rtnetlink.c 58 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422
  1. /*
  2. * INET An implementation of the TCP/IP protocol suite for the LINUX
  3. * operating system. INET is implemented using the BSD Socket
  4. * interface as the means of communication with the user level.
  5. *
  6. * Routing netlink socket interface: protocol independent part.
  7. *
  8. * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
  9. *
  10. * This program is free software; you can redistribute it and/or
  11. * modify it under the terms of the GNU General Public License
  12. * as published by the Free Software Foundation; either version
  13. * 2 of the License, or (at your option) any later version.
  14. *
  15. * Fixes:
  16. * Vitaly E. Lavrov RTA_OK arithmetics was wrong.
  17. */
  18. #include <linux/errno.h>
  19. #include <linux/module.h>
  20. #include <linux/types.h>
  21. #include <linux/socket.h>
  22. #include <linux/kernel.h>
  23. #include <linux/timer.h>
  24. #include <linux/string.h>
  25. #include <linux/sockios.h>
  26. #include <linux/net.h>
  27. #include <linux/fcntl.h>
  28. #include <linux/mm.h>
  29. #include <linux/slab.h>
  30. #include <linux/interrupt.h>
  31. #include <linux/capability.h>
  32. #include <linux/skbuff.h>
  33. #include <linux/init.h>
  34. #include <linux/security.h>
  35. #include <linux/mutex.h>
  36. #include <linux/if_addr.h>
  37. #include <linux/if_bridge.h>
  38. #include <linux/pci.h>
  39. #include <linux/etherdevice.h>
  40. #include <asm/uaccess.h>
  41. #include <linux/inet.h>
  42. #include <linux/netdevice.h>
  43. #include <net/ip.h>
  44. #include <net/protocol.h>
  45. #include <net/arp.h>
  46. #include <net/route.h>
  47. #include <net/udp.h>
  48. #include <net/sock.h>
  49. #include <net/pkt_sched.h>
  50. #include <net/fib_rules.h>
  51. #include <net/rtnetlink.h>
  52. #include <net/net_namespace.h>
  53. struct rtnl_link {
  54. rtnl_doit_func doit;
  55. rtnl_dumpit_func dumpit;
  56. rtnl_calcit_func calcit;
  57. };
  58. static DEFINE_MUTEX(rtnl_mutex);
  59. void rtnl_lock(void)
  60. {
  61. mutex_lock(&rtnl_mutex);
  62. }
  63. EXPORT_SYMBOL(rtnl_lock);
  64. void __rtnl_unlock(void)
  65. {
  66. mutex_unlock(&rtnl_mutex);
  67. }
  68. void rtnl_unlock(void)
  69. {
  70. /* This fellow will unlock it for us. */
  71. netdev_run_todo();
  72. }
  73. EXPORT_SYMBOL(rtnl_unlock);
  74. int rtnl_trylock(void)
  75. {
  76. return mutex_trylock(&rtnl_mutex);
  77. }
  78. EXPORT_SYMBOL(rtnl_trylock);
  79. int rtnl_is_locked(void)
  80. {
  81. return mutex_is_locked(&rtnl_mutex);
  82. }
  83. EXPORT_SYMBOL(rtnl_is_locked);
  84. #ifdef CONFIG_PROVE_LOCKING
  85. int lockdep_rtnl_is_held(void)
  86. {
  87. return lockdep_is_held(&rtnl_mutex);
  88. }
  89. EXPORT_SYMBOL(lockdep_rtnl_is_held);
  90. #endif /* #ifdef CONFIG_PROVE_LOCKING */
  91. static struct rtnl_link *rtnl_msg_handlers[RTNL_FAMILY_MAX + 1];
  92. static inline int rtm_msgindex(int msgtype)
  93. {
  94. int msgindex = msgtype - RTM_BASE;
  95. /*
  96. * msgindex < 0 implies someone tried to register a netlink
  97. * control code. msgindex >= RTM_NR_MSGTYPES may indicate that
  98. * the message type has not been added to linux/rtnetlink.h
  99. */
  100. BUG_ON(msgindex < 0 || msgindex >= RTM_NR_MSGTYPES);
  101. return msgindex;
  102. }
  103. static rtnl_doit_func rtnl_get_doit(int protocol, int msgindex)
  104. {
  105. struct rtnl_link *tab;
  106. if (protocol <= RTNL_FAMILY_MAX)
  107. tab = rtnl_msg_handlers[protocol];
  108. else
  109. tab = NULL;
  110. if (tab == NULL || tab[msgindex].doit == NULL)
  111. tab = rtnl_msg_handlers[PF_UNSPEC];
  112. return tab ? tab[msgindex].doit : NULL;
  113. }
  114. static rtnl_dumpit_func rtnl_get_dumpit(int protocol, int msgindex)
  115. {
  116. struct rtnl_link *tab;
  117. if (protocol <= RTNL_FAMILY_MAX)
  118. tab = rtnl_msg_handlers[protocol];
  119. else
  120. tab = NULL;
  121. if (tab == NULL || tab[msgindex].dumpit == NULL)
  122. tab = rtnl_msg_handlers[PF_UNSPEC];
  123. return tab ? tab[msgindex].dumpit : NULL;
  124. }
  125. static rtnl_calcit_func rtnl_get_calcit(int protocol, int msgindex)
  126. {
  127. struct rtnl_link *tab;
  128. if (protocol <= RTNL_FAMILY_MAX)
  129. tab = rtnl_msg_handlers[protocol];
  130. else
  131. tab = NULL;
  132. if (tab == NULL || tab[msgindex].calcit == NULL)
  133. tab = rtnl_msg_handlers[PF_UNSPEC];
  134. return tab ? tab[msgindex].calcit : NULL;
  135. }
  136. /**
  137. * __rtnl_register - Register a rtnetlink message type
  138. * @protocol: Protocol family or PF_UNSPEC
  139. * @msgtype: rtnetlink message type
  140. * @doit: Function pointer called for each request message
  141. * @dumpit: Function pointer called for each dump request (NLM_F_DUMP) message
  142. * @calcit: Function pointer to calc size of dump message
  143. *
  144. * Registers the specified function pointers (at least one of them has
  145. * to be non-NULL) to be called whenever a request message for the
  146. * specified protocol family and message type is received.
  147. *
  148. * The special protocol family PF_UNSPEC may be used to define fallback
  149. * function pointers for the case when no entry for the specific protocol
  150. * family exists.
  151. *
  152. * Returns 0 on success or a negative error code.
  153. */
  154. int __rtnl_register(int protocol, int msgtype,
  155. rtnl_doit_func doit, rtnl_dumpit_func dumpit,
  156. rtnl_calcit_func calcit)
  157. {
  158. struct rtnl_link *tab;
  159. int msgindex;
  160. BUG_ON(protocol < 0 || protocol > RTNL_FAMILY_MAX);
  161. msgindex = rtm_msgindex(msgtype);
  162. tab = rtnl_msg_handlers[protocol];
  163. if (tab == NULL) {
  164. tab = kcalloc(RTM_NR_MSGTYPES, sizeof(*tab), GFP_KERNEL);
  165. if (tab == NULL)
  166. return -ENOBUFS;
  167. rtnl_msg_handlers[protocol] = tab;
  168. }
  169. if (doit)
  170. tab[msgindex].doit = doit;
  171. if (dumpit)
  172. tab[msgindex].dumpit = dumpit;
  173. if (calcit)
  174. tab[msgindex].calcit = calcit;
  175. return 0;
  176. }
  177. EXPORT_SYMBOL_GPL(__rtnl_register);
  178. /**
  179. * rtnl_register - Register a rtnetlink message type
  180. *
  181. * Identical to __rtnl_register() but panics on failure. This is useful
  182. * as failure of this function is very unlikely, it can only happen due
  183. * to lack of memory when allocating the chain to store all message
  184. * handlers for a protocol. Meant for use in init functions where lack
  185. * of memory implies no sense in continuing.
  186. */
  187. void rtnl_register(int protocol, int msgtype,
  188. rtnl_doit_func doit, rtnl_dumpit_func dumpit,
  189. rtnl_calcit_func calcit)
  190. {
  191. if (__rtnl_register(protocol, msgtype, doit, dumpit, calcit) < 0)
  192. panic("Unable to register rtnetlink message handler, "
  193. "protocol = %d, message type = %d\n",
  194. protocol, msgtype);
  195. }
  196. EXPORT_SYMBOL_GPL(rtnl_register);
  197. /**
  198. * rtnl_unregister - Unregister a rtnetlink message type
  199. * @protocol: Protocol family or PF_UNSPEC
  200. * @msgtype: rtnetlink message type
  201. *
  202. * Returns 0 on success or a negative error code.
  203. */
  204. int rtnl_unregister(int protocol, int msgtype)
  205. {
  206. int msgindex;
  207. BUG_ON(protocol < 0 || protocol > RTNL_FAMILY_MAX);
  208. msgindex = rtm_msgindex(msgtype);
  209. if (rtnl_msg_handlers[protocol] == NULL)
  210. return -ENOENT;
  211. rtnl_msg_handlers[protocol][msgindex].doit = NULL;
  212. rtnl_msg_handlers[protocol][msgindex].dumpit = NULL;
  213. return 0;
  214. }
  215. EXPORT_SYMBOL_GPL(rtnl_unregister);
  216. /**
  217. * rtnl_unregister_all - Unregister all rtnetlink message type of a protocol
  218. * @protocol : Protocol family or PF_UNSPEC
  219. *
  220. * Identical to calling rtnl_unregster() for all registered message types
  221. * of a certain protocol family.
  222. */
  223. void rtnl_unregister_all(int protocol)
  224. {
  225. BUG_ON(protocol < 0 || protocol > RTNL_FAMILY_MAX);
  226. kfree(rtnl_msg_handlers[protocol]);
  227. rtnl_msg_handlers[protocol] = NULL;
  228. }
  229. EXPORT_SYMBOL_GPL(rtnl_unregister_all);
  230. static LIST_HEAD(link_ops);
  231. static const struct rtnl_link_ops *rtnl_link_ops_get(const char *kind)
  232. {
  233. const struct rtnl_link_ops *ops;
  234. list_for_each_entry(ops, &link_ops, list) {
  235. if (!strcmp(ops->kind, kind))
  236. return ops;
  237. }
  238. return NULL;
  239. }
  240. /**
  241. * __rtnl_link_register - Register rtnl_link_ops with rtnetlink.
  242. * @ops: struct rtnl_link_ops * to register
  243. *
  244. * The caller must hold the rtnl_mutex. This function should be used
  245. * by drivers that create devices during module initialization. It
  246. * must be called before registering the devices.
  247. *
  248. * Returns 0 on success or a negative error code.
  249. */
  250. int __rtnl_link_register(struct rtnl_link_ops *ops)
  251. {
  252. if (rtnl_link_ops_get(ops->kind))
  253. return -EEXIST;
  254. if (!ops->dellink)
  255. ops->dellink = unregister_netdevice_queue;
  256. list_add_tail(&ops->list, &link_ops);
  257. return 0;
  258. }
  259. EXPORT_SYMBOL_GPL(__rtnl_link_register);
  260. /**
  261. * rtnl_link_register - Register rtnl_link_ops with rtnetlink.
  262. * @ops: struct rtnl_link_ops * to register
  263. *
  264. * Returns 0 on success or a negative error code.
  265. */
  266. int rtnl_link_register(struct rtnl_link_ops *ops)
  267. {
  268. int err;
  269. rtnl_lock();
  270. err = __rtnl_link_register(ops);
  271. rtnl_unlock();
  272. return err;
  273. }
  274. EXPORT_SYMBOL_GPL(rtnl_link_register);
  275. static void __rtnl_kill_links(struct net *net, struct rtnl_link_ops *ops)
  276. {
  277. struct net_device *dev;
  278. LIST_HEAD(list_kill);
  279. for_each_netdev(net, dev) {
  280. if (dev->rtnl_link_ops == ops)
  281. ops->dellink(dev, &list_kill);
  282. }
  283. unregister_netdevice_many(&list_kill);
  284. }
  285. /**
  286. * __rtnl_link_unregister - Unregister rtnl_link_ops from rtnetlink.
  287. * @ops: struct rtnl_link_ops * to unregister
  288. *
  289. * The caller must hold the rtnl_mutex.
  290. */
  291. void __rtnl_link_unregister(struct rtnl_link_ops *ops)
  292. {
  293. struct net *net;
  294. for_each_net(net) {
  295. __rtnl_kill_links(net, ops);
  296. }
  297. list_del(&ops->list);
  298. }
  299. EXPORT_SYMBOL_GPL(__rtnl_link_unregister);
  300. /**
  301. * rtnl_link_unregister - Unregister rtnl_link_ops from rtnetlink.
  302. * @ops: struct rtnl_link_ops * to unregister
  303. */
  304. void rtnl_link_unregister(struct rtnl_link_ops *ops)
  305. {
  306. rtnl_lock();
  307. __rtnl_link_unregister(ops);
  308. rtnl_unlock();
  309. }
  310. EXPORT_SYMBOL_GPL(rtnl_link_unregister);
  311. static size_t rtnl_link_get_size(const struct net_device *dev)
  312. {
  313. const struct rtnl_link_ops *ops = dev->rtnl_link_ops;
  314. size_t size;
  315. if (!ops)
  316. return 0;
  317. size = nla_total_size(sizeof(struct nlattr)) + /* IFLA_LINKINFO */
  318. nla_total_size(strlen(ops->kind) + 1); /* IFLA_INFO_KIND */
  319. if (ops->get_size)
  320. /* IFLA_INFO_DATA + nested data */
  321. size += nla_total_size(sizeof(struct nlattr)) +
  322. ops->get_size(dev);
  323. if (ops->get_xstats_size)
  324. /* IFLA_INFO_XSTATS */
  325. size += nla_total_size(ops->get_xstats_size(dev));
  326. return size;
  327. }
  328. static LIST_HEAD(rtnl_af_ops);
  329. static const struct rtnl_af_ops *rtnl_af_lookup(const int family)
  330. {
  331. const struct rtnl_af_ops *ops;
  332. list_for_each_entry(ops, &rtnl_af_ops, list) {
  333. if (ops->family == family)
  334. return ops;
  335. }
  336. return NULL;
  337. }
  338. /**
  339. * __rtnl_af_register - Register rtnl_af_ops with rtnetlink.
  340. * @ops: struct rtnl_af_ops * to register
  341. *
  342. * The caller must hold the rtnl_mutex.
  343. *
  344. * Returns 0 on success or a negative error code.
  345. */
  346. int __rtnl_af_register(struct rtnl_af_ops *ops)
  347. {
  348. list_add_tail(&ops->list, &rtnl_af_ops);
  349. return 0;
  350. }
  351. EXPORT_SYMBOL_GPL(__rtnl_af_register);
  352. /**
  353. * rtnl_af_register - Register rtnl_af_ops with rtnetlink.
  354. * @ops: struct rtnl_af_ops * to register
  355. *
  356. * Returns 0 on success or a negative error code.
  357. */
  358. int rtnl_af_register(struct rtnl_af_ops *ops)
  359. {
  360. int err;
  361. rtnl_lock();
  362. err = __rtnl_af_register(ops);
  363. rtnl_unlock();
  364. return err;
  365. }
  366. EXPORT_SYMBOL_GPL(rtnl_af_register);
  367. /**
  368. * __rtnl_af_unregister - Unregister rtnl_af_ops from rtnetlink.
  369. * @ops: struct rtnl_af_ops * to unregister
  370. *
  371. * The caller must hold the rtnl_mutex.
  372. */
  373. void __rtnl_af_unregister(struct rtnl_af_ops *ops)
  374. {
  375. list_del(&ops->list);
  376. }
  377. EXPORT_SYMBOL_GPL(__rtnl_af_unregister);
  378. /**
  379. * rtnl_af_unregister - Unregister rtnl_af_ops from rtnetlink.
  380. * @ops: struct rtnl_af_ops * to unregister
  381. */
  382. void rtnl_af_unregister(struct rtnl_af_ops *ops)
  383. {
  384. rtnl_lock();
  385. __rtnl_af_unregister(ops);
  386. rtnl_unlock();
  387. }
  388. EXPORT_SYMBOL_GPL(rtnl_af_unregister);
  389. static size_t rtnl_link_get_af_size(const struct net_device *dev)
  390. {
  391. struct rtnl_af_ops *af_ops;
  392. size_t size;
  393. /* IFLA_AF_SPEC */
  394. size = nla_total_size(sizeof(struct nlattr));
  395. list_for_each_entry(af_ops, &rtnl_af_ops, list) {
  396. if (af_ops->get_link_af_size) {
  397. /* AF_* + nested data */
  398. size += nla_total_size(sizeof(struct nlattr)) +
  399. af_ops->get_link_af_size(dev);
  400. }
  401. }
  402. return size;
  403. }
  404. static int rtnl_link_fill(struct sk_buff *skb, const struct net_device *dev)
  405. {
  406. const struct rtnl_link_ops *ops = dev->rtnl_link_ops;
  407. struct nlattr *linkinfo, *data;
  408. int err = -EMSGSIZE;
  409. linkinfo = nla_nest_start(skb, IFLA_LINKINFO);
  410. if (linkinfo == NULL)
  411. goto out;
  412. if (nla_put_string(skb, IFLA_INFO_KIND, ops->kind) < 0)
  413. goto err_cancel_link;
  414. if (ops->fill_xstats) {
  415. err = ops->fill_xstats(skb, dev);
  416. if (err < 0)
  417. goto err_cancel_link;
  418. }
  419. if (ops->fill_info) {
  420. data = nla_nest_start(skb, IFLA_INFO_DATA);
  421. if (data == NULL)
  422. goto err_cancel_link;
  423. err = ops->fill_info(skb, dev);
  424. if (err < 0)
  425. goto err_cancel_data;
  426. nla_nest_end(skb, data);
  427. }
  428. nla_nest_end(skb, linkinfo);
  429. return 0;
  430. err_cancel_data:
  431. nla_nest_cancel(skb, data);
  432. err_cancel_link:
  433. nla_nest_cancel(skb, linkinfo);
  434. out:
  435. return err;
  436. }
  437. static const int rtm_min[RTM_NR_FAMILIES] =
  438. {
  439. [RTM_FAM(RTM_NEWLINK)] = NLMSG_LENGTH(sizeof(struct ifinfomsg)),
  440. [RTM_FAM(RTM_NEWADDR)] = NLMSG_LENGTH(sizeof(struct ifaddrmsg)),
  441. [RTM_FAM(RTM_NEWROUTE)] = NLMSG_LENGTH(sizeof(struct rtmsg)),
  442. [RTM_FAM(RTM_NEWRULE)] = NLMSG_LENGTH(sizeof(struct fib_rule_hdr)),
  443. [RTM_FAM(RTM_NEWQDISC)] = NLMSG_LENGTH(sizeof(struct tcmsg)),
  444. [RTM_FAM(RTM_NEWTCLASS)] = NLMSG_LENGTH(sizeof(struct tcmsg)),
  445. [RTM_FAM(RTM_NEWTFILTER)] = NLMSG_LENGTH(sizeof(struct tcmsg)),
  446. [RTM_FAM(RTM_NEWACTION)] = NLMSG_LENGTH(sizeof(struct tcamsg)),
  447. [RTM_FAM(RTM_GETMULTICAST)] = NLMSG_LENGTH(sizeof(struct rtgenmsg)),
  448. [RTM_FAM(RTM_GETANYCAST)] = NLMSG_LENGTH(sizeof(struct rtgenmsg)),
  449. };
  450. static const int rta_max[RTM_NR_FAMILIES] =
  451. {
  452. [RTM_FAM(RTM_NEWLINK)] = IFLA_MAX,
  453. [RTM_FAM(RTM_NEWADDR)] = IFA_MAX,
  454. [RTM_FAM(RTM_NEWROUTE)] = RTA_MAX,
  455. [RTM_FAM(RTM_NEWRULE)] = FRA_MAX,
  456. [RTM_FAM(RTM_NEWQDISC)] = TCA_MAX,
  457. [RTM_FAM(RTM_NEWTCLASS)] = TCA_MAX,
  458. [RTM_FAM(RTM_NEWTFILTER)] = TCA_MAX,
  459. [RTM_FAM(RTM_NEWACTION)] = TCAA_MAX,
  460. };
  461. int rtnetlink_send(struct sk_buff *skb, struct net *net, u32 pid, unsigned int group, int echo)
  462. {
  463. struct sock *rtnl = net->rtnl;
  464. int err = 0;
  465. NETLINK_CB(skb).dst_group = group;
  466. if (echo)
  467. atomic_inc(&skb->users);
  468. netlink_broadcast(rtnl, skb, pid, group, GFP_KERNEL);
  469. if (echo)
  470. err = netlink_unicast(rtnl, skb, pid, MSG_DONTWAIT);
  471. return err;
  472. }
  473. int rtnl_unicast(struct sk_buff *skb, struct net *net, u32 pid)
  474. {
  475. struct sock *rtnl = net->rtnl;
  476. return nlmsg_unicast(rtnl, skb, pid);
  477. }
  478. EXPORT_SYMBOL(rtnl_unicast);
  479. void rtnl_notify(struct sk_buff *skb, struct net *net, u32 pid, u32 group,
  480. struct nlmsghdr *nlh, gfp_t flags)
  481. {
  482. struct sock *rtnl = net->rtnl;
  483. int report = 0;
  484. if (nlh)
  485. report = nlmsg_report(nlh);
  486. nlmsg_notify(rtnl, skb, pid, group, report, flags);
  487. }
  488. EXPORT_SYMBOL(rtnl_notify);
  489. void rtnl_set_sk_err(struct net *net, u32 group, int error)
  490. {
  491. struct sock *rtnl = net->rtnl;
  492. netlink_set_err(rtnl, 0, group, error);
  493. }
  494. EXPORT_SYMBOL(rtnl_set_sk_err);
  495. int rtnetlink_put_metrics(struct sk_buff *skb, u32 *metrics)
  496. {
  497. struct nlattr *mx;
  498. int i, valid = 0;
  499. mx = nla_nest_start(skb, RTA_METRICS);
  500. if (mx == NULL)
  501. return -ENOBUFS;
  502. for (i = 0; i < RTAX_MAX; i++) {
  503. if (metrics[i]) {
  504. valid++;
  505. if (nla_put_u32(skb, i+1, metrics[i]))
  506. goto nla_put_failure;
  507. }
  508. }
  509. if (!valid) {
  510. nla_nest_cancel(skb, mx);
  511. return 0;
  512. }
  513. return nla_nest_end(skb, mx);
  514. nla_put_failure:
  515. nla_nest_cancel(skb, mx);
  516. return -EMSGSIZE;
  517. }
  518. EXPORT_SYMBOL(rtnetlink_put_metrics);
  519. int rtnl_put_cacheinfo(struct sk_buff *skb, struct dst_entry *dst, u32 id,
  520. long expires, u32 error)
  521. {
  522. struct rta_cacheinfo ci = {
  523. .rta_lastuse = jiffies_to_clock_t(jiffies - dst->lastuse),
  524. .rta_used = dst->__use,
  525. .rta_clntref = atomic_read(&(dst->__refcnt)),
  526. .rta_error = error,
  527. .rta_id = id,
  528. };
  529. if (expires)
  530. ci.rta_expires = jiffies_to_clock_t(expires);
  531. return nla_put(skb, RTA_CACHEINFO, sizeof(ci), &ci);
  532. }
  533. EXPORT_SYMBOL_GPL(rtnl_put_cacheinfo);
  534. static void set_operstate(struct net_device *dev, unsigned char transition)
  535. {
  536. unsigned char operstate = dev->operstate;
  537. switch (transition) {
  538. case IF_OPER_UP:
  539. if ((operstate == IF_OPER_DORMANT ||
  540. operstate == IF_OPER_UNKNOWN) &&
  541. !netif_dormant(dev))
  542. operstate = IF_OPER_UP;
  543. break;
  544. case IF_OPER_DORMANT:
  545. if (operstate == IF_OPER_UP ||
  546. operstate == IF_OPER_UNKNOWN)
  547. operstate = IF_OPER_DORMANT;
  548. break;
  549. }
  550. if (dev->operstate != operstate) {
  551. write_lock_bh(&dev_base_lock);
  552. dev->operstate = operstate;
  553. write_unlock_bh(&dev_base_lock);
  554. netdev_state_change(dev);
  555. }
  556. }
  557. static unsigned int rtnl_dev_combine_flags(const struct net_device *dev,
  558. const struct ifinfomsg *ifm)
  559. {
  560. unsigned int flags = ifm->ifi_flags;
  561. /* bugwards compatibility: ifi_change == 0 is treated as ~0 */
  562. if (ifm->ifi_change)
  563. flags = (flags & ifm->ifi_change) |
  564. (dev->flags & ~ifm->ifi_change);
  565. return flags;
  566. }
  567. static void copy_rtnl_link_stats(struct rtnl_link_stats *a,
  568. const struct rtnl_link_stats64 *b)
  569. {
  570. a->rx_packets = b->rx_packets;
  571. a->tx_packets = b->tx_packets;
  572. a->rx_bytes = b->rx_bytes;
  573. a->tx_bytes = b->tx_bytes;
  574. a->rx_errors = b->rx_errors;
  575. a->tx_errors = b->tx_errors;
  576. a->rx_dropped = b->rx_dropped;
  577. a->tx_dropped = b->tx_dropped;
  578. a->multicast = b->multicast;
  579. a->collisions = b->collisions;
  580. a->rx_length_errors = b->rx_length_errors;
  581. a->rx_over_errors = b->rx_over_errors;
  582. a->rx_crc_errors = b->rx_crc_errors;
  583. a->rx_frame_errors = b->rx_frame_errors;
  584. a->rx_fifo_errors = b->rx_fifo_errors;
  585. a->rx_missed_errors = b->rx_missed_errors;
  586. a->tx_aborted_errors = b->tx_aborted_errors;
  587. a->tx_carrier_errors = b->tx_carrier_errors;
  588. a->tx_fifo_errors = b->tx_fifo_errors;
  589. a->tx_heartbeat_errors = b->tx_heartbeat_errors;
  590. a->tx_window_errors = b->tx_window_errors;
  591. a->rx_compressed = b->rx_compressed;
  592. a->tx_compressed = b->tx_compressed;
  593. }
  594. static void copy_rtnl_link_stats64(void *v, const struct rtnl_link_stats64 *b)
  595. {
  596. memcpy(v, b, sizeof(*b));
  597. }
  598. /* All VF info */
  599. static inline int rtnl_vfinfo_size(const struct net_device *dev,
  600. u32 ext_filter_mask)
  601. {
  602. if (dev->dev.parent && dev_is_pci(dev->dev.parent) &&
  603. (ext_filter_mask & RTEXT_FILTER_VF)) {
  604. int num_vfs = dev_num_vf(dev->dev.parent);
  605. size_t size = nla_total_size(sizeof(struct nlattr));
  606. size += nla_total_size(num_vfs * sizeof(struct nlattr));
  607. size += num_vfs *
  608. (nla_total_size(sizeof(struct ifla_vf_mac)) +
  609. nla_total_size(sizeof(struct ifla_vf_vlan)) +
  610. nla_total_size(sizeof(struct ifla_vf_tx_rate)) +
  611. nla_total_size(sizeof(struct ifla_vf_spoofchk)));
  612. return size;
  613. } else
  614. return 0;
  615. }
  616. static size_t rtnl_port_size(const struct net_device *dev)
  617. {
  618. size_t port_size = nla_total_size(4) /* PORT_VF */
  619. + nla_total_size(PORT_PROFILE_MAX) /* PORT_PROFILE */
  620. + nla_total_size(sizeof(struct ifla_port_vsi))
  621. /* PORT_VSI_TYPE */
  622. + nla_total_size(PORT_UUID_MAX) /* PORT_INSTANCE_UUID */
  623. + nla_total_size(PORT_UUID_MAX) /* PORT_HOST_UUID */
  624. + nla_total_size(1) /* PROT_VDP_REQUEST */
  625. + nla_total_size(2); /* PORT_VDP_RESPONSE */
  626. size_t vf_ports_size = nla_total_size(sizeof(struct nlattr));
  627. size_t vf_port_size = nla_total_size(sizeof(struct nlattr))
  628. + port_size;
  629. size_t port_self_size = nla_total_size(sizeof(struct nlattr))
  630. + port_size;
  631. if (!dev->netdev_ops->ndo_get_vf_port || !dev->dev.parent)
  632. return 0;
  633. if (dev_num_vf(dev->dev.parent))
  634. return port_self_size + vf_ports_size +
  635. vf_port_size * dev_num_vf(dev->dev.parent);
  636. else
  637. return port_self_size;
  638. }
  639. static noinline size_t if_nlmsg_size(const struct net_device *dev,
  640. u32 ext_filter_mask)
  641. {
  642. return NLMSG_ALIGN(sizeof(struct ifinfomsg))
  643. + nla_total_size(IFNAMSIZ) /* IFLA_IFNAME */
  644. + nla_total_size(IFALIASZ) /* IFLA_IFALIAS */
  645. + nla_total_size(IFNAMSIZ) /* IFLA_QDISC */
  646. + nla_total_size(sizeof(struct rtnl_link_ifmap))
  647. + nla_total_size(sizeof(struct rtnl_link_stats))
  648. + nla_total_size(sizeof(struct rtnl_link_stats64))
  649. + nla_total_size(MAX_ADDR_LEN) /* IFLA_ADDRESS */
  650. + nla_total_size(MAX_ADDR_LEN) /* IFLA_BROADCAST */
  651. + nla_total_size(4) /* IFLA_TXQLEN */
  652. + nla_total_size(4) /* IFLA_WEIGHT */
  653. + nla_total_size(4) /* IFLA_MTU */
  654. + nla_total_size(4) /* IFLA_LINK */
  655. + nla_total_size(4) /* IFLA_MASTER */
  656. + nla_total_size(4) /* IFLA_PROMISCUITY */
  657. + nla_total_size(4) /* IFLA_NUM_TX_QUEUES */
  658. + nla_total_size(4) /* IFLA_NUM_RX_QUEUES */
  659. + nla_total_size(1) /* IFLA_OPERSTATE */
  660. + nla_total_size(1) /* IFLA_LINKMODE */
  661. + nla_total_size(ext_filter_mask
  662. & RTEXT_FILTER_VF ? 4 : 0) /* IFLA_NUM_VF */
  663. + rtnl_vfinfo_size(dev, ext_filter_mask) /* IFLA_VFINFO_LIST */
  664. + rtnl_port_size(dev) /* IFLA_VF_PORTS + IFLA_PORT_SELF */
  665. + rtnl_link_get_size(dev) /* IFLA_LINKINFO */
  666. + rtnl_link_get_af_size(dev); /* IFLA_AF_SPEC */
  667. }
  668. static int rtnl_vf_ports_fill(struct sk_buff *skb, struct net_device *dev)
  669. {
  670. struct nlattr *vf_ports;
  671. struct nlattr *vf_port;
  672. int vf;
  673. int err;
  674. vf_ports = nla_nest_start(skb, IFLA_VF_PORTS);
  675. if (!vf_ports)
  676. return -EMSGSIZE;
  677. for (vf = 0; vf < dev_num_vf(dev->dev.parent); vf++) {
  678. vf_port = nla_nest_start(skb, IFLA_VF_PORT);
  679. if (!vf_port)
  680. goto nla_put_failure;
  681. if (nla_put_u32(skb, IFLA_PORT_VF, vf))
  682. goto nla_put_failure;
  683. err = dev->netdev_ops->ndo_get_vf_port(dev, vf, skb);
  684. if (err == -EMSGSIZE)
  685. goto nla_put_failure;
  686. if (err) {
  687. nla_nest_cancel(skb, vf_port);
  688. continue;
  689. }
  690. nla_nest_end(skb, vf_port);
  691. }
  692. nla_nest_end(skb, vf_ports);
  693. return 0;
  694. nla_put_failure:
  695. nla_nest_cancel(skb, vf_ports);
  696. return -EMSGSIZE;
  697. }
  698. static int rtnl_port_self_fill(struct sk_buff *skb, struct net_device *dev)
  699. {
  700. struct nlattr *port_self;
  701. int err;
  702. port_self = nla_nest_start(skb, IFLA_PORT_SELF);
  703. if (!port_self)
  704. return -EMSGSIZE;
  705. err = dev->netdev_ops->ndo_get_vf_port(dev, PORT_SELF_VF, skb);
  706. if (err) {
  707. nla_nest_cancel(skb, port_self);
  708. return (err == -EMSGSIZE) ? err : 0;
  709. }
  710. nla_nest_end(skb, port_self);
  711. return 0;
  712. }
  713. static int rtnl_port_fill(struct sk_buff *skb, struct net_device *dev)
  714. {
  715. int err;
  716. if (!dev->netdev_ops->ndo_get_vf_port || !dev->dev.parent)
  717. return 0;
  718. err = rtnl_port_self_fill(skb, dev);
  719. if (err)
  720. return err;
  721. if (dev_num_vf(dev->dev.parent)) {
  722. err = rtnl_vf_ports_fill(skb, dev);
  723. if (err)
  724. return err;
  725. }
  726. return 0;
  727. }
  728. static int rtnl_fill_ifinfo(struct sk_buff *skb, struct net_device *dev,
  729. int type, u32 pid, u32 seq, u32 change,
  730. unsigned int flags, u32 ext_filter_mask)
  731. {
  732. struct ifinfomsg *ifm;
  733. struct nlmsghdr *nlh;
  734. struct rtnl_link_stats64 temp;
  735. const struct rtnl_link_stats64 *stats;
  736. struct nlattr *attr, *af_spec;
  737. struct rtnl_af_ops *af_ops;
  738. ASSERT_RTNL();
  739. nlh = nlmsg_put(skb, pid, seq, type, sizeof(*ifm), flags);
  740. if (nlh == NULL)
  741. return -EMSGSIZE;
  742. ifm = nlmsg_data(nlh);
  743. ifm->ifi_family = AF_UNSPEC;
  744. ifm->__ifi_pad = 0;
  745. ifm->ifi_type = dev->type;
  746. ifm->ifi_index = dev->ifindex;
  747. ifm->ifi_flags = dev_get_flags(dev);
  748. ifm->ifi_change = change;
  749. if (nla_put_string(skb, IFLA_IFNAME, dev->name) ||
  750. nla_put_u32(skb, IFLA_TXQLEN, dev->tx_queue_len) ||
  751. nla_put_u8(skb, IFLA_OPERSTATE,
  752. netif_running(dev) ? dev->operstate : IF_OPER_DOWN) ||
  753. nla_put_u8(skb, IFLA_LINKMODE, dev->link_mode) ||
  754. nla_put_u32(skb, IFLA_MTU, dev->mtu) ||
  755. nla_put_u32(skb, IFLA_GROUP, dev->group) ||
  756. nla_put_u32(skb, IFLA_PROMISCUITY, dev->promiscuity) ||
  757. nla_put_u32(skb, IFLA_NUM_TX_QUEUES, dev->num_tx_queues) ||
  758. #ifdef CONFIG_RPS
  759. nla_put_u32(skb, IFLA_NUM_RX_QUEUES, dev->num_rx_queues) ||
  760. #endif
  761. (dev->ifindex != dev->iflink &&
  762. nla_put_u32(skb, IFLA_LINK, dev->iflink)) ||
  763. (dev->master &&
  764. nla_put_u32(skb, IFLA_MASTER, dev->master->ifindex)) ||
  765. (dev->qdisc &&
  766. nla_put_string(skb, IFLA_QDISC, dev->qdisc->ops->id)) ||
  767. (dev->ifalias &&
  768. nla_put_string(skb, IFLA_IFALIAS, dev->ifalias)))
  769. goto nla_put_failure;
  770. if (1) {
  771. struct rtnl_link_ifmap map = {
  772. .mem_start = dev->mem_start,
  773. .mem_end = dev->mem_end,
  774. .base_addr = dev->base_addr,
  775. .irq = dev->irq,
  776. .dma = dev->dma,
  777. .port = dev->if_port,
  778. };
  779. if (nla_put(skb, IFLA_MAP, sizeof(map), &map))
  780. goto nla_put_failure;
  781. }
  782. if (dev->addr_len) {
  783. if (nla_put(skb, IFLA_ADDRESS, dev->addr_len, dev->dev_addr) ||
  784. nla_put(skb, IFLA_BROADCAST, dev->addr_len, dev->broadcast))
  785. goto nla_put_failure;
  786. }
  787. attr = nla_reserve(skb, IFLA_STATS,
  788. sizeof(struct rtnl_link_stats));
  789. if (attr == NULL)
  790. goto nla_put_failure;
  791. stats = dev_get_stats(dev, &temp);
  792. copy_rtnl_link_stats(nla_data(attr), stats);
  793. attr = nla_reserve(skb, IFLA_STATS64,
  794. sizeof(struct rtnl_link_stats64));
  795. if (attr == NULL)
  796. goto nla_put_failure;
  797. copy_rtnl_link_stats64(nla_data(attr), stats);
  798. if (dev->dev.parent && (ext_filter_mask & RTEXT_FILTER_VF) &&
  799. nla_put_u32(skb, IFLA_NUM_VF, dev_num_vf(dev->dev.parent)))
  800. goto nla_put_failure;
  801. if (dev->netdev_ops->ndo_get_vf_config && dev->dev.parent
  802. && (ext_filter_mask & RTEXT_FILTER_VF)) {
  803. int i;
  804. struct nlattr *vfinfo, *vf;
  805. int num_vfs = dev_num_vf(dev->dev.parent);
  806. vfinfo = nla_nest_start(skb, IFLA_VFINFO_LIST);
  807. if (!vfinfo)
  808. goto nla_put_failure;
  809. for (i = 0; i < num_vfs; i++) {
  810. struct ifla_vf_info ivi;
  811. struct ifla_vf_mac vf_mac;
  812. struct ifla_vf_vlan vf_vlan;
  813. struct ifla_vf_tx_rate vf_tx_rate;
  814. struct ifla_vf_spoofchk vf_spoofchk;
  815. /*
  816. * Not all SR-IOV capable drivers support the
  817. * spoofcheck query. Preset to -1 so the user
  818. * space tool can detect that the driver didn't
  819. * report anything.
  820. */
  821. ivi.spoofchk = -1;
  822. if (dev->netdev_ops->ndo_get_vf_config(dev, i, &ivi))
  823. break;
  824. vf_mac.vf =
  825. vf_vlan.vf =
  826. vf_tx_rate.vf =
  827. vf_spoofchk.vf = ivi.vf;
  828. memcpy(vf_mac.mac, ivi.mac, sizeof(ivi.mac));
  829. vf_vlan.vlan = ivi.vlan;
  830. vf_vlan.qos = ivi.qos;
  831. vf_tx_rate.rate = ivi.tx_rate;
  832. vf_spoofchk.setting = ivi.spoofchk;
  833. vf = nla_nest_start(skb, IFLA_VF_INFO);
  834. if (!vf) {
  835. nla_nest_cancel(skb, vfinfo);
  836. goto nla_put_failure;
  837. }
  838. if (nla_put(skb, IFLA_VF_MAC, sizeof(vf_mac), &vf_mac) ||
  839. nla_put(skb, IFLA_VF_VLAN, sizeof(vf_vlan), &vf_vlan) ||
  840. nla_put(skb, IFLA_VF_TX_RATE, sizeof(vf_tx_rate),
  841. &vf_tx_rate) ||
  842. nla_put(skb, IFLA_VF_SPOOFCHK, sizeof(vf_spoofchk),
  843. &vf_spoofchk))
  844. goto nla_put_failure;
  845. nla_nest_end(skb, vf);
  846. }
  847. nla_nest_end(skb, vfinfo);
  848. }
  849. if (rtnl_port_fill(skb, dev))
  850. goto nla_put_failure;
  851. if (dev->rtnl_link_ops) {
  852. if (rtnl_link_fill(skb, dev) < 0)
  853. goto nla_put_failure;
  854. }
  855. if (!(af_spec = nla_nest_start(skb, IFLA_AF_SPEC)))
  856. goto nla_put_failure;
  857. list_for_each_entry(af_ops, &rtnl_af_ops, list) {
  858. if (af_ops->fill_link_af) {
  859. struct nlattr *af;
  860. int err;
  861. if (!(af = nla_nest_start(skb, af_ops->family)))
  862. goto nla_put_failure;
  863. err = af_ops->fill_link_af(skb, dev);
  864. /*
  865. * Caller may return ENODATA to indicate that there
  866. * was no data to be dumped. This is not an error, it
  867. * means we should trim the attribute header and
  868. * continue.
  869. */
  870. if (err == -ENODATA)
  871. nla_nest_cancel(skb, af);
  872. else if (err < 0)
  873. goto nla_put_failure;
  874. nla_nest_end(skb, af);
  875. }
  876. }
  877. nla_nest_end(skb, af_spec);
  878. return nlmsg_end(skb, nlh);
  879. nla_put_failure:
  880. nlmsg_cancel(skb, nlh);
  881. return -EMSGSIZE;
  882. }
  883. static int rtnl_dump_ifinfo(struct sk_buff *skb, struct netlink_callback *cb)
  884. {
  885. struct net *net = sock_net(skb->sk);
  886. int h, s_h;
  887. int idx = 0, s_idx;
  888. struct net_device *dev;
  889. struct hlist_head *head;
  890. struct hlist_node *node;
  891. struct nlattr *tb[IFLA_MAX+1];
  892. u32 ext_filter_mask = 0;
  893. s_h = cb->args[0];
  894. s_idx = cb->args[1];
  895. rcu_read_lock();
  896. cb->seq = net->dev_base_seq;
  897. if (nlmsg_parse(cb->nlh, sizeof(struct rtgenmsg), tb, IFLA_MAX,
  898. ifla_policy) >= 0) {
  899. if (tb[IFLA_EXT_MASK])
  900. ext_filter_mask = nla_get_u32(tb[IFLA_EXT_MASK]);
  901. }
  902. for (h = s_h; h < NETDEV_HASHENTRIES; h++, s_idx = 0) {
  903. idx = 0;
  904. head = &net->dev_index_head[h];
  905. hlist_for_each_entry_rcu(dev, node, head, index_hlist) {
  906. if (idx < s_idx)
  907. goto cont;
  908. if (rtnl_fill_ifinfo(skb, dev, RTM_NEWLINK,
  909. NETLINK_CB(cb->skb).pid,
  910. cb->nlh->nlmsg_seq, 0,
  911. NLM_F_MULTI,
  912. ext_filter_mask) <= 0)
  913. goto out;
  914. nl_dump_check_consistent(cb, nlmsg_hdr(skb));
  915. cont:
  916. idx++;
  917. }
  918. }
  919. out:
  920. rcu_read_unlock();
  921. cb->args[1] = idx;
  922. cb->args[0] = h;
  923. return skb->len;
  924. }
  925. const struct nla_policy ifla_policy[IFLA_MAX+1] = {
  926. [IFLA_IFNAME] = { .type = NLA_STRING, .len = IFNAMSIZ-1 },
  927. [IFLA_ADDRESS] = { .type = NLA_BINARY, .len = MAX_ADDR_LEN },
  928. [IFLA_BROADCAST] = { .type = NLA_BINARY, .len = MAX_ADDR_LEN },
  929. [IFLA_MAP] = { .len = sizeof(struct rtnl_link_ifmap) },
  930. [IFLA_MTU] = { .type = NLA_U32 },
  931. [IFLA_LINK] = { .type = NLA_U32 },
  932. [IFLA_MASTER] = { .type = NLA_U32 },
  933. [IFLA_TXQLEN] = { .type = NLA_U32 },
  934. [IFLA_WEIGHT] = { .type = NLA_U32 },
  935. [IFLA_OPERSTATE] = { .type = NLA_U8 },
  936. [IFLA_LINKMODE] = { .type = NLA_U8 },
  937. [IFLA_LINKINFO] = { .type = NLA_NESTED },
  938. [IFLA_NET_NS_PID] = { .type = NLA_U32 },
  939. [IFLA_NET_NS_FD] = { .type = NLA_U32 },
  940. [IFLA_IFALIAS] = { .type = NLA_STRING, .len = IFALIASZ-1 },
  941. [IFLA_VFINFO_LIST] = {. type = NLA_NESTED },
  942. [IFLA_VF_PORTS] = { .type = NLA_NESTED },
  943. [IFLA_PORT_SELF] = { .type = NLA_NESTED },
  944. [IFLA_AF_SPEC] = { .type = NLA_NESTED },
  945. [IFLA_EXT_MASK] = { .type = NLA_U32 },
  946. [IFLA_PROMISCUITY] = { .type = NLA_U32 },
  947. [IFLA_NUM_TX_QUEUES] = { .type = NLA_U32 },
  948. [IFLA_NUM_RX_QUEUES] = { .type = NLA_U32 },
  949. };
  950. EXPORT_SYMBOL(ifla_policy);
  951. static const struct nla_policy ifla_info_policy[IFLA_INFO_MAX+1] = {
  952. [IFLA_INFO_KIND] = { .type = NLA_STRING },
  953. [IFLA_INFO_DATA] = { .type = NLA_NESTED },
  954. };
  955. static const struct nla_policy ifla_vfinfo_policy[IFLA_VF_INFO_MAX+1] = {
  956. [IFLA_VF_INFO] = { .type = NLA_NESTED },
  957. };
  958. static const struct nla_policy ifla_vf_policy[IFLA_VF_MAX+1] = {
  959. [IFLA_VF_MAC] = { .type = NLA_BINARY,
  960. .len = sizeof(struct ifla_vf_mac) },
  961. [IFLA_VF_VLAN] = { .type = NLA_BINARY,
  962. .len = sizeof(struct ifla_vf_vlan) },
  963. [IFLA_VF_TX_RATE] = { .type = NLA_BINARY,
  964. .len = sizeof(struct ifla_vf_tx_rate) },
  965. [IFLA_VF_SPOOFCHK] = { .type = NLA_BINARY,
  966. .len = sizeof(struct ifla_vf_spoofchk) },
  967. };
  968. static const struct nla_policy ifla_port_policy[IFLA_PORT_MAX+1] = {
  969. [IFLA_PORT_VF] = { .type = NLA_U32 },
  970. [IFLA_PORT_PROFILE] = { .type = NLA_STRING,
  971. .len = PORT_PROFILE_MAX },
  972. [IFLA_PORT_VSI_TYPE] = { .type = NLA_BINARY,
  973. .len = sizeof(struct ifla_port_vsi)},
  974. [IFLA_PORT_INSTANCE_UUID] = { .type = NLA_BINARY,
  975. .len = PORT_UUID_MAX },
  976. [IFLA_PORT_HOST_UUID] = { .type = NLA_STRING,
  977. .len = PORT_UUID_MAX },
  978. [IFLA_PORT_REQUEST] = { .type = NLA_U8, },
  979. [IFLA_PORT_RESPONSE] = { .type = NLA_U16, },
  980. };
  981. struct net *rtnl_link_get_net(struct net *src_net, struct nlattr *tb[])
  982. {
  983. struct net *net;
  984. /* Examine the link attributes and figure out which
  985. * network namespace we are talking about.
  986. */
  987. if (tb[IFLA_NET_NS_PID])
  988. net = get_net_ns_by_pid(nla_get_u32(tb[IFLA_NET_NS_PID]));
  989. else if (tb[IFLA_NET_NS_FD])
  990. net = get_net_ns_by_fd(nla_get_u32(tb[IFLA_NET_NS_FD]));
  991. else
  992. net = get_net(src_net);
  993. return net;
  994. }
  995. EXPORT_SYMBOL(rtnl_link_get_net);
  996. static int validate_linkmsg(struct net_device *dev, struct nlattr *tb[])
  997. {
  998. if (dev) {
  999. if (tb[IFLA_ADDRESS] &&
  1000. nla_len(tb[IFLA_ADDRESS]) < dev->addr_len)
  1001. return -EINVAL;
  1002. if (tb[IFLA_BROADCAST] &&
  1003. nla_len(tb[IFLA_BROADCAST]) < dev->addr_len)
  1004. return -EINVAL;
  1005. }
  1006. if (tb[IFLA_AF_SPEC]) {
  1007. struct nlattr *af;
  1008. int rem, err;
  1009. nla_for_each_nested(af, tb[IFLA_AF_SPEC], rem) {
  1010. const struct rtnl_af_ops *af_ops;
  1011. if (!(af_ops = rtnl_af_lookup(nla_type(af))))
  1012. return -EAFNOSUPPORT;
  1013. if (!af_ops->set_link_af)
  1014. return -EOPNOTSUPP;
  1015. if (af_ops->validate_link_af) {
  1016. err = af_ops->validate_link_af(dev, af);
  1017. if (err < 0)
  1018. return err;
  1019. }
  1020. }
  1021. }
  1022. return 0;
  1023. }
  1024. static int do_setvfinfo(struct net_device *dev, struct nlattr *attr)
  1025. {
  1026. int rem, err = -EINVAL;
  1027. struct nlattr *vf;
  1028. const struct net_device_ops *ops = dev->netdev_ops;
  1029. nla_for_each_nested(vf, attr, rem) {
  1030. switch (nla_type(vf)) {
  1031. case IFLA_VF_MAC: {
  1032. struct ifla_vf_mac *ivm;
  1033. ivm = nla_data(vf);
  1034. err = -EOPNOTSUPP;
  1035. if (ops->ndo_set_vf_mac)
  1036. err = ops->ndo_set_vf_mac(dev, ivm->vf,
  1037. ivm->mac);
  1038. break;
  1039. }
  1040. case IFLA_VF_VLAN: {
  1041. struct ifla_vf_vlan *ivv;
  1042. ivv = nla_data(vf);
  1043. err = -EOPNOTSUPP;
  1044. if (ops->ndo_set_vf_vlan)
  1045. err = ops->ndo_set_vf_vlan(dev, ivv->vf,
  1046. ivv->vlan,
  1047. ivv->qos);
  1048. break;
  1049. }
  1050. case IFLA_VF_TX_RATE: {
  1051. struct ifla_vf_tx_rate *ivt;
  1052. ivt = nla_data(vf);
  1053. err = -EOPNOTSUPP;
  1054. if (ops->ndo_set_vf_tx_rate)
  1055. err = ops->ndo_set_vf_tx_rate(dev, ivt->vf,
  1056. ivt->rate);
  1057. break;
  1058. }
  1059. case IFLA_VF_SPOOFCHK: {
  1060. struct ifla_vf_spoofchk *ivs;
  1061. ivs = nla_data(vf);
  1062. err = -EOPNOTSUPP;
  1063. if (ops->ndo_set_vf_spoofchk)
  1064. err = ops->ndo_set_vf_spoofchk(dev, ivs->vf,
  1065. ivs->setting);
  1066. break;
  1067. }
  1068. default:
  1069. err = -EINVAL;
  1070. break;
  1071. }
  1072. if (err)
  1073. break;
  1074. }
  1075. return err;
  1076. }
  1077. static int do_set_master(struct net_device *dev, int ifindex)
  1078. {
  1079. struct net_device *master_dev;
  1080. const struct net_device_ops *ops;
  1081. int err;
  1082. if (dev->master) {
  1083. if (dev->master->ifindex == ifindex)
  1084. return 0;
  1085. ops = dev->master->netdev_ops;
  1086. if (ops->ndo_del_slave) {
  1087. err = ops->ndo_del_slave(dev->master, dev);
  1088. if (err)
  1089. return err;
  1090. } else {
  1091. return -EOPNOTSUPP;
  1092. }
  1093. }
  1094. if (ifindex) {
  1095. master_dev = __dev_get_by_index(dev_net(dev), ifindex);
  1096. if (!master_dev)
  1097. return -EINVAL;
  1098. ops = master_dev->netdev_ops;
  1099. if (ops->ndo_add_slave) {
  1100. err = ops->ndo_add_slave(master_dev, dev);
  1101. if (err)
  1102. return err;
  1103. } else {
  1104. return -EOPNOTSUPP;
  1105. }
  1106. }
  1107. return 0;
  1108. }
  1109. static int do_setlink(struct net_device *dev, struct ifinfomsg *ifm,
  1110. struct nlattr **tb, char *ifname, int modified)
  1111. {
  1112. const struct net_device_ops *ops = dev->netdev_ops;
  1113. int send_addr_notify = 0;
  1114. int err;
  1115. if (tb[IFLA_NET_NS_PID] || tb[IFLA_NET_NS_FD]) {
  1116. struct net *net = rtnl_link_get_net(dev_net(dev), tb);
  1117. if (IS_ERR(net)) {
  1118. err = PTR_ERR(net);
  1119. goto errout;
  1120. }
  1121. err = dev_change_net_namespace(dev, net, ifname);
  1122. put_net(net);
  1123. if (err)
  1124. goto errout;
  1125. modified = 1;
  1126. }
  1127. if (tb[IFLA_MAP]) {
  1128. struct rtnl_link_ifmap *u_map;
  1129. struct ifmap k_map;
  1130. if (!ops->ndo_set_config) {
  1131. err = -EOPNOTSUPP;
  1132. goto errout;
  1133. }
  1134. if (!netif_device_present(dev)) {
  1135. err = -ENODEV;
  1136. goto errout;
  1137. }
  1138. u_map = nla_data(tb[IFLA_MAP]);
  1139. k_map.mem_start = (unsigned long) u_map->mem_start;
  1140. k_map.mem_end = (unsigned long) u_map->mem_end;
  1141. k_map.base_addr = (unsigned short) u_map->base_addr;
  1142. k_map.irq = (unsigned char) u_map->irq;
  1143. k_map.dma = (unsigned char) u_map->dma;
  1144. k_map.port = (unsigned char) u_map->port;
  1145. err = ops->ndo_set_config(dev, &k_map);
  1146. if (err < 0)
  1147. goto errout;
  1148. modified = 1;
  1149. }
  1150. if (tb[IFLA_ADDRESS]) {
  1151. struct sockaddr *sa;
  1152. int len;
  1153. if (!ops->ndo_set_mac_address) {
  1154. err = -EOPNOTSUPP;
  1155. goto errout;
  1156. }
  1157. if (!netif_device_present(dev)) {
  1158. err = -ENODEV;
  1159. goto errout;
  1160. }
  1161. len = sizeof(sa_family_t) + dev->addr_len;
  1162. sa = kmalloc(len, GFP_KERNEL);
  1163. if (!sa) {
  1164. err = -ENOMEM;
  1165. goto errout;
  1166. }
  1167. sa->sa_family = dev->type;
  1168. memcpy(sa->sa_data, nla_data(tb[IFLA_ADDRESS]),
  1169. dev->addr_len);
  1170. err = ops->ndo_set_mac_address(dev, sa);
  1171. kfree(sa);
  1172. if (err)
  1173. goto errout;
  1174. send_addr_notify = 1;
  1175. modified = 1;
  1176. }
  1177. if (tb[IFLA_MTU]) {
  1178. err = dev_set_mtu(dev, nla_get_u32(tb[IFLA_MTU]));
  1179. if (err < 0)
  1180. goto errout;
  1181. modified = 1;
  1182. }
  1183. if (tb[IFLA_GROUP]) {
  1184. dev_set_group(dev, nla_get_u32(tb[IFLA_GROUP]));
  1185. modified = 1;
  1186. }
  1187. /*
  1188. * Interface selected by interface index but interface
  1189. * name provided implies that a name change has been
  1190. * requested.
  1191. */
  1192. if (ifm->ifi_index > 0 && ifname[0]) {
  1193. err = dev_change_name(dev, ifname);
  1194. if (err < 0)
  1195. goto errout;
  1196. modified = 1;
  1197. }
  1198. if (tb[IFLA_IFALIAS]) {
  1199. err = dev_set_alias(dev, nla_data(tb[IFLA_IFALIAS]),
  1200. nla_len(tb[IFLA_IFALIAS]));
  1201. if (err < 0)
  1202. goto errout;
  1203. modified = 1;
  1204. }
  1205. if (tb[IFLA_BROADCAST]) {
  1206. nla_memcpy(dev->broadcast, tb[IFLA_BROADCAST], dev->addr_len);
  1207. send_addr_notify = 1;
  1208. }
  1209. if (ifm->ifi_flags || ifm->ifi_change) {
  1210. err = dev_change_flags(dev, rtnl_dev_combine_flags(dev, ifm));
  1211. if (err < 0)
  1212. goto errout;
  1213. }
  1214. if (tb[IFLA_MASTER]) {
  1215. err = do_set_master(dev, nla_get_u32(tb[IFLA_MASTER]));
  1216. if (err)
  1217. goto errout;
  1218. modified = 1;
  1219. }
  1220. if (tb[IFLA_TXQLEN])
  1221. dev->tx_queue_len = nla_get_u32(tb[IFLA_TXQLEN]);
  1222. if (tb[IFLA_OPERSTATE])
  1223. set_operstate(dev, nla_get_u8(tb[IFLA_OPERSTATE]));
  1224. if (tb[IFLA_LINKMODE]) {
  1225. write_lock_bh(&dev_base_lock);
  1226. dev->link_mode = nla_get_u8(tb[IFLA_LINKMODE]);
  1227. write_unlock_bh(&dev_base_lock);
  1228. }
  1229. if (tb[IFLA_VFINFO_LIST]) {
  1230. struct nlattr *attr;
  1231. int rem;
  1232. nla_for_each_nested(attr, tb[IFLA_VFINFO_LIST], rem) {
  1233. if (nla_type(attr) != IFLA_VF_INFO) {
  1234. err = -EINVAL;
  1235. goto errout;
  1236. }
  1237. err = do_setvfinfo(dev, attr);
  1238. if (err < 0)
  1239. goto errout;
  1240. modified = 1;
  1241. }
  1242. }
  1243. err = 0;
  1244. if (tb[IFLA_VF_PORTS]) {
  1245. struct nlattr *port[IFLA_PORT_MAX+1];
  1246. struct nlattr *attr;
  1247. int vf;
  1248. int rem;
  1249. err = -EOPNOTSUPP;
  1250. if (!ops->ndo_set_vf_port)
  1251. goto errout;
  1252. nla_for_each_nested(attr, tb[IFLA_VF_PORTS], rem) {
  1253. if (nla_type(attr) != IFLA_VF_PORT)
  1254. continue;
  1255. err = nla_parse_nested(port, IFLA_PORT_MAX,
  1256. attr, ifla_port_policy);
  1257. if (err < 0)
  1258. goto errout;
  1259. if (!port[IFLA_PORT_VF]) {
  1260. err = -EOPNOTSUPP;
  1261. goto errout;
  1262. }
  1263. vf = nla_get_u32(port[IFLA_PORT_VF]);
  1264. err = ops->ndo_set_vf_port(dev, vf, port);
  1265. if (err < 0)
  1266. goto errout;
  1267. modified = 1;
  1268. }
  1269. }
  1270. err = 0;
  1271. if (tb[IFLA_PORT_SELF]) {
  1272. struct nlattr *port[IFLA_PORT_MAX+1];
  1273. err = nla_parse_nested(port, IFLA_PORT_MAX,
  1274. tb[IFLA_PORT_SELF], ifla_port_policy);
  1275. if (err < 0)
  1276. goto errout;
  1277. err = -EOPNOTSUPP;
  1278. if (ops->ndo_set_vf_port)
  1279. err = ops->ndo_set_vf_port(dev, PORT_SELF_VF, port);
  1280. if (err < 0)
  1281. goto errout;
  1282. modified = 1;
  1283. }
  1284. if (tb[IFLA_AF_SPEC]) {
  1285. struct nlattr *af;
  1286. int rem;
  1287. nla_for_each_nested(af, tb[IFLA_AF_SPEC], rem) {
  1288. const struct rtnl_af_ops *af_ops;
  1289. if (!(af_ops = rtnl_af_lookup(nla_type(af))))
  1290. BUG();
  1291. err = af_ops->set_link_af(dev, af);
  1292. if (err < 0)
  1293. goto errout;
  1294. modified = 1;
  1295. }
  1296. }
  1297. err = 0;
  1298. errout:
  1299. if (err < 0 && modified)
  1300. net_warn_ratelimited("A link change request failed with some changes committed already. Interface %s may have been left with an inconsistent configuration, please check.\n",
  1301. dev->name);
  1302. if (send_addr_notify)
  1303. call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
  1304. return err;
  1305. }
  1306. static int rtnl_setlink(struct sk_buff *skb, struct nlmsghdr *nlh, void *arg)
  1307. {
  1308. struct net *net = sock_net(skb->sk);
  1309. struct ifinfomsg *ifm;
  1310. struct net_device *dev;
  1311. int err;
  1312. struct nlattr *tb[IFLA_MAX+1];
  1313. char ifname[IFNAMSIZ];
  1314. err = nlmsg_parse(nlh, sizeof(*ifm), tb, IFLA_MAX, ifla_policy);
  1315. if (err < 0)
  1316. goto errout;
  1317. if (tb[IFLA_IFNAME])
  1318. nla_strlcpy(ifname, tb[IFLA_IFNAME], IFNAMSIZ);
  1319. else
  1320. ifname[0] = '\0';
  1321. err = -EINVAL;
  1322. ifm = nlmsg_data(nlh);
  1323. if (ifm->ifi_index > 0)
  1324. dev = __dev_get_by_index(net, ifm->ifi_index);
  1325. else if (tb[IFLA_IFNAME])
  1326. dev = __dev_get_by_name(net, ifname);
  1327. else
  1328. goto errout;
  1329. if (dev == NULL) {
  1330. err = -ENODEV;
  1331. goto errout;
  1332. }
  1333. err = validate_linkmsg(dev, tb);
  1334. if (err < 0)
  1335. goto errout;
  1336. err = do_setlink(dev, ifm, tb, ifname, 0);
  1337. errout:
  1338. return err;
  1339. }
  1340. static int rtnl_dellink(struct sk_buff *skb, struct nlmsghdr *nlh, void *arg)
  1341. {
  1342. struct net *net = sock_net(skb->sk);
  1343. const struct rtnl_link_ops *ops;
  1344. struct net_device *dev;
  1345. struct ifinfomsg *ifm;
  1346. char ifname[IFNAMSIZ];
  1347. struct nlattr *tb[IFLA_MAX+1];
  1348. int err;
  1349. LIST_HEAD(list_kill);
  1350. err = nlmsg_parse(nlh, sizeof(*ifm), tb, IFLA_MAX, ifla_policy);
  1351. if (err < 0)
  1352. return err;
  1353. if (tb[IFLA_IFNAME])
  1354. nla_strlcpy(ifname, tb[IFLA_IFNAME], IFNAMSIZ);
  1355. ifm = nlmsg_data(nlh);
  1356. if (ifm->ifi_index > 0)
  1357. dev = __dev_get_by_index(net, ifm->ifi_index);
  1358. else if (tb[IFLA_IFNAME])
  1359. dev = __dev_get_by_name(net, ifname);
  1360. else
  1361. return -EINVAL;
  1362. if (!dev)
  1363. return -ENODEV;
  1364. ops = dev->rtnl_link_ops;
  1365. if (!ops)
  1366. return -EOPNOTSUPP;
  1367. ops->dellink(dev, &list_kill);
  1368. unregister_netdevice_many(&list_kill);
  1369. list_del(&list_kill);
  1370. return 0;
  1371. }
  1372. int rtnl_configure_link(struct net_device *dev, const struct ifinfomsg *ifm)
  1373. {
  1374. unsigned int old_flags;
  1375. int err;
  1376. old_flags = dev->flags;
  1377. if (ifm && (ifm->ifi_flags || ifm->ifi_change)) {
  1378. err = __dev_change_flags(dev, rtnl_dev_combine_flags(dev, ifm));
  1379. if (err < 0)
  1380. return err;
  1381. }
  1382. dev->rtnl_link_state = RTNL_LINK_INITIALIZED;
  1383. rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
  1384. __dev_notify_flags(dev, old_flags);
  1385. return 0;
  1386. }
  1387. EXPORT_SYMBOL(rtnl_configure_link);
  1388. struct net_device *rtnl_create_link(struct net *src_net, struct net *net,
  1389. char *ifname, const struct rtnl_link_ops *ops, struct nlattr *tb[])
  1390. {
  1391. int err;
  1392. struct net_device *dev;
  1393. unsigned int num_tx_queues = 1;
  1394. unsigned int num_rx_queues = 1;
  1395. if (tb[IFLA_NUM_TX_QUEUES])
  1396. num_tx_queues = nla_get_u32(tb[IFLA_NUM_TX_QUEUES]);
  1397. else if (ops->get_num_tx_queues)
  1398. num_tx_queues = ops->get_num_tx_queues();
  1399. if (tb[IFLA_NUM_RX_QUEUES])
  1400. num_rx_queues = nla_get_u32(tb[IFLA_NUM_RX_QUEUES]);
  1401. else if (ops->get_num_rx_queues)
  1402. num_rx_queues = ops->get_num_rx_queues();
  1403. err = -ENOMEM;
  1404. dev = alloc_netdev_mqs(ops->priv_size, ifname, ops->setup,
  1405. num_tx_queues, num_rx_queues);
  1406. if (!dev)
  1407. goto err;
  1408. dev_net_set(dev, net);
  1409. dev->rtnl_link_ops = ops;
  1410. dev->rtnl_link_state = RTNL_LINK_INITIALIZING;
  1411. if (tb[IFLA_MTU])
  1412. dev->mtu = nla_get_u32(tb[IFLA_MTU]);
  1413. if (tb[IFLA_ADDRESS])
  1414. memcpy(dev->dev_addr, nla_data(tb[IFLA_ADDRESS]),
  1415. nla_len(tb[IFLA_ADDRESS]));
  1416. if (tb[IFLA_BROADCAST])
  1417. memcpy(dev->broadcast, nla_data(tb[IFLA_BROADCAST]),
  1418. nla_len(tb[IFLA_BROADCAST]));
  1419. if (tb[IFLA_TXQLEN])
  1420. dev->tx_queue_len = nla_get_u32(tb[IFLA_TXQLEN]);
  1421. if (tb[IFLA_OPERSTATE])
  1422. set_operstate(dev, nla_get_u8(tb[IFLA_OPERSTATE]));
  1423. if (tb[IFLA_LINKMODE])
  1424. dev->link_mode = nla_get_u8(tb[IFLA_LINKMODE]);
  1425. if (tb[IFLA_GROUP])
  1426. dev_set_group(dev, nla_get_u32(tb[IFLA_GROUP]));
  1427. return dev;
  1428. err:
  1429. return ERR_PTR(err);
  1430. }
  1431. EXPORT_SYMBOL(rtnl_create_link);
  1432. static int rtnl_group_changelink(struct net *net, int group,
  1433. struct ifinfomsg *ifm,
  1434. struct nlattr **tb)
  1435. {
  1436. struct net_device *dev;
  1437. int err;
  1438. for_each_netdev(net, dev) {
  1439. if (dev->group == group) {
  1440. err = do_setlink(dev, ifm, tb, NULL, 0);
  1441. if (err < 0)
  1442. return err;
  1443. }
  1444. }
  1445. return 0;
  1446. }
  1447. static int rtnl_newlink(struct sk_buff *skb, struct nlmsghdr *nlh, void *arg)
  1448. {
  1449. struct net *net = sock_net(skb->sk);
  1450. const struct rtnl_link_ops *ops;
  1451. struct net_device *dev;
  1452. struct ifinfomsg *ifm;
  1453. char kind[MODULE_NAME_LEN];
  1454. char ifname[IFNAMSIZ];
  1455. struct nlattr *tb[IFLA_MAX+1];
  1456. struct nlattr *linkinfo[IFLA_INFO_MAX+1];
  1457. int err;
  1458. #ifdef CONFIG_MODULES
  1459. replay:
  1460. #endif
  1461. err = nlmsg_parse(nlh, sizeof(*ifm), tb, IFLA_MAX, ifla_policy);
  1462. if (err < 0)
  1463. return err;
  1464. if (tb[IFLA_IFNAME])
  1465. nla_strlcpy(ifname, tb[IFLA_IFNAME], IFNAMSIZ);
  1466. else
  1467. ifname[0] = '\0';
  1468. ifm = nlmsg_data(nlh);
  1469. if (ifm->ifi_index > 0)
  1470. dev = __dev_get_by_index(net, ifm->ifi_index);
  1471. else {
  1472. if (ifname[0])
  1473. dev = __dev_get_by_name(net, ifname);
  1474. else
  1475. dev = NULL;
  1476. }
  1477. err = validate_linkmsg(dev, tb);
  1478. if (err < 0)
  1479. return err;
  1480. if (tb[IFLA_LINKINFO]) {
  1481. err = nla_parse_nested(linkinfo, IFLA_INFO_MAX,
  1482. tb[IFLA_LINKINFO], ifla_info_policy);
  1483. if (err < 0)
  1484. return err;
  1485. } else
  1486. memset(linkinfo, 0, sizeof(linkinfo));
  1487. if (linkinfo[IFLA_INFO_KIND]) {
  1488. nla_strlcpy(kind, linkinfo[IFLA_INFO_KIND], sizeof(kind));
  1489. ops = rtnl_link_ops_get(kind);
  1490. } else {
  1491. kind[0] = '\0';
  1492. ops = NULL;
  1493. }
  1494. if (1) {
  1495. struct nlattr *attr[ops ? ops->maxtype + 1 : 0], **data = NULL;
  1496. struct net *dest_net;
  1497. if (ops) {
  1498. if (ops->maxtype && linkinfo[IFLA_INFO_DATA]) {
  1499. err = nla_parse_nested(attr, ops->maxtype,
  1500. linkinfo[IFLA_INFO_DATA],
  1501. ops->policy);
  1502. if (err < 0)
  1503. return err;
  1504. data = attr;
  1505. }
  1506. if (ops->validate) {
  1507. err = ops->validate(tb, data);
  1508. if (err < 0)
  1509. return err;
  1510. }
  1511. }
  1512. if (dev) {
  1513. int modified = 0;
  1514. if (nlh->nlmsg_flags & NLM_F_EXCL)
  1515. return -EEXIST;
  1516. if (nlh->nlmsg_flags & NLM_F_REPLACE)
  1517. return -EOPNOTSUPP;
  1518. if (linkinfo[IFLA_INFO_DATA]) {
  1519. if (!ops || ops != dev->rtnl_link_ops ||
  1520. !ops->changelink)
  1521. return -EOPNOTSUPP;
  1522. err = ops->changelink(dev, tb, data);
  1523. if (err < 0)
  1524. return err;
  1525. modified = 1;
  1526. }
  1527. return do_setlink(dev, ifm, tb, ifname, modified);
  1528. }
  1529. if (!(nlh->nlmsg_flags & NLM_F_CREATE)) {
  1530. if (ifm->ifi_index == 0 && tb[IFLA_GROUP])
  1531. return rtnl_group_changelink(net,
  1532. nla_get_u32(tb[IFLA_GROUP]),
  1533. ifm, tb);
  1534. return -ENODEV;
  1535. }
  1536. if (ifm->ifi_index)
  1537. return -EOPNOTSUPP;
  1538. if (tb[IFLA_MAP] || tb[IFLA_MASTER] || tb[IFLA_PROTINFO])
  1539. return -EOPNOTSUPP;
  1540. if (!ops) {
  1541. #ifdef CONFIG_MODULES
  1542. if (kind[0]) {
  1543. __rtnl_unlock();
  1544. request_module("rtnl-link-%s", kind);
  1545. rtnl_lock();
  1546. ops = rtnl_link_ops_get(kind);
  1547. if (ops)
  1548. goto replay;
  1549. }
  1550. #endif
  1551. return -EOPNOTSUPP;
  1552. }
  1553. if (!ifname[0])
  1554. snprintf(ifname, IFNAMSIZ, "%s%%d", ops->kind);
  1555. dest_net = rtnl_link_get_net(net, tb);
  1556. if (IS_ERR(dest_net))
  1557. return PTR_ERR(dest_net);
  1558. dev = rtnl_create_link(net, dest_net, ifname, ops, tb);
  1559. if (IS_ERR(dev))
  1560. err = PTR_ERR(dev);
  1561. else if (ops->newlink)
  1562. err = ops->newlink(net, dev, tb, data);
  1563. else
  1564. err = register_netdevice(dev);
  1565. if (err < 0 && !IS_ERR(dev))
  1566. free_netdev(dev);
  1567. if (err < 0)
  1568. goto out;
  1569. err = rtnl_configure_link(dev, ifm);
  1570. if (err < 0)
  1571. unregister_netdevice(dev);
  1572. out:
  1573. put_net(dest_net);
  1574. return err;
  1575. }
  1576. }
  1577. static int rtnl_getlink(struct sk_buff *skb, struct nlmsghdr* nlh, void *arg)
  1578. {
  1579. struct net *net = sock_net(skb->sk);
  1580. struct ifinfomsg *ifm;
  1581. char ifname[IFNAMSIZ];
  1582. struct nlattr *tb[IFLA_MAX+1];
  1583. struct net_device *dev = NULL;
  1584. struct sk_buff *nskb;
  1585. int err;
  1586. u32 ext_filter_mask = 0;
  1587. err = nlmsg_parse(nlh, sizeof(*ifm), tb, IFLA_MAX, ifla_policy);
  1588. if (err < 0)
  1589. return err;
  1590. if (tb[IFLA_IFNAME])
  1591. nla_strlcpy(ifname, tb[IFLA_IFNAME], IFNAMSIZ);
  1592. if (tb[IFLA_EXT_MASK])
  1593. ext_filter_mask = nla_get_u32(tb[IFLA_EXT_MASK]);
  1594. ifm = nlmsg_data(nlh);
  1595. if (ifm->ifi_index > 0)
  1596. dev = __dev_get_by_index(net, ifm->ifi_index);
  1597. else if (tb[IFLA_IFNAME])
  1598. dev = __dev_get_by_name(net, ifname);
  1599. else
  1600. return -EINVAL;
  1601. if (dev == NULL)
  1602. return -ENODEV;
  1603. nskb = nlmsg_new(if_nlmsg_size(dev, ext_filter_mask), GFP_KERNEL);
  1604. if (nskb == NULL)
  1605. return -ENOBUFS;
  1606. err = rtnl_fill_ifinfo(nskb, dev, RTM_NEWLINK, NETLINK_CB(skb).pid,
  1607. nlh->nlmsg_seq, 0, 0, ext_filter_mask);
  1608. if (err < 0) {
  1609. /* -EMSGSIZE implies BUG in if_nlmsg_size */
  1610. WARN_ON(err == -EMSGSIZE);
  1611. kfree_skb(nskb);
  1612. } else
  1613. err = rtnl_unicast(nskb, net, NETLINK_CB(skb).pid);
  1614. return err;
  1615. }
  1616. static u16 rtnl_calcit(struct sk_buff *skb, struct nlmsghdr *nlh)
  1617. {
  1618. struct net *net = sock_net(skb->sk);
  1619. struct net_device *dev;
  1620. struct nlattr *tb[IFLA_MAX+1];
  1621. u32 ext_filter_mask = 0;
  1622. u16 min_ifinfo_dump_size = 0;
  1623. if (nlmsg_parse(nlh, sizeof(struct rtgenmsg), tb, IFLA_MAX,
  1624. ifla_policy) >= 0) {
  1625. if (tb[IFLA_EXT_MASK])
  1626. ext_filter_mask = nla_get_u32(tb[IFLA_EXT_MASK]);
  1627. }
  1628. if (!ext_filter_mask)
  1629. return NLMSG_GOODSIZE;
  1630. /*
  1631. * traverse the list of net devices and compute the minimum
  1632. * buffer size based upon the filter mask.
  1633. */
  1634. list_for_each_entry(dev, &net->dev_base_head, dev_list) {
  1635. min_ifinfo_dump_size = max_t(u16, min_ifinfo_dump_size,
  1636. if_nlmsg_size(dev,
  1637. ext_filter_mask));
  1638. }
  1639. return min_ifinfo_dump_size;
  1640. }
  1641. static int rtnl_dump_all(struct sk_buff *skb, struct netlink_callback *cb)
  1642. {
  1643. int idx;
  1644. int s_idx = cb->family;
  1645. if (s_idx == 0)
  1646. s_idx = 1;
  1647. for (idx = 1; idx <= RTNL_FAMILY_MAX; idx++) {
  1648. int type = cb->nlh->nlmsg_type-RTM_BASE;
  1649. if (idx < s_idx || idx == PF_PACKET)
  1650. continue;
  1651. if (rtnl_msg_handlers[idx] == NULL ||
  1652. rtnl_msg_handlers[idx][type].dumpit == NULL)
  1653. continue;
  1654. if (idx > s_idx)
  1655. memset(&cb->args[0], 0, sizeof(cb->args));
  1656. if (rtnl_msg_handlers[idx][type].dumpit(skb, cb))
  1657. break;
  1658. }
  1659. cb->family = idx;
  1660. return skb->len;
  1661. }
  1662. void rtmsg_ifinfo(int type, struct net_device *dev, unsigned int change)
  1663. {
  1664. struct net *net = dev_net(dev);
  1665. struct sk_buff *skb;
  1666. int err = -ENOBUFS;
  1667. size_t if_info_size;
  1668. skb = nlmsg_new((if_info_size = if_nlmsg_size(dev, 0)), GFP_KERNEL);
  1669. if (skb == NULL)
  1670. goto errout;
  1671. err = rtnl_fill_ifinfo(skb, dev, type, 0, 0, change, 0, 0);
  1672. if (err < 0) {
  1673. /* -EMSGSIZE implies BUG in if_nlmsg_size() */
  1674. WARN_ON(err == -EMSGSIZE);
  1675. kfree_skb(skb);
  1676. goto errout;
  1677. }
  1678. rtnl_notify(skb, net, 0, RTNLGRP_LINK, NULL, GFP_KERNEL);
  1679. return;
  1680. errout:
  1681. if (err < 0)
  1682. rtnl_set_sk_err(net, RTNLGRP_LINK, err);
  1683. }
  1684. static int nlmsg_populate_fdb_fill(struct sk_buff *skb,
  1685. struct net_device *dev,
  1686. u8 *addr, u32 pid, u32 seq,
  1687. int type, unsigned int flags)
  1688. {
  1689. struct nlmsghdr *nlh;
  1690. struct ndmsg *ndm;
  1691. nlh = nlmsg_put(skb, pid, seq, type, sizeof(*ndm), NLM_F_MULTI);
  1692. if (!nlh)
  1693. return -EMSGSIZE;
  1694. ndm = nlmsg_data(nlh);
  1695. ndm->ndm_family = AF_BRIDGE;
  1696. ndm->ndm_pad1 = 0;
  1697. ndm->ndm_pad2 = 0;
  1698. ndm->ndm_flags = flags;
  1699. ndm->ndm_type = 0;
  1700. ndm->ndm_ifindex = dev->ifindex;
  1701. ndm->ndm_state = NUD_PERMANENT;
  1702. if (nla_put(skb, NDA_LLADDR, ETH_ALEN, addr))
  1703. goto nla_put_failure;
  1704. return nlmsg_end(skb, nlh);
  1705. nla_put_failure:
  1706. nlmsg_cancel(skb, nlh);
  1707. return -EMSGSIZE;
  1708. }
  1709. static inline size_t rtnl_fdb_nlmsg_size(void)
  1710. {
  1711. return NLMSG_ALIGN(sizeof(struct ndmsg)) + nla_total_size(ETH_ALEN);
  1712. }
  1713. static void rtnl_fdb_notify(struct net_device *dev, u8 *addr, int type)
  1714. {
  1715. struct net *net = dev_net(dev);
  1716. struct sk_buff *skb;
  1717. int err = -ENOBUFS;
  1718. skb = nlmsg_new(rtnl_fdb_nlmsg_size(), GFP_ATOMIC);
  1719. if (!skb)
  1720. goto errout;
  1721. err = nlmsg_populate_fdb_fill(skb, dev, addr, 0, 0, type, NTF_SELF);
  1722. if (err < 0) {
  1723. kfree_skb(skb);
  1724. goto errout;
  1725. }
  1726. rtnl_notify(skb, net, 0, RTNLGRP_NEIGH, NULL, GFP_ATOMIC);
  1727. return;
  1728. errout:
  1729. rtnl_set_sk_err(net, RTNLGRP_NEIGH, err);
  1730. }
  1731. static int rtnl_fdb_add(struct sk_buff *skb, struct nlmsghdr *nlh, void *arg)
  1732. {
  1733. struct net *net = sock_net(skb->sk);
  1734. struct net_device *master = NULL;
  1735. struct ndmsg *ndm;
  1736. struct nlattr *tb[NDA_MAX+1];
  1737. struct net_device *dev;
  1738. u8 *addr;
  1739. int err;
  1740. err = nlmsg_parse(nlh, sizeof(*ndm), tb, NDA_MAX, NULL);
  1741. if (err < 0)
  1742. return err;
  1743. ndm = nlmsg_data(nlh);
  1744. if (ndm->ndm_ifindex == 0) {
  1745. pr_info("PF_BRIDGE: RTM_NEWNEIGH with invalid ifindex\n");
  1746. return -EINVAL;
  1747. }
  1748. dev = __dev_get_by_index(net, ndm->ndm_ifindex);
  1749. if (dev == NULL) {
  1750. pr_info("PF_BRIDGE: RTM_NEWNEIGH with unknown ifindex\n");
  1751. return -ENODEV;
  1752. }
  1753. if (!tb[NDA_LLADDR] || nla_len(tb[NDA_LLADDR]) != ETH_ALEN) {
  1754. pr_info("PF_BRIDGE: RTM_NEWNEIGH with invalid address\n");
  1755. return -EINVAL;
  1756. }
  1757. addr = nla_data(tb[NDA_LLADDR]);
  1758. if (!is_valid_ether_addr(addr)) {
  1759. pr_info("PF_BRIDGE: RTM_NEWNEIGH with invalid ether address\n");
  1760. return -EINVAL;
  1761. }
  1762. err = -EOPNOTSUPP;
  1763. /* Support fdb on master device the net/bridge default case */
  1764. if ((!ndm->ndm_flags || ndm->ndm_flags & NTF_MASTER) &&
  1765. (dev->priv_flags & IFF_BRIDGE_PORT)) {
  1766. master = dev->master;
  1767. err = master->netdev_ops->ndo_fdb_add(ndm, dev, addr,
  1768. nlh->nlmsg_flags);
  1769. if (err)
  1770. goto out;
  1771. else
  1772. ndm->ndm_flags &= ~NTF_MASTER;
  1773. }
  1774. /* Embedded bridge, macvlan, and any other device support */
  1775. if ((ndm->ndm_flags & NTF_SELF) && dev->netdev_ops->ndo_fdb_add) {
  1776. err = dev->netdev_ops->ndo_fdb_add(ndm, dev, addr,
  1777. nlh->nlmsg_flags);
  1778. if (!err) {
  1779. rtnl_fdb_notify(dev, addr, RTM_NEWNEIGH);
  1780. ndm->ndm_flags &= ~NTF_SELF;
  1781. }
  1782. }
  1783. out:
  1784. return err;
  1785. }
  1786. static int rtnl_fdb_del(struct sk_buff *skb, struct nlmsghdr *nlh, void *arg)
  1787. {
  1788. struct net *net = sock_net(skb->sk);
  1789. struct ndmsg *ndm;
  1790. struct nlattr *llattr;
  1791. struct net_device *dev;
  1792. int err = -EINVAL;
  1793. __u8 *addr;
  1794. if (nlmsg_len(nlh) < sizeof(*ndm))
  1795. return -EINVAL;
  1796. ndm = nlmsg_data(nlh);
  1797. if (ndm->ndm_ifindex == 0) {
  1798. pr_info("PF_BRIDGE: RTM_DELNEIGH with invalid ifindex\n");
  1799. return -EINVAL;
  1800. }
  1801. dev = __dev_get_by_index(net, ndm->ndm_ifindex);
  1802. if (dev == NULL) {
  1803. pr_info("PF_BRIDGE: RTM_DELNEIGH with unknown ifindex\n");
  1804. return -ENODEV;
  1805. }
  1806. llattr = nlmsg_find_attr(nlh, sizeof(*ndm), NDA_LLADDR);
  1807. if (llattr == NULL || nla_len(llattr) != ETH_ALEN) {
  1808. pr_info("PF_BRIGDE: RTM_DELNEIGH with invalid address\n");
  1809. return -EINVAL;
  1810. }
  1811. addr = nla_data(llattr);
  1812. err = -EOPNOTSUPP;
  1813. /* Support fdb on master device the net/bridge default case */
  1814. if ((!ndm->ndm_flags || ndm->ndm_flags & NTF_MASTER) &&
  1815. (dev->priv_flags & IFF_BRIDGE_PORT)) {
  1816. struct net_device *master = dev->master;
  1817. if (master->netdev_ops->ndo_fdb_del)
  1818. err = master->netdev_ops->ndo_fdb_del(ndm, dev, addr);
  1819. if (err)
  1820. goto out;
  1821. else
  1822. ndm->ndm_flags &= ~NTF_MASTER;
  1823. }
  1824. /* Embedded bridge, macvlan, and any other device support */
  1825. if ((ndm->ndm_flags & NTF_SELF) && dev->netdev_ops->ndo_fdb_del) {
  1826. err = dev->netdev_ops->ndo_fdb_del(ndm, dev, addr);
  1827. if (!err) {
  1828. rtnl_fdb_notify(dev, addr, RTM_DELNEIGH);
  1829. ndm->ndm_flags &= ~NTF_SELF;
  1830. }
  1831. }
  1832. out:
  1833. return err;
  1834. }
  1835. static int nlmsg_populate_fdb(struct sk_buff *skb,
  1836. struct netlink_callback *cb,
  1837. struct net_device *dev,
  1838. int *idx,
  1839. struct netdev_hw_addr_list *list)
  1840. {
  1841. struct netdev_hw_addr *ha;
  1842. int err;
  1843. u32 pid, seq;
  1844. pid = NETLINK_CB(cb->skb).pid;
  1845. seq = cb->nlh->nlmsg_seq;
  1846. list_for_each_entry(ha, &list->list, list) {
  1847. if (*idx < cb->args[0])
  1848. goto skip;
  1849. err = nlmsg_populate_fdb_fill(skb, dev, ha->addr,
  1850. pid, seq, 0, NTF_SELF);
  1851. if (err < 0)
  1852. return err;
  1853. skip:
  1854. *idx += 1;
  1855. }
  1856. return 0;
  1857. }
  1858. /**
  1859. * ndo_dflt_fdb_dump - default netdevice operation to dump an FDB table.
  1860. * @nlh: netlink message header
  1861. * @dev: netdevice
  1862. *
  1863. * Default netdevice operation to dump the existing unicast address list.
  1864. * Returns zero on success.
  1865. */
  1866. int ndo_dflt_fdb_dump(struct sk_buff *skb,
  1867. struct netlink_callback *cb,
  1868. struct net_device *dev,
  1869. int idx)
  1870. {
  1871. int err;
  1872. netif_addr_lock_bh(dev);
  1873. err = nlmsg_populate_fdb(skb, cb, dev, &idx, &dev->uc);
  1874. if (err)
  1875. goto out;
  1876. nlmsg_populate_fdb(skb, cb, dev, &idx, &dev->mc);
  1877. out:
  1878. netif_addr_unlock_bh(dev);
  1879. return idx;
  1880. }
  1881. EXPORT_SYMBOL(ndo_dflt_fdb_dump);
  1882. static int rtnl_fdb_dump(struct sk_buff *skb, struct netlink_callback *cb)
  1883. {
  1884. int idx = 0;
  1885. struct net *net = sock_net(skb->sk);
  1886. struct net_device *dev;
  1887. rcu_read_lock();
  1888. for_each_netdev_rcu(net, dev) {
  1889. if (dev->priv_flags & IFF_BRIDGE_PORT) {
  1890. struct net_device *master = dev->master;
  1891. const struct net_device_ops *ops = master->netdev_ops;
  1892. if (ops->ndo_fdb_dump)
  1893. idx = ops->ndo_fdb_dump(skb, cb, dev, idx);
  1894. }
  1895. if (dev->netdev_ops->ndo_fdb_dump)
  1896. idx = dev->netdev_ops->ndo_fdb_dump(skb, cb, dev, idx);
  1897. }
  1898. rcu_read_unlock();
  1899. cb->args[0] = idx;
  1900. return skb->len;
  1901. }
  1902. /* Protected by RTNL sempahore. */
  1903. static struct rtattr **rta_buf;
  1904. static int rtattr_max;
  1905. /* Process one rtnetlink message. */
  1906. static int rtnetlink_rcv_msg(struct sk_buff *skb, struct nlmsghdr *nlh)
  1907. {
  1908. struct net *net = sock_net(skb->sk);
  1909. rtnl_doit_func doit;
  1910. int sz_idx, kind;
  1911. int min_len;
  1912. int family;
  1913. int type;
  1914. int err;
  1915. type = nlh->nlmsg_type;
  1916. if (type > RTM_MAX)
  1917. return -EOPNOTSUPP;
  1918. type -= RTM_BASE;
  1919. /* All the messages must have at least 1 byte length */
  1920. if (nlh->nlmsg_len < NLMSG_LENGTH(sizeof(struct rtgenmsg)))
  1921. return 0;
  1922. family = ((struct rtgenmsg *)NLMSG_DATA(nlh))->rtgen_family;
  1923. sz_idx = type>>2;
  1924. kind = type&3;
  1925. if (kind != 2 && !capable(CAP_NET_ADMIN))
  1926. return -EPERM;
  1927. if (kind == 2 && nlh->nlmsg_flags&NLM_F_DUMP) {
  1928. struct sock *rtnl;
  1929. rtnl_dumpit_func dumpit;
  1930. rtnl_calcit_func calcit;
  1931. u16 min_dump_alloc = 0;
  1932. dumpit = rtnl_get_dumpit(family, type);
  1933. if (dumpit == NULL)
  1934. return -EOPNOTSUPP;
  1935. calcit = rtnl_get_calcit(family, type);
  1936. if (calcit)
  1937. min_dump_alloc = calcit(skb, nlh);
  1938. __rtnl_unlock();
  1939. rtnl = net->rtnl;
  1940. {
  1941. struct netlink_dump_control c = {
  1942. .dump = dumpit,
  1943. .min_dump_alloc = min_dump_alloc,
  1944. };
  1945. err = netlink_dump_start(rtnl, skb, nlh, &c);
  1946. }
  1947. rtnl_lock();
  1948. return err;
  1949. }
  1950. memset(rta_buf, 0, (rtattr_max * sizeof(struct rtattr *)));
  1951. min_len = rtm_min[sz_idx];
  1952. if (nlh->nlmsg_len < min_len)
  1953. return -EINVAL;
  1954. if (nlh->nlmsg_len > min_len) {
  1955. int attrlen = nlh->nlmsg_len - NLMSG_ALIGN(min_len);
  1956. struct rtattr *attr = (void *)nlh + NLMSG_ALIGN(min_len);
  1957. while (RTA_OK(attr, attrlen)) {
  1958. unsigned int flavor = attr->rta_type;
  1959. if (flavor) {
  1960. if (flavor > rta_max[sz_idx])
  1961. return -EINVAL;
  1962. rta_buf[flavor-1] = attr;
  1963. }
  1964. attr = RTA_NEXT(attr, attrlen);
  1965. }
  1966. }
  1967. doit = rtnl_get_doit(family, type);
  1968. if (doit == NULL)
  1969. return -EOPNOTSUPP;
  1970. return doit(skb, nlh, (void *)&rta_buf[0]);
  1971. }
  1972. static void rtnetlink_rcv(struct sk_buff *skb)
  1973. {
  1974. rtnl_lock();
  1975. netlink_rcv_skb(skb, &rtnetlink_rcv_msg);
  1976. rtnl_unlock();
  1977. }
  1978. static int rtnetlink_event(struct notifier_block *this, unsigned long event, void *ptr)
  1979. {
  1980. struct net_device *dev = ptr;
  1981. switch (event) {
  1982. case NETDEV_UP:
  1983. case NETDEV_DOWN:
  1984. case NETDEV_PRE_UP:
  1985. case NETDEV_POST_INIT:
  1986. case NETDEV_REGISTER:
  1987. case NETDEV_CHANGE:
  1988. case NETDEV_PRE_TYPE_CHANGE:
  1989. case NETDEV_GOING_DOWN:
  1990. case NETDEV_UNREGISTER:
  1991. case NETDEV_UNREGISTER_BATCH:
  1992. case NETDEV_RELEASE:
  1993. case NETDEV_JOIN:
  1994. break;
  1995. default:
  1996. rtmsg_ifinfo(RTM_NEWLINK, dev, 0);
  1997. break;
  1998. }
  1999. return NOTIFY_DONE;
  2000. }
  2001. static struct notifier_block rtnetlink_dev_notifier = {
  2002. .notifier_call = rtnetlink_event,
  2003. };
  2004. static int __net_init rtnetlink_net_init(struct net *net)
  2005. {
  2006. struct sock *sk;
  2007. struct netlink_kernel_cfg cfg = {
  2008. .groups = RTNLGRP_MAX,
  2009. .input = rtnetlink_rcv,
  2010. .cb_mutex = &rtnl_mutex,
  2011. };
  2012. sk = netlink_kernel_create(net, NETLINK_ROUTE, THIS_MODULE, &cfg);
  2013. if (!sk)
  2014. return -ENOMEM;
  2015. net->rtnl = sk;
  2016. return 0;
  2017. }
  2018. static void __net_exit rtnetlink_net_exit(struct net *net)
  2019. {
  2020. netlink_kernel_release(net->rtnl);
  2021. net->rtnl = NULL;
  2022. }
  2023. static struct pernet_operations rtnetlink_net_ops = {
  2024. .init = rtnetlink_net_init,
  2025. .exit = rtnetlink_net_exit,
  2026. };
  2027. void __init rtnetlink_init(void)
  2028. {
  2029. int i;
  2030. rtattr_max = 0;
  2031. for (i = 0; i < ARRAY_SIZE(rta_max); i++)
  2032. if (rta_max[i] > rtattr_max)
  2033. rtattr_max = rta_max[i];
  2034. rta_buf = kmalloc(rtattr_max * sizeof(struct rtattr *), GFP_KERNEL);
  2035. if (!rta_buf)
  2036. panic("rtnetlink_init: cannot allocate rta_buf\n");
  2037. if (register_pernet_subsys(&rtnetlink_net_ops))
  2038. panic("rtnetlink_init: cannot initialize rtnetlink\n");
  2039. netlink_set_nonroot(NETLINK_ROUTE, NL_NONROOT_RECV);
  2040. register_netdevice_notifier(&rtnetlink_dev_notifier);
  2041. rtnl_register(PF_UNSPEC, RTM_GETLINK, rtnl_getlink,
  2042. rtnl_dump_ifinfo, rtnl_calcit);
  2043. rtnl_register(PF_UNSPEC, RTM_SETLINK, rtnl_setlink, NULL, NULL);
  2044. rtnl_register(PF_UNSPEC, RTM_NEWLINK, rtnl_newlink, NULL, NULL);
  2045. rtnl_register(PF_UNSPEC, RTM_DELLINK, rtnl_dellink, NULL, NULL);
  2046. rtnl_register(PF_UNSPEC, RTM_GETADDR, NULL, rtnl_dump_all, NULL);
  2047. rtnl_register(PF_UNSPEC, RTM_GETROUTE, NULL, rtnl_dump_all, NULL);
  2048. rtnl_register(PF_BRIDGE, RTM_NEWNEIGH, rtnl_fdb_add, NULL, NULL);
  2049. rtnl_register(PF_BRIDGE, RTM_DELNEIGH, rtnl_fdb_del, NULL, NULL);
  2050. rtnl_register(PF_BRIDGE, RTM_GETNEIGH, NULL, rtnl_fdb_dump, NULL);
  2051. }