process_32.c 18 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731
  1. /*
  2. * Copyright (C) 1995 Linus Torvalds
  3. *
  4. * Pentium III FXSR, SSE support
  5. * Gareth Hughes <gareth@valinux.com>, May 2000
  6. */
  7. /*
  8. * This file handles the architecture-dependent parts of process handling..
  9. */
  10. #include <stdarg.h>
  11. #include <linux/cpu.h>
  12. #include <linux/errno.h>
  13. #include <linux/sched.h>
  14. #include <linux/fs.h>
  15. #include <linux/kernel.h>
  16. #include <linux/mm.h>
  17. #include <linux/elfcore.h>
  18. #include <linux/smp.h>
  19. #include <linux/stddef.h>
  20. #include <linux/slab.h>
  21. #include <linux/vmalloc.h>
  22. #include <linux/user.h>
  23. #include <linux/interrupt.h>
  24. #include <linux/utsname.h>
  25. #include <linux/delay.h>
  26. #include <linux/reboot.h>
  27. #include <linux/init.h>
  28. #include <linux/mc146818rtc.h>
  29. #include <linux/module.h>
  30. #include <linux/kallsyms.h>
  31. #include <linux/ptrace.h>
  32. #include <linux/random.h>
  33. #include <linux/personality.h>
  34. #include <linux/tick.h>
  35. #include <linux/percpu.h>
  36. #include <linux/prctl.h>
  37. #include <asm/uaccess.h>
  38. #include <asm/pgtable.h>
  39. #include <asm/system.h>
  40. #include <asm/io.h>
  41. #include <asm/ldt.h>
  42. #include <asm/processor.h>
  43. #include <asm/i387.h>
  44. #include <asm/desc.h>
  45. #ifdef CONFIG_MATH_EMULATION
  46. #include <asm/math_emu.h>
  47. #endif
  48. #include <linux/err.h>
  49. #include <asm/tlbflush.h>
  50. #include <asm/cpu.h>
  51. #include <asm/kdebug.h>
  52. #include <asm/syscalls.h>
  53. #include <asm/smp.h>
  54. asmlinkage void ret_from_fork(void) __asm__("ret_from_fork");
  55. DEFINE_PER_CPU(struct task_struct *, current_task) = &init_task;
  56. EXPORT_PER_CPU_SYMBOL(current_task);
  57. DEFINE_PER_CPU(int, cpu_number);
  58. EXPORT_PER_CPU_SYMBOL(cpu_number);
  59. /*
  60. * Return saved PC of a blocked thread.
  61. */
  62. unsigned long thread_saved_pc(struct task_struct *tsk)
  63. {
  64. return ((unsigned long *)tsk->thread.sp)[3];
  65. }
  66. #ifdef CONFIG_HOTPLUG_CPU
  67. #include <asm/nmi.h>
  68. static void cpu_exit_clear(void)
  69. {
  70. int cpu = raw_smp_processor_id();
  71. idle_task_exit();
  72. cpu_uninit();
  73. irq_ctx_exit(cpu);
  74. cpu_clear(cpu, cpu_callout_map);
  75. cpu_clear(cpu, cpu_callin_map);
  76. numa_remove_cpu(cpu);
  77. }
  78. /* We don't actually take CPU down, just spin without interrupts. */
  79. static inline void play_dead(void)
  80. {
  81. /* This must be done before dead CPU ack */
  82. cpu_exit_clear();
  83. wbinvd();
  84. mb();
  85. /* Ack it */
  86. __get_cpu_var(cpu_state) = CPU_DEAD;
  87. /*
  88. * With physical CPU hotplug, we should halt the cpu
  89. */
  90. local_irq_disable();
  91. while (1)
  92. halt();
  93. }
  94. #else
  95. static inline void play_dead(void)
  96. {
  97. BUG();
  98. }
  99. #endif /* CONFIG_HOTPLUG_CPU */
  100. /*
  101. * The idle thread. There's no useful work to be
  102. * done, so just try to conserve power and have a
  103. * low exit latency (ie sit in a loop waiting for
  104. * somebody to say that they'd like to reschedule)
  105. */
  106. void cpu_idle(void)
  107. {
  108. int cpu = smp_processor_id();
  109. current_thread_info()->status |= TS_POLLING;
  110. /* endless idle loop with no priority at all */
  111. while (1) {
  112. tick_nohz_stop_sched_tick(1);
  113. while (!need_resched()) {
  114. check_pgt_cache();
  115. rmb();
  116. if (rcu_pending(cpu))
  117. rcu_check_callbacks(cpu, 0);
  118. if (cpu_is_offline(cpu))
  119. play_dead();
  120. local_irq_disable();
  121. __get_cpu_var(irq_stat).idle_timestamp = jiffies;
  122. /* Don't trace irqs off for idle */
  123. stop_critical_timings();
  124. pm_idle();
  125. start_critical_timings();
  126. }
  127. tick_nohz_restart_sched_tick();
  128. preempt_enable_no_resched();
  129. schedule();
  130. preempt_disable();
  131. }
  132. }
  133. void __show_registers(struct pt_regs *regs, int all)
  134. {
  135. unsigned long cr0 = 0L, cr2 = 0L, cr3 = 0L, cr4 = 0L;
  136. unsigned long d0, d1, d2, d3, d6, d7;
  137. unsigned long sp;
  138. unsigned short ss, gs;
  139. if (user_mode_vm(regs)) {
  140. sp = regs->sp;
  141. ss = regs->ss & 0xffff;
  142. savesegment(gs, gs);
  143. } else {
  144. sp = (unsigned long) (&regs->sp);
  145. savesegment(ss, ss);
  146. savesegment(gs, gs);
  147. }
  148. printk("\n");
  149. printk("Pid: %d, comm: %s %s (%s %.*s)\n",
  150. task_pid_nr(current), current->comm,
  151. print_tainted(), init_utsname()->release,
  152. (int)strcspn(init_utsname()->version, " "),
  153. init_utsname()->version);
  154. printk("EIP: %04x:[<%08lx>] EFLAGS: %08lx CPU: %d\n",
  155. (u16)regs->cs, regs->ip, regs->flags,
  156. smp_processor_id());
  157. print_symbol("EIP is at %s\n", regs->ip);
  158. printk("EAX: %08lx EBX: %08lx ECX: %08lx EDX: %08lx\n",
  159. regs->ax, regs->bx, regs->cx, regs->dx);
  160. printk("ESI: %08lx EDI: %08lx EBP: %08lx ESP: %08lx\n",
  161. regs->si, regs->di, regs->bp, sp);
  162. printk(" DS: %04x ES: %04x FS: %04x GS: %04x SS: %04x\n",
  163. (u16)regs->ds, (u16)regs->es, (u16)regs->fs, gs, ss);
  164. if (!all)
  165. return;
  166. cr0 = read_cr0();
  167. cr2 = read_cr2();
  168. cr3 = read_cr3();
  169. cr4 = read_cr4_safe();
  170. printk("CR0: %08lx CR2: %08lx CR3: %08lx CR4: %08lx\n",
  171. cr0, cr2, cr3, cr4);
  172. get_debugreg(d0, 0);
  173. get_debugreg(d1, 1);
  174. get_debugreg(d2, 2);
  175. get_debugreg(d3, 3);
  176. printk("DR0: %08lx DR1: %08lx DR2: %08lx DR3: %08lx\n",
  177. d0, d1, d2, d3);
  178. get_debugreg(d6, 6);
  179. get_debugreg(d7, 7);
  180. printk("DR6: %08lx DR7: %08lx\n",
  181. d6, d7);
  182. }
  183. void show_regs(struct pt_regs *regs)
  184. {
  185. __show_registers(regs, 1);
  186. show_trace(NULL, regs, &regs->sp, regs->bp);
  187. }
  188. /*
  189. * This gets run with %bx containing the
  190. * function to call, and %dx containing
  191. * the "args".
  192. */
  193. extern void kernel_thread_helper(void);
  194. /*
  195. * Create a kernel thread
  196. */
  197. int kernel_thread(int (*fn)(void *), void * arg, unsigned long flags)
  198. {
  199. struct pt_regs regs;
  200. memset(&regs, 0, sizeof(regs));
  201. regs.bx = (unsigned long) fn;
  202. regs.dx = (unsigned long) arg;
  203. regs.ds = __USER_DS;
  204. regs.es = __USER_DS;
  205. regs.fs = __KERNEL_PERCPU;
  206. regs.orig_ax = -1;
  207. regs.ip = (unsigned long) kernel_thread_helper;
  208. regs.cs = __KERNEL_CS | get_kernel_rpl();
  209. regs.flags = X86_EFLAGS_IF | X86_EFLAGS_SF | X86_EFLAGS_PF | 0x2;
  210. /* Ok, create the new process.. */
  211. return do_fork(flags | CLONE_VM | CLONE_UNTRACED, 0, &regs, 0, NULL, NULL);
  212. }
  213. EXPORT_SYMBOL(kernel_thread);
  214. /*
  215. * Free current thread data structures etc..
  216. */
  217. void exit_thread(void)
  218. {
  219. /* The process may have allocated an io port bitmap... nuke it. */
  220. if (unlikely(test_thread_flag(TIF_IO_BITMAP))) {
  221. struct task_struct *tsk = current;
  222. struct thread_struct *t = &tsk->thread;
  223. int cpu = get_cpu();
  224. struct tss_struct *tss = &per_cpu(init_tss, cpu);
  225. kfree(t->io_bitmap_ptr);
  226. t->io_bitmap_ptr = NULL;
  227. clear_thread_flag(TIF_IO_BITMAP);
  228. /*
  229. * Careful, clear this in the TSS too:
  230. */
  231. memset(tss->io_bitmap, 0xff, tss->io_bitmap_max);
  232. t->io_bitmap_max = 0;
  233. tss->io_bitmap_owner = NULL;
  234. tss->io_bitmap_max = 0;
  235. tss->x86_tss.io_bitmap_base = INVALID_IO_BITMAP_OFFSET;
  236. put_cpu();
  237. }
  238. }
  239. void flush_thread(void)
  240. {
  241. struct task_struct *tsk = current;
  242. tsk->thread.debugreg0 = 0;
  243. tsk->thread.debugreg1 = 0;
  244. tsk->thread.debugreg2 = 0;
  245. tsk->thread.debugreg3 = 0;
  246. tsk->thread.debugreg6 = 0;
  247. tsk->thread.debugreg7 = 0;
  248. memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array));
  249. clear_tsk_thread_flag(tsk, TIF_DEBUG);
  250. /*
  251. * Forget coprocessor state..
  252. */
  253. tsk->fpu_counter = 0;
  254. clear_fpu(tsk);
  255. clear_used_math();
  256. }
  257. void release_thread(struct task_struct *dead_task)
  258. {
  259. BUG_ON(dead_task->mm);
  260. release_vm86_irqs(dead_task);
  261. }
  262. /*
  263. * This gets called before we allocate a new thread and copy
  264. * the current task into it.
  265. */
  266. void prepare_to_copy(struct task_struct *tsk)
  267. {
  268. unlazy_fpu(tsk);
  269. }
  270. int copy_thread(int nr, unsigned long clone_flags, unsigned long sp,
  271. unsigned long unused,
  272. struct task_struct * p, struct pt_regs * regs)
  273. {
  274. struct pt_regs * childregs;
  275. struct task_struct *tsk;
  276. int err;
  277. childregs = task_pt_regs(p);
  278. *childregs = *regs;
  279. childregs->ax = 0;
  280. childregs->sp = sp;
  281. p->thread.sp = (unsigned long) childregs;
  282. p->thread.sp0 = (unsigned long) (childregs+1);
  283. p->thread.ip = (unsigned long) ret_from_fork;
  284. savesegment(gs, p->thread.gs);
  285. tsk = current;
  286. if (unlikely(test_tsk_thread_flag(tsk, TIF_IO_BITMAP))) {
  287. p->thread.io_bitmap_ptr = kmemdup(tsk->thread.io_bitmap_ptr,
  288. IO_BITMAP_BYTES, GFP_KERNEL);
  289. if (!p->thread.io_bitmap_ptr) {
  290. p->thread.io_bitmap_max = 0;
  291. return -ENOMEM;
  292. }
  293. set_tsk_thread_flag(p, TIF_IO_BITMAP);
  294. }
  295. err = 0;
  296. /*
  297. * Set a new TLS for the child thread?
  298. */
  299. if (clone_flags & CLONE_SETTLS)
  300. err = do_set_thread_area(p, -1,
  301. (struct user_desc __user *)childregs->si, 0);
  302. if (err && p->thread.io_bitmap_ptr) {
  303. kfree(p->thread.io_bitmap_ptr);
  304. p->thread.io_bitmap_max = 0;
  305. }
  306. return err;
  307. }
  308. void
  309. start_thread(struct pt_regs *regs, unsigned long new_ip, unsigned long new_sp)
  310. {
  311. __asm__("movl %0, %%gs" :: "r"(0));
  312. regs->fs = 0;
  313. set_fs(USER_DS);
  314. regs->ds = __USER_DS;
  315. regs->es = __USER_DS;
  316. regs->ss = __USER_DS;
  317. regs->cs = __USER_CS;
  318. regs->ip = new_ip;
  319. regs->sp = new_sp;
  320. /*
  321. * Free the old FP and other extended state
  322. */
  323. free_thread_xstate(current);
  324. }
  325. EXPORT_SYMBOL_GPL(start_thread);
  326. static void hard_disable_TSC(void)
  327. {
  328. write_cr4(read_cr4() | X86_CR4_TSD);
  329. }
  330. void disable_TSC(void)
  331. {
  332. preempt_disable();
  333. if (!test_and_set_thread_flag(TIF_NOTSC))
  334. /*
  335. * Must flip the CPU state synchronously with
  336. * TIF_NOTSC in the current running context.
  337. */
  338. hard_disable_TSC();
  339. preempt_enable();
  340. }
  341. static void hard_enable_TSC(void)
  342. {
  343. write_cr4(read_cr4() & ~X86_CR4_TSD);
  344. }
  345. static void enable_TSC(void)
  346. {
  347. preempt_disable();
  348. if (test_and_clear_thread_flag(TIF_NOTSC))
  349. /*
  350. * Must flip the CPU state synchronously with
  351. * TIF_NOTSC in the current running context.
  352. */
  353. hard_enable_TSC();
  354. preempt_enable();
  355. }
  356. int get_tsc_mode(unsigned long adr)
  357. {
  358. unsigned int val;
  359. if (test_thread_flag(TIF_NOTSC))
  360. val = PR_TSC_SIGSEGV;
  361. else
  362. val = PR_TSC_ENABLE;
  363. return put_user(val, (unsigned int __user *)adr);
  364. }
  365. int set_tsc_mode(unsigned int val)
  366. {
  367. if (val == PR_TSC_SIGSEGV)
  368. disable_TSC();
  369. else if (val == PR_TSC_ENABLE)
  370. enable_TSC();
  371. else
  372. return -EINVAL;
  373. return 0;
  374. }
  375. static noinline void
  376. __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p,
  377. struct tss_struct *tss)
  378. {
  379. struct thread_struct *prev, *next;
  380. unsigned long debugctl;
  381. prev = &prev_p->thread;
  382. next = &next_p->thread;
  383. debugctl = prev->debugctlmsr;
  384. if (next->ds_area_msr != prev->ds_area_msr) {
  385. /* we clear debugctl to make sure DS
  386. * is not in use when we change it */
  387. debugctl = 0;
  388. update_debugctlmsr(0);
  389. wrmsr(MSR_IA32_DS_AREA, next->ds_area_msr, 0);
  390. }
  391. if (next->debugctlmsr != debugctl)
  392. update_debugctlmsr(next->debugctlmsr);
  393. if (test_tsk_thread_flag(next_p, TIF_DEBUG)) {
  394. set_debugreg(next->debugreg0, 0);
  395. set_debugreg(next->debugreg1, 1);
  396. set_debugreg(next->debugreg2, 2);
  397. set_debugreg(next->debugreg3, 3);
  398. /* no 4 and 5 */
  399. set_debugreg(next->debugreg6, 6);
  400. set_debugreg(next->debugreg7, 7);
  401. }
  402. if (test_tsk_thread_flag(prev_p, TIF_NOTSC) ^
  403. test_tsk_thread_flag(next_p, TIF_NOTSC)) {
  404. /* prev and next are different */
  405. if (test_tsk_thread_flag(next_p, TIF_NOTSC))
  406. hard_disable_TSC();
  407. else
  408. hard_enable_TSC();
  409. }
  410. #ifdef X86_BTS
  411. if (test_tsk_thread_flag(prev_p, TIF_BTS_TRACE_TS))
  412. ptrace_bts_take_timestamp(prev_p, BTS_TASK_DEPARTS);
  413. if (test_tsk_thread_flag(next_p, TIF_BTS_TRACE_TS))
  414. ptrace_bts_take_timestamp(next_p, BTS_TASK_ARRIVES);
  415. #endif
  416. if (!test_tsk_thread_flag(next_p, TIF_IO_BITMAP)) {
  417. /*
  418. * Disable the bitmap via an invalid offset. We still cache
  419. * the previous bitmap owner and the IO bitmap contents:
  420. */
  421. tss->x86_tss.io_bitmap_base = INVALID_IO_BITMAP_OFFSET;
  422. return;
  423. }
  424. if (likely(next == tss->io_bitmap_owner)) {
  425. /*
  426. * Previous owner of the bitmap (hence the bitmap content)
  427. * matches the next task, we dont have to do anything but
  428. * to set a valid offset in the TSS:
  429. */
  430. tss->x86_tss.io_bitmap_base = IO_BITMAP_OFFSET;
  431. return;
  432. }
  433. /*
  434. * Lazy TSS's I/O bitmap copy. We set an invalid offset here
  435. * and we let the task to get a GPF in case an I/O instruction
  436. * is performed. The handler of the GPF will verify that the
  437. * faulting task has a valid I/O bitmap and, it true, does the
  438. * real copy and restart the instruction. This will save us
  439. * redundant copies when the currently switched task does not
  440. * perform any I/O during its timeslice.
  441. */
  442. tss->x86_tss.io_bitmap_base = INVALID_IO_BITMAP_OFFSET_LAZY;
  443. }
  444. /*
  445. * switch_to(x,yn) should switch tasks from x to y.
  446. *
  447. * We fsave/fwait so that an exception goes off at the right time
  448. * (as a call from the fsave or fwait in effect) rather than to
  449. * the wrong process. Lazy FP saving no longer makes any sense
  450. * with modern CPU's, and this simplifies a lot of things (SMP
  451. * and UP become the same).
  452. *
  453. * NOTE! We used to use the x86 hardware context switching. The
  454. * reason for not using it any more becomes apparent when you
  455. * try to recover gracefully from saved state that is no longer
  456. * valid (stale segment register values in particular). With the
  457. * hardware task-switch, there is no way to fix up bad state in
  458. * a reasonable manner.
  459. *
  460. * The fact that Intel documents the hardware task-switching to
  461. * be slow is a fairly red herring - this code is not noticeably
  462. * faster. However, there _is_ some room for improvement here,
  463. * so the performance issues may eventually be a valid point.
  464. * More important, however, is the fact that this allows us much
  465. * more flexibility.
  466. *
  467. * The return value (in %ax) will be the "prev" task after
  468. * the task-switch, and shows up in ret_from_fork in entry.S,
  469. * for example.
  470. */
  471. struct task_struct * __switch_to(struct task_struct *prev_p, struct task_struct *next_p)
  472. {
  473. struct thread_struct *prev = &prev_p->thread,
  474. *next = &next_p->thread;
  475. int cpu = smp_processor_id();
  476. struct tss_struct *tss = &per_cpu(init_tss, cpu);
  477. /* never put a printk in __switch_to... printk() calls wake_up*() indirectly */
  478. __unlazy_fpu(prev_p);
  479. /* we're going to use this soon, after a few expensive things */
  480. if (next_p->fpu_counter > 5)
  481. prefetch(next->xstate);
  482. /*
  483. * Reload esp0.
  484. */
  485. load_sp0(tss, next);
  486. /*
  487. * Save away %gs. No need to save %fs, as it was saved on the
  488. * stack on entry. No need to save %es and %ds, as those are
  489. * always kernel segments while inside the kernel. Doing this
  490. * before setting the new TLS descriptors avoids the situation
  491. * where we temporarily have non-reloadable segments in %fs
  492. * and %gs. This could be an issue if the NMI handler ever
  493. * used %fs or %gs (it does not today), or if the kernel is
  494. * running inside of a hypervisor layer.
  495. */
  496. savesegment(gs, prev->gs);
  497. /*
  498. * Load the per-thread Thread-Local Storage descriptor.
  499. */
  500. load_TLS(next, cpu);
  501. /*
  502. * Restore IOPL if needed. In normal use, the flags restore
  503. * in the switch assembly will handle this. But if the kernel
  504. * is running virtualized at a non-zero CPL, the popf will
  505. * not restore flags, so it must be done in a separate step.
  506. */
  507. if (get_kernel_rpl() && unlikely(prev->iopl != next->iopl))
  508. set_iopl_mask(next->iopl);
  509. /*
  510. * Now maybe handle debug registers and/or IO bitmaps
  511. */
  512. if (unlikely(task_thread_info(prev_p)->flags & _TIF_WORK_CTXSW_PREV ||
  513. task_thread_info(next_p)->flags & _TIF_WORK_CTXSW_NEXT))
  514. __switch_to_xtra(prev_p, next_p, tss);
  515. /*
  516. * Leave lazy mode, flushing any hypercalls made here.
  517. * This must be done before restoring TLS segments so
  518. * the GDT and LDT are properly updated, and must be
  519. * done before math_state_restore, so the TS bit is up
  520. * to date.
  521. */
  522. arch_leave_lazy_cpu_mode();
  523. /* If the task has used fpu the last 5 timeslices, just do a full
  524. * restore of the math state immediately to avoid the trap; the
  525. * chances of needing FPU soon are obviously high now
  526. *
  527. * tsk_used_math() checks prevent calling math_state_restore(),
  528. * which can sleep in the case of !tsk_used_math()
  529. */
  530. if (tsk_used_math(next_p) && next_p->fpu_counter > 5)
  531. math_state_restore();
  532. /*
  533. * Restore %gs if needed (which is common)
  534. */
  535. if (prev->gs | next->gs)
  536. loadsegment(gs, next->gs);
  537. x86_write_percpu(current_task, next_p);
  538. return prev_p;
  539. }
  540. asmlinkage int sys_fork(struct pt_regs regs)
  541. {
  542. return do_fork(SIGCHLD, regs.sp, &regs, 0, NULL, NULL);
  543. }
  544. asmlinkage int sys_clone(struct pt_regs regs)
  545. {
  546. unsigned long clone_flags;
  547. unsigned long newsp;
  548. int __user *parent_tidptr, *child_tidptr;
  549. clone_flags = regs.bx;
  550. newsp = regs.cx;
  551. parent_tidptr = (int __user *)regs.dx;
  552. child_tidptr = (int __user *)regs.di;
  553. if (!newsp)
  554. newsp = regs.sp;
  555. return do_fork(clone_flags, newsp, &regs, 0, parent_tidptr, child_tidptr);
  556. }
  557. /*
  558. * This is trivial, and on the face of it looks like it
  559. * could equally well be done in user mode.
  560. *
  561. * Not so, for quite unobvious reasons - register pressure.
  562. * In user mode vfork() cannot have a stack frame, and if
  563. * done by calling the "clone()" system call directly, you
  564. * do not have enough call-clobbered registers to hold all
  565. * the information you need.
  566. */
  567. asmlinkage int sys_vfork(struct pt_regs regs)
  568. {
  569. return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, regs.sp, &regs, 0, NULL, NULL);
  570. }
  571. /*
  572. * sys_execve() executes a new program.
  573. */
  574. asmlinkage int sys_execve(struct pt_regs regs)
  575. {
  576. int error;
  577. char * filename;
  578. filename = getname((char __user *) regs.bx);
  579. error = PTR_ERR(filename);
  580. if (IS_ERR(filename))
  581. goto out;
  582. error = do_execve(filename,
  583. (char __user * __user *) regs.cx,
  584. (char __user * __user *) regs.dx,
  585. &regs);
  586. if (error == 0) {
  587. /* Make sure we don't return using sysenter.. */
  588. set_thread_flag(TIF_IRET);
  589. }
  590. putname(filename);
  591. out:
  592. return error;
  593. }
  594. #define top_esp (THREAD_SIZE - sizeof(unsigned long))
  595. #define top_ebp (THREAD_SIZE - 2*sizeof(unsigned long))
  596. unsigned long get_wchan(struct task_struct *p)
  597. {
  598. unsigned long bp, sp, ip;
  599. unsigned long stack_page;
  600. int count = 0;
  601. if (!p || p == current || p->state == TASK_RUNNING)
  602. return 0;
  603. stack_page = (unsigned long)task_stack_page(p);
  604. sp = p->thread.sp;
  605. if (!stack_page || sp < stack_page || sp > top_esp+stack_page)
  606. return 0;
  607. /* include/asm-i386/system.h:switch_to() pushes bp last. */
  608. bp = *(unsigned long *) sp;
  609. do {
  610. if (bp < stack_page || bp > top_ebp+stack_page)
  611. return 0;
  612. ip = *(unsigned long *) (bp+4);
  613. if (!in_sched_functions(ip))
  614. return ip;
  615. bp = *(unsigned long *) bp;
  616. } while (count++ < 16);
  617. return 0;
  618. }
  619. unsigned long arch_align_stack(unsigned long sp)
  620. {
  621. if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
  622. sp -= get_random_int() % 8192;
  623. return sp & ~0xf;
  624. }
  625. unsigned long arch_randomize_brk(struct mm_struct *mm)
  626. {
  627. unsigned long range_end = mm->brk + 0x02000000;
  628. return randomize_range(mm->brk, range_end, 0) ? : mm->brk;
  629. }