sched_stats.h 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375
  1. #ifdef CONFIG_SCHEDSTATS
  2. /*
  3. * bump this up when changing the output format or the meaning of an existing
  4. * format, so that tools can adapt (or abort)
  5. */
  6. #define SCHEDSTAT_VERSION 15
  7. static int show_schedstat(struct seq_file *seq, void *v)
  8. {
  9. int cpu;
  10. int mask_len = DIV_ROUND_UP(NR_CPUS, 32) * 9;
  11. char *mask_str = kmalloc(mask_len, GFP_KERNEL);
  12. if (mask_str == NULL)
  13. return -ENOMEM;
  14. seq_printf(seq, "version %d\n", SCHEDSTAT_VERSION);
  15. seq_printf(seq, "timestamp %lu\n", jiffies);
  16. for_each_online_cpu(cpu) {
  17. struct rq *rq = cpu_rq(cpu);
  18. #ifdef CONFIG_SMP
  19. struct sched_domain *sd;
  20. int dcount = 0;
  21. #endif
  22. /* runqueue-specific stats */
  23. seq_printf(seq,
  24. "cpu%d %u %u %u %u %u %u %llu %llu %lu",
  25. cpu, rq->yld_count,
  26. rq->sched_switch, rq->sched_count, rq->sched_goidle,
  27. rq->ttwu_count, rq->ttwu_local,
  28. rq->rq_cpu_time,
  29. rq->rq_sched_info.run_delay, rq->rq_sched_info.pcount);
  30. seq_printf(seq, "\n");
  31. #ifdef CONFIG_SMP
  32. /* domain-specific stats */
  33. preempt_disable();
  34. for_each_domain(cpu, sd) {
  35. enum cpu_idle_type itype;
  36. cpumask_scnprintf(mask_str, mask_len,
  37. sched_domain_span(sd));
  38. seq_printf(seq, "domain%d %s", dcount++, mask_str);
  39. for (itype = CPU_IDLE; itype < CPU_MAX_IDLE_TYPES;
  40. itype++) {
  41. seq_printf(seq, " %u %u %u %u %u %u %u %u",
  42. sd->lb_count[itype],
  43. sd->lb_balanced[itype],
  44. sd->lb_failed[itype],
  45. sd->lb_imbalance[itype],
  46. sd->lb_gained[itype],
  47. sd->lb_hot_gained[itype],
  48. sd->lb_nobusyq[itype],
  49. sd->lb_nobusyg[itype]);
  50. }
  51. seq_printf(seq,
  52. " %u %u %u %u %u %u %u %u %u %u %u %u\n",
  53. sd->alb_count, sd->alb_failed, sd->alb_pushed,
  54. sd->sbe_count, sd->sbe_balanced, sd->sbe_pushed,
  55. sd->sbf_count, sd->sbf_balanced, sd->sbf_pushed,
  56. sd->ttwu_wake_remote, sd->ttwu_move_affine,
  57. sd->ttwu_move_balance);
  58. }
  59. preempt_enable();
  60. #endif
  61. }
  62. kfree(mask_str);
  63. return 0;
  64. }
  65. static int schedstat_open(struct inode *inode, struct file *file)
  66. {
  67. unsigned int size = PAGE_SIZE * (1 + num_online_cpus() / 32);
  68. char *buf = kmalloc(size, GFP_KERNEL);
  69. struct seq_file *m;
  70. int res;
  71. if (!buf)
  72. return -ENOMEM;
  73. res = single_open(file, show_schedstat, NULL);
  74. if (!res) {
  75. m = file->private_data;
  76. m->buf = buf;
  77. m->size = size;
  78. } else
  79. kfree(buf);
  80. return res;
  81. }
  82. static const struct file_operations proc_schedstat_operations = {
  83. .open = schedstat_open,
  84. .read = seq_read,
  85. .llseek = seq_lseek,
  86. .release = single_release,
  87. };
  88. static int __init proc_schedstat_init(void)
  89. {
  90. proc_create("schedstat", 0, NULL, &proc_schedstat_operations);
  91. return 0;
  92. }
  93. module_init(proc_schedstat_init);
  94. /*
  95. * Expects runqueue lock to be held for atomicity of update
  96. */
  97. static inline void
  98. rq_sched_info_arrive(struct rq *rq, unsigned long long delta)
  99. {
  100. if (rq) {
  101. rq->rq_sched_info.run_delay += delta;
  102. rq->rq_sched_info.pcount++;
  103. }
  104. }
  105. /*
  106. * Expects runqueue lock to be held for atomicity of update
  107. */
  108. static inline void
  109. rq_sched_info_depart(struct rq *rq, unsigned long long delta)
  110. {
  111. if (rq)
  112. rq->rq_cpu_time += delta;
  113. }
  114. static inline void
  115. rq_sched_info_dequeued(struct rq *rq, unsigned long long delta)
  116. {
  117. if (rq)
  118. rq->rq_sched_info.run_delay += delta;
  119. }
  120. # define schedstat_inc(rq, field) do { (rq)->field++; } while (0)
  121. # define schedstat_add(rq, field, amt) do { (rq)->field += (amt); } while (0)
  122. # define schedstat_set(var, val) do { var = (val); } while (0)
  123. #else /* !CONFIG_SCHEDSTATS */
  124. static inline void
  125. rq_sched_info_arrive(struct rq *rq, unsigned long long delta)
  126. {}
  127. static inline void
  128. rq_sched_info_dequeued(struct rq *rq, unsigned long long delta)
  129. {}
  130. static inline void
  131. rq_sched_info_depart(struct rq *rq, unsigned long long delta)
  132. {}
  133. # define schedstat_inc(rq, field) do { } while (0)
  134. # define schedstat_add(rq, field, amt) do { } while (0)
  135. # define schedstat_set(var, val) do { } while (0)
  136. #endif
  137. #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
  138. static inline void sched_info_reset_dequeued(struct task_struct *t)
  139. {
  140. t->sched_info.last_queued = 0;
  141. }
  142. /*
  143. * Called when a process is dequeued from the active array and given
  144. * the cpu. We should note that with the exception of interactive
  145. * tasks, the expired queue will become the active queue after the active
  146. * queue is empty, without explicitly dequeuing and requeuing tasks in the
  147. * expired queue. (Interactive tasks may be requeued directly to the
  148. * active queue, thus delaying tasks in the expired queue from running;
  149. * see scheduler_tick()).
  150. *
  151. * Though we are interested in knowing how long it was from the *first* time a
  152. * task was queued to the time that it finally hit a cpu, we call this routine
  153. * from dequeue_task() to account for possible rq->clock skew across cpus. The
  154. * delta taken on each cpu would annul the skew.
  155. */
  156. static inline void sched_info_dequeued(struct task_struct *t)
  157. {
  158. unsigned long long now = task_rq(t)->clock, delta = 0;
  159. if (unlikely(sched_info_on()))
  160. if (t->sched_info.last_queued)
  161. delta = now - t->sched_info.last_queued;
  162. sched_info_reset_dequeued(t);
  163. t->sched_info.run_delay += delta;
  164. rq_sched_info_dequeued(task_rq(t), delta);
  165. }
  166. /*
  167. * Called when a task finally hits the cpu. We can now calculate how
  168. * long it was waiting to run. We also note when it began so that we
  169. * can keep stats on how long its timeslice is.
  170. */
  171. static void sched_info_arrive(struct task_struct *t)
  172. {
  173. unsigned long long now = task_rq(t)->clock, delta = 0;
  174. if (t->sched_info.last_queued)
  175. delta = now - t->sched_info.last_queued;
  176. sched_info_reset_dequeued(t);
  177. t->sched_info.run_delay += delta;
  178. t->sched_info.last_arrival = now;
  179. t->sched_info.pcount++;
  180. rq_sched_info_arrive(task_rq(t), delta);
  181. }
  182. /*
  183. * Called when a process is queued into either the active or expired
  184. * array. The time is noted and later used to determine how long we
  185. * had to wait for us to reach the cpu. Since the expired queue will
  186. * become the active queue after active queue is empty, without dequeuing
  187. * and requeuing any tasks, we are interested in queuing to either. It
  188. * is unusual but not impossible for tasks to be dequeued and immediately
  189. * requeued in the same or another array: this can happen in sched_yield(),
  190. * set_user_nice(), and even load_balance() as it moves tasks from runqueue
  191. * to runqueue.
  192. *
  193. * This function is only called from enqueue_task(), but also only updates
  194. * the timestamp if it is already not set. It's assumed that
  195. * sched_info_dequeued() will clear that stamp when appropriate.
  196. */
  197. static inline void sched_info_queued(struct task_struct *t)
  198. {
  199. if (unlikely(sched_info_on()))
  200. if (!t->sched_info.last_queued)
  201. t->sched_info.last_queued = task_rq(t)->clock;
  202. }
  203. /*
  204. * Called when a process ceases being the active-running process, either
  205. * voluntarily or involuntarily. Now we can calculate how long we ran.
  206. * Also, if the process is still in the TASK_RUNNING state, call
  207. * sched_info_queued() to mark that it has now again started waiting on
  208. * the runqueue.
  209. */
  210. static inline void sched_info_depart(struct task_struct *t)
  211. {
  212. unsigned long long delta = task_rq(t)->clock -
  213. t->sched_info.last_arrival;
  214. rq_sched_info_depart(task_rq(t), delta);
  215. if (t->state == TASK_RUNNING)
  216. sched_info_queued(t);
  217. }
  218. /*
  219. * Called when tasks are switched involuntarily due, typically, to expiring
  220. * their time slice. (This may also be called when switching to or from
  221. * the idle task.) We are only called when prev != next.
  222. */
  223. static inline void
  224. __sched_info_switch(struct task_struct *prev, struct task_struct *next)
  225. {
  226. struct rq *rq = task_rq(prev);
  227. /*
  228. * prev now departs the cpu. It's not interesting to record
  229. * stats about how efficient we were at scheduling the idle
  230. * process, however.
  231. */
  232. if (prev != rq->idle)
  233. sched_info_depart(prev);
  234. if (next != rq->idle)
  235. sched_info_arrive(next);
  236. }
  237. static inline void
  238. sched_info_switch(struct task_struct *prev, struct task_struct *next)
  239. {
  240. if (unlikely(sched_info_on()))
  241. __sched_info_switch(prev, next);
  242. }
  243. #else
  244. #define sched_info_queued(t) do { } while (0)
  245. #define sched_info_reset_dequeued(t) do { } while (0)
  246. #define sched_info_dequeued(t) do { } while (0)
  247. #define sched_info_switch(t, next) do { } while (0)
  248. #endif /* CONFIG_SCHEDSTATS || CONFIG_TASK_DELAY_ACCT */
  249. /*
  250. * The following are functions that support scheduler-internal time accounting.
  251. * These functions are generally called at the timer tick. None of this depends
  252. * on CONFIG_SCHEDSTATS.
  253. */
  254. /**
  255. * account_group_user_time - Maintain utime for a thread group.
  256. *
  257. * @tsk: Pointer to task structure.
  258. * @cputime: Time value by which to increment the utime field of the
  259. * thread_group_cputime structure.
  260. *
  261. * If thread group time is being maintained, get the structure for the
  262. * running CPU and update the utime field there.
  263. */
  264. static inline void account_group_user_time(struct task_struct *tsk,
  265. cputime_t cputime)
  266. {
  267. struct thread_group_cputimer *cputimer;
  268. /* tsk == current, ensure it is safe to use ->signal */
  269. if (unlikely(tsk->exit_state))
  270. return;
  271. cputimer = &tsk->signal->cputimer;
  272. if (!cputimer->running)
  273. return;
  274. spin_lock(&cputimer->lock);
  275. cputimer->cputime.utime =
  276. cputime_add(cputimer->cputime.utime, cputime);
  277. spin_unlock(&cputimer->lock);
  278. }
  279. /**
  280. * account_group_system_time - Maintain stime for a thread group.
  281. *
  282. * @tsk: Pointer to task structure.
  283. * @cputime: Time value by which to increment the stime field of the
  284. * thread_group_cputime structure.
  285. *
  286. * If thread group time is being maintained, get the structure for the
  287. * running CPU and update the stime field there.
  288. */
  289. static inline void account_group_system_time(struct task_struct *tsk,
  290. cputime_t cputime)
  291. {
  292. struct thread_group_cputimer *cputimer;
  293. /* tsk == current, ensure it is safe to use ->signal */
  294. if (unlikely(tsk->exit_state))
  295. return;
  296. cputimer = &tsk->signal->cputimer;
  297. if (!cputimer->running)
  298. return;
  299. spin_lock(&cputimer->lock);
  300. cputimer->cputime.stime =
  301. cputime_add(cputimer->cputime.stime, cputime);
  302. spin_unlock(&cputimer->lock);
  303. }
  304. /**
  305. * account_group_exec_runtime - Maintain exec runtime for a thread group.
  306. *
  307. * @tsk: Pointer to task structure.
  308. * @ns: Time value by which to increment the sum_exec_runtime field
  309. * of the thread_group_cputime structure.
  310. *
  311. * If thread group time is being maintained, get the structure for the
  312. * running CPU and update the sum_exec_runtime field there.
  313. */
  314. static inline void account_group_exec_runtime(struct task_struct *tsk,
  315. unsigned long long ns)
  316. {
  317. struct thread_group_cputimer *cputimer;
  318. struct signal_struct *sig;
  319. sig = tsk->signal;
  320. /* see __exit_signal()->task_rq_unlock_wait() */
  321. barrier();
  322. if (unlikely(!sig))
  323. return;
  324. cputimer = &sig->cputimer;
  325. if (!cputimer->running)
  326. return;
  327. spin_lock(&cputimer->lock);
  328. cputimer->cputime.sum_exec_runtime += ns;
  329. spin_unlock(&cputimer->lock);
  330. }