hw.c 81 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198
  1. /*
  2. * Copyright (c) 2008-2011 Atheros Communications Inc.
  3. *
  4. * Permission to use, copy, modify, and/or distribute this software for any
  5. * purpose with or without fee is hereby granted, provided that the above
  6. * copyright notice and this permission notice appear in all copies.
  7. *
  8. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  9. * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  10. * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
  11. * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  12. * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  13. * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  14. * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  15. */
  16. #include <linux/io.h>
  17. #include <linux/slab.h>
  18. #include <linux/module.h>
  19. #include <asm/unaligned.h>
  20. #include "hw.h"
  21. #include "hw-ops.h"
  22. #include "rc.h"
  23. #include "ar9003_mac.h"
  24. #include "ar9003_mci.h"
  25. #include "debug.h"
  26. #include "ath9k.h"
  27. static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type);
  28. MODULE_AUTHOR("Atheros Communications");
  29. MODULE_DESCRIPTION("Support for Atheros 802.11n wireless LAN cards.");
  30. MODULE_SUPPORTED_DEVICE("Atheros 802.11n WLAN cards");
  31. MODULE_LICENSE("Dual BSD/GPL");
  32. static int __init ath9k_init(void)
  33. {
  34. return 0;
  35. }
  36. module_init(ath9k_init);
  37. static void __exit ath9k_exit(void)
  38. {
  39. return;
  40. }
  41. module_exit(ath9k_exit);
  42. /* Private hardware callbacks */
  43. static void ath9k_hw_init_cal_settings(struct ath_hw *ah)
  44. {
  45. ath9k_hw_private_ops(ah)->init_cal_settings(ah);
  46. }
  47. static void ath9k_hw_init_mode_regs(struct ath_hw *ah)
  48. {
  49. ath9k_hw_private_ops(ah)->init_mode_regs(ah);
  50. }
  51. static u32 ath9k_hw_compute_pll_control(struct ath_hw *ah,
  52. struct ath9k_channel *chan)
  53. {
  54. return ath9k_hw_private_ops(ah)->compute_pll_control(ah, chan);
  55. }
  56. static void ath9k_hw_init_mode_gain_regs(struct ath_hw *ah)
  57. {
  58. if (!ath9k_hw_private_ops(ah)->init_mode_gain_regs)
  59. return;
  60. ath9k_hw_private_ops(ah)->init_mode_gain_regs(ah);
  61. }
  62. static void ath9k_hw_ani_cache_ini_regs(struct ath_hw *ah)
  63. {
  64. /* You will not have this callback if using the old ANI */
  65. if (!ath9k_hw_private_ops(ah)->ani_cache_ini_regs)
  66. return;
  67. ath9k_hw_private_ops(ah)->ani_cache_ini_regs(ah);
  68. }
  69. /********************/
  70. /* Helper Functions */
  71. /********************/
  72. #ifdef CONFIG_ATH9K_DEBUGFS
  73. void ath9k_debug_sync_cause(struct ath_common *common, u32 sync_cause)
  74. {
  75. struct ath_softc *sc = common->priv;
  76. if (sync_cause)
  77. sc->debug.stats.istats.sync_cause_all++;
  78. if (sync_cause & AR_INTR_SYNC_RTC_IRQ)
  79. sc->debug.stats.istats.sync_rtc_irq++;
  80. if (sync_cause & AR_INTR_SYNC_MAC_IRQ)
  81. sc->debug.stats.istats.sync_mac_irq++;
  82. if (sync_cause & AR_INTR_SYNC_EEPROM_ILLEGAL_ACCESS)
  83. sc->debug.stats.istats.eeprom_illegal_access++;
  84. if (sync_cause & AR_INTR_SYNC_APB_TIMEOUT)
  85. sc->debug.stats.istats.apb_timeout++;
  86. if (sync_cause & AR_INTR_SYNC_PCI_MODE_CONFLICT)
  87. sc->debug.stats.istats.pci_mode_conflict++;
  88. if (sync_cause & AR_INTR_SYNC_HOST1_FATAL)
  89. sc->debug.stats.istats.host1_fatal++;
  90. if (sync_cause & AR_INTR_SYNC_HOST1_PERR)
  91. sc->debug.stats.istats.host1_perr++;
  92. if (sync_cause & AR_INTR_SYNC_TRCV_FIFO_PERR)
  93. sc->debug.stats.istats.trcv_fifo_perr++;
  94. if (sync_cause & AR_INTR_SYNC_RADM_CPL_EP)
  95. sc->debug.stats.istats.radm_cpl_ep++;
  96. if (sync_cause & AR_INTR_SYNC_RADM_CPL_DLLP_ABORT)
  97. sc->debug.stats.istats.radm_cpl_dllp_abort++;
  98. if (sync_cause & AR_INTR_SYNC_RADM_CPL_TLP_ABORT)
  99. sc->debug.stats.istats.radm_cpl_tlp_abort++;
  100. if (sync_cause & AR_INTR_SYNC_RADM_CPL_ECRC_ERR)
  101. sc->debug.stats.istats.radm_cpl_ecrc_err++;
  102. if (sync_cause & AR_INTR_SYNC_RADM_CPL_TIMEOUT)
  103. sc->debug.stats.istats.radm_cpl_timeout++;
  104. if (sync_cause & AR_INTR_SYNC_LOCAL_TIMEOUT)
  105. sc->debug.stats.istats.local_timeout++;
  106. if (sync_cause & AR_INTR_SYNC_PM_ACCESS)
  107. sc->debug.stats.istats.pm_access++;
  108. if (sync_cause & AR_INTR_SYNC_MAC_AWAKE)
  109. sc->debug.stats.istats.mac_awake++;
  110. if (sync_cause & AR_INTR_SYNC_MAC_ASLEEP)
  111. sc->debug.stats.istats.mac_asleep++;
  112. if (sync_cause & AR_INTR_SYNC_MAC_SLEEP_ACCESS)
  113. sc->debug.stats.istats.mac_sleep_access++;
  114. }
  115. #endif
  116. static void ath9k_hw_set_clockrate(struct ath_hw *ah)
  117. {
  118. struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
  119. struct ath_common *common = ath9k_hw_common(ah);
  120. unsigned int clockrate;
  121. /* AR9287 v1.3+ uses async FIFO and runs the MAC at 117 MHz */
  122. if (AR_SREV_9287(ah) && AR_SREV_9287_13_OR_LATER(ah))
  123. clockrate = 117;
  124. else if (!ah->curchan) /* should really check for CCK instead */
  125. clockrate = ATH9K_CLOCK_RATE_CCK;
  126. else if (conf->channel->band == IEEE80211_BAND_2GHZ)
  127. clockrate = ATH9K_CLOCK_RATE_2GHZ_OFDM;
  128. else if (ah->caps.hw_caps & ATH9K_HW_CAP_FASTCLOCK)
  129. clockrate = ATH9K_CLOCK_FAST_RATE_5GHZ_OFDM;
  130. else
  131. clockrate = ATH9K_CLOCK_RATE_5GHZ_OFDM;
  132. if (conf_is_ht40(conf))
  133. clockrate *= 2;
  134. if (ah->curchan) {
  135. if (IS_CHAN_HALF_RATE(ah->curchan))
  136. clockrate /= 2;
  137. if (IS_CHAN_QUARTER_RATE(ah->curchan))
  138. clockrate /= 4;
  139. }
  140. common->clockrate = clockrate;
  141. }
  142. static u32 ath9k_hw_mac_to_clks(struct ath_hw *ah, u32 usecs)
  143. {
  144. struct ath_common *common = ath9k_hw_common(ah);
  145. return usecs * common->clockrate;
  146. }
  147. bool ath9k_hw_wait(struct ath_hw *ah, u32 reg, u32 mask, u32 val, u32 timeout)
  148. {
  149. int i;
  150. BUG_ON(timeout < AH_TIME_QUANTUM);
  151. for (i = 0; i < (timeout / AH_TIME_QUANTUM); i++) {
  152. if ((REG_READ(ah, reg) & mask) == val)
  153. return true;
  154. udelay(AH_TIME_QUANTUM);
  155. }
  156. ath_dbg(ath9k_hw_common(ah), ANY,
  157. "timeout (%d us) on reg 0x%x: 0x%08x & 0x%08x != 0x%08x\n",
  158. timeout, reg, REG_READ(ah, reg), mask, val);
  159. return false;
  160. }
  161. EXPORT_SYMBOL(ath9k_hw_wait);
  162. void ath9k_hw_synth_delay(struct ath_hw *ah, struct ath9k_channel *chan,
  163. int hw_delay)
  164. {
  165. if (IS_CHAN_B(chan))
  166. hw_delay = (4 * hw_delay) / 22;
  167. else
  168. hw_delay /= 10;
  169. if (IS_CHAN_HALF_RATE(chan))
  170. hw_delay *= 2;
  171. else if (IS_CHAN_QUARTER_RATE(chan))
  172. hw_delay *= 4;
  173. udelay(hw_delay + BASE_ACTIVATE_DELAY);
  174. }
  175. void ath9k_hw_write_array(struct ath_hw *ah, struct ar5416IniArray *array,
  176. int column, unsigned int *writecnt)
  177. {
  178. int r;
  179. ENABLE_REGWRITE_BUFFER(ah);
  180. for (r = 0; r < array->ia_rows; r++) {
  181. REG_WRITE(ah, INI_RA(array, r, 0),
  182. INI_RA(array, r, column));
  183. DO_DELAY(*writecnt);
  184. }
  185. REGWRITE_BUFFER_FLUSH(ah);
  186. }
  187. u32 ath9k_hw_reverse_bits(u32 val, u32 n)
  188. {
  189. u32 retval;
  190. int i;
  191. for (i = 0, retval = 0; i < n; i++) {
  192. retval = (retval << 1) | (val & 1);
  193. val >>= 1;
  194. }
  195. return retval;
  196. }
  197. u16 ath9k_hw_computetxtime(struct ath_hw *ah,
  198. u8 phy, int kbps,
  199. u32 frameLen, u16 rateix,
  200. bool shortPreamble)
  201. {
  202. u32 bitsPerSymbol, numBits, numSymbols, phyTime, txTime;
  203. if (kbps == 0)
  204. return 0;
  205. switch (phy) {
  206. case WLAN_RC_PHY_CCK:
  207. phyTime = CCK_PREAMBLE_BITS + CCK_PLCP_BITS;
  208. if (shortPreamble)
  209. phyTime >>= 1;
  210. numBits = frameLen << 3;
  211. txTime = CCK_SIFS_TIME + phyTime + ((numBits * 1000) / kbps);
  212. break;
  213. case WLAN_RC_PHY_OFDM:
  214. if (ah->curchan && IS_CHAN_QUARTER_RATE(ah->curchan)) {
  215. bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME_QUARTER) / 1000;
  216. numBits = OFDM_PLCP_BITS + (frameLen << 3);
  217. numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
  218. txTime = OFDM_SIFS_TIME_QUARTER
  219. + OFDM_PREAMBLE_TIME_QUARTER
  220. + (numSymbols * OFDM_SYMBOL_TIME_QUARTER);
  221. } else if (ah->curchan &&
  222. IS_CHAN_HALF_RATE(ah->curchan)) {
  223. bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME_HALF) / 1000;
  224. numBits = OFDM_PLCP_BITS + (frameLen << 3);
  225. numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
  226. txTime = OFDM_SIFS_TIME_HALF +
  227. OFDM_PREAMBLE_TIME_HALF
  228. + (numSymbols * OFDM_SYMBOL_TIME_HALF);
  229. } else {
  230. bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME) / 1000;
  231. numBits = OFDM_PLCP_BITS + (frameLen << 3);
  232. numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
  233. txTime = OFDM_SIFS_TIME + OFDM_PREAMBLE_TIME
  234. + (numSymbols * OFDM_SYMBOL_TIME);
  235. }
  236. break;
  237. default:
  238. ath_err(ath9k_hw_common(ah),
  239. "Unknown phy %u (rate ix %u)\n", phy, rateix);
  240. txTime = 0;
  241. break;
  242. }
  243. return txTime;
  244. }
  245. EXPORT_SYMBOL(ath9k_hw_computetxtime);
  246. void ath9k_hw_get_channel_centers(struct ath_hw *ah,
  247. struct ath9k_channel *chan,
  248. struct chan_centers *centers)
  249. {
  250. int8_t extoff;
  251. if (!IS_CHAN_HT40(chan)) {
  252. centers->ctl_center = centers->ext_center =
  253. centers->synth_center = chan->channel;
  254. return;
  255. }
  256. if ((chan->chanmode == CHANNEL_A_HT40PLUS) ||
  257. (chan->chanmode == CHANNEL_G_HT40PLUS)) {
  258. centers->synth_center =
  259. chan->channel + HT40_CHANNEL_CENTER_SHIFT;
  260. extoff = 1;
  261. } else {
  262. centers->synth_center =
  263. chan->channel - HT40_CHANNEL_CENTER_SHIFT;
  264. extoff = -1;
  265. }
  266. centers->ctl_center =
  267. centers->synth_center - (extoff * HT40_CHANNEL_CENTER_SHIFT);
  268. /* 25 MHz spacing is supported by hw but not on upper layers */
  269. centers->ext_center =
  270. centers->synth_center + (extoff * HT40_CHANNEL_CENTER_SHIFT);
  271. }
  272. /******************/
  273. /* Chip Revisions */
  274. /******************/
  275. static void ath9k_hw_read_revisions(struct ath_hw *ah)
  276. {
  277. u32 val;
  278. switch (ah->hw_version.devid) {
  279. case AR5416_AR9100_DEVID:
  280. ah->hw_version.macVersion = AR_SREV_VERSION_9100;
  281. break;
  282. case AR9300_DEVID_AR9330:
  283. ah->hw_version.macVersion = AR_SREV_VERSION_9330;
  284. if (ah->get_mac_revision) {
  285. ah->hw_version.macRev = ah->get_mac_revision();
  286. } else {
  287. val = REG_READ(ah, AR_SREV);
  288. ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
  289. }
  290. return;
  291. case AR9300_DEVID_AR9340:
  292. ah->hw_version.macVersion = AR_SREV_VERSION_9340;
  293. val = REG_READ(ah, AR_SREV);
  294. ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
  295. return;
  296. }
  297. val = REG_READ(ah, AR_SREV) & AR_SREV_ID;
  298. if (val == 0xFF) {
  299. val = REG_READ(ah, AR_SREV);
  300. ah->hw_version.macVersion =
  301. (val & AR_SREV_VERSION2) >> AR_SREV_TYPE2_S;
  302. ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
  303. if (AR_SREV_9462(ah))
  304. ah->is_pciexpress = true;
  305. else
  306. ah->is_pciexpress = (val &
  307. AR_SREV_TYPE2_HOST_MODE) ? 0 : 1;
  308. } else {
  309. if (!AR_SREV_9100(ah))
  310. ah->hw_version.macVersion = MS(val, AR_SREV_VERSION);
  311. ah->hw_version.macRev = val & AR_SREV_REVISION;
  312. if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCIE)
  313. ah->is_pciexpress = true;
  314. }
  315. }
  316. /************************************/
  317. /* HW Attach, Detach, Init Routines */
  318. /************************************/
  319. static void ath9k_hw_disablepcie(struct ath_hw *ah)
  320. {
  321. if (!AR_SREV_5416(ah))
  322. return;
  323. REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fc00);
  324. REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924);
  325. REG_WRITE(ah, AR_PCIE_SERDES, 0x28000029);
  326. REG_WRITE(ah, AR_PCIE_SERDES, 0x57160824);
  327. REG_WRITE(ah, AR_PCIE_SERDES, 0x25980579);
  328. REG_WRITE(ah, AR_PCIE_SERDES, 0x00000000);
  329. REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40);
  330. REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554);
  331. REG_WRITE(ah, AR_PCIE_SERDES, 0x000e1007);
  332. REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000);
  333. }
  334. /* This should work for all families including legacy */
  335. static bool ath9k_hw_chip_test(struct ath_hw *ah)
  336. {
  337. struct ath_common *common = ath9k_hw_common(ah);
  338. u32 regAddr[2] = { AR_STA_ID0 };
  339. u32 regHold[2];
  340. static const u32 patternData[4] = {
  341. 0x55555555, 0xaaaaaaaa, 0x66666666, 0x99999999
  342. };
  343. int i, j, loop_max;
  344. if (!AR_SREV_9300_20_OR_LATER(ah)) {
  345. loop_max = 2;
  346. regAddr[1] = AR_PHY_BASE + (8 << 2);
  347. } else
  348. loop_max = 1;
  349. for (i = 0; i < loop_max; i++) {
  350. u32 addr = regAddr[i];
  351. u32 wrData, rdData;
  352. regHold[i] = REG_READ(ah, addr);
  353. for (j = 0; j < 0x100; j++) {
  354. wrData = (j << 16) | j;
  355. REG_WRITE(ah, addr, wrData);
  356. rdData = REG_READ(ah, addr);
  357. if (rdData != wrData) {
  358. ath_err(common,
  359. "address test failed addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
  360. addr, wrData, rdData);
  361. return false;
  362. }
  363. }
  364. for (j = 0; j < 4; j++) {
  365. wrData = patternData[j];
  366. REG_WRITE(ah, addr, wrData);
  367. rdData = REG_READ(ah, addr);
  368. if (wrData != rdData) {
  369. ath_err(common,
  370. "address test failed addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
  371. addr, wrData, rdData);
  372. return false;
  373. }
  374. }
  375. REG_WRITE(ah, regAddr[i], regHold[i]);
  376. }
  377. udelay(100);
  378. return true;
  379. }
  380. static void ath9k_hw_init_config(struct ath_hw *ah)
  381. {
  382. int i;
  383. ah->config.dma_beacon_response_time = 1;
  384. ah->config.sw_beacon_response_time = 6;
  385. ah->config.additional_swba_backoff = 0;
  386. ah->config.ack_6mb = 0x0;
  387. ah->config.cwm_ignore_extcca = 0;
  388. ah->config.pcie_clock_req = 0;
  389. ah->config.pcie_waen = 0;
  390. ah->config.analog_shiftreg = 1;
  391. ah->config.enable_ani = true;
  392. for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
  393. ah->config.spurchans[i][0] = AR_NO_SPUR;
  394. ah->config.spurchans[i][1] = AR_NO_SPUR;
  395. }
  396. /* PAPRD needs some more work to be enabled */
  397. ah->config.paprd_disable = 1;
  398. ah->config.rx_intr_mitigation = true;
  399. ah->config.pcieSerDesWrite = true;
  400. /*
  401. * We need this for PCI devices only (Cardbus, PCI, miniPCI)
  402. * _and_ if on non-uniprocessor systems (Multiprocessor/HT).
  403. * This means we use it for all AR5416 devices, and the few
  404. * minor PCI AR9280 devices out there.
  405. *
  406. * Serialization is required because these devices do not handle
  407. * well the case of two concurrent reads/writes due to the latency
  408. * involved. During one read/write another read/write can be issued
  409. * on another CPU while the previous read/write may still be working
  410. * on our hardware, if we hit this case the hardware poops in a loop.
  411. * We prevent this by serializing reads and writes.
  412. *
  413. * This issue is not present on PCI-Express devices or pre-AR5416
  414. * devices (legacy, 802.11abg).
  415. */
  416. if (num_possible_cpus() > 1)
  417. ah->config.serialize_regmode = SER_REG_MODE_AUTO;
  418. }
  419. static void ath9k_hw_init_defaults(struct ath_hw *ah)
  420. {
  421. struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
  422. regulatory->country_code = CTRY_DEFAULT;
  423. regulatory->power_limit = MAX_RATE_POWER;
  424. ah->hw_version.magic = AR5416_MAGIC;
  425. ah->hw_version.subvendorid = 0;
  426. ah->atim_window = 0;
  427. ah->sta_id1_defaults =
  428. AR_STA_ID1_CRPT_MIC_ENABLE |
  429. AR_STA_ID1_MCAST_KSRCH;
  430. if (AR_SREV_9100(ah))
  431. ah->sta_id1_defaults |= AR_STA_ID1_AR9100_BA_FIX;
  432. ah->slottime = ATH9K_SLOT_TIME_9;
  433. ah->globaltxtimeout = (u32) -1;
  434. ah->power_mode = ATH9K_PM_UNDEFINED;
  435. ah->htc_reset_init = true;
  436. }
  437. static int ath9k_hw_init_macaddr(struct ath_hw *ah)
  438. {
  439. struct ath_common *common = ath9k_hw_common(ah);
  440. u32 sum;
  441. int i;
  442. u16 eeval;
  443. static const u32 EEP_MAC[] = { EEP_MAC_LSW, EEP_MAC_MID, EEP_MAC_MSW };
  444. sum = 0;
  445. for (i = 0; i < 3; i++) {
  446. eeval = ah->eep_ops->get_eeprom(ah, EEP_MAC[i]);
  447. sum += eeval;
  448. common->macaddr[2 * i] = eeval >> 8;
  449. common->macaddr[2 * i + 1] = eeval & 0xff;
  450. }
  451. if (sum == 0 || sum == 0xffff * 3)
  452. return -EADDRNOTAVAIL;
  453. return 0;
  454. }
  455. static int ath9k_hw_post_init(struct ath_hw *ah)
  456. {
  457. struct ath_common *common = ath9k_hw_common(ah);
  458. int ecode;
  459. if (common->bus_ops->ath_bus_type != ATH_USB) {
  460. if (!ath9k_hw_chip_test(ah))
  461. return -ENODEV;
  462. }
  463. if (!AR_SREV_9300_20_OR_LATER(ah)) {
  464. ecode = ar9002_hw_rf_claim(ah);
  465. if (ecode != 0)
  466. return ecode;
  467. }
  468. ecode = ath9k_hw_eeprom_init(ah);
  469. if (ecode != 0)
  470. return ecode;
  471. ath_dbg(ath9k_hw_common(ah), CONFIG, "Eeprom VER: %d, REV: %d\n",
  472. ah->eep_ops->get_eeprom_ver(ah),
  473. ah->eep_ops->get_eeprom_rev(ah));
  474. ecode = ath9k_hw_rf_alloc_ext_banks(ah);
  475. if (ecode) {
  476. ath_err(ath9k_hw_common(ah),
  477. "Failed allocating banks for external radio\n");
  478. ath9k_hw_rf_free_ext_banks(ah);
  479. return ecode;
  480. }
  481. if (ah->config.enable_ani) {
  482. ath9k_hw_ani_setup(ah);
  483. ath9k_hw_ani_init(ah);
  484. }
  485. return 0;
  486. }
  487. static void ath9k_hw_attach_ops(struct ath_hw *ah)
  488. {
  489. if (AR_SREV_9300_20_OR_LATER(ah))
  490. ar9003_hw_attach_ops(ah);
  491. else
  492. ar9002_hw_attach_ops(ah);
  493. }
  494. /* Called for all hardware families */
  495. static int __ath9k_hw_init(struct ath_hw *ah)
  496. {
  497. struct ath_common *common = ath9k_hw_common(ah);
  498. int r = 0;
  499. ath9k_hw_read_revisions(ah);
  500. /*
  501. * Read back AR_WA into a permanent copy and set bits 14 and 17.
  502. * We need to do this to avoid RMW of this register. We cannot
  503. * read the reg when chip is asleep.
  504. */
  505. ah->WARegVal = REG_READ(ah, AR_WA);
  506. ah->WARegVal |= (AR_WA_D3_L1_DISABLE |
  507. AR_WA_ASPM_TIMER_BASED_DISABLE);
  508. if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON)) {
  509. ath_err(common, "Couldn't reset chip\n");
  510. return -EIO;
  511. }
  512. if (AR_SREV_9462(ah))
  513. ah->WARegVal &= ~AR_WA_D3_L1_DISABLE;
  514. ath9k_hw_init_defaults(ah);
  515. ath9k_hw_init_config(ah);
  516. ath9k_hw_attach_ops(ah);
  517. if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE)) {
  518. ath_err(common, "Couldn't wakeup chip\n");
  519. return -EIO;
  520. }
  521. if (NR_CPUS > 1 && ah->config.serialize_regmode == SER_REG_MODE_AUTO) {
  522. if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCI ||
  523. ((AR_SREV_9160(ah) || AR_SREV_9280(ah)) &&
  524. !ah->is_pciexpress)) {
  525. ah->config.serialize_regmode =
  526. SER_REG_MODE_ON;
  527. } else {
  528. ah->config.serialize_regmode =
  529. SER_REG_MODE_OFF;
  530. }
  531. }
  532. ath_dbg(common, RESET, "serialize_regmode is %d\n",
  533. ah->config.serialize_regmode);
  534. if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
  535. ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD >> 1;
  536. else
  537. ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD;
  538. switch (ah->hw_version.macVersion) {
  539. case AR_SREV_VERSION_5416_PCI:
  540. case AR_SREV_VERSION_5416_PCIE:
  541. case AR_SREV_VERSION_9160:
  542. case AR_SREV_VERSION_9100:
  543. case AR_SREV_VERSION_9280:
  544. case AR_SREV_VERSION_9285:
  545. case AR_SREV_VERSION_9287:
  546. case AR_SREV_VERSION_9271:
  547. case AR_SREV_VERSION_9300:
  548. case AR_SREV_VERSION_9330:
  549. case AR_SREV_VERSION_9485:
  550. case AR_SREV_VERSION_9340:
  551. case AR_SREV_VERSION_9462:
  552. break;
  553. default:
  554. ath_err(common,
  555. "Mac Chip Rev 0x%02x.%x is not supported by this driver\n",
  556. ah->hw_version.macVersion, ah->hw_version.macRev);
  557. return -EOPNOTSUPP;
  558. }
  559. if (AR_SREV_9271(ah) || AR_SREV_9100(ah) || AR_SREV_9340(ah) ||
  560. AR_SREV_9330(ah))
  561. ah->is_pciexpress = false;
  562. ah->hw_version.phyRev = REG_READ(ah, AR_PHY_CHIP_ID);
  563. ath9k_hw_init_cal_settings(ah);
  564. ah->ani_function = ATH9K_ANI_ALL;
  565. if (AR_SREV_9280_20_OR_LATER(ah) && !AR_SREV_9300_20_OR_LATER(ah))
  566. ah->ani_function &= ~ATH9K_ANI_NOISE_IMMUNITY_LEVEL;
  567. if (!AR_SREV_9300_20_OR_LATER(ah))
  568. ah->ani_function &= ~ATH9K_ANI_MRC_CCK;
  569. /* disable ANI for 9340 */
  570. if (AR_SREV_9340(ah))
  571. ah->config.enable_ani = false;
  572. ath9k_hw_init_mode_regs(ah);
  573. if (!ah->is_pciexpress)
  574. ath9k_hw_disablepcie(ah);
  575. r = ath9k_hw_post_init(ah);
  576. if (r)
  577. return r;
  578. ath9k_hw_init_mode_gain_regs(ah);
  579. r = ath9k_hw_fill_cap_info(ah);
  580. if (r)
  581. return r;
  582. r = ath9k_hw_init_macaddr(ah);
  583. if (r) {
  584. ath_err(common, "Failed to initialize MAC address\n");
  585. return r;
  586. }
  587. if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
  588. ah->tx_trig_level = (AR_FTRIG_256B >> AR_FTRIG_S);
  589. else
  590. ah->tx_trig_level = (AR_FTRIG_512B >> AR_FTRIG_S);
  591. if (AR_SREV_9330(ah))
  592. ah->bb_watchdog_timeout_ms = 85;
  593. else
  594. ah->bb_watchdog_timeout_ms = 25;
  595. common->state = ATH_HW_INITIALIZED;
  596. return 0;
  597. }
  598. int ath9k_hw_init(struct ath_hw *ah)
  599. {
  600. int ret;
  601. struct ath_common *common = ath9k_hw_common(ah);
  602. /* These are all the AR5008/AR9001/AR9002 hardware family of chipsets */
  603. switch (ah->hw_version.devid) {
  604. case AR5416_DEVID_PCI:
  605. case AR5416_DEVID_PCIE:
  606. case AR5416_AR9100_DEVID:
  607. case AR9160_DEVID_PCI:
  608. case AR9280_DEVID_PCI:
  609. case AR9280_DEVID_PCIE:
  610. case AR9285_DEVID_PCIE:
  611. case AR9287_DEVID_PCI:
  612. case AR9287_DEVID_PCIE:
  613. case AR2427_DEVID_PCIE:
  614. case AR9300_DEVID_PCIE:
  615. case AR9300_DEVID_AR9485_PCIE:
  616. case AR9300_DEVID_AR9330:
  617. case AR9300_DEVID_AR9340:
  618. case AR9300_DEVID_AR9580:
  619. case AR9300_DEVID_AR9462:
  620. break;
  621. default:
  622. if (common->bus_ops->ath_bus_type == ATH_USB)
  623. break;
  624. ath_err(common, "Hardware device ID 0x%04x not supported\n",
  625. ah->hw_version.devid);
  626. return -EOPNOTSUPP;
  627. }
  628. ret = __ath9k_hw_init(ah);
  629. if (ret) {
  630. ath_err(common,
  631. "Unable to initialize hardware; initialization status: %d\n",
  632. ret);
  633. return ret;
  634. }
  635. return 0;
  636. }
  637. EXPORT_SYMBOL(ath9k_hw_init);
  638. static void ath9k_hw_init_qos(struct ath_hw *ah)
  639. {
  640. ENABLE_REGWRITE_BUFFER(ah);
  641. REG_WRITE(ah, AR_MIC_QOS_CONTROL, 0x100aa);
  642. REG_WRITE(ah, AR_MIC_QOS_SELECT, 0x3210);
  643. REG_WRITE(ah, AR_QOS_NO_ACK,
  644. SM(2, AR_QOS_NO_ACK_TWO_BIT) |
  645. SM(5, AR_QOS_NO_ACK_BIT_OFF) |
  646. SM(0, AR_QOS_NO_ACK_BYTE_OFF));
  647. REG_WRITE(ah, AR_TXOP_X, AR_TXOP_X_VAL);
  648. REG_WRITE(ah, AR_TXOP_0_3, 0xFFFFFFFF);
  649. REG_WRITE(ah, AR_TXOP_4_7, 0xFFFFFFFF);
  650. REG_WRITE(ah, AR_TXOP_8_11, 0xFFFFFFFF);
  651. REG_WRITE(ah, AR_TXOP_12_15, 0xFFFFFFFF);
  652. REGWRITE_BUFFER_FLUSH(ah);
  653. }
  654. u32 ar9003_get_pll_sqsum_dvc(struct ath_hw *ah)
  655. {
  656. REG_CLR_BIT(ah, PLL3, PLL3_DO_MEAS_MASK);
  657. udelay(100);
  658. REG_SET_BIT(ah, PLL3, PLL3_DO_MEAS_MASK);
  659. while ((REG_READ(ah, PLL4) & PLL4_MEAS_DONE) == 0)
  660. udelay(100);
  661. return (REG_READ(ah, PLL3) & SQSUM_DVC_MASK) >> 3;
  662. }
  663. EXPORT_SYMBOL(ar9003_get_pll_sqsum_dvc);
  664. static void ath9k_hw_init_pll(struct ath_hw *ah,
  665. struct ath9k_channel *chan)
  666. {
  667. u32 pll;
  668. if (AR_SREV_9485(ah)) {
  669. /* program BB PLL ki and kd value, ki=0x4, kd=0x40 */
  670. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
  671. AR_CH0_BB_DPLL2_PLL_PWD, 0x1);
  672. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
  673. AR_CH0_DPLL2_KD, 0x40);
  674. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
  675. AR_CH0_DPLL2_KI, 0x4);
  676. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1,
  677. AR_CH0_BB_DPLL1_REFDIV, 0x5);
  678. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1,
  679. AR_CH0_BB_DPLL1_NINI, 0x58);
  680. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1,
  681. AR_CH0_BB_DPLL1_NFRAC, 0x0);
  682. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
  683. AR_CH0_BB_DPLL2_OUTDIV, 0x1);
  684. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
  685. AR_CH0_BB_DPLL2_LOCAL_PLL, 0x1);
  686. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
  687. AR_CH0_BB_DPLL2_EN_NEGTRIG, 0x1);
  688. /* program BB PLL phase_shift to 0x6 */
  689. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL3,
  690. AR_CH0_BB_DPLL3_PHASE_SHIFT, 0x6);
  691. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
  692. AR_CH0_BB_DPLL2_PLL_PWD, 0x0);
  693. udelay(1000);
  694. } else if (AR_SREV_9330(ah)) {
  695. u32 ddr_dpll2, pll_control2, kd;
  696. if (ah->is_clk_25mhz) {
  697. ddr_dpll2 = 0x18e82f01;
  698. pll_control2 = 0xe04a3d;
  699. kd = 0x1d;
  700. } else {
  701. ddr_dpll2 = 0x19e82f01;
  702. pll_control2 = 0x886666;
  703. kd = 0x3d;
  704. }
  705. /* program DDR PLL ki and kd value */
  706. REG_WRITE(ah, AR_CH0_DDR_DPLL2, ddr_dpll2);
  707. /* program DDR PLL phase_shift */
  708. REG_RMW_FIELD(ah, AR_CH0_DDR_DPLL3,
  709. AR_CH0_DPLL3_PHASE_SHIFT, 0x1);
  710. REG_WRITE(ah, AR_RTC_PLL_CONTROL, 0x1142c);
  711. udelay(1000);
  712. /* program refdiv, nint, frac to RTC register */
  713. REG_WRITE(ah, AR_RTC_PLL_CONTROL2, pll_control2);
  714. /* program BB PLL kd and ki value */
  715. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2, AR_CH0_DPLL2_KD, kd);
  716. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2, AR_CH0_DPLL2_KI, 0x06);
  717. /* program BB PLL phase_shift */
  718. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL3,
  719. AR_CH0_BB_DPLL3_PHASE_SHIFT, 0x1);
  720. } else if (AR_SREV_9340(ah)) {
  721. u32 regval, pll2_divint, pll2_divfrac, refdiv;
  722. REG_WRITE(ah, AR_RTC_PLL_CONTROL, 0x1142c);
  723. udelay(1000);
  724. REG_SET_BIT(ah, AR_PHY_PLL_MODE, 0x1 << 16);
  725. udelay(100);
  726. if (ah->is_clk_25mhz) {
  727. pll2_divint = 0x54;
  728. pll2_divfrac = 0x1eb85;
  729. refdiv = 3;
  730. } else {
  731. pll2_divint = 88;
  732. pll2_divfrac = 0;
  733. refdiv = 5;
  734. }
  735. regval = REG_READ(ah, AR_PHY_PLL_MODE);
  736. regval |= (0x1 << 16);
  737. REG_WRITE(ah, AR_PHY_PLL_MODE, regval);
  738. udelay(100);
  739. REG_WRITE(ah, AR_PHY_PLL_CONTROL, (refdiv << 27) |
  740. (pll2_divint << 18) | pll2_divfrac);
  741. udelay(100);
  742. regval = REG_READ(ah, AR_PHY_PLL_MODE);
  743. regval = (regval & 0x80071fff) | (0x1 << 30) | (0x1 << 13) |
  744. (0x4 << 26) | (0x18 << 19);
  745. REG_WRITE(ah, AR_PHY_PLL_MODE, regval);
  746. REG_WRITE(ah, AR_PHY_PLL_MODE,
  747. REG_READ(ah, AR_PHY_PLL_MODE) & 0xfffeffff);
  748. udelay(1000);
  749. }
  750. pll = ath9k_hw_compute_pll_control(ah, chan);
  751. REG_WRITE(ah, AR_RTC_PLL_CONTROL, pll);
  752. if (AR_SREV_9485(ah) || AR_SREV_9340(ah) || AR_SREV_9330(ah))
  753. udelay(1000);
  754. /* Switch the core clock for ar9271 to 117Mhz */
  755. if (AR_SREV_9271(ah)) {
  756. udelay(500);
  757. REG_WRITE(ah, 0x50040, 0x304);
  758. }
  759. udelay(RTC_PLL_SETTLE_DELAY);
  760. REG_WRITE(ah, AR_RTC_SLEEP_CLK, AR_RTC_FORCE_DERIVED_CLK);
  761. if (AR_SREV_9340(ah)) {
  762. if (ah->is_clk_25mhz) {
  763. REG_WRITE(ah, AR_RTC_DERIVED_CLK, 0x17c << 1);
  764. REG_WRITE(ah, AR_SLP32_MODE, 0x0010f3d7);
  765. REG_WRITE(ah, AR_SLP32_INC, 0x0001e7ae);
  766. } else {
  767. REG_WRITE(ah, AR_RTC_DERIVED_CLK, 0x261 << 1);
  768. REG_WRITE(ah, AR_SLP32_MODE, 0x0010f400);
  769. REG_WRITE(ah, AR_SLP32_INC, 0x0001e800);
  770. }
  771. udelay(100);
  772. }
  773. }
  774. static void ath9k_hw_init_interrupt_masks(struct ath_hw *ah,
  775. enum nl80211_iftype opmode)
  776. {
  777. u32 sync_default = AR_INTR_SYNC_DEFAULT;
  778. u32 imr_reg = AR_IMR_TXERR |
  779. AR_IMR_TXURN |
  780. AR_IMR_RXERR |
  781. AR_IMR_RXORN |
  782. AR_IMR_BCNMISC;
  783. if (AR_SREV_9340(ah))
  784. sync_default &= ~AR_INTR_SYNC_HOST1_FATAL;
  785. if (AR_SREV_9300_20_OR_LATER(ah)) {
  786. imr_reg |= AR_IMR_RXOK_HP;
  787. if (ah->config.rx_intr_mitigation)
  788. imr_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
  789. else
  790. imr_reg |= AR_IMR_RXOK_LP;
  791. } else {
  792. if (ah->config.rx_intr_mitigation)
  793. imr_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
  794. else
  795. imr_reg |= AR_IMR_RXOK;
  796. }
  797. if (ah->config.tx_intr_mitigation)
  798. imr_reg |= AR_IMR_TXINTM | AR_IMR_TXMINTR;
  799. else
  800. imr_reg |= AR_IMR_TXOK;
  801. if (opmode == NL80211_IFTYPE_AP)
  802. imr_reg |= AR_IMR_MIB;
  803. ENABLE_REGWRITE_BUFFER(ah);
  804. REG_WRITE(ah, AR_IMR, imr_reg);
  805. ah->imrs2_reg |= AR_IMR_S2_GTT;
  806. REG_WRITE(ah, AR_IMR_S2, ah->imrs2_reg);
  807. if (!AR_SREV_9100(ah)) {
  808. REG_WRITE(ah, AR_INTR_SYNC_CAUSE, 0xFFFFFFFF);
  809. REG_WRITE(ah, AR_INTR_SYNC_ENABLE, sync_default);
  810. REG_WRITE(ah, AR_INTR_SYNC_MASK, 0);
  811. }
  812. REGWRITE_BUFFER_FLUSH(ah);
  813. if (AR_SREV_9300_20_OR_LATER(ah)) {
  814. REG_WRITE(ah, AR_INTR_PRIO_ASYNC_ENABLE, 0);
  815. REG_WRITE(ah, AR_INTR_PRIO_ASYNC_MASK, 0);
  816. REG_WRITE(ah, AR_INTR_PRIO_SYNC_ENABLE, 0);
  817. REG_WRITE(ah, AR_INTR_PRIO_SYNC_MASK, 0);
  818. }
  819. }
  820. static void ath9k_hw_set_sifs_time(struct ath_hw *ah, u32 us)
  821. {
  822. u32 val = ath9k_hw_mac_to_clks(ah, us - 2);
  823. val = min(val, (u32) 0xFFFF);
  824. REG_WRITE(ah, AR_D_GBL_IFS_SIFS, val);
  825. }
  826. static void ath9k_hw_setslottime(struct ath_hw *ah, u32 us)
  827. {
  828. u32 val = ath9k_hw_mac_to_clks(ah, us);
  829. val = min(val, (u32) 0xFFFF);
  830. REG_WRITE(ah, AR_D_GBL_IFS_SLOT, val);
  831. }
  832. static void ath9k_hw_set_ack_timeout(struct ath_hw *ah, u32 us)
  833. {
  834. u32 val = ath9k_hw_mac_to_clks(ah, us);
  835. val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_ACK));
  836. REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_ACK, val);
  837. }
  838. static void ath9k_hw_set_cts_timeout(struct ath_hw *ah, u32 us)
  839. {
  840. u32 val = ath9k_hw_mac_to_clks(ah, us);
  841. val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_CTS));
  842. REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_CTS, val);
  843. }
  844. static bool ath9k_hw_set_global_txtimeout(struct ath_hw *ah, u32 tu)
  845. {
  846. if (tu > 0xFFFF) {
  847. ath_dbg(ath9k_hw_common(ah), XMIT, "bad global tx timeout %u\n",
  848. tu);
  849. ah->globaltxtimeout = (u32) -1;
  850. return false;
  851. } else {
  852. REG_RMW_FIELD(ah, AR_GTXTO, AR_GTXTO_TIMEOUT_LIMIT, tu);
  853. ah->globaltxtimeout = tu;
  854. return true;
  855. }
  856. }
  857. void ath9k_hw_init_global_settings(struct ath_hw *ah)
  858. {
  859. struct ath_common *common = ath9k_hw_common(ah);
  860. struct ieee80211_conf *conf = &common->hw->conf;
  861. const struct ath9k_channel *chan = ah->curchan;
  862. int acktimeout, ctstimeout, ack_offset = 0;
  863. int slottime;
  864. int sifstime;
  865. int rx_lat = 0, tx_lat = 0, eifs = 0;
  866. u32 reg;
  867. ath_dbg(ath9k_hw_common(ah), RESET, "ah->misc_mode 0x%x\n",
  868. ah->misc_mode);
  869. if (!chan)
  870. return;
  871. if (ah->misc_mode != 0)
  872. REG_SET_BIT(ah, AR_PCU_MISC, ah->misc_mode);
  873. if (IS_CHAN_A_FAST_CLOCK(ah, chan))
  874. rx_lat = 41;
  875. else
  876. rx_lat = 37;
  877. tx_lat = 54;
  878. if (IS_CHAN_5GHZ(chan))
  879. sifstime = 16;
  880. else
  881. sifstime = 10;
  882. if (IS_CHAN_HALF_RATE(chan)) {
  883. eifs = 175;
  884. rx_lat *= 2;
  885. tx_lat *= 2;
  886. if (IS_CHAN_A_FAST_CLOCK(ah, chan))
  887. tx_lat += 11;
  888. sifstime *= 2;
  889. ack_offset = 16;
  890. slottime = 13;
  891. } else if (IS_CHAN_QUARTER_RATE(chan)) {
  892. eifs = 340;
  893. rx_lat = (rx_lat * 4) - 1;
  894. tx_lat *= 4;
  895. if (IS_CHAN_A_FAST_CLOCK(ah, chan))
  896. tx_lat += 22;
  897. sifstime *= 4;
  898. ack_offset = 32;
  899. slottime = 21;
  900. } else {
  901. if (AR_SREV_9287(ah) && AR_SREV_9287_13_OR_LATER(ah)) {
  902. eifs = AR_D_GBL_IFS_EIFS_ASYNC_FIFO;
  903. reg = AR_USEC_ASYNC_FIFO;
  904. } else {
  905. eifs = REG_READ(ah, AR_D_GBL_IFS_EIFS)/
  906. common->clockrate;
  907. reg = REG_READ(ah, AR_USEC);
  908. }
  909. rx_lat = MS(reg, AR_USEC_RX_LAT);
  910. tx_lat = MS(reg, AR_USEC_TX_LAT);
  911. slottime = ah->slottime;
  912. }
  913. /* As defined by IEEE 802.11-2007 17.3.8.6 */
  914. acktimeout = slottime + sifstime + 3 * ah->coverage_class + ack_offset;
  915. ctstimeout = acktimeout;
  916. /*
  917. * Workaround for early ACK timeouts, add an offset to match the
  918. * initval's 64us ack timeout value. Use 48us for the CTS timeout.
  919. * This was initially only meant to work around an issue with delayed
  920. * BA frames in some implementations, but it has been found to fix ACK
  921. * timeout issues in other cases as well.
  922. */
  923. if (conf->channel && conf->channel->band == IEEE80211_BAND_2GHZ &&
  924. !IS_CHAN_HALF_RATE(chan) && !IS_CHAN_QUARTER_RATE(chan)) {
  925. acktimeout += 64 - sifstime - ah->slottime;
  926. ctstimeout += 48 - sifstime - ah->slottime;
  927. }
  928. ath9k_hw_set_sifs_time(ah, sifstime);
  929. ath9k_hw_setslottime(ah, slottime);
  930. ath9k_hw_set_ack_timeout(ah, acktimeout);
  931. ath9k_hw_set_cts_timeout(ah, ctstimeout);
  932. if (ah->globaltxtimeout != (u32) -1)
  933. ath9k_hw_set_global_txtimeout(ah, ah->globaltxtimeout);
  934. REG_WRITE(ah, AR_D_GBL_IFS_EIFS, ath9k_hw_mac_to_clks(ah, eifs));
  935. REG_RMW(ah, AR_USEC,
  936. (common->clockrate - 1) |
  937. SM(rx_lat, AR_USEC_RX_LAT) |
  938. SM(tx_lat, AR_USEC_TX_LAT),
  939. AR_USEC_TX_LAT | AR_USEC_RX_LAT | AR_USEC_USEC);
  940. }
  941. EXPORT_SYMBOL(ath9k_hw_init_global_settings);
  942. void ath9k_hw_deinit(struct ath_hw *ah)
  943. {
  944. struct ath_common *common = ath9k_hw_common(ah);
  945. if (common->state < ATH_HW_INITIALIZED)
  946. goto free_hw;
  947. ath9k_hw_setpower(ah, ATH9K_PM_FULL_SLEEP);
  948. free_hw:
  949. ath9k_hw_rf_free_ext_banks(ah);
  950. }
  951. EXPORT_SYMBOL(ath9k_hw_deinit);
  952. /*******/
  953. /* INI */
  954. /*******/
  955. u32 ath9k_regd_get_ctl(struct ath_regulatory *reg, struct ath9k_channel *chan)
  956. {
  957. u32 ctl = ath_regd_get_band_ctl(reg, chan->chan->band);
  958. if (IS_CHAN_B(chan))
  959. ctl |= CTL_11B;
  960. else if (IS_CHAN_G(chan))
  961. ctl |= CTL_11G;
  962. else
  963. ctl |= CTL_11A;
  964. return ctl;
  965. }
  966. /****************************************/
  967. /* Reset and Channel Switching Routines */
  968. /****************************************/
  969. static inline void ath9k_hw_set_dma(struct ath_hw *ah)
  970. {
  971. struct ath_common *common = ath9k_hw_common(ah);
  972. ENABLE_REGWRITE_BUFFER(ah);
  973. /*
  974. * set AHB_MODE not to do cacheline prefetches
  975. */
  976. if (!AR_SREV_9300_20_OR_LATER(ah))
  977. REG_SET_BIT(ah, AR_AHB_MODE, AR_AHB_PREFETCH_RD_EN);
  978. /*
  979. * let mac dma reads be in 128 byte chunks
  980. */
  981. REG_RMW(ah, AR_TXCFG, AR_TXCFG_DMASZ_128B, AR_TXCFG_DMASZ_MASK);
  982. REGWRITE_BUFFER_FLUSH(ah);
  983. /*
  984. * Restore TX Trigger Level to its pre-reset value.
  985. * The initial value depends on whether aggregation is enabled, and is
  986. * adjusted whenever underruns are detected.
  987. */
  988. if (!AR_SREV_9300_20_OR_LATER(ah))
  989. REG_RMW_FIELD(ah, AR_TXCFG, AR_FTRIG, ah->tx_trig_level);
  990. ENABLE_REGWRITE_BUFFER(ah);
  991. /*
  992. * let mac dma writes be in 128 byte chunks
  993. */
  994. REG_RMW(ah, AR_RXCFG, AR_RXCFG_DMASZ_128B, AR_RXCFG_DMASZ_MASK);
  995. /*
  996. * Setup receive FIFO threshold to hold off TX activities
  997. */
  998. REG_WRITE(ah, AR_RXFIFO_CFG, 0x200);
  999. if (AR_SREV_9300_20_OR_LATER(ah)) {
  1000. REG_RMW_FIELD(ah, AR_RXBP_THRESH, AR_RXBP_THRESH_HP, 0x1);
  1001. REG_RMW_FIELD(ah, AR_RXBP_THRESH, AR_RXBP_THRESH_LP, 0x1);
  1002. ath9k_hw_set_rx_bufsize(ah, common->rx_bufsize -
  1003. ah->caps.rx_status_len);
  1004. }
  1005. /*
  1006. * reduce the number of usable entries in PCU TXBUF to avoid
  1007. * wrap around issues.
  1008. */
  1009. if (AR_SREV_9285(ah)) {
  1010. /* For AR9285 the number of Fifos are reduced to half.
  1011. * So set the usable tx buf size also to half to
  1012. * avoid data/delimiter underruns
  1013. */
  1014. REG_WRITE(ah, AR_PCU_TXBUF_CTRL,
  1015. AR_9285_PCU_TXBUF_CTRL_USABLE_SIZE);
  1016. } else if (!AR_SREV_9271(ah)) {
  1017. REG_WRITE(ah, AR_PCU_TXBUF_CTRL,
  1018. AR_PCU_TXBUF_CTRL_USABLE_SIZE);
  1019. }
  1020. REGWRITE_BUFFER_FLUSH(ah);
  1021. if (AR_SREV_9300_20_OR_LATER(ah))
  1022. ath9k_hw_reset_txstatus_ring(ah);
  1023. }
  1024. static void ath9k_hw_set_operating_mode(struct ath_hw *ah, int opmode)
  1025. {
  1026. u32 mask = AR_STA_ID1_STA_AP | AR_STA_ID1_ADHOC;
  1027. u32 set = AR_STA_ID1_KSRCH_MODE;
  1028. switch (opmode) {
  1029. case NL80211_IFTYPE_ADHOC:
  1030. case NL80211_IFTYPE_MESH_POINT:
  1031. set |= AR_STA_ID1_ADHOC;
  1032. REG_SET_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
  1033. break;
  1034. case NL80211_IFTYPE_AP:
  1035. set |= AR_STA_ID1_STA_AP;
  1036. /* fall through */
  1037. case NL80211_IFTYPE_STATION:
  1038. REG_CLR_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
  1039. break;
  1040. default:
  1041. if (!ah->is_monitoring)
  1042. set = 0;
  1043. break;
  1044. }
  1045. REG_RMW(ah, AR_STA_ID1, set, mask);
  1046. }
  1047. void ath9k_hw_get_delta_slope_vals(struct ath_hw *ah, u32 coef_scaled,
  1048. u32 *coef_mantissa, u32 *coef_exponent)
  1049. {
  1050. u32 coef_exp, coef_man;
  1051. for (coef_exp = 31; coef_exp > 0; coef_exp--)
  1052. if ((coef_scaled >> coef_exp) & 0x1)
  1053. break;
  1054. coef_exp = 14 - (coef_exp - COEF_SCALE_S);
  1055. coef_man = coef_scaled + (1 << (COEF_SCALE_S - coef_exp - 1));
  1056. *coef_mantissa = coef_man >> (COEF_SCALE_S - coef_exp);
  1057. *coef_exponent = coef_exp - 16;
  1058. }
  1059. static bool ath9k_hw_set_reset(struct ath_hw *ah, int type)
  1060. {
  1061. u32 rst_flags;
  1062. u32 tmpReg;
  1063. if (AR_SREV_9100(ah)) {
  1064. REG_RMW_FIELD(ah, AR_RTC_DERIVED_CLK,
  1065. AR_RTC_DERIVED_CLK_PERIOD, 1);
  1066. (void)REG_READ(ah, AR_RTC_DERIVED_CLK);
  1067. }
  1068. ENABLE_REGWRITE_BUFFER(ah);
  1069. if (AR_SREV_9300_20_OR_LATER(ah)) {
  1070. REG_WRITE(ah, AR_WA, ah->WARegVal);
  1071. udelay(10);
  1072. }
  1073. REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
  1074. AR_RTC_FORCE_WAKE_ON_INT);
  1075. if (AR_SREV_9100(ah)) {
  1076. rst_flags = AR_RTC_RC_MAC_WARM | AR_RTC_RC_MAC_COLD |
  1077. AR_RTC_RC_COLD_RESET | AR_RTC_RC_WARM_RESET;
  1078. } else {
  1079. tmpReg = REG_READ(ah, AR_INTR_SYNC_CAUSE);
  1080. if (tmpReg &
  1081. (AR_INTR_SYNC_LOCAL_TIMEOUT |
  1082. AR_INTR_SYNC_RADM_CPL_TIMEOUT)) {
  1083. u32 val;
  1084. REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0);
  1085. val = AR_RC_HOSTIF;
  1086. if (!AR_SREV_9300_20_OR_LATER(ah))
  1087. val |= AR_RC_AHB;
  1088. REG_WRITE(ah, AR_RC, val);
  1089. } else if (!AR_SREV_9300_20_OR_LATER(ah))
  1090. REG_WRITE(ah, AR_RC, AR_RC_AHB);
  1091. rst_flags = AR_RTC_RC_MAC_WARM;
  1092. if (type == ATH9K_RESET_COLD)
  1093. rst_flags |= AR_RTC_RC_MAC_COLD;
  1094. }
  1095. if (AR_SREV_9330(ah)) {
  1096. int npend = 0;
  1097. int i;
  1098. /* AR9330 WAR:
  1099. * call external reset function to reset WMAC if:
  1100. * - doing a cold reset
  1101. * - we have pending frames in the TX queues
  1102. */
  1103. for (i = 0; i < AR_NUM_QCU; i++) {
  1104. npend = ath9k_hw_numtxpending(ah, i);
  1105. if (npend)
  1106. break;
  1107. }
  1108. if (ah->external_reset &&
  1109. (npend || type == ATH9K_RESET_COLD)) {
  1110. int reset_err = 0;
  1111. ath_dbg(ath9k_hw_common(ah), RESET,
  1112. "reset MAC via external reset\n");
  1113. reset_err = ah->external_reset();
  1114. if (reset_err) {
  1115. ath_err(ath9k_hw_common(ah),
  1116. "External reset failed, err=%d\n",
  1117. reset_err);
  1118. return false;
  1119. }
  1120. REG_WRITE(ah, AR_RTC_RESET, 1);
  1121. }
  1122. }
  1123. if (ath9k_hw_mci_is_enabled(ah))
  1124. ar9003_mci_state(ah, MCI_STATE_CHECK_GPM_OFFSET, NULL);
  1125. REG_WRITE(ah, AR_RTC_RC, rst_flags);
  1126. REGWRITE_BUFFER_FLUSH(ah);
  1127. udelay(50);
  1128. REG_WRITE(ah, AR_RTC_RC, 0);
  1129. if (!ath9k_hw_wait(ah, AR_RTC_RC, AR_RTC_RC_M, 0, AH_WAIT_TIMEOUT)) {
  1130. ath_dbg(ath9k_hw_common(ah), RESET, "RTC stuck in MAC reset\n");
  1131. return false;
  1132. }
  1133. if (!AR_SREV_9100(ah))
  1134. REG_WRITE(ah, AR_RC, 0);
  1135. if (AR_SREV_9100(ah))
  1136. udelay(50);
  1137. return true;
  1138. }
  1139. static bool ath9k_hw_set_reset_power_on(struct ath_hw *ah)
  1140. {
  1141. ENABLE_REGWRITE_BUFFER(ah);
  1142. if (AR_SREV_9300_20_OR_LATER(ah)) {
  1143. REG_WRITE(ah, AR_WA, ah->WARegVal);
  1144. udelay(10);
  1145. }
  1146. REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
  1147. AR_RTC_FORCE_WAKE_ON_INT);
  1148. if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
  1149. REG_WRITE(ah, AR_RC, AR_RC_AHB);
  1150. REG_WRITE(ah, AR_RTC_RESET, 0);
  1151. REGWRITE_BUFFER_FLUSH(ah);
  1152. if (!AR_SREV_9300_20_OR_LATER(ah))
  1153. udelay(2);
  1154. if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
  1155. REG_WRITE(ah, AR_RC, 0);
  1156. REG_WRITE(ah, AR_RTC_RESET, 1);
  1157. if (!ath9k_hw_wait(ah,
  1158. AR_RTC_STATUS,
  1159. AR_RTC_STATUS_M,
  1160. AR_RTC_STATUS_ON,
  1161. AH_WAIT_TIMEOUT)) {
  1162. ath_dbg(ath9k_hw_common(ah), RESET, "RTC not waking up\n");
  1163. return false;
  1164. }
  1165. return ath9k_hw_set_reset(ah, ATH9K_RESET_WARM);
  1166. }
  1167. static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type)
  1168. {
  1169. bool ret = false;
  1170. if (AR_SREV_9300_20_OR_LATER(ah)) {
  1171. REG_WRITE(ah, AR_WA, ah->WARegVal);
  1172. udelay(10);
  1173. }
  1174. REG_WRITE(ah, AR_RTC_FORCE_WAKE,
  1175. AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT);
  1176. switch (type) {
  1177. case ATH9K_RESET_POWER_ON:
  1178. ret = ath9k_hw_set_reset_power_on(ah);
  1179. break;
  1180. case ATH9K_RESET_WARM:
  1181. case ATH9K_RESET_COLD:
  1182. ret = ath9k_hw_set_reset(ah, type);
  1183. break;
  1184. default:
  1185. break;
  1186. }
  1187. return ret;
  1188. }
  1189. static bool ath9k_hw_chip_reset(struct ath_hw *ah,
  1190. struct ath9k_channel *chan)
  1191. {
  1192. int reset_type = ATH9K_RESET_WARM;
  1193. if (AR_SREV_9280(ah)) {
  1194. if (ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL))
  1195. reset_type = ATH9K_RESET_POWER_ON;
  1196. else
  1197. reset_type = ATH9K_RESET_COLD;
  1198. }
  1199. if (!ath9k_hw_set_reset_reg(ah, reset_type))
  1200. return false;
  1201. if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
  1202. return false;
  1203. ah->chip_fullsleep = false;
  1204. if (AR_SREV_9330(ah))
  1205. ar9003_hw_internal_regulator_apply(ah);
  1206. ath9k_hw_init_pll(ah, chan);
  1207. ath9k_hw_set_rfmode(ah, chan);
  1208. return true;
  1209. }
  1210. static bool ath9k_hw_channel_change(struct ath_hw *ah,
  1211. struct ath9k_channel *chan)
  1212. {
  1213. struct ath_common *common = ath9k_hw_common(ah);
  1214. u32 qnum;
  1215. int r;
  1216. bool edma = !!(ah->caps.hw_caps & ATH9K_HW_CAP_EDMA);
  1217. bool band_switch, mode_diff;
  1218. u8 ini_reloaded;
  1219. band_switch = (chan->channelFlags & (CHANNEL_2GHZ | CHANNEL_5GHZ)) !=
  1220. (ah->curchan->channelFlags & (CHANNEL_2GHZ |
  1221. CHANNEL_5GHZ));
  1222. mode_diff = (chan->chanmode != ah->curchan->chanmode);
  1223. for (qnum = 0; qnum < AR_NUM_QCU; qnum++) {
  1224. if (ath9k_hw_numtxpending(ah, qnum)) {
  1225. ath_dbg(common, QUEUE,
  1226. "Transmit frames pending on queue %d\n", qnum);
  1227. return false;
  1228. }
  1229. }
  1230. if (!ath9k_hw_rfbus_req(ah)) {
  1231. ath_err(common, "Could not kill baseband RX\n");
  1232. return false;
  1233. }
  1234. if (edma && (band_switch || mode_diff)) {
  1235. ath9k_hw_mark_phy_inactive(ah);
  1236. udelay(5);
  1237. ath9k_hw_init_pll(ah, NULL);
  1238. if (ath9k_hw_fast_chan_change(ah, chan, &ini_reloaded)) {
  1239. ath_err(common, "Failed to do fast channel change\n");
  1240. return false;
  1241. }
  1242. }
  1243. ath9k_hw_set_channel_regs(ah, chan);
  1244. r = ath9k_hw_rf_set_freq(ah, chan);
  1245. if (r) {
  1246. ath_err(common, "Failed to set channel\n");
  1247. return false;
  1248. }
  1249. ath9k_hw_set_clockrate(ah);
  1250. ath9k_hw_apply_txpower(ah, chan, false);
  1251. ath9k_hw_rfbus_done(ah);
  1252. if (IS_CHAN_OFDM(chan) || IS_CHAN_HT(chan))
  1253. ath9k_hw_set_delta_slope(ah, chan);
  1254. ath9k_hw_spur_mitigate_freq(ah, chan);
  1255. if (edma && (band_switch || mode_diff)) {
  1256. ah->ah_flags |= AH_FASTCC;
  1257. if (band_switch || ini_reloaded)
  1258. ah->eep_ops->set_board_values(ah, chan);
  1259. ath9k_hw_init_bb(ah, chan);
  1260. if (band_switch || ini_reloaded)
  1261. ath9k_hw_init_cal(ah, chan);
  1262. ah->ah_flags &= ~AH_FASTCC;
  1263. }
  1264. return true;
  1265. }
  1266. static void ath9k_hw_apply_gpio_override(struct ath_hw *ah)
  1267. {
  1268. u32 gpio_mask = ah->gpio_mask;
  1269. int i;
  1270. for (i = 0; gpio_mask; i++, gpio_mask >>= 1) {
  1271. if (!(gpio_mask & 1))
  1272. continue;
  1273. ath9k_hw_cfg_output(ah, i, AR_GPIO_OUTPUT_MUX_AS_OUTPUT);
  1274. ath9k_hw_set_gpio(ah, i, !!(ah->gpio_val & BIT(i)));
  1275. }
  1276. }
  1277. static bool ath9k_hw_check_dcs(u32 dma_dbg, u32 num_dcu_states,
  1278. int *hang_state, int *hang_pos)
  1279. {
  1280. static u32 dcu_chain_state[] = {5, 6, 9}; /* DCU chain stuck states */
  1281. u32 chain_state, dcs_pos, i;
  1282. for (dcs_pos = 0; dcs_pos < num_dcu_states; dcs_pos++) {
  1283. chain_state = (dma_dbg >> (5 * dcs_pos)) & 0x1f;
  1284. for (i = 0; i < 3; i++) {
  1285. if (chain_state == dcu_chain_state[i]) {
  1286. *hang_state = chain_state;
  1287. *hang_pos = dcs_pos;
  1288. return true;
  1289. }
  1290. }
  1291. }
  1292. return false;
  1293. }
  1294. #define DCU_COMPLETE_STATE 1
  1295. #define DCU_COMPLETE_STATE_MASK 0x3
  1296. #define NUM_STATUS_READS 50
  1297. static bool ath9k_hw_detect_mac_hang(struct ath_hw *ah)
  1298. {
  1299. u32 chain_state, comp_state, dcs_reg = AR_DMADBG_4;
  1300. u32 i, hang_pos, hang_state, num_state = 6;
  1301. comp_state = REG_READ(ah, AR_DMADBG_6);
  1302. if ((comp_state & DCU_COMPLETE_STATE_MASK) != DCU_COMPLETE_STATE) {
  1303. ath_dbg(ath9k_hw_common(ah), RESET,
  1304. "MAC Hang signature not found at DCU complete\n");
  1305. return false;
  1306. }
  1307. chain_state = REG_READ(ah, dcs_reg);
  1308. if (ath9k_hw_check_dcs(chain_state, num_state, &hang_state, &hang_pos))
  1309. goto hang_check_iter;
  1310. dcs_reg = AR_DMADBG_5;
  1311. num_state = 4;
  1312. chain_state = REG_READ(ah, dcs_reg);
  1313. if (ath9k_hw_check_dcs(chain_state, num_state, &hang_state, &hang_pos))
  1314. goto hang_check_iter;
  1315. ath_dbg(ath9k_hw_common(ah), RESET,
  1316. "MAC Hang signature 1 not found\n");
  1317. return false;
  1318. hang_check_iter:
  1319. ath_dbg(ath9k_hw_common(ah), RESET,
  1320. "DCU registers: chain %08x complete %08x Hang: state %d pos %d\n",
  1321. chain_state, comp_state, hang_state, hang_pos);
  1322. for (i = 0; i < NUM_STATUS_READS; i++) {
  1323. chain_state = REG_READ(ah, dcs_reg);
  1324. chain_state = (chain_state >> (5 * hang_pos)) & 0x1f;
  1325. comp_state = REG_READ(ah, AR_DMADBG_6);
  1326. if (((comp_state & DCU_COMPLETE_STATE_MASK) !=
  1327. DCU_COMPLETE_STATE) ||
  1328. (chain_state != hang_state))
  1329. return false;
  1330. }
  1331. ath_dbg(ath9k_hw_common(ah), RESET, "MAC Hang signature 1 found\n");
  1332. return true;
  1333. }
  1334. bool ath9k_hw_check_alive(struct ath_hw *ah)
  1335. {
  1336. int count = 50;
  1337. u32 reg;
  1338. if (AR_SREV_9300(ah))
  1339. return !ath9k_hw_detect_mac_hang(ah);
  1340. if (AR_SREV_9285_12_OR_LATER(ah))
  1341. return true;
  1342. do {
  1343. reg = REG_READ(ah, AR_OBS_BUS_1);
  1344. if ((reg & 0x7E7FFFEF) == 0x00702400)
  1345. continue;
  1346. switch (reg & 0x7E000B00) {
  1347. case 0x1E000000:
  1348. case 0x52000B00:
  1349. case 0x18000B00:
  1350. continue;
  1351. default:
  1352. return true;
  1353. }
  1354. } while (count-- > 0);
  1355. return false;
  1356. }
  1357. EXPORT_SYMBOL(ath9k_hw_check_alive);
  1358. /*
  1359. * Fast channel change:
  1360. * (Change synthesizer based on channel freq without resetting chip)
  1361. *
  1362. * Don't do FCC when
  1363. * - Flag is not set
  1364. * - Chip is just coming out of full sleep
  1365. * - Channel to be set is same as current channel
  1366. * - Channel flags are different, (eg.,moving from 2GHz to 5GHz channel)
  1367. */
  1368. static int ath9k_hw_do_fastcc(struct ath_hw *ah, struct ath9k_channel *chan)
  1369. {
  1370. struct ath_common *common = ath9k_hw_common(ah);
  1371. int ret;
  1372. if (AR_SREV_9280(ah) && common->bus_ops->ath_bus_type == ATH_PCI)
  1373. goto fail;
  1374. if (ah->chip_fullsleep)
  1375. goto fail;
  1376. if (!ah->curchan)
  1377. goto fail;
  1378. if (chan->channel == ah->curchan->channel)
  1379. goto fail;
  1380. if ((ah->curchan->channelFlags | chan->channelFlags) &
  1381. (CHANNEL_HALF | CHANNEL_QUARTER))
  1382. goto fail;
  1383. if ((chan->channelFlags & CHANNEL_ALL) !=
  1384. (ah->curchan->channelFlags & CHANNEL_ALL))
  1385. goto fail;
  1386. if (!ath9k_hw_check_alive(ah))
  1387. goto fail;
  1388. /*
  1389. * For AR9462, make sure that calibration data for
  1390. * re-using are present.
  1391. */
  1392. if (AR_SREV_9462(ah) && (ah->caldata &&
  1393. (!ah->caldata->done_txiqcal_once ||
  1394. !ah->caldata->done_txclcal_once ||
  1395. !ah->caldata->rtt_done)))
  1396. goto fail;
  1397. ath_dbg(common, RESET, "FastChannelChange for %d -> %d\n",
  1398. ah->curchan->channel, chan->channel);
  1399. ret = ath9k_hw_channel_change(ah, chan);
  1400. if (!ret)
  1401. goto fail;
  1402. ath9k_hw_loadnf(ah, ah->curchan);
  1403. ath9k_hw_start_nfcal(ah, true);
  1404. if (ath9k_hw_mci_is_enabled(ah))
  1405. ar9003_mci_2g5g_switch(ah, false);
  1406. if (AR_SREV_9271(ah))
  1407. ar9002_hw_load_ani_reg(ah, chan);
  1408. return 0;
  1409. fail:
  1410. return -EINVAL;
  1411. }
  1412. int ath9k_hw_reset(struct ath_hw *ah, struct ath9k_channel *chan,
  1413. struct ath9k_hw_cal_data *caldata, bool fastcc)
  1414. {
  1415. struct ath_common *common = ath9k_hw_common(ah);
  1416. u32 saveLedState;
  1417. u32 saveDefAntenna;
  1418. u32 macStaId1;
  1419. u64 tsf = 0;
  1420. int i, r;
  1421. bool start_mci_reset = false;
  1422. bool save_fullsleep = ah->chip_fullsleep;
  1423. if (ath9k_hw_mci_is_enabled(ah)) {
  1424. start_mci_reset = ar9003_mci_start_reset(ah, chan);
  1425. if (start_mci_reset)
  1426. return 0;
  1427. }
  1428. if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
  1429. return -EIO;
  1430. if (ah->curchan && !ah->chip_fullsleep)
  1431. ath9k_hw_getnf(ah, ah->curchan);
  1432. ah->caldata = caldata;
  1433. if (caldata &&
  1434. (chan->channel != caldata->channel ||
  1435. (chan->channelFlags & ~CHANNEL_CW_INT) !=
  1436. (caldata->channelFlags & ~CHANNEL_CW_INT))) {
  1437. /* Operating channel changed, reset channel calibration data */
  1438. memset(caldata, 0, sizeof(*caldata));
  1439. ath9k_init_nfcal_hist_buffer(ah, chan);
  1440. }
  1441. ah->noise = ath9k_hw_getchan_noise(ah, chan);
  1442. if (fastcc) {
  1443. r = ath9k_hw_do_fastcc(ah, chan);
  1444. if (!r)
  1445. return r;
  1446. }
  1447. if (ath9k_hw_mci_is_enabled(ah))
  1448. ar9003_mci_stop_bt(ah, save_fullsleep);
  1449. saveDefAntenna = REG_READ(ah, AR_DEF_ANTENNA);
  1450. if (saveDefAntenna == 0)
  1451. saveDefAntenna = 1;
  1452. macStaId1 = REG_READ(ah, AR_STA_ID1) & AR_STA_ID1_BASE_RATE_11B;
  1453. /* For chips on which RTC reset is done, save TSF before it gets cleared */
  1454. if (AR_SREV_9100(ah) ||
  1455. (AR_SREV_9280(ah) && ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL)))
  1456. tsf = ath9k_hw_gettsf64(ah);
  1457. saveLedState = REG_READ(ah, AR_CFG_LED) &
  1458. (AR_CFG_LED_ASSOC_CTL | AR_CFG_LED_MODE_SEL |
  1459. AR_CFG_LED_BLINK_THRESH_SEL | AR_CFG_LED_BLINK_SLOW);
  1460. ath9k_hw_mark_phy_inactive(ah);
  1461. ah->paprd_table_write_done = false;
  1462. /* Only required on the first reset */
  1463. if (AR_SREV_9271(ah) && ah->htc_reset_init) {
  1464. REG_WRITE(ah,
  1465. AR9271_RESET_POWER_DOWN_CONTROL,
  1466. AR9271_RADIO_RF_RST);
  1467. udelay(50);
  1468. }
  1469. if (!ath9k_hw_chip_reset(ah, chan)) {
  1470. ath_err(common, "Chip reset failed\n");
  1471. return -EINVAL;
  1472. }
  1473. /* Only required on the first reset */
  1474. if (AR_SREV_9271(ah) && ah->htc_reset_init) {
  1475. ah->htc_reset_init = false;
  1476. REG_WRITE(ah,
  1477. AR9271_RESET_POWER_DOWN_CONTROL,
  1478. AR9271_GATE_MAC_CTL);
  1479. udelay(50);
  1480. }
  1481. /* Restore TSF */
  1482. if (tsf)
  1483. ath9k_hw_settsf64(ah, tsf);
  1484. if (AR_SREV_9280_20_OR_LATER(ah))
  1485. REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL, AR_GPIO_JTAG_DISABLE);
  1486. if (!AR_SREV_9300_20_OR_LATER(ah))
  1487. ar9002_hw_enable_async_fifo(ah);
  1488. r = ath9k_hw_process_ini(ah, chan);
  1489. if (r)
  1490. return r;
  1491. if (ath9k_hw_mci_is_enabled(ah))
  1492. ar9003_mci_reset(ah, false, IS_CHAN_2GHZ(chan), save_fullsleep);
  1493. /*
  1494. * Some AR91xx SoC devices frequently fail to accept TSF writes
  1495. * right after the chip reset. When that happens, write a new
  1496. * value after the initvals have been applied, with an offset
  1497. * based on measured time difference
  1498. */
  1499. if (AR_SREV_9100(ah) && (ath9k_hw_gettsf64(ah) < tsf)) {
  1500. tsf += 1500;
  1501. ath9k_hw_settsf64(ah, tsf);
  1502. }
  1503. /* Setup MFP options for CCMP */
  1504. if (AR_SREV_9280_20_OR_LATER(ah)) {
  1505. /* Mask Retry(b11), PwrMgt(b12), MoreData(b13) to 0 in mgmt
  1506. * frames when constructing CCMP AAD. */
  1507. REG_RMW_FIELD(ah, AR_AES_MUTE_MASK1, AR_AES_MUTE_MASK1_FC_MGMT,
  1508. 0xc7ff);
  1509. ah->sw_mgmt_crypto = false;
  1510. } else if (AR_SREV_9160_10_OR_LATER(ah)) {
  1511. /* Disable hardware crypto for management frames */
  1512. REG_CLR_BIT(ah, AR_PCU_MISC_MODE2,
  1513. AR_PCU_MISC_MODE2_MGMT_CRYPTO_ENABLE);
  1514. REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
  1515. AR_PCU_MISC_MODE2_NO_CRYPTO_FOR_NON_DATA_PKT);
  1516. ah->sw_mgmt_crypto = true;
  1517. } else
  1518. ah->sw_mgmt_crypto = true;
  1519. if (IS_CHAN_OFDM(chan) || IS_CHAN_HT(chan))
  1520. ath9k_hw_set_delta_slope(ah, chan);
  1521. ath9k_hw_spur_mitigate_freq(ah, chan);
  1522. ah->eep_ops->set_board_values(ah, chan);
  1523. ENABLE_REGWRITE_BUFFER(ah);
  1524. REG_WRITE(ah, AR_STA_ID0, get_unaligned_le32(common->macaddr));
  1525. REG_WRITE(ah, AR_STA_ID1, get_unaligned_le16(common->macaddr + 4)
  1526. | macStaId1
  1527. | AR_STA_ID1_RTS_USE_DEF
  1528. | (ah->config.
  1529. ack_6mb ? AR_STA_ID1_ACKCTS_6MB : 0)
  1530. | ah->sta_id1_defaults);
  1531. ath_hw_setbssidmask(common);
  1532. REG_WRITE(ah, AR_DEF_ANTENNA, saveDefAntenna);
  1533. ath9k_hw_write_associd(ah);
  1534. REG_WRITE(ah, AR_ISR, ~0);
  1535. REG_WRITE(ah, AR_RSSI_THR, INIT_RSSI_THR);
  1536. REGWRITE_BUFFER_FLUSH(ah);
  1537. ath9k_hw_set_operating_mode(ah, ah->opmode);
  1538. r = ath9k_hw_rf_set_freq(ah, chan);
  1539. if (r)
  1540. return r;
  1541. ath9k_hw_set_clockrate(ah);
  1542. ENABLE_REGWRITE_BUFFER(ah);
  1543. for (i = 0; i < AR_NUM_DCU; i++)
  1544. REG_WRITE(ah, AR_DQCUMASK(i), 1 << i);
  1545. REGWRITE_BUFFER_FLUSH(ah);
  1546. ah->intr_txqs = 0;
  1547. for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
  1548. ath9k_hw_resettxqueue(ah, i);
  1549. ath9k_hw_init_interrupt_masks(ah, ah->opmode);
  1550. ath9k_hw_ani_cache_ini_regs(ah);
  1551. ath9k_hw_init_qos(ah);
  1552. if (ah->caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
  1553. ath9k_hw_cfg_gpio_input(ah, ah->rfkill_gpio);
  1554. ath9k_hw_init_global_settings(ah);
  1555. if (AR_SREV_9287(ah) && AR_SREV_9287_13_OR_LATER(ah)) {
  1556. REG_SET_BIT(ah, AR_MAC_PCU_LOGIC_ANALYZER,
  1557. AR_MAC_PCU_LOGIC_ANALYZER_DISBUG20768);
  1558. REG_RMW_FIELD(ah, AR_AHB_MODE, AR_AHB_CUSTOM_BURST_EN,
  1559. AR_AHB_CUSTOM_BURST_ASYNC_FIFO_VAL);
  1560. REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
  1561. AR_PCU_MISC_MODE2_ENABLE_AGGWEP);
  1562. }
  1563. REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PRESERVE_SEQNUM);
  1564. ath9k_hw_set_dma(ah);
  1565. if (!ath9k_hw_mci_is_enabled(ah))
  1566. REG_WRITE(ah, AR_OBS, 8);
  1567. if (ah->config.rx_intr_mitigation) {
  1568. REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_LAST, 500);
  1569. REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_FIRST, 2000);
  1570. }
  1571. if (ah->config.tx_intr_mitigation) {
  1572. REG_RMW_FIELD(ah, AR_TIMT, AR_TIMT_LAST, 300);
  1573. REG_RMW_FIELD(ah, AR_TIMT, AR_TIMT_FIRST, 750);
  1574. }
  1575. ath9k_hw_init_bb(ah, chan);
  1576. if (caldata) {
  1577. caldata->done_txiqcal_once = false;
  1578. caldata->done_txclcal_once = false;
  1579. }
  1580. if (!ath9k_hw_init_cal(ah, chan))
  1581. return -EIO;
  1582. ath9k_hw_loadnf(ah, chan);
  1583. ath9k_hw_start_nfcal(ah, true);
  1584. if (ath9k_hw_mci_is_enabled(ah) && ar9003_mci_end_reset(ah, chan, caldata))
  1585. return -EIO;
  1586. ENABLE_REGWRITE_BUFFER(ah);
  1587. ath9k_hw_restore_chainmask(ah);
  1588. REG_WRITE(ah, AR_CFG_LED, saveLedState | AR_CFG_SCLK_32KHZ);
  1589. REGWRITE_BUFFER_FLUSH(ah);
  1590. /*
  1591. * For big endian systems turn on swapping for descriptors
  1592. */
  1593. if (AR_SREV_9100(ah)) {
  1594. u32 mask;
  1595. mask = REG_READ(ah, AR_CFG);
  1596. if (mask & (AR_CFG_SWRB | AR_CFG_SWTB | AR_CFG_SWRG)) {
  1597. ath_dbg(common, RESET, "CFG Byte Swap Set 0x%x\n",
  1598. mask);
  1599. } else {
  1600. mask =
  1601. INIT_CONFIG_STATUS | AR_CFG_SWRB | AR_CFG_SWTB;
  1602. REG_WRITE(ah, AR_CFG, mask);
  1603. ath_dbg(common, RESET, "Setting CFG 0x%x\n",
  1604. REG_READ(ah, AR_CFG));
  1605. }
  1606. } else {
  1607. if (common->bus_ops->ath_bus_type == ATH_USB) {
  1608. /* Configure AR9271 target WLAN */
  1609. if (AR_SREV_9271(ah))
  1610. REG_WRITE(ah, AR_CFG, AR_CFG_SWRB | AR_CFG_SWTB);
  1611. else
  1612. REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
  1613. }
  1614. #ifdef __BIG_ENDIAN
  1615. else if (AR_SREV_9330(ah) || AR_SREV_9340(ah))
  1616. REG_RMW(ah, AR_CFG, AR_CFG_SWRB | AR_CFG_SWTB, 0);
  1617. else
  1618. REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
  1619. #endif
  1620. }
  1621. if (ath9k_hw_btcoex_is_enabled(ah))
  1622. ath9k_hw_btcoex_enable(ah);
  1623. if (ath9k_hw_mci_is_enabled(ah))
  1624. ar9003_mci_check_bt(ah);
  1625. if (AR_SREV_9300_20_OR_LATER(ah)) {
  1626. ar9003_hw_bb_watchdog_config(ah);
  1627. ar9003_hw_disable_phy_restart(ah);
  1628. }
  1629. ath9k_hw_apply_gpio_override(ah);
  1630. return 0;
  1631. }
  1632. EXPORT_SYMBOL(ath9k_hw_reset);
  1633. /******************************/
  1634. /* Power Management (Chipset) */
  1635. /******************************/
  1636. /*
  1637. * Notify Power Mgt is disabled in self-generated frames.
  1638. * If requested, force chip to sleep.
  1639. */
  1640. static void ath9k_set_power_sleep(struct ath_hw *ah)
  1641. {
  1642. REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
  1643. if (AR_SREV_9462(ah)) {
  1644. REG_CLR_BIT(ah, AR_TIMER_MODE, 0xff);
  1645. REG_CLR_BIT(ah, AR_NDP2_TIMER_MODE, 0xff);
  1646. REG_CLR_BIT(ah, AR_SLP32_INC, 0xfffff);
  1647. /* xxx Required for WLAN only case ? */
  1648. REG_WRITE(ah, AR_MCI_INTERRUPT_RX_MSG_EN, 0);
  1649. udelay(100);
  1650. }
  1651. /*
  1652. * Clear the RTC force wake bit to allow the
  1653. * mac to go to sleep.
  1654. */
  1655. REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN);
  1656. if (ath9k_hw_mci_is_enabled(ah))
  1657. udelay(100);
  1658. if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
  1659. REG_WRITE(ah, AR_RC, AR_RC_AHB | AR_RC_HOSTIF);
  1660. /* Shutdown chip. Active low */
  1661. if (!AR_SREV_5416(ah) && !AR_SREV_9271(ah)) {
  1662. REG_CLR_BIT(ah, AR_RTC_RESET, AR_RTC_RESET_EN);
  1663. udelay(2);
  1664. }
  1665. /* Clear Bit 14 of AR_WA after putting chip into Full Sleep mode. */
  1666. if (AR_SREV_9300_20_OR_LATER(ah))
  1667. REG_WRITE(ah, AR_WA, ah->WARegVal & ~AR_WA_D3_L1_DISABLE);
  1668. }
  1669. /*
  1670. * Notify Power Management is enabled in self-generating
  1671. * frames. If request, set power mode of chip to
  1672. * auto/normal. Duration in units of 128us (1/8 TU).
  1673. */
  1674. static void ath9k_set_power_network_sleep(struct ath_hw *ah)
  1675. {
  1676. struct ath9k_hw_capabilities *pCap = &ah->caps;
  1677. REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
  1678. if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
  1679. /* Set WakeOnInterrupt bit; clear ForceWake bit */
  1680. REG_WRITE(ah, AR_RTC_FORCE_WAKE,
  1681. AR_RTC_FORCE_WAKE_ON_INT);
  1682. } else {
  1683. /* When chip goes into network sleep, it could be waken
  1684. * up by MCI_INT interrupt caused by BT's HW messages
  1685. * (LNA_xxx, CONT_xxx) which chould be in a very fast
  1686. * rate (~100us). This will cause chip to leave and
  1687. * re-enter network sleep mode frequently, which in
  1688. * consequence will have WLAN MCI HW to generate lots of
  1689. * SYS_WAKING and SYS_SLEEPING messages which will make
  1690. * BT CPU to busy to process.
  1691. */
  1692. if (ath9k_hw_mci_is_enabled(ah))
  1693. REG_CLR_BIT(ah, AR_MCI_INTERRUPT_RX_MSG_EN,
  1694. AR_MCI_INTERRUPT_RX_HW_MSG_MASK);
  1695. /*
  1696. * Clear the RTC force wake bit to allow the
  1697. * mac to go to sleep.
  1698. */
  1699. REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN);
  1700. if (ath9k_hw_mci_is_enabled(ah))
  1701. udelay(30);
  1702. }
  1703. /* Clear Bit 14 of AR_WA after putting chip into Net Sleep mode. */
  1704. if (AR_SREV_9300_20_OR_LATER(ah))
  1705. REG_WRITE(ah, AR_WA, ah->WARegVal & ~AR_WA_D3_L1_DISABLE);
  1706. }
  1707. static bool ath9k_hw_set_power_awake(struct ath_hw *ah)
  1708. {
  1709. u32 val;
  1710. int i;
  1711. /* Set Bits 14 and 17 of AR_WA before powering on the chip. */
  1712. if (AR_SREV_9300_20_OR_LATER(ah)) {
  1713. REG_WRITE(ah, AR_WA, ah->WARegVal);
  1714. udelay(10);
  1715. }
  1716. if ((REG_READ(ah, AR_RTC_STATUS) &
  1717. AR_RTC_STATUS_M) == AR_RTC_STATUS_SHUTDOWN) {
  1718. if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON)) {
  1719. return false;
  1720. }
  1721. if (!AR_SREV_9300_20_OR_LATER(ah))
  1722. ath9k_hw_init_pll(ah, NULL);
  1723. }
  1724. if (AR_SREV_9100(ah))
  1725. REG_SET_BIT(ah, AR_RTC_RESET,
  1726. AR_RTC_RESET_EN);
  1727. REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
  1728. AR_RTC_FORCE_WAKE_EN);
  1729. udelay(50);
  1730. if (ath9k_hw_mci_is_enabled(ah))
  1731. ar9003_mci_set_power_awake(ah);
  1732. for (i = POWER_UP_TIME / 50; i > 0; i--) {
  1733. val = REG_READ(ah, AR_RTC_STATUS) & AR_RTC_STATUS_M;
  1734. if (val == AR_RTC_STATUS_ON)
  1735. break;
  1736. udelay(50);
  1737. REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
  1738. AR_RTC_FORCE_WAKE_EN);
  1739. }
  1740. if (i == 0) {
  1741. ath_err(ath9k_hw_common(ah),
  1742. "Failed to wakeup in %uus\n",
  1743. POWER_UP_TIME / 20);
  1744. return false;
  1745. }
  1746. REG_CLR_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
  1747. return true;
  1748. }
  1749. bool ath9k_hw_setpower(struct ath_hw *ah, enum ath9k_power_mode mode)
  1750. {
  1751. struct ath_common *common = ath9k_hw_common(ah);
  1752. int status = true;
  1753. static const char *modes[] = {
  1754. "AWAKE",
  1755. "FULL-SLEEP",
  1756. "NETWORK SLEEP",
  1757. "UNDEFINED"
  1758. };
  1759. if (ah->power_mode == mode)
  1760. return status;
  1761. ath_dbg(common, RESET, "%s -> %s\n",
  1762. modes[ah->power_mode], modes[mode]);
  1763. switch (mode) {
  1764. case ATH9K_PM_AWAKE:
  1765. status = ath9k_hw_set_power_awake(ah);
  1766. break;
  1767. case ATH9K_PM_FULL_SLEEP:
  1768. if (ath9k_hw_mci_is_enabled(ah))
  1769. ar9003_mci_set_full_sleep(ah);
  1770. ath9k_set_power_sleep(ah);
  1771. ah->chip_fullsleep = true;
  1772. break;
  1773. case ATH9K_PM_NETWORK_SLEEP:
  1774. ath9k_set_power_network_sleep(ah);
  1775. break;
  1776. default:
  1777. ath_err(common, "Unknown power mode %u\n", mode);
  1778. return false;
  1779. }
  1780. ah->power_mode = mode;
  1781. /*
  1782. * XXX: If this warning never comes up after a while then
  1783. * simply keep the ATH_DBG_WARN_ON_ONCE() but make
  1784. * ath9k_hw_setpower() return type void.
  1785. */
  1786. if (!(ah->ah_flags & AH_UNPLUGGED))
  1787. ATH_DBG_WARN_ON_ONCE(!status);
  1788. return status;
  1789. }
  1790. EXPORT_SYMBOL(ath9k_hw_setpower);
  1791. /*******************/
  1792. /* Beacon Handling */
  1793. /*******************/
  1794. void ath9k_hw_beaconinit(struct ath_hw *ah, u32 next_beacon, u32 beacon_period)
  1795. {
  1796. int flags = 0;
  1797. ENABLE_REGWRITE_BUFFER(ah);
  1798. switch (ah->opmode) {
  1799. case NL80211_IFTYPE_ADHOC:
  1800. case NL80211_IFTYPE_MESH_POINT:
  1801. REG_SET_BIT(ah, AR_TXCFG,
  1802. AR_TXCFG_ADHOC_BEACON_ATIM_TX_POLICY);
  1803. REG_WRITE(ah, AR_NEXT_NDP_TIMER, next_beacon +
  1804. TU_TO_USEC(ah->atim_window ? ah->atim_window : 1));
  1805. flags |= AR_NDP_TIMER_EN;
  1806. case NL80211_IFTYPE_AP:
  1807. REG_WRITE(ah, AR_NEXT_TBTT_TIMER, next_beacon);
  1808. REG_WRITE(ah, AR_NEXT_DMA_BEACON_ALERT, next_beacon -
  1809. TU_TO_USEC(ah->config.dma_beacon_response_time));
  1810. REG_WRITE(ah, AR_NEXT_SWBA, next_beacon -
  1811. TU_TO_USEC(ah->config.sw_beacon_response_time));
  1812. flags |=
  1813. AR_TBTT_TIMER_EN | AR_DBA_TIMER_EN | AR_SWBA_TIMER_EN;
  1814. break;
  1815. default:
  1816. ath_dbg(ath9k_hw_common(ah), BEACON,
  1817. "%s: unsupported opmode: %d\n", __func__, ah->opmode);
  1818. return;
  1819. break;
  1820. }
  1821. REG_WRITE(ah, AR_BEACON_PERIOD, beacon_period);
  1822. REG_WRITE(ah, AR_DMA_BEACON_PERIOD, beacon_period);
  1823. REG_WRITE(ah, AR_SWBA_PERIOD, beacon_period);
  1824. REG_WRITE(ah, AR_NDP_PERIOD, beacon_period);
  1825. REGWRITE_BUFFER_FLUSH(ah);
  1826. REG_SET_BIT(ah, AR_TIMER_MODE, flags);
  1827. }
  1828. EXPORT_SYMBOL(ath9k_hw_beaconinit);
  1829. void ath9k_hw_set_sta_beacon_timers(struct ath_hw *ah,
  1830. const struct ath9k_beacon_state *bs)
  1831. {
  1832. u32 nextTbtt, beaconintval, dtimperiod, beacontimeout;
  1833. struct ath9k_hw_capabilities *pCap = &ah->caps;
  1834. struct ath_common *common = ath9k_hw_common(ah);
  1835. ENABLE_REGWRITE_BUFFER(ah);
  1836. REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(bs->bs_nexttbtt));
  1837. REG_WRITE(ah, AR_BEACON_PERIOD,
  1838. TU_TO_USEC(bs->bs_intval));
  1839. REG_WRITE(ah, AR_DMA_BEACON_PERIOD,
  1840. TU_TO_USEC(bs->bs_intval));
  1841. REGWRITE_BUFFER_FLUSH(ah);
  1842. REG_RMW_FIELD(ah, AR_RSSI_THR,
  1843. AR_RSSI_THR_BM_THR, bs->bs_bmissthreshold);
  1844. beaconintval = bs->bs_intval;
  1845. if (bs->bs_sleepduration > beaconintval)
  1846. beaconintval = bs->bs_sleepduration;
  1847. dtimperiod = bs->bs_dtimperiod;
  1848. if (bs->bs_sleepduration > dtimperiod)
  1849. dtimperiod = bs->bs_sleepduration;
  1850. if (beaconintval == dtimperiod)
  1851. nextTbtt = bs->bs_nextdtim;
  1852. else
  1853. nextTbtt = bs->bs_nexttbtt;
  1854. ath_dbg(common, BEACON, "next DTIM %d\n", bs->bs_nextdtim);
  1855. ath_dbg(common, BEACON, "next beacon %d\n", nextTbtt);
  1856. ath_dbg(common, BEACON, "beacon period %d\n", beaconintval);
  1857. ath_dbg(common, BEACON, "DTIM period %d\n", dtimperiod);
  1858. ENABLE_REGWRITE_BUFFER(ah);
  1859. REG_WRITE(ah, AR_NEXT_DTIM,
  1860. TU_TO_USEC(bs->bs_nextdtim - SLEEP_SLOP));
  1861. REG_WRITE(ah, AR_NEXT_TIM, TU_TO_USEC(nextTbtt - SLEEP_SLOP));
  1862. REG_WRITE(ah, AR_SLEEP1,
  1863. SM((CAB_TIMEOUT_VAL << 3), AR_SLEEP1_CAB_TIMEOUT)
  1864. | AR_SLEEP1_ASSUME_DTIM);
  1865. if (pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)
  1866. beacontimeout = (BEACON_TIMEOUT_VAL << 3);
  1867. else
  1868. beacontimeout = MIN_BEACON_TIMEOUT_VAL;
  1869. REG_WRITE(ah, AR_SLEEP2,
  1870. SM(beacontimeout, AR_SLEEP2_BEACON_TIMEOUT));
  1871. REG_WRITE(ah, AR_TIM_PERIOD, TU_TO_USEC(beaconintval));
  1872. REG_WRITE(ah, AR_DTIM_PERIOD, TU_TO_USEC(dtimperiod));
  1873. REGWRITE_BUFFER_FLUSH(ah);
  1874. REG_SET_BIT(ah, AR_TIMER_MODE,
  1875. AR_TBTT_TIMER_EN | AR_TIM_TIMER_EN |
  1876. AR_DTIM_TIMER_EN);
  1877. /* TSF Out of Range Threshold */
  1878. REG_WRITE(ah, AR_TSFOOR_THRESHOLD, bs->bs_tsfoor_threshold);
  1879. }
  1880. EXPORT_SYMBOL(ath9k_hw_set_sta_beacon_timers);
  1881. /*******************/
  1882. /* HW Capabilities */
  1883. /*******************/
  1884. static u8 fixup_chainmask(u8 chip_chainmask, u8 eeprom_chainmask)
  1885. {
  1886. eeprom_chainmask &= chip_chainmask;
  1887. if (eeprom_chainmask)
  1888. return eeprom_chainmask;
  1889. else
  1890. return chip_chainmask;
  1891. }
  1892. /**
  1893. * ath9k_hw_dfs_tested - checks if DFS has been tested with used chipset
  1894. * @ah: the atheros hardware data structure
  1895. *
  1896. * We enable DFS support upstream on chipsets which have passed a series
  1897. * of tests. The testing requirements are going to be documented. Desired
  1898. * test requirements are documented at:
  1899. *
  1900. * http://wireless.kernel.org/en/users/Drivers/ath9k/dfs
  1901. *
  1902. * Once a new chipset gets properly tested an individual commit can be used
  1903. * to document the testing for DFS for that chipset.
  1904. */
  1905. static bool ath9k_hw_dfs_tested(struct ath_hw *ah)
  1906. {
  1907. switch (ah->hw_version.macVersion) {
  1908. /* AR9580 will likely be our first target to get testing on */
  1909. case AR_SREV_VERSION_9580:
  1910. default:
  1911. return false;
  1912. }
  1913. }
  1914. int ath9k_hw_fill_cap_info(struct ath_hw *ah)
  1915. {
  1916. struct ath9k_hw_capabilities *pCap = &ah->caps;
  1917. struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
  1918. struct ath_common *common = ath9k_hw_common(ah);
  1919. unsigned int chip_chainmask;
  1920. u16 eeval;
  1921. u8 ant_div_ctl1, tx_chainmask, rx_chainmask;
  1922. eeval = ah->eep_ops->get_eeprom(ah, EEP_REG_0);
  1923. regulatory->current_rd = eeval;
  1924. if (ah->opmode != NL80211_IFTYPE_AP &&
  1925. ah->hw_version.subvendorid == AR_SUBVENDOR_ID_NEW_A) {
  1926. if (regulatory->current_rd == 0x64 ||
  1927. regulatory->current_rd == 0x65)
  1928. regulatory->current_rd += 5;
  1929. else if (regulatory->current_rd == 0x41)
  1930. regulatory->current_rd = 0x43;
  1931. ath_dbg(common, REGULATORY, "regdomain mapped to 0x%x\n",
  1932. regulatory->current_rd);
  1933. }
  1934. eeval = ah->eep_ops->get_eeprom(ah, EEP_OP_MODE);
  1935. if ((eeval & (AR5416_OPFLAGS_11G | AR5416_OPFLAGS_11A)) == 0) {
  1936. ath_err(common,
  1937. "no band has been marked as supported in EEPROM\n");
  1938. return -EINVAL;
  1939. }
  1940. if (eeval & AR5416_OPFLAGS_11A)
  1941. pCap->hw_caps |= ATH9K_HW_CAP_5GHZ;
  1942. if (eeval & AR5416_OPFLAGS_11G)
  1943. pCap->hw_caps |= ATH9K_HW_CAP_2GHZ;
  1944. if (AR_SREV_9485(ah) || AR_SREV_9285(ah) || AR_SREV_9330(ah))
  1945. chip_chainmask = 1;
  1946. else if (AR_SREV_9462(ah))
  1947. chip_chainmask = 3;
  1948. else if (!AR_SREV_9280_20_OR_LATER(ah))
  1949. chip_chainmask = 7;
  1950. else if (!AR_SREV_9300_20_OR_LATER(ah) || AR_SREV_9340(ah))
  1951. chip_chainmask = 3;
  1952. else
  1953. chip_chainmask = 7;
  1954. pCap->tx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_TX_MASK);
  1955. /*
  1956. * For AR9271 we will temporarilly uses the rx chainmax as read from
  1957. * the EEPROM.
  1958. */
  1959. if ((ah->hw_version.devid == AR5416_DEVID_PCI) &&
  1960. !(eeval & AR5416_OPFLAGS_11A) &&
  1961. !(AR_SREV_9271(ah)))
  1962. /* CB71: GPIO 0 is pulled down to indicate 3 rx chains */
  1963. pCap->rx_chainmask = ath9k_hw_gpio_get(ah, 0) ? 0x5 : 0x7;
  1964. else if (AR_SREV_9100(ah))
  1965. pCap->rx_chainmask = 0x7;
  1966. else
  1967. /* Use rx_chainmask from EEPROM. */
  1968. pCap->rx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_RX_MASK);
  1969. pCap->tx_chainmask = fixup_chainmask(chip_chainmask, pCap->tx_chainmask);
  1970. pCap->rx_chainmask = fixup_chainmask(chip_chainmask, pCap->rx_chainmask);
  1971. ah->txchainmask = pCap->tx_chainmask;
  1972. ah->rxchainmask = pCap->rx_chainmask;
  1973. ah->misc_mode |= AR_PCU_MIC_NEW_LOC_ENA;
  1974. /* enable key search for every frame in an aggregate */
  1975. if (AR_SREV_9300_20_OR_LATER(ah))
  1976. ah->misc_mode |= AR_PCU_ALWAYS_PERFORM_KEYSEARCH;
  1977. common->crypt_caps |= ATH_CRYPT_CAP_CIPHER_AESCCM;
  1978. if (ah->hw_version.devid != AR2427_DEVID_PCIE)
  1979. pCap->hw_caps |= ATH9K_HW_CAP_HT;
  1980. else
  1981. pCap->hw_caps &= ~ATH9K_HW_CAP_HT;
  1982. if (AR_SREV_9271(ah))
  1983. pCap->num_gpio_pins = AR9271_NUM_GPIO;
  1984. else if (AR_DEVID_7010(ah))
  1985. pCap->num_gpio_pins = AR7010_NUM_GPIO;
  1986. else if (AR_SREV_9300_20_OR_LATER(ah))
  1987. pCap->num_gpio_pins = AR9300_NUM_GPIO;
  1988. else if (AR_SREV_9287_11_OR_LATER(ah))
  1989. pCap->num_gpio_pins = AR9287_NUM_GPIO;
  1990. else if (AR_SREV_9285_12_OR_LATER(ah))
  1991. pCap->num_gpio_pins = AR9285_NUM_GPIO;
  1992. else if (AR_SREV_9280_20_OR_LATER(ah))
  1993. pCap->num_gpio_pins = AR928X_NUM_GPIO;
  1994. else
  1995. pCap->num_gpio_pins = AR_NUM_GPIO;
  1996. if (AR_SREV_9160_10_OR_LATER(ah) || AR_SREV_9100(ah))
  1997. pCap->rts_aggr_limit = ATH_AMPDU_LIMIT_MAX;
  1998. else
  1999. pCap->rts_aggr_limit = (8 * 1024);
  2000. #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
  2001. ah->rfsilent = ah->eep_ops->get_eeprom(ah, EEP_RF_SILENT);
  2002. if (ah->rfsilent & EEP_RFSILENT_ENABLED) {
  2003. ah->rfkill_gpio =
  2004. MS(ah->rfsilent, EEP_RFSILENT_GPIO_SEL);
  2005. ah->rfkill_polarity =
  2006. MS(ah->rfsilent, EEP_RFSILENT_POLARITY);
  2007. pCap->hw_caps |= ATH9K_HW_CAP_RFSILENT;
  2008. }
  2009. #endif
  2010. if (AR_SREV_9271(ah) || AR_SREV_9300_20_OR_LATER(ah))
  2011. pCap->hw_caps |= ATH9K_HW_CAP_AUTOSLEEP;
  2012. else
  2013. pCap->hw_caps &= ~ATH9K_HW_CAP_AUTOSLEEP;
  2014. if (AR_SREV_9280(ah) || AR_SREV_9285(ah))
  2015. pCap->hw_caps &= ~ATH9K_HW_CAP_4KB_SPLITTRANS;
  2016. else
  2017. pCap->hw_caps |= ATH9K_HW_CAP_4KB_SPLITTRANS;
  2018. if (AR_SREV_9300_20_OR_LATER(ah)) {
  2019. pCap->hw_caps |= ATH9K_HW_CAP_EDMA | ATH9K_HW_CAP_FASTCLOCK;
  2020. if (!AR_SREV_9330(ah) && !AR_SREV_9485(ah))
  2021. pCap->hw_caps |= ATH9K_HW_CAP_LDPC;
  2022. pCap->rx_hp_qdepth = ATH9K_HW_RX_HP_QDEPTH;
  2023. pCap->rx_lp_qdepth = ATH9K_HW_RX_LP_QDEPTH;
  2024. pCap->rx_status_len = sizeof(struct ar9003_rxs);
  2025. pCap->tx_desc_len = sizeof(struct ar9003_txc);
  2026. pCap->txs_len = sizeof(struct ar9003_txs);
  2027. if (!ah->config.paprd_disable &&
  2028. ah->eep_ops->get_eeprom(ah, EEP_PAPRD))
  2029. pCap->hw_caps |= ATH9K_HW_CAP_PAPRD;
  2030. } else {
  2031. pCap->tx_desc_len = sizeof(struct ath_desc);
  2032. if (AR_SREV_9280_20(ah))
  2033. pCap->hw_caps |= ATH9K_HW_CAP_FASTCLOCK;
  2034. }
  2035. if (AR_SREV_9300_20_OR_LATER(ah))
  2036. pCap->hw_caps |= ATH9K_HW_CAP_RAC_SUPPORTED;
  2037. if (AR_SREV_9300_20_OR_LATER(ah))
  2038. ah->ent_mode = REG_READ(ah, AR_ENT_OTP);
  2039. if (AR_SREV_9287_11_OR_LATER(ah) || AR_SREV_9271(ah))
  2040. pCap->hw_caps |= ATH9K_HW_CAP_SGI_20;
  2041. if (AR_SREV_9285(ah))
  2042. if (ah->eep_ops->get_eeprom(ah, EEP_MODAL_VER) >= 3) {
  2043. ant_div_ctl1 =
  2044. ah->eep_ops->get_eeprom(ah, EEP_ANT_DIV_CTL1);
  2045. if ((ant_div_ctl1 & 0x1) && ((ant_div_ctl1 >> 3) & 0x1))
  2046. pCap->hw_caps |= ATH9K_HW_CAP_ANT_DIV_COMB;
  2047. }
  2048. if (AR_SREV_9300_20_OR_LATER(ah)) {
  2049. if (ah->eep_ops->get_eeprom(ah, EEP_CHAIN_MASK_REDUCE))
  2050. pCap->hw_caps |= ATH9K_HW_CAP_APM;
  2051. }
  2052. if (AR_SREV_9330(ah) || AR_SREV_9485(ah)) {
  2053. ant_div_ctl1 = ah->eep_ops->get_eeprom(ah, EEP_ANT_DIV_CTL1);
  2054. /*
  2055. * enable the diversity-combining algorithm only when
  2056. * both enable_lna_div and enable_fast_div are set
  2057. * Table for Diversity
  2058. * ant_div_alt_lnaconf bit 0-1
  2059. * ant_div_main_lnaconf bit 2-3
  2060. * ant_div_alt_gaintb bit 4
  2061. * ant_div_main_gaintb bit 5
  2062. * enable_ant_div_lnadiv bit 6
  2063. * enable_ant_fast_div bit 7
  2064. */
  2065. if ((ant_div_ctl1 >> 0x6) == 0x3)
  2066. pCap->hw_caps |= ATH9K_HW_CAP_ANT_DIV_COMB;
  2067. }
  2068. if (AR_SREV_9485_10(ah)) {
  2069. pCap->pcie_lcr_extsync_en = true;
  2070. pCap->pcie_lcr_offset = 0x80;
  2071. }
  2072. if (ath9k_hw_dfs_tested(ah))
  2073. pCap->hw_caps |= ATH9K_HW_CAP_DFS;
  2074. tx_chainmask = pCap->tx_chainmask;
  2075. rx_chainmask = pCap->rx_chainmask;
  2076. while (tx_chainmask || rx_chainmask) {
  2077. if (tx_chainmask & BIT(0))
  2078. pCap->max_txchains++;
  2079. if (rx_chainmask & BIT(0))
  2080. pCap->max_rxchains++;
  2081. tx_chainmask >>= 1;
  2082. rx_chainmask >>= 1;
  2083. }
  2084. if (AR_SREV_9300_20_OR_LATER(ah)) {
  2085. ah->enabled_cals |= TX_IQ_CAL;
  2086. if (AR_SREV_9485_OR_LATER(ah))
  2087. ah->enabled_cals |= TX_IQ_ON_AGC_CAL;
  2088. }
  2089. if (AR_SREV_9462(ah)) {
  2090. if (!(ah->ent_mode & AR_ENT_OTP_49GHZ_DISABLE))
  2091. pCap->hw_caps |= ATH9K_HW_CAP_MCI;
  2092. if (AR_SREV_9462_20(ah))
  2093. pCap->hw_caps |= ATH9K_HW_CAP_RTT;
  2094. }
  2095. return 0;
  2096. }
  2097. /****************************/
  2098. /* GPIO / RFKILL / Antennae */
  2099. /****************************/
  2100. static void ath9k_hw_gpio_cfg_output_mux(struct ath_hw *ah,
  2101. u32 gpio, u32 type)
  2102. {
  2103. int addr;
  2104. u32 gpio_shift, tmp;
  2105. if (gpio > 11)
  2106. addr = AR_GPIO_OUTPUT_MUX3;
  2107. else if (gpio > 5)
  2108. addr = AR_GPIO_OUTPUT_MUX2;
  2109. else
  2110. addr = AR_GPIO_OUTPUT_MUX1;
  2111. gpio_shift = (gpio % 6) * 5;
  2112. if (AR_SREV_9280_20_OR_LATER(ah)
  2113. || (addr != AR_GPIO_OUTPUT_MUX1)) {
  2114. REG_RMW(ah, addr, (type << gpio_shift),
  2115. (0x1f << gpio_shift));
  2116. } else {
  2117. tmp = REG_READ(ah, addr);
  2118. tmp = ((tmp & 0x1F0) << 1) | (tmp & ~0x1F0);
  2119. tmp &= ~(0x1f << gpio_shift);
  2120. tmp |= (type << gpio_shift);
  2121. REG_WRITE(ah, addr, tmp);
  2122. }
  2123. }
  2124. void ath9k_hw_cfg_gpio_input(struct ath_hw *ah, u32 gpio)
  2125. {
  2126. u32 gpio_shift;
  2127. BUG_ON(gpio >= ah->caps.num_gpio_pins);
  2128. if (AR_DEVID_7010(ah)) {
  2129. gpio_shift = gpio;
  2130. REG_RMW(ah, AR7010_GPIO_OE,
  2131. (AR7010_GPIO_OE_AS_INPUT << gpio_shift),
  2132. (AR7010_GPIO_OE_MASK << gpio_shift));
  2133. return;
  2134. }
  2135. gpio_shift = gpio << 1;
  2136. REG_RMW(ah,
  2137. AR_GPIO_OE_OUT,
  2138. (AR_GPIO_OE_OUT_DRV_NO << gpio_shift),
  2139. (AR_GPIO_OE_OUT_DRV << gpio_shift));
  2140. }
  2141. EXPORT_SYMBOL(ath9k_hw_cfg_gpio_input);
  2142. u32 ath9k_hw_gpio_get(struct ath_hw *ah, u32 gpio)
  2143. {
  2144. #define MS_REG_READ(x, y) \
  2145. (MS(REG_READ(ah, AR_GPIO_IN_OUT), x##_GPIO_IN_VAL) & (AR_GPIO_BIT(y)))
  2146. if (gpio >= ah->caps.num_gpio_pins)
  2147. return 0xffffffff;
  2148. if (AR_DEVID_7010(ah)) {
  2149. u32 val;
  2150. val = REG_READ(ah, AR7010_GPIO_IN);
  2151. return (MS(val, AR7010_GPIO_IN_VAL) & AR_GPIO_BIT(gpio)) == 0;
  2152. } else if (AR_SREV_9300_20_OR_LATER(ah))
  2153. return (MS(REG_READ(ah, AR_GPIO_IN), AR9300_GPIO_IN_VAL) &
  2154. AR_GPIO_BIT(gpio)) != 0;
  2155. else if (AR_SREV_9271(ah))
  2156. return MS_REG_READ(AR9271, gpio) != 0;
  2157. else if (AR_SREV_9287_11_OR_LATER(ah))
  2158. return MS_REG_READ(AR9287, gpio) != 0;
  2159. else if (AR_SREV_9285_12_OR_LATER(ah))
  2160. return MS_REG_READ(AR9285, gpio) != 0;
  2161. else if (AR_SREV_9280_20_OR_LATER(ah))
  2162. return MS_REG_READ(AR928X, gpio) != 0;
  2163. else
  2164. return MS_REG_READ(AR, gpio) != 0;
  2165. }
  2166. EXPORT_SYMBOL(ath9k_hw_gpio_get);
  2167. void ath9k_hw_cfg_output(struct ath_hw *ah, u32 gpio,
  2168. u32 ah_signal_type)
  2169. {
  2170. u32 gpio_shift;
  2171. if (AR_DEVID_7010(ah)) {
  2172. gpio_shift = gpio;
  2173. REG_RMW(ah, AR7010_GPIO_OE,
  2174. (AR7010_GPIO_OE_AS_OUTPUT << gpio_shift),
  2175. (AR7010_GPIO_OE_MASK << gpio_shift));
  2176. return;
  2177. }
  2178. ath9k_hw_gpio_cfg_output_mux(ah, gpio, ah_signal_type);
  2179. gpio_shift = 2 * gpio;
  2180. REG_RMW(ah,
  2181. AR_GPIO_OE_OUT,
  2182. (AR_GPIO_OE_OUT_DRV_ALL << gpio_shift),
  2183. (AR_GPIO_OE_OUT_DRV << gpio_shift));
  2184. }
  2185. EXPORT_SYMBOL(ath9k_hw_cfg_output);
  2186. void ath9k_hw_set_gpio(struct ath_hw *ah, u32 gpio, u32 val)
  2187. {
  2188. if (AR_DEVID_7010(ah)) {
  2189. val = val ? 0 : 1;
  2190. REG_RMW(ah, AR7010_GPIO_OUT, ((val&1) << gpio),
  2191. AR_GPIO_BIT(gpio));
  2192. return;
  2193. }
  2194. if (AR_SREV_9271(ah))
  2195. val = ~val;
  2196. REG_RMW(ah, AR_GPIO_IN_OUT, ((val & 1) << gpio),
  2197. AR_GPIO_BIT(gpio));
  2198. }
  2199. EXPORT_SYMBOL(ath9k_hw_set_gpio);
  2200. void ath9k_hw_setantenna(struct ath_hw *ah, u32 antenna)
  2201. {
  2202. REG_WRITE(ah, AR_DEF_ANTENNA, (antenna & 0x7));
  2203. }
  2204. EXPORT_SYMBOL(ath9k_hw_setantenna);
  2205. /*********************/
  2206. /* General Operation */
  2207. /*********************/
  2208. u32 ath9k_hw_getrxfilter(struct ath_hw *ah)
  2209. {
  2210. u32 bits = REG_READ(ah, AR_RX_FILTER);
  2211. u32 phybits = REG_READ(ah, AR_PHY_ERR);
  2212. if (phybits & AR_PHY_ERR_RADAR)
  2213. bits |= ATH9K_RX_FILTER_PHYRADAR;
  2214. if (phybits & (AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING))
  2215. bits |= ATH9K_RX_FILTER_PHYERR;
  2216. return bits;
  2217. }
  2218. EXPORT_SYMBOL(ath9k_hw_getrxfilter);
  2219. void ath9k_hw_setrxfilter(struct ath_hw *ah, u32 bits)
  2220. {
  2221. u32 phybits;
  2222. ENABLE_REGWRITE_BUFFER(ah);
  2223. if (AR_SREV_9462(ah))
  2224. bits |= ATH9K_RX_FILTER_CONTROL_WRAPPER;
  2225. REG_WRITE(ah, AR_RX_FILTER, bits);
  2226. phybits = 0;
  2227. if (bits & ATH9K_RX_FILTER_PHYRADAR)
  2228. phybits |= AR_PHY_ERR_RADAR;
  2229. if (bits & ATH9K_RX_FILTER_PHYERR)
  2230. phybits |= AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING;
  2231. REG_WRITE(ah, AR_PHY_ERR, phybits);
  2232. if (phybits)
  2233. REG_SET_BIT(ah, AR_RXCFG, AR_RXCFG_ZLFDMA);
  2234. else
  2235. REG_CLR_BIT(ah, AR_RXCFG, AR_RXCFG_ZLFDMA);
  2236. REGWRITE_BUFFER_FLUSH(ah);
  2237. }
  2238. EXPORT_SYMBOL(ath9k_hw_setrxfilter);
  2239. bool ath9k_hw_phy_disable(struct ath_hw *ah)
  2240. {
  2241. if (ath9k_hw_mci_is_enabled(ah))
  2242. ar9003_mci_bt_gain_ctrl(ah);
  2243. if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM))
  2244. return false;
  2245. ath9k_hw_init_pll(ah, NULL);
  2246. ah->htc_reset_init = true;
  2247. return true;
  2248. }
  2249. EXPORT_SYMBOL(ath9k_hw_phy_disable);
  2250. bool ath9k_hw_disable(struct ath_hw *ah)
  2251. {
  2252. if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
  2253. return false;
  2254. if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_COLD))
  2255. return false;
  2256. ath9k_hw_init_pll(ah, NULL);
  2257. return true;
  2258. }
  2259. EXPORT_SYMBOL(ath9k_hw_disable);
  2260. static int get_antenna_gain(struct ath_hw *ah, struct ath9k_channel *chan)
  2261. {
  2262. enum eeprom_param gain_param;
  2263. if (IS_CHAN_2GHZ(chan))
  2264. gain_param = EEP_ANTENNA_GAIN_2G;
  2265. else
  2266. gain_param = EEP_ANTENNA_GAIN_5G;
  2267. return ah->eep_ops->get_eeprom(ah, gain_param);
  2268. }
  2269. void ath9k_hw_apply_txpower(struct ath_hw *ah, struct ath9k_channel *chan,
  2270. bool test)
  2271. {
  2272. struct ath_regulatory *reg = ath9k_hw_regulatory(ah);
  2273. struct ieee80211_channel *channel;
  2274. int chan_pwr, new_pwr, max_gain;
  2275. int ant_gain, ant_reduction = 0;
  2276. if (!chan)
  2277. return;
  2278. channel = chan->chan;
  2279. chan_pwr = min_t(int, channel->max_power * 2, MAX_RATE_POWER);
  2280. new_pwr = min_t(int, chan_pwr, reg->power_limit);
  2281. max_gain = chan_pwr - new_pwr + channel->max_antenna_gain * 2;
  2282. ant_gain = get_antenna_gain(ah, chan);
  2283. if (ant_gain > max_gain)
  2284. ant_reduction = ant_gain - max_gain;
  2285. ah->eep_ops->set_txpower(ah, chan,
  2286. ath9k_regd_get_ctl(reg, chan),
  2287. ant_reduction, new_pwr, test);
  2288. }
  2289. void ath9k_hw_set_txpowerlimit(struct ath_hw *ah, u32 limit, bool test)
  2290. {
  2291. struct ath_regulatory *reg = ath9k_hw_regulatory(ah);
  2292. struct ath9k_channel *chan = ah->curchan;
  2293. struct ieee80211_channel *channel = chan->chan;
  2294. reg->power_limit = min_t(u32, limit, MAX_RATE_POWER);
  2295. if (test)
  2296. channel->max_power = MAX_RATE_POWER / 2;
  2297. ath9k_hw_apply_txpower(ah, chan, test);
  2298. if (test)
  2299. channel->max_power = DIV_ROUND_UP(reg->max_power_level, 2);
  2300. }
  2301. EXPORT_SYMBOL(ath9k_hw_set_txpowerlimit);
  2302. void ath9k_hw_setopmode(struct ath_hw *ah)
  2303. {
  2304. ath9k_hw_set_operating_mode(ah, ah->opmode);
  2305. }
  2306. EXPORT_SYMBOL(ath9k_hw_setopmode);
  2307. void ath9k_hw_setmcastfilter(struct ath_hw *ah, u32 filter0, u32 filter1)
  2308. {
  2309. REG_WRITE(ah, AR_MCAST_FIL0, filter0);
  2310. REG_WRITE(ah, AR_MCAST_FIL1, filter1);
  2311. }
  2312. EXPORT_SYMBOL(ath9k_hw_setmcastfilter);
  2313. void ath9k_hw_write_associd(struct ath_hw *ah)
  2314. {
  2315. struct ath_common *common = ath9k_hw_common(ah);
  2316. REG_WRITE(ah, AR_BSS_ID0, get_unaligned_le32(common->curbssid));
  2317. REG_WRITE(ah, AR_BSS_ID1, get_unaligned_le16(common->curbssid + 4) |
  2318. ((common->curaid & 0x3fff) << AR_BSS_ID1_AID_S));
  2319. }
  2320. EXPORT_SYMBOL(ath9k_hw_write_associd);
  2321. #define ATH9K_MAX_TSF_READ 10
  2322. u64 ath9k_hw_gettsf64(struct ath_hw *ah)
  2323. {
  2324. u32 tsf_lower, tsf_upper1, tsf_upper2;
  2325. int i;
  2326. tsf_upper1 = REG_READ(ah, AR_TSF_U32);
  2327. for (i = 0; i < ATH9K_MAX_TSF_READ; i++) {
  2328. tsf_lower = REG_READ(ah, AR_TSF_L32);
  2329. tsf_upper2 = REG_READ(ah, AR_TSF_U32);
  2330. if (tsf_upper2 == tsf_upper1)
  2331. break;
  2332. tsf_upper1 = tsf_upper2;
  2333. }
  2334. WARN_ON( i == ATH9K_MAX_TSF_READ );
  2335. return (((u64)tsf_upper1 << 32) | tsf_lower);
  2336. }
  2337. EXPORT_SYMBOL(ath9k_hw_gettsf64);
  2338. void ath9k_hw_settsf64(struct ath_hw *ah, u64 tsf64)
  2339. {
  2340. REG_WRITE(ah, AR_TSF_L32, tsf64 & 0xffffffff);
  2341. REG_WRITE(ah, AR_TSF_U32, (tsf64 >> 32) & 0xffffffff);
  2342. }
  2343. EXPORT_SYMBOL(ath9k_hw_settsf64);
  2344. void ath9k_hw_reset_tsf(struct ath_hw *ah)
  2345. {
  2346. if (!ath9k_hw_wait(ah, AR_SLP32_MODE, AR_SLP32_TSF_WRITE_STATUS, 0,
  2347. AH_TSF_WRITE_TIMEOUT))
  2348. ath_dbg(ath9k_hw_common(ah), RESET,
  2349. "AR_SLP32_TSF_WRITE_STATUS limit exceeded\n");
  2350. REG_WRITE(ah, AR_RESET_TSF, AR_RESET_TSF_ONCE);
  2351. }
  2352. EXPORT_SYMBOL(ath9k_hw_reset_tsf);
  2353. void ath9k_hw_set_tsfadjust(struct ath_hw *ah, u32 setting)
  2354. {
  2355. if (setting)
  2356. ah->misc_mode |= AR_PCU_TX_ADD_TSF;
  2357. else
  2358. ah->misc_mode &= ~AR_PCU_TX_ADD_TSF;
  2359. }
  2360. EXPORT_SYMBOL(ath9k_hw_set_tsfadjust);
  2361. void ath9k_hw_set11nmac2040(struct ath_hw *ah)
  2362. {
  2363. struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
  2364. u32 macmode;
  2365. if (conf_is_ht40(conf) && !ah->config.cwm_ignore_extcca)
  2366. macmode = AR_2040_JOINED_RX_CLEAR;
  2367. else
  2368. macmode = 0;
  2369. REG_WRITE(ah, AR_2040_MODE, macmode);
  2370. }
  2371. /* HW Generic timers configuration */
  2372. static const struct ath_gen_timer_configuration gen_tmr_configuration[] =
  2373. {
  2374. {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
  2375. {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
  2376. {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
  2377. {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
  2378. {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
  2379. {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
  2380. {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
  2381. {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
  2382. {AR_NEXT_NDP2_TIMER, AR_NDP2_PERIOD, AR_NDP2_TIMER_MODE, 0x0001},
  2383. {AR_NEXT_NDP2_TIMER + 1*4, AR_NDP2_PERIOD + 1*4,
  2384. AR_NDP2_TIMER_MODE, 0x0002},
  2385. {AR_NEXT_NDP2_TIMER + 2*4, AR_NDP2_PERIOD + 2*4,
  2386. AR_NDP2_TIMER_MODE, 0x0004},
  2387. {AR_NEXT_NDP2_TIMER + 3*4, AR_NDP2_PERIOD + 3*4,
  2388. AR_NDP2_TIMER_MODE, 0x0008},
  2389. {AR_NEXT_NDP2_TIMER + 4*4, AR_NDP2_PERIOD + 4*4,
  2390. AR_NDP2_TIMER_MODE, 0x0010},
  2391. {AR_NEXT_NDP2_TIMER + 5*4, AR_NDP2_PERIOD + 5*4,
  2392. AR_NDP2_TIMER_MODE, 0x0020},
  2393. {AR_NEXT_NDP2_TIMER + 6*4, AR_NDP2_PERIOD + 6*4,
  2394. AR_NDP2_TIMER_MODE, 0x0040},
  2395. {AR_NEXT_NDP2_TIMER + 7*4, AR_NDP2_PERIOD + 7*4,
  2396. AR_NDP2_TIMER_MODE, 0x0080}
  2397. };
  2398. /* HW generic timer primitives */
  2399. /* compute and clear index of rightmost 1 */
  2400. static u32 rightmost_index(struct ath_gen_timer_table *timer_table, u32 *mask)
  2401. {
  2402. u32 b;
  2403. b = *mask;
  2404. b &= (0-b);
  2405. *mask &= ~b;
  2406. b *= debruijn32;
  2407. b >>= 27;
  2408. return timer_table->gen_timer_index[b];
  2409. }
  2410. u32 ath9k_hw_gettsf32(struct ath_hw *ah)
  2411. {
  2412. return REG_READ(ah, AR_TSF_L32);
  2413. }
  2414. EXPORT_SYMBOL(ath9k_hw_gettsf32);
  2415. struct ath_gen_timer *ath_gen_timer_alloc(struct ath_hw *ah,
  2416. void (*trigger)(void *),
  2417. void (*overflow)(void *),
  2418. void *arg,
  2419. u8 timer_index)
  2420. {
  2421. struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
  2422. struct ath_gen_timer *timer;
  2423. timer = kzalloc(sizeof(struct ath_gen_timer), GFP_KERNEL);
  2424. if (timer == NULL) {
  2425. ath_err(ath9k_hw_common(ah),
  2426. "Failed to allocate memory for hw timer[%d]\n",
  2427. timer_index);
  2428. return NULL;
  2429. }
  2430. /* allocate a hardware generic timer slot */
  2431. timer_table->timers[timer_index] = timer;
  2432. timer->index = timer_index;
  2433. timer->trigger = trigger;
  2434. timer->overflow = overflow;
  2435. timer->arg = arg;
  2436. return timer;
  2437. }
  2438. EXPORT_SYMBOL(ath_gen_timer_alloc);
  2439. void ath9k_hw_gen_timer_start(struct ath_hw *ah,
  2440. struct ath_gen_timer *timer,
  2441. u32 trig_timeout,
  2442. u32 timer_period)
  2443. {
  2444. struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
  2445. u32 tsf, timer_next;
  2446. BUG_ON(!timer_period);
  2447. set_bit(timer->index, &timer_table->timer_mask.timer_bits);
  2448. tsf = ath9k_hw_gettsf32(ah);
  2449. timer_next = tsf + trig_timeout;
  2450. ath_dbg(ath9k_hw_common(ah), HWTIMER,
  2451. "current tsf %x period %x timer_next %x\n",
  2452. tsf, timer_period, timer_next);
  2453. /*
  2454. * Program generic timer registers
  2455. */
  2456. REG_WRITE(ah, gen_tmr_configuration[timer->index].next_addr,
  2457. timer_next);
  2458. REG_WRITE(ah, gen_tmr_configuration[timer->index].period_addr,
  2459. timer_period);
  2460. REG_SET_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
  2461. gen_tmr_configuration[timer->index].mode_mask);
  2462. if (AR_SREV_9462(ah)) {
  2463. /*
  2464. * Starting from AR9462, each generic timer can select which tsf
  2465. * to use. But we still follow the old rule, 0 - 7 use tsf and
  2466. * 8 - 15 use tsf2.
  2467. */
  2468. if ((timer->index < AR_GEN_TIMER_BANK_1_LEN))
  2469. REG_CLR_BIT(ah, AR_MAC_PCU_GEN_TIMER_TSF_SEL,
  2470. (1 << timer->index));
  2471. else
  2472. REG_SET_BIT(ah, AR_MAC_PCU_GEN_TIMER_TSF_SEL,
  2473. (1 << timer->index));
  2474. }
  2475. /* Enable both trigger and thresh interrupt masks */
  2476. REG_SET_BIT(ah, AR_IMR_S5,
  2477. (SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_THRESH) |
  2478. SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_TRIG)));
  2479. }
  2480. EXPORT_SYMBOL(ath9k_hw_gen_timer_start);
  2481. void ath9k_hw_gen_timer_stop(struct ath_hw *ah, struct ath_gen_timer *timer)
  2482. {
  2483. struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
  2484. if ((timer->index < AR_FIRST_NDP_TIMER) ||
  2485. (timer->index >= ATH_MAX_GEN_TIMER)) {
  2486. return;
  2487. }
  2488. /* Clear generic timer enable bits. */
  2489. REG_CLR_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
  2490. gen_tmr_configuration[timer->index].mode_mask);
  2491. /* Disable both trigger and thresh interrupt masks */
  2492. REG_CLR_BIT(ah, AR_IMR_S5,
  2493. (SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_THRESH) |
  2494. SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_TRIG)));
  2495. clear_bit(timer->index, &timer_table->timer_mask.timer_bits);
  2496. }
  2497. EXPORT_SYMBOL(ath9k_hw_gen_timer_stop);
  2498. void ath_gen_timer_free(struct ath_hw *ah, struct ath_gen_timer *timer)
  2499. {
  2500. struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
  2501. /* free the hardware generic timer slot */
  2502. timer_table->timers[timer->index] = NULL;
  2503. kfree(timer);
  2504. }
  2505. EXPORT_SYMBOL(ath_gen_timer_free);
  2506. /*
  2507. * Generic Timer Interrupts handling
  2508. */
  2509. void ath_gen_timer_isr(struct ath_hw *ah)
  2510. {
  2511. struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
  2512. struct ath_gen_timer *timer;
  2513. struct ath_common *common = ath9k_hw_common(ah);
  2514. u32 trigger_mask, thresh_mask, index;
  2515. /* get hardware generic timer interrupt status */
  2516. trigger_mask = ah->intr_gen_timer_trigger;
  2517. thresh_mask = ah->intr_gen_timer_thresh;
  2518. trigger_mask &= timer_table->timer_mask.val;
  2519. thresh_mask &= timer_table->timer_mask.val;
  2520. trigger_mask &= ~thresh_mask;
  2521. while (thresh_mask) {
  2522. index = rightmost_index(timer_table, &thresh_mask);
  2523. timer = timer_table->timers[index];
  2524. BUG_ON(!timer);
  2525. ath_dbg(common, HWTIMER, "TSF overflow for Gen timer %d\n",
  2526. index);
  2527. timer->overflow(timer->arg);
  2528. }
  2529. while (trigger_mask) {
  2530. index = rightmost_index(timer_table, &trigger_mask);
  2531. timer = timer_table->timers[index];
  2532. BUG_ON(!timer);
  2533. ath_dbg(common, HWTIMER,
  2534. "Gen timer[%d] trigger\n", index);
  2535. timer->trigger(timer->arg);
  2536. }
  2537. }
  2538. EXPORT_SYMBOL(ath_gen_timer_isr);
  2539. /********/
  2540. /* HTC */
  2541. /********/
  2542. static struct {
  2543. u32 version;
  2544. const char * name;
  2545. } ath_mac_bb_names[] = {
  2546. /* Devices with external radios */
  2547. { AR_SREV_VERSION_5416_PCI, "5416" },
  2548. { AR_SREV_VERSION_5416_PCIE, "5418" },
  2549. { AR_SREV_VERSION_9100, "9100" },
  2550. { AR_SREV_VERSION_9160, "9160" },
  2551. /* Single-chip solutions */
  2552. { AR_SREV_VERSION_9280, "9280" },
  2553. { AR_SREV_VERSION_9285, "9285" },
  2554. { AR_SREV_VERSION_9287, "9287" },
  2555. { AR_SREV_VERSION_9271, "9271" },
  2556. { AR_SREV_VERSION_9300, "9300" },
  2557. { AR_SREV_VERSION_9330, "9330" },
  2558. { AR_SREV_VERSION_9340, "9340" },
  2559. { AR_SREV_VERSION_9485, "9485" },
  2560. { AR_SREV_VERSION_9462, "9462" },
  2561. };
  2562. /* For devices with external radios */
  2563. static struct {
  2564. u16 version;
  2565. const char * name;
  2566. } ath_rf_names[] = {
  2567. { 0, "5133" },
  2568. { AR_RAD5133_SREV_MAJOR, "5133" },
  2569. { AR_RAD5122_SREV_MAJOR, "5122" },
  2570. { AR_RAD2133_SREV_MAJOR, "2133" },
  2571. { AR_RAD2122_SREV_MAJOR, "2122" }
  2572. };
  2573. /*
  2574. * Return the MAC/BB name. "????" is returned if the MAC/BB is unknown.
  2575. */
  2576. static const char *ath9k_hw_mac_bb_name(u32 mac_bb_version)
  2577. {
  2578. int i;
  2579. for (i=0; i<ARRAY_SIZE(ath_mac_bb_names); i++) {
  2580. if (ath_mac_bb_names[i].version == mac_bb_version) {
  2581. return ath_mac_bb_names[i].name;
  2582. }
  2583. }
  2584. return "????";
  2585. }
  2586. /*
  2587. * Return the RF name. "????" is returned if the RF is unknown.
  2588. * Used for devices with external radios.
  2589. */
  2590. static const char *ath9k_hw_rf_name(u16 rf_version)
  2591. {
  2592. int i;
  2593. for (i=0; i<ARRAY_SIZE(ath_rf_names); i++) {
  2594. if (ath_rf_names[i].version == rf_version) {
  2595. return ath_rf_names[i].name;
  2596. }
  2597. }
  2598. return "????";
  2599. }
  2600. void ath9k_hw_name(struct ath_hw *ah, char *hw_name, size_t len)
  2601. {
  2602. int used;
  2603. /* chipsets >= AR9280 are single-chip */
  2604. if (AR_SREV_9280_20_OR_LATER(ah)) {
  2605. used = snprintf(hw_name, len,
  2606. "Atheros AR%s Rev:%x",
  2607. ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
  2608. ah->hw_version.macRev);
  2609. }
  2610. else {
  2611. used = snprintf(hw_name, len,
  2612. "Atheros AR%s MAC/BB Rev:%x AR%s RF Rev:%x",
  2613. ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
  2614. ah->hw_version.macRev,
  2615. ath9k_hw_rf_name((ah->hw_version.analog5GhzRev &
  2616. AR_RADIO_SREV_MAJOR)),
  2617. ah->hw_version.phyRev);
  2618. }
  2619. hw_name[used] = '\0';
  2620. }
  2621. EXPORT_SYMBOL(ath9k_hw_name);