch");
  431. kblockd_schedule_work(cfqd->queue, &cfqd->unplug_work);
  432. }
  433. }
  434. /*
  435. * Scale schedule slice based on io priority. Use the sync time slice only
  436. * if a queue is marked sync and has sync io queued. A sync queue with async
  437. * io only, should not get full sync slice length.
  438. */
  439. static inline int cfq_prio_slice(struct cfq_data *cfqd, bool sync,
  440. unsigned short prio)
  441. {
  442. const int base_slice = cfqd->cfq_slice[sync];
  443. WARN_ON(prio >= IOPRIO_BE_NR);
  444. return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
  445. }
  446. static inline int
  447. cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  448. {
  449. return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
  450. }
  451. static inline u64 cfq_scale_slice(unsigned long delta, struct cfq_group *cfqg)
  452. {
  453. u64 d = delta << CFQ_SERVICE_SHIFT;
  454. d = d * BLKIO_WEIGHT_DEFAULT;
  455. do_div(d, cfqg->weight);
  456. return d;
  457. }
  458. static inline u64 max_vdisktime(u64 min_vdisktime, u64 vdisktime)
  459. {
  460. s64 delta = (s64)(vdisktime - min_vdisktime);
  461. if (delta > 0)
  462. min_vdisktime = vdisktime;
  463. return min_vdisktime;
  464. }
  465. static inline u64 min_vdisktime(u64 min_vdisktime, u64 vdisktime)
  466. {
  467. s64 delta = (s64)(vdisktime - min_vdisktime);
  468. if (delta < 0)
  469. min_vdisktime = vdisktime;
  470. return min_vdisktime;
  471. }
  472. static void update_min_vdisktime(struct cfq_rb_root *st)
  473. {
  474. struct cfq_group *cfqg;
  475. if (st->left) {
  476. cfqg = rb_entry_cfqg(st->left);
  477. st->min_vdisktime = max_vdisktime(st->min_vdisktime,
  478. cfqg->vdisktime);
  479. }
  480. }
  481. /*
  482. * get averaged number of queues of RT/BE priority.
  483. * average is updated, with a formula that gives more weight to higher numbers,
  484. * to quickly follows sudden increases and decrease slowly
  485. */
  486. static inline unsigned cfq_group_get_avg_queues(struct cfq_data *cfqd,
  487. struct cfq_group *cfqg, bool rt)
  488. {
  489. unsigned min_q, max_q;
  490. unsigned mult = cfq_hist_divisor - 1;
  491. unsigned round = cfq_hist_divisor / 2;
  492. unsigned busy = cfq_group_busy_queues_wl(rt, cfqd, cfqg);
  493. min_q = min(cfqg->busy_queues_avg[rt], busy);
  494. max_q = max(cfqg->busy_queues_avg[rt], busy);
  495. cfqg->busy_queues_avg[rt] = (mult * max_q + min_q + round) /
  496. cfq_hist_divisor;
  497. return cfqg->busy_queues_avg[rt];
  498. }
  499. static inline unsigned
  500. cfq_group_slice(struct cfq_data *cfqd, struct cfq_group *cfqg)
  501. {
  502. struct cfq_rb_root *st = &cfqd->grp_service_tree;
  503. return cfq_target_latency * cfqg->weight / st->total_weight;
  504. }
  505. static inline unsigned
  506. cfq_scaled_cfqq_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  507. {
  508. unsigned slice = cfq_prio_to_slice(cfqd, cfqq);
  509. if (cfqd->cfq_latency) {
  510. /*
  511. * interested queues (we consider only the ones with the same
  512. * priority class in the cfq group)
  513. */
  514. unsigned iq = cfq_group_get_avg_queues(cfqd, cfqq->cfqg,
  515. cfq_class_rt(cfqq));
  516. unsigned sync_slice = cfqd->cfq_slice[1];
  517. unsigned expect_latency = sync_slice * iq;
  518. unsigned group_slice = cfq_group_slice(cfqd, cfqq->cfqg);
  519. if (expect_latency > group_slice) {
  520. unsigned base_low_slice = 2 * cfqd->cfq_slice_idle;
  521. /* scale low_slice according to IO priority
  522. * and sync vs async */
  523. unsigned low_slice =
  524. min(slice, base_low_slice * slice / sync_slice);
  525. /* the adapted slice value is scaled to fit all iqs
  526. * into the target latency */
  527. slice = max(slice * group_slice / expect_latency,
  528. low_slice);
  529. }
  530. }
  531. return slice;
  532. }
  533. static inline void
  534. cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  535. {
  536. unsigned slice = cfq_scaled_cfqq_slice(cfqd, cfqq);
  537. cfqq->slice_start = jiffies;
  538. cfqq->slice_end = jiffies + slice;
  539. cfqq->allocated_slice = slice;
  540. cfq_log_cfqq(cfqd, cfqq, "set_slice=%lu", cfqq->slice_end - jiffies);
  541. }
  542. /*
  543. * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
  544. * isn't valid until the first request from the dispatch is activated
  545. * and the slice time set.
  546. */
  547. static inline bool cfq_slice_used(struct cfq_queue *cfqq)
  548. {
  549. if (cfq_cfqq_slice_new(cfqq))
  550. return false;
  551. if (time_before(jiffies, cfqq->slice_end))
  552. return false;
  553. return true;
  554. }
  555. /*
  556. * Lifted from AS - choose which of rq1 and rq2 that is best served now.
  557. * We choose the request that is closest to the head right now. Distance
  558. * behind the head is penalized and only allowed to a certain extent.
  559. */
  560. static struct request *
  561. cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2, sector_t last)
  562. {
  563. sector_t s1, s2, d1 = 0, d2 = 0;
  564. unsigned long back_max;
  565. #define CFQ_RQ1_WRAP 0x01 /* request 1 wraps */
  566. #define CFQ_RQ2_WRAP 0x02 /* request 2 wraps */
  567. unsigned wrap = 0; /* bit mask: requests behind the disk head? */
  568. if (rq1 == NULL || rq1 == rq2)
  569. return rq2;
  570. if (rq2 == NULL)
  571. return rq1;
  572. if (rq_is_sync(rq1) && !rq_is_sync(rq2))
  573. return rq1;
  574. else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
  575. return rq2;
  576. if ((rq1->cmd_flags & REQ_META) && !(rq2->cmd_flags & REQ_META))
  577. return rq1;
  578. else if ((rq2->cmd_flags & REQ_META) &&
  579. !(rq1->cmd_flags & REQ_META))
  580. return rq2;
  581. s1 = blk_rq_pos(rq1);
  582. s2 = blk_rq_pos(rq2);
  583. /*
  584. * by definition, 1KiB is 2 sectors
  585. */
  586. back_max = cfqd->cfq_back_max * 2;
  587. /*
  588. * Strict one way elevator _except_ in the case where we allow
  589. * short backward seeks which are biased as twice the cost of a
  590. * similar forward seek.
  591. */
  592. if (s1 >= last)
  593. d1 = s1 - last;
  594. else if (s1 + back_max >= last)
  595. d1 = (last - s1) * cfqd->cfq_back_penalty;
  596. else
  597. wrap |= CFQ_RQ1_WRAP;
  598. if (s2 >= last)
  599. d2 = s2 - last;
  600. else if (s2 + back_max >= last)
  601. d2 = (last - s2) * cfqd->cfq_back_penalty;
  602. else
  603. wrap |= CFQ_RQ2_WRAP;
  604. /* Found required data */
  605. /*
  606. * By doing switch() on the bit mask "wrap" we avoid having to
  607. * check two variables for all permutations: --> faster!
  608. */
  609. switch (wrap) {
  610. case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
  611. if (d1 < d2)
  612. return rq1;
  613. else if (d2 < d1)
  614. return rq2;
  615. else {
  616. if (s1 >= s2)
  617. return rq1;
  618. else
  619. return rq2;
  620. }
  621. case CFQ_RQ2_WRAP:
  622. return rq1;
  623. case CFQ_RQ1_WRAP:
  624. return rq2;
  625. case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
  626. default:
  627. /*
  628. * Since both rqs are wrapped,
  629. * start with the one that's further behind head
  630. * (--> only *one* back seek required),
  631. * since back seek takes more time than forward.
  632. */
  633. if (s1 <= s2)
  634. return rq1;
  635. else
  636. return rq2;
  637. }
  638. }
  639. /*
  640. * The below is leftmost cache rbtree addon
  641. */
  642. static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
  643. {
  644. /* Service tree is empty */
  645. if (!root->count)
  646. return NULL;
  647. if (!root->left)
  648. root->left = rb_first(&root->rb);
  649. if (root->left)
  650. return rb_entry(root->left, struct cfq_queue, rb_node);
  651. return NULL;
  652. }
  653. static struct cfq_group *cfq_rb_first_group(struct cfq_rb_root *root)
  654. {
  655. if (!root->left)
  656. root->left = rb_first(&root->rb);
  657. if (root->left)
  658. return rb_entry_cfqg(root->left);
  659. return NULL;
  660. }
  661. static void rb_erase_init(struct rb_node *n, struct rb_root *root)
  662. {
  663. rb_erase(n, root);
  664. RB_CLEAR_NODE(n);
  665. }
  666. static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
  667. {
  668. if (root->left == n)
  669. root->left = NULL;
  670. rb_erase_init(n, &root->rb);
  671. --root->count;
  672. }
  673. /*
  674. * would be nice to take fifo expire time into account as well
  675. */
  676. static struct request *
  677. cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  678. struct request *last)
  679. {
  680. struct rb_node *rbnext = rb_next(&last->rb_node);
  681. struct rb_node *rbprev = rb_prev(&last->rb_node);
  682. struct request *next = NULL, *prev = NULL;
  683. BUG_ON(RB_EMPTY_NODE(&last->rb_node));
  684. if (rbprev)
  685. prev = rb_entry_rq(rbprev);
  686. if (rbnext)
  687. next = rb_entry_rq(rbnext);
  688. else {
  689. rbnext = rb_first(&cfqq->sort_list);
  690. if (rbnext && rbnext != &last->rb_node)
  691. next = rb_entry_rq(rbnext);
  692. }
  693. return cfq_choose_req(cfqd, next, prev, blk_rq_pos(last));
  694. }
  695. static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
  696. struct cfq_queue *cfqq)
  697. {
  698. /*
  699. * just an approximation, should be ok.
  700. */
  701. return (cfqq->cfqg->nr_cfqq - 1) * (cfq_prio_slice(cfqd, 1, 0) -
  702. cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
  703. }
  704. static inline s64
  705. cfqg_key(struct cfq_rb_root *st, struct cfq_group *cfqg)
  706. {
  707. return cfqg->vdisktime - st->min_vdisktime;
  708. }
  709. static void
  710. __cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
  711. {
  712. struct rb_node **node = &st->rb.rb_node;
  713. struct rb_node *parent = NULL;
  714. struct cfq_group *__cfqg;
  715. s64 key = cfqg_key(st, cfqg);
  716. int left = 1;
  717. while (*node != NULL) {
  718. parent = *node;
  719. __cfqg = rb_entry_cfqg(parent);
  720. if (key < cfqg_key(st, __cfqg))
  721. node = &parent->rb_left;
  722. else {
  723. node = &parent->rb_right;
  724. left = 0;
  725. }
  726. }
  727. if (left)
  728. st->left = &cfqg->rb_node;
  729. rb_link_node(&cfqg->rb_node, parent, node);
  730. rb_insert_color(&cfqg->rb_node, &st->rb);
  731. }
  732. static void
  733. cfq_update_group_weight(struct cfq_group *cfqg)
  734. {
  735. BUG_ON(!RB_EMPTY_NODE(&cfqg->rb_node));
  736. if (cfqg->needs_update) {
  737. cfqg->weight = cfqg->new_weight;
  738. cfqg->needs_update = false;
  739. }
  740. }
  741. static void
  742. cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
  743. {
  744. BUG_ON(!RB_EMPTY_NODE(&cfqg->rb_node));
  745. cfq_update_group_weight(cfqg);
  746. __cfq_group_service_tree_add(st, cfqg);
  747. st->total_weight += cfqg->weight;
  748. }
  749. static void
  750. cfq_group_notify_queue_add(struct cfq_data *cfqd, struct cfq_group *cfqg)
  751. {
  752. struct cfq_rb_root *st = &cfqd->grp_service_tree;
  753. struct cfq_group *__cfqg;
  754. struct rb_node *n;
  755. cfqg->nr_cfqq++;
  756. if (!RB_EMPTY_NODE(&cfqg->rb_node))
  757. return;
  758. /*
  759. * Currently put the group at the end. Later implement something
  760. * so that groups get lesser vtime based on their weights, so that
  761. * if group does not loose all if it was not continously backlogged.
  762. */
  763. n = rb_last(&st->rb);
  764. if (n) {
  765. __cfqg = rb_entry_cfqg(n);
  766. cfqg->vdisktime = __cfqg->vdisktime + CFQ_IDLE_DELAY;
  767. } else
  768. cfqg->vdisktime = st->min_vdisktime;
  769. cfq_group_service_tree_add(st, cfqg);
  770. }
  771. static void
  772. cfq_group_service_tree_del(struct cfq_rb_root *st, struct cfq_group *cfqg)
  773. {
  774. st->total_weight -= cfqg->weight;
  775. if (!RB_EMPTY_NODE(&cfqg->rb_node))
  776. cfq_rb_erase(&cfqg->rb_node, st);
  777. }
  778. static void
  779. cfq_group_notify_queue_del(struct cfq_data *cfqd, struct cfq_group *cfqg)
  780. {
  781. struct cfq_rb_root *st = &cfqd->grp_service_tree;
  782. BUG_ON(cfqg->nr_cfqq < 1);
  783. cfqg->nr_cfqq--;
  784. /* If there are other cfq queues under this group, don't delete it */
  785. if (cfqg->nr_cfqq)
  786. return;
  787. cfq_log_cfqg(cfqd, cfqg, "del_from_rr group");
  788. cfq_group_service_tree_del(st, cfqg);
  789. cfqg->saved_workload_slice = 0;
  790. cfq_blkiocg_update_dequeue_stats(&cfqg->blkg, 1);
  791. }
  792. static inline unsigned int cfq_cfqq_slice_usage(struct cfq_queue *cfqq,
  793. unsigned int *unaccounted_time)
  794. {
  795. unsigned int slice_used;
  796. /*
  797. * Queue got expired before even a single request completed or
  798. * got expired immediately after first request completion.
  799. */
  800. if (!cfqq->slice_start || cfqq->slice_start == jiffies) {
  801. /*
  802. * Also charge the seek time incurred to the group, otherwise
  803. * if there are mutiple queues in the group, each can dispatch
  804. * a single request on seeky media and cause lots of seek time
  805. * and group will never know it.
  806. */
  807. slice_used = max_t(unsigned, (jiffies - cfqq->dispatch_start),
  808. 1);
  809. } else {
  810. slice_used = jiffies - cfqq->slice_start;
  811. if (slice_used > cfqq->allocated_slice) {
  812. *unaccounted_time = slice_used - cfqq->allocated_slice;
  813. slice_used = cfqq->allocated_slice;
  814. }
  815. if (time_after(cfqq->slice_start, cfqq->dispatch_start))
  816. *unaccounted_time += cfqq->slice_start -
  817. cfqq->dispatch_start;
  818. }
  819. return slice_used;
  820. }
  821. static void cfq_group_served(struct cfq_data *cfqd, struct cfq_group *cfqg,
  822. struct cfq_queue *cfqq)
  823. {
  824. struct cfq_rb_root *st = &cfqd->grp_service_tree;
  825. unsigned int used_sl, charge, unaccounted_sl = 0;
  826. int nr_sync = cfqg->nr_cfqq - cfqg_busy_async_queues(cfqd, cfqg)
  827. - cfqg->service_tree_idle.count;
  828. BUG_ON(nr_sync < 0);
  829. used_sl = charge = cfq_cfqq_slice_usage(cfqq, &unaccounted_sl);
  830. if (iops_mode(cfqd))
  831. charge = cfqq->slice_dispatch;
  832. else if (!cfq_cfqq_sync(cfqq) && !nr_sync)
  833. charge = cfqq->allocated_slice;
  834. /* Can't update vdisktime while group is on service tree */
  835. cfq_group_service_tree_del(st, cfqg);
  836. cfqg->vdisktime += cfq_scale_slice(charge, cfqg);
  837. /* If a new weight was requested, update now, off tree */
  838. cfq_group_service_tree_add(st, cfqg);
  839. /* This group is being expired. Save the context */
  840. if (time_after(cfqd->workload_expires, jiffies)) {
  841. cfqg->saved_workload_slice = cfqd->workload_expires
  842. - jiffies;
  843. cfqg->saved_workload = cfqd->serving_type;
  844. cfqg->saved_serving_prio = cfqd->serving_prio;
  845. } else
  846. cfqg->saved_workload_slice = 0;
  847. cfq_log_cfqg(cfqd, cfqg, "served: vt=%llu min_vt=%llu", cfqg->vdisktime,
  848. st->min_vdisktime);
  849. cfq_log_cfqq(cfqq->cfqd, cfqq, "sl_used=%u disp=%u charge=%u iops=%u"
  850. " sect=%u", used_sl, cfqq->slice_dispatch, charge,
  851. iops_mode(cfqd), cfqq->nr_sectors);
  852. cfq_blkiocg_update_timeslice_used(&cfqg->blkg, used_sl,
  853. unaccounted_sl);
  854. cfq_blkiocg_set_start_empty_time(&cfqg->blkg);
  855. }
  856. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  857. static inline struct cfq_group *cfqg_of_blkg(struct blkio_group *blkg)
  858. {
  859. if (blkg)
  860. return container_of(blkg, struct cfq_group, blkg);
  861. return NULL;
  862. }
  863. void cfq_update_blkio_group_weight(void *key, struct blkio_group *blkg,
  864. unsigned int weight)
  865. {
  866. struct cfq_group *cfqg = cfqg_of_blkg(blkg);
  867. cfqg->new_weight = weight;
  868. cfqg->needs_update = true;
  869. }
  870. static struct cfq_group *
  871. cfq_find_alloc_cfqg(struct cfq_data *cfqd, struct cgroup *cgroup, int create)
  872. {
  873. struct blkio_cgroup *blkcg = cgroup_to_blkio_cgroup(cgroup);
  874. struct cfq_group *cfqg = NULL;
  875. void *key = cfqd;
  876. int i, j;
  877. struct cfq_rb_root *st;
  878. struct backing_dev_info *bdi = &cfqd->queue->backing_dev_info;
  879. unsigned int major, minor;
  880. cfqg = cfqg_of_blkg(blkiocg_lookup_group(blkcg, key));
  881. if (cfqg && !cfqg->blkg.dev && bdi->dev && dev_name(bdi->dev)) {
  882. sscanf(dev_name(bdi->dev), "%u:%u", &major, &minor);
  883. cfqg->blkg.dev = MKDEV(major, minor);
  884. goto done;
  885. }
  886. if (cfqg || !create)
  887. goto done;
  888. cfqg = kzalloc_node(sizeof(*cfqg), GFP_ATOMIC, cfqd->queue->node);
  889. if (!cfqg)
  890. goto done;
  891. for_each_cfqg_st(cfqg, i, j, st)
  892. *st = CFQ_RB_ROOT;
  893. RB_CLEAR_NODE(&cfqg->rb_node);
  894. /*
  895. * Take the initial reference that will be released on destroy
  896. * This can be thought of a joint reference by cgroup and
  897. * elevator which will be dropped by either elevator exit
  898. * or cgroup deletion path depending on who is exiting first.
  899. */
  900. cfqg->ref = 1;
  901. /*
  902. * Add group onto cgroup list. It might happen that bdi->dev is
  903. * not initialized yet. Initialize this new group without major
  904. * and minor info and this info will be filled in once a new thread
  905. * comes for IO. See code above.
  906. */
  907. if (bdi->dev) {
  908. sscanf(dev_name(bdi->dev), "%u:%u", &major, &minor);
  909. cfq_blkiocg_add_blkio_group(blkcg, &cfqg->blkg, (void *)cfqd,
  910. MKDEV(major, minor));
  911. } else
  912. cfq_blkiocg_add_blkio_group(blkcg, &cfqg->blkg, (void *)cfqd,
  913. 0);
  914. cfqg->weight = blkcg_get_weight(blkcg, cfqg->blkg.dev);
  915. /* Add group on cfqd list */
  916. hlist_add_head(&cfqg->cfqd_node, &cfqd->cfqg_list);
  917. done:
  918. return cfqg;
  919. }
  920. /*
  921. * Search for the cfq group current task belongs to. If create = 1, then also
  922. * create the cfq group if it does not exist. request_queue lock must be held.
  923. */
  924. static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd, int create)
  925. {
  926. struct cgroup *cgroup;
  927. struct cfq_group *cfqg = NULL;
  928. rcu_read_lock();
  929. cgroup = task_cgroup(current, blkio_subsys_id);
  930. cfqg = cfq_find_alloc_cfqg(cfqd, cgroup, create);
  931. if (!cfqg && create)
  932. cfqg = &cfqd->root_group;
  933. rcu_read_unlock();
  934. return cfqg;
  935. }
  936. static inline struct cfq_group *cfq_ref_get_cfqg(struct cfq_group *cfqg)
  937. {
  938. cfqg->ref++;
  939. return cfqg;
  940. }
  941. static void cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg)
  942. {
  943. /* Currently, all async queues are mapped to root group */
  944. if (!cfq_cfqq_sync(cfqq))
  945. cfqg = &cfqq->cfqd->root_group;
  946. cfqq->cfqg = cfqg;
  947. /* cfqq reference on cfqg */
  948. cfqq->cfqg->ref++;
  949. }
  950. static void cfq_put_cfqg(struct cfq_group *cfqg)
  951. {
  952. struct cfq_rb_root *st;
  953. int i, j;
  954. BUG_ON(cfqg->ref <= 0);
  955. cfqg->ref--;
  956. if (cfqg->ref)
  957. return;
  958. for_each_cfqg_st(cfqg, i, j, st)
  959. BUG_ON(!RB_EMPTY_ROOT(&st->rb));
  960. kfree(cfqg);
  961. }
  962. static void cfq_destroy_cfqg(struct cfq_data *cfqd, struct cfq_group *cfqg)
  963. {
  964. /* Something wrong if we are trying to remove same group twice */
  965. BUG_ON(hlist_unhashed(&cfqg->cfqd_node));
  966. hlist_del_init(&cfqg->cfqd_node);
  967. /*
  968. * Put the reference taken at the time of creation so that when all
  969. * queues are gone, group can be destroyed.
  970. */
  971. cfq_put_cfqg(cfqg);
  972. }
  973. static void cfq_release_cfq_groups(struct cfq_data *cfqd)
  974. {
  975. struct hlist_node *pos, *n;
  976. struct cfq_group *cfqg;
  977. hlist_for_each_entry_safe(cfqg, pos, n, &cfqd->cfqg_list, cfqd_node) {
  978. /*
  979. * If cgroup removal path got to blk_group first and removed
  980. * it from cgroup list, then it will take care of destroying
  981. * cfqg also.
  982. */
  983. if (!cfq_blkiocg_del_blkio_group(&cfqg->blkg))
  984. cfq_destroy_cfqg(cfqd, cfqg);
  985. }
  986. }
  987. /*
  988. * Blk cgroup controller notification saying that blkio_group object is being
  989. * delinked as associated cgroup object is going away. That also means that
  990. * no new IO will come in this group. So get rid of this group as soon as
  991. * any pending IO in the group is finished.
  992. *
  993. * This function is called under rcu_read_lock(). key is the rcu protected
  994. * pointer. That means "key" is a valid cfq_data pointer as long as we are rcu
  995. * read lock.
  996. *
  997. * "key" was fetched from blkio_group under blkio_cgroup->lock. That means
  998. * it should not be NULL as even if elevator was exiting, cgroup deltion
  999. * path got to it first.
  1000. */
  1001. void cfq_unlink_blkio_group(void *key, struct blkio_group *blkg)
  1002. {
  1003. unsigned long flags;
  1004. struct cfq_data *cfqd = key;
  1005. spin_lock_irqsave(cfqd->queue->queue_lock, flags);
  1006. cfq_destroy_cfqg(cfqd, cfqg_of_blkg(blkg));
  1007. spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
  1008. }
  1009. #else /* GROUP_IOSCHED */
  1010. static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd, int create)
  1011. {
  1012. return &cfqd->root_group;
  1013. }
  1014. static inline struct cfq_group *cfq_ref_get_cfqg(struct cfq_group *cfqg)
  1015. {
  1016. return cfqg;
  1017. }
  1018. static inline void
  1019. cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg) {
  1020. cfqq->cfqg = cfqg;
  1021. }
  1022. static void cfq_release_cfq_groups(struct cfq_data *cfqd) {}
  1023. static inline void cfq_put_cfqg(struct cfq_group *cfqg) {}
  1024. #endif /* GROUP_IOSCHED */
  1025. /*
  1026. * The cfqd->service_trees holds all pending cfq_queue's that have
  1027. * requests waiting to be processed. It is sorted in the order that
  1028. * we will service the queues.
  1029. */
  1030. static void cfq_service_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  1031. bool add_front)
  1032. {
  1033. struct rb_node **p, *parent;
  1034. struct cfq_queue *__cfqq;
  1035. unsigned long rb_key;
  1036. struct cfq_rb_root *service_tree;
  1037. int left;
  1038. int new_cfqq = 1;
  1039. int group_changed = 0;
  1040. service_tree = service_tree_for(cfqq->cfqg, cfqq_prio(cfqq),
  1041. cfqq_type(cfqq));
  1042. if (cfq_class_idle(cfqq)) {
  1043. rb_key = CFQ_IDLE_DELAY;
  1044. parent = rb_last(&service_tree->rb);
  1045. if (parent && parent != &cfqq->rb_node) {
  1046. __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
  1047. rb_key += __cfqq->rb_key;
  1048. } else
  1049. rb_key += jiffies;
  1050. } else if (!add_front) {
  1051. /*
  1052. * Get our rb key offset. Subtract any residual slice
  1053. * value carried from last service. A negative resid
  1054. * count indicates slice overrun, and this should position
  1055. * the next service time further away in the tree.
  1056. */
  1057. rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
  1058. rb_key -= cfqq->slice_resid;
  1059. cfqq->slice_resid = 0;
  1060. } else {
  1061. rb_key = -HZ;
  1062. __cfqq = cfq_rb_first(service_tree);
  1063. rb_key += __cfqq ? __cfqq->rb_key : jiffies;
  1064. }
  1065. if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
  1066. new_cfqq = 0;
  1067. /*
  1068. * same position, nothing more to do
  1069. */
  1070. if (rb_key == cfqq->rb_key &&
  1071. cfqq->service_tree == service_tree)
  1072. return;
  1073. cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
  1074. cfqq->service_tree = NULL;
  1075. }
  1076. left = 1;
  1077. parent = NULL;
  1078. cfqq->service_tree = service_tree;
  1079. p = &service_tree->rb.rb_node;
  1080. while (*p) {
  1081. struct rb_node **n;
  1082. parent = *p;
  1083. __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
  1084. /*
  1085. * sort by key, that represents service time.
  1086. */
  1087. if (time_before(rb_key, __cfqq->rb_key))
  1088. n = &(*p)->rb_left;
  1089. else {
  1090. n = &(*p)->rb_right;
  1091. left = 0;
  1092. }
  1093. p = n;
  1094. }
  1095. if (left)
  1096. service_tree->left = &cfqq->rb_node;
  1097. cfqq->rb_key = rb_key;
  1098. rb_link_node(&cfqq->rb_node, parent, p);
  1099. rb_insert_color(&cfqq->rb_node, &service_tree->rb);
  1100. service_tree->count++;
  1101. if ((add_front || !new_cfqq) && !group_changed)
  1102. return;
  1103. cfq_group_notify_queue_add(cfqd, cfqq->cfqg);
  1104. }
  1105. static struct cfq_queue *
  1106. cfq_prio_tree_lookup(struct cfq_data *cfqd, struct rb_root *root,
  1107. sector_t sector, struct rb_node **ret_parent,
  1108. struct rb_node ***rb_link)
  1109. {
  1110. struct rb_node **p, *parent;
  1111. struct cfq_queue *cfqq = NULL;
  1112. parent = NULL;
  1113. p = &root->rb_node;
  1114. while (*p) {
  1115. struct rb_node **n;
  1116. parent = *p;
  1117. cfqq = rb_entry(parent, struct cfq_queue, p_node);
  1118. /*
  1119. * Sort strictly based on sector. Smallest to the left,
  1120. * largest to the right.
  1121. */
  1122. if (sector > blk_rq_pos(cfqq->next_rq))
  1123. n = &(*p)->rb_right;
  1124. else if (sector < blk_rq_pos(cfqq->next_rq))
  1125. n = &(*p)->rb_left;
  1126. else
  1127. break;
  1128. p = n;
  1129. cfqq = NULL;
  1130. }
  1131. *ret_parent = parent;
  1132. if (rb_link)
  1133. *rb_link = p;
  1134. return cfqq;
  1135. }
  1136. static void cfq_prio_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  1137. {
  1138. struct rb_node **p, *parent;
  1139. struct cfq_queue *__cfqq;
  1140. if (cfqq->p_root) {
  1141. rb_erase(&cfqq->p_node, cfqq->p_root);
  1142. cfqq->p_root = NULL;
  1143. }
  1144. if (cfq_class_idle(cfqq))
  1145. return;
  1146. if (!cfqq->next_rq)
  1147. return;
  1148. cfqq->p_root = &cfqd->prio_trees[cfqq->org_ioprio];
  1149. __cfqq = cfq_prio_tree_lookup(cfqd, cfqq->p_root,
  1150. blk_rq_pos(cfqq->next_rq), &parent, &p);
  1151. if (!__cfqq) {
  1152. rb_link_node(&cfqq->p_node, parent, p);
  1153. rb_insert_color(&cfqq->p_node, cfqq->p_root);
  1154. } else
  1155. cfqq->p_root = NULL;
  1156. }
  1157. /*
  1158. * Update cfqq's position in the service tree.
  1159. */
  1160. static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  1161. {
  1162. /*
  1163. * Resorting requires the cfqq to be on the RR list already.
  1164. */
  1165. if (cfq_cfqq_on_rr(cfqq)) {
  1166. cfq_service_tree_add(cfqd, cfqq, 0);
  1167. cfq_prio_tree_add(cfqd, cfqq);
  1168. }
  1169. }
  1170. /*
  1171. * add to busy list of queues for service, trying to be fair in ordering
  1172. * the pending list according to last request service
  1173. */
  1174. static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  1175. {
  1176. cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
  1177. BUG_ON(cfq_cfqq_on_rr(cfqq));
  1178. cfq_mark_cfqq_on_rr(cfqq);
  1179. cfqd->busy_queues++;
  1180. if (cfq_cfqq_sync(cfqq))
  1181. cfqd->busy_sync_queues++;
  1182. cfq_resort_rr_list(cfqd, cfqq);
  1183. }
  1184. /*
  1185. * Called when the cfqq no longer has requests pending, remove it from
  1186. * the service tree.
  1187. */
  1188. static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  1189. {
  1190. cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
  1191. BUG_ON(!cfq_cfqq_on_rr(cfqq));
  1192. cfq_clear_cfqq_on_rr(cfqq);
  1193. if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
  1194. cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
  1195. cfqq->service_tree = NULL;
  1196. }
  1197. if (cfqq->p_root) {
  1198. rb_erase(&cfqq->p_node, cfqq->p_root);
  1199. cfqq->p_root = NULL;
  1200. }
  1201. cfq_group_notify_queue_del(cfqd, cfqq->cfqg);
  1202. BUG_ON(!cfqd->busy_queues);
  1203. cfqd->busy_queues--;
  1204. if (cfq_cfqq_sync(cfqq))
  1205. cfqd->busy_sync_queues--;
  1206. }
  1207. /*
  1208. * rb tree support functions
  1209. */
  1210. static void cfq_del_rq_rb(struct request *rq)
  1211. {
  1212. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  1213. const int sync = rq_is_sync(rq);
  1214. BUG_ON(!cfqq->queued[sync]);
  1215. cfqq->queued[sync]--;
  1216. elv_rb_del(&cfqq->sort_list, rq);
  1217. if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list)) {
  1218. /*
  1219. * Queue will be deleted from service tree when we actually
  1220. * expire it later. Right now just remove it from prio tree
  1221. * as it is empty.
  1222. */
  1223. if (cfqq->p_root) {
  1224. rb_erase(&cfqq->p_node, cfqq->p_root);
  1225. cfqq->p_root = NULL;
  1226. }
  1227. }
  1228. }
  1229. static void cfq_add_rq_rb(struct request *rq)
  1230. {
  1231. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  1232. struct cfq_data *cfqd = cfqq->cfqd;
  1233. struct request *__alias, *prev;
  1234. cfqq->queued[rq_is_sync(rq)]++;
  1235. /*
  1236. * looks a little odd, but the first insert might return an alias.
  1237. * if that happens, put the alias on the dispatch list
  1238. */
  1239. while ((__alias = elv_rb_add(&cfqq->sort_list, rq)) != NULL)
  1240. cfq_dispatch_insert(cfqd->queue, __alias);
  1241. if (!cfq_cfqq_on_rr(cfqq))
  1242. cfq_add_cfqq_rr(cfqd, cfqq);
  1243. /*
  1244. * check if this request is a better next-serve candidate
  1245. */
  1246. prev = cfqq->next_rq;
  1247. cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq, cfqd->last_position);
  1248. /*
  1249. * adjust priority tree position, if ->next_rq changes
  1250. */
  1251. if (prev != cfqq->next_rq)
  1252. cfq_prio_tree_add(cfqd, cfqq);
  1253. BUG_ON(!cfqq->next_rq);
  1254. }
  1255. static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
  1256. {
  1257. elv_rb_del(&cfqq->sort_list, rq);
  1258. cfqq->queued[rq_is_sync(rq)]--;
  1259. cfq_blkiocg_update_io_remove_stats(&(RQ_CFQG(rq))->blkg,
  1260. rq_data_dir(rq), rq_is_sync(rq));
  1261. cfq_add_rq_rb(rq);
  1262. cfq_blkiocg_update_io_add_stats(&(RQ_CFQG(rq))->blkg,
  1263. &cfqq->cfqd->serving_group->blkg, rq_data_dir(rq),
  1264. rq_is_sync(rq));
  1265. }
  1266. static struct request *
  1267. cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
  1268. {
  1269. struct task_struct *tsk = current;
  1270. struct cfq_io_context *cic;
  1271. struct cfq_queue *cfqq;
  1272. cic = cfq_cic_lookup(cfqd, tsk->io_context);
  1273. if (!cic)
  1274. return NULL;
  1275. cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
  1276. if (cfqq) {
  1277. sector_t sector = bio->bi_sector + bio_sectors(bio);
  1278. return elv_rb_find(&cfqq->sort_list, sector);
  1279. }
  1280. return NULL;
  1281. }
  1282. static void cfq_activate_request(struct request_queue *q, struct request *rq)
  1283. {
  1284. struct cfq_data *cfqd = q->elevator->elevator_data;
  1285. cfqd->rq_in_driver++;
  1286. cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
  1287. cfqd->rq_in_driver);
  1288. cfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
  1289. }
  1290. static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
  1291. {
  1292. struct cfq_data *cfqd = q->elevator->elevator_data;
  1293. WARN_ON(!cfqd->rq_in_driver);
  1294. cfqd->rq_in_driver--;
  1295. cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
  1296. cfqd->rq_in_driver);
  1297. }
  1298. static void cfq_remove_request(struct request *rq)
  1299. {
  1300. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  1301. if (cfqq->next_rq == rq)
  1302. cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
  1303. list_del_init(&rq->queuelist);
  1304. cfq_del_rq_rb(rq);
  1305. cfqq->cfqd->rq_queued--;
  1306. cfq_blkiocg_update_io_remove_stats(&(RQ_CFQG(rq))->blkg,
  1307. rq_data_dir(rq), rq_is_sync(rq));
  1308. if (rq->cmd_flags & REQ_META) {
  1309. WARN_ON(!cfqq->meta_pending);
  1310. cfqq->meta_pending--;
  1311. }
  1312. }
  1313. static int cfq_merge(struct request_queue *q, struct request **req,
  1314. struct bio *bio)
  1315. {
  1316. struct cfq_data *cfqd = q->elevator->elevator_data;
  1317. struct request *__rq;
  1318. __rq = cfq_find_rq_fmerge(cfqd, bio);
  1319. if (__rq && elv_rq_merge_ok(__rq, bio)) {
  1320. *req = __rq;
  1321. return ELEVATOR_FRONT_MERGE;
  1322. }
  1323. return ELEVATOR_NO_MERGE;
  1324. }
  1325. static void cfq_merged_request(struct request_queue *q, struct request *req,
  1326. int type)
  1327. {
  1328. if (type == ELEVATOR_FRONT_MERGE) {
  1329. struct cfq_queue *cfqq = RQ_CFQQ(req);
  1330. cfq_reposition_rq_rb(cfqq, req);
  1331. }
  1332. }
  1333. static void cfq_bio_merged(struct request_queue *q, struct request *req,
  1334. struct bio *bio)
  1335. {
  1336. cfq_blkiocg_update_io_merged_stats(&(RQ_CFQG(req))->blkg,
  1337. bio_data_dir(bio), cfq_bio_sync(bio));
  1338. }
  1339. static void
  1340. cfq_merged_requests(struct request_queue *q, struct request *rq,
  1341. struct request *next)
  1342. {
  1343. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  1344. /*
  1345. * reposition in fifo if next is older than rq
  1346. */
  1347. if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
  1348. time_before(rq_fifo_time(next), rq_fifo_time(rq))) {
  1349. list_move(&rq->queuelist, &next->queuelist);
  1350. rq_set_fifo_time(rq, rq_fifo_time(next));
  1351. }
  1352. if (cfqq->next_rq == next)
  1353. cfqq->next_rq = rq;
  1354. cfq_remove_request(next);
  1355. cfq_blkiocg_update_io_merged_stats(&(RQ_CFQG(rq))->blkg,
  1356. rq_data_dir(next), rq_is_sync(next));
  1357. }
  1358. static int cfq_allow_merge(struct request_queue *q, struct request *rq,
  1359. struct bio *bio)
  1360. {
  1361. struct cfq_data *cfqd = q->elevator->elevator_data;
  1362. struct cfq_io_context *cic;
  1363. struct cfq_queue *cfqq;
  1364. /*
  1365. * Disallow merge of a sync bio into an async request.
  1366. */
  1367. if (cfq_bio_sync(bio) && !rq_is_sync(rq))
  1368. return false;
  1369. /*
  1370. * Lookup the cfqq that this bio will be queued with. Allow
  1371. * merge only if rq is queued there.
  1372. */
  1373. cic = cfq_cic_lookup(cfqd, current->io_context);
  1374. if (!cic)
  1375. return false;
  1376. cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
  1377. return cfqq == RQ_CFQQ(rq);
  1378. }
  1379. static inline void cfq_del_timer(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  1380. {
  1381. del_timer(&cfqd->idle_slice_timer);
  1382. cfq_blkiocg_update_idle_time_stats(&cfqq->cfqg->blkg);
  1383. }
  1384. static void cfq_clear_queue_stats(struct cfq_data *cfqd,
  1385. struct cfq_queue *cfqq)
  1386. {
  1387. cfq_blkiocg_update_avg_queue_size_stats(&cfqq->cfqg->blkg);
  1388. cfqq->slice_start = 0;
  1389. cfqq->dispatch_start = jiffies;
  1390. cfqq->allocated_slice = 0;
  1391. cfqq->slice_end = 0;
  1392. cfqq->slice_dispatch = 0;
  1393. cfqq->nr_sectors = 0;
  1394. cfq_clear_cfqq_wait_request(cfqq);
  1395. cfq_clear_cfqq_must_dispatch(cfqq);
  1396. cfq_clear_cfqq_must_alloc_slice(cfqq);
  1397. cfq_clear_cfqq_fifo_expire(cfqq);
  1398. cfq_mark_cfqq_slice_new(cfqq);
  1399. cfq_del_timer(cfqd, cfqq);
  1400. }
  1401. static void __cfq_set_active_queue(struct cfq_data *cfqd,
  1402. struct cfq_queue *cfqq)
  1403. {
  1404. if (cfqq) {
  1405. cfq_log_cfqq(cfqd, cfqq, "set_active wl_prio:%d wl_type:%d",
  1406. cfqd->serving_prio, cfqd->serving_type);
  1407. cfq_clear_queue_stats(cfqd, cfqq);
  1408. }
  1409. cfqd->active_queue = cfqq;
  1410. }
  1411. /*
  1412. * current cfqq expired its slice (or was too idle), select new one
  1413. */
  1414. static void
  1415. __cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  1416. bool timed_out)
  1417. {
  1418. cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);
  1419. if (cfq_cfqq_wait_request(cfqq))
  1420. cfq_del_timer(cfqd, cfqq);
  1421. cfq_clear_cfqq_wait_request(cfqq);
  1422. cfq_clear_cfqq_wait_busy(cfqq);
  1423. /*
  1424. * If this cfqq is shared between multiple processes, check to
  1425. * make sure that those processes are still issuing I/Os within
  1426. * the mean seek distance. If not, it may be time to break the
  1427. * queues apart again.
  1428. */
  1429. if (cfq_cfqq_coop(cfqq) && CFQQ_SEEKY(cfqq))
  1430. cfq_mark_cfqq_split_coop(cfqq);
  1431. /*
  1432. * store what was left of this slice, if the queue idled/timed out
  1433. */
  1434. if (timed_out) {
  1435. if (cfq_cfqq_slice_new(cfqq))
  1436. cfqq->slice_resid = cfq_scaled_cfqq_slice(cfqd, cfqq);
  1437. else
  1438. cfqq->slice_resid = cfqq->slice_end - jiffies;
  1439. cfq_log_cfqq(cfqd, cfqq, "resid=%ld", cfqq->slice_resid);
  1440. }
  1441. cfq_group_served(cfqd, cfqq->cfqg, cfqq);
  1442. if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
  1443. cfq_del_cfqq_rr(cfqd, cfqq);
  1444. cfq_resort_rr_list(cfqd, cfqq);
  1445. if (cfqq == cfqd->active_queue)
  1446. cfqd->active_queue = NULL;
  1447. if (cfqd->active_cic) {
  1448. put_io_context(cfqd->active_cic->ioc);
  1449. cfqd->active_cic = NULL;
  1450. }
  1451. }
  1452. static inline void cfq_slice_expired(struct cfq_data *cfqd, bool timed_out)
  1453. {
  1454. struct cfq_queue *cfqq = cfqd->active_queue;
  1455. if (cfqq)
  1456. __cfq_slice_expired(cfqd, cfqq, timed_out);
  1457. }
  1458. /*
  1459. * Get next queue for service. Unless we have a queue preemption,
  1460. * we'll simply select the first cfqq in the service tree.
  1461. */
  1462. static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
  1463. {
  1464. struct cfq_rb_root *service_tree =
  1465. service_tree_for(cfqd->serving_group, cfqd->serving_prio,
  1466. cfqd->serving_type);
  1467. if (!cfqd->rq_queued)
  1468. return NULL;
  1469. /* There is nothing to dispatch */
  1470. if (!service_tree)
  1471. return NULL;
  1472. if (RB_EMPTY_ROOT(&service_tree->rb))
  1473. return NULL;
  1474. return cfq_rb_first(service_tree);
  1475. }
  1476. static struct cfq_queue *cfq_get_next_queue_forced(struct cfq_data *cfqd)
  1477. {
  1478. struct cfq_group *cfqg;
  1479. struct cfq_queue *cfqq;
  1480. int i, j;
  1481. struct cfq_rb_root *st;
  1482. if (!cfqd->rq_queued)
  1483. return NULL;
  1484. cfqg = cfq_get_next_cfqg(cfqd);
  1485. if (!cfqg)
  1486. return NULL;
  1487. for_each_cfqg_st(cfqg, i, j, st)
  1488. if ((cfqq = cfq_rb_first(st)) != NULL)
  1489. return cfqq;
  1490. return NULL;
  1491. }
  1492. /*
  1493. * Get and set a new active queue for service.
  1494. */
  1495. static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd,
  1496. struct cfq_queue *cfqq)
  1497. {
  1498. if (!cfqq)
  1499. cfqq = cfq_get_next_queue(cfqd);
  1500. __cfq_set_active_queue(cfqd, cfqq);
  1501. return cfqq;
  1502. }
  1503. static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
  1504. struct request *rq)
  1505. {
  1506. if (blk_rq_pos(rq) >= cfqd->last_position)
  1507. return blk_rq_pos(rq) - cfqd->last_position;
  1508. else
  1509. return cfqd->last_position - blk_rq_pos(rq);
  1510. }
  1511. static inline int cfq_rq_close(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  1512. struct request *rq)
  1513. {
  1514. return cfq_dist_from_last(cfqd, rq) <= CFQQ_CLOSE_THR;
  1515. }
  1516. static struct cfq_queue *cfqq_close(struct cfq_data *cfqd,
  1517. struct cfq_queue *cur_cfqq)
  1518. {
  1519. struct rb_root *root = &cfqd->prio_trees[cur_cfqq->org_ioprio];
  1520. struct rb_node *parent, *node;
  1521. struct cfq_queue *__cfqq;
  1522. sector_t sector = cfqd->last_position;
  1523. if (RB_EMPTY_ROOT(root))
  1524. return NULL;
  1525. /*
  1526. * First, if we find a request starting at the end of the last
  1527. * request, choose it.
  1528. */
  1529. __cfqq = cfq_prio_tree_lookup(cfqd, root, sector, &parent, NULL);
  1530. if (__cfqq)
  1531. return __cfqq;
  1532. /*
  1533. * If the exact sector wasn't found, the parent of the NULL leaf
  1534. * will contain the closest sector.
  1535. */
  1536. __cfqq = rb_entry(parent, struct cfq_queue, p_node);
  1537. if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
  1538. return __cfqq;
  1539. if (blk_rq_pos(__cfqq->next_rq) < sector)
  1540. node = rb_next(&__cfqq->p_node);
  1541. else
  1542. node = rb_prev(&__cfqq->p_node);
  1543. if (!node)
  1544. return NULL;
  1545. __cfqq = rb_entry(node, struct cfq_queue, p_node);
  1546. if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
  1547. return __cfqq;
  1548. return NULL;
  1549. }
  1550. /*
  1551. * cfqd - obvious
  1552. * cur_cfqq - passed in so that we don't decide that the current queue is
  1553. * closely cooperating with itself.
  1554. *
  1555. * So, basically we're assuming that that cur_cfqq has dispatched at least
  1556. * one request, and that cfqd->last_position reflects a position on the disk
  1557. * associated with the I/O issued by cur_cfqq. I'm not sure this is a valid
  1558. * assumption.
  1559. */
  1560. static struct cfq_queue *cfq_close_cooperator(struct cfq_data *cfqd,
  1561. struct cfq_queue *cur_cfqq)
  1562. {
  1563. struct cfq_queue *cfqq;
  1564. if (cfq_class_idle(cur_cfqq))
  1565. return NULL;
  1566. if (!cfq_cfqq_sync(cur_cfqq))
  1567. return NULL;
  1568. if (CFQQ_SEEKY(cur_cfqq))
  1569. return NULL;
  1570. /*
  1571. * Don't search priority tree if it's the only queue in the group.
  1572. */
  1573. if (cur_cfqq->cfqg->nr_cfqq == 1)
  1574. return NULL;
  1575. /*
  1576. * We should notice if some of the queues are cooperating, eg
  1577. * working closely on the same area of the disk. In that case,
  1578. * we can group them together and don't waste time idling.
  1579. */
  1580. cfqq = cfqq_close(cfqd, cur_cfqq);
  1581. if (!cfqq)
  1582. return NULL;
  1583. /* If new queue belongs to different cfq_group, don't choose it */
  1584. if (cur_cfqq->cfqg != cfqq->cfqg)
  1585. return NULL;
  1586. /*
  1587. * It only makes sense to merge sync queues.
  1588. */
  1589. if (!cfq_cfqq_sync(cfqq))
  1590. return NULL;
  1591. if (CFQQ_SEEKY(cfqq))
  1592. return NULL;
  1593. /*
  1594. * Do not merge queues of different priority classes
  1595. */
  1596. if (cfq_class_rt(cfqq) != cfq_class_rt(cur_cfqq))
  1597. return NULL;
  1598. return cfqq;
  1599. }
  1600. /*
  1601. * Determine whether we should enforce idle window for this queue.
  1602. */
  1603. static bool cfq_should_idle(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  1604. {
  1605. enum wl_prio_t prio = cfqq_prio(cfqq);
  1606. struct cfq_rb_root *service_tree = cfqq->service_tree;
  1607. BUG_ON(!service_tree);
  1608. BUG_ON(!service_tree->count);
  1609. if (!cfqd->cfq_slice_idle)
  1610. return false;
  1611. /* We never do for idle class queues. */
  1612. if (prio == IDLE_WORKLOAD)
  1613. return false;
  1614. /* We do for queues that were marked with idle window flag. */
  1615. if (cfq_cfqq_idle_window(cfqq) &&
  1616. !(blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag))
  1617. return true;
  1618. /*
  1619. * Otherwise, we do only if they are the last ones
  1620. * in their service tree.
  1621. */
  1622. if (service_tree->count == 1 && cfq_cfqq_sync(cfqq))
  1623. return true;
  1624. cfq_log_cfqq(cfqd, cfqq, "Not idling. st->count:%d",
  1625. service_tree->count);
  1626. return false;
  1627. }
  1628. static void cfq_arm_slice_timer(struct cfq_data *cfqd)
  1629. {
  1630. struct cfq_queue *cfqq = cfqd->active_queue;
  1631. struct cfq_io_context *cic;
  1632. unsigned long sl, group_idle = 0;
  1633. /*
  1634. * SSD device without seek penalty, disable idling. But only do so
  1635. * for devices that support queuing, otherwise we still have a problem
  1636. * with sync vs async workloads.
  1637. */
  1638. if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag)
  1639. return;
  1640. WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
  1641. WARN_ON(cfq_cfqq_slice_new(cfqq));
  1642. /*
  1643. * idle is disabled, either manually or by past process history
  1644. */
  1645. if (!cfq_should_idle(cfqd, cfqq)) {
  1646. /* no queue idling. Check for group idling */
  1647. if (cfqd->cfq_group_idle)
  1648. group_idle = cfqd->cfq_group_idle;
  1649. else
  1650. return;
  1651. }
  1652. /*
  1653. * still active requests from this queue, don't idle
  1654. */
  1655. if (cfqq->dispatched)
  1656. return;
  1657. /*
  1658. * task has exited, don't wait
  1659. */
  1660. cic = cfqd->active_cic;
  1661. if (!cic || !atomic_read(&cic->ioc->nr_tasks))
  1662. return;
  1663. /*
  1664. * If our average think time is larger than the remaining time
  1665. * slice, then don't idle. This avoids overrunning the allotted
  1666. * time slice.
  1667. */
  1668. if (sample_valid(cic->ttime_samples) &&
  1669. (cfqq->slice_end - jiffies < cic->ttime_mean)) {
  1670. cfq_log_cfqq(cfqd, cfqq, "Not idling. think_time:%d",
  1671. cic->ttime_mean);
  1672. return;
  1673. }
  1674. /* There are other queues in the group, don't do group idle */
  1675. if (group_idle && cfqq->cfqg->nr_cfqq > 1)
  1676. return;
  1677. cfq_mark_cfqq_wait_request(cfqq);
  1678. if (group_idle)
  1679. sl = cfqd->cfq_group_idle;
  1680. else
  1681. sl = cfqd->cfq_slice_idle;
  1682. mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
  1683. cfq_blkiocg_update_set_idle_time_stats(&cfqq->cfqg->blkg);
  1684. cfq_log_cfqq(cfqd, cfqq, "arm_idle: %lu group_idle: %d", sl,
  1685. group_idle ? 1 : 0);
  1686. }
  1687. /*
  1688. * Move request from internal lists to the request queue dispatch list.
  1689. */
  1690. static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
  1691. {
  1692. struct cfq_data *cfqd = q->elevator->elevator_data;
  1693. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  1694. cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");
  1695. cfqq->next_rq = cfq_find_next_rq(cfqd, cfqq, rq);
  1696. cfq_remove_request(rq);
  1697. cfqq->dispatched++;
  1698. (RQ_CFQG(rq))->dispatched++;
  1699. elv_dispatch_sort(q, rq);
  1700. cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]++;
  1701. cfqq->nr_sectors += blk_rq_sectors(rq);
  1702. cfq_blkiocg_update_dispatch_stats(&cfqq->cfqg->blkg, blk_rq_bytes(rq),
  1703. rq_data_dir(rq), rq_is_sync(rq));
  1704. }
  1705. /*
  1706. * return expired entry, or NULL to just start from scratch in rbtree
  1707. */
  1708. static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
  1709. {
  1710. struct request *rq = NULL;
  1711. if (cfq_cfqq_fifo_expire(cfqq))
  1712. return NULL;
  1713. cfq_mark_cfqq_fifo_expire(cfqq);
  1714. if (list_empty(&cfqq->fifo))
  1715. return NULL;
  1716. rq = rq_entry_fifo(cfqq->fifo.next);
  1717. if (time_before(jiffies, rq_fifo_time(rq)))
  1718. rq = NULL;
  1719. cfq_log_cfqq(cfqq->cfqd, cfqq, "fifo=%p", rq);
  1720. return rq;
  1721. }
  1722. static inline int
  1723. cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  1724. {
  1725. const int base_rq = cfqd->cfq_slice_async_rq;
  1726. WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
  1727. return 2 * (base_rq + base_rq * (CFQ_PRIO_LISTS - 1 - cfqq->ioprio));
  1728. }
  1729. /*
  1730. * Must be called with the queue_lock held.
  1731. */
  1732. static int cfqq_process_refs(struct cfq_queue *cfqq)
  1733. {
  1734. int process_refs, io_refs;
  1735. io_refs = cfqq->allocated[READ] + cfqq->allocated[WRITE];
  1736. process_refs = cfqq->ref - io_refs;
  1737. BUG_ON(process_refs < 0);
  1738. return process_refs;
  1739. }
  1740. static void cfq_setup_merge(struct cfq_queue *cfqq, struct cfq_queue *new_cfqq)
  1741. {
  1742. int process_refs, new_process_refs;
  1743. struct cfq_queue *__cfqq;
  1744. /*
  1745. * If there are no process references on the new_cfqq, then it is
  1746. * unsafe to follow the ->new_cfqq chain as other cfqq's in the
  1747. * chain may have dropped their last reference (not just their
  1748. * last process reference).
  1749. */
  1750. if (!cfqq_process_refs(new_cfqq))
  1751. return;
  1752. /* Avoid a circular list and skip interim queue merges */
  1753. while ((__cfqq = new_cfqq->new_cfqq)) {
  1754. if (__cfqq == cfqq)
  1755. return;
  1756. new_cfqq = __cfqq;
  1757. }
  1758. process_refs = cfqq_process_refs(cfqq);
  1759. new_process_refs = cfqq_process_refs(new_cfqq);
  1760. /*
  1761. * If the process for the cfqq has gone away, there is no
  1762. * sense in merging the queues.
  1763. */
  1764. if (process_refs == 0 || new_process_refs == 0)
  1765. return;
  1766. /*
  1767. * Merge in the direction of the lesser amount of work.
  1768. */
  1769. if (new_process_refs >= process_refs) {
  1770. cfqq->new_cfqq = new_cfqq;
  1771. new_cfqq->ref += process_refs;
  1772. } else {
  1773. new_cfqq->new_cfqq = cfqq;
  1774. cfqq->ref += new_process_refs;
  1775. }
  1776. }
  1777. static enum wl_type_t cfq_choose_wl(struct cfq_data *cfqd,
  1778. struct cfq_group *cfqg, enum wl_prio_t prio)
  1779. {
  1780. struct cfq_queue *queue;
  1781. int i;
  1782. bool key_valid = false;
  1783. unsigned long lowest_key = 0;
  1784. enum wl_type_t cur_best = SYNC_NOIDLE_WORKLOAD;
  1785. for (i = 0; i <= SYNC_WORKLOAD; ++i) {
  1786. /* select the one with lowest rb_key */
  1787. queue = cfq_rb_first(service_tree_for(cfqg, prio, i));
  1788. if (queue &&
  1789. (!key_valid || time_before(queue->rb_key, lowest_key))) {
  1790. lowest_key = queue->rb_key;
  1791. cur_best = i;
  1792. key_valid = true;
  1793. }
  1794. }
  1795. return cur_best;
  1796. }
  1797. static void choose_service_tree(struct cfq_data *cfqd, struct cfq_group *cfqg)
  1798. {
  1799. unsigned slice;
  1800. unsigned count;
  1801. struct cfq_rb_root *st;
  1802. unsigned group_slice;
  1803. enum wl_prio_t original_prio = cfqd->serving_prio;
  1804. /* Choose next priority. RT > BE > IDLE */
  1805. if (cfq_group_busy_queues_wl(RT_WORKLOAD, cfqd, cfqg))
  1806. cfqd->serving_prio = RT_WORKLOAD;
  1807. else if (cfq_group_busy_queues_wl(BE_WORKLOAD, cfqd, cfqg))
  1808. cfqd->serving_prio = BE_WORKLOAD;
  1809. else {
  1810. cfqd->serving_prio = IDLE_WORKLOAD;
  1811. cfqd->workload_expires = jiffies + 1;
  1812. return;
  1813. }
  1814. if (original_prio != cfqd->serving_prio)
  1815. goto new_workload;
  1816. /*
  1817. * For RT and BE, we have to choose also the type
  1818. * (SYNC, SYNC_NOIDLE, ASYNC), and to compute a workload
  1819. * expiration time
  1820. */
  1821. st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type);
  1822. count = st->count;
  1823. /*
  1824. * check workload expiration, and that we still have other queues ready
  1825. */
  1826. if (count && !time_after(jiffies, cfqd->workload_expires))
  1827. return;
  1828. new_workload:
  1829. /* otherwise select new workload type */
  1830. cfqd->serving_type =
  1831. cfq_choose_wl(cfqd, cfqg, cfqd->serving_prio);
  1832. st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type);
  1833. count = st->count;
  1834. /*
  1835. * the workload slice is computed as a fraction of target latency
  1836. * proportional to the number of queues in that workload, over
  1837. * all the queues in the same priority class
  1838. */
  1839. group_slice = cfq_group_slice(cfqd, cfqg);
  1840. slice = group_slice * count /
  1841. max_t(unsigned, cfqg->busy_queues_avg[cfqd->serving_prio],
  1842. cfq_group_busy_queues_wl(cfqd->serving_prio, cfqd, cfqg));
  1843. if (cfqd->serving_type == ASYNC_WORKLOAD) {
  1844. unsigned int tmp;
  1845. /*
  1846. * Async queues are currently system wide. Just taking
  1847. * proportion of queues with-in same group will lead to higher
  1848. * async ratio system wide as generally root group is going
  1849. * to have higher weight. A more accurate thing would be to
  1850. * calculate system wide asnc/sync ratio.
  1851. */
  1852. tmp = cfq_target_latency * cfqg_busy_async_queues(cfqd, cfqg);
  1853. tmp = tmp/cfqd->busy_queues;
  1854. slice = min_t(unsigned, slice, tmp);
  1855. /* async workload slice is scaled down according to
  1856. * the sync/async slice ratio. */
  1857. slice = slice * cfqd->cfq_slice[0] / cfqd->cfq_slice[1];
  1858. } else
  1859. /* sync workload slice is at least 2 * cfq_slice_idle */
  1860. slice = max(slice, 2 * cfqd->cfq_slice_idle);
  1861. slice = max_t(unsigned, slice, CFQ_MIN_TT);
  1862. cfq_log(cfqd, "workload slice:%d", slice);
  1863. cfqd->workload_expires = jiffies + slice;
  1864. }
  1865. static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd)
  1866. {
  1867. struct cfq_rb_root *st = &cfqd->grp_service_tree;
  1868. struct cfq_group *cfqg;
  1869. if (RB_EMPTY_ROOT(&st->rb))
  1870. return NULL;
  1871. cfqg = cfq_rb_first_group(st);
  1872. update_min_vdisktime(st);
  1873. return cfqg;
  1874. }
  1875. static void cfq_choose_cfqg(struct cfq_data *cfqd)
  1876. {
  1877. struct cfq_group *cfqg = cfq_get_next_cfqg(cfqd);
  1878. cfqd->serving_group = cfqg;
  1879. /* Restore the workload type data */
  1880. if (cfqg->saved_workload_slice) {
  1881. cfqd->workload_expires = jiffies + cfqg->saved_workload_slice;
  1882. cfqd->serving_type = cfqg->saved_workload;
  1883. cfqd->serving_prio = cfqg->saved_serving_prio;
  1884. } else
  1885. cfqd->workload_expires = jiffies - 1;
  1886. choose_service_tree(cfqd, cfqg);
  1887. }
  1888. /*
  1889. * Select a queue for service. If we have a current active queue,
  1890. * check whether to continue servicing it, or retrieve and set a new one.
  1891. */
  1892. static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
  1893. {
  1894. struct cfq_queue *cfqq, *new_cfqq = NULL;
  1895. cfqq = cfqd->active_queue;
  1896. if (!cfqq)
  1897. goto new_queue;
  1898. if (!cfqd->rq_queued)
  1899. return NULL;
  1900. /*
  1901. * We were waiting for group to get backlogged. Expire the queue
  1902. */
  1903. if (cfq_cfqq_wait_busy(cfqq) && !RB_EMPTY_ROOT(&cfqq->sort_list))
  1904. goto expire;
  1905. /*
  1906. * The active queue has run out of time, expire it and select new.
  1907. */
  1908. if (cfq_slice_used(cfqq) && !cfq_cfqq_must_dispatch(cfqq)) {
  1909. /*
  1910. * If slice had not expired at the completion of last request
  1911. * we might not have turned on wait_busy flag. Don't expire
  1912. * the queue yet. Allow the group to get backlogged.
  1913. *
  1914. * The very fact that we have used the slice, that means we
  1915. * have been idling all along on this queue and it should be
  1916. * ok to wait for this request to complete.
  1917. */
  1918. if (cfqq->cfqg->nr_cfqq == 1 && RB_EMPTY_ROOT(&cfqq->sort_list)
  1919. && cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
  1920. cfqq = NULL;
  1921. goto keep_queue;
  1922. } else
  1923. goto check_group_idle;
  1924. }
  1925. /*
  1926. * The active queue has requests and isn't expired, allow it to
  1927. * dispatch.
  1928. */
  1929. if (!RB_EMPTY_ROOT(&cfqq->sort_list))
  1930. goto keep_queue;
  1931. /*
  1932. * If another queue has a request waiting within our mean seek
  1933. * distance, let it run. The expire code will check for close
  1934. * cooperators and put the close queue at the front of the service
  1935. * tree. If possible, merge the expiring queue with the new cfqq.
  1936. */
  1937. new_cfqq = cfq_close_cooperator(cfqd, cfqq);
  1938. if (new_cfqq) {
  1939. if (!cfqq->new_cfqq)
  1940. cfq_setup_merge(cfqq, new_cfqq);
  1941. goto expire;
  1942. }
  1943. /*
  1944. * No requests pending. If the active queue still has requests in
  1945. * flight or is idling for a new request, allow either of these
  1946. * conditions to happen (or time out) before selecting a new queue.
  1947. */
  1948. if (timer_pending(&cfqd->idle_slice_timer)) {
  1949. cfqq = NULL;
  1950. goto keep_queue;
  1951. }
  1952. /*
  1953. * This is a deep seek queue, but the device is much faster than
  1954. * the queue can deliver, don't idle
  1955. **/
  1956. if (CFQQ_SEEKY(cfqq) && cfq_cfqq_idle_window(cfqq) &&
  1957. (cfq_cfqq_slice_new(cfqq) ||
  1958. (cfqq->slice_end - jiffies > jiffies - cfqq->slice_start))) {
  1959. cfq_clear_cfqq_deep(cfqq);
  1960. cfq_clear_cfqq_idle_window(cfqq);
  1961. }
  1962. if (cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
  1963. cfqq = NULL;
  1964. goto keep_queue;
  1965. }
  1966. /*
  1967. * If group idle is enabled and there are requests dispatched from
  1968. * this group, wait for requests to complete.
  1969. */
  1970. check_group_idle:
  1971. if (cfqd->cfq_group_idle && cfqq->cfqg->nr_cfqq == 1
  1972. && cfqq->cfqg->dispatched) {
  1973. cfqq = NULL;
  1974. goto keep_queue;
  1975. }
  1976. expire:
  1977. cfq_slice_expired(cfqd, 0);
  1978. new_queue:
  1979. /*
  1980. * Current queue expired. Check if we have to switch to a new
  1981. * service tree
  1982. */
  1983. if (!new_cfqq)
  1984. cfq_choose_cfqg(cfqd);
  1985. cfqq = cfq_set_active_queue(cfqd, new_cfqq);
  1986. keep_queue:
  1987. return cfqq;
  1988. }
  1989. static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
  1990. {
  1991. int dispatched = 0;
  1992. while (cfqq->next_rq) {
  1993. cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
  1994. dispatched++;
  1995. }
  1996. BUG_ON(!list_empty(&cfqq->fifo));
  1997. /* By default cfqq is not expired if it is empty. Do it explicitly */
  1998. __cfq_slice_expired(cfqq->cfqd, cfqq, 0);
  1999. return dispatched;
  2000. }
  2001. /*
  2002. * Drain our current requests. Used for barriers and when switching
  2003. * io schedulers on-the-fly.
  2004. */
  2005. static int cfq_forced_dispatch(struct cfq_data *cfqd)
  2006. {
  2007. struct cfq_queue *cfqq;
  2008. int dispatched = 0;
  2009. /* Expire the timeslice of the current active queue first */
  2010. cfq_slice_expired(cfqd, 0);
  2011. while ((cfqq = cfq_get_next_queue_forced(cfqd)) != NULL) {
  2012. __cfq_set_active_queue(cfqd, cfqq);
  2013. dispatched += __cfq_forced_dispatch_cfqq(cfqq);
  2014. }
  2015. BUG_ON(cfqd->busy_queues);
  2016. cfq_log(cfqd, "forced_dispatch=%d", dispatched);
  2017. return dispatched;
  2018. }
  2019. static inline bool cfq_slice_used_soon(struct cfq_data *cfqd,
  2020. struct cfq_queue *cfqq)
  2021. {
  2022. /* the queue hasn't finished any request, can't estimate */
  2023. if (cfq_cfqq_slice_new(cfqq))
  2024. return true;
  2025. if (time_after(jiffies + cfqd->cfq_slice_idle * cfqq->dispatched,
  2026. cfqq->slice_end))
  2027. return true;
  2028. return false;
  2029. }
  2030. static bool cfq_may_dispatch(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  2031. {
  2032. unsigned int max_dispatch;
  2033. /*
  2034. * Drain async requests before we start sync IO
  2035. */
  2036. if (cfq_should_idle(cfqd, cfqq) && cfqd->rq_in_flight[BLK_RW_ASYNC])
  2037. return false;
  2038. /*
  2039. * If this is an async queue and we have sync IO in flight, let it wait
  2040. */
  2041. if (cfqd->rq_in_flight[BLK_RW_SYNC] && !cfq_cfqq_sync(cfqq))
  2042. return false;
  2043. max_dispatch = max_t(unsigned int, cfqd->cfq_quantum / 2, 1);
  2044. if (cfq_class_idle(cfqq))
  2045. max_dispatch = 1;
  2046. /*
  2047. * Does this cfqq already have too much IO in flight?
  2048. */
  2049. if (cfqq->dispatched >= max_dispatch) {
  2050. bool promote_sync = false;
  2051. /*
  2052. * idle queue must always only have a single IO in flight
  2053. */
  2054. if (cfq_class_idle(cfqq))
  2055. return false;
  2056. /*
  2057. * If there is only one sync queue, and its think time is
  2058. * small, we can ignore async queue here and give the sync
  2059. * queue no dispatch limit. The reason is a sync queue can
  2060. * preempt async queue, limiting the sync queue doesn't make
  2061. * sense. This is useful for aiostress test.
  2062. */
  2063. if (cfq_cfqq_sync(cfqq) && cfqd->busy_sync_queues == 1) {
  2064. struct cfq_io_context *cic = RQ_CIC(cfqq->next_rq);
  2065. if (sample_valid(cic->ttime_samples) &&
  2066. cic->ttime_mean < cfqd->cfq_slice_idle)
  2067. promote_sync = true;
  2068. }
  2069. /*
  2070. * We have other queues, don't allow more IO from this one
  2071. */
  2072. if (cfqd->busy_queues > 1 && cfq_slice_used_soon(cfqd, cfqq) &&
  2073. !promote_sync)
  2074. return false;
  2075. /*
  2076. * Sole queue user, no limit
  2077. */
  2078. if (cfqd->busy_queues == 1 || promote_sync)
  2079. max_dispatch = -1;
  2080. else
  2081. /*
  2082. * Normally we start throttling cfqq when cfq_quantum/2
  2083. * requests have been dispatched. But we can drive
  2084. * deeper queue depths at the beginning of slice
  2085. * subjected to upper limit of cfq_quantum.
  2086. * */
  2087. max_dispatch = cfqd->cfq_quantum;
  2088. }
  2089. /*
  2090. * Async queues must wait a bit before being allowed dispatch.
  2091. * We also ramp up the dispatch depth gradually for async IO,
  2092. * based on the last sync IO we serviced
  2093. */
  2094. if (!cfq_cfqq_sync(cfqq) && cfqd->cfq_latency) {
  2095. unsigned long last_sync = jiffies - cfqd->last_delayed_sync;
  2096. unsigned int depth;
  2097. depth = last_sync / cfqd->cfq_slice[1];
  2098. if (!depth && !cfqq->dispatched)
  2099. depth = 1;
  2100. if (depth < max_dispatch)
  2101. max_dispatch = depth;
  2102. }
  2103. /*
  2104. * If we're below the current max, allow a dispatch
  2105. */
  2106. return cfqq->dispatched < max_dispatch;
  2107. }
  2108. /*
  2109. * Dispatch a request from cfqq, moving them to the request queue
  2110. * dispatch list.
  2111. */
  2112. static bool cfq_dispatch_request(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  2113. {
  2114. struct request *rq;
  2115. BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
  2116. if (!cfq_may_dispatch(cfqd, cfqq))
  2117. return false;
  2118. /*
  2119. * follow expired path, else get first next available
  2120. */
  2121. rq = cfq_check_fifo(cfqq);
  2122. if (!rq)
  2123. rq = cfqq->next_rq;
  2124. /*
  2125. * insert request into driver dispatch list
  2126. */
  2127. cfq_dispatch_insert(cfqd->queue, rq);
  2128. if (!cfqd->active_cic) {
  2129. struct cfq_io_context *cic = RQ_CIC(rq);
  2130. atomic_long_inc(&cic->ioc->refcount);
  2131. cfqd->active_cic = cic;
  2132. }
  2133. return true;
  2134. }
  2135. /*
  2136. * Find the cfqq that we need to service and move a request from that to the
  2137. * dispatch list
  2138. */
  2139. static int cfq_dispatch_requests(struct request_queue *q, int force)
  2140. {
  2141. struct cfq_data *cfqd = q->elevator->elevator_data;
  2142. struct cfq_queue *cfqq;
  2143. if (!cfqd->busy_queues)
  2144. return 0;
  2145. if (unlikely(force))
  2146. return cfq_forced_dispatch(cfqd);
  2147. cfqq = cfq_select_queue(cfqd);
  2148. if (!cfqq)
  2149. return 0;
  2150. /*
  2151. * Dispatch a request from this cfqq, if it is allowed
  2152. */
  2153. if (!cfq_dispatch_request(cfqd, cfqq))
  2154. return 0;
  2155. cfqq->slice_dispatch++;
  2156. cfq_clear_cfqq_must_dispatch(cfqq);
  2157. /*
  2158. * expire an async queue immediately if it has used up its slice. idle
  2159. * queue always expire after 1 dispatch round.
  2160. */
  2161. if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
  2162. cfqq->slice_dispatch >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
  2163. cfq_class_idle(cfqq))) {
  2164. cfqq->slice_end = jiffies + 1;
  2165. cfq_slice_expired(cfqd, 0);
  2166. }
  2167. cfq_log_cfqq(cfqd, cfqq, "dispatched a request");
  2168. return 1;
  2169. }
  2170. /*
  2171. * task holds one reference to the queue, dropped when task exits. each rq
  2172. * in-flight on this queue also holds a reference, dropped when rq is freed.
  2173. *
  2174. * Each cfq queue took a reference on the parent group. Drop it now.
  2175. * queue lock must be held here.
  2176. */
  2177. static void cfq_put_queue(struct cfq_queue *cfqq)
  2178. {
  2179. struct cfq_data *cfqd = cfqq->cfqd;
  2180. struct cfq_group *cfqg;
  2181. BUG_ON(cfqq->ref <= 0);
  2182. cfqq->ref--;
  2183. if (cfqq->ref)
  2184. return;
  2185. cfq_log_cfqq(cfqd, cfqq, "put_queue");
  2186. BUG_ON(rb_first(&cfqq->sort_list));
  2187. BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
  2188. cfqg = cfqq->cfqg;
  2189. if (unlikely(cfqd->active_queue == cfqq)) {
  2190. __cfq_slice_expired(cfqd, cfqq, 0);
  2191. cfq_schedule_dispatch(cfqd);
  2192. }
  2193. BUG_ON(cfq_cfqq_on_rr(cfqq));
  2194. kmem_cache_free(cfq_pool, cfqq);
  2195. cfq_put_cfqg(cfqg);
  2196. }
  2197. /*
  2198. * Must always be called with the rcu_read_lock() held
  2199. */
  2200. static void
  2201. __call_for_each_cic(struct io_context *ioc,
  2202. void (*func)(struct io_context *, struct cfq_io_context *))
  2203. {
  2204. struct cfq_io_context *cic;
  2205. struct hlist_node *n;
  2206. hlist_for_each_entry_rcu(cic, n, &ioc->cic_list, cic_list)
  2207. func(ioc, cic);
  2208. }
  2209. /*
  2210. * Call func for each cic attached to this ioc.
  2211. */
  2212. static void
  2213. call_for_each_cic(struct io_context *ioc,
  2214. void (*func)(struct io_context *, struct cfq_io_context *))
  2215. {
  2216. rcu_read_lock();
  2217. __call_for_each_cic(ioc, func);
  2218. rcu_read_unlock();
  2219. }
  2220. static void cfq_cic_free_rcu(struct rcu_head *head)
  2221. {
  2222. struct cfq_io_context *cic;
  2223. cic = container_of(head, struct cfq_io_context, rcu_head);
  2224. kmem_cache_free(cfq_ioc_pool, cic);
  2225. elv_ioc_count_dec(cfq_ioc_count);
  2226. if (ioc_gone) {
  2227. /*
  2228. * CFQ scheduler is exiting, grab exit lock and check
  2229. * the pending io context count. If it hits zero,
  2230. * complete ioc_gone and set it back to NULL
  2231. */
  2232. spin_lock(&ioc_gone_lock);
  2233. if (ioc_gone && !elv_ioc_count_read(cfq_ioc_count)) {
  2234. complete(ioc_gone);
  2235. ioc_gone = NULL;
  2236. }
  2237. spin_unlock(&ioc_gone_lock);
  2238. }
  2239. }
  2240. static void cfq_cic_free(struct cfq_io_context *cic)
  2241. {
  2242. call_rcu(&cic->rcu_head, cfq_cic_free_rcu);
  2243. }
  2244. static void cic_free_func(struct io_context *ioc, struct cfq_io_context *cic)
  2245. {
  2246. unsigned long flags;
  2247. unsigned long dead_key = (unsigned long) cic->key;
  2248. BUG_ON(!(dead_key & CIC_DEAD_KEY));
  2249. spin_lock_irqsave(&ioc->lock, flags);
  2250. radix_tree_delete(&ioc->radix_root, dead_key >> CIC_DEAD_INDEX_SHIFT);
  2251. hlist_del_rcu(&cic->cic_list);
  2252. spin_unlock_irqrestore(&ioc->lock, flags);
  2253. cfq_cic_free(cic);
  2254. }
  2255. /*
  2256. * Must be called with rcu_read_lock() held or preemption otherwise disabled.
  2257. * Only two callers of this - ->dtor() which is called with the rcu_read_lock(),
  2258. * and ->trim() which is called with the task lock held
  2259. */
  2260. static void cfq_free_io_context(struct io_context *ioc)
  2261. {
  2262. /*
  2263. * ioc->refcount is zero here, or we are called from elv_unregister(),
  2264. * so no more cic's are allowed to be linked into this ioc. So it
  2265. * should be ok to iterate over the known list, we will see all cic's
  2266. * since no new ones are added.
  2267. */
  2268. __call_for_each_cic(ioc, cic_free_func);
  2269. }
  2270. static void cfq_put_cooperator(struct cfq_queue *cfqq)
  2271. {
  2272. struct cfq_queue *__cfqq, *next;
  2273. /*
  2274. * If this queue was scheduled to merge with another queue, be
  2275. * sure to drop the reference taken on that queue (and others in
  2276. * the merge chain). See cfq_setup_merge and cfq_merge_cfqqs.
  2277. */
  2278. __cfqq = cfqq->new_cfqq;
  2279. while (__cfqq) {
  2280. if (__cfqq == cfqq) {
  2281. WARN(1, "cfqq->new_cfqq loop detected\n");
  2282. break;
  2283. }
  2284. next = __cfqq->new_cfqq;
  2285. cfq_put_queue(__cfqq);
  2286. __cfqq = next;
  2287. }
  2288. }
  2289. static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  2290. {
  2291. if (unlikely(cfqq == cfqd->active_queue)) {
  2292. __cfq_slice_expired(cfqd, cfqq, 0);
  2293. cfq_schedule_dispatch(cfqd);
  2294. }
  2295. cfq_put_cooperator(cfqq);
  2296. cfq_put_queue(cfqq);
  2297. }
  2298. static void __cfq_exit_single_io_context(struct cfq_data *cfqd,
  2299. struct cfq_io_context *cic)
  2300. {
  2301. struct io_context *ioc = cic->ioc;
  2302. list_del_init(&cic->queue_list);
  2303. /*
  2304. * Make sure dead mark is seen for dead queues
  2305. */
  2306. smp_wmb();
  2307. cic->key = cfqd_dead_key(cfqd);
  2308. if (ioc->ioc_data == cic)
  2309. rcu_assign_pointer(ioc->ioc_data, NULL);
  2310. if (cic->cfqq[BLK_RW_ASYNC]) {
  2311. cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_ASYNC]);
  2312. cic->cfqq[BLK_RW_ASYNC] = NULL;
  2313. }
  2314. if (cic->cfqq[BLK_RW_SYNC]) {
  2315. cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_SYNC]);
  2316. cic->cfqq[BLK_RW_SYNC] = NULL;
  2317. }
  2318. }
  2319. static void cfq_exit_single_io_context(struct io_context *ioc,
  2320. struct cfq_io_context *cic)
  2321. {
  2322. struct cfq_data *cfqd = cic_to_cfqd(cic);
  2323. if (cfqd) {
  2324. struct request_queue *q = cfqd->queue;
  2325. unsigned long flags;
  2326. spin_lock_irqsave(q->queue_lock, flags);
  2327. /*
  2328. * Ensure we get a fresh copy of the ->key to prevent
  2329. * race between exiting task and queue
  2330. */
  2331. smp_read_barrier_depends();
  2332. if (cic->key == cfqd)
  2333. __cfq_exit_single_io_context(cfqd, cic);
  2334. spin_unlock_irqrestore(q->queue_lock, flags);
  2335. }
  2336. }
  2337. /*
  2338. * The process that ioc belongs to has exited, we need to clean up
  2339. * and put the internal structures we have that belongs to that process.
  2340. */
  2341. static void cfq_exit_io_context(struct io_context *ioc)
  2342. {
  2343. call_for_each_cic(ioc, cfq_exit_single_io_context);
  2344. }
  2345. static struct cfq_io_context *
  2346. cfq_alloc_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
  2347. {
  2348. struct cfq_io_context *cic;
  2349. cic = kmem_cache_alloc_node(cfq_ioc_pool, gfp_mask | __GFP_ZERO,
  2350. cfqd->queue->node);
  2351. if (cic) {
  2352. cic->last_end_request = jiffies;
  2353. INIT_LIST_HEAD(&cic->queue_list);
  2354. INIT_HLIST_NODE(&cic->cic_list);
  2355. cic->dtor = cfq_free_io_context;
  2356. cic->exit = cfq_exit_io_context;
  2357. elv_ioc_count_inc(cfq_ioc_count);
  2358. }
  2359. return cic;
  2360. }
  2361. static void cfq_init_prio_data(struct cfq_queue *cfqq, struct io_context *ioc)
  2362. {
  2363. struct task_struct *tsk = current;
  2364. int ioprio_class;
  2365. if (!cfq_cfqq_prio_changed(cfqq))
  2366. return;
  2367. ioprio_class = IOPRIO_PRIO_CLASS(ioc->ioprio);
  2368. switch (ioprio_class) {
  2369. default:
  2370. printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
  2371. case IOPRIO_CLASS_NONE:
  2372. /*
  2373. * no prio set, inherit CPU scheduling settings
  2374. */
  2375. cfqq->ioprio = task_nice_ioprio(tsk);
  2376. cfqq->ioprio_class = task_nice_ioclass(tsk);
  2377. break;
  2378. case IOPRIO_CLASS_RT:
  2379. cfqq->ioprio = task_ioprio(ioc);
  2380. cfqq->ioprio_class = IOPRIO_CLASS_RT;
  2381. break;
  2382. case IOPRIO_CLASS_BE:
  2383. cfqq->ioprio = task_ioprio(ioc);
  2384. cfqq->ioprio_class = IOPRIO_CLASS_BE;
  2385. break;
  2386. case IOPRIO_CLASS_IDLE:
  2387. cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
  2388. cfqq->ioprio = 7;
  2389. cfq_clear_cfqq_idle_window(cfqq);
  2390. break;
  2391. }
  2392. /*
  2393. * keep track of original prio settings in case we have to temporarily
  2394. * elevate the priority of this queue
  2395. */
  2396. cfqq->org_ioprio = cfqq->ioprio;
  2397. cfqq->org_ioprio_class = cfqq->ioprio_class;
  2398. cfq_clear_cfqq_prio_changed(cfqq);
  2399. }
  2400. static void changed_ioprio(struct io_context *ioc, struct cfq_io_context *cic)
  2401. {
  2402. struct cfq_data *cfqd = cic_to_cfqd(cic);
  2403. struct cfq_queue *cfqq;
  2404. unsigned long flags;
  2405. if (unlikely(!cfqd))
  2406. return;
  2407. spin_lock_irqsave(cfqd->queue->queue_lock, flags);
  2408. cfqq = cic->cfqq[BLK_RW_ASYNC];
  2409. if (cfqq) {
  2410. struct cfq_queue *new_cfqq;
  2411. new_cfqq = cfq_get_queue(cfqd, BLK_RW_ASYNC, cic->ioc,
  2412. GFP_ATOMIC);
  2413. if (new_cfqq) {
  2414. cic->cfqq[BLK_RW_ASYNC] = new_cfqq;
  2415. cfq_put_queue(cfqq);
  2416. }
  2417. }
  2418. cfqq = cic->cfqq[BLK_RW_SYNC];
  2419. if (cfqq)
  2420. cfq_mark_cfqq_prio_changed(cfqq);
  2421. spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
  2422. }
  2423. static void cfq_ioc_set_ioprio(struct io_context *ioc)
  2424. {
  2425. call_for_each_cic(ioc, changed_ioprio);
  2426. ioc->ioprio_changed = 0;
  2427. }
  2428. static void cfq_init_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  2429. pid_t pid, bool is_sync)
  2430. {
  2431. RB_CLEAR_NODE(&cfqq->rb_node);
  2432. RB_CLEAR_NODE(&cfqq->p_node);
  2433. INIT_LIST_HEAD(&cfqq->fifo);
  2434. cfqq->ref = 0;
  2435. cfqq->cfqd = cfqd;
  2436. cfq_mark_cfqq_prio_changed(cfqq);
  2437. if (is_sync) {
  2438. if (!cfq_class_idle(cfqq))
  2439. cfq_mark_cfqq_idle_window(cfqq);
  2440. cfq_mark_cfqq_sync(cfqq);
  2441. }
  2442. cfqq->pid = pid;
  2443. }
  2444. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  2445. static void changed_cgroup(struct io_context *ioc, struct cfq_io_context *cic)
  2446. {
  2447. struct cfq_queue *sync_cfqq = cic_to_cfqq(cic, 1);
  2448. struct cfq_data *cfqd = cic_to_cfqd(cic);
  2449. unsigned long flags;
  2450. struct request_queue *q;
  2451. if (unlikely(!cfqd))
  2452. return;
  2453. q = cfqd->queue;
  2454. spin_lock_irqsave(q->queue_lock, flags);
  2455. if (sync_cfqq) {
  2456. /*
  2457. * Drop reference to sync queue. A new sync queue will be
  2458. * assigned in new group upon arrival of a fresh request.
  2459. */
  2460. cfq_log_cfqq(cfqd, sync_cfqq, "changed cgroup");
  2461. cic_set_cfqq(cic, NULL, 1);
  2462. cfq_put_queue(sync_cfqq);
  2463. }
  2464. spin_unlock_irqrestore(q->queue_lock, flags);
  2465. }
  2466. static void cfq_ioc_set_cgroup(struct io_context *ioc)
  2467. {
  2468. call_for_each_cic(ioc, changed_cgroup);
  2469. ioc->cgroup_changed = 0;
  2470. }
  2471. #endif /* CONFIG_CFQ_GROUP_IOSCHED */
  2472. static struct cfq_queue *
  2473. cfq_find_alloc_queue(struct cfq_data *cfqd, bool is_sync,
  2474. struct io_context *ioc, gfp_t gfp_mask)
  2475. {
  2476. struct cfq_queue *cfqq, *new_cfqq = NULL;
  2477. struct cfq_io_context *cic;
  2478. struct cfq_group *cfqg;
  2479. retry:
  2480. cfqg = cfq_get_cfqg(cfqd, 1);
  2481. cic = cfq_cic_lookup(cfqd, ioc);
  2482. /* cic always exists here */
  2483. cfqq = cic_to_cfqq(cic, is_sync);
  2484. /*
  2485. * Always try a new alloc if we fell back to the OOM cfqq
  2486. * originally, since it should just be a temporary situation.
  2487. */
  2488. if (!cfqq || cfqq == &cfqd->oom_cfqq) {
  2489. cfqq = NULL;
  2490. if (new_cfqq) {
  2491. cfqq = new_cfqq;
  2492. new_cfqq = NULL;
  2493. } else if (gfp_mask & __GFP_WAIT) {
  2494. spin_unlock_irq(cfqd->queue->queue_lock);
  2495. new_cfqq = kmem_cache_alloc_node(cfq_pool,
  2496. gfp_mask | __GFP_ZERO,
  2497. cfqd->queue->node);
  2498. spin_lock_irq(cfqd->queue->queue_lock);
  2499. if (new_cfqq)
  2500. goto retry;
  2501. } else {
  2502. cfqq = kmem_cache_alloc_node(cfq_pool,
  2503. gfp_mask | __GFP_ZERO,
  2504. cfqd->queue->node);
  2505. }
  2506. if (cfqq) {
  2507. cfq_init_cfqq(cfqd, cfqq, current->pid, is_sync);
  2508. cfq_init_prio_data(cfqq, ioc);
  2509. cfq_link_cfqq_cfqg(cfqq, cfqg);
  2510. cfq_log_cfqq(cfqd, cfqq, "alloced");
  2511. } else
  2512. cfqq = &cfqd->oom_cfqq;
  2513. }
  2514. if (new_cfqq)
  2515. kmem_cache_free(cfq_pool, new_cfqq);
  2516. return cfqq;
  2517. }
  2518. static struct cfq_queue **
  2519. cfq_async_queue_prio(struct cfq_data *cfqd, int ioprio_class, int ioprio)
  2520. {
  2521. switch (ioprio_class) {
  2522. case IOPRIO_CLASS_RT:
  2523. return &cfqd->async_cfqq[0][ioprio];
  2524. case IOPRIO_CLASS_BE:
  2525. return &cfqd->async_cfqq[1][ioprio];
  2526. case IOPRIO_CLASS_IDLE:
  2527. return &cfqd->async_idle_cfqq;
  2528. default:
  2529. BUG();
  2530. }
  2531. }
  2532. static struct cfq_queue *
  2533. cfq_get_queue(struct cfq_data *cfqd, bool is_sync, struct io_context *ioc,
  2534. gfp_t gfp_mask)
  2535. {
  2536. const int ioprio = task_ioprio(ioc);
  2537. const int ioprio_class = task_ioprio_class(ioc);
  2538. struct cfq_queue **async_cfqq = NULL;
  2539. struct cfq_queue *cfqq = NULL;
  2540. if (!is_sync) {
  2541. async_cfqq = cfq_async_queue_prio(cfqd, ioprio_class, ioprio);
  2542. cfqq = *async_cfqq;
  2543. }
  2544. if (!cfqq)
  2545. cfqq = cfq_find_alloc_queue(cfqd, is_sync, ioc, gfp_mask);
  2546. /*
  2547. * pin the queue now that it's allocated, scheduler exit will prune it
  2548. */
  2549. if (!is_sync && !(*async_cfqq)) {
  2550. cfqq->ref++;
  2551. *async_cfqq = cfqq;
  2552. }
  2553. cfqq->ref++;
  2554. return cfqq;
  2555. }
  2556. /*
  2557. * We drop cfq io contexts lazily, so we may find a dead one.
  2558. */
  2559. static void
  2560. cfq_drop_dead_cic(struct cfq_data *cfqd, struct io_context *ioc,
  2561. struct cfq_io_context *cic)
  2562. {
  2563. unsigned long flags;
  2564. WARN_ON(!list_empty(&cic->queue_list));
  2565. BUG_ON(cic->key != cfqd_dead_key(cfqd));
  2566. spin_lock_irqsave(&ioc->lock, flags);
  2567. BUG_ON(ioc->ioc_data == cic);
  2568. radix_tree_delete(&ioc->radix_root, cfqd->cic_index);
  2569. hlist_del_rcu(&cic->cic_list);
  2570. spin_unlock_irqrestore(&ioc->lock, flags);
  2571. cfq_cic_free(cic);
  2572. }
  2573. static struct cfq_io_context *
  2574. cfq_cic_lookup(struct cfq_data *cfqd, struct io_context *ioc)
  2575. {
  2576. struct cfq_io_context *cic;
  2577. unsigned long flags;
  2578. if (unlikely(!ioc))
  2579. return NULL;
  2580. rcu_read_lock();
  2581. /*
  2582. * we maintain a last-hit cache, to avoid browsing over the tree
  2583. */
  2584. cic = rcu_dereference(ioc->ioc_data);
  2585. if (cic && cic->key == cfqd) {
  2586. rcu_read_unlock();
  2587. return cic;
  2588. }
  2589. do {
  2590. cic = radix_tree_lookup(&ioc->radix_root, cfqd->cic_index);
  2591. rcu_read_unlock();
  2592. if (!cic)
  2593. break;
  2594. if (unlikely(cic->key != cfqd)) {
  2595. cfq_drop_dead_cic(cfqd, ioc, cic);
  2596. rcu_read_lock();
  2597. continue;
  2598. }
  2599. spin_lock_irqsave(&ioc->lock, flags);
  2600. rcu_assign_pointer(ioc->ioc_data, cic);
  2601. spin_unlock_irqrestore(&ioc->lock, flags);
  2602. break;
  2603. } while (1);
  2604. return cic;
  2605. }
  2606. /*
  2607. * Add cic into ioc, using cfqd as the search key. This enables us to lookup
  2608. * the process specific cfq io context when entered from the block layer.
  2609. * Also adds the cic to a per-cfqd list, used when this queue is removed.
  2610. */
  2611. static int cfq_cic_link(struct cfq_data *cfqd, struct io_context *ioc,
  2612. struct cfq_io_context *cic, gfp_t gfp_mask)
  2613. {
  2614. unsigned long flags;
  2615. int ret;
  2616. ret = radix_tree_preload(gfp_mask);
  2617. if (!ret) {
  2618. cic->ioc = ioc;
  2619. cic->key = cfqd;
  2620. spin_lock_irqsave(&ioc->lock, flags);
  2621. ret = radix_tree_insert(&ioc->radix_root,
  2622. cfqd->cic_index, cic);
  2623. if (!ret)
  2624. hlist_add_head_rcu(&cic->cic_list, &ioc->cic_list);
  2625. spin_unlock_irqrestore(&ioc->lock, flags);
  2626. radix_tree_preload_end();
  2627. if (!ret) {
  2628. spin_lock_irqsave(cfqd->queue->queue_lock, flags);
  2629. list_add(&cic->queue_list, &cfqd->cic_list);
  2630. spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
  2631. }
  2632. }
  2633. if (ret)
  2634. printk(KERN_ERR "cfq: cic link failed!\n");
  2635. return ret;
  2636. }
  2637. /*
  2638. * Setup general io context and cfq io context. There can be several cfq
  2639. * io contexts per general io context, if this process is doing io to more
  2640. * than one device managed by cfq.
  2641. */
  2642. static struct cfq_io_context *
  2643. cfq_get_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
  2644. {
  2645. struct io_context *ioc = NULL;
  2646. struct cfq_io_context *cic;
  2647. might_sleep_if(gfp_mask & __GFP_WAIT);
  2648. ioc = get_io_context(gfp_mask, cfqd->queue->node);
  2649. if (!ioc)
  2650. return NULL;
  2651. cic = cfq_cic_lookup(cfqd, ioc);
  2652. if (cic)
  2653. goto out;
  2654. cic = cfq_alloc_io_context(cfqd, gfp_mask);
  2655. if (cic == NULL)
  2656. goto err;
  2657. if (cfq_cic_link(cfqd, ioc, cic, gfp_mask))
  2658. goto err_free;
  2659. out:
  2660. smp_read_barrier_depends();
  2661. if (unlikely(ioc->ioprio_changed))
  2662. cfq_ioc_set_ioprio(ioc);
  2663. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  2664. if (unlikely(ioc->cgroup_changed))
  2665. cfq_ioc_set_cgroup(ioc);
  2666. #endif
  2667. return cic;
  2668. err_free:
  2669. cfq_cic_free(cic);
  2670. err:
  2671. put_io_context(ioc);
  2672. return NULL;
  2673. }
  2674. static void
  2675. cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_io_context *cic)
  2676. {
  2677. unsigned long elapsed = jiffies - cic->last_end_request;
  2678. unsigned long ttime = min(elapsed, 2UL * cfqd->cfq_slice_idle);
  2679. cic->ttime_samples = (7*cic->ttime_samples + 256) / 8;
  2680. cic->ttime_total = (7*cic->ttime_total + 256*ttime) / 8;
  2681. cic->ttime_mean = (cic->ttime_total + 128) / cic->ttime_samples;
  2682. }
  2683. static void
  2684. cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  2685. struct request *rq)
  2686. {
  2687. sector_t sdist = 0;
  2688. sector_t n_sec = blk_rq_sectors(rq);
  2689. if (cfqq->last_request_pos) {
  2690. if (cfqq->last_request_pos < blk_rq_pos(rq))
  2691. sdist = blk_rq_pos(rq) - cfqq->last_request_pos;
  2692. else
  2693. sdist = cfqq->last_request_pos - blk_rq_pos(rq);
  2694. }
  2695. cfqq->seek_history <<= 1;
  2696. if (blk_queue_nonrot(cfqd->queue))
  2697. cfqq->seek_history |= (n_sec < CFQQ_SECT_THR_NONROT);
  2698. else
  2699. cfqq->seek_history |= (sdist > CFQQ_SEEK_THR);
  2700. }
  2701. /*
  2702. * Disable idle window if the process thinks too long or seeks so much that
  2703. * it doesn't matter
  2704. */
  2705. static void
  2706. cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  2707. struct cfq_io_context *cic)
  2708. {
  2709. int old_idle, enable_idle;
  2710. /*
  2711. * Don't idle for async or idle io prio class
  2712. */
  2713. if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
  2714. return;
  2715. enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
  2716. if (cfqq->queued[0] + cfqq->queued[1] >= 4)
  2717. cfq_mark_cfqq_deep(cfqq);
  2718. if (cfqq->next_rq && (cfqq->next_rq->cmd_flags & REQ_NOIDLE))
  2719. enable_idle = 0;
  2720. else if (!atomic_read(&cic->ioc->nr_tasks) || !cfqd->cfq_slice_idle ||
  2721. (!cfq_cfqq_deep(cfqq) && CFQQ_SEEKY(cfqq)))
  2722. enable_idle = 0;
  2723. else if (sample_valid(cic->ttime_samples)) {
  2724. if (cic->ttime_mean > cfqd->cfq_slice_idle)
  2725. enable_idle = 0;
  2726. else
  2727. enable_idle = 1;
  2728. }
  2729. if (old_idle != enable_idle) {
  2730. cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
  2731. if (enable_idle)
  2732. cfq_mark_cfqq_idle_window(cfqq);
  2733. else
  2734. cfq_clear_cfqq_idle_window(cfqq);
  2735. }
  2736. }
  2737. /*
  2738. * Check if new_cfqq should preempt the currently active queue. Return 0 for
  2739. * no or if we aren't sure, a 1 will cause a preempt.
  2740. */
  2741. static bool
  2742. cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
  2743. struct request *rq)
  2744. {
  2745. struct cfq_queue *cfqq;
  2746. cfqq = cfqd->active_queue;
  2747. if (!cfqq)
  2748. return false;
  2749. if (cfq_class_idle(new_cfqq))
  2750. return false;
  2751. if (cfq_class_idle(cfqq))
  2752. return true;
  2753. /*
  2754. * Don't allow a non-RT request to preempt an ongoing RT cfqq timeslice.
  2755. */
  2756. if (cfq_class_rt(cfqq) && !cfq_class_rt(new_cfqq))
  2757. return false;
  2758. /*
  2759. * if the new request is sync, but the currently running queue is
  2760. * not, let the sync request have priority.
  2761. */
  2762. if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
  2763. return true;
  2764. if (new_cfqq->cfqg != cfqq->cfqg)
  2765. return false;
  2766. if (cfq_slice_used(cfqq))
  2767. return true;
  2768. /* Allow preemption only if we are idling on sync-noidle tree */
  2769. if (cfqd->serving_type == SYNC_NOIDLE_WORKLOAD &&
  2770. cfqq_type(new_cfqq) == SYNC_NOIDLE_WORKLOAD &&
  2771. new_cfqq->service_tree->count == 2 &&
  2772. RB_EMPTY_ROOT(&cfqq->sort_list))
  2773. return true;
  2774. /*
  2775. * So both queues are sync. Let the new request get disk time if
  2776. * it's a metadata request and the current queue is doing regular IO.
  2777. */
  2778. if ((rq->cmd_flags & REQ_META) && !cfqq->meta_pending)
  2779. return true;
  2780. /*
  2781. * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
  2782. */
  2783. if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq))
  2784. return true;
  2785. /* An idle queue should not be idle now for some reason */
  2786. if (RB_EMPTY_ROOT(&cfqq->sort_list) && !cfq_should_idle(cfqd, cfqq))
  2787. return true;
  2788. if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
  2789. return false;
  2790. /*
  2791. * if this request is as-good as one we would expect from the
  2792. * current cfqq, let it preempt
  2793. */
  2794. if (cfq_rq_close(cfqd, cfqq, rq))
  2795. return true;
  2796. return false;
  2797. }
  2798. /*
  2799. * cfqq preempts the active queue. if we allowed preempt with no slice left,
  2800. * let it have half of its nominal slice.
  2801. */
  2802. static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  2803. {
  2804. struct cfq_queue *old_cfqq = cfqd->active_queue;
  2805. cfq_log_cfqq(cfqd, cfqq, "preempt");
  2806. cfq_slice_expired(cfqd, 1);
  2807. /*
  2808. * workload type is changed, don't save slice, otherwise preempt
  2809. * doesn't happen
  2810. */
  2811. if (cfqq_type(old_cfqq) != cfqq_type(cfqq))
  2812. cfqq->cfqg->saved_workload_slice = 0;
  2813. /*
  2814. * Put the new queue at the front of the of the current list,
  2815. * so we know that it will be selected next.
  2816. */
  2817. BUG_ON(!cfq_cfqq_on_rr(cfqq));
  2818. cfq_service_tree_add(cfqd, cfqq, 1);
  2819. cfq_clear_queue_stats(cfqd, cfqq);
  2820. }
  2821. /*
  2822. * Called when a new fs request (rq) is added (to cfqq). Check if there's
  2823. * something we should do about it
  2824. */
  2825. static void
  2826. cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  2827. struct request *rq)
  2828. {
  2829. struct cfq_io_context *cic = RQ_CIC(rq);
  2830. cfqd->rq_queued++;
  2831. if (rq->cmd_flags & REQ_META)
  2832. cfqq->meta_pending++;
  2833. cfq_update_io_thinktime(cfqd, cic);
  2834. cfq_update_io_seektime(cfqd, cfqq, rq);
  2835. cfq_update_idle_window(cfqd, cfqq, cic);
  2836. cfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
  2837. if (cfqq == cfqd->active_queue) {
  2838. /*
  2839. * Remember that we saw a request from this process, but
  2840. * don't start queuing just yet. Otherwise we risk seeing lots
  2841. * of tiny requests, because we disrupt the normal plugging
  2842. * and merging. If the request is already larger than a single
  2843. * page, let it rip immediately. For that case we assume that
  2844. * merging is already done. Ditto for a busy system that
  2845. * has other work pending, don't risk delaying until the
  2846. * idle timer unplug to continue working.
  2847. */
  2848. if (cfq_cfqq_wait_request(cfqq)) {
  2849. if (blk_rq_bytes(rq) > PAGE_CACHE_SIZE ||
  2850. cfqd->busy_queues > 1) {
  2851. cfq_del_timer(cfqd, cfqq);
  2852. cfq_clear_cfqq_wait_request(cfqq);
  2853. __blk_run_queue(cfqd->queue, false);
  2854. } else {
  2855. cfq_blkiocg_update_idle_time_stats(
  2856. &cfqq->cfqg->blkg);
  2857. cfq_mark_cfqq_must_dispatch(cfqq);
  2858. }
  2859. }
  2860. } else if (cfq_should_preempt(cfqd, cfqq, rq)) {
  2861. /*
  2862. * not the active queue - expire current slice if it is
  2863. * idle and has expired it's mean thinktime or this new queue
  2864. * has some old slice time left and is of higher priority or
  2865. * this new queue is RT and the current one is BE
  2866. */
  2867. cfq_preempt_queue(cfqd, cfqq);
  2868. __blk_run_queue(cfqd->queue, false);
  2869. }
  2870. }
  2871. static void cfq_insert_request(struct request_queue *q, struct request *rq)
  2872. {
  2873. struct cfq_data *cfqd = q->elevator->elevator_data;
  2874. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  2875. cfq_log_cfqq(cfqd, cfqq, "insert_request");
  2876. cfq_init_prio_data(cfqq, RQ_CIC(rq)->ioc);
  2877. rq_set_fifo_time(rq, jiffies + cfqd->cfq_fifo_expire[rq_is_sync(rq)]);
  2878. list_add_tail(&rq->queuelist, &cfqq->fifo);
  2879. cfq_add_rq_rb(rq);
  2880. cfq_blkiocg_update_io_add_stats(&(RQ_CFQG(rq))->blkg,
  2881. &cfqd->serving_group->blkg, rq_data_dir(rq),
  2882. rq_is_sync(rq));
  2883. cfq_rq_enqueued(cfqd, cfqq, rq);
  2884. }
  2885. /*
  2886. * Update hw_tag based on peak queue depth over 50 samples under
  2887. * sufficient load.
  2888. */
  2889. static void cfq_update_hw_tag(struct cfq_data *cfqd)
  2890. {
  2891. struct cfq_queue *cfqq = cfqd->active_queue;
  2892. if (cfqd->rq_in_driver > cfqd->hw_tag_est_depth)
  2893. cfqd->hw_tag_est_depth = cfqd->rq_in_driver;
  2894. if (cfqd->hw_tag == 1)
  2895. return;
  2896. if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN &&
  2897. cfqd->rq_in_driver <= CFQ_HW_QUEUE_MIN)
  2898. return;
  2899. /*
  2900. * If active queue hasn't enough requests and can idle, cfq might not
  2901. * dispatch sufficient requests to hardware. Don't zero hw_tag in this
  2902. * case
  2903. */
  2904. if (cfqq && cfq_cfqq_idle_window(cfqq) &&
  2905. cfqq->dispatched + cfqq->queued[0] + cfqq->queued[1] <
  2906. CFQ_HW_QUEUE_MIN && cfqd->rq_in_driver < CFQ_HW_QUEUE_MIN)
  2907. return;
  2908. if (cfqd->hw_tag_samples++ < 50)
  2909. return;
  2910. if (cfqd->hw_tag_est_depth >= CFQ_HW_QUEUE_MIN)
  2911. cfqd->hw_tag = 1;
  2912. else
  2913. cfqd->hw_tag = 0;
  2914. }
  2915. static bool cfq_should_wait_busy(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  2916. {
  2917. struct cfq_io_context *cic = cfqd->active_cic;
  2918. /* If the queue already has requests, don't wait */
  2919. if (!RB_EMPTY_ROOT(&cfqq->sort_list))
  2920. return false;
  2921. /* If there are other queues in the group, don't wait */
  2922. if (cfqq->cfqg->nr_cfqq > 1)
  2923. return false;
  2924. if (cfq_slice_used(cfqq))
  2925. return true;
  2926. /* if slice left is less than think time, wait busy */
  2927. if (cic && sample_valid(cic->ttime_samples)
  2928. && (cfqq->slice_end - jiffies < cic->ttime_mean))
  2929. return true;
  2930. /*
  2931. * If think times is less than a jiffy than ttime_mean=0 and above
  2932. * will not be true. It might happen that slice has not expired yet
  2933. * but will expire soon (4-5 ns) during select_queue(). To cover the
  2934. * case where think time is less than a jiffy, mark the queue wait
  2935. * busy if only 1 jiffy is left in the slice.
  2936. */
  2937. if (cfqq->slice_end - jiffies == 1)
  2938. return true;
  2939. return false;
  2940. }
  2941. static void cfq_completed_request(struct request_queue *q, struct request *rq)
  2942. {
  2943. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  2944. struct cfq_data *cfqd = cfqq->cfqd;
  2945. const int sync = rq_is_sync(rq);
  2946. unsigned long now;
  2947. now = jiffies;
  2948. cfq_log_cfqq(cfqd, cfqq, "complete rqnoidle %d",
  2949. !!(rq->cmd_flags & REQ_NOIDLE));
  2950. cfq_update_hw_tag(cfqd);
  2951. WARN_ON(!cfqd->rq_in_driver);
  2952. WARN_ON(!cfqq->dispatched);
  2953. cfqd->rq_in_driver--;
  2954. cfqq->dispatched--;
  2955. (RQ_CFQG(rq))->dispatched--;
  2956. cfq_blkiocg_update_completion_stats(&cfqq->cfqg->blkg,
  2957. rq_start_time_ns(rq), rq_io_start_time_ns(rq),
  2958. rq_data_dir(rq), rq_is_sync(rq));
  2959. cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]--;
  2960. if (sync) {
  2961. RQ_CIC(rq)->last_end_request = now;
  2962. if (!time_after(rq->start_time + cfqd->cfq_fifo_expire[1], now))
  2963. cfqd->last_delayed_sync = now;
  2964. }
  2965. /*
  2966. * If this is the active queue, check if it needs to be expired,
  2967. * or if we want to idle in case it has no pending requests.
  2968. */
  2969. if (cfqd->active_queue == cfqq) {
  2970. const bool cfqq_empty = RB_EMPTY_ROOT(&cfqq->sort_list);
  2971. if (cfq_cfqq_slice_new(cfqq)) {
  2972. cfq_set_prio_slice(cfqd, cfqq);
  2973. cfq_clear_cfqq_slice_new(cfqq);
  2974. }
  2975. /*
  2976. * Should we wait for next request to come in before we expire
  2977. * the queue.
  2978. */
  2979. if (cfq_should_wait_busy(cfqd, cfqq)) {
  2980. unsigned long extend_sl = cfqd->cfq_slice_idle;
  2981. if (!cfqd->cfq_slice_idle)
  2982. extend_sl = cfqd->cfq_group_idle;
  2983. cfqq->slice_end = jiffies + extend_sl;
  2984. cfq_mark_cfqq_wait_busy(cfqq);
  2985. cfq_log_cfqq(cfqd, cfqq, "will busy wait");
  2986. }
  2987. /*
  2988. * Idling is not enabled on:
  2989. * - expired queues
  2990. * - idle-priority queues
  2991. * - async queues
  2992. * - queues with still some requests queued
  2993. * - when there is a close cooperator
  2994. */
  2995. if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
  2996. cfq_slice_expired(cfqd, 1);
  2997. else if (sync && cfqq_empty &&
  2998. !cfq_close_cooperator(cfqd, cfqq)) {
  2999. cfq_arm_slice_timer(cfqd);
  3000. }
  3001. }
  3002. if (!cfqd->rq_in_driver)
  3003. cfq_schedule_dispatch(cfqd);
  3004. }
  3005. /*
  3006. * we temporarily boost lower priority queues if they are holding fs exclusive
  3007. * resources. they are boosted to normal prio (CLASS_BE/4)
  3008. */
  3009. static void cfq_prio_boost(struct cfq_queue *cfqq)
  3010. {
  3011. if (has_fs_excl()) {
  3012. /*
  3013. * boost idle prio on transactions that would lock out other
  3014. * users of the filesystem
  3015. */
  3016. if (cfq_class_idle(cfqq))
  3017. cfqq->ioprio_class = IOPRIO_CLASS_BE;
  3018. if (cfqq->ioprio > IOPRIO_NORM)
  3019. cfqq->ioprio = IOPRIO_NORM;
  3020. } else {
  3021. /*
  3022. * unboost the queue (if needed)
  3023. */
  3024. cfqq->ioprio_class = cfqq->org_ioprio_class;
  3025. cfqq->ioprio = cfqq->org_ioprio;
  3026. }
  3027. }
  3028. static inline int __cfq_may_queue(struct cfq_queue *cfqq)
  3029. {
  3030. if (cfq_cfqq_wait_request(cfqq) && !cfq_cfqq_must_alloc_slice(cfqq)) {
  3031. cfq_mark_cfqq_must_alloc_slice(cfqq);
  3032. return ELV_MQUEUE_MUST;
  3033. }
  3034. return ELV_MQUEUE_MAY;
  3035. }
  3036. static int cfq_may_queue(struct request_queue *q, int rw)
  3037. {
  3038. struct cfq_data *cfqd = q->elevator->elevator_data;
  3039. struct task_struct *tsk = current;
  3040. struct cfq_io_context *cic;
  3041. struct cfq_queue *cfqq;
  3042. /*
  3043. * don't force setup of a queue from here, as a call to may_queue
  3044. * does not necessarily imply that a request actually will be queued.
  3045. * so just lookup a possibly existing queue, or return 'may queue'
  3046. * if that fails
  3047. */
  3048. cic = cfq_cic_lookup(cfqd, tsk->io_context);
  3049. if (!cic)
  3050. return ELV_MQUEUE_MAY;
  3051. cfqq = cic_to_cfqq(cic, rw_is_sync(rw));
  3052. if (cfqq) {
  3053. cfq_init_prio_data(cfqq, cic->ioc);
  3054. cfq_prio_boost(cfqq);
  3055. return __cfq_may_queue(cfqq);
  3056. }
  3057. return ELV_MQUEUE_MAY;
  3058. }
  3059. /*
  3060. * queue lock held here
  3061. */
  3062. static void cfq_put_request(struct request *rq)
  3063. {
  3064. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  3065. if (cfqq) {
  3066. const int rw = rq_data_dir(rq);
  3067. BUG_ON(!cfqq->allocated[rw]);
  3068. cfqq->allocated[rw]--;
  3069. put_io_context(RQ_CIC(rq)->ioc);
  3070. rq->elevator_private[0] = NULL;
  3071. rq->elevator_private[1] = NULL;
  3072. /* Put down rq reference on cfqg */
  3073. cfq_put_cfqg(RQ_CFQG(rq));
  3074. rq->elevator_private[2] = NULL;
  3075. cfq_put_queue(cfqq);
  3076. }
  3077. }
  3078. static struct cfq_queue *
  3079. cfq_merge_cfqqs(struct cfq_data *cfqd, struct cfq_io_context *cic,
  3080. struct cfq_queue *cfqq)
  3081. {
  3082. cfq_log_cfqq(cfqd, cfqq, "merging with queue %p", cfqq->new_cfqq);
  3083. cic_set_cfqq(cic, cfqq->new_cfqq, 1);
  3084. cfq_mark_cfqq_coop(cfqq->new_cfqq);
  3085. cfq_put_queue(cfqq);
  3086. return cic_to_cfqq(cic, 1);
  3087. }
  3088. /*
  3089. * Returns NULL if a new cfqq should be allocated, or the old cfqq if this
  3090. * was the last process referring to said cfqq.
  3091. */
  3092. static struct cfq_queue *
  3093. split_cfqq(struct cfq_io_context *cic, struct cfq_queue *cfqq)
  3094. {
  3095. if (cfqq_process_refs(cfqq) == 1) {
  3096. cfqq->pid = current->pid;
  3097. cfq_clear_cfqq_coop(cfqq);
  3098. cfq_clear_cfqq_split_coop(cfqq);
  3099. return cfqq;
  3100. }
  3101. cic_set_cfqq(cic, NULL, 1);
  3102. cfq_put_cooperator(cfqq);
  3103. cfq_put_queue(cfqq);
  3104. return NULL;
  3105. }
  3106. /*
  3107. * Allocate cfq data structures associated with this request.
  3108. */
  3109. static int
  3110. cfq_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
  3111. {
  3112. struct cfq_data *cfqd = q->elevator->elevator_data;
  3113. struct cfq_io_context *cic;
  3114. const int rw = rq_data_dir(rq);
  3115. const bool is_sync = rq_is_sync(rq);
  3116. struct cfq_queue *cfqq;
  3117. unsigned long flags;
  3118. might_sleep_if(gfp_mask & __GFP_WAIT);
  3119. cic = cfq_get_io_context(cfqd, gfp_mask);
  3120. spin_lock_irqsave(q->queue_lock, flags);
  3121. if (!cic)
  3122. goto queue_fail;
  3123. new_queue:
  3124. cfqq = cic_to_cfqq(cic, is_sync);
  3125. if (!cfqq || cfqq == &cfqd->oom_cfqq) {
  3126. cfqq = cfq_get_queue(cfqd, is_sync, cic->ioc, gfp_mask);
  3127. cic_set_cfqq(cic, cfqq, is_sync);
  3128. } else {
  3129. /*
  3130. * If the queue was seeky for too long, break it apart.
  3131. */
  3132. if (cfq_cfqq_coop(cfqq) && cfq_cfqq_split_coop(cfqq)) {
  3133. cfq_log_cfqq(cfqd, cfqq, "breaking apart cfqq");
  3134. cfqq = split_cfqq(cic, cfqq);
  3135. if (!cfqq)
  3136. goto new_queue;
  3137. }
  3138. /*
  3139. * Check to see if this queue is scheduled to merge with
  3140. * another, closely cooperating queue. The merging of
  3141. * queues happens here as it must be done in process context.
  3142. * The reference on new_cfqq was taken in merge_cfqqs.
  3143. */
  3144. if (cfqq->new_cfqq)
  3145. cfqq = cfq_merge_cfqqs(cfqd, cic, cfqq);
  3146. }
  3147. cfqq->allocated[rw]++;
  3148. cfqq->ref++;
  3149. rq->elevator_private[0] = cic;
  3150. rq->elevator_private[1] = cfqq;
  3151. rq->elevator_private[2] = cfq_ref_get_cfqg(cfqq->cfqg);
  3152. spin_unlock_irqrestore(q->queue_lock, flags);
  3153. return 0;
  3154. queue_fail:
  3155. if (cic)
  3156. put_io_context(cic->ioc);
  3157. cfq_schedule_dispatch(cfqd);
  3158. spin_unlock_irqrestore(q->queue_lock, flags);
  3159. cfq_log(cfqd, "set_request fail");
  3160. return 1;
  3161. }
  3162. static void cfq_kick_queue(struct work_struct *work)
  3163. {
  3164. struct cfq_data *cfqd =
  3165. container_of(work, struct cfq_data, unplug_work);
  3166. struct request_queue *q = cfqd->queue;
  3167. spin_lock_irq(q->queue_lock);
  3168. __blk_run_queue(cfqd->queue, false);
  3169. spin_unlock_irq(q->queue_lock);
  3170. }
  3171. /*
  3172. * Timer running if the active_queue is currently idling inside its time slice
  3173. */
  3174. static void cfq_idle_slice_timer(unsigned long data)
  3175. {
  3176. struct cfq_data *cfqd = (struct cfq_data *) data;
  3177. struct cfq_queue *cfqq;
  3178. unsigned long flags;
  3179. int timed_out = 1;
  3180. cfq_log(cfqd, "idle timer fired");
  3181. spin_lock_irqsave(cfqd->queue->queue_lock, flags);
  3182. cfqq = cfqd->active_queue;
  3183. if (cfqq) {
  3184. timed_out = 0;
  3185. /*
  3186. * We saw a request before the queue expired, let it through
  3187. */
  3188. if (cfq_cfqq_must_dispatch(cfqq))
  3189. goto out_kick;
  3190. /*
  3191. * expired
  3192. */
  3193. if (cfq_slice_used(cfqq))
  3194. goto expire;
  3195. /*
  3196. * only expire and reinvoke request handler, if there are
  3197. * other queues with pending requests
  3198. */
  3199. if (!cfqd->busy_queues)
  3200. goto out_cont;
  3201. /*
  3202. * not expired and it has a request pending, let it dispatch
  3203. */
  3204. if (!RB_EMPTY_ROOT(&cfqq->sort_list))
  3205. goto out_kick;
  3206. /*
  3207. * Queue depth flag is reset only when the idle didn't succeed
  3208. */
  3209. cfq_clear_cfqq_deep(cfqq);
  3210. }
  3211. expire:
  3212. cfq_slice_expired(cfqd, timed_out);
  3213. out_kick:
  3214. cfq_schedule_dispatch(cfqd);
  3215. out_cont:
  3216. spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
  3217. }
  3218. static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
  3219. {
  3220. del_timer_sync(&cfqd->idle_slice_timer);
  3221. cancel_work_sync(&cfqd->unplug_work);
  3222. }
  3223. static void cfq_put_async_queues(struct cfq_data *cfqd)
  3224. {
  3225. int i;
  3226. for (i = 0; i < IOPRIO_BE_NR; i++) {
  3227. if (cfqd->async_cfqq[0][i])
  3228. cfq_put_queue(cfqd->async_cfqq[0][i]);
  3229. if (cfqd->async_cfqq[1][i])
  3230. cfq_put_queue(cfqd->async_cfqq[1][i]);
  3231. }
  3232. if (cfqd->async_idle_cfqq)
  3233. cfq_put_queue(cfqd->async_idle_cfqq);
  3234. }
  3235. static void cfq_cfqd_free(struct rcu_head *head)
  3236. {
  3237. kfree(container_of(head, struct cfq_data, rcu));
  3238. }
  3239. static void cfq_exit_queue(struct elevator_queue *e)
  3240. {
  3241. struct cfq_data *cfqd = e->elevator_data;
  3242. struct request_queue *q = cfqd->queue;
  3243. cfq_shutdown_timer_wq(cfqd);
  3244. spin_lock_irq(q->queue_lock);
  3245. if (cfqd->active_queue)
  3246. __cfq_slice_expired(cfqd, cfqd->active_queue, 0);
  3247. while (!list_empty(&cfqd->cic_list)) {
  3248. struct cfq_io_context *cic = list_entry(cfqd->cic_list.next,
  3249. struct cfq_io_context,
  3250. queue_list);
  3251. __cfq_exit_single_io_context(cfqd, cic);
  3252. }
  3253. cfq_put_async_queues(cfqd);
  3254. cfq_release_cfq_groups(cfqd);
  3255. cfq_blkiocg_del_blkio_group(&cfqd->root_group.blkg);
  3256. spin_unlock_irq(q->queue_lock);
  3257. cfq_shutdown_timer_wq(cfqd);
  3258. spin_lock(&cic_index_lock);
  3259. ida_remove(&cic_index_ida, cfqd->cic_index);
  3260. spin_unlock(&cic_index_lock);
  3261. /* Wait for cfqg->blkg->key accessors to exit their grace periods. */
  3262. call_rcu(&cfqd->rcu, cfq_cfqd_free);
  3263. }
  3264. static int cfq_alloc_cic_index(void)
  3265. {
  3266. int index, error;
  3267. do {
  3268. if (!ida_pre_get(&cic_index_ida, GFP_KERNEL))
  3269. return -ENOMEM;
  3270. spin_lock(&cic_index_lock);
  3271. error = ida_get_new(&cic_index_ida, &index);
  3272. spin_unlock(&cic_index_lock);
  3273. if (error && error != -EAGAIN)
  3274. return error;
  3275. } while (error);
  3276. return index;
  3277. }
  3278. static void *cfq_init_queue(struct request_queue *q)
  3279. {
  3280. struct cfq_data *cfqd;
  3281. int i, j;
  3282. struct cfq_group *cfqg;
  3283. struct cfq_rb_root *st;
  3284. i = cfq_alloc_cic_index();
  3285. if (i < 0)
  3286. return NULL;
  3287. cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL | __GFP_ZERO, q->node);
  3288. if (!cfqd)
  3289. return NULL;
  3290. /*
  3291. * Don't need take queue_lock in the routine, since we are
  3292. * initializing the ioscheduler, and nobody is using cfqd
  3293. */
  3294. cfqd->cic_index = i;
  3295. /* Init root service tree */
  3296. cfqd->grp_service_tree = CFQ_RB_ROOT;
  3297. /* Init root group */
  3298. cfqg = &cfqd->root_group;
  3299. for_each_cfqg_st(cfqg, i, j, st)
  3300. *st = CFQ_RB_ROOT;
  3301. RB_CLEAR_NODE(&cfqg->rb_node);
  3302. /* Give preference to root group over other groups */
  3303. cfqg->weight = 2*BLKIO_WEIGHT_DEFAULT;
  3304. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  3305. /*
  3306. * Take a reference to root group which we never drop. This is just
  3307. * to make sure that cfq_put_cfqg() does not try to kfree root group
  3308. */
  3309. cfqg->ref = 1;
  3310. rcu_read_lock();
  3311. cfq_blkiocg_add_blkio_group(&blkio_root_cgroup, &cfqg->blkg,
  3312. (void *)cfqd, 0);
  3313. rcu_read_unlock();
  3314. #endif
  3315. /*
  3316. * Not strictly needed (since RB_ROOT just clears the node and we
  3317. * zeroed cfqd on alloc), but better be safe in case someone decides
  3318. * to add magic to the rb code
  3319. */
  3320. for (i = 0; i < CFQ_PRIO_LISTS; i++)
  3321. cfqd->prio_trees[i] = RB_ROOT;
  3322. /*
  3323. * Our fallback cfqq if cfq_find_alloc_queue() runs into OOM issues.
  3324. * Grab a permanent reference to it, so that the normal code flow
  3325. * will not attempt to free it.
  3326. */
  3327. cfq_init_cfqq(cfqd, &cfqd->oom_cfqq, 1, 0);
  3328. cfqd->oom_cfqq.ref++;
  3329. cfq_link_cfqq_cfqg(&cfqd->oom_cfqq, &cfqd->root_group);
  3330. INIT_LIST_HEAD(&cfqd->cic_list);
  3331. cfqd->queue = q;
  3332. init_timer(&cfqd->idle_slice_timer);
  3333. cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
  3334. cfqd->idle_slice_timer.data = (unsigned long) cfqd;
  3335. INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
  3336. cfqd->cfq_quantum = cfq_quantum;
  3337. cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
  3338. cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
  3339. cfqd->cfq_back_max = cfq_back_max;
  3340. cfqd->cfq_back_penalty = cfq_back_penalty;
  3341. cfqd->cfq_slice[0] = cfq_slice_async;
  3342. cfqd->cfq_slice[1] = cfq_slice_sync;
  3343. cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
  3344. cfqd->cfq_slice_idle = cfq_slice_idle;
  3345. cfqd->cfq_group_idle = cfq_group_idle;
  3346. cfqd->cfq_latency = 1;
  3347. cfqd->hw_tag = -1;
  3348. /*
  3349. * we optimistically start assuming sync ops weren't delayed in last
  3350. * second, in order to have larger depth for async operations.
  3351. */
  3352. cfqd->last_delayed_sync = jiffies - HZ;
  3353. return cfqd;
  3354. }
  3355. static void cfq_slab_kill(void)
  3356. {
  3357. /*
  3358. * Caller already ensured that pending RCU callbacks are completed,
  3359. * so we should have no busy allocations at this point.
  3360. */
  3361. if (cfq_pool)
  3362. kmem_cache_destroy(cfq_pool);
  3363. if (cfq_ioc_pool)
  3364. kmem_cache_destroy(cfq_ioc_pool);
  3365. }
  3366. static int __init cfq_slab_setup(void)
  3367. {
  3368. cfq_pool = KMEM_CACHE(cfq_queue, 0);
  3369. if (!cfq_pool)
  3370. goto fail;
  3371. cfq_ioc_pool = KMEM_CACHE(cfq_io_context, 0);
  3372. if (!cfq_ioc_pool)
  3373. goto fail;
  3374. return 0;
  3375. fail:
  3376. cfq_slab_kill();
  3377. return -ENOMEM;
  3378. }
  3379. /*
  3380. * sysfs parts below -->
  3381. */
  3382. static ssize_t
  3383. cfq_var_show(unsigned int var, char *page)
  3384. {
  3385. return sprintf(page, "%d\n", var);
  3386. }
  3387. static ssize_t
  3388. cfq_var_store(unsigned int *var, const char *page, size_t count)
  3389. {
  3390. char *p = (char *) page;
  3391. *var = simple_strtoul(p, &p, 10);
  3392. return count;
  3393. }
  3394. #define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
  3395. static ssize_t __FUNC(struct elevator_queue *e, char *page) \
  3396. { \
  3397. struct cfq_data *cfqd = e->elevator_data; \
  3398. unsigned int __data = __VAR; \
  3399. if (__CONV) \
  3400. __data = jiffies_to_msecs(__data); \
  3401. return cfq_var_show(__data, (page)); \
  3402. }
  3403. SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
  3404. SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
  3405. SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
  3406. SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
  3407. SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
  3408. SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
  3409. SHOW_FUNCTION(cfq_group_idle_show, cfqd->cfq_group_idle, 1);
  3410. SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
  3411. SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
  3412. SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
  3413. SHOW_FUNCTION(cfq_low_latency_show, cfqd->cfq_latency, 0);
  3414. #undef SHOW_FUNCTION
  3415. #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
  3416. static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
  3417. { \
  3418. struct cfq_data *cfqd = e->elevator_data; \
  3419. unsigned int __data; \
  3420. int ret = cfq_var_store(&__data, (page), count); \
  3421. if (__data < (MIN)) \
  3422. __data = (MIN); \
  3423. else if (__data > (MAX)) \
  3424. __data = (MAX); \
  3425. if (__CONV) \
  3426. *(__PTR) = msecs_to_jiffies(__data); \
  3427. else \
  3428. *(__PTR) = __data; \
  3429. return ret; \
  3430. }
  3431. STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
  3432. STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
  3433. UINT_MAX, 1);
  3434. STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
  3435. UINT_MAX, 1);
  3436. STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
  3437. STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
  3438. UINT_MAX, 0);
  3439. STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
  3440. STORE_FUNCTION(cfq_group_idle_store, &cfqd->cfq_group_idle, 0, UINT_MAX, 1);
  3441. STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
  3442. STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
  3443. STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
  3444. UINT_MAX, 0);
  3445. STORE_FUNCTION(cfq_low_latency_store, &cfqd->cfq_latency, 0, 1, 0);
  3446. #undef STORE_FUNCTION
  3447. #define CFQ_ATTR(name) \
  3448. __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
  3449. static struct elv_fs_entry cfq_attrs[] = {
  3450. CFQ_ATTR(quantum),
  3451. CFQ_ATTR(fifo_expire_sync),
  3452. CFQ_ATTR(fifo_expire_async),
  3453. CFQ_ATTR(back_seek_max),
  3454. CFQ_ATTR(back_seek_penalty),
  3455. CFQ_ATTR(slice_sync),
  3456. CFQ_ATTR(slice_async),
  3457. CFQ_ATTR(slice_async_rq),
  3458. CFQ_ATTR(slice_idle),
  3459. CFQ_ATTR(group_idle),
  3460. CFQ_ATTR(low_latency),
  3461. __ATTR_NULL
  3462. };
  3463. static struct elevator_type iosched_cfq = {
  3464. .ops = {
  3465. .elevator_merge_fn = cfq_merge,
  3466. .elevator_merged_fn = cfq_merged_request,
  3467. .elevator_merge_req_fn = cfq_merged_requests,
  3468. .elevator_allow_merge_fn = cfq_allow_merge,
  3469. .elevator_bio_merged_fn = cfq_bio_merged,
  3470. .elevator_dispatch_fn = cfq_dispatch_requests,
  3471. .elevator_add_req_fn = cfq_insert_request,
  3472. .elevator_activate_req_fn = cfq_activate_request,
  3473. .elevator_deactivate_req_fn = cfq_deactivate_request,
  3474. .elevator_completed_req_fn = cfq_completed_request,
  3475. .elevator_former_req_fn = elv_rb_former_request,
  3476. .elevator_latter_req_fn = elv_rb_latter_request,
  3477. .elevator_set_req_fn = cfq_set_request,
  3478. .elevator_put_req_fn = cfq_put_request,
  3479. .elevator_may_queue_fn = cfq_may_queue,
  3480. .elevator_init_fn = cfq_init_queue,
  3481. .elevator_exit_fn = cfq_exit_queue,
  3482. .trim = cfq_free_io_context,
  3483. },
  3484. .elevator_attrs = cfq_attrs,
  3485. .elevator_name = "cfq",
  3486. .elevator_owner = THIS_MODULE,
  3487. };
  3488. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  3489. static struct blkio_policy_type blkio_policy_cfq = {
  3490. .ops = {
  3491. .blkio_unlink_group_fn = cfq_unlink_blkio_group,
  3492. .blkio_update_group_weight_fn = cfq_update_blkio_group_weight,
  3493. },
  3494. .plid = BLKIO_POLICY_PROP,
  3495. };
  3496. #else
  3497. static struct blkio_policy_type blkio_policy_cfq;
  3498. #endif
  3499. static int __init cfq_init(void)
  3500. {
  3501. /*
  3502. * could be 0 on HZ < 1000 setups
  3503. */
  3504. if (!cfq_slice_async)
  3505. cfq_slice_async = 1;
  3506. if (!cfq_slice_idle)
  3507. cfq_slice_idle = 1;
  3508. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  3509. if (!cfq_group_idle)
  3510. cfq_group_idle = 1;
  3511. #else
  3512. cfq_group_idle = 0;
  3513. #endif
  3514. if (cfq_slab_setup())
  3515. return -ENOMEM;
  3516. elv_register(&iosched_cfq);
  3517. blkio_policy_register(&blkio_policy_cfq);
  3518. return 0;
  3519. }
  3520. static void __exit cfq_exit(void)
  3521. {
  3522. DECLARE_COMPLETION_ONSTACK(all_gone);
  3523. blkio_policy_unregister(&blkio_policy_cfq);
  3524. elv_unregister(&iosched_cfq);
  3525. ioc_gone = &all_gone;
  3526. /* ioc_gone's update must be visible before reading ioc_count */
  3527. smp_wmb();
  3528. /*
  3529. * this also protects us from entering cfq_slab_kill() with
  3530. * pending RCU callbacks
  3531. */
  3532. if (elv_ioc_count_read(cfq_ioc_count))
  3533. wait_for_completion(&all_gone);
  3534. ida_destroy(&cic_index_ida);
  3535. cfq_slab_kill();
  3536. }
  3537. module_init(cfq_init);
  3538. module_exit(cfq_exit);
  3539. MODULE_AUTHOR("Jens Axboe");
  3540. MODULE_LICENSE("GPL");
  3541. MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");