fair.c 142 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628
  1. /*
  2. * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
  3. *
  4. * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
  5. *
  6. * Interactivity improvements by Mike Galbraith
  7. * (C) 2007 Mike Galbraith <efault@gmx.de>
  8. *
  9. * Various enhancements by Dmitry Adamushko.
  10. * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
  11. *
  12. * Group scheduling enhancements by Srivatsa Vaddagiri
  13. * Copyright IBM Corporation, 2007
  14. * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
  15. *
  16. * Scaled math optimizations by Thomas Gleixner
  17. * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
  18. *
  19. * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
  20. * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
  21. */
  22. #include <linux/latencytop.h>
  23. #include <linux/sched.h>
  24. #include <linux/cpumask.h>
  25. #include <linux/slab.h>
  26. #include <linux/profile.h>
  27. #include <linux/interrupt.h>
  28. #include <trace/events/sched.h>
  29. #include "sched.h"
  30. /*
  31. * Targeted preemption latency for CPU-bound tasks:
  32. * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
  33. *
  34. * NOTE: this latency value is not the same as the concept of
  35. * 'timeslice length' - timeslices in CFS are of variable length
  36. * and have no persistent notion like in traditional, time-slice
  37. * based scheduling concepts.
  38. *
  39. * (to see the precise effective timeslice length of your workload,
  40. * run vmstat and monitor the context-switches (cs) field)
  41. */
  42. unsigned int sysctl_sched_latency = 6000000ULL;
  43. unsigned int normalized_sysctl_sched_latency = 6000000ULL;
  44. /*
  45. * The initial- and re-scaling of tunables is configurable
  46. * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
  47. *
  48. * Options are:
  49. * SCHED_TUNABLESCALING_NONE - unscaled, always *1
  50. * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
  51. * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
  52. */
  53. enum sched_tunable_scaling sysctl_sched_tunable_scaling
  54. = SCHED_TUNABLESCALING_LOG;
  55. /*
  56. * Minimal preemption granularity for CPU-bound tasks:
  57. * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
  58. */
  59. unsigned int sysctl_sched_min_granularity = 750000ULL;
  60. unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
  61. /*
  62. * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
  63. */
  64. static unsigned int sched_nr_latency = 8;
  65. /*
  66. * After fork, child runs first. If set to 0 (default) then
  67. * parent will (try to) run first.
  68. */
  69. unsigned int sysctl_sched_child_runs_first __read_mostly;
  70. /*
  71. * SCHED_OTHER wake-up granularity.
  72. * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
  73. *
  74. * This option delays the preemption effects of decoupled workloads
  75. * and reduces their over-scheduling. Synchronous workloads will still
  76. * have immediate wakeup/sleep latencies.
  77. */
  78. unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
  79. unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
  80. const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
  81. /*
  82. * The exponential sliding window over which load is averaged for shares
  83. * distribution.
  84. * (default: 10msec)
  85. */
  86. unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
  87. #ifdef CONFIG_CFS_BANDWIDTH
  88. /*
  89. * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
  90. * each time a cfs_rq requests quota.
  91. *
  92. * Note: in the case that the slice exceeds the runtime remaining (either due
  93. * to consumption or the quota being specified to be smaller than the slice)
  94. * we will always only issue the remaining available time.
  95. *
  96. * default: 5 msec, units: microseconds
  97. */
  98. unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
  99. #endif
  100. /*
  101. * Increase the granularity value when there are more CPUs,
  102. * because with more CPUs the 'effective latency' as visible
  103. * to users decreases. But the relationship is not linear,
  104. * so pick a second-best guess by going with the log2 of the
  105. * number of CPUs.
  106. *
  107. * This idea comes from the SD scheduler of Con Kolivas:
  108. */
  109. static int get_update_sysctl_factor(void)
  110. {
  111. unsigned int cpus = min_t(int, num_online_cpus(), 8);
  112. unsigned int factor;
  113. switch (sysctl_sched_tunable_scaling) {
  114. case SCHED_TUNABLESCALING_NONE:
  115. factor = 1;
  116. break;
  117. case SCHED_TUNABLESCALING_LINEAR:
  118. factor = cpus;
  119. break;
  120. case SCHED_TUNABLESCALING_LOG:
  121. default:
  122. factor = 1 + ilog2(cpus);
  123. break;
  124. }
  125. return factor;
  126. }
  127. static void update_sysctl(void)
  128. {
  129. unsigned int factor = get_update_sysctl_factor();
  130. #define SET_SYSCTL(name) \
  131. (sysctl_##name = (factor) * normalized_sysctl_##name)
  132. SET_SYSCTL(sched_min_granularity);
  133. SET_SYSCTL(sched_latency);
  134. SET_SYSCTL(sched_wakeup_granularity);
  135. #undef SET_SYSCTL
  136. }
  137. void sched_init_granularity(void)
  138. {
  139. update_sysctl();
  140. }
  141. #if BITS_PER_LONG == 32
  142. # define WMULT_CONST (~0UL)
  143. #else
  144. # define WMULT_CONST (1UL << 32)
  145. #endif
  146. #define WMULT_SHIFT 32
  147. /*
  148. * Shift right and round:
  149. */
  150. #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
  151. /*
  152. * delta *= weight / lw
  153. */
  154. static unsigned long
  155. calc_delta_mine(unsigned long delta_exec, unsigned long weight,
  156. struct load_weight *lw)
  157. {
  158. u64 tmp;
  159. /*
  160. * weight can be less than 2^SCHED_LOAD_RESOLUTION for task group sched
  161. * entities since MIN_SHARES = 2. Treat weight as 1 if less than
  162. * 2^SCHED_LOAD_RESOLUTION.
  163. */
  164. if (likely(weight > (1UL << SCHED_LOAD_RESOLUTION)))
  165. tmp = (u64)delta_exec * scale_load_down(weight);
  166. else
  167. tmp = (u64)delta_exec;
  168. if (!lw->inv_weight) {
  169. unsigned long w = scale_load_down(lw->weight);
  170. if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
  171. lw->inv_weight = 1;
  172. else if (unlikely(!w))
  173. lw->inv_weight = WMULT_CONST;
  174. else
  175. lw->inv_weight = WMULT_CONST / w;
  176. }
  177. /*
  178. * Check whether we'd overflow the 64-bit multiplication:
  179. */
  180. if (unlikely(tmp > WMULT_CONST))
  181. tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
  182. WMULT_SHIFT/2);
  183. else
  184. tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
  185. return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
  186. }
  187. const struct sched_class fair_sched_class;
  188. /**************************************************************
  189. * CFS operations on generic schedulable entities:
  190. */
  191. #ifdef CONFIG_FAIR_GROUP_SCHED
  192. /* cpu runqueue to which this cfs_rq is attached */
  193. static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
  194. {
  195. return cfs_rq->rq;
  196. }
  197. /* An entity is a task if it doesn't "own" a runqueue */
  198. #define entity_is_task(se) (!se->my_q)
  199. static inline struct task_struct *task_of(struct sched_entity *se)
  200. {
  201. #ifdef CONFIG_SCHED_DEBUG
  202. WARN_ON_ONCE(!entity_is_task(se));
  203. #endif
  204. return container_of(se, struct task_struct, se);
  205. }
  206. /* Walk up scheduling entities hierarchy */
  207. #define for_each_sched_entity(se) \
  208. for (; se; se = se->parent)
  209. static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
  210. {
  211. return p->se.cfs_rq;
  212. }
  213. /* runqueue on which this entity is (to be) queued */
  214. static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
  215. {
  216. return se->cfs_rq;
  217. }
  218. /* runqueue "owned" by this group */
  219. static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
  220. {
  221. return grp->my_q;
  222. }
  223. static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
  224. {
  225. if (!cfs_rq->on_list) {
  226. /*
  227. * Ensure we either appear before our parent (if already
  228. * enqueued) or force our parent to appear after us when it is
  229. * enqueued. The fact that we always enqueue bottom-up
  230. * reduces this to two cases.
  231. */
  232. if (cfs_rq->tg->parent &&
  233. cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
  234. list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
  235. &rq_of(cfs_rq)->leaf_cfs_rq_list);
  236. } else {
  237. list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
  238. &rq_of(cfs_rq)->leaf_cfs_rq_list);
  239. }
  240. cfs_rq->on_list = 1;
  241. }
  242. }
  243. static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
  244. {
  245. if (cfs_rq->on_list) {
  246. list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
  247. cfs_rq->on_list = 0;
  248. }
  249. }
  250. /* Iterate thr' all leaf cfs_rq's on a runqueue */
  251. #define for_each_leaf_cfs_rq(rq, cfs_rq) \
  252. list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
  253. /* Do the two (enqueued) entities belong to the same group ? */
  254. static inline int
  255. is_same_group(struct sched_entity *se, struct sched_entity *pse)
  256. {
  257. if (se->cfs_rq == pse->cfs_rq)
  258. return 1;
  259. return 0;
  260. }
  261. static inline struct sched_entity *parent_entity(struct sched_entity *se)
  262. {
  263. return se->parent;
  264. }
  265. /* return depth at which a sched entity is present in the hierarchy */
  266. static inline int depth_se(struct sched_entity *se)
  267. {
  268. int depth = 0;
  269. for_each_sched_entity(se)
  270. depth++;
  271. return depth;
  272. }
  273. static void
  274. find_matching_se(struct sched_entity **se, struct sched_entity **pse)
  275. {
  276. int se_depth, pse_depth;
  277. /*
  278. * preemption test can be made between sibling entities who are in the
  279. * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
  280. * both tasks until we find their ancestors who are siblings of common
  281. * parent.
  282. */
  283. /* First walk up until both entities are at same depth */
  284. se_depth = depth_se(*se);
  285. pse_depth = depth_se(*pse);
  286. while (se_depth > pse_depth) {
  287. se_depth--;
  288. *se = parent_entity(*se);
  289. }
  290. while (pse_depth > se_depth) {
  291. pse_depth--;
  292. *pse = parent_entity(*pse);
  293. }
  294. while (!is_same_group(*se, *pse)) {
  295. *se = parent_entity(*se);
  296. *pse = parent_entity(*pse);
  297. }
  298. }
  299. #else /* !CONFIG_FAIR_GROUP_SCHED */
  300. static inline struct task_struct *task_of(struct sched_entity *se)
  301. {
  302. return container_of(se, struct task_struct, se);
  303. }
  304. static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
  305. {
  306. return container_of(cfs_rq, struct rq, cfs);
  307. }
  308. #define entity_is_task(se) 1
  309. #define for_each_sched_entity(se) \
  310. for (; se; se = NULL)
  311. static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
  312. {
  313. return &task_rq(p)->cfs;
  314. }
  315. static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
  316. {
  317. struct task_struct *p = task_of(se);
  318. struct rq *rq = task_rq(p);
  319. return &rq->cfs;
  320. }
  321. /* runqueue "owned" by this group */
  322. static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
  323. {
  324. return NULL;
  325. }
  326. static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
  327. {
  328. }
  329. static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
  330. {
  331. }
  332. #define for_each_leaf_cfs_rq(rq, cfs_rq) \
  333. for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
  334. static inline int
  335. is_same_group(struct sched_entity *se, struct sched_entity *pse)
  336. {
  337. return 1;
  338. }
  339. static inline struct sched_entity *parent_entity(struct sched_entity *se)
  340. {
  341. return NULL;
  342. }
  343. static inline void
  344. find_matching_se(struct sched_entity **se, struct sched_entity **pse)
  345. {
  346. }
  347. #endif /* CONFIG_FAIR_GROUP_SCHED */
  348. static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
  349. unsigned long delta_exec);
  350. /**************************************************************
  351. * Scheduling class tree data structure manipulation methods:
  352. */
  353. static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime)
  354. {
  355. s64 delta = (s64)(vruntime - min_vruntime);
  356. if (delta > 0)
  357. min_vruntime = vruntime;
  358. return min_vruntime;
  359. }
  360. static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
  361. {
  362. s64 delta = (s64)(vruntime - min_vruntime);
  363. if (delta < 0)
  364. min_vruntime = vruntime;
  365. return min_vruntime;
  366. }
  367. static inline int entity_before(struct sched_entity *a,
  368. struct sched_entity *b)
  369. {
  370. return (s64)(a->vruntime - b->vruntime) < 0;
  371. }
  372. static void update_min_vruntime(struct cfs_rq *cfs_rq)
  373. {
  374. u64 vruntime = cfs_rq->min_vruntime;
  375. if (cfs_rq->curr)
  376. vruntime = cfs_rq->curr->vruntime;
  377. if (cfs_rq->rb_leftmost) {
  378. struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
  379. struct sched_entity,
  380. run_node);
  381. if (!cfs_rq->curr)
  382. vruntime = se->vruntime;
  383. else
  384. vruntime = min_vruntime(vruntime, se->vruntime);
  385. }
  386. cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
  387. #ifndef CONFIG_64BIT
  388. smp_wmb();
  389. cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
  390. #endif
  391. }
  392. /*
  393. * Enqueue an entity into the rb-tree:
  394. */
  395. static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
  396. {
  397. struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
  398. struct rb_node *parent = NULL;
  399. struct sched_entity *entry;
  400. int leftmost = 1;
  401. /*
  402. * Find the right place in the rbtree:
  403. */
  404. while (*link) {
  405. parent = *link;
  406. entry = rb_entry(parent, struct sched_entity, run_node);
  407. /*
  408. * We dont care about collisions. Nodes with
  409. * the same key stay together.
  410. */
  411. if (entity_before(se, entry)) {
  412. link = &parent->rb_left;
  413. } else {
  414. link = &parent->rb_right;
  415. leftmost = 0;
  416. }
  417. }
  418. /*
  419. * Maintain a cache of leftmost tree entries (it is frequently
  420. * used):
  421. */
  422. if (leftmost)
  423. cfs_rq->rb_leftmost = &se->run_node;
  424. rb_link_node(&se->run_node, parent, link);
  425. rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
  426. }
  427. static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
  428. {
  429. if (cfs_rq->rb_leftmost == &se->run_node) {
  430. struct rb_node *next_node;
  431. next_node = rb_next(&se->run_node);
  432. cfs_rq->rb_leftmost = next_node;
  433. }
  434. rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
  435. }
  436. struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
  437. {
  438. struct rb_node *left = cfs_rq->rb_leftmost;
  439. if (!left)
  440. return NULL;
  441. return rb_entry(left, struct sched_entity, run_node);
  442. }
  443. static struct sched_entity *__pick_next_entity(struct sched_entity *se)
  444. {
  445. struct rb_node *next = rb_next(&se->run_node);
  446. if (!next)
  447. return NULL;
  448. return rb_entry(next, struct sched_entity, run_node);
  449. }
  450. #ifdef CONFIG_SCHED_DEBUG
  451. struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
  452. {
  453. struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
  454. if (!last)
  455. return NULL;
  456. return rb_entry(last, struct sched_entity, run_node);
  457. }
  458. /**************************************************************
  459. * Scheduling class statistics methods:
  460. */
  461. int sched_proc_update_handler(struct ctl_table *table, int write,
  462. void __user *buffer, size_t *lenp,
  463. loff_t *ppos)
  464. {
  465. int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
  466. int factor = get_update_sysctl_factor();
  467. if (ret || !write)
  468. return ret;
  469. sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
  470. sysctl_sched_min_granularity);
  471. #define WRT_SYSCTL(name) \
  472. (normalized_sysctl_##name = sysctl_##name / (factor))
  473. WRT_SYSCTL(sched_min_granularity);
  474. WRT_SYSCTL(sched_latency);
  475. WRT_SYSCTL(sched_wakeup_granularity);
  476. #undef WRT_SYSCTL
  477. return 0;
  478. }
  479. #endif
  480. /*
  481. * delta /= w
  482. */
  483. static inline unsigned long
  484. calc_delta_fair(unsigned long delta, struct sched_entity *se)
  485. {
  486. if (unlikely(se->load.weight != NICE_0_LOAD))
  487. delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load);
  488. return delta;
  489. }
  490. /*
  491. * The idea is to set a period in which each task runs once.
  492. *
  493. * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch
  494. * this period because otherwise the slices get too small.
  495. *
  496. * p = (nr <= nl) ? l : l*nr/nl
  497. */
  498. static u64 __sched_period(unsigned long nr_running)
  499. {
  500. u64 period = sysctl_sched_latency;
  501. unsigned long nr_latency = sched_nr_latency;
  502. if (unlikely(nr_running > nr_latency)) {
  503. period = sysctl_sched_min_granularity;
  504. period *= nr_running;
  505. }
  506. return period;
  507. }
  508. /*
  509. * We calculate the wall-time slice from the period by taking a part
  510. * proportional to the weight.
  511. *
  512. * s = p*P[w/rw]
  513. */
  514. static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
  515. {
  516. u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
  517. for_each_sched_entity(se) {
  518. struct load_weight *load;
  519. struct load_weight lw;
  520. cfs_rq = cfs_rq_of(se);
  521. load = &cfs_rq->load;
  522. if (unlikely(!se->on_rq)) {
  523. lw = cfs_rq->load;
  524. update_load_add(&lw, se->load.weight);
  525. load = &lw;
  526. }
  527. slice = calc_delta_mine(slice, se->load.weight, load);
  528. }
  529. return slice;
  530. }
  531. /*
  532. * We calculate the vruntime slice of a to be inserted task
  533. *
  534. * vs = s/w
  535. */
  536. static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
  537. {
  538. return calc_delta_fair(sched_slice(cfs_rq, se), se);
  539. }
  540. static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update);
  541. static void update_cfs_shares(struct cfs_rq *cfs_rq);
  542. /*
  543. * Update the current task's runtime statistics. Skip current tasks that
  544. * are not in our scheduling class.
  545. */
  546. static inline void
  547. __update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
  548. unsigned long delta_exec)
  549. {
  550. unsigned long delta_exec_weighted;
  551. schedstat_set(curr->statistics.exec_max,
  552. max((u64)delta_exec, curr->statistics.exec_max));
  553. curr->sum_exec_runtime += delta_exec;
  554. schedstat_add(cfs_rq, exec_clock, delta_exec);
  555. delta_exec_weighted = calc_delta_fair(delta_exec, curr);
  556. curr->vruntime += delta_exec_weighted;
  557. update_min_vruntime(cfs_rq);
  558. #if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
  559. cfs_rq->load_unacc_exec_time += delta_exec;
  560. #endif
  561. }
  562. static void update_curr(struct cfs_rq *cfs_rq)
  563. {
  564. struct sched_entity *curr = cfs_rq->curr;
  565. u64 now = rq_of(cfs_rq)->clock_task;
  566. unsigned long delta_exec;
  567. if (unlikely(!curr))
  568. return;
  569. /*
  570. * Get the amount of time the current task was running
  571. * since the last time we changed load (this cannot
  572. * overflow on 32 bits):
  573. */
  574. delta_exec = (unsigned long)(now - curr->exec_start);
  575. if (!delta_exec)
  576. return;
  577. __update_curr(cfs_rq, curr, delta_exec);
  578. curr->exec_start = now;
  579. if (entity_is_task(curr)) {
  580. struct task_struct *curtask = task_of(curr);
  581. trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
  582. cpuacct_charge(curtask, delta_exec);
  583. account_group_exec_runtime(curtask, delta_exec);
  584. }
  585. account_cfs_rq_runtime(cfs_rq, delta_exec);
  586. }
  587. static inline void
  588. update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
  589. {
  590. schedstat_set(se->statistics.wait_start, rq_of(cfs_rq)->clock);
  591. }
  592. /*
  593. * Task is being enqueued - update stats:
  594. */
  595. static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
  596. {
  597. /*
  598. * Are we enqueueing a waiting task? (for current tasks
  599. * a dequeue/enqueue event is a NOP)
  600. */
  601. if (se != cfs_rq->curr)
  602. update_stats_wait_start(cfs_rq, se);
  603. }
  604. static void
  605. update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
  606. {
  607. schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
  608. rq_of(cfs_rq)->clock - se->statistics.wait_start));
  609. schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
  610. schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
  611. rq_of(cfs_rq)->clock - se->statistics.wait_start);
  612. #ifdef CONFIG_SCHEDSTATS
  613. if (entity_is_task(se)) {
  614. trace_sched_stat_wait(task_of(se),
  615. rq_of(cfs_rq)->clock - se->statistics.wait_start);
  616. }
  617. #endif
  618. schedstat_set(se->statistics.wait_start, 0);
  619. }
  620. static inline void
  621. update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
  622. {
  623. /*
  624. * Mark the end of the wait period if dequeueing a
  625. * waiting task:
  626. */
  627. if (se != cfs_rq->curr)
  628. update_stats_wait_end(cfs_rq, se);
  629. }
  630. /*
  631. * We are picking a new current task - update its stats:
  632. */
  633. static inline void
  634. update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
  635. {
  636. /*
  637. * We are starting a new run period:
  638. */
  639. se->exec_start = rq_of(cfs_rq)->clock_task;
  640. }
  641. /**************************************************
  642. * Scheduling class queueing methods:
  643. */
  644. #if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
  645. static void
  646. add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
  647. {
  648. cfs_rq->task_weight += weight;
  649. }
  650. #else
  651. static inline void
  652. add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
  653. {
  654. }
  655. #endif
  656. static void
  657. account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
  658. {
  659. update_load_add(&cfs_rq->load, se->load.weight);
  660. if (!parent_entity(se))
  661. update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
  662. if (entity_is_task(se)) {
  663. add_cfs_task_weight(cfs_rq, se->load.weight);
  664. list_add(&se->group_node, &cfs_rq->tasks);
  665. }
  666. cfs_rq->nr_running++;
  667. }
  668. static void
  669. account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
  670. {
  671. update_load_sub(&cfs_rq->load, se->load.weight);
  672. if (!parent_entity(se))
  673. update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
  674. if (entity_is_task(se)) {
  675. add_cfs_task_weight(cfs_rq, -se->load.weight);
  676. list_del_init(&se->group_node);
  677. }
  678. cfs_rq->nr_running--;
  679. }
  680. #ifdef CONFIG_FAIR_GROUP_SCHED
  681. /* we need this in update_cfs_load and load-balance functions below */
  682. static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
  683. # ifdef CONFIG_SMP
  684. static void update_cfs_rq_load_contribution(struct cfs_rq *cfs_rq,
  685. int global_update)
  686. {
  687. struct task_group *tg = cfs_rq->tg;
  688. long load_avg;
  689. load_avg = div64_u64(cfs_rq->load_avg, cfs_rq->load_period+1);
  690. load_avg -= cfs_rq->load_contribution;
  691. if (global_update || abs(load_avg) > cfs_rq->load_contribution / 8) {
  692. atomic_add(load_avg, &tg->load_weight);
  693. cfs_rq->load_contribution += load_avg;
  694. }
  695. }
  696. static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update)
  697. {
  698. u64 period = sysctl_sched_shares_window;
  699. u64 now, delta;
  700. unsigned long load = cfs_rq->load.weight;
  701. if (cfs_rq->tg == &root_task_group || throttled_hierarchy(cfs_rq))
  702. return;
  703. now = rq_of(cfs_rq)->clock_task;
  704. delta = now - cfs_rq->load_stamp;
  705. /* truncate load history at 4 idle periods */
  706. if (cfs_rq->load_stamp > cfs_rq->load_last &&
  707. now - cfs_rq->load_last > 4 * period) {
  708. cfs_rq->load_period = 0;
  709. cfs_rq->load_avg = 0;
  710. delta = period - 1;
  711. }
  712. cfs_rq->load_stamp = now;
  713. cfs_rq->load_unacc_exec_time = 0;
  714. cfs_rq->load_period += delta;
  715. if (load) {
  716. cfs_rq->load_last = now;
  717. cfs_rq->load_avg += delta * load;
  718. }
  719. /* consider updating load contribution on each fold or truncate */
  720. if (global_update || cfs_rq->load_period > period
  721. || !cfs_rq->load_period)
  722. update_cfs_rq_load_contribution(cfs_rq, global_update);
  723. while (cfs_rq->load_period > period) {
  724. /*
  725. * Inline assembly required to prevent the compiler
  726. * optimising this loop into a divmod call.
  727. * See __iter_div_u64_rem() for another example of this.
  728. */
  729. asm("" : "+rm" (cfs_rq->load_period));
  730. cfs_rq->load_period /= 2;
  731. cfs_rq->load_avg /= 2;
  732. }
  733. if (!cfs_rq->curr && !cfs_rq->nr_running && !cfs_rq->load_avg)
  734. list_del_leaf_cfs_rq(cfs_rq);
  735. }
  736. static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
  737. {
  738. long tg_weight;
  739. /*
  740. * Use this CPU's actual weight instead of the last load_contribution
  741. * to gain a more accurate current total weight. See
  742. * update_cfs_rq_load_contribution().
  743. */
  744. tg_weight = atomic_read(&tg->load_weight);
  745. tg_weight -= cfs_rq->load_contribution;
  746. tg_weight += cfs_rq->load.weight;
  747. return tg_weight;
  748. }
  749. static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
  750. {
  751. long tg_weight, load, shares;
  752. tg_weight = calc_tg_weight(tg, cfs_rq);
  753. load = cfs_rq->load.weight;
  754. shares = (tg->shares * load);
  755. if (tg_weight)
  756. shares /= tg_weight;
  757. if (shares < MIN_SHARES)
  758. shares = MIN_SHARES;
  759. if (shares > tg->shares)
  760. shares = tg->shares;
  761. return shares;
  762. }
  763. static void update_entity_shares_tick(struct cfs_rq *cfs_rq)
  764. {
  765. if (cfs_rq->load_unacc_exec_time > sysctl_sched_shares_window) {
  766. update_cfs_load(cfs_rq, 0);
  767. update_cfs_shares(cfs_rq);
  768. }
  769. }
  770. # else /* CONFIG_SMP */
  771. static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update)
  772. {
  773. }
  774. static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
  775. {
  776. return tg->shares;
  777. }
  778. static inline void update_entity_shares_tick(struct cfs_rq *cfs_rq)
  779. {
  780. }
  781. # endif /* CONFIG_SMP */
  782. static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
  783. unsigned long weight)
  784. {
  785. if (se->on_rq) {
  786. /* commit outstanding execution time */
  787. if (cfs_rq->curr == se)
  788. update_curr(cfs_rq);
  789. account_entity_dequeue(cfs_rq, se);
  790. }
  791. update_load_set(&se->load, weight);
  792. if (se->on_rq)
  793. account_entity_enqueue(cfs_rq, se);
  794. }
  795. static void update_cfs_shares(struct cfs_rq *cfs_rq)
  796. {
  797. struct task_group *tg;
  798. struct sched_entity *se;
  799. long shares;
  800. tg = cfs_rq->tg;
  801. se = tg->se[cpu_of(rq_of(cfs_rq))];
  802. if (!se || throttled_hierarchy(cfs_rq))
  803. return;
  804. #ifndef CONFIG_SMP
  805. if (likely(se->load.weight == tg->shares))
  806. return;
  807. #endif
  808. shares = calc_cfs_shares(cfs_rq, tg);
  809. reweight_entity(cfs_rq_of(se), se, shares);
  810. }
  811. #else /* CONFIG_FAIR_GROUP_SCHED */
  812. static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update)
  813. {
  814. }
  815. static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
  816. {
  817. }
  818. static inline void update_entity_shares_tick(struct cfs_rq *cfs_rq)
  819. {
  820. }
  821. #endif /* CONFIG_FAIR_GROUP_SCHED */
  822. static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
  823. {
  824. #ifdef CONFIG_SCHEDSTATS
  825. struct task_struct *tsk = NULL;
  826. if (entity_is_task(se))
  827. tsk = task_of(se);
  828. if (se->statistics.sleep_start) {
  829. u64 delta = rq_of(cfs_rq)->clock - se->statistics.sleep_start;
  830. if ((s64)delta < 0)
  831. delta = 0;
  832. if (unlikely(delta > se->statistics.sleep_max))
  833. se->statistics.sleep_max = delta;
  834. se->statistics.sum_sleep_runtime += delta;
  835. if (tsk) {
  836. account_scheduler_latency(tsk, delta >> 10, 1);
  837. trace_sched_stat_sleep(tsk, delta);
  838. }
  839. }
  840. if (se->statistics.block_start) {
  841. u64 delta = rq_of(cfs_rq)->clock - se->statistics.block_start;
  842. if ((s64)delta < 0)
  843. delta = 0;
  844. if (unlikely(delta > se->statistics.block_max))
  845. se->statistics.block_max = delta;
  846. se->statistics.sum_sleep_runtime += delta;
  847. if (tsk) {
  848. if (tsk->in_iowait) {
  849. se->statistics.iowait_sum += delta;
  850. se->statistics.iowait_count++;
  851. trace_sched_stat_iowait(tsk, delta);
  852. }
  853. trace_sched_stat_blocked(tsk, delta);
  854. /*
  855. * Blocking time is in units of nanosecs, so shift by
  856. * 20 to get a milliseconds-range estimation of the
  857. * amount of time that the task spent sleeping:
  858. */
  859. if (unlikely(prof_on == SLEEP_PROFILING)) {
  860. profile_hits(SLEEP_PROFILING,
  861. (void *)get_wchan(tsk),
  862. delta >> 20);
  863. }
  864. account_scheduler_latency(tsk, delta >> 10, 0);
  865. }
  866. }
  867. #endif
  868. }
  869. static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
  870. {
  871. #ifdef CONFIG_SCHED_DEBUG
  872. s64 d = se->vruntime - cfs_rq->min_vruntime;
  873. if (d < 0)
  874. d = -d;
  875. if (d > 3*sysctl_sched_latency)
  876. schedstat_inc(cfs_rq, nr_spread_over);
  877. #endif
  878. }
  879. static void
  880. place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
  881. {
  882. u64 vruntime = cfs_rq->min_vruntime;
  883. /*
  884. * The 'current' period is already promised to the current tasks,
  885. * however the extra weight of the new task will slow them down a
  886. * little, place the new task so that it fits in the slot that
  887. * stays open at the end.
  888. */
  889. if (initial && sched_feat(START_DEBIT))
  890. vruntime += sched_vslice(cfs_rq, se);
  891. /* sleeps up to a single latency don't count. */
  892. if (!initial) {
  893. unsigned long thresh = sysctl_sched_latency;
  894. /*
  895. * Halve their sleep time's effect, to allow
  896. * for a gentler effect of sleepers:
  897. */
  898. if (sched_feat(GENTLE_FAIR_SLEEPERS))
  899. thresh >>= 1;
  900. vruntime -= thresh;
  901. }
  902. /* ensure we never gain time by being placed backwards. */
  903. vruntime = max_vruntime(se->vruntime, vruntime);
  904. se->vruntime = vruntime;
  905. }
  906. static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
  907. static void
  908. enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
  909. {
  910. /*
  911. * Update the normalized vruntime before updating min_vruntime
  912. * through callig update_curr().
  913. */
  914. if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
  915. se->vruntime += cfs_rq->min_vruntime;
  916. /*
  917. * Update run-time statistics of the 'current'.
  918. */
  919. update_curr(cfs_rq);
  920. update_cfs_load(cfs_rq, 0);
  921. account_entity_enqueue(cfs_rq, se);
  922. update_cfs_shares(cfs_rq);
  923. if (flags & ENQUEUE_WAKEUP) {
  924. place_entity(cfs_rq, se, 0);
  925. enqueue_sleeper(cfs_rq, se);
  926. }
  927. update_stats_enqueue(cfs_rq, se);
  928. check_spread(cfs_rq, se);
  929. if (se != cfs_rq->curr)
  930. __enqueue_entity(cfs_rq, se);
  931. se->on_rq = 1;
  932. if (cfs_rq->nr_running == 1) {
  933. list_add_leaf_cfs_rq(cfs_rq);
  934. check_enqueue_throttle(cfs_rq);
  935. }
  936. }
  937. static void __clear_buddies_last(struct sched_entity *se)
  938. {
  939. for_each_sched_entity(se) {
  940. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  941. if (cfs_rq->last == se)
  942. cfs_rq->last = NULL;
  943. else
  944. break;
  945. }
  946. }
  947. static void __clear_buddies_next(struct sched_entity *se)
  948. {
  949. for_each_sched_entity(se) {
  950. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  951. if (cfs_rq->next == se)
  952. cfs_rq->next = NULL;
  953. else
  954. break;
  955. }
  956. }
  957. static void __clear_buddies_skip(struct sched_entity *se)
  958. {
  959. for_each_sched_entity(se) {
  960. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  961. if (cfs_rq->skip == se)
  962. cfs_rq->skip = NULL;
  963. else
  964. break;
  965. }
  966. }
  967. static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
  968. {
  969. if (cfs_rq->last == se)
  970. __clear_buddies_last(se);
  971. if (cfs_rq->next == se)
  972. __clear_buddies_next(se);
  973. if (cfs_rq->skip == se)
  974. __clear_buddies_skip(se);
  975. }
  976. static void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
  977. static void
  978. dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
  979. {
  980. /*
  981. * Update run-time statistics of the 'current'.
  982. */
  983. update_curr(cfs_rq);
  984. update_stats_dequeue(cfs_rq, se);
  985. if (flags & DEQUEUE_SLEEP) {
  986. #ifdef CONFIG_SCHEDSTATS
  987. if (entity_is_task(se)) {
  988. struct task_struct *tsk = task_of(se);
  989. if (tsk->state & TASK_INTERRUPTIBLE)
  990. se->statistics.sleep_start = rq_of(cfs_rq)->clock;
  991. if (tsk->state & TASK_UNINTERRUPTIBLE)
  992. se->statistics.block_start = rq_of(cfs_rq)->clock;
  993. }
  994. #endif
  995. }
  996. clear_buddies(cfs_rq, se);
  997. if (se != cfs_rq->curr)
  998. __dequeue_entity(cfs_rq, se);
  999. se->on_rq = 0;
  1000. update_cfs_load(cfs_rq, 0);
  1001. account_entity_dequeue(cfs_rq, se);
  1002. /*
  1003. * Normalize the entity after updating the min_vruntime because the
  1004. * update can refer to the ->curr item and we need to reflect this
  1005. * movement in our normalized position.
  1006. */
  1007. if (!(flags & DEQUEUE_SLEEP))
  1008. se->vruntime -= cfs_rq->min_vruntime;
  1009. /* return excess runtime on last dequeue */
  1010. return_cfs_rq_runtime(cfs_rq);
  1011. update_min_vruntime(cfs_rq);
  1012. update_cfs_shares(cfs_rq);
  1013. }
  1014. /*
  1015. * Preempt the current task with a newly woken task if needed:
  1016. */
  1017. static void
  1018. check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
  1019. {
  1020. unsigned long ideal_runtime, delta_exec;
  1021. struct sched_entity *se;
  1022. s64 delta;
  1023. ideal_runtime = sched_slice(cfs_rq, curr);
  1024. delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
  1025. if (delta_exec > ideal_runtime) {
  1026. resched_task(rq_of(cfs_rq)->curr);
  1027. /*
  1028. * The current task ran long enough, ensure it doesn't get
  1029. * re-elected due to buddy favours.
  1030. */
  1031. clear_buddies(cfs_rq, curr);
  1032. return;
  1033. }
  1034. /*
  1035. * Ensure that a task that missed wakeup preemption by a
  1036. * narrow margin doesn't have to wait for a full slice.
  1037. * This also mitigates buddy induced latencies under load.
  1038. */
  1039. if (delta_exec < sysctl_sched_min_granularity)
  1040. return;
  1041. se = __pick_first_entity(cfs_rq);
  1042. delta = curr->vruntime - se->vruntime;
  1043. if (delta < 0)
  1044. return;
  1045. if (delta > ideal_runtime)
  1046. resched_task(rq_of(cfs_rq)->curr);
  1047. }
  1048. static void
  1049. set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
  1050. {
  1051. /* 'current' is not kept within the tree. */
  1052. if (se->on_rq) {
  1053. /*
  1054. * Any task has to be enqueued before it get to execute on
  1055. * a CPU. So account for the time it spent waiting on the
  1056. * runqueue.
  1057. */
  1058. update_stats_wait_end(cfs_rq, se);
  1059. __dequeue_entity(cfs_rq, se);
  1060. }
  1061. update_stats_curr_start(cfs_rq, se);
  1062. cfs_rq->curr = se;
  1063. #ifdef CONFIG_SCHEDSTATS
  1064. /*
  1065. * Track our maximum slice length, if the CPU's load is at
  1066. * least twice that of our own weight (i.e. dont track it
  1067. * when there are only lesser-weight tasks around):
  1068. */
  1069. if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
  1070. se->statistics.slice_max = max(se->statistics.slice_max,
  1071. se->sum_exec_runtime - se->prev_sum_exec_runtime);
  1072. }
  1073. #endif
  1074. se->prev_sum_exec_runtime = se->sum_exec_runtime;
  1075. }
  1076. static int
  1077. wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
  1078. /*
  1079. * Pick the next process, keeping these things in mind, in this order:
  1080. * 1) keep things fair between processes/task groups
  1081. * 2) pick the "next" process, since someone really wants that to run
  1082. * 3) pick the "last" process, for cache locality
  1083. * 4) do not run the "skip" process, if something else is available
  1084. */
  1085. static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
  1086. {
  1087. struct sched_entity *se = __pick_first_entity(cfs_rq);
  1088. struct sched_entity *left = se;
  1089. /*
  1090. * Avoid running the skip buddy, if running something else can
  1091. * be done without getting too unfair.
  1092. */
  1093. if (cfs_rq->skip == se) {
  1094. struct sched_entity *second = __pick_next_entity(se);
  1095. if (second && wakeup_preempt_entity(second, left) < 1)
  1096. se = second;
  1097. }
  1098. /*
  1099. * Prefer last buddy, try to return the CPU to a preempted task.
  1100. */
  1101. if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
  1102. se = cfs_rq->last;
  1103. /*
  1104. * Someone really wants this to run. If it's not unfair, run it.
  1105. */
  1106. if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
  1107. se = cfs_rq->next;
  1108. clear_buddies(cfs_rq, se);
  1109. return se;
  1110. }
  1111. static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
  1112. static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
  1113. {
  1114. /*
  1115. * If still on the runqueue then deactivate_task()
  1116. * was not called and update_curr() has to be done:
  1117. */
  1118. if (prev->on_rq)
  1119. update_curr(cfs_rq);
  1120. /* throttle cfs_rqs exceeding runtime */
  1121. check_cfs_rq_runtime(cfs_rq);
  1122. check_spread(cfs_rq, prev);
  1123. if (prev->on_rq) {
  1124. update_stats_wait_start(cfs_rq, prev);
  1125. /* Put 'current' back into the tree. */
  1126. __enqueue_entity(cfs_rq, prev);
  1127. }
  1128. cfs_rq->curr = NULL;
  1129. }
  1130. static void
  1131. entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
  1132. {
  1133. /*
  1134. * Update run-time statistics of the 'current'.
  1135. */
  1136. update_curr(cfs_rq);
  1137. /*
  1138. * Update share accounting for long-running entities.
  1139. */
  1140. update_entity_shares_tick(cfs_rq);
  1141. #ifdef CONFIG_SCHED_HRTICK
  1142. /*
  1143. * queued ticks are scheduled to match the slice, so don't bother
  1144. * validating it and just reschedule.
  1145. */
  1146. if (queued) {
  1147. resched_task(rq_of(cfs_rq)->curr);
  1148. return;
  1149. }
  1150. /*
  1151. * don't let the period tick interfere with the hrtick preemption
  1152. */
  1153. if (!sched_feat(DOUBLE_TICK) &&
  1154. hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
  1155. return;
  1156. #endif
  1157. if (cfs_rq->nr_running > 1)
  1158. check_preempt_tick(cfs_rq, curr);
  1159. }
  1160. /**************************************************
  1161. * CFS bandwidth control machinery
  1162. */
  1163. #ifdef CONFIG_CFS_BANDWIDTH
  1164. #ifdef HAVE_JUMP_LABEL
  1165. static struct jump_label_key __cfs_bandwidth_used;
  1166. static inline bool cfs_bandwidth_used(void)
  1167. {
  1168. return static_branch(&__cfs_bandwidth_used);
  1169. }
  1170. void account_cfs_bandwidth_used(int enabled, int was_enabled)
  1171. {
  1172. /* only need to count groups transitioning between enabled/!enabled */
  1173. if (enabled && !was_enabled)
  1174. jump_label_inc(&__cfs_bandwidth_used);
  1175. else if (!enabled && was_enabled)
  1176. jump_label_dec(&__cfs_bandwidth_used);
  1177. }
  1178. #else /* HAVE_JUMP_LABEL */
  1179. static bool cfs_bandwidth_used(void)
  1180. {
  1181. return true;
  1182. }
  1183. void account_cfs_bandwidth_used(int enabled, int was_enabled) {}
  1184. #endif /* HAVE_JUMP_LABEL */
  1185. /*
  1186. * default period for cfs group bandwidth.
  1187. * default: 0.1s, units: nanoseconds
  1188. */
  1189. static inline u64 default_cfs_period(void)
  1190. {
  1191. return 100000000ULL;
  1192. }
  1193. static inline u64 sched_cfs_bandwidth_slice(void)
  1194. {
  1195. return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
  1196. }
  1197. /*
  1198. * Replenish runtime according to assigned quota and update expiration time.
  1199. * We use sched_clock_cpu directly instead of rq->clock to avoid adding
  1200. * additional synchronization around rq->lock.
  1201. *
  1202. * requires cfs_b->lock
  1203. */
  1204. void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
  1205. {
  1206. u64 now;
  1207. if (cfs_b->quota == RUNTIME_INF)
  1208. return;
  1209. now = sched_clock_cpu(smp_processor_id());
  1210. cfs_b->runtime = cfs_b->quota;
  1211. cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
  1212. }
  1213. static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
  1214. {
  1215. return &tg->cfs_bandwidth;
  1216. }
  1217. /* returns 0 on failure to allocate runtime */
  1218. static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
  1219. {
  1220. struct task_group *tg = cfs_rq->tg;
  1221. struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
  1222. u64 amount = 0, min_amount, expires;
  1223. /* note: this is a positive sum as runtime_remaining <= 0 */
  1224. min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
  1225. raw_spin_lock(&cfs_b->lock);
  1226. if (cfs_b->quota == RUNTIME_INF)
  1227. amount = min_amount;
  1228. else {
  1229. /*
  1230. * If the bandwidth pool has become inactive, then at least one
  1231. * period must have elapsed since the last consumption.
  1232. * Refresh the global state and ensure bandwidth timer becomes
  1233. * active.
  1234. */
  1235. if (!cfs_b->timer_active) {
  1236. __refill_cfs_bandwidth_runtime(cfs_b);
  1237. __start_cfs_bandwidth(cfs_b);
  1238. }
  1239. if (cfs_b->runtime > 0) {
  1240. amount = min(cfs_b->runtime, min_amount);
  1241. cfs_b->runtime -= amount;
  1242. cfs_b->idle = 0;
  1243. }
  1244. }
  1245. expires = cfs_b->runtime_expires;
  1246. raw_spin_unlock(&cfs_b->lock);
  1247. cfs_rq->runtime_remaining += amount;
  1248. /*
  1249. * we may have advanced our local expiration to account for allowed
  1250. * spread between our sched_clock and the one on which runtime was
  1251. * issued.
  1252. */
  1253. if ((s64)(expires - cfs_rq->runtime_expires) > 0)
  1254. cfs_rq->runtime_expires = expires;
  1255. return cfs_rq->runtime_remaining > 0;
  1256. }
  1257. /*
  1258. * Note: This depends on the synchronization provided by sched_clock and the
  1259. * fact that rq->clock snapshots this value.
  1260. */
  1261. static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
  1262. {
  1263. struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
  1264. struct rq *rq = rq_of(cfs_rq);
  1265. /* if the deadline is ahead of our clock, nothing to do */
  1266. if (likely((s64)(rq->clock - cfs_rq->runtime_expires) < 0))
  1267. return;
  1268. if (cfs_rq->runtime_remaining < 0)
  1269. return;
  1270. /*
  1271. * If the local deadline has passed we have to consider the
  1272. * possibility that our sched_clock is 'fast' and the global deadline
  1273. * has not truly expired.
  1274. *
  1275. * Fortunately we can check determine whether this the case by checking
  1276. * whether the global deadline has advanced.
  1277. */
  1278. if ((s64)(cfs_rq->runtime_expires - cfs_b->runtime_expires) >= 0) {
  1279. /* extend local deadline, drift is bounded above by 2 ticks */
  1280. cfs_rq->runtime_expires += TICK_NSEC;
  1281. } else {
  1282. /* global deadline is ahead, expiration has passed */
  1283. cfs_rq->runtime_remaining = 0;
  1284. }
  1285. }
  1286. static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
  1287. unsigned long delta_exec)
  1288. {
  1289. /* dock delta_exec before expiring quota (as it could span periods) */
  1290. cfs_rq->runtime_remaining -= delta_exec;
  1291. expire_cfs_rq_runtime(cfs_rq);
  1292. if (likely(cfs_rq->runtime_remaining > 0))
  1293. return;
  1294. /*
  1295. * if we're unable to extend our runtime we resched so that the active
  1296. * hierarchy can be throttled
  1297. */
  1298. if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
  1299. resched_task(rq_of(cfs_rq)->curr);
  1300. }
  1301. static __always_inline void account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
  1302. unsigned long delta_exec)
  1303. {
  1304. if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
  1305. return;
  1306. __account_cfs_rq_runtime(cfs_rq, delta_exec);
  1307. }
  1308. static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
  1309. {
  1310. return cfs_bandwidth_used() && cfs_rq->throttled;
  1311. }
  1312. /* check whether cfs_rq, or any parent, is throttled */
  1313. static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
  1314. {
  1315. return cfs_bandwidth_used() && cfs_rq->throttle_count;
  1316. }
  1317. /*
  1318. * Ensure that neither of the group entities corresponding to src_cpu or
  1319. * dest_cpu are members of a throttled hierarchy when performing group
  1320. * load-balance operations.
  1321. */
  1322. static inline int throttled_lb_pair(struct task_group *tg,
  1323. int src_cpu, int dest_cpu)
  1324. {
  1325. struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
  1326. src_cfs_rq = tg->cfs_rq[src_cpu];
  1327. dest_cfs_rq = tg->cfs_rq[dest_cpu];
  1328. return throttled_hierarchy(src_cfs_rq) ||
  1329. throttled_hierarchy(dest_cfs_rq);
  1330. }
  1331. /* updated child weight may affect parent so we have to do this bottom up */
  1332. static int tg_unthrottle_up(struct task_group *tg, void *data)
  1333. {
  1334. struct rq *rq = data;
  1335. struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
  1336. cfs_rq->throttle_count--;
  1337. #ifdef CONFIG_SMP
  1338. if (!cfs_rq->throttle_count) {
  1339. u64 delta = rq->clock_task - cfs_rq->load_stamp;
  1340. /* leaving throttled state, advance shares averaging windows */
  1341. cfs_rq->load_stamp += delta;
  1342. cfs_rq->load_last += delta;
  1343. /* update entity weight now that we are on_rq again */
  1344. update_cfs_shares(cfs_rq);
  1345. }
  1346. #endif
  1347. return 0;
  1348. }
  1349. static int tg_throttle_down(struct task_group *tg, void *data)
  1350. {
  1351. struct rq *rq = data;
  1352. struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
  1353. /* group is entering throttled state, record last load */
  1354. if (!cfs_rq->throttle_count)
  1355. update_cfs_load(cfs_rq, 0);
  1356. cfs_rq->throttle_count++;
  1357. return 0;
  1358. }
  1359. static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
  1360. {
  1361. struct rq *rq = rq_of(cfs_rq);
  1362. struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
  1363. struct sched_entity *se;
  1364. long task_delta, dequeue = 1;
  1365. se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
  1366. /* account load preceding throttle */
  1367. rcu_read_lock();
  1368. walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
  1369. rcu_read_unlock();
  1370. task_delta = cfs_rq->h_nr_running;
  1371. for_each_sched_entity(se) {
  1372. struct cfs_rq *qcfs_rq = cfs_rq_of(se);
  1373. /* throttled entity or throttle-on-deactivate */
  1374. if (!se->on_rq)
  1375. break;
  1376. if (dequeue)
  1377. dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
  1378. qcfs_rq->h_nr_running -= task_delta;
  1379. if (qcfs_rq->load.weight)
  1380. dequeue = 0;
  1381. }
  1382. if (!se)
  1383. rq->nr_running -= task_delta;
  1384. cfs_rq->throttled = 1;
  1385. cfs_rq->throttled_timestamp = rq->clock;
  1386. raw_spin_lock(&cfs_b->lock);
  1387. list_add_tail_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
  1388. raw_spin_unlock(&cfs_b->lock);
  1389. }
  1390. void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
  1391. {
  1392. struct rq *rq = rq_of(cfs_rq);
  1393. struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
  1394. struct sched_entity *se;
  1395. int enqueue = 1;
  1396. long task_delta;
  1397. se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
  1398. cfs_rq->throttled = 0;
  1399. raw_spin_lock(&cfs_b->lock);
  1400. cfs_b->throttled_time += rq->clock - cfs_rq->throttled_timestamp;
  1401. list_del_rcu(&cfs_rq->throttled_list);
  1402. raw_spin_unlock(&cfs_b->lock);
  1403. cfs_rq->throttled_timestamp = 0;
  1404. update_rq_clock(rq);
  1405. /* update hierarchical throttle state */
  1406. walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
  1407. if (!cfs_rq->load.weight)
  1408. return;
  1409. task_delta = cfs_rq->h_nr_running;
  1410. for_each_sched_entity(se) {
  1411. if (se->on_rq)
  1412. enqueue = 0;
  1413. cfs_rq = cfs_rq_of(se);
  1414. if (enqueue)
  1415. enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
  1416. cfs_rq->h_nr_running += task_delta;
  1417. if (cfs_rq_throttled(cfs_rq))
  1418. break;
  1419. }
  1420. if (!se)
  1421. rq->nr_running += task_delta;
  1422. /* determine whether we need to wake up potentially idle cpu */
  1423. if (rq->curr == rq->idle && rq->cfs.nr_running)
  1424. resched_task(rq->curr);
  1425. }
  1426. static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
  1427. u64 remaining, u64 expires)
  1428. {
  1429. struct cfs_rq *cfs_rq;
  1430. u64 runtime = remaining;
  1431. rcu_read_lock();
  1432. list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
  1433. throttled_list) {
  1434. struct rq *rq = rq_of(cfs_rq);
  1435. raw_spin_lock(&rq->lock);
  1436. if (!cfs_rq_throttled(cfs_rq))
  1437. goto next;
  1438. runtime = -cfs_rq->runtime_remaining + 1;
  1439. if (runtime > remaining)
  1440. runtime = remaining;
  1441. remaining -= runtime;
  1442. cfs_rq->runtime_remaining += runtime;
  1443. cfs_rq->runtime_expires = expires;
  1444. /* we check whether we're throttled above */
  1445. if (cfs_rq->runtime_remaining > 0)
  1446. unthrottle_cfs_rq(cfs_rq);
  1447. next:
  1448. raw_spin_unlock(&rq->lock);
  1449. if (!remaining)
  1450. break;
  1451. }
  1452. rcu_read_unlock();
  1453. return remaining;
  1454. }
  1455. /*
  1456. * Responsible for refilling a task_group's bandwidth and unthrottling its
  1457. * cfs_rqs as appropriate. If there has been no activity within the last
  1458. * period the timer is deactivated until scheduling resumes; cfs_b->idle is
  1459. * used to track this state.
  1460. */
  1461. static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
  1462. {
  1463. u64 runtime, runtime_expires;
  1464. int idle = 1, throttled;
  1465. raw_spin_lock(&cfs_b->lock);
  1466. /* no need to continue the timer with no bandwidth constraint */
  1467. if (cfs_b->quota == RUNTIME_INF)
  1468. goto out_unlock;
  1469. throttled = !list_empty(&cfs_b->throttled_cfs_rq);
  1470. /* idle depends on !throttled (for the case of a large deficit) */
  1471. idle = cfs_b->idle && !throttled;
  1472. cfs_b->nr_periods += overrun;
  1473. /* if we're going inactive then everything else can be deferred */
  1474. if (idle)
  1475. goto out_unlock;
  1476. __refill_cfs_bandwidth_runtime(cfs_b);
  1477. if (!throttled) {
  1478. /* mark as potentially idle for the upcoming period */
  1479. cfs_b->idle = 1;
  1480. goto out_unlock;
  1481. }
  1482. /* account preceding periods in which throttling occurred */
  1483. cfs_b->nr_throttled += overrun;
  1484. /*
  1485. * There are throttled entities so we must first use the new bandwidth
  1486. * to unthrottle them before making it generally available. This
  1487. * ensures that all existing debts will be paid before a new cfs_rq is
  1488. * allowed to run.
  1489. */
  1490. runtime = cfs_b->runtime;
  1491. runtime_expires = cfs_b->runtime_expires;
  1492. cfs_b->runtime = 0;
  1493. /*
  1494. * This check is repeated as we are holding onto the new bandwidth
  1495. * while we unthrottle. This can potentially race with an unthrottled
  1496. * group trying to acquire new bandwidth from the global pool.
  1497. */
  1498. while (throttled && runtime > 0) {
  1499. raw_spin_unlock(&cfs_b->lock);
  1500. /* we can't nest cfs_b->lock while distributing bandwidth */
  1501. runtime = distribute_cfs_runtime(cfs_b, runtime,
  1502. runtime_expires);
  1503. raw_spin_lock(&cfs_b->lock);
  1504. throttled = !list_empty(&cfs_b->throttled_cfs_rq);
  1505. }
  1506. /* return (any) remaining runtime */
  1507. cfs_b->runtime = runtime;
  1508. /*
  1509. * While we are ensured activity in the period following an
  1510. * unthrottle, this also covers the case in which the new bandwidth is
  1511. * insufficient to cover the existing bandwidth deficit. (Forcing the
  1512. * timer to remain active while there are any throttled entities.)
  1513. */
  1514. cfs_b->idle = 0;
  1515. out_unlock:
  1516. if (idle)
  1517. cfs_b->timer_active = 0;
  1518. raw_spin_unlock(&cfs_b->lock);
  1519. return idle;
  1520. }
  1521. /* a cfs_rq won't donate quota below this amount */
  1522. static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
  1523. /* minimum remaining period time to redistribute slack quota */
  1524. static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
  1525. /* how long we wait to gather additional slack before distributing */
  1526. static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
  1527. /* are we near the end of the current quota period? */
  1528. static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
  1529. {
  1530. struct hrtimer *refresh_timer = &cfs_b->period_timer;
  1531. u64 remaining;
  1532. /* if the call-back is running a quota refresh is already occurring */
  1533. if (hrtimer_callback_running(refresh_timer))
  1534. return 1;
  1535. /* is a quota refresh about to occur? */
  1536. remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
  1537. if (remaining < min_expire)
  1538. return 1;
  1539. return 0;
  1540. }
  1541. static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
  1542. {
  1543. u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
  1544. /* if there's a quota refresh soon don't bother with slack */
  1545. if (runtime_refresh_within(cfs_b, min_left))
  1546. return;
  1547. start_bandwidth_timer(&cfs_b->slack_timer,
  1548. ns_to_ktime(cfs_bandwidth_slack_period));
  1549. }
  1550. /* we know any runtime found here is valid as update_curr() precedes return */
  1551. static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
  1552. {
  1553. struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
  1554. s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
  1555. if (slack_runtime <= 0)
  1556. return;
  1557. raw_spin_lock(&cfs_b->lock);
  1558. if (cfs_b->quota != RUNTIME_INF &&
  1559. cfs_rq->runtime_expires == cfs_b->runtime_expires) {
  1560. cfs_b->runtime += slack_runtime;
  1561. /* we are under rq->lock, defer unthrottling using a timer */
  1562. if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
  1563. !list_empty(&cfs_b->throttled_cfs_rq))
  1564. start_cfs_slack_bandwidth(cfs_b);
  1565. }
  1566. raw_spin_unlock(&cfs_b->lock);
  1567. /* even if it's not valid for return we don't want to try again */
  1568. cfs_rq->runtime_remaining -= slack_runtime;
  1569. }
  1570. static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
  1571. {
  1572. if (!cfs_bandwidth_used())
  1573. return;
  1574. if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
  1575. return;
  1576. __return_cfs_rq_runtime(cfs_rq);
  1577. }
  1578. /*
  1579. * This is done with a timer (instead of inline with bandwidth return) since
  1580. * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
  1581. */
  1582. static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
  1583. {
  1584. u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
  1585. u64 expires;
  1586. /* confirm we're still not at a refresh boundary */
  1587. if (runtime_refresh_within(cfs_b, min_bandwidth_expiration))
  1588. return;
  1589. raw_spin_lock(&cfs_b->lock);
  1590. if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) {
  1591. runtime = cfs_b->runtime;
  1592. cfs_b->runtime = 0;
  1593. }
  1594. expires = cfs_b->runtime_expires;
  1595. raw_spin_unlock(&cfs_b->lock);
  1596. if (!runtime)
  1597. return;
  1598. runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
  1599. raw_spin_lock(&cfs_b->lock);
  1600. if (expires == cfs_b->runtime_expires)
  1601. cfs_b->runtime = runtime;
  1602. raw_spin_unlock(&cfs_b->lock);
  1603. }
  1604. /*
  1605. * When a group wakes up we want to make sure that its quota is not already
  1606. * expired/exceeded, otherwise it may be allowed to steal additional ticks of
  1607. * runtime as update_curr() throttling can not not trigger until it's on-rq.
  1608. */
  1609. static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
  1610. {
  1611. if (!cfs_bandwidth_used())
  1612. return;
  1613. /* an active group must be handled by the update_curr()->put() path */
  1614. if (!cfs_rq->runtime_enabled || cfs_rq->curr)
  1615. return;
  1616. /* ensure the group is not already throttled */
  1617. if (cfs_rq_throttled(cfs_rq))
  1618. return;
  1619. /* update runtime allocation */
  1620. account_cfs_rq_runtime(cfs_rq, 0);
  1621. if (cfs_rq->runtime_remaining <= 0)
  1622. throttle_cfs_rq(cfs_rq);
  1623. }
  1624. /* conditionally throttle active cfs_rq's from put_prev_entity() */
  1625. static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
  1626. {
  1627. if (!cfs_bandwidth_used())
  1628. return;
  1629. if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
  1630. return;
  1631. /*
  1632. * it's possible for a throttled entity to be forced into a running
  1633. * state (e.g. set_curr_task), in this case we're finished.
  1634. */
  1635. if (cfs_rq_throttled(cfs_rq))
  1636. return;
  1637. throttle_cfs_rq(cfs_rq);
  1638. }
  1639. static inline u64 default_cfs_period(void);
  1640. static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun);
  1641. static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b);
  1642. static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
  1643. {
  1644. struct cfs_bandwidth *cfs_b =
  1645. container_of(timer, struct cfs_bandwidth, slack_timer);
  1646. do_sched_cfs_slack_timer(cfs_b);
  1647. return HRTIMER_NORESTART;
  1648. }
  1649. static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
  1650. {
  1651. struct cfs_bandwidth *cfs_b =
  1652. container_of(timer, struct cfs_bandwidth, period_timer);
  1653. ktime_t now;
  1654. int overrun;
  1655. int idle = 0;
  1656. for (;;) {
  1657. now = hrtimer_cb_get_time(timer);
  1658. overrun = hrtimer_forward(timer, now, cfs_b->period);
  1659. if (!overrun)
  1660. break;
  1661. idle = do_sched_cfs_period_timer(cfs_b, overrun);
  1662. }
  1663. return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
  1664. }
  1665. void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
  1666. {
  1667. raw_spin_lock_init(&cfs_b->lock);
  1668. cfs_b->runtime = 0;
  1669. cfs_b->quota = RUNTIME_INF;
  1670. cfs_b->period = ns_to_ktime(default_cfs_period());
  1671. INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
  1672. hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  1673. cfs_b->period_timer.function = sched_cfs_period_timer;
  1674. hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  1675. cfs_b->slack_timer.function = sched_cfs_slack_timer;
  1676. }
  1677. static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
  1678. {
  1679. cfs_rq->runtime_enabled = 0;
  1680. INIT_LIST_HEAD(&cfs_rq->throttled_list);
  1681. }
  1682. /* requires cfs_b->lock, may release to reprogram timer */
  1683. void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
  1684. {
  1685. /*
  1686. * The timer may be active because we're trying to set a new bandwidth
  1687. * period or because we're racing with the tear-down path
  1688. * (timer_active==0 becomes visible before the hrtimer call-back
  1689. * terminates). In either case we ensure that it's re-programmed
  1690. */
  1691. while (unlikely(hrtimer_active(&cfs_b->period_timer))) {
  1692. raw_spin_unlock(&cfs_b->lock);
  1693. /* ensure cfs_b->lock is available while we wait */
  1694. hrtimer_cancel(&cfs_b->period_timer);
  1695. raw_spin_lock(&cfs_b->lock);
  1696. /* if someone else restarted the timer then we're done */
  1697. if (cfs_b->timer_active)
  1698. return;
  1699. }
  1700. cfs_b->timer_active = 1;
  1701. start_bandwidth_timer(&cfs_b->period_timer, cfs_b->period);
  1702. }
  1703. static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
  1704. {
  1705. hrtimer_cancel(&cfs_b->period_timer);
  1706. hrtimer_cancel(&cfs_b->slack_timer);
  1707. }
  1708. void unthrottle_offline_cfs_rqs(struct rq *rq)
  1709. {
  1710. struct cfs_rq *cfs_rq;
  1711. for_each_leaf_cfs_rq(rq, cfs_rq) {
  1712. struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
  1713. if (!cfs_rq->runtime_enabled)
  1714. continue;
  1715. /*
  1716. * clock_task is not advancing so we just need to make sure
  1717. * there's some valid quota amount
  1718. */
  1719. cfs_rq->runtime_remaining = cfs_b->quota;
  1720. if (cfs_rq_throttled(cfs_rq))
  1721. unthrottle_cfs_rq(cfs_rq);
  1722. }
  1723. }
  1724. #else /* CONFIG_CFS_BANDWIDTH */
  1725. static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
  1726. unsigned long delta_exec) {}
  1727. static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
  1728. static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
  1729. static void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
  1730. static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
  1731. {
  1732. return 0;
  1733. }
  1734. static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
  1735. {
  1736. return 0;
  1737. }
  1738. static inline int throttled_lb_pair(struct task_group *tg,
  1739. int src_cpu, int dest_cpu)
  1740. {
  1741. return 0;
  1742. }
  1743. void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
  1744. #ifdef CONFIG_FAIR_GROUP_SCHED
  1745. static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
  1746. #endif
  1747. static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
  1748. {
  1749. return NULL;
  1750. }
  1751. static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
  1752. void unthrottle_offline_cfs_rqs(struct rq *rq) {}
  1753. #endif /* CONFIG_CFS_BANDWIDTH */
  1754. /**************************************************
  1755. * CFS operations on tasks:
  1756. */
  1757. #ifdef CONFIG_SCHED_HRTICK
  1758. static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
  1759. {
  1760. struct sched_entity *se = &p->se;
  1761. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  1762. WARN_ON(task_rq(p) != rq);
  1763. if (cfs_rq->nr_running > 1) {
  1764. u64 slice = sched_slice(cfs_rq, se);
  1765. u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
  1766. s64 delta = slice - ran;
  1767. if (delta < 0) {
  1768. if (rq->curr == p)
  1769. resched_task(p);
  1770. return;
  1771. }
  1772. /*
  1773. * Don't schedule slices shorter than 10000ns, that just
  1774. * doesn't make sense. Rely on vruntime for fairness.
  1775. */
  1776. if (rq->curr != p)
  1777. delta = max_t(s64, 10000LL, delta);
  1778. hrtick_start(rq, delta);
  1779. }
  1780. }
  1781. /*
  1782. * called from enqueue/dequeue and updates the hrtick when the
  1783. * current task is from our class and nr_running is low enough
  1784. * to matter.
  1785. */
  1786. static void hrtick_update(struct rq *rq)
  1787. {
  1788. struct task_struct *curr = rq->curr;
  1789. if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
  1790. return;
  1791. if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
  1792. hrtick_start_fair(rq, curr);
  1793. }
  1794. #else /* !CONFIG_SCHED_HRTICK */
  1795. static inline void
  1796. hrtick_start_fair(struct rq *rq, struct task_struct *p)
  1797. {
  1798. }
  1799. static inline void hrtick_update(struct rq *rq)
  1800. {
  1801. }
  1802. #endif
  1803. /*
  1804. * The enqueue_task method is called before nr_running is
  1805. * increased. Here we update the fair scheduling stats and
  1806. * then put the task into the rbtree:
  1807. */
  1808. static void
  1809. enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
  1810. {
  1811. struct cfs_rq *cfs_rq;
  1812. struct sched_entity *se = &p->se;
  1813. for_each_sched_entity(se) {
  1814. if (se->on_rq)
  1815. break;
  1816. cfs_rq = cfs_rq_of(se);
  1817. enqueue_entity(cfs_rq, se, flags);
  1818. /*
  1819. * end evaluation on encountering a throttled cfs_rq
  1820. *
  1821. * note: in the case of encountering a throttled cfs_rq we will
  1822. * post the final h_nr_running increment below.
  1823. */
  1824. if (cfs_rq_throttled(cfs_rq))
  1825. break;
  1826. cfs_rq->h_nr_running++;
  1827. flags = ENQUEUE_WAKEUP;
  1828. }
  1829. for_each_sched_entity(se) {
  1830. cfs_rq = cfs_rq_of(se);
  1831. cfs_rq->h_nr_running++;
  1832. if (cfs_rq_throttled(cfs_rq))
  1833. break;
  1834. update_cfs_load(cfs_rq, 0);
  1835. update_cfs_shares(cfs_rq);
  1836. }
  1837. if (!se)
  1838. inc_nr_running(rq);
  1839. hrtick_update(rq);
  1840. }
  1841. static void set_next_buddy(struct sched_entity *se);
  1842. /*
  1843. * The dequeue_task method is called before nr_running is
  1844. * decreased. We remove the task from the rbtree and
  1845. * update the fair scheduling stats:
  1846. */
  1847. static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
  1848. {
  1849. struct cfs_rq *cfs_rq;
  1850. struct sched_entity *se = &p->se;
  1851. int task_sleep = flags & DEQUEUE_SLEEP;
  1852. for_each_sched_entity(se) {
  1853. cfs_rq = cfs_rq_of(se);
  1854. dequeue_entity(cfs_rq, se, flags);
  1855. /*
  1856. * end evaluation on encountering a throttled cfs_rq
  1857. *
  1858. * note: in the case of encountering a throttled cfs_rq we will
  1859. * post the final h_nr_running decrement below.
  1860. */
  1861. if (cfs_rq_throttled(cfs_rq))
  1862. break;
  1863. cfs_rq->h_nr_running--;
  1864. /* Don't dequeue parent if it has other entities besides us */
  1865. if (cfs_rq->load.weight) {
  1866. /*
  1867. * Bias pick_next to pick a task from this cfs_rq, as
  1868. * p is sleeping when it is within its sched_slice.
  1869. */
  1870. if (task_sleep && parent_entity(se))
  1871. set_next_buddy(parent_entity(se));
  1872. /* avoid re-evaluating load for this entity */
  1873. se = parent_entity(se);
  1874. break;
  1875. }
  1876. flags |= DEQUEUE_SLEEP;
  1877. }
  1878. for_each_sched_entity(se) {
  1879. cfs_rq = cfs_rq_of(se);
  1880. cfs_rq->h_nr_running--;
  1881. if (cfs_rq_throttled(cfs_rq))
  1882. break;
  1883. update_cfs_load(cfs_rq, 0);
  1884. update_cfs_shares(cfs_rq);
  1885. }
  1886. if (!se)
  1887. dec_nr_running(rq);
  1888. hrtick_update(rq);
  1889. }
  1890. #ifdef CONFIG_SMP
  1891. /* Used instead of source_load when we know the type == 0 */
  1892. static unsigned long weighted_cpuload(const int cpu)
  1893. {
  1894. return cpu_rq(cpu)->load.weight;
  1895. }
  1896. /*
  1897. * Return a low guess at the load of a migration-source cpu weighted
  1898. * according to the scheduling class and "nice" value.
  1899. *
  1900. * We want to under-estimate the load of migration sources, to
  1901. * balance conservatively.
  1902. */
  1903. static unsigned long source_load(int cpu, int type)
  1904. {
  1905. struct rq *rq = cpu_rq(cpu);
  1906. unsigned long total = weighted_cpuload(cpu);
  1907. if (type == 0 || !sched_feat(LB_BIAS))
  1908. return total;
  1909. return min(rq->cpu_load[type-1], total);
  1910. }
  1911. /*
  1912. * Return a high guess at the load of a migration-target cpu weighted
  1913. * according to the scheduling class and "nice" value.
  1914. */
  1915. static unsigned long target_load(int cpu, int type)
  1916. {
  1917. struct rq *rq = cpu_rq(cpu);
  1918. unsigned long total = weighted_cpuload(cpu);
  1919. if (type == 0 || !sched_feat(LB_BIAS))
  1920. return total;
  1921. return max(rq->cpu_load[type-1], total);
  1922. }
  1923. static unsigned long power_of(int cpu)
  1924. {
  1925. return cpu_rq(cpu)->cpu_power;
  1926. }
  1927. static unsigned long cpu_avg_load_per_task(int cpu)
  1928. {
  1929. struct rq *rq = cpu_rq(cpu);
  1930. unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
  1931. if (nr_running)
  1932. return rq->load.weight / nr_running;
  1933. return 0;
  1934. }
  1935. static void task_waking_fair(struct task_struct *p)
  1936. {
  1937. struct sched_entity *se = &p->se;
  1938. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  1939. u64 min_vruntime;
  1940. #ifndef CONFIG_64BIT
  1941. u64 min_vruntime_copy;
  1942. do {
  1943. min_vruntime_copy = cfs_rq->min_vruntime_copy;
  1944. smp_rmb();
  1945. min_vruntime = cfs_rq->min_vruntime;
  1946. } while (min_vruntime != min_vruntime_copy);
  1947. #else
  1948. min_vruntime = cfs_rq->min_vruntime;
  1949. #endif
  1950. se->vruntime -= min_vruntime;
  1951. }
  1952. #ifdef CONFIG_FAIR_GROUP_SCHED
  1953. /*
  1954. * effective_load() calculates the load change as seen from the root_task_group
  1955. *
  1956. * Adding load to a group doesn't make a group heavier, but can cause movement
  1957. * of group shares between cpus. Assuming the shares were perfectly aligned one
  1958. * can calculate the shift in shares.
  1959. *
  1960. * Calculate the effective load difference if @wl is added (subtracted) to @tg
  1961. * on this @cpu and results in a total addition (subtraction) of @wg to the
  1962. * total group weight.
  1963. *
  1964. * Given a runqueue weight distribution (rw_i) we can compute a shares
  1965. * distribution (s_i) using:
  1966. *
  1967. * s_i = rw_i / \Sum rw_j (1)
  1968. *
  1969. * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
  1970. * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
  1971. * shares distribution (s_i):
  1972. *
  1973. * rw_i = { 2, 4, 1, 0 }
  1974. * s_i = { 2/7, 4/7, 1/7, 0 }
  1975. *
  1976. * As per wake_affine() we're interested in the load of two CPUs (the CPU the
  1977. * task used to run on and the CPU the waker is running on), we need to
  1978. * compute the effect of waking a task on either CPU and, in case of a sync
  1979. * wakeup, compute the effect of the current task going to sleep.
  1980. *
  1981. * So for a change of @wl to the local @cpu with an overall group weight change
  1982. * of @wl we can compute the new shares distribution (s'_i) using:
  1983. *
  1984. * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2)
  1985. *
  1986. * Suppose we're interested in CPUs 0 and 1, and want to compute the load
  1987. * differences in waking a task to CPU 0. The additional task changes the
  1988. * weight and shares distributions like:
  1989. *
  1990. * rw'_i = { 3, 4, 1, 0 }
  1991. * s'_i = { 3/8, 4/8, 1/8, 0 }
  1992. *
  1993. * We can then compute the difference in effective weight by using:
  1994. *
  1995. * dw_i = S * (s'_i - s_i) (3)
  1996. *
  1997. * Where 'S' is the group weight as seen by its parent.
  1998. *
  1999. * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
  2000. * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
  2001. * 4/7) times the weight of the group.
  2002. */
  2003. static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
  2004. {
  2005. struct sched_entity *se = tg->se[cpu];
  2006. if (!tg->parent) /* the trivial, non-cgroup case */
  2007. return wl;
  2008. for_each_sched_entity(se) {
  2009. long w, W;
  2010. tg = se->my_q->tg;
  2011. /*
  2012. * W = @wg + \Sum rw_j
  2013. */
  2014. W = wg + calc_tg_weight(tg, se->my_q);
  2015. /*
  2016. * w = rw_i + @wl
  2017. */
  2018. w = se->my_q->load.weight + wl;
  2019. /*
  2020. * wl = S * s'_i; see (2)
  2021. */
  2022. if (W > 0 && w < W)
  2023. wl = (w * tg->shares) / W;
  2024. else
  2025. wl = tg->shares;
  2026. /*
  2027. * Per the above, wl is the new se->load.weight value; since
  2028. * those are clipped to [MIN_SHARES, ...) do so now. See
  2029. * calc_cfs_shares().
  2030. */
  2031. if (wl < MIN_SHARES)
  2032. wl = MIN_SHARES;
  2033. /*
  2034. * wl = dw_i = S * (s'_i - s_i); see (3)
  2035. */
  2036. wl -= se->load.weight;
  2037. /*
  2038. * Recursively apply this logic to all parent groups to compute
  2039. * the final effective load change on the root group. Since
  2040. * only the @tg group gets extra weight, all parent groups can
  2041. * only redistribute existing shares. @wl is the shift in shares
  2042. * resulting from this level per the above.
  2043. */
  2044. wg = 0;
  2045. }
  2046. return wl;
  2047. }
  2048. #else
  2049. static inline unsigned long effective_load(struct task_group *tg, int cpu,
  2050. unsigned long wl, unsigned long wg)
  2051. {
  2052. return wl;
  2053. }
  2054. #endif
  2055. static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
  2056. {
  2057. s64 this_load, load;
  2058. int idx, this_cpu, prev_cpu;
  2059. unsigned long tl_per_task;
  2060. struct task_group *tg;
  2061. unsigned long weight;
  2062. int balanced;
  2063. idx = sd->wake_idx;
  2064. this_cpu = smp_processor_id();
  2065. prev_cpu = task_cpu(p);
  2066. load = source_load(prev_cpu, idx);
  2067. this_load = target_load(this_cpu, idx);
  2068. /*
  2069. * If sync wakeup then subtract the (maximum possible)
  2070. * effect of the currently running task from the load
  2071. * of the current CPU:
  2072. */
  2073. if (sync) {
  2074. tg = task_group(current);
  2075. weight = current->se.load.weight;
  2076. this_load += effective_load(tg, this_cpu, -weight, -weight);
  2077. load += effective_load(tg, prev_cpu, 0, -weight);
  2078. }
  2079. tg = task_group(p);
  2080. weight = p->se.load.weight;
  2081. /*
  2082. * In low-load situations, where prev_cpu is idle and this_cpu is idle
  2083. * due to the sync cause above having dropped this_load to 0, we'll
  2084. * always have an imbalance, but there's really nothing you can do
  2085. * about that, so that's good too.
  2086. *
  2087. * Otherwise check if either cpus are near enough in load to allow this
  2088. * task to be woken on this_cpu.
  2089. */
  2090. if (this_load > 0) {
  2091. s64 this_eff_load, prev_eff_load;
  2092. this_eff_load = 100;
  2093. this_eff_load *= power_of(prev_cpu);
  2094. this_eff_load *= this_load +
  2095. effective_load(tg, this_cpu, weight, weight);
  2096. prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
  2097. prev_eff_load *= power_of(this_cpu);
  2098. prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
  2099. balanced = this_eff_load <= prev_eff_load;
  2100. } else
  2101. balanced = true;
  2102. /*
  2103. * If the currently running task will sleep within
  2104. * a reasonable amount of time then attract this newly
  2105. * woken task:
  2106. */
  2107. if (sync && balanced)
  2108. return 1;
  2109. schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
  2110. tl_per_task = cpu_avg_load_per_task(this_cpu);
  2111. if (balanced ||
  2112. (this_load <= load &&
  2113. this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
  2114. /*
  2115. * This domain has SD_WAKE_AFFINE and
  2116. * p is cache cold in this domain, and
  2117. * there is no bad imbalance.
  2118. */
  2119. schedstat_inc(sd, ttwu_move_affine);
  2120. schedstat_inc(p, se.statistics.nr_wakeups_affine);
  2121. return 1;
  2122. }
  2123. return 0;
  2124. }
  2125. /*
  2126. * find_idlest_group finds and returns the least busy CPU group within the
  2127. * domain.
  2128. */
  2129. static struct sched_group *
  2130. find_idlest_group(struct sched_domain *sd, struct task_struct *p,
  2131. int this_cpu, int load_idx)
  2132. {
  2133. struct sched_group *idlest = NULL, *group = sd->groups;
  2134. unsigned long min_load = ULONG_MAX, this_load = 0;
  2135. int imbalance = 100 + (sd->imbalance_pct-100)/2;
  2136. do {
  2137. unsigned long load, avg_load;
  2138. int local_group;
  2139. int i;
  2140. /* Skip over this group if it has no CPUs allowed */
  2141. if (!cpumask_intersects(sched_group_cpus(group),
  2142. tsk_cpus_allowed(p)))
  2143. continue;
  2144. local_group = cpumask_test_cpu(this_cpu,
  2145. sched_group_cpus(group));
  2146. /* Tally up the load of all CPUs in the group */
  2147. avg_load = 0;
  2148. for_each_cpu(i, sched_group_cpus(group)) {
  2149. /* Bias balancing toward cpus of our domain */
  2150. if (local_group)
  2151. load = source_load(i, load_idx);
  2152. else
  2153. load = target_load(i, load_idx);
  2154. avg_load += load;
  2155. }
  2156. /* Adjust by relative CPU power of the group */
  2157. avg_load = (avg_load * SCHED_POWER_SCALE) / group->sgp->power;
  2158. if (local_group) {
  2159. this_load = avg_load;
  2160. } else if (avg_load < min_load) {
  2161. min_load = avg_load;
  2162. idlest = group;
  2163. }
  2164. } while (group = group->next, group != sd->groups);
  2165. if (!idlest || 100*this_load < imbalance*min_load)
  2166. return NULL;
  2167. return idlest;
  2168. }
  2169. /*
  2170. * find_idlest_cpu - find the idlest cpu among the cpus in group.
  2171. */
  2172. static int
  2173. find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
  2174. {
  2175. unsigned long load, min_load = ULONG_MAX;
  2176. int idlest = -1;
  2177. int i;
  2178. /* Traverse only the allowed CPUs */
  2179. for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
  2180. load = weighted_cpuload(i);
  2181. if (load < min_load || (load == min_load && i == this_cpu)) {
  2182. min_load = load;
  2183. idlest = i;
  2184. }
  2185. }
  2186. return idlest;
  2187. }
  2188. /*
  2189. * Try and locate an idle CPU in the sched_domain.
  2190. */
  2191. static int select_idle_sibling(struct task_struct *p, int target)
  2192. {
  2193. int cpu = smp_processor_id();
  2194. int prev_cpu = task_cpu(p);
  2195. struct sched_domain *sd;
  2196. struct sched_group *sg;
  2197. int i;
  2198. /*
  2199. * If the task is going to be woken-up on this cpu and if it is
  2200. * already idle, then it is the right target.
  2201. */
  2202. if (target == cpu && idle_cpu(cpu))
  2203. return cpu;
  2204. /*
  2205. * If the task is going to be woken-up on the cpu where it previously
  2206. * ran and if it is currently idle, then it the right target.
  2207. */
  2208. if (target == prev_cpu && idle_cpu(prev_cpu))
  2209. return prev_cpu;
  2210. /*
  2211. * Otherwise, iterate the domains and find an elegible idle cpu.
  2212. */
  2213. rcu_read_lock();
  2214. sd = rcu_dereference(per_cpu(sd_llc, target));
  2215. for_each_lower_domain(sd) {
  2216. sg = sd->groups;
  2217. do {
  2218. if (!cpumask_intersects(sched_group_cpus(sg),
  2219. tsk_cpus_allowed(p)))
  2220. goto next;
  2221. for_each_cpu(i, sched_group_cpus(sg)) {
  2222. if (!idle_cpu(i))
  2223. goto next;
  2224. }
  2225. target = cpumask_first_and(sched_group_cpus(sg),
  2226. tsk_cpus_allowed(p));
  2227. goto done;
  2228. next:
  2229. sg = sg->next;
  2230. } while (sg != sd->groups);
  2231. }
  2232. done:
  2233. rcu_read_unlock();
  2234. return target;
  2235. }
  2236. /*
  2237. * sched_balance_self: balance the current task (running on cpu) in domains
  2238. * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
  2239. * SD_BALANCE_EXEC.
  2240. *
  2241. * Balance, ie. select the least loaded group.
  2242. *
  2243. * Returns the target CPU number, or the same CPU if no balancing is needed.
  2244. *
  2245. * preempt must be disabled.
  2246. */
  2247. static int
  2248. select_task_rq_fair(struct task_struct *p, int sd_flag, int wake_flags)
  2249. {
  2250. struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
  2251. int cpu = smp_processor_id();
  2252. int prev_cpu = task_cpu(p);
  2253. int new_cpu = cpu;
  2254. int want_affine = 0;
  2255. int want_sd = 1;
  2256. int sync = wake_flags & WF_SYNC;
  2257. if (p->rt.nr_cpus_allowed == 1)
  2258. return prev_cpu;
  2259. if (sd_flag & SD_BALANCE_WAKE) {
  2260. if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
  2261. want_affine = 1;
  2262. new_cpu = prev_cpu;
  2263. }
  2264. rcu_read_lock();
  2265. for_each_domain(cpu, tmp) {
  2266. if (!(tmp->flags & SD_LOAD_BALANCE))
  2267. continue;
  2268. /*
  2269. * If power savings logic is enabled for a domain, see if we
  2270. * are not overloaded, if so, don't balance wider.
  2271. */
  2272. if (tmp->flags & (SD_POWERSAVINGS_BALANCE|SD_PREFER_LOCAL)) {
  2273. unsigned long power = 0;
  2274. unsigned long nr_running = 0;
  2275. unsigned long capacity;
  2276. int i;
  2277. for_each_cpu(i, sched_domain_span(tmp)) {
  2278. power += power_of(i);
  2279. nr_running += cpu_rq(i)->cfs.nr_running;
  2280. }
  2281. capacity = DIV_ROUND_CLOSEST(power, SCHED_POWER_SCALE);
  2282. if (tmp->flags & SD_POWERSAVINGS_BALANCE)
  2283. nr_running /= 2;
  2284. if (nr_running < capacity)
  2285. want_sd = 0;
  2286. }
  2287. /*
  2288. * If both cpu and prev_cpu are part of this domain,
  2289. * cpu is a valid SD_WAKE_AFFINE target.
  2290. */
  2291. if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
  2292. cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
  2293. affine_sd = tmp;
  2294. want_affine = 0;
  2295. }
  2296. if (!want_sd && !want_affine)
  2297. break;
  2298. if (!(tmp->flags & sd_flag))
  2299. continue;
  2300. if (want_sd)
  2301. sd = tmp;
  2302. }
  2303. if (affine_sd) {
  2304. if (cpu == prev_cpu || wake_affine(affine_sd, p, sync))
  2305. prev_cpu = cpu;
  2306. new_cpu = select_idle_sibling(p, prev_cpu);
  2307. goto unlock;
  2308. }
  2309. while (sd) {
  2310. int load_idx = sd->forkexec_idx;
  2311. struct sched_group *group;
  2312. int weight;
  2313. if (!(sd->flags & sd_flag)) {
  2314. sd = sd->child;
  2315. continue;
  2316. }
  2317. if (sd_flag & SD_BALANCE_WAKE)
  2318. load_idx = sd->wake_idx;
  2319. group = find_idlest_group(sd, p, cpu, load_idx);
  2320. if (!group) {
  2321. sd = sd->child;
  2322. continue;
  2323. }
  2324. new_cpu = find_idlest_cpu(group, p, cpu);
  2325. if (new_cpu == -1 || new_cpu == cpu) {
  2326. /* Now try balancing at a lower domain level of cpu */
  2327. sd = sd->child;
  2328. continue;
  2329. }
  2330. /* Now try balancing at a lower domain level of new_cpu */
  2331. cpu = new_cpu;
  2332. weight = sd->span_weight;
  2333. sd = NULL;
  2334. for_each_domain(cpu, tmp) {
  2335. if (weight <= tmp->span_weight)
  2336. break;
  2337. if (tmp->flags & sd_flag)
  2338. sd = tmp;
  2339. }
  2340. /* while loop will break here if sd == NULL */
  2341. }
  2342. unlock:
  2343. rcu_read_unlock();
  2344. return new_cpu;
  2345. }
  2346. #endif /* CONFIG_SMP */
  2347. static unsigned long
  2348. wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
  2349. {
  2350. unsigned long gran = sysctl_sched_wakeup_granularity;
  2351. /*
  2352. * Since its curr running now, convert the gran from real-time
  2353. * to virtual-time in his units.
  2354. *
  2355. * By using 'se' instead of 'curr' we penalize light tasks, so
  2356. * they get preempted easier. That is, if 'se' < 'curr' then
  2357. * the resulting gran will be larger, therefore penalizing the
  2358. * lighter, if otoh 'se' > 'curr' then the resulting gran will
  2359. * be smaller, again penalizing the lighter task.
  2360. *
  2361. * This is especially important for buddies when the leftmost
  2362. * task is higher priority than the buddy.
  2363. */
  2364. return calc_delta_fair(gran, se);
  2365. }
  2366. /*
  2367. * Should 'se' preempt 'curr'.
  2368. *
  2369. * |s1
  2370. * |s2
  2371. * |s3
  2372. * g
  2373. * |<--->|c
  2374. *
  2375. * w(c, s1) = -1
  2376. * w(c, s2) = 0
  2377. * w(c, s3) = 1
  2378. *
  2379. */
  2380. static int
  2381. wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
  2382. {
  2383. s64 gran, vdiff = curr->vruntime - se->vruntime;
  2384. if (vdiff <= 0)
  2385. return -1;
  2386. gran = wakeup_gran(curr, se);
  2387. if (vdiff > gran)
  2388. return 1;
  2389. return 0;
  2390. }
  2391. static void set_last_buddy(struct sched_entity *se)
  2392. {
  2393. if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
  2394. return;
  2395. for_each_sched_entity(se)
  2396. cfs_rq_of(se)->last = se;
  2397. }
  2398. static void set_next_buddy(struct sched_entity *se)
  2399. {
  2400. if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
  2401. return;
  2402. for_each_sched_entity(se)
  2403. cfs_rq_of(se)->next = se;
  2404. }
  2405. static void set_skip_buddy(struct sched_entity *se)
  2406. {
  2407. for_each_sched_entity(se)
  2408. cfs_rq_of(se)->skip = se;
  2409. }
  2410. /*
  2411. * Preempt the current task with a newly woken task if needed:
  2412. */
  2413. static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
  2414. {
  2415. struct task_struct *curr = rq->curr;
  2416. struct sched_entity *se = &curr->se, *pse = &p->se;
  2417. struct cfs_rq *cfs_rq = task_cfs_rq(curr);
  2418. int scale = cfs_rq->nr_running >= sched_nr_latency;
  2419. int next_buddy_marked = 0;
  2420. if (unlikely(se == pse))
  2421. return;
  2422. /*
  2423. * This is possible from callers such as pull_task(), in which we
  2424. * unconditionally check_prempt_curr() after an enqueue (which may have
  2425. * lead to a throttle). This both saves work and prevents false
  2426. * next-buddy nomination below.
  2427. */
  2428. if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
  2429. return;
  2430. if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
  2431. set_next_buddy(pse);
  2432. next_buddy_marked = 1;
  2433. }
  2434. /*
  2435. * We can come here with TIF_NEED_RESCHED already set from new task
  2436. * wake up path.
  2437. *
  2438. * Note: this also catches the edge-case of curr being in a throttled
  2439. * group (e.g. via set_curr_task), since update_curr() (in the
  2440. * enqueue of curr) will have resulted in resched being set. This
  2441. * prevents us from potentially nominating it as a false LAST_BUDDY
  2442. * below.
  2443. */
  2444. if (test_tsk_need_resched(curr))
  2445. return;
  2446. /* Idle tasks are by definition preempted by non-idle tasks. */
  2447. if (unlikely(curr->policy == SCHED_IDLE) &&
  2448. likely(p->policy != SCHED_IDLE))
  2449. goto preempt;
  2450. /*
  2451. * Batch and idle tasks do not preempt non-idle tasks (their preemption
  2452. * is driven by the tick):
  2453. */
  2454. if (unlikely(p->policy != SCHED_NORMAL))
  2455. return;
  2456. find_matching_se(&se, &pse);
  2457. update_curr(cfs_rq_of(se));
  2458. BUG_ON(!pse);
  2459. if (wakeup_preempt_entity(se, pse) == 1) {
  2460. /*
  2461. * Bias pick_next to pick the sched entity that is
  2462. * triggering this preemption.
  2463. */
  2464. if (!next_buddy_marked)
  2465. set_next_buddy(pse);
  2466. goto preempt;
  2467. }
  2468. return;
  2469. preempt:
  2470. resched_task(curr);
  2471. /*
  2472. * Only set the backward buddy when the current task is still
  2473. * on the rq. This can happen when a wakeup gets interleaved
  2474. * with schedule on the ->pre_schedule() or idle_balance()
  2475. * point, either of which can * drop the rq lock.
  2476. *
  2477. * Also, during early boot the idle thread is in the fair class,
  2478. * for obvious reasons its a bad idea to schedule back to it.
  2479. */
  2480. if (unlikely(!se->on_rq || curr == rq->idle))
  2481. return;
  2482. if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
  2483. set_last_buddy(se);
  2484. }
  2485. static struct task_struct *pick_next_task_fair(struct rq *rq)
  2486. {
  2487. struct task_struct *p;
  2488. struct cfs_rq *cfs_rq = &rq->cfs;
  2489. struct sched_entity *se;
  2490. if (!cfs_rq->nr_running)
  2491. return NULL;
  2492. do {
  2493. se = pick_next_entity(cfs_rq);
  2494. set_next_entity(cfs_rq, se);
  2495. cfs_rq = group_cfs_rq(se);
  2496. } while (cfs_rq);
  2497. p = task_of(se);
  2498. if (hrtick_enabled(rq))
  2499. hrtick_start_fair(rq, p);
  2500. return p;
  2501. }
  2502. /*
  2503. * Account for a descheduled task:
  2504. */
  2505. static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
  2506. {
  2507. struct sched_entity *se = &prev->se;
  2508. struct cfs_rq *cfs_rq;
  2509. for_each_sched_entity(se) {
  2510. cfs_rq = cfs_rq_of(se);
  2511. put_prev_entity(cfs_rq, se);
  2512. }
  2513. }
  2514. /*
  2515. * sched_yield() is very simple
  2516. *
  2517. * The magic of dealing with the ->skip buddy is in pick_next_entity.
  2518. */
  2519. static void yield_task_fair(struct rq *rq)
  2520. {
  2521. struct task_struct *curr = rq->curr;
  2522. struct cfs_rq *cfs_rq = task_cfs_rq(curr);
  2523. struct sched_entity *se = &curr->se;
  2524. /*
  2525. * Are we the only task in the tree?
  2526. */
  2527. if (unlikely(rq->nr_running == 1))
  2528. return;
  2529. clear_buddies(cfs_rq, se);
  2530. if (curr->policy != SCHED_BATCH) {
  2531. update_rq_clock(rq);
  2532. /*
  2533. * Update run-time statistics of the 'current'.
  2534. */
  2535. update_curr(cfs_rq);
  2536. /*
  2537. * Tell update_rq_clock() that we've just updated,
  2538. * so we don't do microscopic update in schedule()
  2539. * and double the fastpath cost.
  2540. */
  2541. rq->skip_clock_update = 1;
  2542. }
  2543. set_skip_buddy(se);
  2544. }
  2545. static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
  2546. {
  2547. struct sched_entity *se = &p->se;
  2548. /* throttled hierarchies are not runnable */
  2549. if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
  2550. return false;
  2551. /* Tell the scheduler that we'd really like pse to run next. */
  2552. set_next_buddy(se);
  2553. yield_task_fair(rq);
  2554. return true;
  2555. }
  2556. #ifdef CONFIG_SMP
  2557. /**************************************************
  2558. * Fair scheduling class load-balancing methods:
  2559. */
  2560. static unsigned long __read_mostly max_load_balance_interval = HZ/10;
  2561. /*
  2562. * pull_task - move a task from a remote runqueue to the local runqueue.
  2563. * Both runqueues must be locked.
  2564. */
  2565. static void pull_task(struct rq *src_rq, struct task_struct *p,
  2566. struct rq *this_rq, int this_cpu)
  2567. {
  2568. deactivate_task(src_rq, p, 0);
  2569. set_task_cpu(p, this_cpu);
  2570. activate_task(this_rq, p, 0);
  2571. check_preempt_curr(this_rq, p, 0);
  2572. }
  2573. /*
  2574. * Is this task likely cache-hot:
  2575. */
  2576. static int
  2577. task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
  2578. {
  2579. s64 delta;
  2580. if (p->sched_class != &fair_sched_class)
  2581. return 0;
  2582. if (unlikely(p->policy == SCHED_IDLE))
  2583. return 0;
  2584. /*
  2585. * Buddy candidates are cache hot:
  2586. */
  2587. if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
  2588. (&p->se == cfs_rq_of(&p->se)->next ||
  2589. &p->se == cfs_rq_of(&p->se)->last))
  2590. return 1;
  2591. if (sysctl_sched_migration_cost == -1)
  2592. return 1;
  2593. if (sysctl_sched_migration_cost == 0)
  2594. return 0;
  2595. delta = now - p->se.exec_start;
  2596. return delta < (s64)sysctl_sched_migration_cost;
  2597. }
  2598. #define LBF_ALL_PINNED 0x01
  2599. #define LBF_NEED_BREAK 0x02 /* clears into HAD_BREAK */
  2600. #define LBF_HAD_BREAK 0x04
  2601. #define LBF_HAD_BREAKS 0x0C /* count HAD_BREAKs overflows into ABORT */
  2602. #define LBF_ABORT 0x10
  2603. /*
  2604. * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
  2605. */
  2606. static
  2607. int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
  2608. struct sched_domain *sd, enum cpu_idle_type idle,
  2609. int *lb_flags)
  2610. {
  2611. int tsk_cache_hot = 0;
  2612. /*
  2613. * We do not migrate tasks that are:
  2614. * 1) running (obviously), or
  2615. * 2) cannot be migrated to this CPU due to cpus_allowed, or
  2616. * 3) are cache-hot on their current CPU.
  2617. */
  2618. if (!cpumask_test_cpu(this_cpu, tsk_cpus_allowed(p))) {
  2619. schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
  2620. return 0;
  2621. }
  2622. *lb_flags &= ~LBF_ALL_PINNED;
  2623. if (task_running(rq, p)) {
  2624. schedstat_inc(p, se.statistics.nr_failed_migrations_running);
  2625. return 0;
  2626. }
  2627. /*
  2628. * Aggressive migration if:
  2629. * 1) task is cache cold, or
  2630. * 2) too many balance attempts have failed.
  2631. */
  2632. tsk_cache_hot = task_hot(p, rq->clock_task, sd);
  2633. if (!tsk_cache_hot ||
  2634. sd->nr_balance_failed > sd->cache_nice_tries) {
  2635. #ifdef CONFIG_SCHEDSTATS
  2636. if (tsk_cache_hot) {
  2637. schedstat_inc(sd, lb_hot_gained[idle]);
  2638. schedstat_inc(p, se.statistics.nr_forced_migrations);
  2639. }
  2640. #endif
  2641. return 1;
  2642. }
  2643. if (tsk_cache_hot) {
  2644. schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
  2645. return 0;
  2646. }
  2647. return 1;
  2648. }
  2649. /*
  2650. * move_one_task tries to move exactly one task from busiest to this_rq, as
  2651. * part of active balancing operations within "domain".
  2652. * Returns 1 if successful and 0 otherwise.
  2653. *
  2654. * Called with both runqueues locked.
  2655. */
  2656. static int
  2657. move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2658. struct sched_domain *sd, enum cpu_idle_type idle)
  2659. {
  2660. struct task_struct *p, *n;
  2661. struct cfs_rq *cfs_rq;
  2662. int pinned = 0;
  2663. for_each_leaf_cfs_rq(busiest, cfs_rq) {
  2664. list_for_each_entry_safe(p, n, &cfs_rq->tasks, se.group_node) {
  2665. if (throttled_lb_pair(task_group(p),
  2666. busiest->cpu, this_cpu))
  2667. break;
  2668. if (!can_migrate_task(p, busiest, this_cpu,
  2669. sd, idle, &pinned))
  2670. continue;
  2671. pull_task(busiest, p, this_rq, this_cpu);
  2672. /*
  2673. * Right now, this is only the second place pull_task()
  2674. * is called, so we can safely collect pull_task()
  2675. * stats here rather than inside pull_task().
  2676. */
  2677. schedstat_inc(sd, lb_gained[idle]);
  2678. return 1;
  2679. }
  2680. }
  2681. return 0;
  2682. }
  2683. static unsigned long
  2684. balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2685. unsigned long max_load_move, struct sched_domain *sd,
  2686. enum cpu_idle_type idle, int *lb_flags,
  2687. struct cfs_rq *busiest_cfs_rq)
  2688. {
  2689. int loops = 0, pulled = 0;
  2690. long rem_load_move = max_load_move;
  2691. struct task_struct *p, *n;
  2692. if (max_load_move == 0)
  2693. goto out;
  2694. list_for_each_entry_safe(p, n, &busiest_cfs_rq->tasks, se.group_node) {
  2695. if (loops++ > sysctl_sched_nr_migrate) {
  2696. *lb_flags |= LBF_NEED_BREAK;
  2697. break;
  2698. }
  2699. if ((p->se.load.weight >> 1) > rem_load_move ||
  2700. !can_migrate_task(p, busiest, this_cpu, sd, idle,
  2701. lb_flags))
  2702. continue;
  2703. pull_task(busiest, p, this_rq, this_cpu);
  2704. pulled++;
  2705. rem_load_move -= p->se.load.weight;
  2706. #ifdef CONFIG_PREEMPT
  2707. /*
  2708. * NEWIDLE balancing is a source of latency, so preemptible
  2709. * kernels will stop after the first task is pulled to minimize
  2710. * the critical section.
  2711. */
  2712. if (idle == CPU_NEWLY_IDLE) {
  2713. *lb_flags |= LBF_ABORT;
  2714. break;
  2715. }
  2716. #endif
  2717. /*
  2718. * We only want to steal up to the prescribed amount of
  2719. * weighted load.
  2720. */
  2721. if (rem_load_move <= 0)
  2722. break;
  2723. }
  2724. out:
  2725. /*
  2726. * Right now, this is one of only two places pull_task() is called,
  2727. * so we can safely collect pull_task() stats here rather than
  2728. * inside pull_task().
  2729. */
  2730. schedstat_add(sd, lb_gained[idle], pulled);
  2731. return max_load_move - rem_load_move;
  2732. }
  2733. #ifdef CONFIG_FAIR_GROUP_SCHED
  2734. /*
  2735. * update tg->load_weight by folding this cpu's load_avg
  2736. */
  2737. static int update_shares_cpu(struct task_group *tg, int cpu)
  2738. {
  2739. struct cfs_rq *cfs_rq;
  2740. unsigned long flags;
  2741. struct rq *rq;
  2742. if (!tg->se[cpu])
  2743. return 0;
  2744. rq = cpu_rq(cpu);
  2745. cfs_rq = tg->cfs_rq[cpu];
  2746. raw_spin_lock_irqsave(&rq->lock, flags);
  2747. update_rq_clock(rq);
  2748. update_cfs_load(cfs_rq, 1);
  2749. /*
  2750. * We need to update shares after updating tg->load_weight in
  2751. * order to adjust the weight of groups with long running tasks.
  2752. */
  2753. update_cfs_shares(cfs_rq);
  2754. raw_spin_unlock_irqrestore(&rq->lock, flags);
  2755. return 0;
  2756. }
  2757. static void update_shares(int cpu)
  2758. {
  2759. struct cfs_rq *cfs_rq;
  2760. struct rq *rq = cpu_rq(cpu);
  2761. rcu_read_lock();
  2762. /*
  2763. * Iterates the task_group tree in a bottom up fashion, see
  2764. * list_add_leaf_cfs_rq() for details.
  2765. */
  2766. for_each_leaf_cfs_rq(rq, cfs_rq) {
  2767. /* throttled entities do not contribute to load */
  2768. if (throttled_hierarchy(cfs_rq))
  2769. continue;
  2770. update_shares_cpu(cfs_rq->tg, cpu);
  2771. }
  2772. rcu_read_unlock();
  2773. }
  2774. /*
  2775. * Compute the cpu's hierarchical load factor for each task group.
  2776. * This needs to be done in a top-down fashion because the load of a child
  2777. * group is a fraction of its parents load.
  2778. */
  2779. static int tg_load_down(struct task_group *tg, void *data)
  2780. {
  2781. unsigned long load;
  2782. long cpu = (long)data;
  2783. if (!tg->parent) {
  2784. load = cpu_rq(cpu)->load.weight;
  2785. } else {
  2786. load = tg->parent->cfs_rq[cpu]->h_load;
  2787. load *= tg->se[cpu]->load.weight;
  2788. load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
  2789. }
  2790. tg->cfs_rq[cpu]->h_load = load;
  2791. return 0;
  2792. }
  2793. static void update_h_load(long cpu)
  2794. {
  2795. walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
  2796. }
  2797. static unsigned long
  2798. load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2799. unsigned long max_load_move,
  2800. struct sched_domain *sd, enum cpu_idle_type idle,
  2801. int *lb_flags)
  2802. {
  2803. long rem_load_move = max_load_move;
  2804. struct cfs_rq *busiest_cfs_rq;
  2805. rcu_read_lock();
  2806. update_h_load(cpu_of(busiest));
  2807. for_each_leaf_cfs_rq(busiest, busiest_cfs_rq) {
  2808. unsigned long busiest_h_load = busiest_cfs_rq->h_load;
  2809. unsigned long busiest_weight = busiest_cfs_rq->load.weight;
  2810. u64 rem_load, moved_load;
  2811. if (*lb_flags & (LBF_NEED_BREAK|LBF_ABORT))
  2812. break;
  2813. /*
  2814. * empty group or part of a throttled hierarchy
  2815. */
  2816. if (!busiest_cfs_rq->task_weight ||
  2817. throttled_lb_pair(busiest_cfs_rq->tg, cpu_of(busiest), this_cpu))
  2818. continue;
  2819. rem_load = (u64)rem_load_move * busiest_weight;
  2820. rem_load = div_u64(rem_load, busiest_h_load + 1);
  2821. moved_load = balance_tasks(this_rq, this_cpu, busiest,
  2822. rem_load, sd, idle, lb_flags,
  2823. busiest_cfs_rq);
  2824. if (!moved_load)
  2825. continue;
  2826. moved_load *= busiest_h_load;
  2827. moved_load = div_u64(moved_load, busiest_weight + 1);
  2828. rem_load_move -= moved_load;
  2829. if (rem_load_move < 0)
  2830. break;
  2831. }
  2832. rcu_read_unlock();
  2833. return max_load_move - rem_load_move;
  2834. }
  2835. #else
  2836. static inline void update_shares(int cpu)
  2837. {
  2838. }
  2839. static unsigned long
  2840. load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2841. unsigned long max_load_move,
  2842. struct sched_domain *sd, enum cpu_idle_type idle,
  2843. int *lb_flags)
  2844. {
  2845. return balance_tasks(this_rq, this_cpu, busiest,
  2846. max_load_move, sd, idle, lb_flags,
  2847. &busiest->cfs);
  2848. }
  2849. #endif
  2850. /*
  2851. * move_tasks tries to move up to max_load_move weighted load from busiest to
  2852. * this_rq, as part of a balancing operation within domain "sd".
  2853. * Returns 1 if successful and 0 otherwise.
  2854. *
  2855. * Called with both runqueues locked.
  2856. */
  2857. static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2858. unsigned long max_load_move,
  2859. struct sched_domain *sd, enum cpu_idle_type idle,
  2860. int *lb_flags)
  2861. {
  2862. unsigned long total_load_moved = 0, load_moved;
  2863. do {
  2864. load_moved = load_balance_fair(this_rq, this_cpu, busiest,
  2865. max_load_move - total_load_moved,
  2866. sd, idle, lb_flags);
  2867. total_load_moved += load_moved;
  2868. if (*lb_flags & (LBF_NEED_BREAK|LBF_ABORT))
  2869. break;
  2870. #ifdef CONFIG_PREEMPT
  2871. /*
  2872. * NEWIDLE balancing is a source of latency, so preemptible
  2873. * kernels will stop after the first task is pulled to minimize
  2874. * the critical section.
  2875. */
  2876. if (idle == CPU_NEWLY_IDLE && this_rq->nr_running) {
  2877. *lb_flags |= LBF_ABORT;
  2878. break;
  2879. }
  2880. #endif
  2881. } while (load_moved && max_load_move > total_load_moved);
  2882. return total_load_moved > 0;
  2883. }
  2884. /********** Helpers for find_busiest_group ************************/
  2885. /*
  2886. * sd_lb_stats - Structure to store the statistics of a sched_domain
  2887. * during load balancing.
  2888. */
  2889. struct sd_lb_stats {
  2890. struct sched_group *busiest; /* Busiest group in this sd */
  2891. struct sched_group *this; /* Local group in this sd */
  2892. unsigned long total_load; /* Total load of all groups in sd */
  2893. unsigned long total_pwr; /* Total power of all groups in sd */
  2894. unsigned long avg_load; /* Average load across all groups in sd */
  2895. /** Statistics of this group */
  2896. unsigned long this_load;
  2897. unsigned long this_load_per_task;
  2898. unsigned long this_nr_running;
  2899. unsigned long this_has_capacity;
  2900. unsigned int this_idle_cpus;
  2901. /* Statistics of the busiest group */
  2902. unsigned int busiest_idle_cpus;
  2903. unsigned long max_load;
  2904. unsigned long busiest_load_per_task;
  2905. unsigned long busiest_nr_running;
  2906. unsigned long busiest_group_capacity;
  2907. unsigned long busiest_has_capacity;
  2908. unsigned int busiest_group_weight;
  2909. int group_imb; /* Is there imbalance in this sd */
  2910. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2911. int power_savings_balance; /* Is powersave balance needed for this sd */
  2912. struct sched_group *group_min; /* Least loaded group in sd */
  2913. struct sched_group *group_leader; /* Group which relieves group_min */
  2914. unsigned long min_load_per_task; /* load_per_task in group_min */
  2915. unsigned long leader_nr_running; /* Nr running of group_leader */
  2916. unsigned long min_nr_running; /* Nr running of group_min */
  2917. #endif
  2918. };
  2919. /*
  2920. * sg_lb_stats - stats of a sched_group required for load_balancing
  2921. */
  2922. struct sg_lb_stats {
  2923. unsigned long avg_load; /*Avg load across the CPUs of the group */
  2924. unsigned long group_load; /* Total load over the CPUs of the group */
  2925. unsigned long sum_nr_running; /* Nr tasks running in the group */
  2926. unsigned long sum_weighted_load; /* Weighted load of group's tasks */
  2927. unsigned long group_capacity;
  2928. unsigned long idle_cpus;
  2929. unsigned long group_weight;
  2930. int group_imb; /* Is there an imbalance in the group ? */
  2931. int group_has_capacity; /* Is there extra capacity in the group? */
  2932. };
  2933. /**
  2934. * get_sd_load_idx - Obtain the load index for a given sched domain.
  2935. * @sd: The sched_domain whose load_idx is to be obtained.
  2936. * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
  2937. */
  2938. static inline int get_sd_load_idx(struct sched_domain *sd,
  2939. enum cpu_idle_type idle)
  2940. {
  2941. int load_idx;
  2942. switch (idle) {
  2943. case CPU_NOT_IDLE:
  2944. load_idx = sd->busy_idx;
  2945. break;
  2946. case CPU_NEWLY_IDLE:
  2947. load_idx = sd->newidle_idx;
  2948. break;
  2949. default:
  2950. load_idx = sd->idle_idx;
  2951. break;
  2952. }
  2953. return load_idx;
  2954. }
  2955. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2956. /**
  2957. * init_sd_power_savings_stats - Initialize power savings statistics for
  2958. * the given sched_domain, during load balancing.
  2959. *
  2960. * @sd: Sched domain whose power-savings statistics are to be initialized.
  2961. * @sds: Variable containing the statistics for sd.
  2962. * @idle: Idle status of the CPU at which we're performing load-balancing.
  2963. */
  2964. static inline void init_sd_power_savings_stats(struct sched_domain *sd,
  2965. struct sd_lb_stats *sds, enum cpu_idle_type idle)
  2966. {
  2967. /*
  2968. * Busy processors will not participate in power savings
  2969. * balance.
  2970. */
  2971. if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
  2972. sds->power_savings_balance = 0;
  2973. else {
  2974. sds->power_savings_balance = 1;
  2975. sds->min_nr_running = ULONG_MAX;
  2976. sds->leader_nr_running = 0;
  2977. }
  2978. }
  2979. /**
  2980. * update_sd_power_savings_stats - Update the power saving stats for a
  2981. * sched_domain while performing load balancing.
  2982. *
  2983. * @group: sched_group belonging to the sched_domain under consideration.
  2984. * @sds: Variable containing the statistics of the sched_domain
  2985. * @local_group: Does group contain the CPU for which we're performing
  2986. * load balancing ?
  2987. * @sgs: Variable containing the statistics of the group.
  2988. */
  2989. static inline void update_sd_power_savings_stats(struct sched_group *group,
  2990. struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
  2991. {
  2992. if (!sds->power_savings_balance)
  2993. return;
  2994. /*
  2995. * If the local group is idle or completely loaded
  2996. * no need to do power savings balance at this domain
  2997. */
  2998. if (local_group && (sds->this_nr_running >= sgs->group_capacity ||
  2999. !sds->this_nr_running))
  3000. sds->power_savings_balance = 0;
  3001. /*
  3002. * If a group is already running at full capacity or idle,
  3003. * don't include that group in power savings calculations
  3004. */
  3005. if (!sds->power_savings_balance ||
  3006. sgs->sum_nr_running >= sgs->group_capacity ||
  3007. !sgs->sum_nr_running)
  3008. return;
  3009. /*
  3010. * Calculate the group which has the least non-idle load.
  3011. * This is the group from where we need to pick up the load
  3012. * for saving power
  3013. */
  3014. if ((sgs->sum_nr_running < sds->min_nr_running) ||
  3015. (sgs->sum_nr_running == sds->min_nr_running &&
  3016. group_first_cpu(group) > group_first_cpu(sds->group_min))) {
  3017. sds->group_min = group;
  3018. sds->min_nr_running = sgs->sum_nr_running;
  3019. sds->min_load_per_task = sgs->sum_weighted_load /
  3020. sgs->sum_nr_running;
  3021. }
  3022. /*
  3023. * Calculate the group which is almost near its
  3024. * capacity but still has some space to pick up some load
  3025. * from other group and save more power
  3026. */
  3027. if (sgs->sum_nr_running + 1 > sgs->group_capacity)
  3028. return;
  3029. if (sgs->sum_nr_running > sds->leader_nr_running ||
  3030. (sgs->sum_nr_running == sds->leader_nr_running &&
  3031. group_first_cpu(group) < group_first_cpu(sds->group_leader))) {
  3032. sds->group_leader = group;
  3033. sds->leader_nr_running = sgs->sum_nr_running;
  3034. }
  3035. }
  3036. /**
  3037. * check_power_save_busiest_group - see if there is potential for some power-savings balance
  3038. * @sds: Variable containing the statistics of the sched_domain
  3039. * under consideration.
  3040. * @this_cpu: Cpu at which we're currently performing load-balancing.
  3041. * @imbalance: Variable to store the imbalance.
  3042. *
  3043. * Description:
  3044. * Check if we have potential to perform some power-savings balance.
  3045. * If yes, set the busiest group to be the least loaded group in the
  3046. * sched_domain, so that it's CPUs can be put to idle.
  3047. *
  3048. * Returns 1 if there is potential to perform power-savings balance.
  3049. * Else returns 0.
  3050. */
  3051. static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
  3052. int this_cpu, unsigned long *imbalance)
  3053. {
  3054. if (!sds->power_savings_balance)
  3055. return 0;
  3056. if (sds->this != sds->group_leader ||
  3057. sds->group_leader == sds->group_min)
  3058. return 0;
  3059. *imbalance = sds->min_load_per_task;
  3060. sds->busiest = sds->group_min;
  3061. return 1;
  3062. }
  3063. #else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
  3064. static inline void init_sd_power_savings_stats(struct sched_domain *sd,
  3065. struct sd_lb_stats *sds, enum cpu_idle_type idle)
  3066. {
  3067. return;
  3068. }
  3069. static inline void update_sd_power_savings_stats(struct sched_group *group,
  3070. struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
  3071. {
  3072. return;
  3073. }
  3074. static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
  3075. int this_cpu, unsigned long *imbalance)
  3076. {
  3077. return 0;
  3078. }
  3079. #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
  3080. unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
  3081. {
  3082. return SCHED_POWER_SCALE;
  3083. }
  3084. unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
  3085. {
  3086. return default_scale_freq_power(sd, cpu);
  3087. }
  3088. unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
  3089. {
  3090. unsigned long weight = sd->span_weight;
  3091. unsigned long smt_gain = sd->smt_gain;
  3092. smt_gain /= weight;
  3093. return smt_gain;
  3094. }
  3095. unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
  3096. {
  3097. return default_scale_smt_power(sd, cpu);
  3098. }
  3099. unsigned long scale_rt_power(int cpu)
  3100. {
  3101. struct rq *rq = cpu_rq(cpu);
  3102. u64 total, available;
  3103. total = sched_avg_period() + (rq->clock - rq->age_stamp);
  3104. if (unlikely(total < rq->rt_avg)) {
  3105. /* Ensures that power won't end up being negative */
  3106. available = 0;
  3107. } else {
  3108. available = total - rq->rt_avg;
  3109. }
  3110. if (unlikely((s64)total < SCHED_POWER_SCALE))
  3111. total = SCHED_POWER_SCALE;
  3112. total >>= SCHED_POWER_SHIFT;
  3113. return div_u64(available, total);
  3114. }
  3115. static void update_cpu_power(struct sched_domain *sd, int cpu)
  3116. {
  3117. unsigned long weight = sd->span_weight;
  3118. unsigned long power = SCHED_POWER_SCALE;
  3119. struct sched_group *sdg = sd->groups;
  3120. if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
  3121. if (sched_feat(ARCH_POWER))
  3122. power *= arch_scale_smt_power(sd, cpu);
  3123. else
  3124. power *= default_scale_smt_power(sd, cpu);
  3125. power >>= SCHED_POWER_SHIFT;
  3126. }
  3127. sdg->sgp->power_orig = power;
  3128. if (sched_feat(ARCH_POWER))
  3129. power *= arch_scale_freq_power(sd, cpu);
  3130. else
  3131. power *= default_scale_freq_power(sd, cpu);
  3132. power >>= SCHED_POWER_SHIFT;
  3133. power *= scale_rt_power(cpu);
  3134. power >>= SCHED_POWER_SHIFT;
  3135. if (!power)
  3136. power = 1;
  3137. cpu_rq(cpu)->cpu_power = power;
  3138. sdg->sgp->power = power;
  3139. }
  3140. void update_group_power(struct sched_domain *sd, int cpu)
  3141. {
  3142. struct sched_domain *child = sd->child;
  3143. struct sched_group *group, *sdg = sd->groups;
  3144. unsigned long power;
  3145. unsigned long interval;
  3146. interval = msecs_to_jiffies(sd->balance_interval);
  3147. interval = clamp(interval, 1UL, max_load_balance_interval);
  3148. sdg->sgp->next_update = jiffies + interval;
  3149. if (!child) {
  3150. update_cpu_power(sd, cpu);
  3151. return;
  3152. }
  3153. power = 0;
  3154. group = child->groups;
  3155. do {
  3156. power += group->sgp->power;
  3157. group = group->next;
  3158. } while (group != child->groups);
  3159. sdg->sgp->power = power;
  3160. }
  3161. /*
  3162. * Try and fix up capacity for tiny siblings, this is needed when
  3163. * things like SD_ASYM_PACKING need f_b_g to select another sibling
  3164. * which on its own isn't powerful enough.
  3165. *
  3166. * See update_sd_pick_busiest() and check_asym_packing().
  3167. */
  3168. static inline int
  3169. fix_small_capacity(struct sched_domain *sd, struct sched_group *group)
  3170. {
  3171. /*
  3172. * Only siblings can have significantly less than SCHED_POWER_SCALE
  3173. */
  3174. if (!(sd->flags & SD_SHARE_CPUPOWER))
  3175. return 0;
  3176. /*
  3177. * If ~90% of the cpu_power is still there, we're good.
  3178. */
  3179. if (group->sgp->power * 32 > group->sgp->power_orig * 29)
  3180. return 1;
  3181. return 0;
  3182. }
  3183. /**
  3184. * update_sg_lb_stats - Update sched_group's statistics for load balancing.
  3185. * @sd: The sched_domain whose statistics are to be updated.
  3186. * @group: sched_group whose statistics are to be updated.
  3187. * @this_cpu: Cpu for which load balance is currently performed.
  3188. * @idle: Idle status of this_cpu
  3189. * @load_idx: Load index of sched_domain of this_cpu for load calc.
  3190. * @local_group: Does group contain this_cpu.
  3191. * @cpus: Set of cpus considered for load balancing.
  3192. * @balance: Should we balance.
  3193. * @sgs: variable to hold the statistics for this group.
  3194. */
  3195. static inline void update_sg_lb_stats(struct sched_domain *sd,
  3196. struct sched_group *group, int this_cpu,
  3197. enum cpu_idle_type idle, int load_idx,
  3198. int local_group, const struct cpumask *cpus,
  3199. int *balance, struct sg_lb_stats *sgs)
  3200. {
  3201. unsigned long load, max_cpu_load, min_cpu_load, max_nr_running;
  3202. int i;
  3203. unsigned int balance_cpu = -1, first_idle_cpu = 0;
  3204. unsigned long avg_load_per_task = 0;
  3205. if (local_group)
  3206. balance_cpu = group_first_cpu(group);
  3207. /* Tally up the load of all CPUs in the group */
  3208. max_cpu_load = 0;
  3209. min_cpu_load = ~0UL;
  3210. max_nr_running = 0;
  3211. for_each_cpu_and(i, sched_group_cpus(group), cpus) {
  3212. struct rq *rq = cpu_rq(i);
  3213. /* Bias balancing toward cpus of our domain */
  3214. if (local_group) {
  3215. if (idle_cpu(i) && !first_idle_cpu) {
  3216. first_idle_cpu = 1;
  3217. balance_cpu = i;
  3218. }
  3219. load = target_load(i, load_idx);
  3220. } else {
  3221. load = source_load(i, load_idx);
  3222. if (load > max_cpu_load) {
  3223. max_cpu_load = load;
  3224. max_nr_running = rq->nr_running;
  3225. }
  3226. if (min_cpu_load > load)
  3227. min_cpu_load = load;
  3228. }
  3229. sgs->group_load += load;
  3230. sgs->sum_nr_running += rq->nr_running;
  3231. sgs->sum_weighted_load += weighted_cpuload(i);
  3232. if (idle_cpu(i))
  3233. sgs->idle_cpus++;
  3234. }
  3235. /*
  3236. * First idle cpu or the first cpu(busiest) in this sched group
  3237. * is eligible for doing load balancing at this and above
  3238. * domains. In the newly idle case, we will allow all the cpu's
  3239. * to do the newly idle load balance.
  3240. */
  3241. if (local_group) {
  3242. if (idle != CPU_NEWLY_IDLE) {
  3243. if (balance_cpu != this_cpu) {
  3244. *balance = 0;
  3245. return;
  3246. }
  3247. update_group_power(sd, this_cpu);
  3248. } else if (time_after_eq(jiffies, group->sgp->next_update))
  3249. update_group_power(sd, this_cpu);
  3250. }
  3251. /* Adjust by relative CPU power of the group */
  3252. sgs->avg_load = (sgs->group_load*SCHED_POWER_SCALE) / group->sgp->power;
  3253. /*
  3254. * Consider the group unbalanced when the imbalance is larger
  3255. * than the average weight of a task.
  3256. *
  3257. * APZ: with cgroup the avg task weight can vary wildly and
  3258. * might not be a suitable number - should we keep a
  3259. * normalized nr_running number somewhere that negates
  3260. * the hierarchy?
  3261. */
  3262. if (sgs->sum_nr_running)
  3263. avg_load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
  3264. if ((max_cpu_load - min_cpu_load) >= avg_load_per_task && max_nr_running > 1)
  3265. sgs->group_imb = 1;
  3266. sgs->group_capacity = DIV_ROUND_CLOSEST(group->sgp->power,
  3267. SCHED_POWER_SCALE);
  3268. if (!sgs->group_capacity)
  3269. sgs->group_capacity = fix_small_capacity(sd, group);
  3270. sgs->group_weight = group->group_weight;
  3271. if (sgs->group_capacity > sgs->sum_nr_running)
  3272. sgs->group_has_capacity = 1;
  3273. }
  3274. /**
  3275. * update_sd_pick_busiest - return 1 on busiest group
  3276. * @sd: sched_domain whose statistics are to be checked
  3277. * @sds: sched_domain statistics
  3278. * @sg: sched_group candidate to be checked for being the busiest
  3279. * @sgs: sched_group statistics
  3280. * @this_cpu: the current cpu
  3281. *
  3282. * Determine if @sg is a busier group than the previously selected
  3283. * busiest group.
  3284. */
  3285. static bool update_sd_pick_busiest(struct sched_domain *sd,
  3286. struct sd_lb_stats *sds,
  3287. struct sched_group *sg,
  3288. struct sg_lb_stats *sgs,
  3289. int this_cpu)
  3290. {
  3291. if (sgs->avg_load <= sds->max_load)
  3292. return false;
  3293. if (sgs->sum_nr_running > sgs->group_capacity)
  3294. return true;
  3295. if (sgs->group_imb)
  3296. return true;
  3297. /*
  3298. * ASYM_PACKING needs to move all the work to the lowest
  3299. * numbered CPUs in the group, therefore mark all groups
  3300. * higher than ourself as busy.
  3301. */
  3302. if ((sd->flags & SD_ASYM_PACKING) && sgs->sum_nr_running &&
  3303. this_cpu < group_first_cpu(sg)) {
  3304. if (!sds->busiest)
  3305. return true;
  3306. if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
  3307. return true;
  3308. }
  3309. return false;
  3310. }
  3311. /**
  3312. * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
  3313. * @sd: sched_domain whose statistics are to be updated.
  3314. * @this_cpu: Cpu for which load balance is currently performed.
  3315. * @idle: Idle status of this_cpu
  3316. * @cpus: Set of cpus considered for load balancing.
  3317. * @balance: Should we balance.
  3318. * @sds: variable to hold the statistics for this sched_domain.
  3319. */
  3320. static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
  3321. enum cpu_idle_type idle, const struct cpumask *cpus,
  3322. int *balance, struct sd_lb_stats *sds)
  3323. {
  3324. struct sched_domain *child = sd->child;
  3325. struct sched_group *sg = sd->groups;
  3326. struct sg_lb_stats sgs;
  3327. int load_idx, prefer_sibling = 0;
  3328. if (child && child->flags & SD_PREFER_SIBLING)
  3329. prefer_sibling = 1;
  3330. init_sd_power_savings_stats(sd, sds, idle);
  3331. load_idx = get_sd_load_idx(sd, idle);
  3332. do {
  3333. int local_group;
  3334. local_group = cpumask_test_cpu(this_cpu, sched_group_cpus(sg));
  3335. memset(&sgs, 0, sizeof(sgs));
  3336. update_sg_lb_stats(sd, sg, this_cpu, idle, load_idx,
  3337. local_group, cpus, balance, &sgs);
  3338. if (local_group && !(*balance))
  3339. return;
  3340. sds->total_load += sgs.group_load;
  3341. sds->total_pwr += sg->sgp->power;
  3342. /*
  3343. * In case the child domain prefers tasks go to siblings
  3344. * first, lower the sg capacity to one so that we'll try
  3345. * and move all the excess tasks away. We lower the capacity
  3346. * of a group only if the local group has the capacity to fit
  3347. * these excess tasks, i.e. nr_running < group_capacity. The
  3348. * extra check prevents the case where you always pull from the
  3349. * heaviest group when it is already under-utilized (possible
  3350. * with a large weight task outweighs the tasks on the system).
  3351. */
  3352. if (prefer_sibling && !local_group && sds->this_has_capacity)
  3353. sgs.group_capacity = min(sgs.group_capacity, 1UL);
  3354. if (local_group) {
  3355. sds->this_load = sgs.avg_load;
  3356. sds->this = sg;
  3357. sds->this_nr_running = sgs.sum_nr_running;
  3358. sds->this_load_per_task = sgs.sum_weighted_load;
  3359. sds->this_has_capacity = sgs.group_has_capacity;
  3360. sds->this_idle_cpus = sgs.idle_cpus;
  3361. } else if (update_sd_pick_busiest(sd, sds, sg, &sgs, this_cpu)) {
  3362. sds->max_load = sgs.avg_load;
  3363. sds->busiest = sg;
  3364. sds->busiest_nr_running = sgs.sum_nr_running;
  3365. sds->busiest_idle_cpus = sgs.idle_cpus;
  3366. sds->busiest_group_capacity = sgs.group_capacity;
  3367. sds->busiest_load_per_task = sgs.sum_weighted_load;
  3368. sds->busiest_has_capacity = sgs.group_has_capacity;
  3369. sds->busiest_group_weight = sgs.group_weight;
  3370. sds->group_imb = sgs.group_imb;
  3371. }
  3372. update_sd_power_savings_stats(sg, sds, local_group, &sgs);
  3373. sg = sg->next;
  3374. } while (sg != sd->groups);
  3375. }
  3376. /**
  3377. * check_asym_packing - Check to see if the group is packed into the
  3378. * sched doman.
  3379. *
  3380. * This is primarily intended to used at the sibling level. Some
  3381. * cores like POWER7 prefer to use lower numbered SMT threads. In the
  3382. * case of POWER7, it can move to lower SMT modes only when higher
  3383. * threads are idle. When in lower SMT modes, the threads will
  3384. * perform better since they share less core resources. Hence when we
  3385. * have idle threads, we want them to be the higher ones.
  3386. *
  3387. * This packing function is run on idle threads. It checks to see if
  3388. * the busiest CPU in this domain (core in the P7 case) has a higher
  3389. * CPU number than the packing function is being run on. Here we are
  3390. * assuming lower CPU number will be equivalent to lower a SMT thread
  3391. * number.
  3392. *
  3393. * Returns 1 when packing is required and a task should be moved to
  3394. * this CPU. The amount of the imbalance is returned in *imbalance.
  3395. *
  3396. * @sd: The sched_domain whose packing is to be checked.
  3397. * @sds: Statistics of the sched_domain which is to be packed
  3398. * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
  3399. * @imbalance: returns amount of imbalanced due to packing.
  3400. */
  3401. static int check_asym_packing(struct sched_domain *sd,
  3402. struct sd_lb_stats *sds,
  3403. int this_cpu, unsigned long *imbalance)
  3404. {
  3405. int busiest_cpu;
  3406. if (!(sd->flags & SD_ASYM_PACKING))
  3407. return 0;
  3408. if (!sds->busiest)
  3409. return 0;
  3410. busiest_cpu = group_first_cpu(sds->busiest);
  3411. if (this_cpu > busiest_cpu)
  3412. return 0;
  3413. *imbalance = DIV_ROUND_CLOSEST(sds->max_load * sds->busiest->sgp->power,
  3414. SCHED_POWER_SCALE);
  3415. return 1;
  3416. }
  3417. /**
  3418. * fix_small_imbalance - Calculate the minor imbalance that exists
  3419. * amongst the groups of a sched_domain, during
  3420. * load balancing.
  3421. * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
  3422. * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
  3423. * @imbalance: Variable to store the imbalance.
  3424. */
  3425. static inline void fix_small_imbalance(struct sd_lb_stats *sds,
  3426. int this_cpu, unsigned long *imbalance)
  3427. {
  3428. unsigned long tmp, pwr_now = 0, pwr_move = 0;
  3429. unsigned int imbn = 2;
  3430. unsigned long scaled_busy_load_per_task;
  3431. if (sds->this_nr_running) {
  3432. sds->this_load_per_task /= sds->this_nr_running;
  3433. if (sds->busiest_load_per_task >
  3434. sds->this_load_per_task)
  3435. imbn = 1;
  3436. } else
  3437. sds->this_load_per_task =
  3438. cpu_avg_load_per_task(this_cpu);
  3439. scaled_busy_load_per_task = sds->busiest_load_per_task
  3440. * SCHED_POWER_SCALE;
  3441. scaled_busy_load_per_task /= sds->busiest->sgp->power;
  3442. if (sds->max_load - sds->this_load + scaled_busy_load_per_task >=
  3443. (scaled_busy_load_per_task * imbn)) {
  3444. *imbalance = sds->busiest_load_per_task;
  3445. return;
  3446. }
  3447. /*
  3448. * OK, we don't have enough imbalance to justify moving tasks,
  3449. * however we may be able to increase total CPU power used by
  3450. * moving them.
  3451. */
  3452. pwr_now += sds->busiest->sgp->power *
  3453. min(sds->busiest_load_per_task, sds->max_load);
  3454. pwr_now += sds->this->sgp->power *
  3455. min(sds->this_load_per_task, sds->this_load);
  3456. pwr_now /= SCHED_POWER_SCALE;
  3457. /* Amount of load we'd subtract */
  3458. tmp = (sds->busiest_load_per_task * SCHED_POWER_SCALE) /
  3459. sds->busiest->sgp->power;
  3460. if (sds->max_load > tmp)
  3461. pwr_move += sds->busiest->sgp->power *
  3462. min(sds->busiest_load_per_task, sds->max_load - tmp);
  3463. /* Amount of load we'd add */
  3464. if (sds->max_load * sds->busiest->sgp->power <
  3465. sds->busiest_load_per_task * SCHED_POWER_SCALE)
  3466. tmp = (sds->max_load * sds->busiest->sgp->power) /
  3467. sds->this->sgp->power;
  3468. else
  3469. tmp = (sds->busiest_load_per_task * SCHED_POWER_SCALE) /
  3470. sds->this->sgp->power;
  3471. pwr_move += sds->this->sgp->power *
  3472. min(sds->this_load_per_task, sds->this_load + tmp);
  3473. pwr_move /= SCHED_POWER_SCALE;
  3474. /* Move if we gain throughput */
  3475. if (pwr_move > pwr_now)
  3476. *imbalance = sds->busiest_load_per_task;
  3477. }
  3478. /**
  3479. * calculate_imbalance - Calculate the amount of imbalance present within the
  3480. * groups of a given sched_domain during load balance.
  3481. * @sds: statistics of the sched_domain whose imbalance is to be calculated.
  3482. * @this_cpu: Cpu for which currently load balance is being performed.
  3483. * @imbalance: The variable to store the imbalance.
  3484. */
  3485. static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
  3486. unsigned long *imbalance)
  3487. {
  3488. unsigned long max_pull, load_above_capacity = ~0UL;
  3489. sds->busiest_load_per_task /= sds->busiest_nr_running;
  3490. if (sds->group_imb) {
  3491. sds->busiest_load_per_task =
  3492. min(sds->busiest_load_per_task, sds->avg_load);
  3493. }
  3494. /*
  3495. * In the presence of smp nice balancing, certain scenarios can have
  3496. * max load less than avg load(as we skip the groups at or below
  3497. * its cpu_power, while calculating max_load..)
  3498. */
  3499. if (sds->max_load < sds->avg_load) {
  3500. *imbalance = 0;
  3501. return fix_small_imbalance(sds, this_cpu, imbalance);
  3502. }
  3503. if (!sds->group_imb) {
  3504. /*
  3505. * Don't want to pull so many tasks that a group would go idle.
  3506. */
  3507. load_above_capacity = (sds->busiest_nr_running -
  3508. sds->busiest_group_capacity);
  3509. load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_POWER_SCALE);
  3510. load_above_capacity /= sds->busiest->sgp->power;
  3511. }
  3512. /*
  3513. * We're trying to get all the cpus to the average_load, so we don't
  3514. * want to push ourselves above the average load, nor do we wish to
  3515. * reduce the max loaded cpu below the average load. At the same time,
  3516. * we also don't want to reduce the group load below the group capacity
  3517. * (so that we can implement power-savings policies etc). Thus we look
  3518. * for the minimum possible imbalance.
  3519. * Be careful of negative numbers as they'll appear as very large values
  3520. * with unsigned longs.
  3521. */
  3522. max_pull = min(sds->max_load - sds->avg_load, load_above_capacity);
  3523. /* How much load to actually move to equalise the imbalance */
  3524. *imbalance = min(max_pull * sds->busiest->sgp->power,
  3525. (sds->avg_load - sds->this_load) * sds->this->sgp->power)
  3526. / SCHED_POWER_SCALE;
  3527. /*
  3528. * if *imbalance is less than the average load per runnable task
  3529. * there is no guarantee that any tasks will be moved so we'll have
  3530. * a think about bumping its value to force at least one task to be
  3531. * moved
  3532. */
  3533. if (*imbalance < sds->busiest_load_per_task)
  3534. return fix_small_imbalance(sds, this_cpu, imbalance);
  3535. }
  3536. /******* find_busiest_group() helpers end here *********************/
  3537. /**
  3538. * find_busiest_group - Returns the busiest group within the sched_domain
  3539. * if there is an imbalance. If there isn't an imbalance, and
  3540. * the user has opted for power-savings, it returns a group whose
  3541. * CPUs can be put to idle by rebalancing those tasks elsewhere, if
  3542. * such a group exists.
  3543. *
  3544. * Also calculates the amount of weighted load which should be moved
  3545. * to restore balance.
  3546. *
  3547. * @sd: The sched_domain whose busiest group is to be returned.
  3548. * @this_cpu: The cpu for which load balancing is currently being performed.
  3549. * @imbalance: Variable which stores amount of weighted load which should
  3550. * be moved to restore balance/put a group to idle.
  3551. * @idle: The idle status of this_cpu.
  3552. * @cpus: The set of CPUs under consideration for load-balancing.
  3553. * @balance: Pointer to a variable indicating if this_cpu
  3554. * is the appropriate cpu to perform load balancing at this_level.
  3555. *
  3556. * Returns: - the busiest group if imbalance exists.
  3557. * - If no imbalance and user has opted for power-savings balance,
  3558. * return the least loaded group whose CPUs can be
  3559. * put to idle by rebalancing its tasks onto our group.
  3560. */
  3561. static struct sched_group *
  3562. find_busiest_group(struct sched_domain *sd, int this_cpu,
  3563. unsigned long *imbalance, enum cpu_idle_type idle,
  3564. const struct cpumask *cpus, int *balance)
  3565. {
  3566. struct sd_lb_stats sds;
  3567. memset(&sds, 0, sizeof(sds));
  3568. /*
  3569. * Compute the various statistics relavent for load balancing at
  3570. * this level.
  3571. */
  3572. update_sd_lb_stats(sd, this_cpu, idle, cpus, balance, &sds);
  3573. /*
  3574. * this_cpu is not the appropriate cpu to perform load balancing at
  3575. * this level.
  3576. */
  3577. if (!(*balance))
  3578. goto ret;
  3579. if ((idle == CPU_IDLE || idle == CPU_NEWLY_IDLE) &&
  3580. check_asym_packing(sd, &sds, this_cpu, imbalance))
  3581. return sds.busiest;
  3582. /* There is no busy sibling group to pull tasks from */
  3583. if (!sds.busiest || sds.busiest_nr_running == 0)
  3584. goto out_balanced;
  3585. sds.avg_load = (SCHED_POWER_SCALE * sds.total_load) / sds.total_pwr;
  3586. /*
  3587. * If the busiest group is imbalanced the below checks don't
  3588. * work because they assumes all things are equal, which typically
  3589. * isn't true due to cpus_allowed constraints and the like.
  3590. */
  3591. if (sds.group_imb)
  3592. goto force_balance;
  3593. /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
  3594. if (idle == CPU_NEWLY_IDLE && sds.this_has_capacity &&
  3595. !sds.busiest_has_capacity)
  3596. goto force_balance;
  3597. /*
  3598. * If the local group is more busy than the selected busiest group
  3599. * don't try and pull any tasks.
  3600. */
  3601. if (sds.this_load >= sds.max_load)
  3602. goto out_balanced;
  3603. /*
  3604. * Don't pull any tasks if this group is already above the domain
  3605. * average load.
  3606. */
  3607. if (sds.this_load >= sds.avg_load)
  3608. goto out_balanced;
  3609. if (idle == CPU_IDLE) {
  3610. /*
  3611. * This cpu is idle. If the busiest group load doesn't
  3612. * have more tasks than the number of available cpu's and
  3613. * there is no imbalance between this and busiest group
  3614. * wrt to idle cpu's, it is balanced.
  3615. */
  3616. if ((sds.this_idle_cpus <= sds.busiest_idle_cpus + 1) &&
  3617. sds.busiest_nr_running <= sds.busiest_group_weight)
  3618. goto out_balanced;
  3619. } else {
  3620. /*
  3621. * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
  3622. * imbalance_pct to be conservative.
  3623. */
  3624. if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load)
  3625. goto out_balanced;
  3626. }
  3627. force_balance:
  3628. /* Looks like there is an imbalance. Compute it */
  3629. calculate_imbalance(&sds, this_cpu, imbalance);
  3630. return sds.busiest;
  3631. out_balanced:
  3632. /*
  3633. * There is no obvious imbalance. But check if we can do some balancing
  3634. * to save power.
  3635. */
  3636. if (check_power_save_busiest_group(&sds, this_cpu, imbalance))
  3637. return sds.busiest;
  3638. ret:
  3639. *imbalance = 0;
  3640. return NULL;
  3641. }
  3642. /*
  3643. * find_busiest_queue - find the busiest runqueue among the cpus in group.
  3644. */
  3645. static struct rq *
  3646. find_busiest_queue(struct sched_domain *sd, struct sched_group *group,
  3647. enum cpu_idle_type idle, unsigned long imbalance,
  3648. const struct cpumask *cpus)
  3649. {
  3650. struct rq *busiest = NULL, *rq;
  3651. unsigned long max_load = 0;
  3652. int i;
  3653. for_each_cpu(i, sched_group_cpus(group)) {
  3654. unsigned long power = power_of(i);
  3655. unsigned long capacity = DIV_ROUND_CLOSEST(power,
  3656. SCHED_POWER_SCALE);
  3657. unsigned long wl;
  3658. if (!capacity)
  3659. capacity = fix_small_capacity(sd, group);
  3660. if (!cpumask_test_cpu(i, cpus))
  3661. continue;
  3662. rq = cpu_rq(i);
  3663. wl = weighted_cpuload(i);
  3664. /*
  3665. * When comparing with imbalance, use weighted_cpuload()
  3666. * which is not scaled with the cpu power.
  3667. */
  3668. if (capacity && rq->nr_running == 1 && wl > imbalance)
  3669. continue;
  3670. /*
  3671. * For the load comparisons with the other cpu's, consider
  3672. * the weighted_cpuload() scaled with the cpu power, so that
  3673. * the load can be moved away from the cpu that is potentially
  3674. * running at a lower capacity.
  3675. */
  3676. wl = (wl * SCHED_POWER_SCALE) / power;
  3677. if (wl > max_load) {
  3678. max_load = wl;
  3679. busiest = rq;
  3680. }
  3681. }
  3682. return busiest;
  3683. }
  3684. /*
  3685. * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
  3686. * so long as it is large enough.
  3687. */
  3688. #define MAX_PINNED_INTERVAL 512
  3689. /* Working cpumask for load_balance and load_balance_newidle. */
  3690. DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
  3691. static int need_active_balance(struct sched_domain *sd, int idle,
  3692. int busiest_cpu, int this_cpu)
  3693. {
  3694. if (idle == CPU_NEWLY_IDLE) {
  3695. /*
  3696. * ASYM_PACKING needs to force migrate tasks from busy but
  3697. * higher numbered CPUs in order to pack all tasks in the
  3698. * lowest numbered CPUs.
  3699. */
  3700. if ((sd->flags & SD_ASYM_PACKING) && busiest_cpu > this_cpu)
  3701. return 1;
  3702. /*
  3703. * The only task running in a non-idle cpu can be moved to this
  3704. * cpu in an attempt to completely freeup the other CPU
  3705. * package.
  3706. *
  3707. * The package power saving logic comes from
  3708. * find_busiest_group(). If there are no imbalance, then
  3709. * f_b_g() will return NULL. However when sched_mc={1,2} then
  3710. * f_b_g() will select a group from which a running task may be
  3711. * pulled to this cpu in order to make the other package idle.
  3712. * If there is no opportunity to make a package idle and if
  3713. * there are no imbalance, then f_b_g() will return NULL and no
  3714. * action will be taken in load_balance_newidle().
  3715. *
  3716. * Under normal task pull operation due to imbalance, there
  3717. * will be more than one task in the source run queue and
  3718. * move_tasks() will succeed. ld_moved will be true and this
  3719. * active balance code will not be triggered.
  3720. */
  3721. if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
  3722. return 0;
  3723. }
  3724. return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
  3725. }
  3726. static int active_load_balance_cpu_stop(void *data);
  3727. /*
  3728. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  3729. * tasks if there is an imbalance.
  3730. */
  3731. static int load_balance(int this_cpu, struct rq *this_rq,
  3732. struct sched_domain *sd, enum cpu_idle_type idle,
  3733. int *balance)
  3734. {
  3735. int ld_moved, lb_flags = 0, active_balance = 0;
  3736. struct sched_group *group;
  3737. unsigned long imbalance;
  3738. struct rq *busiest;
  3739. unsigned long flags;
  3740. struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
  3741. cpumask_copy(cpus, cpu_active_mask);
  3742. schedstat_inc(sd, lb_count[idle]);
  3743. redo:
  3744. group = find_busiest_group(sd, this_cpu, &imbalance, idle,
  3745. cpus, balance);
  3746. if (*balance == 0)
  3747. goto out_balanced;
  3748. if (!group) {
  3749. schedstat_inc(sd, lb_nobusyg[idle]);
  3750. goto out_balanced;
  3751. }
  3752. busiest = find_busiest_queue(sd, group, idle, imbalance, cpus);
  3753. if (!busiest) {
  3754. schedstat_inc(sd, lb_nobusyq[idle]);
  3755. goto out_balanced;
  3756. }
  3757. BUG_ON(busiest == this_rq);
  3758. schedstat_add(sd, lb_imbalance[idle], imbalance);
  3759. ld_moved = 0;
  3760. if (busiest->nr_running > 1) {
  3761. /*
  3762. * Attempt to move tasks. If find_busiest_group has found
  3763. * an imbalance but busiest->nr_running <= 1, the group is
  3764. * still unbalanced. ld_moved simply stays zero, so it is
  3765. * correctly treated as an imbalance.
  3766. */
  3767. lb_flags |= LBF_ALL_PINNED;
  3768. local_irq_save(flags);
  3769. double_rq_lock(this_rq, busiest);
  3770. ld_moved = move_tasks(this_rq, this_cpu, busiest,
  3771. imbalance, sd, idle, &lb_flags);
  3772. double_rq_unlock(this_rq, busiest);
  3773. local_irq_restore(flags);
  3774. /*
  3775. * some other cpu did the load balance for us.
  3776. */
  3777. if (ld_moved && this_cpu != smp_processor_id())
  3778. resched_cpu(this_cpu);
  3779. if (lb_flags & LBF_ABORT)
  3780. goto out_balanced;
  3781. if (lb_flags & LBF_NEED_BREAK) {
  3782. lb_flags += LBF_HAD_BREAK - LBF_NEED_BREAK;
  3783. if (lb_flags & LBF_ABORT)
  3784. goto out_balanced;
  3785. goto redo;
  3786. }
  3787. /* All tasks on this runqueue were pinned by CPU affinity */
  3788. if (unlikely(lb_flags & LBF_ALL_PINNED)) {
  3789. cpumask_clear_cpu(cpu_of(busiest), cpus);
  3790. if (!cpumask_empty(cpus))
  3791. goto redo;
  3792. goto out_balanced;
  3793. }
  3794. }
  3795. if (!ld_moved) {
  3796. schedstat_inc(sd, lb_failed[idle]);
  3797. /*
  3798. * Increment the failure counter only on periodic balance.
  3799. * We do not want newidle balance, which can be very
  3800. * frequent, pollute the failure counter causing
  3801. * excessive cache_hot migrations and active balances.
  3802. */
  3803. if (idle != CPU_NEWLY_IDLE)
  3804. sd->nr_balance_failed++;
  3805. if (need_active_balance(sd, idle, cpu_of(busiest), this_cpu)) {
  3806. raw_spin_lock_irqsave(&busiest->lock, flags);
  3807. /* don't kick the active_load_balance_cpu_stop,
  3808. * if the curr task on busiest cpu can't be
  3809. * moved to this_cpu
  3810. */
  3811. if (!cpumask_test_cpu(this_cpu,
  3812. tsk_cpus_allowed(busiest->curr))) {
  3813. raw_spin_unlock_irqrestore(&busiest->lock,
  3814. flags);
  3815. lb_flags |= LBF_ALL_PINNED;
  3816. goto out_one_pinned;
  3817. }
  3818. /*
  3819. * ->active_balance synchronizes accesses to
  3820. * ->active_balance_work. Once set, it's cleared
  3821. * only after active load balance is finished.
  3822. */
  3823. if (!busiest->active_balance) {
  3824. busiest->active_balance = 1;
  3825. busiest->push_cpu = this_cpu;
  3826. active_balance = 1;
  3827. }
  3828. raw_spin_unlock_irqrestore(&busiest->lock, flags);
  3829. if (active_balance)
  3830. stop_one_cpu_nowait(cpu_of(busiest),
  3831. active_load_balance_cpu_stop, busiest,
  3832. &busiest->active_balance_work);
  3833. /*
  3834. * We've kicked active balancing, reset the failure
  3835. * counter.
  3836. */
  3837. sd->nr_balance_failed = sd->cache_nice_tries+1;
  3838. }
  3839. } else
  3840. sd->nr_balance_failed = 0;
  3841. if (likely(!active_balance)) {
  3842. /* We were unbalanced, so reset the balancing interval */
  3843. sd->balance_interval = sd->min_interval;
  3844. } else {
  3845. /*
  3846. * If we've begun active balancing, start to back off. This
  3847. * case may not be covered by the all_pinned logic if there
  3848. * is only 1 task on the busy runqueue (because we don't call
  3849. * move_tasks).
  3850. */
  3851. if (sd->balance_interval < sd->max_interval)
  3852. sd->balance_interval *= 2;
  3853. }
  3854. goto out;
  3855. out_balanced:
  3856. schedstat_inc(sd, lb_balanced[idle]);
  3857. sd->nr_balance_failed = 0;
  3858. out_one_pinned:
  3859. /* tune up the balancing interval */
  3860. if (((lb_flags & LBF_ALL_PINNED) &&
  3861. sd->balance_interval < MAX_PINNED_INTERVAL) ||
  3862. (sd->balance_interval < sd->max_interval))
  3863. sd->balance_interval *= 2;
  3864. ld_moved = 0;
  3865. out:
  3866. return ld_moved;
  3867. }
  3868. /*
  3869. * idle_balance is called by schedule() if this_cpu is about to become
  3870. * idle. Attempts to pull tasks from other CPUs.
  3871. */
  3872. void idle_balance(int this_cpu, struct rq *this_rq)
  3873. {
  3874. struct sched_domain *sd;
  3875. int pulled_task = 0;
  3876. unsigned long next_balance = jiffies + HZ;
  3877. this_rq->idle_stamp = this_rq->clock;
  3878. if (this_rq->avg_idle < sysctl_sched_migration_cost)
  3879. return;
  3880. /*
  3881. * Drop the rq->lock, but keep IRQ/preempt disabled.
  3882. */
  3883. raw_spin_unlock(&this_rq->lock);
  3884. update_shares(this_cpu);
  3885. rcu_read_lock();
  3886. for_each_domain(this_cpu, sd) {
  3887. unsigned long interval;
  3888. int balance = 1;
  3889. if (!(sd->flags & SD_LOAD_BALANCE))
  3890. continue;
  3891. if (sd->flags & SD_BALANCE_NEWIDLE) {
  3892. /* If we've pulled tasks over stop searching: */
  3893. pulled_task = load_balance(this_cpu, this_rq,
  3894. sd, CPU_NEWLY_IDLE, &balance);
  3895. }
  3896. interval = msecs_to_jiffies(sd->balance_interval);
  3897. if (time_after(next_balance, sd->last_balance + interval))
  3898. next_balance = sd->last_balance + interval;
  3899. if (pulled_task) {
  3900. this_rq->idle_stamp = 0;
  3901. break;
  3902. }
  3903. }
  3904. rcu_read_unlock();
  3905. raw_spin_lock(&this_rq->lock);
  3906. if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
  3907. /*
  3908. * We are going idle. next_balance may be set based on
  3909. * a busy processor. So reset next_balance.
  3910. */
  3911. this_rq->next_balance = next_balance;
  3912. }
  3913. }
  3914. /*
  3915. * active_load_balance_cpu_stop is run by cpu stopper. It pushes
  3916. * running tasks off the busiest CPU onto idle CPUs. It requires at
  3917. * least 1 task to be running on each physical CPU where possible, and
  3918. * avoids physical / logical imbalances.
  3919. */
  3920. static int active_load_balance_cpu_stop(void *data)
  3921. {
  3922. struct rq *busiest_rq = data;
  3923. int busiest_cpu = cpu_of(busiest_rq);
  3924. int target_cpu = busiest_rq->push_cpu;
  3925. struct rq *target_rq = cpu_rq(target_cpu);
  3926. struct sched_domain *sd;
  3927. raw_spin_lock_irq(&busiest_rq->lock);
  3928. /* make sure the requested cpu hasn't gone down in the meantime */
  3929. if (unlikely(busiest_cpu != smp_processor_id() ||
  3930. !busiest_rq->active_balance))
  3931. goto out_unlock;
  3932. /* Is there any task to move? */
  3933. if (busiest_rq->nr_running <= 1)
  3934. goto out_unlock;
  3935. /*
  3936. * This condition is "impossible", if it occurs
  3937. * we need to fix it. Originally reported by
  3938. * Bjorn Helgaas on a 128-cpu setup.
  3939. */
  3940. BUG_ON(busiest_rq == target_rq);
  3941. /* move a task from busiest_rq to target_rq */
  3942. double_lock_balance(busiest_rq, target_rq);
  3943. /* Search for an sd spanning us and the target CPU. */
  3944. rcu_read_lock();
  3945. for_each_domain(target_cpu, sd) {
  3946. if ((sd->flags & SD_LOAD_BALANCE) &&
  3947. cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
  3948. break;
  3949. }
  3950. if (likely(sd)) {
  3951. schedstat_inc(sd, alb_count);
  3952. if (move_one_task(target_rq, target_cpu, busiest_rq,
  3953. sd, CPU_IDLE))
  3954. schedstat_inc(sd, alb_pushed);
  3955. else
  3956. schedstat_inc(sd, alb_failed);
  3957. }
  3958. rcu_read_unlock();
  3959. double_unlock_balance(busiest_rq, target_rq);
  3960. out_unlock:
  3961. busiest_rq->active_balance = 0;
  3962. raw_spin_unlock_irq(&busiest_rq->lock);
  3963. return 0;
  3964. }
  3965. #ifdef CONFIG_NO_HZ
  3966. /*
  3967. * idle load balancing details
  3968. * - When one of the busy CPUs notice that there may be an idle rebalancing
  3969. * needed, they will kick the idle load balancer, which then does idle
  3970. * load balancing for all the idle CPUs.
  3971. */
  3972. static struct {
  3973. cpumask_var_t idle_cpus_mask;
  3974. atomic_t nr_cpus;
  3975. unsigned long next_balance; /* in jiffy units */
  3976. } nohz ____cacheline_aligned;
  3977. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  3978. /**
  3979. * lowest_flag_domain - Return lowest sched_domain containing flag.
  3980. * @cpu: The cpu whose lowest level of sched domain is to
  3981. * be returned.
  3982. * @flag: The flag to check for the lowest sched_domain
  3983. * for the given cpu.
  3984. *
  3985. * Returns the lowest sched_domain of a cpu which contains the given flag.
  3986. */
  3987. static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
  3988. {
  3989. struct sched_domain *sd;
  3990. for_each_domain(cpu, sd)
  3991. if (sd->flags & flag)
  3992. break;
  3993. return sd;
  3994. }
  3995. /**
  3996. * for_each_flag_domain - Iterates over sched_domains containing the flag.
  3997. * @cpu: The cpu whose domains we're iterating over.
  3998. * @sd: variable holding the value of the power_savings_sd
  3999. * for cpu.
  4000. * @flag: The flag to filter the sched_domains to be iterated.
  4001. *
  4002. * Iterates over all the scheduler domains for a given cpu that has the 'flag'
  4003. * set, starting from the lowest sched_domain to the highest.
  4004. */
  4005. #define for_each_flag_domain(cpu, sd, flag) \
  4006. for (sd = lowest_flag_domain(cpu, flag); \
  4007. (sd && (sd->flags & flag)); sd = sd->parent)
  4008. /**
  4009. * find_new_ilb - Finds the optimum idle load balancer for nomination.
  4010. * @cpu: The cpu which is nominating a new idle_load_balancer.
  4011. *
  4012. * Returns: Returns the id of the idle load balancer if it exists,
  4013. * Else, returns >= nr_cpu_ids.
  4014. *
  4015. * This algorithm picks the idle load balancer such that it belongs to a
  4016. * semi-idle powersavings sched_domain. The idea is to try and avoid
  4017. * completely idle packages/cores just for the purpose of idle load balancing
  4018. * when there are other idle cpu's which are better suited for that job.
  4019. */
  4020. static int find_new_ilb(int cpu)
  4021. {
  4022. int ilb = cpumask_first(nohz.idle_cpus_mask);
  4023. struct sched_group *ilbg;
  4024. struct sched_domain *sd;
  4025. /*
  4026. * Have idle load balancer selection from semi-idle packages only
  4027. * when power-aware load balancing is enabled
  4028. */
  4029. if (!(sched_smt_power_savings || sched_mc_power_savings))
  4030. goto out_done;
  4031. /*
  4032. * Optimize for the case when we have no idle CPUs or only one
  4033. * idle CPU. Don't walk the sched_domain hierarchy in such cases
  4034. */
  4035. if (cpumask_weight(nohz.idle_cpus_mask) < 2)
  4036. goto out_done;
  4037. rcu_read_lock();
  4038. for_each_flag_domain(cpu, sd, SD_POWERSAVINGS_BALANCE) {
  4039. ilbg = sd->groups;
  4040. do {
  4041. if (ilbg->group_weight !=
  4042. atomic_read(&ilbg->sgp->nr_busy_cpus)) {
  4043. ilb = cpumask_first_and(nohz.idle_cpus_mask,
  4044. sched_group_cpus(ilbg));
  4045. goto unlock;
  4046. }
  4047. ilbg = ilbg->next;
  4048. } while (ilbg != sd->groups);
  4049. }
  4050. unlock:
  4051. rcu_read_unlock();
  4052. out_done:
  4053. if (ilb < nr_cpu_ids && idle_cpu(ilb))
  4054. return ilb;
  4055. return nr_cpu_ids;
  4056. }
  4057. #else /* (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */
  4058. static inline int find_new_ilb(int call_cpu)
  4059. {
  4060. return nr_cpu_ids;
  4061. }
  4062. #endif
  4063. /*
  4064. * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
  4065. * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
  4066. * CPU (if there is one).
  4067. */
  4068. static void nohz_balancer_kick(int cpu)
  4069. {
  4070. int ilb_cpu;
  4071. nohz.next_balance++;
  4072. ilb_cpu = find_new_ilb(cpu);
  4073. if (ilb_cpu >= nr_cpu_ids)
  4074. return;
  4075. if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
  4076. return;
  4077. /*
  4078. * Use smp_send_reschedule() instead of resched_cpu().
  4079. * This way we generate a sched IPI on the target cpu which
  4080. * is idle. And the softirq performing nohz idle load balance
  4081. * will be run before returning from the IPI.
  4082. */
  4083. smp_send_reschedule(ilb_cpu);
  4084. return;
  4085. }
  4086. static inline void clear_nohz_tick_stopped(int cpu)
  4087. {
  4088. if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
  4089. cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
  4090. atomic_dec(&nohz.nr_cpus);
  4091. clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
  4092. }
  4093. }
  4094. static inline void set_cpu_sd_state_busy(void)
  4095. {
  4096. struct sched_domain *sd;
  4097. int cpu = smp_processor_id();
  4098. if (!test_bit(NOHZ_IDLE, nohz_flags(cpu)))
  4099. return;
  4100. clear_bit(NOHZ_IDLE, nohz_flags(cpu));
  4101. rcu_read_lock();
  4102. for_each_domain(cpu, sd)
  4103. atomic_inc(&sd->groups->sgp->nr_busy_cpus);
  4104. rcu_read_unlock();
  4105. }
  4106. void set_cpu_sd_state_idle(void)
  4107. {
  4108. struct sched_domain *sd;
  4109. int cpu = smp_processor_id();
  4110. if (test_bit(NOHZ_IDLE, nohz_flags(cpu)))
  4111. return;
  4112. set_bit(NOHZ_IDLE, nohz_flags(cpu));
  4113. rcu_read_lock();
  4114. for_each_domain(cpu, sd)
  4115. atomic_dec(&sd->groups->sgp->nr_busy_cpus);
  4116. rcu_read_unlock();
  4117. }
  4118. /*
  4119. * This routine will record that this cpu is going idle with tick stopped.
  4120. * This info will be used in performing idle load balancing in the future.
  4121. */
  4122. void select_nohz_load_balancer(int stop_tick)
  4123. {
  4124. int cpu = smp_processor_id();
  4125. /*
  4126. * If this cpu is going down, then nothing needs to be done.
  4127. */
  4128. if (!cpu_active(cpu))
  4129. return;
  4130. if (stop_tick) {
  4131. if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
  4132. return;
  4133. cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
  4134. atomic_inc(&nohz.nr_cpus);
  4135. set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
  4136. }
  4137. return;
  4138. }
  4139. static int __cpuinit sched_ilb_notifier(struct notifier_block *nfb,
  4140. unsigned long action, void *hcpu)
  4141. {
  4142. switch (action & ~CPU_TASKS_FROZEN) {
  4143. case CPU_DYING:
  4144. clear_nohz_tick_stopped(smp_processor_id());
  4145. return NOTIFY_OK;
  4146. default:
  4147. return NOTIFY_DONE;
  4148. }
  4149. }
  4150. #endif
  4151. static DEFINE_SPINLOCK(balancing);
  4152. /*
  4153. * Scale the max load_balance interval with the number of CPUs in the system.
  4154. * This trades load-balance latency on larger machines for less cross talk.
  4155. */
  4156. void update_max_interval(void)
  4157. {
  4158. max_load_balance_interval = HZ*num_online_cpus()/10;
  4159. }
  4160. /*
  4161. * It checks each scheduling domain to see if it is due to be balanced,
  4162. * and initiates a balancing operation if so.
  4163. *
  4164. * Balancing parameters are set up in arch_init_sched_domains.
  4165. */
  4166. static void rebalance_domains(int cpu, enum cpu_idle_type idle)
  4167. {
  4168. int balance = 1;
  4169. struct rq *rq = cpu_rq(cpu);
  4170. unsigned long interval;
  4171. struct sched_domain *sd;
  4172. /* Earliest time when we have to do rebalance again */
  4173. unsigned long next_balance = jiffies + 60*HZ;
  4174. int update_next_balance = 0;
  4175. int need_serialize;
  4176. update_shares(cpu);
  4177. rcu_read_lock();
  4178. for_each_domain(cpu, sd) {
  4179. if (!(sd->flags & SD_LOAD_BALANCE))
  4180. continue;
  4181. interval = sd->balance_interval;
  4182. if (idle != CPU_IDLE)
  4183. interval *= sd->busy_factor;
  4184. /* scale ms to jiffies */
  4185. interval = msecs_to_jiffies(interval);
  4186. interval = clamp(interval, 1UL, max_load_balance_interval);
  4187. need_serialize = sd->flags & SD_SERIALIZE;
  4188. if (need_serialize) {
  4189. if (!spin_trylock(&balancing))
  4190. goto out;
  4191. }
  4192. if (time_after_eq(jiffies, sd->last_balance + interval)) {
  4193. if (load_balance(cpu, rq, sd, idle, &balance)) {
  4194. /*
  4195. * We've pulled tasks over so either we're no
  4196. * longer idle.
  4197. */
  4198. idle = CPU_NOT_IDLE;
  4199. }
  4200. sd->last_balance = jiffies;
  4201. }
  4202. if (need_serialize)
  4203. spin_unlock(&balancing);
  4204. out:
  4205. if (time_after(next_balance, sd->last_balance + interval)) {
  4206. next_balance = sd->last_balance + interval;
  4207. update_next_balance = 1;
  4208. }
  4209. /*
  4210. * Stop the load balance at this level. There is another
  4211. * CPU in our sched group which is doing load balancing more
  4212. * actively.
  4213. */
  4214. if (!balance)
  4215. break;
  4216. }
  4217. rcu_read_unlock();
  4218. /*
  4219. * next_balance will be updated only when there is a need.
  4220. * When the cpu is attached to null domain for ex, it will not be
  4221. * updated.
  4222. */
  4223. if (likely(update_next_balance))
  4224. rq->next_balance = next_balance;
  4225. }
  4226. #ifdef CONFIG_NO_HZ
  4227. /*
  4228. * In CONFIG_NO_HZ case, the idle balance kickee will do the
  4229. * rebalancing for all the cpus for whom scheduler ticks are stopped.
  4230. */
  4231. static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle)
  4232. {
  4233. struct rq *this_rq = cpu_rq(this_cpu);
  4234. struct rq *rq;
  4235. int balance_cpu;
  4236. if (idle != CPU_IDLE ||
  4237. !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
  4238. goto end;
  4239. for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
  4240. if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
  4241. continue;
  4242. /*
  4243. * If this cpu gets work to do, stop the load balancing
  4244. * work being done for other cpus. Next load
  4245. * balancing owner will pick it up.
  4246. */
  4247. if (need_resched())
  4248. break;
  4249. raw_spin_lock_irq(&this_rq->lock);
  4250. update_rq_clock(this_rq);
  4251. update_cpu_load(this_rq);
  4252. raw_spin_unlock_irq(&this_rq->lock);
  4253. rebalance_domains(balance_cpu, CPU_IDLE);
  4254. rq = cpu_rq(balance_cpu);
  4255. if (time_after(this_rq->next_balance, rq->next_balance))
  4256. this_rq->next_balance = rq->next_balance;
  4257. }
  4258. nohz.next_balance = this_rq->next_balance;
  4259. end:
  4260. clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
  4261. }
  4262. /*
  4263. * Current heuristic for kicking the idle load balancer in the presence
  4264. * of an idle cpu is the system.
  4265. * - This rq has more than one task.
  4266. * - At any scheduler domain level, this cpu's scheduler group has multiple
  4267. * busy cpu's exceeding the group's power.
  4268. * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
  4269. * domain span are idle.
  4270. */
  4271. static inline int nohz_kick_needed(struct rq *rq, int cpu)
  4272. {
  4273. unsigned long now = jiffies;
  4274. struct sched_domain *sd;
  4275. if (unlikely(idle_cpu(cpu)))
  4276. return 0;
  4277. /*
  4278. * We may be recently in ticked or tickless idle mode. At the first
  4279. * busy tick after returning from idle, we will update the busy stats.
  4280. */
  4281. set_cpu_sd_state_busy();
  4282. clear_nohz_tick_stopped(cpu);
  4283. /*
  4284. * None are in tickless mode and hence no need for NOHZ idle load
  4285. * balancing.
  4286. */
  4287. if (likely(!atomic_read(&nohz.nr_cpus)))
  4288. return 0;
  4289. if (time_before(now, nohz.next_balance))
  4290. return 0;
  4291. if (rq->nr_running >= 2)
  4292. goto need_kick;
  4293. rcu_read_lock();
  4294. for_each_domain(cpu, sd) {
  4295. struct sched_group *sg = sd->groups;
  4296. struct sched_group_power *sgp = sg->sgp;
  4297. int nr_busy = atomic_read(&sgp->nr_busy_cpus);
  4298. if (sd->flags & SD_SHARE_PKG_RESOURCES && nr_busy > 1)
  4299. goto need_kick_unlock;
  4300. if (sd->flags & SD_ASYM_PACKING && nr_busy != sg->group_weight
  4301. && (cpumask_first_and(nohz.idle_cpus_mask,
  4302. sched_domain_span(sd)) < cpu))
  4303. goto need_kick_unlock;
  4304. if (!(sd->flags & (SD_SHARE_PKG_RESOURCES | SD_ASYM_PACKING)))
  4305. break;
  4306. }
  4307. rcu_read_unlock();
  4308. return 0;
  4309. need_kick_unlock:
  4310. rcu_read_unlock();
  4311. need_kick:
  4312. return 1;
  4313. }
  4314. #else
  4315. static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle) { }
  4316. #endif
  4317. /*
  4318. * run_rebalance_domains is triggered when needed from the scheduler tick.
  4319. * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
  4320. */
  4321. static void run_rebalance_domains(struct softirq_action *h)
  4322. {
  4323. int this_cpu = smp_processor_id();
  4324. struct rq *this_rq = cpu_rq(this_cpu);
  4325. enum cpu_idle_type idle = this_rq->idle_balance ?
  4326. CPU_IDLE : CPU_NOT_IDLE;
  4327. rebalance_domains(this_cpu, idle);
  4328. /*
  4329. * If this cpu has a pending nohz_balance_kick, then do the
  4330. * balancing on behalf of the other idle cpus whose ticks are
  4331. * stopped.
  4332. */
  4333. nohz_idle_balance(this_cpu, idle);
  4334. }
  4335. static inline int on_null_domain(int cpu)
  4336. {
  4337. return !rcu_dereference_sched(cpu_rq(cpu)->sd);
  4338. }
  4339. /*
  4340. * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
  4341. */
  4342. void trigger_load_balance(struct rq *rq, int cpu)
  4343. {
  4344. /* Don't need to rebalance while attached to NULL domain */
  4345. if (time_after_eq(jiffies, rq->next_balance) &&
  4346. likely(!on_null_domain(cpu)))
  4347. raise_softirq(SCHED_SOFTIRQ);
  4348. #ifdef CONFIG_NO_HZ
  4349. if (nohz_kick_needed(rq, cpu) && likely(!on_null_domain(cpu)))
  4350. nohz_balancer_kick(cpu);
  4351. #endif
  4352. }
  4353. static void rq_online_fair(struct rq *rq)
  4354. {
  4355. update_sysctl();
  4356. }
  4357. static void rq_offline_fair(struct rq *rq)
  4358. {
  4359. update_sysctl();
  4360. }
  4361. #endif /* CONFIG_SMP */
  4362. /*
  4363. * scheduler tick hitting a task of our scheduling class:
  4364. */
  4365. static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
  4366. {
  4367. struct cfs_rq *cfs_rq;
  4368. struct sched_entity *se = &curr->se;
  4369. for_each_sched_entity(se) {
  4370. cfs_rq = cfs_rq_of(se);
  4371. entity_tick(cfs_rq, se, queued);
  4372. }
  4373. }
  4374. /*
  4375. * called on fork with the child task as argument from the parent's context
  4376. * - child not yet on the tasklist
  4377. * - preemption disabled
  4378. */
  4379. static void task_fork_fair(struct task_struct *p)
  4380. {
  4381. struct cfs_rq *cfs_rq;
  4382. struct sched_entity *se = &p->se, *curr;
  4383. int this_cpu = smp_processor_id();
  4384. struct rq *rq = this_rq();
  4385. unsigned long flags;
  4386. raw_spin_lock_irqsave(&rq->lock, flags);
  4387. update_rq_clock(rq);
  4388. cfs_rq = task_cfs_rq(current);
  4389. curr = cfs_rq->curr;
  4390. if (unlikely(task_cpu(p) != this_cpu)) {
  4391. rcu_read_lock();
  4392. __set_task_cpu(p, this_cpu);
  4393. rcu_read_unlock();
  4394. }
  4395. update_curr(cfs_rq);
  4396. if (curr)
  4397. se->vruntime = curr->vruntime;
  4398. place_entity(cfs_rq, se, 1);
  4399. if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
  4400. /*
  4401. * Upon rescheduling, sched_class::put_prev_task() will place
  4402. * 'current' within the tree based on its new key value.
  4403. */
  4404. swap(curr->vruntime, se->vruntime);
  4405. resched_task(rq->curr);
  4406. }
  4407. se->vruntime -= cfs_rq->min_vruntime;
  4408. raw_spin_unlock_irqrestore(&rq->lock, flags);
  4409. }
  4410. /*
  4411. * Priority of the task has changed. Check to see if we preempt
  4412. * the current task.
  4413. */
  4414. static void
  4415. prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
  4416. {
  4417. if (!p->se.on_rq)
  4418. return;
  4419. /*
  4420. * Reschedule if we are currently running on this runqueue and
  4421. * our priority decreased, or if we are not currently running on
  4422. * this runqueue and our priority is higher than the current's
  4423. */
  4424. if (rq->curr == p) {
  4425. if (p->prio > oldprio)
  4426. resched_task(rq->curr);
  4427. } else
  4428. check_preempt_curr(rq, p, 0);
  4429. }
  4430. static void switched_from_fair(struct rq *rq, struct task_struct *p)
  4431. {
  4432. struct sched_entity *se = &p->se;
  4433. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  4434. /*
  4435. * Ensure the task's vruntime is normalized, so that when its
  4436. * switched back to the fair class the enqueue_entity(.flags=0) will
  4437. * do the right thing.
  4438. *
  4439. * If it was on_rq, then the dequeue_entity(.flags=0) will already
  4440. * have normalized the vruntime, if it was !on_rq, then only when
  4441. * the task is sleeping will it still have non-normalized vruntime.
  4442. */
  4443. if (!se->on_rq && p->state != TASK_RUNNING) {
  4444. /*
  4445. * Fix up our vruntime so that the current sleep doesn't
  4446. * cause 'unlimited' sleep bonus.
  4447. */
  4448. place_entity(cfs_rq, se, 0);
  4449. se->vruntime -= cfs_rq->min_vruntime;
  4450. }
  4451. }
  4452. /*
  4453. * We switched to the sched_fair class.
  4454. */
  4455. static void switched_to_fair(struct rq *rq, struct task_struct *p)
  4456. {
  4457. if (!p->se.on_rq)
  4458. return;
  4459. /*
  4460. * We were most likely switched from sched_rt, so
  4461. * kick off the schedule if running, otherwise just see
  4462. * if we can still preempt the current task.
  4463. */
  4464. if (rq->curr == p)
  4465. resched_task(rq->curr);
  4466. else
  4467. check_preempt_curr(rq, p, 0);
  4468. }
  4469. /* Account for a task changing its policy or group.
  4470. *
  4471. * This routine is mostly called to set cfs_rq->curr field when a task
  4472. * migrates between groups/classes.
  4473. */
  4474. static void set_curr_task_fair(struct rq *rq)
  4475. {
  4476. struct sched_entity *se = &rq->curr->se;
  4477. for_each_sched_entity(se) {
  4478. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  4479. set_next_entity(cfs_rq, se);
  4480. /* ensure bandwidth has been allocated on our new cfs_rq */
  4481. account_cfs_rq_runtime(cfs_rq, 0);
  4482. }
  4483. }
  4484. void init_cfs_rq(struct cfs_rq *cfs_rq)
  4485. {
  4486. cfs_rq->tasks_timeline = RB_ROOT;
  4487. INIT_LIST_HEAD(&cfs_rq->tasks);
  4488. cfs_rq->min_vruntime = (u64)(-(1LL << 20));
  4489. #ifndef CONFIG_64BIT
  4490. cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
  4491. #endif
  4492. }
  4493. #ifdef CONFIG_FAIR_GROUP_SCHED
  4494. static void task_move_group_fair(struct task_struct *p, int on_rq)
  4495. {
  4496. /*
  4497. * If the task was not on the rq at the time of this cgroup movement
  4498. * it must have been asleep, sleeping tasks keep their ->vruntime
  4499. * absolute on their old rq until wakeup (needed for the fair sleeper
  4500. * bonus in place_entity()).
  4501. *
  4502. * If it was on the rq, we've just 'preempted' it, which does convert
  4503. * ->vruntime to a relative base.
  4504. *
  4505. * Make sure both cases convert their relative position when migrating
  4506. * to another cgroup's rq. This does somewhat interfere with the
  4507. * fair sleeper stuff for the first placement, but who cares.
  4508. */
  4509. /*
  4510. * When !on_rq, vruntime of the task has usually NOT been normalized.
  4511. * But there are some cases where it has already been normalized:
  4512. *
  4513. * - Moving a forked child which is waiting for being woken up by
  4514. * wake_up_new_task().
  4515. * - Moving a task which has been woken up by try_to_wake_up() and
  4516. * waiting for actually being woken up by sched_ttwu_pending().
  4517. *
  4518. * To prevent boost or penalty in the new cfs_rq caused by delta
  4519. * min_vruntime between the two cfs_rqs, we skip vruntime adjustment.
  4520. */
  4521. if (!on_rq && (!p->se.sum_exec_runtime || p->state == TASK_WAKING))
  4522. on_rq = 1;
  4523. if (!on_rq)
  4524. p->se.vruntime -= cfs_rq_of(&p->se)->min_vruntime;
  4525. set_task_rq(p, task_cpu(p));
  4526. if (!on_rq)
  4527. p->se.vruntime += cfs_rq_of(&p->se)->min_vruntime;
  4528. }
  4529. void free_fair_sched_group(struct task_group *tg)
  4530. {
  4531. int i;
  4532. destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
  4533. for_each_possible_cpu(i) {
  4534. if (tg->cfs_rq)
  4535. kfree(tg->cfs_rq[i]);
  4536. if (tg->se)
  4537. kfree(tg->se[i]);
  4538. }
  4539. kfree(tg->cfs_rq);
  4540. kfree(tg->se);
  4541. }
  4542. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  4543. {
  4544. struct cfs_rq *cfs_rq;
  4545. struct sched_entity *se;
  4546. int i;
  4547. tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
  4548. if (!tg->cfs_rq)
  4549. goto err;
  4550. tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
  4551. if (!tg->se)
  4552. goto err;
  4553. tg->shares = NICE_0_LOAD;
  4554. init_cfs_bandwidth(tg_cfs_bandwidth(tg));
  4555. for_each_possible_cpu(i) {
  4556. cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
  4557. GFP_KERNEL, cpu_to_node(i));
  4558. if (!cfs_rq)
  4559. goto err;
  4560. se = kzalloc_node(sizeof(struct sched_entity),
  4561. GFP_KERNEL, cpu_to_node(i));
  4562. if (!se)
  4563. goto err_free_rq;
  4564. init_cfs_rq(cfs_rq);
  4565. init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
  4566. }
  4567. return 1;
  4568. err_free_rq:
  4569. kfree(cfs_rq);
  4570. err:
  4571. return 0;
  4572. }
  4573. void unregister_fair_sched_group(struct task_group *tg, int cpu)
  4574. {
  4575. struct rq *rq = cpu_rq(cpu);
  4576. unsigned long flags;
  4577. /*
  4578. * Only empty task groups can be destroyed; so we can speculatively
  4579. * check on_list without danger of it being re-added.
  4580. */
  4581. if (!tg->cfs_rq[cpu]->on_list)
  4582. return;
  4583. raw_spin_lock_irqsave(&rq->lock, flags);
  4584. list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
  4585. raw_spin_unlock_irqrestore(&rq->lock, flags);
  4586. }
  4587. void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
  4588. struct sched_entity *se, int cpu,
  4589. struct sched_entity *parent)
  4590. {
  4591. struct rq *rq = cpu_rq(cpu);
  4592. cfs_rq->tg = tg;
  4593. cfs_rq->rq = rq;
  4594. #ifdef CONFIG_SMP
  4595. /* allow initial update_cfs_load() to truncate */
  4596. cfs_rq->load_stamp = 1;
  4597. #endif
  4598. init_cfs_rq_runtime(cfs_rq);
  4599. tg->cfs_rq[cpu] = cfs_rq;
  4600. tg->se[cpu] = se;
  4601. /* se could be NULL for root_task_group */
  4602. if (!se)
  4603. return;
  4604. if (!parent)
  4605. se->cfs_rq = &rq->cfs;
  4606. else
  4607. se->cfs_rq = parent->my_q;
  4608. se->my_q = cfs_rq;
  4609. update_load_set(&se->load, 0);
  4610. se->parent = parent;
  4611. }
  4612. static DEFINE_MUTEX(shares_mutex);
  4613. int sched_group_set_shares(struct task_group *tg, unsigned long shares)
  4614. {
  4615. int i;
  4616. unsigned long flags;
  4617. /*
  4618. * We can't change the weight of the root cgroup.
  4619. */
  4620. if (!tg->se[0])
  4621. return -EINVAL;
  4622. shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
  4623. mutex_lock(&shares_mutex);
  4624. if (tg->shares == shares)
  4625. goto done;
  4626. tg->shares = shares;
  4627. for_each_possible_cpu(i) {
  4628. struct rq *rq = cpu_rq(i);
  4629. struct sched_entity *se;
  4630. se = tg->se[i];
  4631. /* Propagate contribution to hierarchy */
  4632. raw_spin_lock_irqsave(&rq->lock, flags);
  4633. for_each_sched_entity(se)
  4634. update_cfs_shares(group_cfs_rq(se));
  4635. raw_spin_unlock_irqrestore(&rq->lock, flags);
  4636. }
  4637. done:
  4638. mutex_unlock(&shares_mutex);
  4639. return 0;
  4640. }
  4641. #else /* CONFIG_FAIR_GROUP_SCHED */
  4642. void free_fair_sched_group(struct task_group *tg) { }
  4643. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  4644. {
  4645. return 1;
  4646. }
  4647. void unregister_fair_sched_group(struct task_group *tg, int cpu) { }
  4648. #endif /* CONFIG_FAIR_GROUP_SCHED */
  4649. static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
  4650. {
  4651. struct sched_entity *se = &task->se;
  4652. unsigned int rr_interval = 0;
  4653. /*
  4654. * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
  4655. * idle runqueue:
  4656. */
  4657. if (rq->cfs.load.weight)
  4658. rr_interval = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
  4659. return rr_interval;
  4660. }
  4661. /*
  4662. * All the scheduling class methods:
  4663. */
  4664. const struct sched_class fair_sched_class = {
  4665. .next = &idle_sched_class,
  4666. .enqueue_task = enqueue_task_fair,
  4667. .dequeue_task = dequeue_task_fair,
  4668. .yield_task = yield_task_fair,
  4669. .yield_to_task = yield_to_task_fair,
  4670. .check_preempt_curr = check_preempt_wakeup,
  4671. .pick_next_task = pick_next_task_fair,
  4672. .put_prev_task = put_prev_task_fair,
  4673. #ifdef CONFIG_SMP
  4674. .select_task_rq = select_task_rq_fair,
  4675. .rq_online = rq_online_fair,
  4676. .rq_offline = rq_offline_fair,
  4677. .task_waking = task_waking_fair,
  4678. #endif
  4679. .set_curr_task = set_curr_task_fair,
  4680. .task_tick = task_tick_fair,
  4681. .task_fork = task_fork_fair,
  4682. .prio_changed = prio_changed_fair,
  4683. .switched_from = switched_from_fair,
  4684. .switched_to = switched_to_fair,
  4685. .get_rr_interval = get_rr_interval_fair,
  4686. #ifdef CONFIG_FAIR_GROUP_SCHED
  4687. .task_move_group = task_move_group_fair,
  4688. #endif
  4689. };
  4690. #ifdef CONFIG_SCHED_DEBUG
  4691. void print_cfs_stats(struct seq_file *m, int cpu)
  4692. {
  4693. struct cfs_rq *cfs_rq;
  4694. rcu_read_lock();
  4695. for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
  4696. print_cfs_rq(m, cpu, cfs_rq);
  4697. rcu_read_unlock();
  4698. }
  4699. #endif
  4700. __init void init_sched_fair_class(void)
  4701. {
  4702. #ifdef CONFIG_SMP
  4703. open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
  4704. #ifdef CONFIG_NO_HZ
  4705. zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
  4706. cpu_notifier(sched_ilb_notifier, 0);
  4707. #endif
  4708. #endif /* SMP */
  4709. }