fsldma.c 28 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072
  1. /*
  2. * Freescale MPC85xx, MPC83xx DMA Engine support
  3. *
  4. * Copyright (C) 2007 Freescale Semiconductor, Inc. All rights reserved.
  5. *
  6. * Author:
  7. * Zhang Wei <wei.zhang@freescale.com>, Jul 2007
  8. * Ebony Zhu <ebony.zhu@freescale.com>, May 2007
  9. *
  10. * Description:
  11. * DMA engine driver for Freescale MPC8540 DMA controller, which is
  12. * also fit for MPC8560, MPC8555, MPC8548, MPC8641, and etc.
  13. * The support for MPC8349 DMA contorller is also added.
  14. *
  15. * This driver instructs the DMA controller to issue the PCI Read Multiple
  16. * command for PCI read operations, instead of using the default PCI Read Line
  17. * command. Please be aware that this setting may result in read pre-fetching
  18. * on some platforms.
  19. *
  20. * This is free software; you can redistribute it and/or modify
  21. * it under the terms of the GNU General Public License as published by
  22. * the Free Software Foundation; either version 2 of the License, or
  23. * (at your option) any later version.
  24. *
  25. */
  26. #include <linux/init.h>
  27. #include <linux/module.h>
  28. #include <linux/pci.h>
  29. #include <linux/interrupt.h>
  30. #include <linux/dmaengine.h>
  31. #include <linux/delay.h>
  32. #include <linux/dma-mapping.h>
  33. #include <linux/dmapool.h>
  34. #include <linux/of_platform.h>
  35. #include "fsldma.h"
  36. static void dma_init(struct fsl_dma_chan *fsl_chan)
  37. {
  38. /* Reset the channel */
  39. DMA_OUT(fsl_chan, &fsl_chan->reg_base->mr, 0, 32);
  40. switch (fsl_chan->feature & FSL_DMA_IP_MASK) {
  41. case FSL_DMA_IP_85XX:
  42. /* Set the channel to below modes:
  43. * EIE - Error interrupt enable
  44. * EOSIE - End of segments interrupt enable (basic mode)
  45. * EOLNIE - End of links interrupt enable
  46. */
  47. DMA_OUT(fsl_chan, &fsl_chan->reg_base->mr, FSL_DMA_MR_EIE
  48. | FSL_DMA_MR_EOLNIE | FSL_DMA_MR_EOSIE, 32);
  49. break;
  50. case FSL_DMA_IP_83XX:
  51. /* Set the channel to below modes:
  52. * EOTIE - End-of-transfer interrupt enable
  53. * PRC_RM - PCI read multiple
  54. */
  55. DMA_OUT(fsl_chan, &fsl_chan->reg_base->mr, FSL_DMA_MR_EOTIE
  56. | FSL_DMA_MR_PRC_RM, 32);
  57. break;
  58. }
  59. }
  60. static void set_sr(struct fsl_dma_chan *fsl_chan, u32 val)
  61. {
  62. DMA_OUT(fsl_chan, &fsl_chan->reg_base->sr, val, 32);
  63. }
  64. static u32 get_sr(struct fsl_dma_chan *fsl_chan)
  65. {
  66. return DMA_IN(fsl_chan, &fsl_chan->reg_base->sr, 32);
  67. }
  68. static void set_desc_cnt(struct fsl_dma_chan *fsl_chan,
  69. struct fsl_dma_ld_hw *hw, u32 count)
  70. {
  71. hw->count = CPU_TO_DMA(fsl_chan, count, 32);
  72. }
  73. static void set_desc_src(struct fsl_dma_chan *fsl_chan,
  74. struct fsl_dma_ld_hw *hw, dma_addr_t src)
  75. {
  76. u64 snoop_bits;
  77. snoop_bits = ((fsl_chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX)
  78. ? ((u64)FSL_DMA_SATR_SREADTYPE_SNOOP_READ << 32) : 0;
  79. hw->src_addr = CPU_TO_DMA(fsl_chan, snoop_bits | src, 64);
  80. }
  81. static void set_desc_dest(struct fsl_dma_chan *fsl_chan,
  82. struct fsl_dma_ld_hw *hw, dma_addr_t dest)
  83. {
  84. u64 snoop_bits;
  85. snoop_bits = ((fsl_chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX)
  86. ? ((u64)FSL_DMA_DATR_DWRITETYPE_SNOOP_WRITE << 32) : 0;
  87. hw->dst_addr = CPU_TO_DMA(fsl_chan, snoop_bits | dest, 64);
  88. }
  89. static void set_desc_next(struct fsl_dma_chan *fsl_chan,
  90. struct fsl_dma_ld_hw *hw, dma_addr_t next)
  91. {
  92. u64 snoop_bits;
  93. snoop_bits = ((fsl_chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_83XX)
  94. ? FSL_DMA_SNEN : 0;
  95. hw->next_ln_addr = CPU_TO_DMA(fsl_chan, snoop_bits | next, 64);
  96. }
  97. static void set_cdar(struct fsl_dma_chan *fsl_chan, dma_addr_t addr)
  98. {
  99. DMA_OUT(fsl_chan, &fsl_chan->reg_base->cdar, addr | FSL_DMA_SNEN, 64);
  100. }
  101. static dma_addr_t get_cdar(struct fsl_dma_chan *fsl_chan)
  102. {
  103. return DMA_IN(fsl_chan, &fsl_chan->reg_base->cdar, 64) & ~FSL_DMA_SNEN;
  104. }
  105. static void set_ndar(struct fsl_dma_chan *fsl_chan, dma_addr_t addr)
  106. {
  107. DMA_OUT(fsl_chan, &fsl_chan->reg_base->ndar, addr, 64);
  108. }
  109. static dma_addr_t get_ndar(struct fsl_dma_chan *fsl_chan)
  110. {
  111. return DMA_IN(fsl_chan, &fsl_chan->reg_base->ndar, 64);
  112. }
  113. static u32 get_bcr(struct fsl_dma_chan *fsl_chan)
  114. {
  115. return DMA_IN(fsl_chan, &fsl_chan->reg_base->bcr, 32);
  116. }
  117. static int dma_is_idle(struct fsl_dma_chan *fsl_chan)
  118. {
  119. u32 sr = get_sr(fsl_chan);
  120. return (!(sr & FSL_DMA_SR_CB)) || (sr & FSL_DMA_SR_CH);
  121. }
  122. static void dma_start(struct fsl_dma_chan *fsl_chan)
  123. {
  124. u32 mr_set = 0;
  125. if (fsl_chan->feature & FSL_DMA_CHAN_PAUSE_EXT) {
  126. DMA_OUT(fsl_chan, &fsl_chan->reg_base->bcr, 0, 32);
  127. mr_set |= FSL_DMA_MR_EMP_EN;
  128. } else if ((fsl_chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX) {
  129. DMA_OUT(fsl_chan, &fsl_chan->reg_base->mr,
  130. DMA_IN(fsl_chan, &fsl_chan->reg_base->mr, 32)
  131. & ~FSL_DMA_MR_EMP_EN, 32);
  132. }
  133. if (fsl_chan->feature & FSL_DMA_CHAN_START_EXT)
  134. mr_set |= FSL_DMA_MR_EMS_EN;
  135. else
  136. mr_set |= FSL_DMA_MR_CS;
  137. DMA_OUT(fsl_chan, &fsl_chan->reg_base->mr,
  138. DMA_IN(fsl_chan, &fsl_chan->reg_base->mr, 32)
  139. | mr_set, 32);
  140. }
  141. static void dma_halt(struct fsl_dma_chan *fsl_chan)
  142. {
  143. int i;
  144. DMA_OUT(fsl_chan, &fsl_chan->reg_base->mr,
  145. DMA_IN(fsl_chan, &fsl_chan->reg_base->mr, 32) | FSL_DMA_MR_CA,
  146. 32);
  147. DMA_OUT(fsl_chan, &fsl_chan->reg_base->mr,
  148. DMA_IN(fsl_chan, &fsl_chan->reg_base->mr, 32) & ~(FSL_DMA_MR_CS
  149. | FSL_DMA_MR_EMS_EN | FSL_DMA_MR_CA), 32);
  150. for (i = 0; i < 100; i++) {
  151. if (dma_is_idle(fsl_chan))
  152. break;
  153. udelay(10);
  154. }
  155. if (i >= 100 && !dma_is_idle(fsl_chan))
  156. dev_err(fsl_chan->dev, "DMA halt timeout!\n");
  157. }
  158. static void set_ld_eol(struct fsl_dma_chan *fsl_chan,
  159. struct fsl_desc_sw *desc)
  160. {
  161. u64 snoop_bits;
  162. snoop_bits = ((fsl_chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_83XX)
  163. ? FSL_DMA_SNEN : 0;
  164. desc->hw.next_ln_addr = CPU_TO_DMA(fsl_chan,
  165. DMA_TO_CPU(fsl_chan, desc->hw.next_ln_addr, 64) | FSL_DMA_EOL
  166. | snoop_bits, 64);
  167. }
  168. static void append_ld_queue(struct fsl_dma_chan *fsl_chan,
  169. struct fsl_desc_sw *new_desc)
  170. {
  171. struct fsl_desc_sw *queue_tail = to_fsl_desc(fsl_chan->ld_queue.prev);
  172. if (list_empty(&fsl_chan->ld_queue))
  173. return;
  174. /* Link to the new descriptor physical address and
  175. * Enable End-of-segment interrupt for
  176. * the last link descriptor.
  177. * (the previous node's next link descriptor)
  178. *
  179. * For FSL_DMA_IP_83xx, the snoop enable bit need be set.
  180. */
  181. queue_tail->hw.next_ln_addr = CPU_TO_DMA(fsl_chan,
  182. new_desc->async_tx.phys | FSL_DMA_EOSIE |
  183. (((fsl_chan->feature & FSL_DMA_IP_MASK)
  184. == FSL_DMA_IP_83XX) ? FSL_DMA_SNEN : 0), 64);
  185. }
  186. /**
  187. * fsl_chan_set_src_loop_size - Set source address hold transfer size
  188. * @fsl_chan : Freescale DMA channel
  189. * @size : Address loop size, 0 for disable loop
  190. *
  191. * The set source address hold transfer size. The source
  192. * address hold or loop transfer size is when the DMA transfer
  193. * data from source address (SA), if the loop size is 4, the DMA will
  194. * read data from SA, SA + 1, SA + 2, SA + 3, then loop back to SA,
  195. * SA + 1 ... and so on.
  196. */
  197. static void fsl_chan_set_src_loop_size(struct fsl_dma_chan *fsl_chan, int size)
  198. {
  199. switch (size) {
  200. case 0:
  201. DMA_OUT(fsl_chan, &fsl_chan->reg_base->mr,
  202. DMA_IN(fsl_chan, &fsl_chan->reg_base->mr, 32) &
  203. (~FSL_DMA_MR_SAHE), 32);
  204. break;
  205. case 1:
  206. case 2:
  207. case 4:
  208. case 8:
  209. DMA_OUT(fsl_chan, &fsl_chan->reg_base->mr,
  210. DMA_IN(fsl_chan, &fsl_chan->reg_base->mr, 32) |
  211. FSL_DMA_MR_SAHE | (__ilog2(size) << 14),
  212. 32);
  213. break;
  214. }
  215. }
  216. /**
  217. * fsl_chan_set_dest_loop_size - Set destination address hold transfer size
  218. * @fsl_chan : Freescale DMA channel
  219. * @size : Address loop size, 0 for disable loop
  220. *
  221. * The set destination address hold transfer size. The destination
  222. * address hold or loop transfer size is when the DMA transfer
  223. * data to destination address (TA), if the loop size is 4, the DMA will
  224. * write data to TA, TA + 1, TA + 2, TA + 3, then loop back to TA,
  225. * TA + 1 ... and so on.
  226. */
  227. static void fsl_chan_set_dest_loop_size(struct fsl_dma_chan *fsl_chan, int size)
  228. {
  229. switch (size) {
  230. case 0:
  231. DMA_OUT(fsl_chan, &fsl_chan->reg_base->mr,
  232. DMA_IN(fsl_chan, &fsl_chan->reg_base->mr, 32) &
  233. (~FSL_DMA_MR_DAHE), 32);
  234. break;
  235. case 1:
  236. case 2:
  237. case 4:
  238. case 8:
  239. DMA_OUT(fsl_chan, &fsl_chan->reg_base->mr,
  240. DMA_IN(fsl_chan, &fsl_chan->reg_base->mr, 32) |
  241. FSL_DMA_MR_DAHE | (__ilog2(size) << 16),
  242. 32);
  243. break;
  244. }
  245. }
  246. /**
  247. * fsl_chan_toggle_ext_pause - Toggle channel external pause status
  248. * @fsl_chan : Freescale DMA channel
  249. * @size : Pause control size, 0 for disable external pause control.
  250. * The maximum is 1024.
  251. *
  252. * The Freescale DMA channel can be controlled by the external
  253. * signal DREQ#. The pause control size is how many bytes are allowed
  254. * to transfer before pausing the channel, after which a new assertion
  255. * of DREQ# resumes channel operation.
  256. */
  257. static void fsl_chan_toggle_ext_pause(struct fsl_dma_chan *fsl_chan, int size)
  258. {
  259. if (size > 1024)
  260. return;
  261. if (size) {
  262. DMA_OUT(fsl_chan, &fsl_chan->reg_base->mr,
  263. DMA_IN(fsl_chan, &fsl_chan->reg_base->mr, 32)
  264. | ((__ilog2(size) << 24) & 0x0f000000),
  265. 32);
  266. fsl_chan->feature |= FSL_DMA_CHAN_PAUSE_EXT;
  267. } else
  268. fsl_chan->feature &= ~FSL_DMA_CHAN_PAUSE_EXT;
  269. }
  270. /**
  271. * fsl_chan_toggle_ext_start - Toggle channel external start status
  272. * @fsl_chan : Freescale DMA channel
  273. * @enable : 0 is disabled, 1 is enabled.
  274. *
  275. * If enable the external start, the channel can be started by an
  276. * external DMA start pin. So the dma_start() does not start the
  277. * transfer immediately. The DMA channel will wait for the
  278. * control pin asserted.
  279. */
  280. static void fsl_chan_toggle_ext_start(struct fsl_dma_chan *fsl_chan, int enable)
  281. {
  282. if (enable)
  283. fsl_chan->feature |= FSL_DMA_CHAN_START_EXT;
  284. else
  285. fsl_chan->feature &= ~FSL_DMA_CHAN_START_EXT;
  286. }
  287. static dma_cookie_t fsl_dma_tx_submit(struct dma_async_tx_descriptor *tx)
  288. {
  289. struct fsl_dma_chan *fsl_chan = to_fsl_chan(tx->chan);
  290. struct fsl_desc_sw *desc = tx_to_fsl_desc(tx);
  291. struct fsl_desc_sw *child;
  292. unsigned long flags;
  293. dma_cookie_t cookie;
  294. /* cookie increment and adding to ld_queue must be atomic */
  295. spin_lock_irqsave(&fsl_chan->desc_lock, flags);
  296. cookie = fsl_chan->common.cookie;
  297. list_for_each_entry(child, &desc->tx_list, node) {
  298. cookie++;
  299. if (cookie < 0)
  300. cookie = 1;
  301. desc->async_tx.cookie = cookie;
  302. }
  303. fsl_chan->common.cookie = cookie;
  304. append_ld_queue(fsl_chan, desc);
  305. list_splice_init(&desc->tx_list, fsl_chan->ld_queue.prev);
  306. spin_unlock_irqrestore(&fsl_chan->desc_lock, flags);
  307. return cookie;
  308. }
  309. /**
  310. * fsl_dma_alloc_descriptor - Allocate descriptor from channel's DMA pool.
  311. * @fsl_chan : Freescale DMA channel
  312. *
  313. * Return - The descriptor allocated. NULL for failed.
  314. */
  315. static struct fsl_desc_sw *fsl_dma_alloc_descriptor(
  316. struct fsl_dma_chan *fsl_chan)
  317. {
  318. dma_addr_t pdesc;
  319. struct fsl_desc_sw *desc_sw;
  320. desc_sw = dma_pool_alloc(fsl_chan->desc_pool, GFP_ATOMIC, &pdesc);
  321. if (desc_sw) {
  322. memset(desc_sw, 0, sizeof(struct fsl_desc_sw));
  323. INIT_LIST_HEAD(&desc_sw->tx_list);
  324. dma_async_tx_descriptor_init(&desc_sw->async_tx,
  325. &fsl_chan->common);
  326. desc_sw->async_tx.tx_submit = fsl_dma_tx_submit;
  327. desc_sw->async_tx.phys = pdesc;
  328. }
  329. return desc_sw;
  330. }
  331. /**
  332. * fsl_dma_alloc_chan_resources - Allocate resources for DMA channel.
  333. * @fsl_chan : Freescale DMA channel
  334. *
  335. * This function will create a dma pool for descriptor allocation.
  336. *
  337. * Return - The number of descriptors allocated.
  338. */
  339. static int fsl_dma_alloc_chan_resources(struct dma_chan *chan)
  340. {
  341. struct fsl_dma_chan *fsl_chan = to_fsl_chan(chan);
  342. /* Has this channel already been allocated? */
  343. if (fsl_chan->desc_pool)
  344. return 1;
  345. /* We need the descriptor to be aligned to 32bytes
  346. * for meeting FSL DMA specification requirement.
  347. */
  348. fsl_chan->desc_pool = dma_pool_create("fsl_dma_engine_desc_pool",
  349. fsl_chan->dev, sizeof(struct fsl_desc_sw),
  350. 32, 0);
  351. if (!fsl_chan->desc_pool) {
  352. dev_err(fsl_chan->dev, "No memory for channel %d "
  353. "descriptor dma pool.\n", fsl_chan->id);
  354. return 0;
  355. }
  356. return 1;
  357. }
  358. /**
  359. * fsl_dma_free_chan_resources - Free all resources of the channel.
  360. * @fsl_chan : Freescale DMA channel
  361. */
  362. static void fsl_dma_free_chan_resources(struct dma_chan *chan)
  363. {
  364. struct fsl_dma_chan *fsl_chan = to_fsl_chan(chan);
  365. struct fsl_desc_sw *desc, *_desc;
  366. unsigned long flags;
  367. dev_dbg(fsl_chan->dev, "Free all channel resources.\n");
  368. spin_lock_irqsave(&fsl_chan->desc_lock, flags);
  369. list_for_each_entry_safe(desc, _desc, &fsl_chan->ld_queue, node) {
  370. #ifdef FSL_DMA_LD_DEBUG
  371. dev_dbg(fsl_chan->dev,
  372. "LD %p will be released.\n", desc);
  373. #endif
  374. list_del(&desc->node);
  375. /* free link descriptor */
  376. dma_pool_free(fsl_chan->desc_pool, desc, desc->async_tx.phys);
  377. }
  378. spin_unlock_irqrestore(&fsl_chan->desc_lock, flags);
  379. dma_pool_destroy(fsl_chan->desc_pool);
  380. fsl_chan->desc_pool = NULL;
  381. }
  382. static struct dma_async_tx_descriptor *
  383. fsl_dma_prep_interrupt(struct dma_chan *chan, unsigned long flags)
  384. {
  385. struct fsl_dma_chan *fsl_chan;
  386. struct fsl_desc_sw *new;
  387. if (!chan)
  388. return NULL;
  389. fsl_chan = to_fsl_chan(chan);
  390. new = fsl_dma_alloc_descriptor(fsl_chan);
  391. if (!new) {
  392. dev_err(fsl_chan->dev, "No free memory for link descriptor\n");
  393. return NULL;
  394. }
  395. new->async_tx.cookie = -EBUSY;
  396. new->async_tx.flags = flags;
  397. /* Insert the link descriptor to the LD ring */
  398. list_add_tail(&new->node, &new->tx_list);
  399. /* Set End-of-link to the last link descriptor of new list*/
  400. set_ld_eol(fsl_chan, new);
  401. return &new->async_tx;
  402. }
  403. static struct dma_async_tx_descriptor *fsl_dma_prep_memcpy(
  404. struct dma_chan *chan, dma_addr_t dma_dest, dma_addr_t dma_src,
  405. size_t len, unsigned long flags)
  406. {
  407. struct fsl_dma_chan *fsl_chan;
  408. struct fsl_desc_sw *first = NULL, *prev = NULL, *new;
  409. struct list_head *list;
  410. size_t copy;
  411. if (!chan)
  412. return NULL;
  413. if (!len)
  414. return NULL;
  415. fsl_chan = to_fsl_chan(chan);
  416. do {
  417. /* Allocate the link descriptor from DMA pool */
  418. new = fsl_dma_alloc_descriptor(fsl_chan);
  419. if (!new) {
  420. dev_err(fsl_chan->dev,
  421. "No free memory for link descriptor\n");
  422. goto fail;
  423. }
  424. #ifdef FSL_DMA_LD_DEBUG
  425. dev_dbg(fsl_chan->dev, "new link desc alloc %p\n", new);
  426. #endif
  427. copy = min(len, (size_t)FSL_DMA_BCR_MAX_CNT);
  428. set_desc_cnt(fsl_chan, &new->hw, copy);
  429. set_desc_src(fsl_chan, &new->hw, dma_src);
  430. set_desc_dest(fsl_chan, &new->hw, dma_dest);
  431. if (!first)
  432. first = new;
  433. else
  434. set_desc_next(fsl_chan, &prev->hw, new->async_tx.phys);
  435. new->async_tx.cookie = 0;
  436. async_tx_ack(&new->async_tx);
  437. prev = new;
  438. len -= copy;
  439. dma_src += copy;
  440. dma_dest += copy;
  441. /* Insert the link descriptor to the LD ring */
  442. list_add_tail(&new->node, &first->tx_list);
  443. } while (len);
  444. new->async_tx.flags = flags; /* client is in control of this ack */
  445. new->async_tx.cookie = -EBUSY;
  446. /* Set End-of-link to the last link descriptor of new list*/
  447. set_ld_eol(fsl_chan, new);
  448. return &first->async_tx;
  449. fail:
  450. if (!first)
  451. return NULL;
  452. list = &first->tx_list;
  453. list_for_each_entry_safe_reverse(new, prev, list, node) {
  454. list_del(&new->node);
  455. dma_pool_free(fsl_chan->desc_pool, new, new->async_tx.phys);
  456. }
  457. return NULL;
  458. }
  459. /**
  460. * fsl_dma_update_completed_cookie - Update the completed cookie.
  461. * @fsl_chan : Freescale DMA channel
  462. */
  463. static void fsl_dma_update_completed_cookie(struct fsl_dma_chan *fsl_chan)
  464. {
  465. struct fsl_desc_sw *cur_desc, *desc;
  466. dma_addr_t ld_phy;
  467. ld_phy = get_cdar(fsl_chan) & FSL_DMA_NLDA_MASK;
  468. if (ld_phy) {
  469. cur_desc = NULL;
  470. list_for_each_entry(desc, &fsl_chan->ld_queue, node)
  471. if (desc->async_tx.phys == ld_phy) {
  472. cur_desc = desc;
  473. break;
  474. }
  475. if (cur_desc && cur_desc->async_tx.cookie) {
  476. if (dma_is_idle(fsl_chan))
  477. fsl_chan->completed_cookie =
  478. cur_desc->async_tx.cookie;
  479. else
  480. fsl_chan->completed_cookie =
  481. cur_desc->async_tx.cookie - 1;
  482. }
  483. }
  484. }
  485. /**
  486. * fsl_chan_ld_cleanup - Clean up link descriptors
  487. * @fsl_chan : Freescale DMA channel
  488. *
  489. * This function clean up the ld_queue of DMA channel.
  490. * If 'in_intr' is set, the function will move the link descriptor to
  491. * the recycle list. Otherwise, free it directly.
  492. */
  493. static void fsl_chan_ld_cleanup(struct fsl_dma_chan *fsl_chan)
  494. {
  495. struct fsl_desc_sw *desc, *_desc;
  496. unsigned long flags;
  497. spin_lock_irqsave(&fsl_chan->desc_lock, flags);
  498. dev_dbg(fsl_chan->dev, "chan completed_cookie = %d\n",
  499. fsl_chan->completed_cookie);
  500. list_for_each_entry_safe(desc, _desc, &fsl_chan->ld_queue, node) {
  501. dma_async_tx_callback callback;
  502. void *callback_param;
  503. if (dma_async_is_complete(desc->async_tx.cookie,
  504. fsl_chan->completed_cookie, fsl_chan->common.cookie)
  505. == DMA_IN_PROGRESS)
  506. break;
  507. callback = desc->async_tx.callback;
  508. callback_param = desc->async_tx.callback_param;
  509. /* Remove from ld_queue list */
  510. list_del(&desc->node);
  511. dev_dbg(fsl_chan->dev, "link descriptor %p will be recycle.\n",
  512. desc);
  513. dma_pool_free(fsl_chan->desc_pool, desc, desc->async_tx.phys);
  514. /* Run the link descriptor callback function */
  515. if (callback) {
  516. spin_unlock_irqrestore(&fsl_chan->desc_lock, flags);
  517. dev_dbg(fsl_chan->dev, "link descriptor %p callback\n",
  518. desc);
  519. callback(callback_param);
  520. spin_lock_irqsave(&fsl_chan->desc_lock, flags);
  521. }
  522. }
  523. spin_unlock_irqrestore(&fsl_chan->desc_lock, flags);
  524. }
  525. /**
  526. * fsl_chan_xfer_ld_queue - Transfer link descriptors in channel ld_queue.
  527. * @fsl_chan : Freescale DMA channel
  528. */
  529. static void fsl_chan_xfer_ld_queue(struct fsl_dma_chan *fsl_chan)
  530. {
  531. struct list_head *ld_node;
  532. dma_addr_t next_dest_addr;
  533. unsigned long flags;
  534. spin_lock_irqsave(&fsl_chan->desc_lock, flags);
  535. if (!dma_is_idle(fsl_chan))
  536. goto out_unlock;
  537. dma_halt(fsl_chan);
  538. /* If there are some link descriptors
  539. * not transfered in queue. We need to start it.
  540. */
  541. /* Find the first un-transfer desciptor */
  542. for (ld_node = fsl_chan->ld_queue.next;
  543. (ld_node != &fsl_chan->ld_queue)
  544. && (dma_async_is_complete(
  545. to_fsl_desc(ld_node)->async_tx.cookie,
  546. fsl_chan->completed_cookie,
  547. fsl_chan->common.cookie) == DMA_SUCCESS);
  548. ld_node = ld_node->next);
  549. if (ld_node != &fsl_chan->ld_queue) {
  550. /* Get the ld start address from ld_queue */
  551. next_dest_addr = to_fsl_desc(ld_node)->async_tx.phys;
  552. dev_dbg(fsl_chan->dev, "xfer LDs staring from 0x%llx\n",
  553. (unsigned long long)next_dest_addr);
  554. set_cdar(fsl_chan, next_dest_addr);
  555. dma_start(fsl_chan);
  556. } else {
  557. set_cdar(fsl_chan, 0);
  558. set_ndar(fsl_chan, 0);
  559. }
  560. out_unlock:
  561. spin_unlock_irqrestore(&fsl_chan->desc_lock, flags);
  562. }
  563. /**
  564. * fsl_dma_memcpy_issue_pending - Issue the DMA start command
  565. * @fsl_chan : Freescale DMA channel
  566. */
  567. static void fsl_dma_memcpy_issue_pending(struct dma_chan *chan)
  568. {
  569. struct fsl_dma_chan *fsl_chan = to_fsl_chan(chan);
  570. #ifdef FSL_DMA_LD_DEBUG
  571. struct fsl_desc_sw *ld;
  572. unsigned long flags;
  573. spin_lock_irqsave(&fsl_chan->desc_lock, flags);
  574. if (list_empty(&fsl_chan->ld_queue)) {
  575. spin_unlock_irqrestore(&fsl_chan->desc_lock, flags);
  576. return;
  577. }
  578. dev_dbg(fsl_chan->dev, "--memcpy issue--\n");
  579. list_for_each_entry(ld, &fsl_chan->ld_queue, node) {
  580. int i;
  581. dev_dbg(fsl_chan->dev, "Ch %d, LD %08x\n",
  582. fsl_chan->id, ld->async_tx.phys);
  583. for (i = 0; i < 8; i++)
  584. dev_dbg(fsl_chan->dev, "LD offset %d: %08x\n",
  585. i, *(((u32 *)&ld->hw) + i));
  586. }
  587. dev_dbg(fsl_chan->dev, "----------------\n");
  588. spin_unlock_irqrestore(&fsl_chan->desc_lock, flags);
  589. #endif
  590. fsl_chan_xfer_ld_queue(fsl_chan);
  591. }
  592. /**
  593. * fsl_dma_is_complete - Determine the DMA status
  594. * @fsl_chan : Freescale DMA channel
  595. */
  596. static enum dma_status fsl_dma_is_complete(struct dma_chan *chan,
  597. dma_cookie_t cookie,
  598. dma_cookie_t *done,
  599. dma_cookie_t *used)
  600. {
  601. struct fsl_dma_chan *fsl_chan = to_fsl_chan(chan);
  602. dma_cookie_t last_used;
  603. dma_cookie_t last_complete;
  604. fsl_chan_ld_cleanup(fsl_chan);
  605. last_used = chan->cookie;
  606. last_complete = fsl_chan->completed_cookie;
  607. if (done)
  608. *done = last_complete;
  609. if (used)
  610. *used = last_used;
  611. return dma_async_is_complete(cookie, last_complete, last_used);
  612. }
  613. static irqreturn_t fsl_dma_chan_do_interrupt(int irq, void *data)
  614. {
  615. struct fsl_dma_chan *fsl_chan = (struct fsl_dma_chan *)data;
  616. u32 stat;
  617. int update_cookie = 0;
  618. int xfer_ld_q = 0;
  619. stat = get_sr(fsl_chan);
  620. dev_dbg(fsl_chan->dev, "event: channel %d, stat = 0x%x\n",
  621. fsl_chan->id, stat);
  622. set_sr(fsl_chan, stat); /* Clear the event register */
  623. stat &= ~(FSL_DMA_SR_CB | FSL_DMA_SR_CH);
  624. if (!stat)
  625. return IRQ_NONE;
  626. if (stat & FSL_DMA_SR_TE)
  627. dev_err(fsl_chan->dev, "Transfer Error!\n");
  628. /* Programming Error
  629. * The DMA_INTERRUPT async_tx is a NULL transfer, which will
  630. * triger a PE interrupt.
  631. */
  632. if (stat & FSL_DMA_SR_PE) {
  633. dev_dbg(fsl_chan->dev, "event: Programming Error INT\n");
  634. if (get_bcr(fsl_chan) == 0) {
  635. /* BCR register is 0, this is a DMA_INTERRUPT async_tx.
  636. * Now, update the completed cookie, and continue the
  637. * next uncompleted transfer.
  638. */
  639. update_cookie = 1;
  640. xfer_ld_q = 1;
  641. }
  642. stat &= ~FSL_DMA_SR_PE;
  643. }
  644. /* If the link descriptor segment transfer finishes,
  645. * we will recycle the used descriptor.
  646. */
  647. if (stat & FSL_DMA_SR_EOSI) {
  648. dev_dbg(fsl_chan->dev, "event: End-of-segments INT\n");
  649. dev_dbg(fsl_chan->dev, "event: clndar 0x%llx, nlndar 0x%llx\n",
  650. (unsigned long long)get_cdar(fsl_chan),
  651. (unsigned long long)get_ndar(fsl_chan));
  652. stat &= ~FSL_DMA_SR_EOSI;
  653. update_cookie = 1;
  654. }
  655. /* For MPC8349, EOCDI event need to update cookie
  656. * and start the next transfer if it exist.
  657. */
  658. if (stat & FSL_DMA_SR_EOCDI) {
  659. dev_dbg(fsl_chan->dev, "event: End-of-Chain link INT\n");
  660. stat &= ~FSL_DMA_SR_EOCDI;
  661. update_cookie = 1;
  662. xfer_ld_q = 1;
  663. }
  664. /* If it current transfer is the end-of-transfer,
  665. * we should clear the Channel Start bit for
  666. * prepare next transfer.
  667. */
  668. if (stat & FSL_DMA_SR_EOLNI) {
  669. dev_dbg(fsl_chan->dev, "event: End-of-link INT\n");
  670. stat &= ~FSL_DMA_SR_EOLNI;
  671. xfer_ld_q = 1;
  672. }
  673. if (update_cookie)
  674. fsl_dma_update_completed_cookie(fsl_chan);
  675. if (xfer_ld_q)
  676. fsl_chan_xfer_ld_queue(fsl_chan);
  677. if (stat)
  678. dev_dbg(fsl_chan->dev, "event: unhandled sr 0x%02x\n",
  679. stat);
  680. dev_dbg(fsl_chan->dev, "event: Exit\n");
  681. tasklet_schedule(&fsl_chan->tasklet);
  682. return IRQ_HANDLED;
  683. }
  684. static irqreturn_t fsl_dma_do_interrupt(int irq, void *data)
  685. {
  686. struct fsl_dma_device *fdev = (struct fsl_dma_device *)data;
  687. u32 gsr;
  688. int ch_nr;
  689. gsr = (fdev->feature & FSL_DMA_BIG_ENDIAN) ? in_be32(fdev->reg_base)
  690. : in_le32(fdev->reg_base);
  691. ch_nr = (32 - ffs(gsr)) / 8;
  692. return fdev->chan[ch_nr] ? fsl_dma_chan_do_interrupt(irq,
  693. fdev->chan[ch_nr]) : IRQ_NONE;
  694. }
  695. static void dma_do_tasklet(unsigned long data)
  696. {
  697. struct fsl_dma_chan *fsl_chan = (struct fsl_dma_chan *)data;
  698. fsl_chan_ld_cleanup(fsl_chan);
  699. }
  700. static int __devinit fsl_dma_chan_probe(struct fsl_dma_device *fdev,
  701. struct device_node *node, u32 feature, const char *compatible)
  702. {
  703. struct fsl_dma_chan *new_fsl_chan;
  704. int err;
  705. /* alloc channel */
  706. new_fsl_chan = kzalloc(sizeof(struct fsl_dma_chan), GFP_KERNEL);
  707. if (!new_fsl_chan) {
  708. dev_err(fdev->dev, "No free memory for allocating "
  709. "dma channels!\n");
  710. return -ENOMEM;
  711. }
  712. /* get dma channel register base */
  713. err = of_address_to_resource(node, 0, &new_fsl_chan->reg);
  714. if (err) {
  715. dev_err(fdev->dev, "Can't get %s property 'reg'\n",
  716. node->full_name);
  717. goto err_no_reg;
  718. }
  719. new_fsl_chan->feature = feature;
  720. if (!fdev->feature)
  721. fdev->feature = new_fsl_chan->feature;
  722. /* If the DMA device's feature is different than its channels',
  723. * report the bug.
  724. */
  725. WARN_ON(fdev->feature != new_fsl_chan->feature);
  726. new_fsl_chan->dev = fdev->dev;
  727. new_fsl_chan->reg_base = ioremap(new_fsl_chan->reg.start,
  728. new_fsl_chan->reg.end - new_fsl_chan->reg.start + 1);
  729. new_fsl_chan->id = ((new_fsl_chan->reg.start - 0x100) & 0xfff) >> 7;
  730. if (new_fsl_chan->id >= FSL_DMA_MAX_CHANS_PER_DEVICE) {
  731. dev_err(fdev->dev, "There is no %d channel!\n",
  732. new_fsl_chan->id);
  733. err = -EINVAL;
  734. goto err_no_chan;
  735. }
  736. fdev->chan[new_fsl_chan->id] = new_fsl_chan;
  737. tasklet_init(&new_fsl_chan->tasklet, dma_do_tasklet,
  738. (unsigned long)new_fsl_chan);
  739. /* Init the channel */
  740. dma_init(new_fsl_chan);
  741. /* Clear cdar registers */
  742. set_cdar(new_fsl_chan, 0);
  743. switch (new_fsl_chan->feature & FSL_DMA_IP_MASK) {
  744. case FSL_DMA_IP_85XX:
  745. new_fsl_chan->toggle_ext_pause = fsl_chan_toggle_ext_pause;
  746. case FSL_DMA_IP_83XX:
  747. new_fsl_chan->toggle_ext_start = fsl_chan_toggle_ext_start;
  748. new_fsl_chan->set_src_loop_size = fsl_chan_set_src_loop_size;
  749. new_fsl_chan->set_dest_loop_size = fsl_chan_set_dest_loop_size;
  750. }
  751. spin_lock_init(&new_fsl_chan->desc_lock);
  752. INIT_LIST_HEAD(&new_fsl_chan->ld_queue);
  753. new_fsl_chan->common.device = &fdev->common;
  754. /* Add the channel to DMA device channel list */
  755. list_add_tail(&new_fsl_chan->common.device_node,
  756. &fdev->common.channels);
  757. fdev->common.chancnt++;
  758. new_fsl_chan->irq = irq_of_parse_and_map(node, 0);
  759. if (new_fsl_chan->irq != NO_IRQ) {
  760. err = request_irq(new_fsl_chan->irq,
  761. &fsl_dma_chan_do_interrupt, IRQF_SHARED,
  762. "fsldma-channel", new_fsl_chan);
  763. if (err) {
  764. dev_err(fdev->dev, "DMA channel %s request_irq error "
  765. "with return %d\n", node->full_name, err);
  766. goto err_no_irq;
  767. }
  768. }
  769. dev_info(fdev->dev, "#%d (%s), irq %d\n", new_fsl_chan->id,
  770. compatible,
  771. new_fsl_chan->irq != NO_IRQ ? new_fsl_chan->irq : fdev->irq);
  772. return 0;
  773. err_no_irq:
  774. list_del(&new_fsl_chan->common.device_node);
  775. err_no_chan:
  776. iounmap(new_fsl_chan->reg_base);
  777. err_no_reg:
  778. kfree(new_fsl_chan);
  779. return err;
  780. }
  781. static void fsl_dma_chan_remove(struct fsl_dma_chan *fchan)
  782. {
  783. if (fchan->irq != NO_IRQ)
  784. free_irq(fchan->irq, fchan);
  785. list_del(&fchan->common.device_node);
  786. iounmap(fchan->reg_base);
  787. kfree(fchan);
  788. }
  789. static int __devinit of_fsl_dma_probe(struct of_device *dev,
  790. const struct of_device_id *match)
  791. {
  792. int err;
  793. struct fsl_dma_device *fdev;
  794. struct device_node *child;
  795. fdev = kzalloc(sizeof(struct fsl_dma_device), GFP_KERNEL);
  796. if (!fdev) {
  797. dev_err(&dev->dev, "No enough memory for 'priv'\n");
  798. return -ENOMEM;
  799. }
  800. fdev->dev = &dev->dev;
  801. INIT_LIST_HEAD(&fdev->common.channels);
  802. /* get DMA controller register base */
  803. err = of_address_to_resource(dev->node, 0, &fdev->reg);
  804. if (err) {
  805. dev_err(&dev->dev, "Can't get %s property 'reg'\n",
  806. dev->node->full_name);
  807. goto err_no_reg;
  808. }
  809. dev_info(&dev->dev, "Probe the Freescale DMA driver for %s "
  810. "controller at 0x%llx...\n",
  811. match->compatible, (unsigned long long)fdev->reg.start);
  812. fdev->reg_base = ioremap(fdev->reg.start, fdev->reg.end
  813. - fdev->reg.start + 1);
  814. dma_cap_set(DMA_MEMCPY, fdev->common.cap_mask);
  815. dma_cap_set(DMA_INTERRUPT, fdev->common.cap_mask);
  816. fdev->common.device_alloc_chan_resources = fsl_dma_alloc_chan_resources;
  817. fdev->common.device_free_chan_resources = fsl_dma_free_chan_resources;
  818. fdev->common.device_prep_dma_interrupt = fsl_dma_prep_interrupt;
  819. fdev->common.device_prep_dma_memcpy = fsl_dma_prep_memcpy;
  820. fdev->common.device_is_tx_complete = fsl_dma_is_complete;
  821. fdev->common.device_issue_pending = fsl_dma_memcpy_issue_pending;
  822. fdev->common.dev = &dev->dev;
  823. fdev->irq = irq_of_parse_and_map(dev->node, 0);
  824. if (fdev->irq != NO_IRQ) {
  825. err = request_irq(fdev->irq, &fsl_dma_do_interrupt, IRQF_SHARED,
  826. "fsldma-device", fdev);
  827. if (err) {
  828. dev_err(&dev->dev, "DMA device request_irq error "
  829. "with return %d\n", err);
  830. goto err;
  831. }
  832. }
  833. dev_set_drvdata(&(dev->dev), fdev);
  834. /* We cannot use of_platform_bus_probe() because there is no
  835. * of_platform_bus_remove. Instead, we manually instantiate every DMA
  836. * channel object.
  837. */
  838. for_each_child_of_node(dev->node, child) {
  839. if (of_device_is_compatible(child, "fsl,eloplus-dma-channel"))
  840. fsl_dma_chan_probe(fdev, child,
  841. FSL_DMA_IP_85XX | FSL_DMA_BIG_ENDIAN,
  842. "fsl,eloplus-dma-channel");
  843. if (of_device_is_compatible(child, "fsl,elo-dma-channel"))
  844. fsl_dma_chan_probe(fdev, child,
  845. FSL_DMA_IP_83XX | FSL_DMA_LITTLE_ENDIAN,
  846. "fsl,elo-dma-channel");
  847. }
  848. dma_async_device_register(&fdev->common);
  849. return 0;
  850. err:
  851. iounmap(fdev->reg_base);
  852. err_no_reg:
  853. kfree(fdev);
  854. return err;
  855. }
  856. static int of_fsl_dma_remove(struct of_device *of_dev)
  857. {
  858. struct fsl_dma_device *fdev;
  859. unsigned int i;
  860. fdev = dev_get_drvdata(&of_dev->dev);
  861. dma_async_device_unregister(&fdev->common);
  862. for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++)
  863. if (fdev->chan[i])
  864. fsl_dma_chan_remove(fdev->chan[i]);
  865. if (fdev->irq != NO_IRQ)
  866. free_irq(fdev->irq, fdev);
  867. iounmap(fdev->reg_base);
  868. kfree(fdev);
  869. dev_set_drvdata(&of_dev->dev, NULL);
  870. return 0;
  871. }
  872. static struct of_device_id of_fsl_dma_ids[] = {
  873. { .compatible = "fsl,eloplus-dma", },
  874. { .compatible = "fsl,elo-dma", },
  875. {}
  876. };
  877. static struct of_platform_driver of_fsl_dma_driver = {
  878. .name = "fsl-elo-dma",
  879. .match_table = of_fsl_dma_ids,
  880. .probe = of_fsl_dma_probe,
  881. .remove = of_fsl_dma_remove,
  882. };
  883. static __init int of_fsl_dma_init(void)
  884. {
  885. int ret;
  886. pr_info("Freescale Elo / Elo Plus DMA driver\n");
  887. ret = of_register_platform_driver(&of_fsl_dma_driver);
  888. if (ret)
  889. pr_err("fsldma: failed to register platform driver\n");
  890. return ret;
  891. }
  892. static void __exit of_fsl_dma_exit(void)
  893. {
  894. of_unregister_platform_driver(&of_fsl_dma_driver);
  895. }
  896. subsys_initcall(of_fsl_dma_init);
  897. module_exit(of_fsl_dma_exit);
  898. MODULE_DESCRIPTION("Freescale Elo / Elo Plus DMA driver");
  899. MODULE_LICENSE("GPL");