i915_gem.c 110 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439
  1. /*
  2. * Copyright © 2008 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eric Anholt <eric@anholt.net>
  25. *
  26. */
  27. #include "drmP.h"
  28. #include "drm.h"
  29. #include "i915_drm.h"
  30. #include "i915_drv.h"
  31. #include "i915_trace.h"
  32. #include "intel_drv.h"
  33. #include <linux/shmem_fs.h>
  34. #include <linux/slab.h>
  35. #include <linux/swap.h>
  36. #include <linux/pci.h>
  37. #include <linux/dma-buf.h>
  38. static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
  39. static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
  40. static __must_check int i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
  41. unsigned alignment,
  42. bool map_and_fenceable,
  43. bool nonblocking);
  44. static int i915_gem_phys_pwrite(struct drm_device *dev,
  45. struct drm_i915_gem_object *obj,
  46. struct drm_i915_gem_pwrite *args,
  47. struct drm_file *file);
  48. static void i915_gem_write_fence(struct drm_device *dev, int reg,
  49. struct drm_i915_gem_object *obj);
  50. static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
  51. struct drm_i915_fence_reg *fence,
  52. bool enable);
  53. static int i915_gem_inactive_shrink(struct shrinker *shrinker,
  54. struct shrink_control *sc);
  55. static long i915_gem_purge(struct drm_i915_private *dev_priv, long target);
  56. static void i915_gem_shrink_all(struct drm_i915_private *dev_priv);
  57. static void i915_gem_object_truncate(struct drm_i915_gem_object *obj);
  58. static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
  59. {
  60. if (obj->tiling_mode)
  61. i915_gem_release_mmap(obj);
  62. /* As we do not have an associated fence register, we will force
  63. * a tiling change if we ever need to acquire one.
  64. */
  65. obj->fence_dirty = false;
  66. obj->fence_reg = I915_FENCE_REG_NONE;
  67. }
  68. /* some bookkeeping */
  69. static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
  70. size_t size)
  71. {
  72. dev_priv->mm.object_count++;
  73. dev_priv->mm.object_memory += size;
  74. }
  75. static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
  76. size_t size)
  77. {
  78. dev_priv->mm.object_count--;
  79. dev_priv->mm.object_memory -= size;
  80. }
  81. static int
  82. i915_gem_wait_for_error(struct drm_device *dev)
  83. {
  84. struct drm_i915_private *dev_priv = dev->dev_private;
  85. struct completion *x = &dev_priv->error_completion;
  86. unsigned long flags;
  87. int ret;
  88. if (!atomic_read(&dev_priv->mm.wedged))
  89. return 0;
  90. /*
  91. * Only wait 10 seconds for the gpu reset to complete to avoid hanging
  92. * userspace. If it takes that long something really bad is going on and
  93. * we should simply try to bail out and fail as gracefully as possible.
  94. */
  95. ret = wait_for_completion_interruptible_timeout(x, 10*HZ);
  96. if (ret == 0) {
  97. DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
  98. return -EIO;
  99. } else if (ret < 0) {
  100. return ret;
  101. }
  102. if (atomic_read(&dev_priv->mm.wedged)) {
  103. /* GPU is hung, bump the completion count to account for
  104. * the token we just consumed so that we never hit zero and
  105. * end up waiting upon a subsequent completion event that
  106. * will never happen.
  107. */
  108. spin_lock_irqsave(&x->wait.lock, flags);
  109. x->done++;
  110. spin_unlock_irqrestore(&x->wait.lock, flags);
  111. }
  112. return 0;
  113. }
  114. int i915_mutex_lock_interruptible(struct drm_device *dev)
  115. {
  116. int ret;
  117. ret = i915_gem_wait_for_error(dev);
  118. if (ret)
  119. return ret;
  120. ret = mutex_lock_interruptible(&dev->struct_mutex);
  121. if (ret)
  122. return ret;
  123. WARN_ON(i915_verify_lists(dev));
  124. return 0;
  125. }
  126. static inline bool
  127. i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
  128. {
  129. return obj->gtt_space && !obj->active;
  130. }
  131. int
  132. i915_gem_init_ioctl(struct drm_device *dev, void *data,
  133. struct drm_file *file)
  134. {
  135. struct drm_i915_gem_init *args = data;
  136. if (drm_core_check_feature(dev, DRIVER_MODESET))
  137. return -ENODEV;
  138. if (args->gtt_start >= args->gtt_end ||
  139. (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
  140. return -EINVAL;
  141. /* GEM with user mode setting was never supported on ilk and later. */
  142. if (INTEL_INFO(dev)->gen >= 5)
  143. return -ENODEV;
  144. mutex_lock(&dev->struct_mutex);
  145. i915_gem_init_global_gtt(dev, args->gtt_start,
  146. args->gtt_end, args->gtt_end);
  147. mutex_unlock(&dev->struct_mutex);
  148. return 0;
  149. }
  150. int
  151. i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
  152. struct drm_file *file)
  153. {
  154. struct drm_i915_private *dev_priv = dev->dev_private;
  155. struct drm_i915_gem_get_aperture *args = data;
  156. struct drm_i915_gem_object *obj;
  157. size_t pinned;
  158. pinned = 0;
  159. mutex_lock(&dev->struct_mutex);
  160. list_for_each_entry(obj, &dev_priv->mm.bound_list, gtt_list)
  161. if (obj->pin_count)
  162. pinned += obj->gtt_space->size;
  163. mutex_unlock(&dev->struct_mutex);
  164. args->aper_size = dev_priv->mm.gtt_total;
  165. args->aper_available_size = args->aper_size - pinned;
  166. return 0;
  167. }
  168. static int
  169. i915_gem_create(struct drm_file *file,
  170. struct drm_device *dev,
  171. uint64_t size,
  172. uint32_t *handle_p)
  173. {
  174. struct drm_i915_gem_object *obj;
  175. int ret;
  176. u32 handle;
  177. size = roundup(size, PAGE_SIZE);
  178. if (size == 0)
  179. return -EINVAL;
  180. /* Allocate the new object */
  181. obj = i915_gem_alloc_object(dev, size);
  182. if (obj == NULL)
  183. return -ENOMEM;
  184. ret = drm_gem_handle_create(file, &obj->base, &handle);
  185. if (ret) {
  186. drm_gem_object_release(&obj->base);
  187. i915_gem_info_remove_obj(dev->dev_private, obj->base.size);
  188. kfree(obj);
  189. return ret;
  190. }
  191. /* drop reference from allocate - handle holds it now */
  192. drm_gem_object_unreference(&obj->base);
  193. trace_i915_gem_object_create(obj);
  194. *handle_p = handle;
  195. return 0;
  196. }
  197. int
  198. i915_gem_dumb_create(struct drm_file *file,
  199. struct drm_device *dev,
  200. struct drm_mode_create_dumb *args)
  201. {
  202. /* have to work out size/pitch and return them */
  203. args->pitch = ALIGN(args->width * ((args->bpp + 7) / 8), 64);
  204. args->size = args->pitch * args->height;
  205. return i915_gem_create(file, dev,
  206. args->size, &args->handle);
  207. }
  208. int i915_gem_dumb_destroy(struct drm_file *file,
  209. struct drm_device *dev,
  210. uint32_t handle)
  211. {
  212. return drm_gem_handle_delete(file, handle);
  213. }
  214. /**
  215. * Creates a new mm object and returns a handle to it.
  216. */
  217. int
  218. i915_gem_create_ioctl(struct drm_device *dev, void *data,
  219. struct drm_file *file)
  220. {
  221. struct drm_i915_gem_create *args = data;
  222. return i915_gem_create(file, dev,
  223. args->size, &args->handle);
  224. }
  225. static int i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj)
  226. {
  227. drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
  228. return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
  229. obj->tiling_mode != I915_TILING_NONE;
  230. }
  231. static inline int
  232. __copy_to_user_swizzled(char __user *cpu_vaddr,
  233. const char *gpu_vaddr, int gpu_offset,
  234. int length)
  235. {
  236. int ret, cpu_offset = 0;
  237. while (length > 0) {
  238. int cacheline_end = ALIGN(gpu_offset + 1, 64);
  239. int this_length = min(cacheline_end - gpu_offset, length);
  240. int swizzled_gpu_offset = gpu_offset ^ 64;
  241. ret = __copy_to_user(cpu_vaddr + cpu_offset,
  242. gpu_vaddr + swizzled_gpu_offset,
  243. this_length);
  244. if (ret)
  245. return ret + length;
  246. cpu_offset += this_length;
  247. gpu_offset += this_length;
  248. length -= this_length;
  249. }
  250. return 0;
  251. }
  252. static inline int
  253. __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
  254. const char __user *cpu_vaddr,
  255. int length)
  256. {
  257. int ret, cpu_offset = 0;
  258. while (length > 0) {
  259. int cacheline_end = ALIGN(gpu_offset + 1, 64);
  260. int this_length = min(cacheline_end - gpu_offset, length);
  261. int swizzled_gpu_offset = gpu_offset ^ 64;
  262. ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
  263. cpu_vaddr + cpu_offset,
  264. this_length);
  265. if (ret)
  266. return ret + length;
  267. cpu_offset += this_length;
  268. gpu_offset += this_length;
  269. length -= this_length;
  270. }
  271. return 0;
  272. }
  273. /* Per-page copy function for the shmem pread fastpath.
  274. * Flushes invalid cachelines before reading the target if
  275. * needs_clflush is set. */
  276. static int
  277. shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
  278. char __user *user_data,
  279. bool page_do_bit17_swizzling, bool needs_clflush)
  280. {
  281. char *vaddr;
  282. int ret;
  283. if (unlikely(page_do_bit17_swizzling))
  284. return -EINVAL;
  285. vaddr = kmap_atomic(page);
  286. if (needs_clflush)
  287. drm_clflush_virt_range(vaddr + shmem_page_offset,
  288. page_length);
  289. ret = __copy_to_user_inatomic(user_data,
  290. vaddr + shmem_page_offset,
  291. page_length);
  292. kunmap_atomic(vaddr);
  293. return ret ? -EFAULT : 0;
  294. }
  295. static void
  296. shmem_clflush_swizzled_range(char *addr, unsigned long length,
  297. bool swizzled)
  298. {
  299. if (unlikely(swizzled)) {
  300. unsigned long start = (unsigned long) addr;
  301. unsigned long end = (unsigned long) addr + length;
  302. /* For swizzling simply ensure that we always flush both
  303. * channels. Lame, but simple and it works. Swizzled
  304. * pwrite/pread is far from a hotpath - current userspace
  305. * doesn't use it at all. */
  306. start = round_down(start, 128);
  307. end = round_up(end, 128);
  308. drm_clflush_virt_range((void *)start, end - start);
  309. } else {
  310. drm_clflush_virt_range(addr, length);
  311. }
  312. }
  313. /* Only difference to the fast-path function is that this can handle bit17
  314. * and uses non-atomic copy and kmap functions. */
  315. static int
  316. shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
  317. char __user *user_data,
  318. bool page_do_bit17_swizzling, bool needs_clflush)
  319. {
  320. char *vaddr;
  321. int ret;
  322. vaddr = kmap(page);
  323. if (needs_clflush)
  324. shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
  325. page_length,
  326. page_do_bit17_swizzling);
  327. if (page_do_bit17_swizzling)
  328. ret = __copy_to_user_swizzled(user_data,
  329. vaddr, shmem_page_offset,
  330. page_length);
  331. else
  332. ret = __copy_to_user(user_data,
  333. vaddr + shmem_page_offset,
  334. page_length);
  335. kunmap(page);
  336. return ret ? - EFAULT : 0;
  337. }
  338. static int
  339. i915_gem_shmem_pread(struct drm_device *dev,
  340. struct drm_i915_gem_object *obj,
  341. struct drm_i915_gem_pread *args,
  342. struct drm_file *file)
  343. {
  344. char __user *user_data;
  345. ssize_t remain;
  346. loff_t offset;
  347. int shmem_page_offset, page_length, ret = 0;
  348. int obj_do_bit17_swizzling, page_do_bit17_swizzling;
  349. int hit_slowpath = 0;
  350. int prefaulted = 0;
  351. int needs_clflush = 0;
  352. struct scatterlist *sg;
  353. int i;
  354. user_data = (char __user *) (uintptr_t) args->data_ptr;
  355. remain = args->size;
  356. obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
  357. if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
  358. /* If we're not in the cpu read domain, set ourself into the gtt
  359. * read domain and manually flush cachelines (if required). This
  360. * optimizes for the case when the gpu will dirty the data
  361. * anyway again before the next pread happens. */
  362. if (obj->cache_level == I915_CACHE_NONE)
  363. needs_clflush = 1;
  364. if (obj->gtt_space) {
  365. ret = i915_gem_object_set_to_gtt_domain(obj, false);
  366. if (ret)
  367. return ret;
  368. }
  369. }
  370. ret = i915_gem_object_get_pages(obj);
  371. if (ret)
  372. return ret;
  373. i915_gem_object_pin_pages(obj);
  374. offset = args->offset;
  375. for_each_sg(obj->pages->sgl, sg, obj->pages->nents, i) {
  376. struct page *page;
  377. if (i < offset >> PAGE_SHIFT)
  378. continue;
  379. if (remain <= 0)
  380. break;
  381. /* Operation in this page
  382. *
  383. * shmem_page_offset = offset within page in shmem file
  384. * page_length = bytes to copy for this page
  385. */
  386. shmem_page_offset = offset_in_page(offset);
  387. page_length = remain;
  388. if ((shmem_page_offset + page_length) > PAGE_SIZE)
  389. page_length = PAGE_SIZE - shmem_page_offset;
  390. page = sg_page(sg);
  391. page_do_bit17_swizzling = obj_do_bit17_swizzling &&
  392. (page_to_phys(page) & (1 << 17)) != 0;
  393. ret = shmem_pread_fast(page, shmem_page_offset, page_length,
  394. user_data, page_do_bit17_swizzling,
  395. needs_clflush);
  396. if (ret == 0)
  397. goto next_page;
  398. hit_slowpath = 1;
  399. mutex_unlock(&dev->struct_mutex);
  400. if (!prefaulted) {
  401. ret = fault_in_multipages_writeable(user_data, remain);
  402. /* Userspace is tricking us, but we've already clobbered
  403. * its pages with the prefault and promised to write the
  404. * data up to the first fault. Hence ignore any errors
  405. * and just continue. */
  406. (void)ret;
  407. prefaulted = 1;
  408. }
  409. ret = shmem_pread_slow(page, shmem_page_offset, page_length,
  410. user_data, page_do_bit17_swizzling,
  411. needs_clflush);
  412. mutex_lock(&dev->struct_mutex);
  413. next_page:
  414. mark_page_accessed(page);
  415. if (ret)
  416. goto out;
  417. remain -= page_length;
  418. user_data += page_length;
  419. offset += page_length;
  420. }
  421. out:
  422. i915_gem_object_unpin_pages(obj);
  423. if (hit_slowpath) {
  424. /* Fixup: Kill any reinstated backing storage pages */
  425. if (obj->madv == __I915_MADV_PURGED)
  426. i915_gem_object_truncate(obj);
  427. }
  428. return ret;
  429. }
  430. /**
  431. * Reads data from the object referenced by handle.
  432. *
  433. * On error, the contents of *data are undefined.
  434. */
  435. int
  436. i915_gem_pread_ioctl(struct drm_device *dev, void *data,
  437. struct drm_file *file)
  438. {
  439. struct drm_i915_gem_pread *args = data;
  440. struct drm_i915_gem_object *obj;
  441. int ret = 0;
  442. if (args->size == 0)
  443. return 0;
  444. if (!access_ok(VERIFY_WRITE,
  445. (char __user *)(uintptr_t)args->data_ptr,
  446. args->size))
  447. return -EFAULT;
  448. ret = i915_mutex_lock_interruptible(dev);
  449. if (ret)
  450. return ret;
  451. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  452. if (&obj->base == NULL) {
  453. ret = -ENOENT;
  454. goto unlock;
  455. }
  456. /* Bounds check source. */
  457. if (args->offset > obj->base.size ||
  458. args->size > obj->base.size - args->offset) {
  459. ret = -EINVAL;
  460. goto out;
  461. }
  462. /* prime objects have no backing filp to GEM pread/pwrite
  463. * pages from.
  464. */
  465. if (!obj->base.filp) {
  466. ret = -EINVAL;
  467. goto out;
  468. }
  469. trace_i915_gem_object_pread(obj, args->offset, args->size);
  470. ret = i915_gem_shmem_pread(dev, obj, args, file);
  471. out:
  472. drm_gem_object_unreference(&obj->base);
  473. unlock:
  474. mutex_unlock(&dev->struct_mutex);
  475. return ret;
  476. }
  477. /* This is the fast write path which cannot handle
  478. * page faults in the source data
  479. */
  480. static inline int
  481. fast_user_write(struct io_mapping *mapping,
  482. loff_t page_base, int page_offset,
  483. char __user *user_data,
  484. int length)
  485. {
  486. void __iomem *vaddr_atomic;
  487. void *vaddr;
  488. unsigned long unwritten;
  489. vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
  490. /* We can use the cpu mem copy function because this is X86. */
  491. vaddr = (void __force*)vaddr_atomic + page_offset;
  492. unwritten = __copy_from_user_inatomic_nocache(vaddr,
  493. user_data, length);
  494. io_mapping_unmap_atomic(vaddr_atomic);
  495. return unwritten;
  496. }
  497. /**
  498. * This is the fast pwrite path, where we copy the data directly from the
  499. * user into the GTT, uncached.
  500. */
  501. static int
  502. i915_gem_gtt_pwrite_fast(struct drm_device *dev,
  503. struct drm_i915_gem_object *obj,
  504. struct drm_i915_gem_pwrite *args,
  505. struct drm_file *file)
  506. {
  507. drm_i915_private_t *dev_priv = dev->dev_private;
  508. ssize_t remain;
  509. loff_t offset, page_base;
  510. char __user *user_data;
  511. int page_offset, page_length, ret;
  512. ret = i915_gem_object_pin(obj, 0, true, true);
  513. if (ret)
  514. goto out;
  515. ret = i915_gem_object_set_to_gtt_domain(obj, true);
  516. if (ret)
  517. goto out_unpin;
  518. ret = i915_gem_object_put_fence(obj);
  519. if (ret)
  520. goto out_unpin;
  521. user_data = (char __user *) (uintptr_t) args->data_ptr;
  522. remain = args->size;
  523. offset = obj->gtt_offset + args->offset;
  524. while (remain > 0) {
  525. /* Operation in this page
  526. *
  527. * page_base = page offset within aperture
  528. * page_offset = offset within page
  529. * page_length = bytes to copy for this page
  530. */
  531. page_base = offset & PAGE_MASK;
  532. page_offset = offset_in_page(offset);
  533. page_length = remain;
  534. if ((page_offset + remain) > PAGE_SIZE)
  535. page_length = PAGE_SIZE - page_offset;
  536. /* If we get a fault while copying data, then (presumably) our
  537. * source page isn't available. Return the error and we'll
  538. * retry in the slow path.
  539. */
  540. if (fast_user_write(dev_priv->mm.gtt_mapping, page_base,
  541. page_offset, user_data, page_length)) {
  542. ret = -EFAULT;
  543. goto out_unpin;
  544. }
  545. remain -= page_length;
  546. user_data += page_length;
  547. offset += page_length;
  548. }
  549. out_unpin:
  550. i915_gem_object_unpin(obj);
  551. out:
  552. return ret;
  553. }
  554. /* Per-page copy function for the shmem pwrite fastpath.
  555. * Flushes invalid cachelines before writing to the target if
  556. * needs_clflush_before is set and flushes out any written cachelines after
  557. * writing if needs_clflush is set. */
  558. static int
  559. shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
  560. char __user *user_data,
  561. bool page_do_bit17_swizzling,
  562. bool needs_clflush_before,
  563. bool needs_clflush_after)
  564. {
  565. char *vaddr;
  566. int ret;
  567. if (unlikely(page_do_bit17_swizzling))
  568. return -EINVAL;
  569. vaddr = kmap_atomic(page);
  570. if (needs_clflush_before)
  571. drm_clflush_virt_range(vaddr + shmem_page_offset,
  572. page_length);
  573. ret = __copy_from_user_inatomic_nocache(vaddr + shmem_page_offset,
  574. user_data,
  575. page_length);
  576. if (needs_clflush_after)
  577. drm_clflush_virt_range(vaddr + shmem_page_offset,
  578. page_length);
  579. kunmap_atomic(vaddr);
  580. return ret ? -EFAULT : 0;
  581. }
  582. /* Only difference to the fast-path function is that this can handle bit17
  583. * and uses non-atomic copy and kmap functions. */
  584. static int
  585. shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
  586. char __user *user_data,
  587. bool page_do_bit17_swizzling,
  588. bool needs_clflush_before,
  589. bool needs_clflush_after)
  590. {
  591. char *vaddr;
  592. int ret;
  593. vaddr = kmap(page);
  594. if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
  595. shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
  596. page_length,
  597. page_do_bit17_swizzling);
  598. if (page_do_bit17_swizzling)
  599. ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
  600. user_data,
  601. page_length);
  602. else
  603. ret = __copy_from_user(vaddr + shmem_page_offset,
  604. user_data,
  605. page_length);
  606. if (needs_clflush_after)
  607. shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
  608. page_length,
  609. page_do_bit17_swizzling);
  610. kunmap(page);
  611. return ret ? -EFAULT : 0;
  612. }
  613. static int
  614. i915_gem_shmem_pwrite(struct drm_device *dev,
  615. struct drm_i915_gem_object *obj,
  616. struct drm_i915_gem_pwrite *args,
  617. struct drm_file *file)
  618. {
  619. ssize_t remain;
  620. loff_t offset;
  621. char __user *user_data;
  622. int shmem_page_offset, page_length, ret = 0;
  623. int obj_do_bit17_swizzling, page_do_bit17_swizzling;
  624. int hit_slowpath = 0;
  625. int needs_clflush_after = 0;
  626. int needs_clflush_before = 0;
  627. int i;
  628. struct scatterlist *sg;
  629. user_data = (char __user *) (uintptr_t) args->data_ptr;
  630. remain = args->size;
  631. obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
  632. if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
  633. /* If we're not in the cpu write domain, set ourself into the gtt
  634. * write domain and manually flush cachelines (if required). This
  635. * optimizes for the case when the gpu will use the data
  636. * right away and we therefore have to clflush anyway. */
  637. if (obj->cache_level == I915_CACHE_NONE)
  638. needs_clflush_after = 1;
  639. if (obj->gtt_space) {
  640. ret = i915_gem_object_set_to_gtt_domain(obj, true);
  641. if (ret)
  642. return ret;
  643. }
  644. }
  645. /* Same trick applies for invalidate partially written cachelines before
  646. * writing. */
  647. if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)
  648. && obj->cache_level == I915_CACHE_NONE)
  649. needs_clflush_before = 1;
  650. ret = i915_gem_object_get_pages(obj);
  651. if (ret)
  652. return ret;
  653. i915_gem_object_pin_pages(obj);
  654. offset = args->offset;
  655. obj->dirty = 1;
  656. for_each_sg(obj->pages->sgl, sg, obj->pages->nents, i) {
  657. struct page *page;
  658. int partial_cacheline_write;
  659. if (i < offset >> PAGE_SHIFT)
  660. continue;
  661. if (remain <= 0)
  662. break;
  663. /* Operation in this page
  664. *
  665. * shmem_page_offset = offset within page in shmem file
  666. * page_length = bytes to copy for this page
  667. */
  668. shmem_page_offset = offset_in_page(offset);
  669. page_length = remain;
  670. if ((shmem_page_offset + page_length) > PAGE_SIZE)
  671. page_length = PAGE_SIZE - shmem_page_offset;
  672. /* If we don't overwrite a cacheline completely we need to be
  673. * careful to have up-to-date data by first clflushing. Don't
  674. * overcomplicate things and flush the entire patch. */
  675. partial_cacheline_write = needs_clflush_before &&
  676. ((shmem_page_offset | page_length)
  677. & (boot_cpu_data.x86_clflush_size - 1));
  678. page = sg_page(sg);
  679. page_do_bit17_swizzling = obj_do_bit17_swizzling &&
  680. (page_to_phys(page) & (1 << 17)) != 0;
  681. ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
  682. user_data, page_do_bit17_swizzling,
  683. partial_cacheline_write,
  684. needs_clflush_after);
  685. if (ret == 0)
  686. goto next_page;
  687. hit_slowpath = 1;
  688. mutex_unlock(&dev->struct_mutex);
  689. ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
  690. user_data, page_do_bit17_swizzling,
  691. partial_cacheline_write,
  692. needs_clflush_after);
  693. mutex_lock(&dev->struct_mutex);
  694. next_page:
  695. set_page_dirty(page);
  696. mark_page_accessed(page);
  697. if (ret)
  698. goto out;
  699. remain -= page_length;
  700. user_data += page_length;
  701. offset += page_length;
  702. }
  703. out:
  704. i915_gem_object_unpin_pages(obj);
  705. if (hit_slowpath) {
  706. /* Fixup: Kill any reinstated backing storage pages */
  707. if (obj->madv == __I915_MADV_PURGED)
  708. i915_gem_object_truncate(obj);
  709. /* and flush dirty cachelines in case the object isn't in the cpu write
  710. * domain anymore. */
  711. if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
  712. i915_gem_clflush_object(obj);
  713. intel_gtt_chipset_flush();
  714. }
  715. }
  716. if (needs_clflush_after)
  717. intel_gtt_chipset_flush();
  718. return ret;
  719. }
  720. /**
  721. * Writes data to the object referenced by handle.
  722. *
  723. * On error, the contents of the buffer that were to be modified are undefined.
  724. */
  725. int
  726. i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
  727. struct drm_file *file)
  728. {
  729. struct drm_i915_gem_pwrite *args = data;
  730. struct drm_i915_gem_object *obj;
  731. int ret;
  732. if (args->size == 0)
  733. return 0;
  734. if (!access_ok(VERIFY_READ,
  735. (char __user *)(uintptr_t)args->data_ptr,
  736. args->size))
  737. return -EFAULT;
  738. ret = fault_in_multipages_readable((char __user *)(uintptr_t)args->data_ptr,
  739. args->size);
  740. if (ret)
  741. return -EFAULT;
  742. ret = i915_mutex_lock_interruptible(dev);
  743. if (ret)
  744. return ret;
  745. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  746. if (&obj->base == NULL) {
  747. ret = -ENOENT;
  748. goto unlock;
  749. }
  750. /* Bounds check destination. */
  751. if (args->offset > obj->base.size ||
  752. args->size > obj->base.size - args->offset) {
  753. ret = -EINVAL;
  754. goto out;
  755. }
  756. /* prime objects have no backing filp to GEM pread/pwrite
  757. * pages from.
  758. */
  759. if (!obj->base.filp) {
  760. ret = -EINVAL;
  761. goto out;
  762. }
  763. trace_i915_gem_object_pwrite(obj, args->offset, args->size);
  764. ret = -EFAULT;
  765. /* We can only do the GTT pwrite on untiled buffers, as otherwise
  766. * it would end up going through the fenced access, and we'll get
  767. * different detiling behavior between reading and writing.
  768. * pread/pwrite currently are reading and writing from the CPU
  769. * perspective, requiring manual detiling by the client.
  770. */
  771. if (obj->phys_obj) {
  772. ret = i915_gem_phys_pwrite(dev, obj, args, file);
  773. goto out;
  774. }
  775. if (obj->cache_level == I915_CACHE_NONE &&
  776. obj->tiling_mode == I915_TILING_NONE &&
  777. obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
  778. ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
  779. /* Note that the gtt paths might fail with non-page-backed user
  780. * pointers (e.g. gtt mappings when moving data between
  781. * textures). Fallback to the shmem path in that case. */
  782. }
  783. if (ret == -EFAULT || ret == -ENOSPC)
  784. ret = i915_gem_shmem_pwrite(dev, obj, args, file);
  785. out:
  786. drm_gem_object_unreference(&obj->base);
  787. unlock:
  788. mutex_unlock(&dev->struct_mutex);
  789. return ret;
  790. }
  791. int
  792. i915_gem_check_wedge(struct drm_i915_private *dev_priv,
  793. bool interruptible)
  794. {
  795. if (atomic_read(&dev_priv->mm.wedged)) {
  796. struct completion *x = &dev_priv->error_completion;
  797. bool recovery_complete;
  798. unsigned long flags;
  799. /* Give the error handler a chance to run. */
  800. spin_lock_irqsave(&x->wait.lock, flags);
  801. recovery_complete = x->done > 0;
  802. spin_unlock_irqrestore(&x->wait.lock, flags);
  803. /* Non-interruptible callers can't handle -EAGAIN, hence return
  804. * -EIO unconditionally for these. */
  805. if (!interruptible)
  806. return -EIO;
  807. /* Recovery complete, but still wedged means reset failure. */
  808. if (recovery_complete)
  809. return -EIO;
  810. return -EAGAIN;
  811. }
  812. return 0;
  813. }
  814. /*
  815. * Compare seqno against outstanding lazy request. Emit a request if they are
  816. * equal.
  817. */
  818. static int
  819. i915_gem_check_olr(struct intel_ring_buffer *ring, u32 seqno)
  820. {
  821. int ret;
  822. BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex));
  823. ret = 0;
  824. if (seqno == ring->outstanding_lazy_request)
  825. ret = i915_add_request(ring, NULL, NULL);
  826. return ret;
  827. }
  828. /**
  829. * __wait_seqno - wait until execution of seqno has finished
  830. * @ring: the ring expected to report seqno
  831. * @seqno: duh!
  832. * @interruptible: do an interruptible wait (normally yes)
  833. * @timeout: in - how long to wait (NULL forever); out - how much time remaining
  834. *
  835. * Returns 0 if the seqno was found within the alloted time. Else returns the
  836. * errno with remaining time filled in timeout argument.
  837. */
  838. static int __wait_seqno(struct intel_ring_buffer *ring, u32 seqno,
  839. bool interruptible, struct timespec *timeout)
  840. {
  841. drm_i915_private_t *dev_priv = ring->dev->dev_private;
  842. struct timespec before, now, wait_time={1,0};
  843. unsigned long timeout_jiffies;
  844. long end;
  845. bool wait_forever = true;
  846. int ret;
  847. if (i915_seqno_passed(ring->get_seqno(ring, true), seqno))
  848. return 0;
  849. trace_i915_gem_request_wait_begin(ring, seqno);
  850. if (timeout != NULL) {
  851. wait_time = *timeout;
  852. wait_forever = false;
  853. }
  854. timeout_jiffies = timespec_to_jiffies(&wait_time);
  855. if (WARN_ON(!ring->irq_get(ring)))
  856. return -ENODEV;
  857. /* Record current time in case interrupted by signal, or wedged * */
  858. getrawmonotonic(&before);
  859. #define EXIT_COND \
  860. (i915_seqno_passed(ring->get_seqno(ring, false), seqno) || \
  861. atomic_read(&dev_priv->mm.wedged))
  862. do {
  863. if (interruptible)
  864. end = wait_event_interruptible_timeout(ring->irq_queue,
  865. EXIT_COND,
  866. timeout_jiffies);
  867. else
  868. end = wait_event_timeout(ring->irq_queue, EXIT_COND,
  869. timeout_jiffies);
  870. ret = i915_gem_check_wedge(dev_priv, interruptible);
  871. if (ret)
  872. end = ret;
  873. } while (end == 0 && wait_forever);
  874. getrawmonotonic(&now);
  875. ring->irq_put(ring);
  876. trace_i915_gem_request_wait_end(ring, seqno);
  877. #undef EXIT_COND
  878. if (timeout) {
  879. struct timespec sleep_time = timespec_sub(now, before);
  880. *timeout = timespec_sub(*timeout, sleep_time);
  881. }
  882. switch (end) {
  883. case -EIO:
  884. case -EAGAIN: /* Wedged */
  885. case -ERESTARTSYS: /* Signal */
  886. return (int)end;
  887. case 0: /* Timeout */
  888. if (timeout)
  889. set_normalized_timespec(timeout, 0, 0);
  890. return -ETIME;
  891. default: /* Completed */
  892. WARN_ON(end < 0); /* We're not aware of other errors */
  893. return 0;
  894. }
  895. }
  896. /**
  897. * Waits for a sequence number to be signaled, and cleans up the
  898. * request and object lists appropriately for that event.
  899. */
  900. int
  901. i915_wait_seqno(struct intel_ring_buffer *ring, uint32_t seqno)
  902. {
  903. struct drm_device *dev = ring->dev;
  904. struct drm_i915_private *dev_priv = dev->dev_private;
  905. bool interruptible = dev_priv->mm.interruptible;
  906. int ret;
  907. BUG_ON(!mutex_is_locked(&dev->struct_mutex));
  908. BUG_ON(seqno == 0);
  909. ret = i915_gem_check_wedge(dev_priv, interruptible);
  910. if (ret)
  911. return ret;
  912. ret = i915_gem_check_olr(ring, seqno);
  913. if (ret)
  914. return ret;
  915. return __wait_seqno(ring, seqno, interruptible, NULL);
  916. }
  917. /**
  918. * Ensures that all rendering to the object has completed and the object is
  919. * safe to unbind from the GTT or access from the CPU.
  920. */
  921. static __must_check int
  922. i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
  923. bool readonly)
  924. {
  925. struct intel_ring_buffer *ring = obj->ring;
  926. u32 seqno;
  927. int ret;
  928. seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
  929. if (seqno == 0)
  930. return 0;
  931. ret = i915_wait_seqno(ring, seqno);
  932. if (ret)
  933. return ret;
  934. i915_gem_retire_requests_ring(ring);
  935. /* Manually manage the write flush as we may have not yet
  936. * retired the buffer.
  937. */
  938. if (obj->last_write_seqno &&
  939. i915_seqno_passed(seqno, obj->last_write_seqno)) {
  940. obj->last_write_seqno = 0;
  941. obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
  942. }
  943. return 0;
  944. }
  945. /* A nonblocking variant of the above wait. This is a highly dangerous routine
  946. * as the object state may change during this call.
  947. */
  948. static __must_check int
  949. i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
  950. bool readonly)
  951. {
  952. struct drm_device *dev = obj->base.dev;
  953. struct drm_i915_private *dev_priv = dev->dev_private;
  954. struct intel_ring_buffer *ring = obj->ring;
  955. u32 seqno;
  956. int ret;
  957. BUG_ON(!mutex_is_locked(&dev->struct_mutex));
  958. BUG_ON(!dev_priv->mm.interruptible);
  959. seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
  960. if (seqno == 0)
  961. return 0;
  962. ret = i915_gem_check_wedge(dev_priv, true);
  963. if (ret)
  964. return ret;
  965. ret = i915_gem_check_olr(ring, seqno);
  966. if (ret)
  967. return ret;
  968. mutex_unlock(&dev->struct_mutex);
  969. ret = __wait_seqno(ring, seqno, true, NULL);
  970. mutex_lock(&dev->struct_mutex);
  971. i915_gem_retire_requests_ring(ring);
  972. /* Manually manage the write flush as we may have not yet
  973. * retired the buffer.
  974. */
  975. if (obj->last_write_seqno &&
  976. i915_seqno_passed(seqno, obj->last_write_seqno)) {
  977. obj->last_write_seqno = 0;
  978. obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
  979. }
  980. return ret;
  981. }
  982. /**
  983. * Called when user space prepares to use an object with the CPU, either
  984. * through the mmap ioctl's mapping or a GTT mapping.
  985. */
  986. int
  987. i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
  988. struct drm_file *file)
  989. {
  990. struct drm_i915_gem_set_domain *args = data;
  991. struct drm_i915_gem_object *obj;
  992. uint32_t read_domains = args->read_domains;
  993. uint32_t write_domain = args->write_domain;
  994. int ret;
  995. /* Only handle setting domains to types used by the CPU. */
  996. if (write_domain & I915_GEM_GPU_DOMAINS)
  997. return -EINVAL;
  998. if (read_domains & I915_GEM_GPU_DOMAINS)
  999. return -EINVAL;
  1000. /* Having something in the write domain implies it's in the read
  1001. * domain, and only that read domain. Enforce that in the request.
  1002. */
  1003. if (write_domain != 0 && read_domains != write_domain)
  1004. return -EINVAL;
  1005. ret = i915_mutex_lock_interruptible(dev);
  1006. if (ret)
  1007. return ret;
  1008. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  1009. if (&obj->base == NULL) {
  1010. ret = -ENOENT;
  1011. goto unlock;
  1012. }
  1013. /* Try to flush the object off the GPU without holding the lock.
  1014. * We will repeat the flush holding the lock in the normal manner
  1015. * to catch cases where we are gazumped.
  1016. */
  1017. ret = i915_gem_object_wait_rendering__nonblocking(obj, !write_domain);
  1018. if (ret)
  1019. goto unref;
  1020. if (read_domains & I915_GEM_DOMAIN_GTT) {
  1021. ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
  1022. /* Silently promote "you're not bound, there was nothing to do"
  1023. * to success, since the client was just asking us to
  1024. * make sure everything was done.
  1025. */
  1026. if (ret == -EINVAL)
  1027. ret = 0;
  1028. } else {
  1029. ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
  1030. }
  1031. unref:
  1032. drm_gem_object_unreference(&obj->base);
  1033. unlock:
  1034. mutex_unlock(&dev->struct_mutex);
  1035. return ret;
  1036. }
  1037. /**
  1038. * Called when user space has done writes to this buffer
  1039. */
  1040. int
  1041. i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
  1042. struct drm_file *file)
  1043. {
  1044. struct drm_i915_gem_sw_finish *args = data;
  1045. struct drm_i915_gem_object *obj;
  1046. int ret = 0;
  1047. ret = i915_mutex_lock_interruptible(dev);
  1048. if (ret)
  1049. return ret;
  1050. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  1051. if (&obj->base == NULL) {
  1052. ret = -ENOENT;
  1053. goto unlock;
  1054. }
  1055. /* Pinned buffers may be scanout, so flush the cache */
  1056. if (obj->pin_count)
  1057. i915_gem_object_flush_cpu_write_domain(obj);
  1058. drm_gem_object_unreference(&obj->base);
  1059. unlock:
  1060. mutex_unlock(&dev->struct_mutex);
  1061. return ret;
  1062. }
  1063. /**
  1064. * Maps the contents of an object, returning the address it is mapped
  1065. * into.
  1066. *
  1067. * While the mapping holds a reference on the contents of the object, it doesn't
  1068. * imply a ref on the object itself.
  1069. */
  1070. int
  1071. i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
  1072. struct drm_file *file)
  1073. {
  1074. struct drm_i915_gem_mmap *args = data;
  1075. struct drm_gem_object *obj;
  1076. unsigned long addr;
  1077. obj = drm_gem_object_lookup(dev, file, args->handle);
  1078. if (obj == NULL)
  1079. return -ENOENT;
  1080. /* prime objects have no backing filp to GEM mmap
  1081. * pages from.
  1082. */
  1083. if (!obj->filp) {
  1084. drm_gem_object_unreference_unlocked(obj);
  1085. return -EINVAL;
  1086. }
  1087. addr = vm_mmap(obj->filp, 0, args->size,
  1088. PROT_READ | PROT_WRITE, MAP_SHARED,
  1089. args->offset);
  1090. drm_gem_object_unreference_unlocked(obj);
  1091. if (IS_ERR((void *)addr))
  1092. return addr;
  1093. args->addr_ptr = (uint64_t) addr;
  1094. return 0;
  1095. }
  1096. /**
  1097. * i915_gem_fault - fault a page into the GTT
  1098. * vma: VMA in question
  1099. * vmf: fault info
  1100. *
  1101. * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
  1102. * from userspace. The fault handler takes care of binding the object to
  1103. * the GTT (if needed), allocating and programming a fence register (again,
  1104. * only if needed based on whether the old reg is still valid or the object
  1105. * is tiled) and inserting a new PTE into the faulting process.
  1106. *
  1107. * Note that the faulting process may involve evicting existing objects
  1108. * from the GTT and/or fence registers to make room. So performance may
  1109. * suffer if the GTT working set is large or there are few fence registers
  1110. * left.
  1111. */
  1112. int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
  1113. {
  1114. struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
  1115. struct drm_device *dev = obj->base.dev;
  1116. drm_i915_private_t *dev_priv = dev->dev_private;
  1117. pgoff_t page_offset;
  1118. unsigned long pfn;
  1119. int ret = 0;
  1120. bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
  1121. /* We don't use vmf->pgoff since that has the fake offset */
  1122. page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
  1123. PAGE_SHIFT;
  1124. ret = i915_mutex_lock_interruptible(dev);
  1125. if (ret)
  1126. goto out;
  1127. trace_i915_gem_object_fault(obj, page_offset, true, write);
  1128. /* Now bind it into the GTT if needed */
  1129. if (!obj->map_and_fenceable) {
  1130. ret = i915_gem_object_unbind(obj);
  1131. if (ret)
  1132. goto unlock;
  1133. }
  1134. if (!obj->gtt_space) {
  1135. ret = i915_gem_object_bind_to_gtt(obj, 0, true, false);
  1136. if (ret)
  1137. goto unlock;
  1138. ret = i915_gem_object_set_to_gtt_domain(obj, write);
  1139. if (ret)
  1140. goto unlock;
  1141. }
  1142. if (!obj->has_global_gtt_mapping)
  1143. i915_gem_gtt_bind_object(obj, obj->cache_level);
  1144. ret = i915_gem_object_get_fence(obj);
  1145. if (ret)
  1146. goto unlock;
  1147. if (i915_gem_object_is_inactive(obj))
  1148. list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
  1149. obj->fault_mappable = true;
  1150. pfn = ((dev_priv->mm.gtt_base_addr + obj->gtt_offset) >> PAGE_SHIFT) +
  1151. page_offset;
  1152. /* Finally, remap it using the new GTT offset */
  1153. ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
  1154. unlock:
  1155. mutex_unlock(&dev->struct_mutex);
  1156. out:
  1157. switch (ret) {
  1158. case -EIO:
  1159. /* If this -EIO is due to a gpu hang, give the reset code a
  1160. * chance to clean up the mess. Otherwise return the proper
  1161. * SIGBUS. */
  1162. if (!atomic_read(&dev_priv->mm.wedged))
  1163. return VM_FAULT_SIGBUS;
  1164. case -EAGAIN:
  1165. /* Give the error handler a chance to run and move the
  1166. * objects off the GPU active list. Next time we service the
  1167. * fault, we should be able to transition the page into the
  1168. * GTT without touching the GPU (and so avoid further
  1169. * EIO/EGAIN). If the GPU is wedged, then there is no issue
  1170. * with coherency, just lost writes.
  1171. */
  1172. set_need_resched();
  1173. case 0:
  1174. case -ERESTARTSYS:
  1175. case -EINTR:
  1176. case -EBUSY:
  1177. /*
  1178. * EBUSY is ok: this just means that another thread
  1179. * already did the job.
  1180. */
  1181. return VM_FAULT_NOPAGE;
  1182. case -ENOMEM:
  1183. return VM_FAULT_OOM;
  1184. default:
  1185. WARN_ON_ONCE(ret);
  1186. return VM_FAULT_SIGBUS;
  1187. }
  1188. }
  1189. /**
  1190. * i915_gem_release_mmap - remove physical page mappings
  1191. * @obj: obj in question
  1192. *
  1193. * Preserve the reservation of the mmapping with the DRM core code, but
  1194. * relinquish ownership of the pages back to the system.
  1195. *
  1196. * It is vital that we remove the page mapping if we have mapped a tiled
  1197. * object through the GTT and then lose the fence register due to
  1198. * resource pressure. Similarly if the object has been moved out of the
  1199. * aperture, than pages mapped into userspace must be revoked. Removing the
  1200. * mapping will then trigger a page fault on the next user access, allowing
  1201. * fixup by i915_gem_fault().
  1202. */
  1203. void
  1204. i915_gem_release_mmap(struct drm_i915_gem_object *obj)
  1205. {
  1206. if (!obj->fault_mappable)
  1207. return;
  1208. if (obj->base.dev->dev_mapping)
  1209. unmap_mapping_range(obj->base.dev->dev_mapping,
  1210. (loff_t)obj->base.map_list.hash.key<<PAGE_SHIFT,
  1211. obj->base.size, 1);
  1212. obj->fault_mappable = false;
  1213. }
  1214. static uint32_t
  1215. i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
  1216. {
  1217. uint32_t gtt_size;
  1218. if (INTEL_INFO(dev)->gen >= 4 ||
  1219. tiling_mode == I915_TILING_NONE)
  1220. return size;
  1221. /* Previous chips need a power-of-two fence region when tiling */
  1222. if (INTEL_INFO(dev)->gen == 3)
  1223. gtt_size = 1024*1024;
  1224. else
  1225. gtt_size = 512*1024;
  1226. while (gtt_size < size)
  1227. gtt_size <<= 1;
  1228. return gtt_size;
  1229. }
  1230. /**
  1231. * i915_gem_get_gtt_alignment - return required GTT alignment for an object
  1232. * @obj: object to check
  1233. *
  1234. * Return the required GTT alignment for an object, taking into account
  1235. * potential fence register mapping.
  1236. */
  1237. static uint32_t
  1238. i915_gem_get_gtt_alignment(struct drm_device *dev,
  1239. uint32_t size,
  1240. int tiling_mode)
  1241. {
  1242. /*
  1243. * Minimum alignment is 4k (GTT page size), but might be greater
  1244. * if a fence register is needed for the object.
  1245. */
  1246. if (INTEL_INFO(dev)->gen >= 4 ||
  1247. tiling_mode == I915_TILING_NONE)
  1248. return 4096;
  1249. /*
  1250. * Previous chips need to be aligned to the size of the smallest
  1251. * fence register that can contain the object.
  1252. */
  1253. return i915_gem_get_gtt_size(dev, size, tiling_mode);
  1254. }
  1255. /**
  1256. * i915_gem_get_unfenced_gtt_alignment - return required GTT alignment for an
  1257. * unfenced object
  1258. * @dev: the device
  1259. * @size: size of the object
  1260. * @tiling_mode: tiling mode of the object
  1261. *
  1262. * Return the required GTT alignment for an object, only taking into account
  1263. * unfenced tiled surface requirements.
  1264. */
  1265. uint32_t
  1266. i915_gem_get_unfenced_gtt_alignment(struct drm_device *dev,
  1267. uint32_t size,
  1268. int tiling_mode)
  1269. {
  1270. /*
  1271. * Minimum alignment is 4k (GTT page size) for sane hw.
  1272. */
  1273. if (INTEL_INFO(dev)->gen >= 4 || IS_G33(dev) ||
  1274. tiling_mode == I915_TILING_NONE)
  1275. return 4096;
  1276. /* Previous hardware however needs to be aligned to a power-of-two
  1277. * tile height. The simplest method for determining this is to reuse
  1278. * the power-of-tile object size.
  1279. */
  1280. return i915_gem_get_gtt_size(dev, size, tiling_mode);
  1281. }
  1282. static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
  1283. {
  1284. struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
  1285. int ret;
  1286. if (obj->base.map_list.map)
  1287. return 0;
  1288. ret = drm_gem_create_mmap_offset(&obj->base);
  1289. if (ret != -ENOSPC)
  1290. return ret;
  1291. /* Badly fragmented mmap space? The only way we can recover
  1292. * space is by destroying unwanted objects. We can't randomly release
  1293. * mmap_offsets as userspace expects them to be persistent for the
  1294. * lifetime of the objects. The closest we can is to release the
  1295. * offsets on purgeable objects by truncating it and marking it purged,
  1296. * which prevents userspace from ever using that object again.
  1297. */
  1298. i915_gem_purge(dev_priv, obj->base.size >> PAGE_SHIFT);
  1299. ret = drm_gem_create_mmap_offset(&obj->base);
  1300. if (ret != -ENOSPC)
  1301. return ret;
  1302. i915_gem_shrink_all(dev_priv);
  1303. return drm_gem_create_mmap_offset(&obj->base);
  1304. }
  1305. static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
  1306. {
  1307. if (!obj->base.map_list.map)
  1308. return;
  1309. drm_gem_free_mmap_offset(&obj->base);
  1310. }
  1311. int
  1312. i915_gem_mmap_gtt(struct drm_file *file,
  1313. struct drm_device *dev,
  1314. uint32_t handle,
  1315. uint64_t *offset)
  1316. {
  1317. struct drm_i915_private *dev_priv = dev->dev_private;
  1318. struct drm_i915_gem_object *obj;
  1319. int ret;
  1320. ret = i915_mutex_lock_interruptible(dev);
  1321. if (ret)
  1322. return ret;
  1323. obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
  1324. if (&obj->base == NULL) {
  1325. ret = -ENOENT;
  1326. goto unlock;
  1327. }
  1328. if (obj->base.size > dev_priv->mm.gtt_mappable_end) {
  1329. ret = -E2BIG;
  1330. goto out;
  1331. }
  1332. if (obj->madv != I915_MADV_WILLNEED) {
  1333. DRM_ERROR("Attempting to mmap a purgeable buffer\n");
  1334. ret = -EINVAL;
  1335. goto out;
  1336. }
  1337. ret = i915_gem_object_create_mmap_offset(obj);
  1338. if (ret)
  1339. goto out;
  1340. *offset = (u64)obj->base.map_list.hash.key << PAGE_SHIFT;
  1341. out:
  1342. drm_gem_object_unreference(&obj->base);
  1343. unlock:
  1344. mutex_unlock(&dev->struct_mutex);
  1345. return ret;
  1346. }
  1347. /**
  1348. * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
  1349. * @dev: DRM device
  1350. * @data: GTT mapping ioctl data
  1351. * @file: GEM object info
  1352. *
  1353. * Simply returns the fake offset to userspace so it can mmap it.
  1354. * The mmap call will end up in drm_gem_mmap(), which will set things
  1355. * up so we can get faults in the handler above.
  1356. *
  1357. * The fault handler will take care of binding the object into the GTT
  1358. * (since it may have been evicted to make room for something), allocating
  1359. * a fence register, and mapping the appropriate aperture address into
  1360. * userspace.
  1361. */
  1362. int
  1363. i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
  1364. struct drm_file *file)
  1365. {
  1366. struct drm_i915_gem_mmap_gtt *args = data;
  1367. return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
  1368. }
  1369. /* Immediately discard the backing storage */
  1370. static void
  1371. i915_gem_object_truncate(struct drm_i915_gem_object *obj)
  1372. {
  1373. struct inode *inode;
  1374. i915_gem_object_free_mmap_offset(obj);
  1375. if (obj->base.filp == NULL)
  1376. return;
  1377. /* Our goal here is to return as much of the memory as
  1378. * is possible back to the system as we are called from OOM.
  1379. * To do this we must instruct the shmfs to drop all of its
  1380. * backing pages, *now*.
  1381. */
  1382. inode = obj->base.filp->f_path.dentry->d_inode;
  1383. shmem_truncate_range(inode, 0, (loff_t)-1);
  1384. obj->madv = __I915_MADV_PURGED;
  1385. }
  1386. static inline int
  1387. i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
  1388. {
  1389. return obj->madv == I915_MADV_DONTNEED;
  1390. }
  1391. static void
  1392. i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
  1393. {
  1394. int page_count = obj->base.size / PAGE_SIZE;
  1395. struct scatterlist *sg;
  1396. int ret, i;
  1397. BUG_ON(obj->madv == __I915_MADV_PURGED);
  1398. ret = i915_gem_object_set_to_cpu_domain(obj, true);
  1399. if (ret) {
  1400. /* In the event of a disaster, abandon all caches and
  1401. * hope for the best.
  1402. */
  1403. WARN_ON(ret != -EIO);
  1404. i915_gem_clflush_object(obj);
  1405. obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
  1406. }
  1407. if (i915_gem_object_needs_bit17_swizzle(obj))
  1408. i915_gem_object_save_bit_17_swizzle(obj);
  1409. if (obj->madv == I915_MADV_DONTNEED)
  1410. obj->dirty = 0;
  1411. for_each_sg(obj->pages->sgl, sg, page_count, i) {
  1412. struct page *page = sg_page(sg);
  1413. if (obj->dirty)
  1414. set_page_dirty(page);
  1415. if (obj->madv == I915_MADV_WILLNEED)
  1416. mark_page_accessed(page);
  1417. page_cache_release(page);
  1418. }
  1419. obj->dirty = 0;
  1420. sg_free_table(obj->pages);
  1421. kfree(obj->pages);
  1422. }
  1423. static int
  1424. i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
  1425. {
  1426. const struct drm_i915_gem_object_ops *ops = obj->ops;
  1427. if (obj->pages == NULL)
  1428. return 0;
  1429. BUG_ON(obj->gtt_space);
  1430. if (obj->pages_pin_count)
  1431. return -EBUSY;
  1432. ops->put_pages(obj);
  1433. obj->pages = NULL;
  1434. list_del(&obj->gtt_list);
  1435. if (i915_gem_object_is_purgeable(obj))
  1436. i915_gem_object_truncate(obj);
  1437. return 0;
  1438. }
  1439. static long
  1440. i915_gem_purge(struct drm_i915_private *dev_priv, long target)
  1441. {
  1442. struct drm_i915_gem_object *obj, *next;
  1443. long count = 0;
  1444. list_for_each_entry_safe(obj, next,
  1445. &dev_priv->mm.unbound_list,
  1446. gtt_list) {
  1447. if (i915_gem_object_is_purgeable(obj) &&
  1448. i915_gem_object_put_pages(obj) == 0) {
  1449. count += obj->base.size >> PAGE_SHIFT;
  1450. if (count >= target)
  1451. return count;
  1452. }
  1453. }
  1454. list_for_each_entry_safe(obj, next,
  1455. &dev_priv->mm.inactive_list,
  1456. mm_list) {
  1457. if (i915_gem_object_is_purgeable(obj) &&
  1458. i915_gem_object_unbind(obj) == 0 &&
  1459. i915_gem_object_put_pages(obj) == 0) {
  1460. count += obj->base.size >> PAGE_SHIFT;
  1461. if (count >= target)
  1462. return count;
  1463. }
  1464. }
  1465. return count;
  1466. }
  1467. static void
  1468. i915_gem_shrink_all(struct drm_i915_private *dev_priv)
  1469. {
  1470. struct drm_i915_gem_object *obj, *next;
  1471. i915_gem_evict_everything(dev_priv->dev);
  1472. list_for_each_entry_safe(obj, next, &dev_priv->mm.unbound_list, gtt_list)
  1473. i915_gem_object_put_pages(obj);
  1474. }
  1475. static int
  1476. i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
  1477. {
  1478. struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
  1479. int page_count, i;
  1480. struct address_space *mapping;
  1481. struct sg_table *st;
  1482. struct scatterlist *sg;
  1483. struct page *page;
  1484. gfp_t gfp;
  1485. /* Assert that the object is not currently in any GPU domain. As it
  1486. * wasn't in the GTT, there shouldn't be any way it could have been in
  1487. * a GPU cache
  1488. */
  1489. BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
  1490. BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
  1491. st = kmalloc(sizeof(*st), GFP_KERNEL);
  1492. if (st == NULL)
  1493. return -ENOMEM;
  1494. page_count = obj->base.size / PAGE_SIZE;
  1495. if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
  1496. sg_free_table(st);
  1497. kfree(st);
  1498. return -ENOMEM;
  1499. }
  1500. /* Get the list of pages out of our struct file. They'll be pinned
  1501. * at this point until we release them.
  1502. *
  1503. * Fail silently without starting the shrinker
  1504. */
  1505. mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
  1506. gfp = mapping_gfp_mask(mapping);
  1507. gfp |= __GFP_NORETRY | __GFP_NOWARN;
  1508. gfp &= ~(__GFP_IO | __GFP_WAIT);
  1509. for_each_sg(st->sgl, sg, page_count, i) {
  1510. page = shmem_read_mapping_page_gfp(mapping, i, gfp);
  1511. if (IS_ERR(page)) {
  1512. i915_gem_purge(dev_priv, page_count);
  1513. page = shmem_read_mapping_page_gfp(mapping, i, gfp);
  1514. }
  1515. if (IS_ERR(page)) {
  1516. /* We've tried hard to allocate the memory by reaping
  1517. * our own buffer, now let the real VM do its job and
  1518. * go down in flames if truly OOM.
  1519. */
  1520. gfp &= ~(__GFP_NORETRY | __GFP_NOWARN);
  1521. gfp |= __GFP_IO | __GFP_WAIT;
  1522. i915_gem_shrink_all(dev_priv);
  1523. page = shmem_read_mapping_page_gfp(mapping, i, gfp);
  1524. if (IS_ERR(page))
  1525. goto err_pages;
  1526. gfp |= __GFP_NORETRY | __GFP_NOWARN;
  1527. gfp &= ~(__GFP_IO | __GFP_WAIT);
  1528. }
  1529. sg_set_page(sg, page, PAGE_SIZE, 0);
  1530. }
  1531. if (i915_gem_object_needs_bit17_swizzle(obj))
  1532. i915_gem_object_do_bit_17_swizzle(obj);
  1533. obj->pages = st;
  1534. return 0;
  1535. err_pages:
  1536. for_each_sg(st->sgl, sg, i, page_count)
  1537. page_cache_release(sg_page(sg));
  1538. sg_free_table(st);
  1539. kfree(st);
  1540. return PTR_ERR(page);
  1541. }
  1542. /* Ensure that the associated pages are gathered from the backing storage
  1543. * and pinned into our object. i915_gem_object_get_pages() may be called
  1544. * multiple times before they are released by a single call to
  1545. * i915_gem_object_put_pages() - once the pages are no longer referenced
  1546. * either as a result of memory pressure (reaping pages under the shrinker)
  1547. * or as the object is itself released.
  1548. */
  1549. int
  1550. i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
  1551. {
  1552. struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
  1553. const struct drm_i915_gem_object_ops *ops = obj->ops;
  1554. int ret;
  1555. if (obj->pages)
  1556. return 0;
  1557. BUG_ON(obj->pages_pin_count);
  1558. ret = ops->get_pages(obj);
  1559. if (ret)
  1560. return ret;
  1561. list_add_tail(&obj->gtt_list, &dev_priv->mm.unbound_list);
  1562. return 0;
  1563. }
  1564. void
  1565. i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
  1566. struct intel_ring_buffer *ring,
  1567. u32 seqno)
  1568. {
  1569. struct drm_device *dev = obj->base.dev;
  1570. struct drm_i915_private *dev_priv = dev->dev_private;
  1571. BUG_ON(ring == NULL);
  1572. obj->ring = ring;
  1573. /* Add a reference if we're newly entering the active list. */
  1574. if (!obj->active) {
  1575. drm_gem_object_reference(&obj->base);
  1576. obj->active = 1;
  1577. }
  1578. /* Move from whatever list we were on to the tail of execution. */
  1579. list_move_tail(&obj->mm_list, &dev_priv->mm.active_list);
  1580. list_move_tail(&obj->ring_list, &ring->active_list);
  1581. obj->last_read_seqno = seqno;
  1582. if (obj->fenced_gpu_access) {
  1583. obj->last_fenced_seqno = seqno;
  1584. /* Bump MRU to take account of the delayed flush */
  1585. if (obj->fence_reg != I915_FENCE_REG_NONE) {
  1586. struct drm_i915_fence_reg *reg;
  1587. reg = &dev_priv->fence_regs[obj->fence_reg];
  1588. list_move_tail(&reg->lru_list,
  1589. &dev_priv->mm.fence_list);
  1590. }
  1591. }
  1592. }
  1593. static void
  1594. i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
  1595. {
  1596. struct drm_device *dev = obj->base.dev;
  1597. struct drm_i915_private *dev_priv = dev->dev_private;
  1598. BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
  1599. BUG_ON(!obj->active);
  1600. if (obj->pin_count) /* are we a framebuffer? */
  1601. intel_mark_fb_idle(obj);
  1602. list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
  1603. list_del_init(&obj->ring_list);
  1604. obj->ring = NULL;
  1605. obj->last_read_seqno = 0;
  1606. obj->last_write_seqno = 0;
  1607. obj->base.write_domain = 0;
  1608. obj->last_fenced_seqno = 0;
  1609. obj->fenced_gpu_access = false;
  1610. obj->active = 0;
  1611. drm_gem_object_unreference(&obj->base);
  1612. WARN_ON(i915_verify_lists(dev));
  1613. }
  1614. static u32
  1615. i915_gem_get_seqno(struct drm_device *dev)
  1616. {
  1617. drm_i915_private_t *dev_priv = dev->dev_private;
  1618. u32 seqno = dev_priv->next_seqno;
  1619. /* reserve 0 for non-seqno */
  1620. if (++dev_priv->next_seqno == 0)
  1621. dev_priv->next_seqno = 1;
  1622. return seqno;
  1623. }
  1624. u32
  1625. i915_gem_next_request_seqno(struct intel_ring_buffer *ring)
  1626. {
  1627. if (ring->outstanding_lazy_request == 0)
  1628. ring->outstanding_lazy_request = i915_gem_get_seqno(ring->dev);
  1629. return ring->outstanding_lazy_request;
  1630. }
  1631. int
  1632. i915_add_request(struct intel_ring_buffer *ring,
  1633. struct drm_file *file,
  1634. u32 *out_seqno)
  1635. {
  1636. drm_i915_private_t *dev_priv = ring->dev->dev_private;
  1637. struct drm_i915_gem_request *request;
  1638. u32 request_ring_position;
  1639. u32 seqno;
  1640. int was_empty;
  1641. int ret;
  1642. /*
  1643. * Emit any outstanding flushes - execbuf can fail to emit the flush
  1644. * after having emitted the batchbuffer command. Hence we need to fix
  1645. * things up similar to emitting the lazy request. The difference here
  1646. * is that the flush _must_ happen before the next request, no matter
  1647. * what.
  1648. */
  1649. ret = intel_ring_flush_all_caches(ring);
  1650. if (ret)
  1651. return ret;
  1652. request = kmalloc(sizeof(*request), GFP_KERNEL);
  1653. if (request == NULL)
  1654. return -ENOMEM;
  1655. seqno = i915_gem_next_request_seqno(ring);
  1656. /* Record the position of the start of the request so that
  1657. * should we detect the updated seqno part-way through the
  1658. * GPU processing the request, we never over-estimate the
  1659. * position of the head.
  1660. */
  1661. request_ring_position = intel_ring_get_tail(ring);
  1662. ret = ring->add_request(ring, &seqno);
  1663. if (ret) {
  1664. kfree(request);
  1665. return ret;
  1666. }
  1667. trace_i915_gem_request_add(ring, seqno);
  1668. request->seqno = seqno;
  1669. request->ring = ring;
  1670. request->tail = request_ring_position;
  1671. request->emitted_jiffies = jiffies;
  1672. was_empty = list_empty(&ring->request_list);
  1673. list_add_tail(&request->list, &ring->request_list);
  1674. request->file_priv = NULL;
  1675. if (file) {
  1676. struct drm_i915_file_private *file_priv = file->driver_priv;
  1677. spin_lock(&file_priv->mm.lock);
  1678. request->file_priv = file_priv;
  1679. list_add_tail(&request->client_list,
  1680. &file_priv->mm.request_list);
  1681. spin_unlock(&file_priv->mm.lock);
  1682. }
  1683. ring->outstanding_lazy_request = 0;
  1684. if (!dev_priv->mm.suspended) {
  1685. if (i915_enable_hangcheck) {
  1686. mod_timer(&dev_priv->hangcheck_timer,
  1687. jiffies +
  1688. msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD));
  1689. }
  1690. if (was_empty) {
  1691. queue_delayed_work(dev_priv->wq,
  1692. &dev_priv->mm.retire_work, HZ);
  1693. intel_mark_busy(dev_priv->dev);
  1694. }
  1695. }
  1696. if (out_seqno)
  1697. *out_seqno = seqno;
  1698. return 0;
  1699. }
  1700. static inline void
  1701. i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
  1702. {
  1703. struct drm_i915_file_private *file_priv = request->file_priv;
  1704. if (!file_priv)
  1705. return;
  1706. spin_lock(&file_priv->mm.lock);
  1707. if (request->file_priv) {
  1708. list_del(&request->client_list);
  1709. request->file_priv = NULL;
  1710. }
  1711. spin_unlock(&file_priv->mm.lock);
  1712. }
  1713. static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
  1714. struct intel_ring_buffer *ring)
  1715. {
  1716. while (!list_empty(&ring->request_list)) {
  1717. struct drm_i915_gem_request *request;
  1718. request = list_first_entry(&ring->request_list,
  1719. struct drm_i915_gem_request,
  1720. list);
  1721. list_del(&request->list);
  1722. i915_gem_request_remove_from_client(request);
  1723. kfree(request);
  1724. }
  1725. while (!list_empty(&ring->active_list)) {
  1726. struct drm_i915_gem_object *obj;
  1727. obj = list_first_entry(&ring->active_list,
  1728. struct drm_i915_gem_object,
  1729. ring_list);
  1730. i915_gem_object_move_to_inactive(obj);
  1731. }
  1732. }
  1733. static void i915_gem_reset_fences(struct drm_device *dev)
  1734. {
  1735. struct drm_i915_private *dev_priv = dev->dev_private;
  1736. int i;
  1737. for (i = 0; i < dev_priv->num_fence_regs; i++) {
  1738. struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
  1739. i915_gem_write_fence(dev, i, NULL);
  1740. if (reg->obj)
  1741. i915_gem_object_fence_lost(reg->obj);
  1742. reg->pin_count = 0;
  1743. reg->obj = NULL;
  1744. INIT_LIST_HEAD(&reg->lru_list);
  1745. }
  1746. INIT_LIST_HEAD(&dev_priv->mm.fence_list);
  1747. }
  1748. void i915_gem_reset(struct drm_device *dev)
  1749. {
  1750. struct drm_i915_private *dev_priv = dev->dev_private;
  1751. struct drm_i915_gem_object *obj;
  1752. struct intel_ring_buffer *ring;
  1753. int i;
  1754. for_each_ring(ring, dev_priv, i)
  1755. i915_gem_reset_ring_lists(dev_priv, ring);
  1756. /* Move everything out of the GPU domains to ensure we do any
  1757. * necessary invalidation upon reuse.
  1758. */
  1759. list_for_each_entry(obj,
  1760. &dev_priv->mm.inactive_list,
  1761. mm_list)
  1762. {
  1763. obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
  1764. }
  1765. /* The fence registers are invalidated so clear them out */
  1766. i915_gem_reset_fences(dev);
  1767. }
  1768. /**
  1769. * This function clears the request list as sequence numbers are passed.
  1770. */
  1771. void
  1772. i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
  1773. {
  1774. uint32_t seqno;
  1775. int i;
  1776. if (list_empty(&ring->request_list))
  1777. return;
  1778. WARN_ON(i915_verify_lists(ring->dev));
  1779. seqno = ring->get_seqno(ring, true);
  1780. for (i = 0; i < ARRAY_SIZE(ring->sync_seqno); i++)
  1781. if (seqno >= ring->sync_seqno[i])
  1782. ring->sync_seqno[i] = 0;
  1783. while (!list_empty(&ring->request_list)) {
  1784. struct drm_i915_gem_request *request;
  1785. request = list_first_entry(&ring->request_list,
  1786. struct drm_i915_gem_request,
  1787. list);
  1788. if (!i915_seqno_passed(seqno, request->seqno))
  1789. break;
  1790. trace_i915_gem_request_retire(ring, request->seqno);
  1791. /* We know the GPU must have read the request to have
  1792. * sent us the seqno + interrupt, so use the position
  1793. * of tail of the request to update the last known position
  1794. * of the GPU head.
  1795. */
  1796. ring->last_retired_head = request->tail;
  1797. list_del(&request->list);
  1798. i915_gem_request_remove_from_client(request);
  1799. kfree(request);
  1800. }
  1801. /* Move any buffers on the active list that are no longer referenced
  1802. * by the ringbuffer to the flushing/inactive lists as appropriate.
  1803. */
  1804. while (!list_empty(&ring->active_list)) {
  1805. struct drm_i915_gem_object *obj;
  1806. obj = list_first_entry(&ring->active_list,
  1807. struct drm_i915_gem_object,
  1808. ring_list);
  1809. if (!i915_seqno_passed(seqno, obj->last_read_seqno))
  1810. break;
  1811. i915_gem_object_move_to_inactive(obj);
  1812. }
  1813. if (unlikely(ring->trace_irq_seqno &&
  1814. i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
  1815. ring->irq_put(ring);
  1816. ring->trace_irq_seqno = 0;
  1817. }
  1818. WARN_ON(i915_verify_lists(ring->dev));
  1819. }
  1820. void
  1821. i915_gem_retire_requests(struct drm_device *dev)
  1822. {
  1823. drm_i915_private_t *dev_priv = dev->dev_private;
  1824. struct intel_ring_buffer *ring;
  1825. int i;
  1826. for_each_ring(ring, dev_priv, i)
  1827. i915_gem_retire_requests_ring(ring);
  1828. }
  1829. static void
  1830. i915_gem_retire_work_handler(struct work_struct *work)
  1831. {
  1832. drm_i915_private_t *dev_priv;
  1833. struct drm_device *dev;
  1834. struct intel_ring_buffer *ring;
  1835. bool idle;
  1836. int i;
  1837. dev_priv = container_of(work, drm_i915_private_t,
  1838. mm.retire_work.work);
  1839. dev = dev_priv->dev;
  1840. /* Come back later if the device is busy... */
  1841. if (!mutex_trylock(&dev->struct_mutex)) {
  1842. queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
  1843. return;
  1844. }
  1845. i915_gem_retire_requests(dev);
  1846. /* Send a periodic flush down the ring so we don't hold onto GEM
  1847. * objects indefinitely.
  1848. */
  1849. idle = true;
  1850. for_each_ring(ring, dev_priv, i) {
  1851. if (ring->gpu_caches_dirty)
  1852. i915_add_request(ring, NULL, NULL);
  1853. idle &= list_empty(&ring->request_list);
  1854. }
  1855. if (!dev_priv->mm.suspended && !idle)
  1856. queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
  1857. if (idle)
  1858. intel_mark_idle(dev);
  1859. mutex_unlock(&dev->struct_mutex);
  1860. }
  1861. /**
  1862. * Ensures that an object will eventually get non-busy by flushing any required
  1863. * write domains, emitting any outstanding lazy request and retiring and
  1864. * completed requests.
  1865. */
  1866. static int
  1867. i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
  1868. {
  1869. int ret;
  1870. if (obj->active) {
  1871. ret = i915_gem_check_olr(obj->ring, obj->last_read_seqno);
  1872. if (ret)
  1873. return ret;
  1874. i915_gem_retire_requests_ring(obj->ring);
  1875. }
  1876. return 0;
  1877. }
  1878. /**
  1879. * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
  1880. * @DRM_IOCTL_ARGS: standard ioctl arguments
  1881. *
  1882. * Returns 0 if successful, else an error is returned with the remaining time in
  1883. * the timeout parameter.
  1884. * -ETIME: object is still busy after timeout
  1885. * -ERESTARTSYS: signal interrupted the wait
  1886. * -ENONENT: object doesn't exist
  1887. * Also possible, but rare:
  1888. * -EAGAIN: GPU wedged
  1889. * -ENOMEM: damn
  1890. * -ENODEV: Internal IRQ fail
  1891. * -E?: The add request failed
  1892. *
  1893. * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
  1894. * non-zero timeout parameter the wait ioctl will wait for the given number of
  1895. * nanoseconds on an object becoming unbusy. Since the wait itself does so
  1896. * without holding struct_mutex the object may become re-busied before this
  1897. * function completes. A similar but shorter * race condition exists in the busy
  1898. * ioctl
  1899. */
  1900. int
  1901. i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
  1902. {
  1903. struct drm_i915_gem_wait *args = data;
  1904. struct drm_i915_gem_object *obj;
  1905. struct intel_ring_buffer *ring = NULL;
  1906. struct timespec timeout_stack, *timeout = NULL;
  1907. u32 seqno = 0;
  1908. int ret = 0;
  1909. if (args->timeout_ns >= 0) {
  1910. timeout_stack = ns_to_timespec(args->timeout_ns);
  1911. timeout = &timeout_stack;
  1912. }
  1913. ret = i915_mutex_lock_interruptible(dev);
  1914. if (ret)
  1915. return ret;
  1916. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
  1917. if (&obj->base == NULL) {
  1918. mutex_unlock(&dev->struct_mutex);
  1919. return -ENOENT;
  1920. }
  1921. /* Need to make sure the object gets inactive eventually. */
  1922. ret = i915_gem_object_flush_active(obj);
  1923. if (ret)
  1924. goto out;
  1925. if (obj->active) {
  1926. seqno = obj->last_read_seqno;
  1927. ring = obj->ring;
  1928. }
  1929. if (seqno == 0)
  1930. goto out;
  1931. /* Do this after OLR check to make sure we make forward progress polling
  1932. * on this IOCTL with a 0 timeout (like busy ioctl)
  1933. */
  1934. if (!args->timeout_ns) {
  1935. ret = -ETIME;
  1936. goto out;
  1937. }
  1938. drm_gem_object_unreference(&obj->base);
  1939. mutex_unlock(&dev->struct_mutex);
  1940. ret = __wait_seqno(ring, seqno, true, timeout);
  1941. if (timeout) {
  1942. WARN_ON(!timespec_valid(timeout));
  1943. args->timeout_ns = timespec_to_ns(timeout);
  1944. }
  1945. return ret;
  1946. out:
  1947. drm_gem_object_unreference(&obj->base);
  1948. mutex_unlock(&dev->struct_mutex);
  1949. return ret;
  1950. }
  1951. /**
  1952. * i915_gem_object_sync - sync an object to a ring.
  1953. *
  1954. * @obj: object which may be in use on another ring.
  1955. * @to: ring we wish to use the object on. May be NULL.
  1956. *
  1957. * This code is meant to abstract object synchronization with the GPU.
  1958. * Calling with NULL implies synchronizing the object with the CPU
  1959. * rather than a particular GPU ring.
  1960. *
  1961. * Returns 0 if successful, else propagates up the lower layer error.
  1962. */
  1963. int
  1964. i915_gem_object_sync(struct drm_i915_gem_object *obj,
  1965. struct intel_ring_buffer *to)
  1966. {
  1967. struct intel_ring_buffer *from = obj->ring;
  1968. u32 seqno;
  1969. int ret, idx;
  1970. if (from == NULL || to == from)
  1971. return 0;
  1972. if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
  1973. return i915_gem_object_wait_rendering(obj, false);
  1974. idx = intel_ring_sync_index(from, to);
  1975. seqno = obj->last_read_seqno;
  1976. if (seqno <= from->sync_seqno[idx])
  1977. return 0;
  1978. ret = i915_gem_check_olr(obj->ring, seqno);
  1979. if (ret)
  1980. return ret;
  1981. ret = to->sync_to(to, from, seqno);
  1982. if (!ret)
  1983. from->sync_seqno[idx] = seqno;
  1984. return ret;
  1985. }
  1986. static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
  1987. {
  1988. u32 old_write_domain, old_read_domains;
  1989. /* Act a barrier for all accesses through the GTT */
  1990. mb();
  1991. /* Force a pagefault for domain tracking on next user access */
  1992. i915_gem_release_mmap(obj);
  1993. if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
  1994. return;
  1995. old_read_domains = obj->base.read_domains;
  1996. old_write_domain = obj->base.write_domain;
  1997. obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
  1998. obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
  1999. trace_i915_gem_object_change_domain(obj,
  2000. old_read_domains,
  2001. old_write_domain);
  2002. }
  2003. /**
  2004. * Unbinds an object from the GTT aperture.
  2005. */
  2006. int
  2007. i915_gem_object_unbind(struct drm_i915_gem_object *obj)
  2008. {
  2009. drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
  2010. int ret = 0;
  2011. if (obj->gtt_space == NULL)
  2012. return 0;
  2013. if (obj->pin_count)
  2014. return -EBUSY;
  2015. BUG_ON(obj->pages == NULL);
  2016. ret = i915_gem_object_finish_gpu(obj);
  2017. if (ret)
  2018. return ret;
  2019. /* Continue on if we fail due to EIO, the GPU is hung so we
  2020. * should be safe and we need to cleanup or else we might
  2021. * cause memory corruption through use-after-free.
  2022. */
  2023. i915_gem_object_finish_gtt(obj);
  2024. /* release the fence reg _after_ flushing */
  2025. ret = i915_gem_object_put_fence(obj);
  2026. if (ret)
  2027. return ret;
  2028. trace_i915_gem_object_unbind(obj);
  2029. if (obj->has_global_gtt_mapping)
  2030. i915_gem_gtt_unbind_object(obj);
  2031. if (obj->has_aliasing_ppgtt_mapping) {
  2032. i915_ppgtt_unbind_object(dev_priv->mm.aliasing_ppgtt, obj);
  2033. obj->has_aliasing_ppgtt_mapping = 0;
  2034. }
  2035. i915_gem_gtt_finish_object(obj);
  2036. list_del(&obj->mm_list);
  2037. list_move_tail(&obj->gtt_list, &dev_priv->mm.unbound_list);
  2038. /* Avoid an unnecessary call to unbind on rebind. */
  2039. obj->map_and_fenceable = true;
  2040. drm_mm_put_block(obj->gtt_space);
  2041. obj->gtt_space = NULL;
  2042. obj->gtt_offset = 0;
  2043. return 0;
  2044. }
  2045. static int i915_ring_idle(struct intel_ring_buffer *ring)
  2046. {
  2047. if (list_empty(&ring->active_list))
  2048. return 0;
  2049. return i915_wait_seqno(ring, i915_gem_next_request_seqno(ring));
  2050. }
  2051. int i915_gpu_idle(struct drm_device *dev)
  2052. {
  2053. drm_i915_private_t *dev_priv = dev->dev_private;
  2054. struct intel_ring_buffer *ring;
  2055. int ret, i;
  2056. /* Flush everything onto the inactive list. */
  2057. for_each_ring(ring, dev_priv, i) {
  2058. ret = i915_switch_context(ring, NULL, DEFAULT_CONTEXT_ID);
  2059. if (ret)
  2060. return ret;
  2061. ret = i915_ring_idle(ring);
  2062. if (ret)
  2063. return ret;
  2064. }
  2065. return 0;
  2066. }
  2067. static void sandybridge_write_fence_reg(struct drm_device *dev, int reg,
  2068. struct drm_i915_gem_object *obj)
  2069. {
  2070. drm_i915_private_t *dev_priv = dev->dev_private;
  2071. uint64_t val;
  2072. if (obj) {
  2073. u32 size = obj->gtt_space->size;
  2074. val = (uint64_t)((obj->gtt_offset + size - 4096) &
  2075. 0xfffff000) << 32;
  2076. val |= obj->gtt_offset & 0xfffff000;
  2077. val |= (uint64_t)((obj->stride / 128) - 1) <<
  2078. SANDYBRIDGE_FENCE_PITCH_SHIFT;
  2079. if (obj->tiling_mode == I915_TILING_Y)
  2080. val |= 1 << I965_FENCE_TILING_Y_SHIFT;
  2081. val |= I965_FENCE_REG_VALID;
  2082. } else
  2083. val = 0;
  2084. I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + reg * 8, val);
  2085. POSTING_READ(FENCE_REG_SANDYBRIDGE_0 + reg * 8);
  2086. }
  2087. static void i965_write_fence_reg(struct drm_device *dev, int reg,
  2088. struct drm_i915_gem_object *obj)
  2089. {
  2090. drm_i915_private_t *dev_priv = dev->dev_private;
  2091. uint64_t val;
  2092. if (obj) {
  2093. u32 size = obj->gtt_space->size;
  2094. val = (uint64_t)((obj->gtt_offset + size - 4096) &
  2095. 0xfffff000) << 32;
  2096. val |= obj->gtt_offset & 0xfffff000;
  2097. val |= ((obj->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
  2098. if (obj->tiling_mode == I915_TILING_Y)
  2099. val |= 1 << I965_FENCE_TILING_Y_SHIFT;
  2100. val |= I965_FENCE_REG_VALID;
  2101. } else
  2102. val = 0;
  2103. I915_WRITE64(FENCE_REG_965_0 + reg * 8, val);
  2104. POSTING_READ(FENCE_REG_965_0 + reg * 8);
  2105. }
  2106. static void i915_write_fence_reg(struct drm_device *dev, int reg,
  2107. struct drm_i915_gem_object *obj)
  2108. {
  2109. drm_i915_private_t *dev_priv = dev->dev_private;
  2110. u32 val;
  2111. if (obj) {
  2112. u32 size = obj->gtt_space->size;
  2113. int pitch_val;
  2114. int tile_width;
  2115. WARN((obj->gtt_offset & ~I915_FENCE_START_MASK) ||
  2116. (size & -size) != size ||
  2117. (obj->gtt_offset & (size - 1)),
  2118. "object 0x%08x [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
  2119. obj->gtt_offset, obj->map_and_fenceable, size);
  2120. if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
  2121. tile_width = 128;
  2122. else
  2123. tile_width = 512;
  2124. /* Note: pitch better be a power of two tile widths */
  2125. pitch_val = obj->stride / tile_width;
  2126. pitch_val = ffs(pitch_val) - 1;
  2127. val = obj->gtt_offset;
  2128. if (obj->tiling_mode == I915_TILING_Y)
  2129. val |= 1 << I830_FENCE_TILING_Y_SHIFT;
  2130. val |= I915_FENCE_SIZE_BITS(size);
  2131. val |= pitch_val << I830_FENCE_PITCH_SHIFT;
  2132. val |= I830_FENCE_REG_VALID;
  2133. } else
  2134. val = 0;
  2135. if (reg < 8)
  2136. reg = FENCE_REG_830_0 + reg * 4;
  2137. else
  2138. reg = FENCE_REG_945_8 + (reg - 8) * 4;
  2139. I915_WRITE(reg, val);
  2140. POSTING_READ(reg);
  2141. }
  2142. static void i830_write_fence_reg(struct drm_device *dev, int reg,
  2143. struct drm_i915_gem_object *obj)
  2144. {
  2145. drm_i915_private_t *dev_priv = dev->dev_private;
  2146. uint32_t val;
  2147. if (obj) {
  2148. u32 size = obj->gtt_space->size;
  2149. uint32_t pitch_val;
  2150. WARN((obj->gtt_offset & ~I830_FENCE_START_MASK) ||
  2151. (size & -size) != size ||
  2152. (obj->gtt_offset & (size - 1)),
  2153. "object 0x%08x not 512K or pot-size 0x%08x aligned\n",
  2154. obj->gtt_offset, size);
  2155. pitch_val = obj->stride / 128;
  2156. pitch_val = ffs(pitch_val) - 1;
  2157. val = obj->gtt_offset;
  2158. if (obj->tiling_mode == I915_TILING_Y)
  2159. val |= 1 << I830_FENCE_TILING_Y_SHIFT;
  2160. val |= I830_FENCE_SIZE_BITS(size);
  2161. val |= pitch_val << I830_FENCE_PITCH_SHIFT;
  2162. val |= I830_FENCE_REG_VALID;
  2163. } else
  2164. val = 0;
  2165. I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
  2166. POSTING_READ(FENCE_REG_830_0 + reg * 4);
  2167. }
  2168. static void i915_gem_write_fence(struct drm_device *dev, int reg,
  2169. struct drm_i915_gem_object *obj)
  2170. {
  2171. switch (INTEL_INFO(dev)->gen) {
  2172. case 7:
  2173. case 6: sandybridge_write_fence_reg(dev, reg, obj); break;
  2174. case 5:
  2175. case 4: i965_write_fence_reg(dev, reg, obj); break;
  2176. case 3: i915_write_fence_reg(dev, reg, obj); break;
  2177. case 2: i830_write_fence_reg(dev, reg, obj); break;
  2178. default: break;
  2179. }
  2180. }
  2181. static inline int fence_number(struct drm_i915_private *dev_priv,
  2182. struct drm_i915_fence_reg *fence)
  2183. {
  2184. return fence - dev_priv->fence_regs;
  2185. }
  2186. static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
  2187. struct drm_i915_fence_reg *fence,
  2188. bool enable)
  2189. {
  2190. struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
  2191. int reg = fence_number(dev_priv, fence);
  2192. i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
  2193. if (enable) {
  2194. obj->fence_reg = reg;
  2195. fence->obj = obj;
  2196. list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
  2197. } else {
  2198. obj->fence_reg = I915_FENCE_REG_NONE;
  2199. fence->obj = NULL;
  2200. list_del_init(&fence->lru_list);
  2201. }
  2202. }
  2203. static int
  2204. i915_gem_object_flush_fence(struct drm_i915_gem_object *obj)
  2205. {
  2206. if (obj->last_fenced_seqno) {
  2207. int ret = i915_wait_seqno(obj->ring, obj->last_fenced_seqno);
  2208. if (ret)
  2209. return ret;
  2210. obj->last_fenced_seqno = 0;
  2211. }
  2212. /* Ensure that all CPU reads are completed before installing a fence
  2213. * and all writes before removing the fence.
  2214. */
  2215. if (obj->base.read_domains & I915_GEM_DOMAIN_GTT)
  2216. mb();
  2217. obj->fenced_gpu_access = false;
  2218. return 0;
  2219. }
  2220. int
  2221. i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
  2222. {
  2223. struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
  2224. int ret;
  2225. ret = i915_gem_object_flush_fence(obj);
  2226. if (ret)
  2227. return ret;
  2228. if (obj->fence_reg == I915_FENCE_REG_NONE)
  2229. return 0;
  2230. i915_gem_object_update_fence(obj,
  2231. &dev_priv->fence_regs[obj->fence_reg],
  2232. false);
  2233. i915_gem_object_fence_lost(obj);
  2234. return 0;
  2235. }
  2236. static struct drm_i915_fence_reg *
  2237. i915_find_fence_reg(struct drm_device *dev)
  2238. {
  2239. struct drm_i915_private *dev_priv = dev->dev_private;
  2240. struct drm_i915_fence_reg *reg, *avail;
  2241. int i;
  2242. /* First try to find a free reg */
  2243. avail = NULL;
  2244. for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
  2245. reg = &dev_priv->fence_regs[i];
  2246. if (!reg->obj)
  2247. return reg;
  2248. if (!reg->pin_count)
  2249. avail = reg;
  2250. }
  2251. if (avail == NULL)
  2252. return NULL;
  2253. /* None available, try to steal one or wait for a user to finish */
  2254. list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
  2255. if (reg->pin_count)
  2256. continue;
  2257. return reg;
  2258. }
  2259. return NULL;
  2260. }
  2261. /**
  2262. * i915_gem_object_get_fence - set up fencing for an object
  2263. * @obj: object to map through a fence reg
  2264. *
  2265. * When mapping objects through the GTT, userspace wants to be able to write
  2266. * to them without having to worry about swizzling if the object is tiled.
  2267. * This function walks the fence regs looking for a free one for @obj,
  2268. * stealing one if it can't find any.
  2269. *
  2270. * It then sets up the reg based on the object's properties: address, pitch
  2271. * and tiling format.
  2272. *
  2273. * For an untiled surface, this removes any existing fence.
  2274. */
  2275. int
  2276. i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
  2277. {
  2278. struct drm_device *dev = obj->base.dev;
  2279. struct drm_i915_private *dev_priv = dev->dev_private;
  2280. bool enable = obj->tiling_mode != I915_TILING_NONE;
  2281. struct drm_i915_fence_reg *reg;
  2282. int ret;
  2283. /* Have we updated the tiling parameters upon the object and so
  2284. * will need to serialise the write to the associated fence register?
  2285. */
  2286. if (obj->fence_dirty) {
  2287. ret = i915_gem_object_flush_fence(obj);
  2288. if (ret)
  2289. return ret;
  2290. }
  2291. /* Just update our place in the LRU if our fence is getting reused. */
  2292. if (obj->fence_reg != I915_FENCE_REG_NONE) {
  2293. reg = &dev_priv->fence_regs[obj->fence_reg];
  2294. if (!obj->fence_dirty) {
  2295. list_move_tail(&reg->lru_list,
  2296. &dev_priv->mm.fence_list);
  2297. return 0;
  2298. }
  2299. } else if (enable) {
  2300. reg = i915_find_fence_reg(dev);
  2301. if (reg == NULL)
  2302. return -EDEADLK;
  2303. if (reg->obj) {
  2304. struct drm_i915_gem_object *old = reg->obj;
  2305. ret = i915_gem_object_flush_fence(old);
  2306. if (ret)
  2307. return ret;
  2308. i915_gem_object_fence_lost(old);
  2309. }
  2310. } else
  2311. return 0;
  2312. i915_gem_object_update_fence(obj, reg, enable);
  2313. obj->fence_dirty = false;
  2314. return 0;
  2315. }
  2316. static bool i915_gem_valid_gtt_space(struct drm_device *dev,
  2317. struct drm_mm_node *gtt_space,
  2318. unsigned long cache_level)
  2319. {
  2320. struct drm_mm_node *other;
  2321. /* On non-LLC machines we have to be careful when putting differing
  2322. * types of snoopable memory together to avoid the prefetcher
  2323. * crossing memory domains and dieing.
  2324. */
  2325. if (HAS_LLC(dev))
  2326. return true;
  2327. if (gtt_space == NULL)
  2328. return true;
  2329. if (list_empty(&gtt_space->node_list))
  2330. return true;
  2331. other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
  2332. if (other->allocated && !other->hole_follows && other->color != cache_level)
  2333. return false;
  2334. other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
  2335. if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
  2336. return false;
  2337. return true;
  2338. }
  2339. static void i915_gem_verify_gtt(struct drm_device *dev)
  2340. {
  2341. #if WATCH_GTT
  2342. struct drm_i915_private *dev_priv = dev->dev_private;
  2343. struct drm_i915_gem_object *obj;
  2344. int err = 0;
  2345. list_for_each_entry(obj, &dev_priv->mm.gtt_list, gtt_list) {
  2346. if (obj->gtt_space == NULL) {
  2347. printk(KERN_ERR "object found on GTT list with no space reserved\n");
  2348. err++;
  2349. continue;
  2350. }
  2351. if (obj->cache_level != obj->gtt_space->color) {
  2352. printk(KERN_ERR "object reserved space [%08lx, %08lx] with wrong color, cache_level=%x, color=%lx\n",
  2353. obj->gtt_space->start,
  2354. obj->gtt_space->start + obj->gtt_space->size,
  2355. obj->cache_level,
  2356. obj->gtt_space->color);
  2357. err++;
  2358. continue;
  2359. }
  2360. if (!i915_gem_valid_gtt_space(dev,
  2361. obj->gtt_space,
  2362. obj->cache_level)) {
  2363. printk(KERN_ERR "invalid GTT space found at [%08lx, %08lx] - color=%x\n",
  2364. obj->gtt_space->start,
  2365. obj->gtt_space->start + obj->gtt_space->size,
  2366. obj->cache_level);
  2367. err++;
  2368. continue;
  2369. }
  2370. }
  2371. WARN_ON(err);
  2372. #endif
  2373. }
  2374. /**
  2375. * Finds free space in the GTT aperture and binds the object there.
  2376. */
  2377. static int
  2378. i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
  2379. unsigned alignment,
  2380. bool map_and_fenceable,
  2381. bool nonblocking)
  2382. {
  2383. struct drm_device *dev = obj->base.dev;
  2384. drm_i915_private_t *dev_priv = dev->dev_private;
  2385. struct drm_mm_node *free_space;
  2386. u32 size, fence_size, fence_alignment, unfenced_alignment;
  2387. bool mappable, fenceable;
  2388. int ret;
  2389. if (obj->madv != I915_MADV_WILLNEED) {
  2390. DRM_ERROR("Attempting to bind a purgeable object\n");
  2391. return -EINVAL;
  2392. }
  2393. fence_size = i915_gem_get_gtt_size(dev,
  2394. obj->base.size,
  2395. obj->tiling_mode);
  2396. fence_alignment = i915_gem_get_gtt_alignment(dev,
  2397. obj->base.size,
  2398. obj->tiling_mode);
  2399. unfenced_alignment =
  2400. i915_gem_get_unfenced_gtt_alignment(dev,
  2401. obj->base.size,
  2402. obj->tiling_mode);
  2403. if (alignment == 0)
  2404. alignment = map_and_fenceable ? fence_alignment :
  2405. unfenced_alignment;
  2406. if (map_and_fenceable && alignment & (fence_alignment - 1)) {
  2407. DRM_ERROR("Invalid object alignment requested %u\n", alignment);
  2408. return -EINVAL;
  2409. }
  2410. size = map_and_fenceable ? fence_size : obj->base.size;
  2411. /* If the object is bigger than the entire aperture, reject it early
  2412. * before evicting everything in a vain attempt to find space.
  2413. */
  2414. if (obj->base.size >
  2415. (map_and_fenceable ? dev_priv->mm.gtt_mappable_end : dev_priv->mm.gtt_total)) {
  2416. DRM_ERROR("Attempting to bind an object larger than the aperture\n");
  2417. return -E2BIG;
  2418. }
  2419. ret = i915_gem_object_get_pages(obj);
  2420. if (ret)
  2421. return ret;
  2422. search_free:
  2423. if (map_and_fenceable)
  2424. free_space =
  2425. drm_mm_search_free_in_range_color(&dev_priv->mm.gtt_space,
  2426. size, alignment, obj->cache_level,
  2427. 0, dev_priv->mm.gtt_mappable_end,
  2428. false);
  2429. else
  2430. free_space = drm_mm_search_free_color(&dev_priv->mm.gtt_space,
  2431. size, alignment, obj->cache_level,
  2432. false);
  2433. if (free_space != NULL) {
  2434. if (map_and_fenceable)
  2435. obj->gtt_space =
  2436. drm_mm_get_block_range_generic(free_space,
  2437. size, alignment, obj->cache_level,
  2438. 0, dev_priv->mm.gtt_mappable_end,
  2439. false);
  2440. else
  2441. obj->gtt_space =
  2442. drm_mm_get_block_generic(free_space,
  2443. size, alignment, obj->cache_level,
  2444. false);
  2445. }
  2446. if (obj->gtt_space == NULL) {
  2447. ret = i915_gem_evict_something(dev, size, alignment,
  2448. obj->cache_level,
  2449. map_and_fenceable,
  2450. nonblocking);
  2451. if (ret)
  2452. return ret;
  2453. goto search_free;
  2454. }
  2455. if (WARN_ON(!i915_gem_valid_gtt_space(dev,
  2456. obj->gtt_space,
  2457. obj->cache_level))) {
  2458. drm_mm_put_block(obj->gtt_space);
  2459. obj->gtt_space = NULL;
  2460. return -EINVAL;
  2461. }
  2462. ret = i915_gem_gtt_prepare_object(obj);
  2463. if (ret) {
  2464. drm_mm_put_block(obj->gtt_space);
  2465. obj->gtt_space = NULL;
  2466. return ret;
  2467. }
  2468. if (!dev_priv->mm.aliasing_ppgtt)
  2469. i915_gem_gtt_bind_object(obj, obj->cache_level);
  2470. list_move_tail(&obj->gtt_list, &dev_priv->mm.bound_list);
  2471. list_add_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
  2472. obj->gtt_offset = obj->gtt_space->start;
  2473. fenceable =
  2474. obj->gtt_space->size == fence_size &&
  2475. (obj->gtt_space->start & (fence_alignment - 1)) == 0;
  2476. mappable =
  2477. obj->gtt_offset + obj->base.size <= dev_priv->mm.gtt_mappable_end;
  2478. obj->map_and_fenceable = mappable && fenceable;
  2479. trace_i915_gem_object_bind(obj, map_and_fenceable);
  2480. i915_gem_verify_gtt(dev);
  2481. return 0;
  2482. }
  2483. void
  2484. i915_gem_clflush_object(struct drm_i915_gem_object *obj)
  2485. {
  2486. /* If we don't have a page list set up, then we're not pinned
  2487. * to GPU, and we can ignore the cache flush because it'll happen
  2488. * again at bind time.
  2489. */
  2490. if (obj->pages == NULL)
  2491. return;
  2492. /* If the GPU is snooping the contents of the CPU cache,
  2493. * we do not need to manually clear the CPU cache lines. However,
  2494. * the caches are only snooped when the render cache is
  2495. * flushed/invalidated. As we always have to emit invalidations
  2496. * and flushes when moving into and out of the RENDER domain, correct
  2497. * snooping behaviour occurs naturally as the result of our domain
  2498. * tracking.
  2499. */
  2500. if (obj->cache_level != I915_CACHE_NONE)
  2501. return;
  2502. trace_i915_gem_object_clflush(obj);
  2503. drm_clflush_sg(obj->pages);
  2504. }
  2505. /** Flushes the GTT write domain for the object if it's dirty. */
  2506. static void
  2507. i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
  2508. {
  2509. uint32_t old_write_domain;
  2510. if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
  2511. return;
  2512. /* No actual flushing is required for the GTT write domain. Writes
  2513. * to it immediately go to main memory as far as we know, so there's
  2514. * no chipset flush. It also doesn't land in render cache.
  2515. *
  2516. * However, we do have to enforce the order so that all writes through
  2517. * the GTT land before any writes to the device, such as updates to
  2518. * the GATT itself.
  2519. */
  2520. wmb();
  2521. old_write_domain = obj->base.write_domain;
  2522. obj->base.write_domain = 0;
  2523. trace_i915_gem_object_change_domain(obj,
  2524. obj->base.read_domains,
  2525. old_write_domain);
  2526. }
  2527. /** Flushes the CPU write domain for the object if it's dirty. */
  2528. static void
  2529. i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
  2530. {
  2531. uint32_t old_write_domain;
  2532. if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
  2533. return;
  2534. i915_gem_clflush_object(obj);
  2535. intel_gtt_chipset_flush();
  2536. old_write_domain = obj->base.write_domain;
  2537. obj->base.write_domain = 0;
  2538. trace_i915_gem_object_change_domain(obj,
  2539. obj->base.read_domains,
  2540. old_write_domain);
  2541. }
  2542. /**
  2543. * Moves a single object to the GTT read, and possibly write domain.
  2544. *
  2545. * This function returns when the move is complete, including waiting on
  2546. * flushes to occur.
  2547. */
  2548. int
  2549. i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
  2550. {
  2551. drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
  2552. uint32_t old_write_domain, old_read_domains;
  2553. int ret;
  2554. /* Not valid to be called on unbound objects. */
  2555. if (obj->gtt_space == NULL)
  2556. return -EINVAL;
  2557. if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
  2558. return 0;
  2559. ret = i915_gem_object_wait_rendering(obj, !write);
  2560. if (ret)
  2561. return ret;
  2562. i915_gem_object_flush_cpu_write_domain(obj);
  2563. old_write_domain = obj->base.write_domain;
  2564. old_read_domains = obj->base.read_domains;
  2565. /* It should now be out of any other write domains, and we can update
  2566. * the domain values for our changes.
  2567. */
  2568. BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
  2569. obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
  2570. if (write) {
  2571. obj->base.read_domains = I915_GEM_DOMAIN_GTT;
  2572. obj->base.write_domain = I915_GEM_DOMAIN_GTT;
  2573. obj->dirty = 1;
  2574. }
  2575. trace_i915_gem_object_change_domain(obj,
  2576. old_read_domains,
  2577. old_write_domain);
  2578. /* And bump the LRU for this access */
  2579. if (i915_gem_object_is_inactive(obj))
  2580. list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
  2581. return 0;
  2582. }
  2583. int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
  2584. enum i915_cache_level cache_level)
  2585. {
  2586. struct drm_device *dev = obj->base.dev;
  2587. drm_i915_private_t *dev_priv = dev->dev_private;
  2588. int ret;
  2589. if (obj->cache_level == cache_level)
  2590. return 0;
  2591. if (obj->pin_count) {
  2592. DRM_DEBUG("can not change the cache level of pinned objects\n");
  2593. return -EBUSY;
  2594. }
  2595. if (!i915_gem_valid_gtt_space(dev, obj->gtt_space, cache_level)) {
  2596. ret = i915_gem_object_unbind(obj);
  2597. if (ret)
  2598. return ret;
  2599. }
  2600. if (obj->gtt_space) {
  2601. ret = i915_gem_object_finish_gpu(obj);
  2602. if (ret)
  2603. return ret;
  2604. i915_gem_object_finish_gtt(obj);
  2605. /* Before SandyBridge, you could not use tiling or fence
  2606. * registers with snooped memory, so relinquish any fences
  2607. * currently pointing to our region in the aperture.
  2608. */
  2609. if (INTEL_INFO(dev)->gen < 6) {
  2610. ret = i915_gem_object_put_fence(obj);
  2611. if (ret)
  2612. return ret;
  2613. }
  2614. if (obj->has_global_gtt_mapping)
  2615. i915_gem_gtt_bind_object(obj, cache_level);
  2616. if (obj->has_aliasing_ppgtt_mapping)
  2617. i915_ppgtt_bind_object(dev_priv->mm.aliasing_ppgtt,
  2618. obj, cache_level);
  2619. obj->gtt_space->color = cache_level;
  2620. }
  2621. if (cache_level == I915_CACHE_NONE) {
  2622. u32 old_read_domains, old_write_domain;
  2623. /* If we're coming from LLC cached, then we haven't
  2624. * actually been tracking whether the data is in the
  2625. * CPU cache or not, since we only allow one bit set
  2626. * in obj->write_domain and have been skipping the clflushes.
  2627. * Just set it to the CPU cache for now.
  2628. */
  2629. WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
  2630. WARN_ON(obj->base.read_domains & ~I915_GEM_DOMAIN_CPU);
  2631. old_read_domains = obj->base.read_domains;
  2632. old_write_domain = obj->base.write_domain;
  2633. obj->base.read_domains = I915_GEM_DOMAIN_CPU;
  2634. obj->base.write_domain = I915_GEM_DOMAIN_CPU;
  2635. trace_i915_gem_object_change_domain(obj,
  2636. old_read_domains,
  2637. old_write_domain);
  2638. }
  2639. obj->cache_level = cache_level;
  2640. i915_gem_verify_gtt(dev);
  2641. return 0;
  2642. }
  2643. int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
  2644. struct drm_file *file)
  2645. {
  2646. struct drm_i915_gem_caching *args = data;
  2647. struct drm_i915_gem_object *obj;
  2648. int ret;
  2649. ret = i915_mutex_lock_interruptible(dev);
  2650. if (ret)
  2651. return ret;
  2652. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  2653. if (&obj->base == NULL) {
  2654. ret = -ENOENT;
  2655. goto unlock;
  2656. }
  2657. args->caching = obj->cache_level != I915_CACHE_NONE;
  2658. drm_gem_object_unreference(&obj->base);
  2659. unlock:
  2660. mutex_unlock(&dev->struct_mutex);
  2661. return ret;
  2662. }
  2663. int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
  2664. struct drm_file *file)
  2665. {
  2666. struct drm_i915_gem_caching *args = data;
  2667. struct drm_i915_gem_object *obj;
  2668. enum i915_cache_level level;
  2669. int ret;
  2670. switch (args->caching) {
  2671. case I915_CACHING_NONE:
  2672. level = I915_CACHE_NONE;
  2673. break;
  2674. case I915_CACHING_CACHED:
  2675. level = I915_CACHE_LLC;
  2676. break;
  2677. default:
  2678. return -EINVAL;
  2679. }
  2680. ret = i915_mutex_lock_interruptible(dev);
  2681. if (ret)
  2682. return ret;
  2683. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  2684. if (&obj->base == NULL) {
  2685. ret = -ENOENT;
  2686. goto unlock;
  2687. }
  2688. ret = i915_gem_object_set_cache_level(obj, level);
  2689. drm_gem_object_unreference(&obj->base);
  2690. unlock:
  2691. mutex_unlock(&dev->struct_mutex);
  2692. return ret;
  2693. }
  2694. /*
  2695. * Prepare buffer for display plane (scanout, cursors, etc).
  2696. * Can be called from an uninterruptible phase (modesetting) and allows
  2697. * any flushes to be pipelined (for pageflips).
  2698. */
  2699. int
  2700. i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
  2701. u32 alignment,
  2702. struct intel_ring_buffer *pipelined)
  2703. {
  2704. u32 old_read_domains, old_write_domain;
  2705. int ret;
  2706. if (pipelined != obj->ring) {
  2707. ret = i915_gem_object_sync(obj, pipelined);
  2708. if (ret)
  2709. return ret;
  2710. }
  2711. /* The display engine is not coherent with the LLC cache on gen6. As
  2712. * a result, we make sure that the pinning that is about to occur is
  2713. * done with uncached PTEs. This is lowest common denominator for all
  2714. * chipsets.
  2715. *
  2716. * However for gen6+, we could do better by using the GFDT bit instead
  2717. * of uncaching, which would allow us to flush all the LLC-cached data
  2718. * with that bit in the PTE to main memory with just one PIPE_CONTROL.
  2719. */
  2720. ret = i915_gem_object_set_cache_level(obj, I915_CACHE_NONE);
  2721. if (ret)
  2722. return ret;
  2723. /* As the user may map the buffer once pinned in the display plane
  2724. * (e.g. libkms for the bootup splash), we have to ensure that we
  2725. * always use map_and_fenceable for all scanout buffers.
  2726. */
  2727. ret = i915_gem_object_pin(obj, alignment, true, false);
  2728. if (ret)
  2729. return ret;
  2730. i915_gem_object_flush_cpu_write_domain(obj);
  2731. old_write_domain = obj->base.write_domain;
  2732. old_read_domains = obj->base.read_domains;
  2733. /* It should now be out of any other write domains, and we can update
  2734. * the domain values for our changes.
  2735. */
  2736. obj->base.write_domain = 0;
  2737. obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
  2738. trace_i915_gem_object_change_domain(obj,
  2739. old_read_domains,
  2740. old_write_domain);
  2741. return 0;
  2742. }
  2743. int
  2744. i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
  2745. {
  2746. int ret;
  2747. if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
  2748. return 0;
  2749. ret = i915_gem_object_wait_rendering(obj, false);
  2750. if (ret)
  2751. return ret;
  2752. /* Ensure that we invalidate the GPU's caches and TLBs. */
  2753. obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
  2754. return 0;
  2755. }
  2756. /**
  2757. * Moves a single object to the CPU read, and possibly write domain.
  2758. *
  2759. * This function returns when the move is complete, including waiting on
  2760. * flushes to occur.
  2761. */
  2762. int
  2763. i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
  2764. {
  2765. uint32_t old_write_domain, old_read_domains;
  2766. int ret;
  2767. if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
  2768. return 0;
  2769. ret = i915_gem_object_wait_rendering(obj, !write);
  2770. if (ret)
  2771. return ret;
  2772. i915_gem_object_flush_gtt_write_domain(obj);
  2773. old_write_domain = obj->base.write_domain;
  2774. old_read_domains = obj->base.read_domains;
  2775. /* Flush the CPU cache if it's still invalid. */
  2776. if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
  2777. i915_gem_clflush_object(obj);
  2778. obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
  2779. }
  2780. /* It should now be out of any other write domains, and we can update
  2781. * the domain values for our changes.
  2782. */
  2783. BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
  2784. /* If we're writing through the CPU, then the GPU read domains will
  2785. * need to be invalidated at next use.
  2786. */
  2787. if (write) {
  2788. obj->base.read_domains = I915_GEM_DOMAIN_CPU;
  2789. obj->base.write_domain = I915_GEM_DOMAIN_CPU;
  2790. }
  2791. trace_i915_gem_object_change_domain(obj,
  2792. old_read_domains,
  2793. old_write_domain);
  2794. return 0;
  2795. }
  2796. /* Throttle our rendering by waiting until the ring has completed our requests
  2797. * emitted over 20 msec ago.
  2798. *
  2799. * Note that if we were to use the current jiffies each time around the loop,
  2800. * we wouldn't escape the function with any frames outstanding if the time to
  2801. * render a frame was over 20ms.
  2802. *
  2803. * This should get us reasonable parallelism between CPU and GPU but also
  2804. * relatively low latency when blocking on a particular request to finish.
  2805. */
  2806. static int
  2807. i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
  2808. {
  2809. struct drm_i915_private *dev_priv = dev->dev_private;
  2810. struct drm_i915_file_private *file_priv = file->driver_priv;
  2811. unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
  2812. struct drm_i915_gem_request *request;
  2813. struct intel_ring_buffer *ring = NULL;
  2814. u32 seqno = 0;
  2815. int ret;
  2816. if (atomic_read(&dev_priv->mm.wedged))
  2817. return -EIO;
  2818. spin_lock(&file_priv->mm.lock);
  2819. list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
  2820. if (time_after_eq(request->emitted_jiffies, recent_enough))
  2821. break;
  2822. ring = request->ring;
  2823. seqno = request->seqno;
  2824. }
  2825. spin_unlock(&file_priv->mm.lock);
  2826. if (seqno == 0)
  2827. return 0;
  2828. ret = __wait_seqno(ring, seqno, true, NULL);
  2829. if (ret == 0)
  2830. queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
  2831. return ret;
  2832. }
  2833. int
  2834. i915_gem_object_pin(struct drm_i915_gem_object *obj,
  2835. uint32_t alignment,
  2836. bool map_and_fenceable,
  2837. bool nonblocking)
  2838. {
  2839. int ret;
  2840. if (WARN_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
  2841. return -EBUSY;
  2842. if (obj->gtt_space != NULL) {
  2843. if ((alignment && obj->gtt_offset & (alignment - 1)) ||
  2844. (map_and_fenceable && !obj->map_and_fenceable)) {
  2845. WARN(obj->pin_count,
  2846. "bo is already pinned with incorrect alignment:"
  2847. " offset=%x, req.alignment=%x, req.map_and_fenceable=%d,"
  2848. " obj->map_and_fenceable=%d\n",
  2849. obj->gtt_offset, alignment,
  2850. map_and_fenceable,
  2851. obj->map_and_fenceable);
  2852. ret = i915_gem_object_unbind(obj);
  2853. if (ret)
  2854. return ret;
  2855. }
  2856. }
  2857. if (obj->gtt_space == NULL) {
  2858. ret = i915_gem_object_bind_to_gtt(obj, alignment,
  2859. map_and_fenceable,
  2860. nonblocking);
  2861. if (ret)
  2862. return ret;
  2863. }
  2864. if (!obj->has_global_gtt_mapping && map_and_fenceable)
  2865. i915_gem_gtt_bind_object(obj, obj->cache_level);
  2866. obj->pin_count++;
  2867. obj->pin_mappable |= map_and_fenceable;
  2868. return 0;
  2869. }
  2870. void
  2871. i915_gem_object_unpin(struct drm_i915_gem_object *obj)
  2872. {
  2873. BUG_ON(obj->pin_count == 0);
  2874. BUG_ON(obj->gtt_space == NULL);
  2875. if (--obj->pin_count == 0)
  2876. obj->pin_mappable = false;
  2877. }
  2878. int
  2879. i915_gem_pin_ioctl(struct drm_device *dev, void *data,
  2880. struct drm_file *file)
  2881. {
  2882. struct drm_i915_gem_pin *args = data;
  2883. struct drm_i915_gem_object *obj;
  2884. int ret;
  2885. ret = i915_mutex_lock_interruptible(dev);
  2886. if (ret)
  2887. return ret;
  2888. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  2889. if (&obj->base == NULL) {
  2890. ret = -ENOENT;
  2891. goto unlock;
  2892. }
  2893. if (obj->madv != I915_MADV_WILLNEED) {
  2894. DRM_ERROR("Attempting to pin a purgeable buffer\n");
  2895. ret = -EINVAL;
  2896. goto out;
  2897. }
  2898. if (obj->pin_filp != NULL && obj->pin_filp != file) {
  2899. DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
  2900. args->handle);
  2901. ret = -EINVAL;
  2902. goto out;
  2903. }
  2904. obj->user_pin_count++;
  2905. obj->pin_filp = file;
  2906. if (obj->user_pin_count == 1) {
  2907. ret = i915_gem_object_pin(obj, args->alignment, true, false);
  2908. if (ret)
  2909. goto out;
  2910. }
  2911. /* XXX - flush the CPU caches for pinned objects
  2912. * as the X server doesn't manage domains yet
  2913. */
  2914. i915_gem_object_flush_cpu_write_domain(obj);
  2915. args->offset = obj->gtt_offset;
  2916. out:
  2917. drm_gem_object_unreference(&obj->base);
  2918. unlock:
  2919. mutex_unlock(&dev->struct_mutex);
  2920. return ret;
  2921. }
  2922. int
  2923. i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
  2924. struct drm_file *file)
  2925. {
  2926. struct drm_i915_gem_pin *args = data;
  2927. struct drm_i915_gem_object *obj;
  2928. int ret;
  2929. ret = i915_mutex_lock_interruptible(dev);
  2930. if (ret)
  2931. return ret;
  2932. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  2933. if (&obj->base == NULL) {
  2934. ret = -ENOENT;
  2935. goto unlock;
  2936. }
  2937. if (obj->pin_filp != file) {
  2938. DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
  2939. args->handle);
  2940. ret = -EINVAL;
  2941. goto out;
  2942. }
  2943. obj->user_pin_count--;
  2944. if (obj->user_pin_count == 0) {
  2945. obj->pin_filp = NULL;
  2946. i915_gem_object_unpin(obj);
  2947. }
  2948. out:
  2949. drm_gem_object_unreference(&obj->base);
  2950. unlock:
  2951. mutex_unlock(&dev->struct_mutex);
  2952. return ret;
  2953. }
  2954. int
  2955. i915_gem_busy_ioctl(struct drm_device *dev, void *data,
  2956. struct drm_file *file)
  2957. {
  2958. struct drm_i915_gem_busy *args = data;
  2959. struct drm_i915_gem_object *obj;
  2960. int ret;
  2961. ret = i915_mutex_lock_interruptible(dev);
  2962. if (ret)
  2963. return ret;
  2964. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  2965. if (&obj->base == NULL) {
  2966. ret = -ENOENT;
  2967. goto unlock;
  2968. }
  2969. /* Count all active objects as busy, even if they are currently not used
  2970. * by the gpu. Users of this interface expect objects to eventually
  2971. * become non-busy without any further actions, therefore emit any
  2972. * necessary flushes here.
  2973. */
  2974. ret = i915_gem_object_flush_active(obj);
  2975. args->busy = obj->active;
  2976. if (obj->ring) {
  2977. BUILD_BUG_ON(I915_NUM_RINGS > 16);
  2978. args->busy |= intel_ring_flag(obj->ring) << 16;
  2979. }
  2980. drm_gem_object_unreference(&obj->base);
  2981. unlock:
  2982. mutex_unlock(&dev->struct_mutex);
  2983. return ret;
  2984. }
  2985. int
  2986. i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
  2987. struct drm_file *file_priv)
  2988. {
  2989. return i915_gem_ring_throttle(dev, file_priv);
  2990. }
  2991. int
  2992. i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
  2993. struct drm_file *file_priv)
  2994. {
  2995. struct drm_i915_gem_madvise *args = data;
  2996. struct drm_i915_gem_object *obj;
  2997. int ret;
  2998. switch (args->madv) {
  2999. case I915_MADV_DONTNEED:
  3000. case I915_MADV_WILLNEED:
  3001. break;
  3002. default:
  3003. return -EINVAL;
  3004. }
  3005. ret = i915_mutex_lock_interruptible(dev);
  3006. if (ret)
  3007. return ret;
  3008. obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
  3009. if (&obj->base == NULL) {
  3010. ret = -ENOENT;
  3011. goto unlock;
  3012. }
  3013. if (obj->pin_count) {
  3014. ret = -EINVAL;
  3015. goto out;
  3016. }
  3017. if (obj->madv != __I915_MADV_PURGED)
  3018. obj->madv = args->madv;
  3019. /* if the object is no longer attached, discard its backing storage */
  3020. if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL)
  3021. i915_gem_object_truncate(obj);
  3022. args->retained = obj->madv != __I915_MADV_PURGED;
  3023. out:
  3024. drm_gem_object_unreference(&obj->base);
  3025. unlock:
  3026. mutex_unlock(&dev->struct_mutex);
  3027. return ret;
  3028. }
  3029. void i915_gem_object_init(struct drm_i915_gem_object *obj,
  3030. const struct drm_i915_gem_object_ops *ops)
  3031. {
  3032. INIT_LIST_HEAD(&obj->mm_list);
  3033. INIT_LIST_HEAD(&obj->gtt_list);
  3034. INIT_LIST_HEAD(&obj->ring_list);
  3035. INIT_LIST_HEAD(&obj->exec_list);
  3036. obj->ops = ops;
  3037. obj->fence_reg = I915_FENCE_REG_NONE;
  3038. obj->madv = I915_MADV_WILLNEED;
  3039. /* Avoid an unnecessary call to unbind on the first bind. */
  3040. obj->map_and_fenceable = true;
  3041. i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
  3042. }
  3043. static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
  3044. .get_pages = i915_gem_object_get_pages_gtt,
  3045. .put_pages = i915_gem_object_put_pages_gtt,
  3046. };
  3047. struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
  3048. size_t size)
  3049. {
  3050. struct drm_i915_gem_object *obj;
  3051. struct address_space *mapping;
  3052. u32 mask;
  3053. obj = kzalloc(sizeof(*obj), GFP_KERNEL);
  3054. if (obj == NULL)
  3055. return NULL;
  3056. if (drm_gem_object_init(dev, &obj->base, size) != 0) {
  3057. kfree(obj);
  3058. return NULL;
  3059. }
  3060. mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
  3061. if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
  3062. /* 965gm cannot relocate objects above 4GiB. */
  3063. mask &= ~__GFP_HIGHMEM;
  3064. mask |= __GFP_DMA32;
  3065. }
  3066. mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
  3067. mapping_set_gfp_mask(mapping, mask);
  3068. i915_gem_object_init(obj, &i915_gem_object_ops);
  3069. obj->base.write_domain = I915_GEM_DOMAIN_CPU;
  3070. obj->base.read_domains = I915_GEM_DOMAIN_CPU;
  3071. if (HAS_LLC(dev)) {
  3072. /* On some devices, we can have the GPU use the LLC (the CPU
  3073. * cache) for about a 10% performance improvement
  3074. * compared to uncached. Graphics requests other than
  3075. * display scanout are coherent with the CPU in
  3076. * accessing this cache. This means in this mode we
  3077. * don't need to clflush on the CPU side, and on the
  3078. * GPU side we only need to flush internal caches to
  3079. * get data visible to the CPU.
  3080. *
  3081. * However, we maintain the display planes as UC, and so
  3082. * need to rebind when first used as such.
  3083. */
  3084. obj->cache_level = I915_CACHE_LLC;
  3085. } else
  3086. obj->cache_level = I915_CACHE_NONE;
  3087. return obj;
  3088. }
  3089. int i915_gem_init_object(struct drm_gem_object *obj)
  3090. {
  3091. BUG();
  3092. return 0;
  3093. }
  3094. void i915_gem_free_object(struct drm_gem_object *gem_obj)
  3095. {
  3096. struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
  3097. struct drm_device *dev = obj->base.dev;
  3098. drm_i915_private_t *dev_priv = dev->dev_private;
  3099. trace_i915_gem_object_destroy(obj);
  3100. if (obj->phys_obj)
  3101. i915_gem_detach_phys_object(dev, obj);
  3102. obj->pin_count = 0;
  3103. if (WARN_ON(i915_gem_object_unbind(obj) == -ERESTARTSYS)) {
  3104. bool was_interruptible;
  3105. was_interruptible = dev_priv->mm.interruptible;
  3106. dev_priv->mm.interruptible = false;
  3107. WARN_ON(i915_gem_object_unbind(obj));
  3108. dev_priv->mm.interruptible = was_interruptible;
  3109. }
  3110. obj->pages_pin_count = 0;
  3111. i915_gem_object_put_pages(obj);
  3112. i915_gem_object_free_mmap_offset(obj);
  3113. BUG_ON(obj->pages);
  3114. if (obj->base.import_attach)
  3115. drm_prime_gem_destroy(&obj->base, NULL);
  3116. drm_gem_object_release(&obj->base);
  3117. i915_gem_info_remove_obj(dev_priv, obj->base.size);
  3118. kfree(obj->bit_17);
  3119. kfree(obj);
  3120. }
  3121. int
  3122. i915_gem_idle(struct drm_device *dev)
  3123. {
  3124. drm_i915_private_t *dev_priv = dev->dev_private;
  3125. int ret;
  3126. mutex_lock(&dev->struct_mutex);
  3127. if (dev_priv->mm.suspended) {
  3128. mutex_unlock(&dev->struct_mutex);
  3129. return 0;
  3130. }
  3131. ret = i915_gpu_idle(dev);
  3132. if (ret) {
  3133. mutex_unlock(&dev->struct_mutex);
  3134. return ret;
  3135. }
  3136. i915_gem_retire_requests(dev);
  3137. /* Under UMS, be paranoid and evict. */
  3138. if (!drm_core_check_feature(dev, DRIVER_MODESET))
  3139. i915_gem_evict_everything(dev);
  3140. i915_gem_reset_fences(dev);
  3141. /* Hack! Don't let anybody do execbuf while we don't control the chip.
  3142. * We need to replace this with a semaphore, or something.
  3143. * And not confound mm.suspended!
  3144. */
  3145. dev_priv->mm.suspended = 1;
  3146. del_timer_sync(&dev_priv->hangcheck_timer);
  3147. i915_kernel_lost_context(dev);
  3148. i915_gem_cleanup_ringbuffer(dev);
  3149. mutex_unlock(&dev->struct_mutex);
  3150. /* Cancel the retire work handler, which should be idle now. */
  3151. cancel_delayed_work_sync(&dev_priv->mm.retire_work);
  3152. return 0;
  3153. }
  3154. void i915_gem_l3_remap(struct drm_device *dev)
  3155. {
  3156. drm_i915_private_t *dev_priv = dev->dev_private;
  3157. u32 misccpctl;
  3158. int i;
  3159. if (!IS_IVYBRIDGE(dev))
  3160. return;
  3161. if (!dev_priv->mm.l3_remap_info)
  3162. return;
  3163. misccpctl = I915_READ(GEN7_MISCCPCTL);
  3164. I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
  3165. POSTING_READ(GEN7_MISCCPCTL);
  3166. for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
  3167. u32 remap = I915_READ(GEN7_L3LOG_BASE + i);
  3168. if (remap && remap != dev_priv->mm.l3_remap_info[i/4])
  3169. DRM_DEBUG("0x%x was already programmed to %x\n",
  3170. GEN7_L3LOG_BASE + i, remap);
  3171. if (remap && !dev_priv->mm.l3_remap_info[i/4])
  3172. DRM_DEBUG_DRIVER("Clearing remapped register\n");
  3173. I915_WRITE(GEN7_L3LOG_BASE + i, dev_priv->mm.l3_remap_info[i/4]);
  3174. }
  3175. /* Make sure all the writes land before disabling dop clock gating */
  3176. POSTING_READ(GEN7_L3LOG_BASE);
  3177. I915_WRITE(GEN7_MISCCPCTL, misccpctl);
  3178. }
  3179. void i915_gem_init_swizzling(struct drm_device *dev)
  3180. {
  3181. drm_i915_private_t *dev_priv = dev->dev_private;
  3182. if (INTEL_INFO(dev)->gen < 5 ||
  3183. dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
  3184. return;
  3185. I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
  3186. DISP_TILE_SURFACE_SWIZZLING);
  3187. if (IS_GEN5(dev))
  3188. return;
  3189. I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
  3190. if (IS_GEN6(dev))
  3191. I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
  3192. else
  3193. I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
  3194. }
  3195. void i915_gem_init_ppgtt(struct drm_device *dev)
  3196. {
  3197. drm_i915_private_t *dev_priv = dev->dev_private;
  3198. uint32_t pd_offset;
  3199. struct intel_ring_buffer *ring;
  3200. struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
  3201. uint32_t __iomem *pd_addr;
  3202. uint32_t pd_entry;
  3203. int i;
  3204. if (!dev_priv->mm.aliasing_ppgtt)
  3205. return;
  3206. pd_addr = dev_priv->mm.gtt->gtt + ppgtt->pd_offset/sizeof(uint32_t);
  3207. for (i = 0; i < ppgtt->num_pd_entries; i++) {
  3208. dma_addr_t pt_addr;
  3209. if (dev_priv->mm.gtt->needs_dmar)
  3210. pt_addr = ppgtt->pt_dma_addr[i];
  3211. else
  3212. pt_addr = page_to_phys(ppgtt->pt_pages[i]);
  3213. pd_entry = GEN6_PDE_ADDR_ENCODE(pt_addr);
  3214. pd_entry |= GEN6_PDE_VALID;
  3215. writel(pd_entry, pd_addr + i);
  3216. }
  3217. readl(pd_addr);
  3218. pd_offset = ppgtt->pd_offset;
  3219. pd_offset /= 64; /* in cachelines, */
  3220. pd_offset <<= 16;
  3221. if (INTEL_INFO(dev)->gen == 6) {
  3222. uint32_t ecochk, gab_ctl, ecobits;
  3223. ecobits = I915_READ(GAC_ECO_BITS);
  3224. I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_PPGTT_CACHE64B);
  3225. gab_ctl = I915_READ(GAB_CTL);
  3226. I915_WRITE(GAB_CTL, gab_ctl | GAB_CTL_CONT_AFTER_PAGEFAULT);
  3227. ecochk = I915_READ(GAM_ECOCHK);
  3228. I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT |
  3229. ECOCHK_PPGTT_CACHE64B);
  3230. I915_WRITE(GFX_MODE, _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
  3231. } else if (INTEL_INFO(dev)->gen >= 7) {
  3232. I915_WRITE(GAM_ECOCHK, ECOCHK_PPGTT_CACHE64B);
  3233. /* GFX_MODE is per-ring on gen7+ */
  3234. }
  3235. for_each_ring(ring, dev_priv, i) {
  3236. if (INTEL_INFO(dev)->gen >= 7)
  3237. I915_WRITE(RING_MODE_GEN7(ring),
  3238. _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
  3239. I915_WRITE(RING_PP_DIR_DCLV(ring), PP_DIR_DCLV_2G);
  3240. I915_WRITE(RING_PP_DIR_BASE(ring), pd_offset);
  3241. }
  3242. }
  3243. static bool
  3244. intel_enable_blt(struct drm_device *dev)
  3245. {
  3246. if (!HAS_BLT(dev))
  3247. return false;
  3248. /* The blitter was dysfunctional on early prototypes */
  3249. if (IS_GEN6(dev) && dev->pdev->revision < 8) {
  3250. DRM_INFO("BLT not supported on this pre-production hardware;"
  3251. " graphics performance will be degraded.\n");
  3252. return false;
  3253. }
  3254. return true;
  3255. }
  3256. int
  3257. i915_gem_init_hw(struct drm_device *dev)
  3258. {
  3259. drm_i915_private_t *dev_priv = dev->dev_private;
  3260. int ret;
  3261. if (!intel_enable_gtt())
  3262. return -EIO;
  3263. if (IS_HASWELL(dev) && (I915_READ(0x120010) == 1))
  3264. I915_WRITE(0x9008, I915_READ(0x9008) | 0xf0000);
  3265. i915_gem_l3_remap(dev);
  3266. i915_gem_init_swizzling(dev);
  3267. ret = intel_init_render_ring_buffer(dev);
  3268. if (ret)
  3269. return ret;
  3270. if (HAS_BSD(dev)) {
  3271. ret = intel_init_bsd_ring_buffer(dev);
  3272. if (ret)
  3273. goto cleanup_render_ring;
  3274. }
  3275. if (intel_enable_blt(dev)) {
  3276. ret = intel_init_blt_ring_buffer(dev);
  3277. if (ret)
  3278. goto cleanup_bsd_ring;
  3279. }
  3280. dev_priv->next_seqno = 1;
  3281. /*
  3282. * XXX: There was some w/a described somewhere suggesting loading
  3283. * contexts before PPGTT.
  3284. */
  3285. i915_gem_context_init(dev);
  3286. i915_gem_init_ppgtt(dev);
  3287. return 0;
  3288. cleanup_bsd_ring:
  3289. intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
  3290. cleanup_render_ring:
  3291. intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
  3292. return ret;
  3293. }
  3294. static bool
  3295. intel_enable_ppgtt(struct drm_device *dev)
  3296. {
  3297. if (i915_enable_ppgtt >= 0)
  3298. return i915_enable_ppgtt;
  3299. #ifdef CONFIG_INTEL_IOMMU
  3300. /* Disable ppgtt on SNB if VT-d is on. */
  3301. if (INTEL_INFO(dev)->gen == 6 && intel_iommu_gfx_mapped)
  3302. return false;
  3303. #endif
  3304. return true;
  3305. }
  3306. int i915_gem_init(struct drm_device *dev)
  3307. {
  3308. struct drm_i915_private *dev_priv = dev->dev_private;
  3309. unsigned long gtt_size, mappable_size;
  3310. int ret;
  3311. gtt_size = dev_priv->mm.gtt->gtt_total_entries << PAGE_SHIFT;
  3312. mappable_size = dev_priv->mm.gtt->gtt_mappable_entries << PAGE_SHIFT;
  3313. mutex_lock(&dev->struct_mutex);
  3314. if (intel_enable_ppgtt(dev) && HAS_ALIASING_PPGTT(dev)) {
  3315. /* PPGTT pdes are stolen from global gtt ptes, so shrink the
  3316. * aperture accordingly when using aliasing ppgtt. */
  3317. gtt_size -= I915_PPGTT_PD_ENTRIES*PAGE_SIZE;
  3318. i915_gem_init_global_gtt(dev, 0, mappable_size, gtt_size);
  3319. ret = i915_gem_init_aliasing_ppgtt(dev);
  3320. if (ret) {
  3321. mutex_unlock(&dev->struct_mutex);
  3322. return ret;
  3323. }
  3324. } else {
  3325. /* Let GEM Manage all of the aperture.
  3326. *
  3327. * However, leave one page at the end still bound to the scratch
  3328. * page. There are a number of places where the hardware
  3329. * apparently prefetches past the end of the object, and we've
  3330. * seen multiple hangs with the GPU head pointer stuck in a
  3331. * batchbuffer bound at the last page of the aperture. One page
  3332. * should be enough to keep any prefetching inside of the
  3333. * aperture.
  3334. */
  3335. i915_gem_init_global_gtt(dev, 0, mappable_size,
  3336. gtt_size);
  3337. }
  3338. ret = i915_gem_init_hw(dev);
  3339. mutex_unlock(&dev->struct_mutex);
  3340. if (ret) {
  3341. i915_gem_cleanup_aliasing_ppgtt(dev);
  3342. return ret;
  3343. }
  3344. /* Allow hardware batchbuffers unless told otherwise, but not for KMS. */
  3345. if (!drm_core_check_feature(dev, DRIVER_MODESET))
  3346. dev_priv->dri1.allow_batchbuffer = 1;
  3347. return 0;
  3348. }
  3349. void
  3350. i915_gem_cleanup_ringbuffer(struct drm_device *dev)
  3351. {
  3352. drm_i915_private_t *dev_priv = dev->dev_private;
  3353. struct intel_ring_buffer *ring;
  3354. int i;
  3355. for_each_ring(ring, dev_priv, i)
  3356. intel_cleanup_ring_buffer(ring);
  3357. }
  3358. int
  3359. i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
  3360. struct drm_file *file_priv)
  3361. {
  3362. drm_i915_private_t *dev_priv = dev->dev_private;
  3363. int ret;
  3364. if (drm_core_check_feature(dev, DRIVER_MODESET))
  3365. return 0;
  3366. if (atomic_read(&dev_priv->mm.wedged)) {
  3367. DRM_ERROR("Reenabling wedged hardware, good luck\n");
  3368. atomic_set(&dev_priv->mm.wedged, 0);
  3369. }
  3370. mutex_lock(&dev->struct_mutex);
  3371. dev_priv->mm.suspended = 0;
  3372. ret = i915_gem_init_hw(dev);
  3373. if (ret != 0) {
  3374. mutex_unlock(&dev->struct_mutex);
  3375. return ret;
  3376. }
  3377. BUG_ON(!list_empty(&dev_priv->mm.active_list));
  3378. mutex_unlock(&dev->struct_mutex);
  3379. ret = drm_irq_install(dev);
  3380. if (ret)
  3381. goto cleanup_ringbuffer;
  3382. return 0;
  3383. cleanup_ringbuffer:
  3384. mutex_lock(&dev->struct_mutex);
  3385. i915_gem_cleanup_ringbuffer(dev);
  3386. dev_priv->mm.suspended = 1;
  3387. mutex_unlock(&dev->struct_mutex);
  3388. return ret;
  3389. }
  3390. int
  3391. i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
  3392. struct drm_file *file_priv)
  3393. {
  3394. if (drm_core_check_feature(dev, DRIVER_MODESET))
  3395. return 0;
  3396. drm_irq_uninstall(dev);
  3397. return i915_gem_idle(dev);
  3398. }
  3399. void
  3400. i915_gem_lastclose(struct drm_device *dev)
  3401. {
  3402. int ret;
  3403. if (drm_core_check_feature(dev, DRIVER_MODESET))
  3404. return;
  3405. ret = i915_gem_idle(dev);
  3406. if (ret)
  3407. DRM_ERROR("failed to idle hardware: %d\n", ret);
  3408. }
  3409. static void
  3410. init_ring_lists(struct intel_ring_buffer *ring)
  3411. {
  3412. INIT_LIST_HEAD(&ring->active_list);
  3413. INIT_LIST_HEAD(&ring->request_list);
  3414. }
  3415. void
  3416. i915_gem_load(struct drm_device *dev)
  3417. {
  3418. int i;
  3419. drm_i915_private_t *dev_priv = dev->dev_private;
  3420. INIT_LIST_HEAD(&dev_priv->mm.active_list);
  3421. INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
  3422. INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
  3423. INIT_LIST_HEAD(&dev_priv->mm.bound_list);
  3424. INIT_LIST_HEAD(&dev_priv->mm.fence_list);
  3425. for (i = 0; i < I915_NUM_RINGS; i++)
  3426. init_ring_lists(&dev_priv->ring[i]);
  3427. for (i = 0; i < I915_MAX_NUM_FENCES; i++)
  3428. INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
  3429. INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
  3430. i915_gem_retire_work_handler);
  3431. init_completion(&dev_priv->error_completion);
  3432. /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
  3433. if (IS_GEN3(dev)) {
  3434. I915_WRITE(MI_ARB_STATE,
  3435. _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
  3436. }
  3437. dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
  3438. /* Old X drivers will take 0-2 for front, back, depth buffers */
  3439. if (!drm_core_check_feature(dev, DRIVER_MODESET))
  3440. dev_priv->fence_reg_start = 3;
  3441. if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
  3442. dev_priv->num_fence_regs = 16;
  3443. else
  3444. dev_priv->num_fence_regs = 8;
  3445. /* Initialize fence registers to zero */
  3446. i915_gem_reset_fences(dev);
  3447. i915_gem_detect_bit_6_swizzle(dev);
  3448. init_waitqueue_head(&dev_priv->pending_flip_queue);
  3449. dev_priv->mm.interruptible = true;
  3450. dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink;
  3451. dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
  3452. register_shrinker(&dev_priv->mm.inactive_shrinker);
  3453. }
  3454. /*
  3455. * Create a physically contiguous memory object for this object
  3456. * e.g. for cursor + overlay regs
  3457. */
  3458. static int i915_gem_init_phys_object(struct drm_device *dev,
  3459. int id, int size, int align)
  3460. {
  3461. drm_i915_private_t *dev_priv = dev->dev_private;
  3462. struct drm_i915_gem_phys_object *phys_obj;
  3463. int ret;
  3464. if (dev_priv->mm.phys_objs[id - 1] || !size)
  3465. return 0;
  3466. phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
  3467. if (!phys_obj)
  3468. return -ENOMEM;
  3469. phys_obj->id = id;
  3470. phys_obj->handle = drm_pci_alloc(dev, size, align);
  3471. if (!phys_obj->handle) {
  3472. ret = -ENOMEM;
  3473. goto kfree_obj;
  3474. }
  3475. #ifdef CONFIG_X86
  3476. set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
  3477. #endif
  3478. dev_priv->mm.phys_objs[id - 1] = phys_obj;
  3479. return 0;
  3480. kfree_obj:
  3481. kfree(phys_obj);
  3482. return ret;
  3483. }
  3484. static void i915_gem_free_phys_object(struct drm_device *dev, int id)
  3485. {
  3486. drm_i915_private_t *dev_priv = dev->dev_private;
  3487. struct drm_i915_gem_phys_object *phys_obj;
  3488. if (!dev_priv->mm.phys_objs[id - 1])
  3489. return;
  3490. phys_obj = dev_priv->mm.phys_objs[id - 1];
  3491. if (phys_obj->cur_obj) {
  3492. i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
  3493. }
  3494. #ifdef CONFIG_X86
  3495. set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
  3496. #endif
  3497. drm_pci_free(dev, phys_obj->handle);
  3498. kfree(phys_obj);
  3499. dev_priv->mm.phys_objs[id - 1] = NULL;
  3500. }
  3501. void i915_gem_free_all_phys_object(struct drm_device *dev)
  3502. {
  3503. int i;
  3504. for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
  3505. i915_gem_free_phys_object(dev, i);
  3506. }
  3507. void i915_gem_detach_phys_object(struct drm_device *dev,
  3508. struct drm_i915_gem_object *obj)
  3509. {
  3510. struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
  3511. char *vaddr;
  3512. int i;
  3513. int page_count;
  3514. if (!obj->phys_obj)
  3515. return;
  3516. vaddr = obj->phys_obj->handle->vaddr;
  3517. page_count = obj->base.size / PAGE_SIZE;
  3518. for (i = 0; i < page_count; i++) {
  3519. struct page *page = shmem_read_mapping_page(mapping, i);
  3520. if (!IS_ERR(page)) {
  3521. char *dst = kmap_atomic(page);
  3522. memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
  3523. kunmap_atomic(dst);
  3524. drm_clflush_pages(&page, 1);
  3525. set_page_dirty(page);
  3526. mark_page_accessed(page);
  3527. page_cache_release(page);
  3528. }
  3529. }
  3530. intel_gtt_chipset_flush();
  3531. obj->phys_obj->cur_obj = NULL;
  3532. obj->phys_obj = NULL;
  3533. }
  3534. int
  3535. i915_gem_attach_phys_object(struct drm_device *dev,
  3536. struct drm_i915_gem_object *obj,
  3537. int id,
  3538. int align)
  3539. {
  3540. struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
  3541. drm_i915_private_t *dev_priv = dev->dev_private;
  3542. int ret = 0;
  3543. int page_count;
  3544. int i;
  3545. if (id > I915_MAX_PHYS_OBJECT)
  3546. return -EINVAL;
  3547. if (obj->phys_obj) {
  3548. if (obj->phys_obj->id == id)
  3549. return 0;
  3550. i915_gem_detach_phys_object(dev, obj);
  3551. }
  3552. /* create a new object */
  3553. if (!dev_priv->mm.phys_objs[id - 1]) {
  3554. ret = i915_gem_init_phys_object(dev, id,
  3555. obj->base.size, align);
  3556. if (ret) {
  3557. DRM_ERROR("failed to init phys object %d size: %zu\n",
  3558. id, obj->base.size);
  3559. return ret;
  3560. }
  3561. }
  3562. /* bind to the object */
  3563. obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
  3564. obj->phys_obj->cur_obj = obj;
  3565. page_count = obj->base.size / PAGE_SIZE;
  3566. for (i = 0; i < page_count; i++) {
  3567. struct page *page;
  3568. char *dst, *src;
  3569. page = shmem_read_mapping_page(mapping, i);
  3570. if (IS_ERR(page))
  3571. return PTR_ERR(page);
  3572. src = kmap_atomic(page);
  3573. dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
  3574. memcpy(dst, src, PAGE_SIZE);
  3575. kunmap_atomic(src);
  3576. mark_page_accessed(page);
  3577. page_cache_release(page);
  3578. }
  3579. return 0;
  3580. }
  3581. static int
  3582. i915_gem_phys_pwrite(struct drm_device *dev,
  3583. struct drm_i915_gem_object *obj,
  3584. struct drm_i915_gem_pwrite *args,
  3585. struct drm_file *file_priv)
  3586. {
  3587. void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
  3588. char __user *user_data = (char __user *) (uintptr_t) args->data_ptr;
  3589. if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
  3590. unsigned long unwritten;
  3591. /* The physical object once assigned is fixed for the lifetime
  3592. * of the obj, so we can safely drop the lock and continue
  3593. * to access vaddr.
  3594. */
  3595. mutex_unlock(&dev->struct_mutex);
  3596. unwritten = copy_from_user(vaddr, user_data, args->size);
  3597. mutex_lock(&dev->struct_mutex);
  3598. if (unwritten)
  3599. return -EFAULT;
  3600. }
  3601. intel_gtt_chipset_flush();
  3602. return 0;
  3603. }
  3604. void i915_gem_release(struct drm_device *dev, struct drm_file *file)
  3605. {
  3606. struct drm_i915_file_private *file_priv = file->driver_priv;
  3607. /* Clean up our request list when the client is going away, so that
  3608. * later retire_requests won't dereference our soon-to-be-gone
  3609. * file_priv.
  3610. */
  3611. spin_lock(&file_priv->mm.lock);
  3612. while (!list_empty(&file_priv->mm.request_list)) {
  3613. struct drm_i915_gem_request *request;
  3614. request = list_first_entry(&file_priv->mm.request_list,
  3615. struct drm_i915_gem_request,
  3616. client_list);
  3617. list_del(&request->client_list);
  3618. request->file_priv = NULL;
  3619. }
  3620. spin_unlock(&file_priv->mm.lock);
  3621. }
  3622. static int
  3623. i915_gem_inactive_shrink(struct shrinker *shrinker, struct shrink_control *sc)
  3624. {
  3625. struct drm_i915_private *dev_priv =
  3626. container_of(shrinker,
  3627. struct drm_i915_private,
  3628. mm.inactive_shrinker);
  3629. struct drm_device *dev = dev_priv->dev;
  3630. struct drm_i915_gem_object *obj;
  3631. int nr_to_scan = sc->nr_to_scan;
  3632. int cnt;
  3633. if (!mutex_trylock(&dev->struct_mutex))
  3634. return 0;
  3635. if (nr_to_scan) {
  3636. nr_to_scan -= i915_gem_purge(dev_priv, nr_to_scan);
  3637. if (nr_to_scan > 0)
  3638. i915_gem_shrink_all(dev_priv);
  3639. }
  3640. cnt = 0;
  3641. list_for_each_entry(obj, &dev_priv->mm.unbound_list, gtt_list)
  3642. if (obj->pages_pin_count == 0)
  3643. cnt += obj->base.size >> PAGE_SHIFT;
  3644. list_for_each_entry(obj, &dev_priv->mm.bound_list, gtt_list)
  3645. if (obj->pin_count == 0 && obj->pages_pin_count == 0)
  3646. cnt += obj->base.size >> PAGE_SHIFT;
  3647. mutex_unlock(&dev->struct_mutex);
  3648. return cnt;
  3649. }