page-writeback.c 23 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825
  1. /*
  2. * mm/page-writeback.c.
  3. *
  4. * Copyright (C) 2002, Linus Torvalds.
  5. *
  6. * Contains functions related to writing back dirty pages at the
  7. * address_space level.
  8. *
  9. * 10Apr2002 akpm@zip.com.au
  10. * Initial version
  11. */
  12. #include <linux/kernel.h>
  13. #include <linux/module.h>
  14. #include <linux/spinlock.h>
  15. #include <linux/fs.h>
  16. #include <linux/mm.h>
  17. #include <linux/swap.h>
  18. #include <linux/slab.h>
  19. #include <linux/pagemap.h>
  20. #include <linux/writeback.h>
  21. #include <linux/init.h>
  22. #include <linux/backing-dev.h>
  23. #include <linux/blkdev.h>
  24. #include <linux/mpage.h>
  25. #include <linux/percpu.h>
  26. #include <linux/notifier.h>
  27. #include <linux/smp.h>
  28. #include <linux/sysctl.h>
  29. #include <linux/cpu.h>
  30. #include <linux/syscalls.h>
  31. /*
  32. * The maximum number of pages to writeout in a single bdflush/kupdate
  33. * operation. We do this so we don't hold I_LOCK against an inode for
  34. * enormous amounts of time, which would block a userspace task which has
  35. * been forced to throttle against that inode. Also, the code reevaluates
  36. * the dirty each time it has written this many pages.
  37. */
  38. #define MAX_WRITEBACK_PAGES 1024
  39. /*
  40. * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
  41. * will look to see if it needs to force writeback or throttling.
  42. */
  43. static long ratelimit_pages = 32;
  44. static long total_pages; /* The total number of pages in the machine. */
  45. static int dirty_exceeded __cacheline_aligned_in_smp; /* Dirty mem may be over limit */
  46. /*
  47. * When balance_dirty_pages decides that the caller needs to perform some
  48. * non-background writeback, this is how many pages it will attempt to write.
  49. * It should be somewhat larger than RATELIMIT_PAGES to ensure that reasonably
  50. * large amounts of I/O are submitted.
  51. */
  52. static inline long sync_writeback_pages(void)
  53. {
  54. return ratelimit_pages + ratelimit_pages / 2;
  55. }
  56. /* The following parameters are exported via /proc/sys/vm */
  57. /*
  58. * Start background writeback (via pdflush) at this percentage
  59. */
  60. int dirty_background_ratio = 10;
  61. /*
  62. * The generator of dirty data starts writeback at this percentage
  63. */
  64. int vm_dirty_ratio = 40;
  65. /*
  66. * The interval between `kupdate'-style writebacks, in centiseconds
  67. * (hundredths of a second)
  68. */
  69. int dirty_writeback_interval = 5 * HZ;
  70. /*
  71. * The longest number of centiseconds for which data is allowed to remain dirty
  72. */
  73. int dirty_expire_interval = 30 * HZ;
  74. /*
  75. * Flag that makes the machine dump writes/reads and block dirtyings.
  76. */
  77. int block_dump;
  78. /*
  79. * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
  80. * a full sync is triggered after this time elapses without any disk activity.
  81. */
  82. int laptop_mode;
  83. EXPORT_SYMBOL(laptop_mode);
  84. /* End of sysctl-exported parameters */
  85. static void background_writeout(unsigned long _min_pages);
  86. struct writeback_state
  87. {
  88. unsigned long nr_dirty;
  89. unsigned long nr_unstable;
  90. unsigned long nr_mapped;
  91. unsigned long nr_writeback;
  92. };
  93. static void get_writeback_state(struct writeback_state *wbs)
  94. {
  95. wbs->nr_dirty = read_page_state(nr_dirty);
  96. wbs->nr_unstable = read_page_state(nr_unstable);
  97. wbs->nr_mapped = read_page_state(nr_mapped);
  98. wbs->nr_writeback = read_page_state(nr_writeback);
  99. }
  100. /*
  101. * Work out the current dirty-memory clamping and background writeout
  102. * thresholds.
  103. *
  104. * The main aim here is to lower them aggressively if there is a lot of mapped
  105. * memory around. To avoid stressing page reclaim with lots of unreclaimable
  106. * pages. It is better to clamp down on writers than to start swapping, and
  107. * performing lots of scanning.
  108. *
  109. * We only allow 1/2 of the currently-unmapped memory to be dirtied.
  110. *
  111. * We don't permit the clamping level to fall below 5% - that is getting rather
  112. * excessive.
  113. *
  114. * We make sure that the background writeout level is below the adjusted
  115. * clamping level.
  116. */
  117. static void
  118. get_dirty_limits(struct writeback_state *wbs, long *pbackground, long *pdirty,
  119. struct address_space *mapping)
  120. {
  121. int background_ratio; /* Percentages */
  122. int dirty_ratio;
  123. int unmapped_ratio;
  124. long background;
  125. long dirty;
  126. unsigned long available_memory = total_pages;
  127. struct task_struct *tsk;
  128. get_writeback_state(wbs);
  129. #ifdef CONFIG_HIGHMEM
  130. /*
  131. * If this mapping can only allocate from low memory,
  132. * we exclude high memory from our count.
  133. */
  134. if (mapping && !(mapping_gfp_mask(mapping) & __GFP_HIGHMEM))
  135. available_memory -= totalhigh_pages;
  136. #endif
  137. unmapped_ratio = 100 - (wbs->nr_mapped * 100) / total_pages;
  138. dirty_ratio = vm_dirty_ratio;
  139. if (dirty_ratio > unmapped_ratio / 2)
  140. dirty_ratio = unmapped_ratio / 2;
  141. if (dirty_ratio < 5)
  142. dirty_ratio = 5;
  143. background_ratio = dirty_background_ratio;
  144. if (background_ratio >= dirty_ratio)
  145. background_ratio = dirty_ratio / 2;
  146. background = (background_ratio * available_memory) / 100;
  147. dirty = (dirty_ratio * available_memory) / 100;
  148. tsk = current;
  149. if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) {
  150. background += background / 4;
  151. dirty += dirty / 4;
  152. }
  153. *pbackground = background;
  154. *pdirty = dirty;
  155. }
  156. /*
  157. * balance_dirty_pages() must be called by processes which are generating dirty
  158. * data. It looks at the number of dirty pages in the machine and will force
  159. * the caller to perform writeback if the system is over `vm_dirty_ratio'.
  160. * If we're over `background_thresh' then pdflush is woken to perform some
  161. * writeout.
  162. */
  163. static void balance_dirty_pages(struct address_space *mapping)
  164. {
  165. struct writeback_state wbs;
  166. long nr_reclaimable;
  167. long background_thresh;
  168. long dirty_thresh;
  169. unsigned long pages_written = 0;
  170. unsigned long write_chunk = sync_writeback_pages();
  171. struct backing_dev_info *bdi = mapping->backing_dev_info;
  172. for (;;) {
  173. struct writeback_control wbc = {
  174. .bdi = bdi,
  175. .sync_mode = WB_SYNC_NONE,
  176. .older_than_this = NULL,
  177. .nr_to_write = write_chunk,
  178. };
  179. get_dirty_limits(&wbs, &background_thresh,
  180. &dirty_thresh, mapping);
  181. nr_reclaimable = wbs.nr_dirty + wbs.nr_unstable;
  182. if (nr_reclaimable + wbs.nr_writeback <= dirty_thresh)
  183. break;
  184. if (!dirty_exceeded)
  185. dirty_exceeded = 1;
  186. /* Note: nr_reclaimable denotes nr_dirty + nr_unstable.
  187. * Unstable writes are a feature of certain networked
  188. * filesystems (i.e. NFS) in which data may have been
  189. * written to the server's write cache, but has not yet
  190. * been flushed to permanent storage.
  191. */
  192. if (nr_reclaimable) {
  193. writeback_inodes(&wbc);
  194. get_dirty_limits(&wbs, &background_thresh,
  195. &dirty_thresh, mapping);
  196. nr_reclaimable = wbs.nr_dirty + wbs.nr_unstable;
  197. if (nr_reclaimable + wbs.nr_writeback <= dirty_thresh)
  198. break;
  199. pages_written += write_chunk - wbc.nr_to_write;
  200. if (pages_written >= write_chunk)
  201. break; /* We've done our duty */
  202. }
  203. blk_congestion_wait(WRITE, HZ/10);
  204. }
  205. if (nr_reclaimable + wbs.nr_writeback <= dirty_thresh && dirty_exceeded)
  206. dirty_exceeded = 0;
  207. if (writeback_in_progress(bdi))
  208. return; /* pdflush is already working this queue */
  209. /*
  210. * In laptop mode, we wait until hitting the higher threshold before
  211. * starting background writeout, and then write out all the way down
  212. * to the lower threshold. So slow writers cause minimal disk activity.
  213. *
  214. * In normal mode, we start background writeout at the lower
  215. * background_thresh, to keep the amount of dirty memory low.
  216. */
  217. if ((laptop_mode && pages_written) ||
  218. (!laptop_mode && (nr_reclaimable > background_thresh)))
  219. pdflush_operation(background_writeout, 0);
  220. }
  221. /**
  222. * balance_dirty_pages_ratelimited - balance dirty memory state
  223. * @mapping: address_space which was dirtied
  224. *
  225. * Processes which are dirtying memory should call in here once for each page
  226. * which was newly dirtied. The function will periodically check the system's
  227. * dirty state and will initiate writeback if needed.
  228. *
  229. * On really big machines, get_writeback_state is expensive, so try to avoid
  230. * calling it too often (ratelimiting). But once we're over the dirty memory
  231. * limit we decrease the ratelimiting by a lot, to prevent individual processes
  232. * from overshooting the limit by (ratelimit_pages) each.
  233. */
  234. void balance_dirty_pages_ratelimited(struct address_space *mapping)
  235. {
  236. static DEFINE_PER_CPU(int, ratelimits) = 0;
  237. long ratelimit;
  238. ratelimit = ratelimit_pages;
  239. if (dirty_exceeded)
  240. ratelimit = 8;
  241. /*
  242. * Check the rate limiting. Also, we do not want to throttle real-time
  243. * tasks in balance_dirty_pages(). Period.
  244. */
  245. if (get_cpu_var(ratelimits)++ >= ratelimit) {
  246. __get_cpu_var(ratelimits) = 0;
  247. put_cpu_var(ratelimits);
  248. balance_dirty_pages(mapping);
  249. return;
  250. }
  251. put_cpu_var(ratelimits);
  252. }
  253. EXPORT_SYMBOL(balance_dirty_pages_ratelimited);
  254. void throttle_vm_writeout(void)
  255. {
  256. struct writeback_state wbs;
  257. long background_thresh;
  258. long dirty_thresh;
  259. for ( ; ; ) {
  260. get_dirty_limits(&wbs, &background_thresh, &dirty_thresh, NULL);
  261. /*
  262. * Boost the allowable dirty threshold a bit for page
  263. * allocators so they don't get DoS'ed by heavy writers
  264. */
  265. dirty_thresh += dirty_thresh / 10; /* wheeee... */
  266. if (wbs.nr_unstable + wbs.nr_writeback <= dirty_thresh)
  267. break;
  268. blk_congestion_wait(WRITE, HZ/10);
  269. }
  270. }
  271. /*
  272. * writeback at least _min_pages, and keep writing until the amount of dirty
  273. * memory is less than the background threshold, or until we're all clean.
  274. */
  275. static void background_writeout(unsigned long _min_pages)
  276. {
  277. long min_pages = _min_pages;
  278. struct writeback_control wbc = {
  279. .bdi = NULL,
  280. .sync_mode = WB_SYNC_NONE,
  281. .older_than_this = NULL,
  282. .nr_to_write = 0,
  283. .nonblocking = 1,
  284. };
  285. for ( ; ; ) {
  286. struct writeback_state wbs;
  287. long background_thresh;
  288. long dirty_thresh;
  289. get_dirty_limits(&wbs, &background_thresh, &dirty_thresh, NULL);
  290. if (wbs.nr_dirty + wbs.nr_unstable < background_thresh
  291. && min_pages <= 0)
  292. break;
  293. wbc.encountered_congestion = 0;
  294. wbc.nr_to_write = MAX_WRITEBACK_PAGES;
  295. wbc.pages_skipped = 0;
  296. writeback_inodes(&wbc);
  297. min_pages -= MAX_WRITEBACK_PAGES - wbc.nr_to_write;
  298. if (wbc.nr_to_write > 0 || wbc.pages_skipped > 0) {
  299. /* Wrote less than expected */
  300. blk_congestion_wait(WRITE, HZ/10);
  301. if (!wbc.encountered_congestion)
  302. break;
  303. }
  304. }
  305. }
  306. /*
  307. * Start writeback of `nr_pages' pages. If `nr_pages' is zero, write back
  308. * the whole world. Returns 0 if a pdflush thread was dispatched. Returns
  309. * -1 if all pdflush threads were busy.
  310. */
  311. int wakeup_pdflush(long nr_pages)
  312. {
  313. if (nr_pages == 0) {
  314. struct writeback_state wbs;
  315. get_writeback_state(&wbs);
  316. nr_pages = wbs.nr_dirty + wbs.nr_unstable;
  317. }
  318. return pdflush_operation(background_writeout, nr_pages);
  319. }
  320. static void wb_timer_fn(unsigned long unused);
  321. static void laptop_timer_fn(unsigned long unused);
  322. static DEFINE_TIMER(wb_timer, wb_timer_fn, 0, 0);
  323. static DEFINE_TIMER(laptop_mode_wb_timer, laptop_timer_fn, 0, 0);
  324. /*
  325. * Periodic writeback of "old" data.
  326. *
  327. * Define "old": the first time one of an inode's pages is dirtied, we mark the
  328. * dirtying-time in the inode's address_space. So this periodic writeback code
  329. * just walks the superblock inode list, writing back any inodes which are
  330. * older than a specific point in time.
  331. *
  332. * Try to run once per dirty_writeback_interval. But if a writeback event
  333. * takes longer than a dirty_writeback_interval interval, then leave a
  334. * one-second gap.
  335. *
  336. * older_than_this takes precedence over nr_to_write. So we'll only write back
  337. * all dirty pages if they are all attached to "old" mappings.
  338. */
  339. static void wb_kupdate(unsigned long arg)
  340. {
  341. unsigned long oldest_jif;
  342. unsigned long start_jif;
  343. unsigned long next_jif;
  344. long nr_to_write;
  345. struct writeback_state wbs;
  346. struct writeback_control wbc = {
  347. .bdi = NULL,
  348. .sync_mode = WB_SYNC_NONE,
  349. .older_than_this = &oldest_jif,
  350. .nr_to_write = 0,
  351. .nonblocking = 1,
  352. .for_kupdate = 1,
  353. };
  354. sync_supers();
  355. get_writeback_state(&wbs);
  356. oldest_jif = jiffies - dirty_expire_interval;
  357. start_jif = jiffies;
  358. next_jif = start_jif + dirty_writeback_interval;
  359. nr_to_write = wbs.nr_dirty + wbs.nr_unstable +
  360. (inodes_stat.nr_inodes - inodes_stat.nr_unused);
  361. while (nr_to_write > 0) {
  362. wbc.encountered_congestion = 0;
  363. wbc.nr_to_write = MAX_WRITEBACK_PAGES;
  364. writeback_inodes(&wbc);
  365. if (wbc.nr_to_write > 0) {
  366. if (wbc.encountered_congestion)
  367. blk_congestion_wait(WRITE, HZ/10);
  368. else
  369. break; /* All the old data is written */
  370. }
  371. nr_to_write -= MAX_WRITEBACK_PAGES - wbc.nr_to_write;
  372. }
  373. if (time_before(next_jif, jiffies + HZ))
  374. next_jif = jiffies + HZ;
  375. if (dirty_writeback_interval)
  376. mod_timer(&wb_timer, next_jif);
  377. }
  378. /*
  379. * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
  380. */
  381. int dirty_writeback_centisecs_handler(ctl_table *table, int write,
  382. struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
  383. {
  384. proc_dointvec_userhz_jiffies(table, write, file, buffer, length, ppos);
  385. if (dirty_writeback_interval) {
  386. mod_timer(&wb_timer,
  387. jiffies + dirty_writeback_interval);
  388. } else {
  389. del_timer(&wb_timer);
  390. }
  391. return 0;
  392. }
  393. static void wb_timer_fn(unsigned long unused)
  394. {
  395. if (pdflush_operation(wb_kupdate, 0) < 0)
  396. mod_timer(&wb_timer, jiffies + HZ); /* delay 1 second */
  397. }
  398. static void laptop_flush(unsigned long unused)
  399. {
  400. sys_sync();
  401. }
  402. static void laptop_timer_fn(unsigned long unused)
  403. {
  404. pdflush_operation(laptop_flush, 0);
  405. }
  406. /*
  407. * We've spun up the disk and we're in laptop mode: schedule writeback
  408. * of all dirty data a few seconds from now. If the flush is already scheduled
  409. * then push it back - the user is still using the disk.
  410. */
  411. void laptop_io_completion(void)
  412. {
  413. mod_timer(&laptop_mode_wb_timer, jiffies + laptop_mode);
  414. }
  415. /*
  416. * We're in laptop mode and we've just synced. The sync's writes will have
  417. * caused another writeback to be scheduled by laptop_io_completion.
  418. * Nothing needs to be written back anymore, so we unschedule the writeback.
  419. */
  420. void laptop_sync_completion(void)
  421. {
  422. del_timer(&laptop_mode_wb_timer);
  423. }
  424. /*
  425. * If ratelimit_pages is too high then we can get into dirty-data overload
  426. * if a large number of processes all perform writes at the same time.
  427. * If it is too low then SMP machines will call the (expensive)
  428. * get_writeback_state too often.
  429. *
  430. * Here we set ratelimit_pages to a level which ensures that when all CPUs are
  431. * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
  432. * thresholds before writeback cuts in.
  433. *
  434. * But the limit should not be set too high. Because it also controls the
  435. * amount of memory which the balance_dirty_pages() caller has to write back.
  436. * If this is too large then the caller will block on the IO queue all the
  437. * time. So limit it to four megabytes - the balance_dirty_pages() caller
  438. * will write six megabyte chunks, max.
  439. */
  440. static void set_ratelimit(void)
  441. {
  442. ratelimit_pages = total_pages / (num_online_cpus() * 32);
  443. if (ratelimit_pages < 16)
  444. ratelimit_pages = 16;
  445. if (ratelimit_pages * PAGE_CACHE_SIZE > 4096 * 1024)
  446. ratelimit_pages = (4096 * 1024) / PAGE_CACHE_SIZE;
  447. }
  448. static int
  449. ratelimit_handler(struct notifier_block *self, unsigned long u, void *v)
  450. {
  451. set_ratelimit();
  452. return 0;
  453. }
  454. static struct notifier_block ratelimit_nb = {
  455. .notifier_call = ratelimit_handler,
  456. .next = NULL,
  457. };
  458. /*
  459. * If the machine has a large highmem:lowmem ratio then scale back the default
  460. * dirty memory thresholds: allowing too much dirty highmem pins an excessive
  461. * number of buffer_heads.
  462. */
  463. void __init page_writeback_init(void)
  464. {
  465. long buffer_pages = nr_free_buffer_pages();
  466. long correction;
  467. total_pages = nr_free_pagecache_pages();
  468. correction = (100 * 4 * buffer_pages) / total_pages;
  469. if (correction < 100) {
  470. dirty_background_ratio *= correction;
  471. dirty_background_ratio /= 100;
  472. vm_dirty_ratio *= correction;
  473. vm_dirty_ratio /= 100;
  474. if (dirty_background_ratio <= 0)
  475. dirty_background_ratio = 1;
  476. if (vm_dirty_ratio <= 0)
  477. vm_dirty_ratio = 1;
  478. }
  479. mod_timer(&wb_timer, jiffies + dirty_writeback_interval);
  480. set_ratelimit();
  481. register_cpu_notifier(&ratelimit_nb);
  482. }
  483. int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
  484. {
  485. int ret;
  486. if (wbc->nr_to_write <= 0)
  487. return 0;
  488. wbc->for_writepages = 1;
  489. if (mapping->a_ops->writepages)
  490. ret = mapping->a_ops->writepages(mapping, wbc);
  491. else
  492. ret = generic_writepages(mapping, wbc);
  493. wbc->for_writepages = 0;
  494. return ret;
  495. }
  496. /**
  497. * write_one_page - write out a single page and optionally wait on I/O
  498. *
  499. * @page: the page to write
  500. * @wait: if true, wait on writeout
  501. *
  502. * The page must be locked by the caller and will be unlocked upon return.
  503. *
  504. * write_one_page() returns a negative error code if I/O failed.
  505. */
  506. int write_one_page(struct page *page, int wait)
  507. {
  508. struct address_space *mapping = page->mapping;
  509. int ret = 0;
  510. struct writeback_control wbc = {
  511. .sync_mode = WB_SYNC_ALL,
  512. .nr_to_write = 1,
  513. };
  514. BUG_ON(!PageLocked(page));
  515. if (wait)
  516. wait_on_page_writeback(page);
  517. if (clear_page_dirty_for_io(page)) {
  518. page_cache_get(page);
  519. ret = mapping->a_ops->writepage(page, &wbc);
  520. if (ret == 0 && wait) {
  521. wait_on_page_writeback(page);
  522. if (PageError(page))
  523. ret = -EIO;
  524. }
  525. page_cache_release(page);
  526. } else {
  527. unlock_page(page);
  528. }
  529. return ret;
  530. }
  531. EXPORT_SYMBOL(write_one_page);
  532. /*
  533. * For address_spaces which do not use buffers. Just tag the page as dirty in
  534. * its radix tree.
  535. *
  536. * This is also used when a single buffer is being dirtied: we want to set the
  537. * page dirty in that case, but not all the buffers. This is a "bottom-up"
  538. * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying.
  539. *
  540. * Most callers have locked the page, which pins the address_space in memory.
  541. * But zap_pte_range() does not lock the page, however in that case the
  542. * mapping is pinned by the vma's ->vm_file reference.
  543. *
  544. * We take care to handle the case where the page was truncated from the
  545. * mapping by re-checking page_mapping() insode tree_lock.
  546. */
  547. int __set_page_dirty_nobuffers(struct page *page)
  548. {
  549. int ret = 0;
  550. if (!TestSetPageDirty(page)) {
  551. struct address_space *mapping = page_mapping(page);
  552. struct address_space *mapping2;
  553. if (mapping) {
  554. write_lock_irq(&mapping->tree_lock);
  555. mapping2 = page_mapping(page);
  556. if (mapping2) { /* Race with truncate? */
  557. BUG_ON(mapping2 != mapping);
  558. if (mapping_cap_account_dirty(mapping))
  559. inc_page_state(nr_dirty);
  560. radix_tree_tag_set(&mapping->page_tree,
  561. page_index(page), PAGECACHE_TAG_DIRTY);
  562. }
  563. write_unlock_irq(&mapping->tree_lock);
  564. if (mapping->host) {
  565. /* !PageAnon && !swapper_space */
  566. __mark_inode_dirty(mapping->host,
  567. I_DIRTY_PAGES);
  568. }
  569. }
  570. }
  571. return ret;
  572. }
  573. EXPORT_SYMBOL(__set_page_dirty_nobuffers);
  574. /*
  575. * When a writepage implementation decides that it doesn't want to write this
  576. * page for some reason, it should redirty the locked page via
  577. * redirty_page_for_writepage() and it should then unlock the page and return 0
  578. */
  579. int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page)
  580. {
  581. wbc->pages_skipped++;
  582. return __set_page_dirty_nobuffers(page);
  583. }
  584. EXPORT_SYMBOL(redirty_page_for_writepage);
  585. /*
  586. * If the mapping doesn't provide a set_page_dirty a_op, then
  587. * just fall through and assume that it wants buffer_heads.
  588. */
  589. int fastcall set_page_dirty(struct page *page)
  590. {
  591. struct address_space *mapping = page_mapping(page);
  592. if (likely(mapping)) {
  593. int (*spd)(struct page *) = mapping->a_ops->set_page_dirty;
  594. if (spd)
  595. return (*spd)(page);
  596. return __set_page_dirty_buffers(page);
  597. }
  598. if (!PageDirty(page))
  599. SetPageDirty(page);
  600. return 0;
  601. }
  602. EXPORT_SYMBOL(set_page_dirty);
  603. /*
  604. * set_page_dirty() is racy if the caller has no reference against
  605. * page->mapping->host, and if the page is unlocked. This is because another
  606. * CPU could truncate the page off the mapping and then free the mapping.
  607. *
  608. * Usually, the page _is_ locked, or the caller is a user-space process which
  609. * holds a reference on the inode by having an open file.
  610. *
  611. * In other cases, the page should be locked before running set_page_dirty().
  612. */
  613. int set_page_dirty_lock(struct page *page)
  614. {
  615. int ret;
  616. lock_page(page);
  617. ret = set_page_dirty(page);
  618. unlock_page(page);
  619. return ret;
  620. }
  621. EXPORT_SYMBOL(set_page_dirty_lock);
  622. /*
  623. * Clear a page's dirty flag, while caring for dirty memory accounting.
  624. * Returns true if the page was previously dirty.
  625. */
  626. int test_clear_page_dirty(struct page *page)
  627. {
  628. struct address_space *mapping = page_mapping(page);
  629. unsigned long flags;
  630. if (mapping) {
  631. write_lock_irqsave(&mapping->tree_lock, flags);
  632. if (TestClearPageDirty(page)) {
  633. radix_tree_tag_clear(&mapping->page_tree,
  634. page_index(page),
  635. PAGECACHE_TAG_DIRTY);
  636. write_unlock_irqrestore(&mapping->tree_lock, flags);
  637. if (mapping_cap_account_dirty(mapping))
  638. dec_page_state(nr_dirty);
  639. return 1;
  640. }
  641. write_unlock_irqrestore(&mapping->tree_lock, flags);
  642. return 0;
  643. }
  644. return TestClearPageDirty(page);
  645. }
  646. EXPORT_SYMBOL(test_clear_page_dirty);
  647. /*
  648. * Clear a page's dirty flag, while caring for dirty memory accounting.
  649. * Returns true if the page was previously dirty.
  650. *
  651. * This is for preparing to put the page under writeout. We leave the page
  652. * tagged as dirty in the radix tree so that a concurrent write-for-sync
  653. * can discover it via a PAGECACHE_TAG_DIRTY walk. The ->writepage
  654. * implementation will run either set_page_writeback() or set_page_dirty(),
  655. * at which stage we bring the page's dirty flag and radix-tree dirty tag
  656. * back into sync.
  657. *
  658. * This incoherency between the page's dirty flag and radix-tree tag is
  659. * unfortunate, but it only exists while the page is locked.
  660. */
  661. int clear_page_dirty_for_io(struct page *page)
  662. {
  663. struct address_space *mapping = page_mapping(page);
  664. if (mapping) {
  665. if (TestClearPageDirty(page)) {
  666. if (mapping_cap_account_dirty(mapping))
  667. dec_page_state(nr_dirty);
  668. return 1;
  669. }
  670. return 0;
  671. }
  672. return TestClearPageDirty(page);
  673. }
  674. EXPORT_SYMBOL(clear_page_dirty_for_io);
  675. int test_clear_page_writeback(struct page *page)
  676. {
  677. struct address_space *mapping = page_mapping(page);
  678. int ret;
  679. if (mapping) {
  680. unsigned long flags;
  681. write_lock_irqsave(&mapping->tree_lock, flags);
  682. ret = TestClearPageWriteback(page);
  683. if (ret)
  684. radix_tree_tag_clear(&mapping->page_tree,
  685. page_index(page),
  686. PAGECACHE_TAG_WRITEBACK);
  687. write_unlock_irqrestore(&mapping->tree_lock, flags);
  688. } else {
  689. ret = TestClearPageWriteback(page);
  690. }
  691. return ret;
  692. }
  693. int test_set_page_writeback(struct page *page)
  694. {
  695. struct address_space *mapping = page_mapping(page);
  696. int ret;
  697. if (mapping) {
  698. unsigned long flags;
  699. write_lock_irqsave(&mapping->tree_lock, flags);
  700. ret = TestSetPageWriteback(page);
  701. if (!ret)
  702. radix_tree_tag_set(&mapping->page_tree,
  703. page_index(page),
  704. PAGECACHE_TAG_WRITEBACK);
  705. if (!PageDirty(page))
  706. radix_tree_tag_clear(&mapping->page_tree,
  707. page_index(page),
  708. PAGECACHE_TAG_DIRTY);
  709. write_unlock_irqrestore(&mapping->tree_lock, flags);
  710. } else {
  711. ret = TestSetPageWriteback(page);
  712. }
  713. return ret;
  714. }
  715. EXPORT_SYMBOL(test_set_page_writeback);
  716. /*
  717. * Return true if any of the pages in the mapping are marged with the
  718. * passed tag.
  719. */
  720. int mapping_tagged(struct address_space *mapping, int tag)
  721. {
  722. unsigned long flags;
  723. int ret;
  724. read_lock_irqsave(&mapping->tree_lock, flags);
  725. ret = radix_tree_tagged(&mapping->page_tree, tag);
  726. read_unlock_irqrestore(&mapping->tree_lock, flags);
  727. return ret;
  728. }
  729. EXPORT_SYMBOL(mapping_tagged);