xhci.c 137 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602
  1. /*
  2. * xHCI host controller driver
  3. *
  4. * Copyright (C) 2008 Intel Corp.
  5. *
  6. * Author: Sarah Sharp
  7. * Some code borrowed from the Linux EHCI driver.
  8. *
  9. * This program is free software; you can redistribute it and/or modify
  10. * it under the terms of the GNU General Public License version 2 as
  11. * published by the Free Software Foundation.
  12. *
  13. * This program is distributed in the hope that it will be useful, but
  14. * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
  15. * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
  16. * for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program; if not, write to the Free Software Foundation,
  20. * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  21. */
  22. #include <linux/pci.h>
  23. #include <linux/irq.h>
  24. #include <linux/log2.h>
  25. #include <linux/module.h>
  26. #include <linux/moduleparam.h>
  27. #include <linux/slab.h>
  28. #include "xhci.h"
  29. #define DRIVER_AUTHOR "Sarah Sharp"
  30. #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
  31. /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
  32. static int link_quirk;
  33. module_param(link_quirk, int, S_IRUGO | S_IWUSR);
  34. MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
  35. /* TODO: copied from ehci-hcd.c - can this be refactored? */
  36. /*
  37. * handshake - spin reading hc until handshake completes or fails
  38. * @ptr: address of hc register to be read
  39. * @mask: bits to look at in result of read
  40. * @done: value of those bits when handshake succeeds
  41. * @usec: timeout in microseconds
  42. *
  43. * Returns negative errno, or zero on success
  44. *
  45. * Success happens when the "mask" bits have the specified value (hardware
  46. * handshake done). There are two failure modes: "usec" have passed (major
  47. * hardware flakeout), or the register reads as all-ones (hardware removed).
  48. */
  49. int handshake(struct xhci_hcd *xhci, void __iomem *ptr,
  50. u32 mask, u32 done, int usec)
  51. {
  52. u32 result;
  53. do {
  54. result = xhci_readl(xhci, ptr);
  55. if (result == ~(u32)0) /* card removed */
  56. return -ENODEV;
  57. result &= mask;
  58. if (result == done)
  59. return 0;
  60. udelay(1);
  61. usec--;
  62. } while (usec > 0);
  63. return -ETIMEDOUT;
  64. }
  65. /*
  66. * Disable interrupts and begin the xHCI halting process.
  67. */
  68. void xhci_quiesce(struct xhci_hcd *xhci)
  69. {
  70. u32 halted;
  71. u32 cmd;
  72. u32 mask;
  73. mask = ~(XHCI_IRQS);
  74. halted = xhci_readl(xhci, &xhci->op_regs->status) & STS_HALT;
  75. if (!halted)
  76. mask &= ~CMD_RUN;
  77. cmd = xhci_readl(xhci, &xhci->op_regs->command);
  78. cmd &= mask;
  79. xhci_writel(xhci, cmd, &xhci->op_regs->command);
  80. }
  81. /*
  82. * Force HC into halt state.
  83. *
  84. * Disable any IRQs and clear the run/stop bit.
  85. * HC will complete any current and actively pipelined transactions, and
  86. * should halt within 16 ms of the run/stop bit being cleared.
  87. * Read HC Halted bit in the status register to see when the HC is finished.
  88. */
  89. int xhci_halt(struct xhci_hcd *xhci)
  90. {
  91. int ret;
  92. xhci_dbg(xhci, "// Halt the HC\n");
  93. xhci_quiesce(xhci);
  94. ret = handshake(xhci, &xhci->op_regs->status,
  95. STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
  96. if (!ret) {
  97. xhci->xhc_state |= XHCI_STATE_HALTED;
  98. xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
  99. } else
  100. xhci_warn(xhci, "Host not halted after %u microseconds.\n",
  101. XHCI_MAX_HALT_USEC);
  102. return ret;
  103. }
  104. /*
  105. * Set the run bit and wait for the host to be running.
  106. */
  107. static int xhci_start(struct xhci_hcd *xhci)
  108. {
  109. u32 temp;
  110. int ret;
  111. temp = xhci_readl(xhci, &xhci->op_regs->command);
  112. temp |= (CMD_RUN);
  113. xhci_dbg(xhci, "// Turn on HC, cmd = 0x%x.\n",
  114. temp);
  115. xhci_writel(xhci, temp, &xhci->op_regs->command);
  116. /*
  117. * Wait for the HCHalted Status bit to be 0 to indicate the host is
  118. * running.
  119. */
  120. ret = handshake(xhci, &xhci->op_regs->status,
  121. STS_HALT, 0, XHCI_MAX_HALT_USEC);
  122. if (ret == -ETIMEDOUT)
  123. xhci_err(xhci, "Host took too long to start, "
  124. "waited %u microseconds.\n",
  125. XHCI_MAX_HALT_USEC);
  126. if (!ret)
  127. xhci->xhc_state &= ~XHCI_STATE_HALTED;
  128. return ret;
  129. }
  130. /*
  131. * Reset a halted HC.
  132. *
  133. * This resets pipelines, timers, counters, state machines, etc.
  134. * Transactions will be terminated immediately, and operational registers
  135. * will be set to their defaults.
  136. */
  137. int xhci_reset(struct xhci_hcd *xhci)
  138. {
  139. u32 command;
  140. u32 state;
  141. int ret, i;
  142. state = xhci_readl(xhci, &xhci->op_regs->status);
  143. if ((state & STS_HALT) == 0) {
  144. xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
  145. return 0;
  146. }
  147. xhci_dbg(xhci, "// Reset the HC\n");
  148. command = xhci_readl(xhci, &xhci->op_regs->command);
  149. command |= CMD_RESET;
  150. xhci_writel(xhci, command, &xhci->op_regs->command);
  151. ret = handshake(xhci, &xhci->op_regs->command,
  152. CMD_RESET, 0, 10 * 1000 * 1000);
  153. if (ret)
  154. return ret;
  155. xhci_dbg(xhci, "Wait for controller to be ready for doorbell rings\n");
  156. /*
  157. * xHCI cannot write to any doorbells or operational registers other
  158. * than status until the "Controller Not Ready" flag is cleared.
  159. */
  160. ret = handshake(xhci, &xhci->op_regs->status,
  161. STS_CNR, 0, 10 * 1000 * 1000);
  162. for (i = 0; i < 2; ++i) {
  163. xhci->bus_state[i].port_c_suspend = 0;
  164. xhci->bus_state[i].suspended_ports = 0;
  165. xhci->bus_state[i].resuming_ports = 0;
  166. }
  167. return ret;
  168. }
  169. #ifdef CONFIG_PCI
  170. static int xhci_free_msi(struct xhci_hcd *xhci)
  171. {
  172. int i;
  173. if (!xhci->msix_entries)
  174. return -EINVAL;
  175. for (i = 0; i < xhci->msix_count; i++)
  176. if (xhci->msix_entries[i].vector)
  177. free_irq(xhci->msix_entries[i].vector,
  178. xhci_to_hcd(xhci));
  179. return 0;
  180. }
  181. /*
  182. * Set up MSI
  183. */
  184. static int xhci_setup_msi(struct xhci_hcd *xhci)
  185. {
  186. int ret;
  187. struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
  188. ret = pci_enable_msi(pdev);
  189. if (ret) {
  190. xhci_dbg(xhci, "failed to allocate MSI entry\n");
  191. return ret;
  192. }
  193. ret = request_irq(pdev->irq, (irq_handler_t)xhci_msi_irq,
  194. 0, "xhci_hcd", xhci_to_hcd(xhci));
  195. if (ret) {
  196. xhci_dbg(xhci, "disable MSI interrupt\n");
  197. pci_disable_msi(pdev);
  198. }
  199. return ret;
  200. }
  201. /*
  202. * Free IRQs
  203. * free all IRQs request
  204. */
  205. static void xhci_free_irq(struct xhci_hcd *xhci)
  206. {
  207. struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
  208. int ret;
  209. /* return if using legacy interrupt */
  210. if (xhci_to_hcd(xhci)->irq > 0)
  211. return;
  212. ret = xhci_free_msi(xhci);
  213. if (!ret)
  214. return;
  215. if (pdev->irq > 0)
  216. free_irq(pdev->irq, xhci_to_hcd(xhci));
  217. return;
  218. }
  219. /*
  220. * Set up MSI-X
  221. */
  222. static int xhci_setup_msix(struct xhci_hcd *xhci)
  223. {
  224. int i, ret = 0;
  225. struct usb_hcd *hcd = xhci_to_hcd(xhci);
  226. struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
  227. /*
  228. * calculate number of msi-x vectors supported.
  229. * - HCS_MAX_INTRS: the max number of interrupts the host can handle,
  230. * with max number of interrupters based on the xhci HCSPARAMS1.
  231. * - num_online_cpus: maximum msi-x vectors per CPUs core.
  232. * Add additional 1 vector to ensure always available interrupt.
  233. */
  234. xhci->msix_count = min(num_online_cpus() + 1,
  235. HCS_MAX_INTRS(xhci->hcs_params1));
  236. xhci->msix_entries =
  237. kmalloc((sizeof(struct msix_entry))*xhci->msix_count,
  238. GFP_KERNEL);
  239. if (!xhci->msix_entries) {
  240. xhci_err(xhci, "Failed to allocate MSI-X entries\n");
  241. return -ENOMEM;
  242. }
  243. for (i = 0; i < xhci->msix_count; i++) {
  244. xhci->msix_entries[i].entry = i;
  245. xhci->msix_entries[i].vector = 0;
  246. }
  247. ret = pci_enable_msix(pdev, xhci->msix_entries, xhci->msix_count);
  248. if (ret) {
  249. xhci_dbg(xhci, "Failed to enable MSI-X\n");
  250. goto free_entries;
  251. }
  252. for (i = 0; i < xhci->msix_count; i++) {
  253. ret = request_irq(xhci->msix_entries[i].vector,
  254. (irq_handler_t)xhci_msi_irq,
  255. 0, "xhci_hcd", xhci_to_hcd(xhci));
  256. if (ret)
  257. goto disable_msix;
  258. }
  259. hcd->msix_enabled = 1;
  260. return ret;
  261. disable_msix:
  262. xhci_dbg(xhci, "disable MSI-X interrupt\n");
  263. xhci_free_irq(xhci);
  264. pci_disable_msix(pdev);
  265. free_entries:
  266. kfree(xhci->msix_entries);
  267. xhci->msix_entries = NULL;
  268. return ret;
  269. }
  270. /* Free any IRQs and disable MSI-X */
  271. static void xhci_cleanup_msix(struct xhci_hcd *xhci)
  272. {
  273. struct usb_hcd *hcd = xhci_to_hcd(xhci);
  274. struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
  275. xhci_free_irq(xhci);
  276. if (xhci->msix_entries) {
  277. pci_disable_msix(pdev);
  278. kfree(xhci->msix_entries);
  279. xhci->msix_entries = NULL;
  280. } else {
  281. pci_disable_msi(pdev);
  282. }
  283. hcd->msix_enabled = 0;
  284. return;
  285. }
  286. static void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
  287. {
  288. int i;
  289. if (xhci->msix_entries) {
  290. for (i = 0; i < xhci->msix_count; i++)
  291. synchronize_irq(xhci->msix_entries[i].vector);
  292. }
  293. }
  294. static int xhci_try_enable_msi(struct usb_hcd *hcd)
  295. {
  296. struct xhci_hcd *xhci = hcd_to_xhci(hcd);
  297. struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
  298. int ret;
  299. /*
  300. * Some Fresco Logic host controllers advertise MSI, but fail to
  301. * generate interrupts. Don't even try to enable MSI.
  302. */
  303. if (xhci->quirks & XHCI_BROKEN_MSI)
  304. return 0;
  305. /* unregister the legacy interrupt */
  306. if (hcd->irq)
  307. free_irq(hcd->irq, hcd);
  308. hcd->irq = 0;
  309. ret = xhci_setup_msix(xhci);
  310. if (ret)
  311. /* fall back to msi*/
  312. ret = xhci_setup_msi(xhci);
  313. if (!ret)
  314. /* hcd->irq is 0, we have MSI */
  315. return 0;
  316. if (!pdev->irq) {
  317. xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n");
  318. return -EINVAL;
  319. }
  320. /* fall back to legacy interrupt*/
  321. ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED,
  322. hcd->irq_descr, hcd);
  323. if (ret) {
  324. xhci_err(xhci, "request interrupt %d failed\n",
  325. pdev->irq);
  326. return ret;
  327. }
  328. hcd->irq = pdev->irq;
  329. return 0;
  330. }
  331. #else
  332. static int xhci_try_enable_msi(struct usb_hcd *hcd)
  333. {
  334. return 0;
  335. }
  336. static void xhci_cleanup_msix(struct xhci_hcd *xhci)
  337. {
  338. }
  339. static void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
  340. {
  341. }
  342. #endif
  343. /*
  344. * Initialize memory for HCD and xHC (one-time init).
  345. *
  346. * Program the PAGESIZE register, initialize the device context array, create
  347. * device contexts (?), set up a command ring segment (or two?), create event
  348. * ring (one for now).
  349. */
  350. int xhci_init(struct usb_hcd *hcd)
  351. {
  352. struct xhci_hcd *xhci = hcd_to_xhci(hcd);
  353. int retval = 0;
  354. xhci_dbg(xhci, "xhci_init\n");
  355. spin_lock_init(&xhci->lock);
  356. if (xhci->hci_version == 0x95 && link_quirk) {
  357. xhci_dbg(xhci, "QUIRK: Not clearing Link TRB chain bits.\n");
  358. xhci->quirks |= XHCI_LINK_TRB_QUIRK;
  359. } else {
  360. xhci_dbg(xhci, "xHCI doesn't need link TRB QUIRK\n");
  361. }
  362. retval = xhci_mem_init(xhci, GFP_KERNEL);
  363. xhci_dbg(xhci, "Finished xhci_init\n");
  364. return retval;
  365. }
  366. /*-------------------------------------------------------------------------*/
  367. #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
  368. static void xhci_event_ring_work(unsigned long arg)
  369. {
  370. unsigned long flags;
  371. int temp;
  372. u64 temp_64;
  373. struct xhci_hcd *xhci = (struct xhci_hcd *) arg;
  374. int i, j;
  375. xhci_dbg(xhci, "Poll event ring: %lu\n", jiffies);
  376. spin_lock_irqsave(&xhci->lock, flags);
  377. temp = xhci_readl(xhci, &xhci->op_regs->status);
  378. xhci_dbg(xhci, "op reg status = 0x%x\n", temp);
  379. if (temp == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
  380. (xhci->xhc_state & XHCI_STATE_HALTED)) {
  381. xhci_dbg(xhci, "HW died, polling stopped.\n");
  382. spin_unlock_irqrestore(&xhci->lock, flags);
  383. return;
  384. }
  385. temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
  386. xhci_dbg(xhci, "ir_set 0 pending = 0x%x\n", temp);
  387. xhci_dbg(xhci, "HC error bitmask = 0x%x\n", xhci->error_bitmask);
  388. xhci->error_bitmask = 0;
  389. xhci_dbg(xhci, "Event ring:\n");
  390. xhci_debug_segment(xhci, xhci->event_ring->deq_seg);
  391. xhci_dbg_ring_ptrs(xhci, xhci->event_ring);
  392. temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
  393. temp_64 &= ~ERST_PTR_MASK;
  394. xhci_dbg(xhci, "ERST deq = 64'h%0lx\n", (long unsigned int) temp_64);
  395. xhci_dbg(xhci, "Command ring:\n");
  396. xhci_debug_segment(xhci, xhci->cmd_ring->deq_seg);
  397. xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring);
  398. xhci_dbg_cmd_ptrs(xhci);
  399. for (i = 0; i < MAX_HC_SLOTS; ++i) {
  400. if (!xhci->devs[i])
  401. continue;
  402. for (j = 0; j < 31; ++j) {
  403. xhci_dbg_ep_rings(xhci, i, j, &xhci->devs[i]->eps[j]);
  404. }
  405. }
  406. spin_unlock_irqrestore(&xhci->lock, flags);
  407. if (!xhci->zombie)
  408. mod_timer(&xhci->event_ring_timer, jiffies + POLL_TIMEOUT * HZ);
  409. else
  410. xhci_dbg(xhci, "Quit polling the event ring.\n");
  411. }
  412. #endif
  413. static int xhci_run_finished(struct xhci_hcd *xhci)
  414. {
  415. if (xhci_start(xhci)) {
  416. xhci_halt(xhci);
  417. return -ENODEV;
  418. }
  419. xhci->shared_hcd->state = HC_STATE_RUNNING;
  420. xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
  421. if (xhci->quirks & XHCI_NEC_HOST)
  422. xhci_ring_cmd_db(xhci);
  423. xhci_dbg(xhci, "Finished xhci_run for USB3 roothub\n");
  424. return 0;
  425. }
  426. /*
  427. * Start the HC after it was halted.
  428. *
  429. * This function is called by the USB core when the HC driver is added.
  430. * Its opposite is xhci_stop().
  431. *
  432. * xhci_init() must be called once before this function can be called.
  433. * Reset the HC, enable device slot contexts, program DCBAAP, and
  434. * set command ring pointer and event ring pointer.
  435. *
  436. * Setup MSI-X vectors and enable interrupts.
  437. */
  438. int xhci_run(struct usb_hcd *hcd)
  439. {
  440. u32 temp;
  441. u64 temp_64;
  442. int ret;
  443. struct xhci_hcd *xhci = hcd_to_xhci(hcd);
  444. /* Start the xHCI host controller running only after the USB 2.0 roothub
  445. * is setup.
  446. */
  447. hcd->uses_new_polling = 1;
  448. if (!usb_hcd_is_primary_hcd(hcd))
  449. return xhci_run_finished(xhci);
  450. xhci_dbg(xhci, "xhci_run\n");
  451. ret = xhci_try_enable_msi(hcd);
  452. if (ret)
  453. return ret;
  454. #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
  455. init_timer(&xhci->event_ring_timer);
  456. xhci->event_ring_timer.data = (unsigned long) xhci;
  457. xhci->event_ring_timer.function = xhci_event_ring_work;
  458. /* Poll the event ring */
  459. xhci->event_ring_timer.expires = jiffies + POLL_TIMEOUT * HZ;
  460. xhci->zombie = 0;
  461. xhci_dbg(xhci, "Setting event ring polling timer\n");
  462. add_timer(&xhci->event_ring_timer);
  463. #endif
  464. xhci_dbg(xhci, "Command ring memory map follows:\n");
  465. xhci_debug_ring(xhci, xhci->cmd_ring);
  466. xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring);
  467. xhci_dbg_cmd_ptrs(xhci);
  468. xhci_dbg(xhci, "ERST memory map follows:\n");
  469. xhci_dbg_erst(xhci, &xhci->erst);
  470. xhci_dbg(xhci, "Event ring:\n");
  471. xhci_debug_ring(xhci, xhci->event_ring);
  472. xhci_dbg_ring_ptrs(xhci, xhci->event_ring);
  473. temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
  474. temp_64 &= ~ERST_PTR_MASK;
  475. xhci_dbg(xhci, "ERST deq = 64'h%0lx\n", (long unsigned int) temp_64);
  476. xhci_dbg(xhci, "// Set the interrupt modulation register\n");
  477. temp = xhci_readl(xhci, &xhci->ir_set->irq_control);
  478. temp &= ~ER_IRQ_INTERVAL_MASK;
  479. temp |= (u32) 160;
  480. xhci_writel(xhci, temp, &xhci->ir_set->irq_control);
  481. /* Set the HCD state before we enable the irqs */
  482. temp = xhci_readl(xhci, &xhci->op_regs->command);
  483. temp |= (CMD_EIE);
  484. xhci_dbg(xhci, "// Enable interrupts, cmd = 0x%x.\n",
  485. temp);
  486. xhci_writel(xhci, temp, &xhci->op_regs->command);
  487. temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
  488. xhci_dbg(xhci, "// Enabling event ring interrupter %p by writing 0x%x to irq_pending\n",
  489. xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp));
  490. xhci_writel(xhci, ER_IRQ_ENABLE(temp),
  491. &xhci->ir_set->irq_pending);
  492. xhci_print_ir_set(xhci, 0);
  493. if (xhci->quirks & XHCI_NEC_HOST)
  494. xhci_queue_vendor_command(xhci, 0, 0, 0,
  495. TRB_TYPE(TRB_NEC_GET_FW));
  496. xhci_dbg(xhci, "Finished xhci_run for USB2 roothub\n");
  497. return 0;
  498. }
  499. static void xhci_only_stop_hcd(struct usb_hcd *hcd)
  500. {
  501. struct xhci_hcd *xhci = hcd_to_xhci(hcd);
  502. spin_lock_irq(&xhci->lock);
  503. xhci_halt(xhci);
  504. /* The shared_hcd is going to be deallocated shortly (the USB core only
  505. * calls this function when allocation fails in usb_add_hcd(), or
  506. * usb_remove_hcd() is called). So we need to unset xHCI's pointer.
  507. */
  508. xhci->shared_hcd = NULL;
  509. spin_unlock_irq(&xhci->lock);
  510. }
  511. /*
  512. * Stop xHCI driver.
  513. *
  514. * This function is called by the USB core when the HC driver is removed.
  515. * Its opposite is xhci_run().
  516. *
  517. * Disable device contexts, disable IRQs, and quiesce the HC.
  518. * Reset the HC, finish any completed transactions, and cleanup memory.
  519. */
  520. void xhci_stop(struct usb_hcd *hcd)
  521. {
  522. u32 temp;
  523. struct xhci_hcd *xhci = hcd_to_xhci(hcd);
  524. if (!usb_hcd_is_primary_hcd(hcd)) {
  525. xhci_only_stop_hcd(xhci->shared_hcd);
  526. return;
  527. }
  528. spin_lock_irq(&xhci->lock);
  529. /* Make sure the xHC is halted for a USB3 roothub
  530. * (xhci_stop() could be called as part of failed init).
  531. */
  532. xhci_halt(xhci);
  533. xhci_reset(xhci);
  534. spin_unlock_irq(&xhci->lock);
  535. xhci_cleanup_msix(xhci);
  536. #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
  537. /* Tell the event ring poll function not to reschedule */
  538. xhci->zombie = 1;
  539. del_timer_sync(&xhci->event_ring_timer);
  540. #endif
  541. if (xhci->quirks & XHCI_AMD_PLL_FIX)
  542. usb_amd_dev_put();
  543. xhci_dbg(xhci, "// Disabling event ring interrupts\n");
  544. temp = xhci_readl(xhci, &xhci->op_regs->status);
  545. xhci_writel(xhci, temp & ~STS_EINT, &xhci->op_regs->status);
  546. temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
  547. xhci_writel(xhci, ER_IRQ_DISABLE(temp),
  548. &xhci->ir_set->irq_pending);
  549. xhci_print_ir_set(xhci, 0);
  550. xhci_dbg(xhci, "cleaning up memory\n");
  551. xhci_mem_cleanup(xhci);
  552. xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
  553. xhci_readl(xhci, &xhci->op_regs->status));
  554. }
  555. /*
  556. * Shutdown HC (not bus-specific)
  557. *
  558. * This is called when the machine is rebooting or halting. We assume that the
  559. * machine will be powered off, and the HC's internal state will be reset.
  560. * Don't bother to free memory.
  561. *
  562. * This will only ever be called with the main usb_hcd (the USB3 roothub).
  563. */
  564. void xhci_shutdown(struct usb_hcd *hcd)
  565. {
  566. struct xhci_hcd *xhci = hcd_to_xhci(hcd);
  567. if (xhci->quirks && XHCI_SPURIOUS_REBOOT)
  568. usb_disable_xhci_ports(to_pci_dev(hcd->self.controller));
  569. spin_lock_irq(&xhci->lock);
  570. xhci_halt(xhci);
  571. spin_unlock_irq(&xhci->lock);
  572. xhci_cleanup_msix(xhci);
  573. xhci_dbg(xhci, "xhci_shutdown completed - status = %x\n",
  574. xhci_readl(xhci, &xhci->op_regs->status));
  575. }
  576. #ifdef CONFIG_PM
  577. static void xhci_save_registers(struct xhci_hcd *xhci)
  578. {
  579. xhci->s3.command = xhci_readl(xhci, &xhci->op_regs->command);
  580. xhci->s3.dev_nt = xhci_readl(xhci, &xhci->op_regs->dev_notification);
  581. xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
  582. xhci->s3.config_reg = xhci_readl(xhci, &xhci->op_regs->config_reg);
  583. xhci->s3.erst_size = xhci_readl(xhci, &xhci->ir_set->erst_size);
  584. xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base);
  585. xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
  586. xhci->s3.irq_pending = xhci_readl(xhci, &xhci->ir_set->irq_pending);
  587. xhci->s3.irq_control = xhci_readl(xhci, &xhci->ir_set->irq_control);
  588. }
  589. static void xhci_restore_registers(struct xhci_hcd *xhci)
  590. {
  591. xhci_writel(xhci, xhci->s3.command, &xhci->op_regs->command);
  592. xhci_writel(xhci, xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
  593. xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
  594. xhci_writel(xhci, xhci->s3.config_reg, &xhci->op_regs->config_reg);
  595. xhci_writel(xhci, xhci->s3.erst_size, &xhci->ir_set->erst_size);
  596. xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base);
  597. xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue);
  598. xhci_writel(xhci, xhci->s3.irq_pending, &xhci->ir_set->irq_pending);
  599. xhci_writel(xhci, xhci->s3.irq_control, &xhci->ir_set->irq_control);
  600. }
  601. static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
  602. {
  603. u64 val_64;
  604. /* step 2: initialize command ring buffer */
  605. val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
  606. val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
  607. (xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
  608. xhci->cmd_ring->dequeue) &
  609. (u64) ~CMD_RING_RSVD_BITS) |
  610. xhci->cmd_ring->cycle_state;
  611. xhci_dbg(xhci, "// Setting command ring address to 0x%llx\n",
  612. (long unsigned long) val_64);
  613. xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
  614. }
  615. /*
  616. * The whole command ring must be cleared to zero when we suspend the host.
  617. *
  618. * The host doesn't save the command ring pointer in the suspend well, so we
  619. * need to re-program it on resume. Unfortunately, the pointer must be 64-byte
  620. * aligned, because of the reserved bits in the command ring dequeue pointer
  621. * register. Therefore, we can't just set the dequeue pointer back in the
  622. * middle of the ring (TRBs are 16-byte aligned).
  623. */
  624. static void xhci_clear_command_ring(struct xhci_hcd *xhci)
  625. {
  626. struct xhci_ring *ring;
  627. struct xhci_segment *seg;
  628. ring = xhci->cmd_ring;
  629. seg = ring->deq_seg;
  630. do {
  631. memset(seg->trbs, 0,
  632. sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
  633. seg->trbs[TRBS_PER_SEGMENT - 1].link.control &=
  634. cpu_to_le32(~TRB_CYCLE);
  635. seg = seg->next;
  636. } while (seg != ring->deq_seg);
  637. /* Reset the software enqueue and dequeue pointers */
  638. ring->deq_seg = ring->first_seg;
  639. ring->dequeue = ring->first_seg->trbs;
  640. ring->enq_seg = ring->deq_seg;
  641. ring->enqueue = ring->dequeue;
  642. ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
  643. /*
  644. * Ring is now zeroed, so the HW should look for change of ownership
  645. * when the cycle bit is set to 1.
  646. */
  647. ring->cycle_state = 1;
  648. /*
  649. * Reset the hardware dequeue pointer.
  650. * Yes, this will need to be re-written after resume, but we're paranoid
  651. * and want to make sure the hardware doesn't access bogus memory
  652. * because, say, the BIOS or an SMI started the host without changing
  653. * the command ring pointers.
  654. */
  655. xhci_set_cmd_ring_deq(xhci);
  656. }
  657. /*
  658. * Stop HC (not bus-specific)
  659. *
  660. * This is called when the machine transition into S3/S4 mode.
  661. *
  662. */
  663. int xhci_suspend(struct xhci_hcd *xhci)
  664. {
  665. int rc = 0;
  666. struct usb_hcd *hcd = xhci_to_hcd(xhci);
  667. u32 command;
  668. spin_lock_irq(&xhci->lock);
  669. clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
  670. clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
  671. /* step 1: stop endpoint */
  672. /* skipped assuming that port suspend has done */
  673. /* step 2: clear Run/Stop bit */
  674. command = xhci_readl(xhci, &xhci->op_regs->command);
  675. command &= ~CMD_RUN;
  676. xhci_writel(xhci, command, &xhci->op_regs->command);
  677. if (handshake(xhci, &xhci->op_regs->status,
  678. STS_HALT, STS_HALT, 100*100)) {
  679. xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
  680. spin_unlock_irq(&xhci->lock);
  681. return -ETIMEDOUT;
  682. }
  683. xhci_clear_command_ring(xhci);
  684. /* step 3: save registers */
  685. xhci_save_registers(xhci);
  686. /* step 4: set CSS flag */
  687. command = xhci_readl(xhci, &xhci->op_regs->command);
  688. command |= CMD_CSS;
  689. xhci_writel(xhci, command, &xhci->op_regs->command);
  690. if (handshake(xhci, &xhci->op_regs->status, STS_SAVE, 0, 10 * 1000)) {
  691. xhci_warn(xhci, "WARN: xHC save state timeout\n");
  692. spin_unlock_irq(&xhci->lock);
  693. return -ETIMEDOUT;
  694. }
  695. spin_unlock_irq(&xhci->lock);
  696. /* step 5: remove core well power */
  697. /* synchronize irq when using MSI-X */
  698. xhci_msix_sync_irqs(xhci);
  699. return rc;
  700. }
  701. /*
  702. * start xHC (not bus-specific)
  703. *
  704. * This is called when the machine transition from S3/S4 mode.
  705. *
  706. */
  707. int xhci_resume(struct xhci_hcd *xhci, bool hibernated)
  708. {
  709. u32 command, temp = 0;
  710. struct usb_hcd *hcd = xhci_to_hcd(xhci);
  711. struct usb_hcd *secondary_hcd;
  712. int retval = 0;
  713. /* Wait a bit if either of the roothubs need to settle from the
  714. * transition into bus suspend.
  715. */
  716. if (time_before(jiffies, xhci->bus_state[0].next_statechange) ||
  717. time_before(jiffies,
  718. xhci->bus_state[1].next_statechange))
  719. msleep(100);
  720. set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
  721. set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
  722. spin_lock_irq(&xhci->lock);
  723. if (xhci->quirks & XHCI_RESET_ON_RESUME)
  724. hibernated = true;
  725. if (!hibernated) {
  726. /* step 1: restore register */
  727. xhci_restore_registers(xhci);
  728. /* step 2: initialize command ring buffer */
  729. xhci_set_cmd_ring_deq(xhci);
  730. /* step 3: restore state and start state*/
  731. /* step 3: set CRS flag */
  732. command = xhci_readl(xhci, &xhci->op_regs->command);
  733. command |= CMD_CRS;
  734. xhci_writel(xhci, command, &xhci->op_regs->command);
  735. if (handshake(xhci, &xhci->op_regs->status,
  736. STS_RESTORE, 0, 10 * 1000)) {
  737. xhci_warn(xhci, "WARN: xHC restore state timeout\n");
  738. spin_unlock_irq(&xhci->lock);
  739. return -ETIMEDOUT;
  740. }
  741. temp = xhci_readl(xhci, &xhci->op_regs->status);
  742. }
  743. /* If restore operation fails, re-initialize the HC during resume */
  744. if ((temp & STS_SRE) || hibernated) {
  745. /* Let the USB core know _both_ roothubs lost power. */
  746. usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
  747. usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
  748. xhci_dbg(xhci, "Stop HCD\n");
  749. xhci_halt(xhci);
  750. xhci_reset(xhci);
  751. spin_unlock_irq(&xhci->lock);
  752. xhci_cleanup_msix(xhci);
  753. #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
  754. /* Tell the event ring poll function not to reschedule */
  755. xhci->zombie = 1;
  756. del_timer_sync(&xhci->event_ring_timer);
  757. #endif
  758. xhci_dbg(xhci, "// Disabling event ring interrupts\n");
  759. temp = xhci_readl(xhci, &xhci->op_regs->status);
  760. xhci_writel(xhci, temp & ~STS_EINT, &xhci->op_regs->status);
  761. temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
  762. xhci_writel(xhci, ER_IRQ_DISABLE(temp),
  763. &xhci->ir_set->irq_pending);
  764. xhci_print_ir_set(xhci, 0);
  765. xhci_dbg(xhci, "cleaning up memory\n");
  766. xhci_mem_cleanup(xhci);
  767. xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
  768. xhci_readl(xhci, &xhci->op_regs->status));
  769. /* USB core calls the PCI reinit and start functions twice:
  770. * first with the primary HCD, and then with the secondary HCD.
  771. * If we don't do the same, the host will never be started.
  772. */
  773. if (!usb_hcd_is_primary_hcd(hcd))
  774. secondary_hcd = hcd;
  775. else
  776. secondary_hcd = xhci->shared_hcd;
  777. xhci_dbg(xhci, "Initialize the xhci_hcd\n");
  778. retval = xhci_init(hcd->primary_hcd);
  779. if (retval)
  780. return retval;
  781. xhci_dbg(xhci, "Start the primary HCD\n");
  782. retval = xhci_run(hcd->primary_hcd);
  783. if (!retval) {
  784. xhci_dbg(xhci, "Start the secondary HCD\n");
  785. retval = xhci_run(secondary_hcd);
  786. }
  787. hcd->state = HC_STATE_SUSPENDED;
  788. xhci->shared_hcd->state = HC_STATE_SUSPENDED;
  789. goto done;
  790. }
  791. /* step 4: set Run/Stop bit */
  792. command = xhci_readl(xhci, &xhci->op_regs->command);
  793. command |= CMD_RUN;
  794. xhci_writel(xhci, command, &xhci->op_regs->command);
  795. handshake(xhci, &xhci->op_regs->status, STS_HALT,
  796. 0, 250 * 1000);
  797. /* step 5: walk topology and initialize portsc,
  798. * portpmsc and portli
  799. */
  800. /* this is done in bus_resume */
  801. /* step 6: restart each of the previously
  802. * Running endpoints by ringing their doorbells
  803. */
  804. spin_unlock_irq(&xhci->lock);
  805. done:
  806. if (retval == 0) {
  807. usb_hcd_resume_root_hub(hcd);
  808. usb_hcd_resume_root_hub(xhci->shared_hcd);
  809. }
  810. return retval;
  811. }
  812. #endif /* CONFIG_PM */
  813. /*-------------------------------------------------------------------------*/
  814. /**
  815. * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
  816. * HCDs. Find the index for an endpoint given its descriptor. Use the return
  817. * value to right shift 1 for the bitmask.
  818. *
  819. * Index = (epnum * 2) + direction - 1,
  820. * where direction = 0 for OUT, 1 for IN.
  821. * For control endpoints, the IN index is used (OUT index is unused), so
  822. * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
  823. */
  824. unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
  825. {
  826. unsigned int index;
  827. if (usb_endpoint_xfer_control(desc))
  828. index = (unsigned int) (usb_endpoint_num(desc)*2);
  829. else
  830. index = (unsigned int) (usb_endpoint_num(desc)*2) +
  831. (usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
  832. return index;
  833. }
  834. /* Find the flag for this endpoint (for use in the control context). Use the
  835. * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is
  836. * bit 1, etc.
  837. */
  838. unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
  839. {
  840. return 1 << (xhci_get_endpoint_index(desc) + 1);
  841. }
  842. /* Find the flag for this endpoint (for use in the control context). Use the
  843. * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is
  844. * bit 1, etc.
  845. */
  846. unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index)
  847. {
  848. return 1 << (ep_index + 1);
  849. }
  850. /* Compute the last valid endpoint context index. Basically, this is the
  851. * endpoint index plus one. For slot contexts with more than valid endpoint,
  852. * we find the most significant bit set in the added contexts flags.
  853. * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
  854. * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
  855. */
  856. unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
  857. {
  858. return fls(added_ctxs) - 1;
  859. }
  860. /* Returns 1 if the arguments are OK;
  861. * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
  862. */
  863. static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
  864. struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
  865. const char *func) {
  866. struct xhci_hcd *xhci;
  867. struct xhci_virt_device *virt_dev;
  868. if (!hcd || (check_ep && !ep) || !udev) {
  869. printk(KERN_DEBUG "xHCI %s called with invalid args\n",
  870. func);
  871. return -EINVAL;
  872. }
  873. if (!udev->parent) {
  874. printk(KERN_DEBUG "xHCI %s called for root hub\n",
  875. func);
  876. return 0;
  877. }
  878. xhci = hcd_to_xhci(hcd);
  879. if (xhci->xhc_state & XHCI_STATE_HALTED)
  880. return -ENODEV;
  881. if (check_virt_dev) {
  882. if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
  883. printk(KERN_DEBUG "xHCI %s called with unaddressed "
  884. "device\n", func);
  885. return -EINVAL;
  886. }
  887. virt_dev = xhci->devs[udev->slot_id];
  888. if (virt_dev->udev != udev) {
  889. printk(KERN_DEBUG "xHCI %s called with udev and "
  890. "virt_dev does not match\n", func);
  891. return -EINVAL;
  892. }
  893. }
  894. return 1;
  895. }
  896. static int xhci_configure_endpoint(struct xhci_hcd *xhci,
  897. struct usb_device *udev, struct xhci_command *command,
  898. bool ctx_change, bool must_succeed);
  899. /*
  900. * Full speed devices may have a max packet size greater than 8 bytes, but the
  901. * USB core doesn't know that until it reads the first 8 bytes of the
  902. * descriptor. If the usb_device's max packet size changes after that point,
  903. * we need to issue an evaluate context command and wait on it.
  904. */
  905. static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
  906. unsigned int ep_index, struct urb *urb)
  907. {
  908. struct xhci_container_ctx *in_ctx;
  909. struct xhci_container_ctx *out_ctx;
  910. struct xhci_input_control_ctx *ctrl_ctx;
  911. struct xhci_ep_ctx *ep_ctx;
  912. int max_packet_size;
  913. int hw_max_packet_size;
  914. int ret = 0;
  915. out_ctx = xhci->devs[slot_id]->out_ctx;
  916. ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
  917. hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
  918. max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc);
  919. if (hw_max_packet_size != max_packet_size) {
  920. xhci_dbg(xhci, "Max Packet Size for ep 0 changed.\n");
  921. xhci_dbg(xhci, "Max packet size in usb_device = %d\n",
  922. max_packet_size);
  923. xhci_dbg(xhci, "Max packet size in xHCI HW = %d\n",
  924. hw_max_packet_size);
  925. xhci_dbg(xhci, "Issuing evaluate context command.\n");
  926. /* Set up the modified control endpoint 0 */
  927. xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
  928. xhci->devs[slot_id]->out_ctx, ep_index);
  929. in_ctx = xhci->devs[slot_id]->in_ctx;
  930. ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
  931. ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
  932. ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
  933. /* Set up the input context flags for the command */
  934. /* FIXME: This won't work if a non-default control endpoint
  935. * changes max packet sizes.
  936. */
  937. ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
  938. ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
  939. ctrl_ctx->drop_flags = 0;
  940. xhci_dbg(xhci, "Slot %d input context\n", slot_id);
  941. xhci_dbg_ctx(xhci, in_ctx, ep_index);
  942. xhci_dbg(xhci, "Slot %d output context\n", slot_id);
  943. xhci_dbg_ctx(xhci, out_ctx, ep_index);
  944. ret = xhci_configure_endpoint(xhci, urb->dev, NULL,
  945. true, false);
  946. /* Clean up the input context for later use by bandwidth
  947. * functions.
  948. */
  949. ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
  950. }
  951. return ret;
  952. }
  953. /*
  954. * non-error returns are a promise to giveback() the urb later
  955. * we drop ownership so next owner (or urb unlink) can get it
  956. */
  957. int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
  958. {
  959. struct xhci_hcd *xhci = hcd_to_xhci(hcd);
  960. struct xhci_td *buffer;
  961. unsigned long flags;
  962. int ret = 0;
  963. unsigned int slot_id, ep_index;
  964. struct urb_priv *urb_priv;
  965. int size, i;
  966. if (!urb || xhci_check_args(hcd, urb->dev, urb->ep,
  967. true, true, __func__) <= 0)
  968. return -EINVAL;
  969. slot_id = urb->dev->slot_id;
  970. ep_index = xhci_get_endpoint_index(&urb->ep->desc);
  971. if (!HCD_HW_ACCESSIBLE(hcd)) {
  972. if (!in_interrupt())
  973. xhci_dbg(xhci, "urb submitted during PCI suspend\n");
  974. ret = -ESHUTDOWN;
  975. goto exit;
  976. }
  977. if (usb_endpoint_xfer_isoc(&urb->ep->desc))
  978. size = urb->number_of_packets;
  979. else
  980. size = 1;
  981. urb_priv = kzalloc(sizeof(struct urb_priv) +
  982. size * sizeof(struct xhci_td *), mem_flags);
  983. if (!urb_priv)
  984. return -ENOMEM;
  985. buffer = kzalloc(size * sizeof(struct xhci_td), mem_flags);
  986. if (!buffer) {
  987. kfree(urb_priv);
  988. return -ENOMEM;
  989. }
  990. for (i = 0; i < size; i++) {
  991. urb_priv->td[i] = buffer;
  992. buffer++;
  993. }
  994. urb_priv->length = size;
  995. urb_priv->td_cnt = 0;
  996. urb->hcpriv = urb_priv;
  997. if (usb_endpoint_xfer_control(&urb->ep->desc)) {
  998. /* Check to see if the max packet size for the default control
  999. * endpoint changed during FS device enumeration
  1000. */
  1001. if (urb->dev->speed == USB_SPEED_FULL) {
  1002. ret = xhci_check_maxpacket(xhci, slot_id,
  1003. ep_index, urb);
  1004. if (ret < 0) {
  1005. xhci_urb_free_priv(xhci, urb_priv);
  1006. urb->hcpriv = NULL;
  1007. return ret;
  1008. }
  1009. }
  1010. /* We have a spinlock and interrupts disabled, so we must pass
  1011. * atomic context to this function, which may allocate memory.
  1012. */
  1013. spin_lock_irqsave(&xhci->lock, flags);
  1014. if (xhci->xhc_state & XHCI_STATE_DYING)
  1015. goto dying;
  1016. ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
  1017. slot_id, ep_index);
  1018. if (ret)
  1019. goto free_priv;
  1020. spin_unlock_irqrestore(&xhci->lock, flags);
  1021. } else if (usb_endpoint_xfer_bulk(&urb->ep->desc)) {
  1022. spin_lock_irqsave(&xhci->lock, flags);
  1023. if (xhci->xhc_state & XHCI_STATE_DYING)
  1024. goto dying;
  1025. if (xhci->devs[slot_id]->eps[ep_index].ep_state &
  1026. EP_GETTING_STREAMS) {
  1027. xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
  1028. "is transitioning to using streams.\n");
  1029. ret = -EINVAL;
  1030. } else if (xhci->devs[slot_id]->eps[ep_index].ep_state &
  1031. EP_GETTING_NO_STREAMS) {
  1032. xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
  1033. "is transitioning to "
  1034. "not having streams.\n");
  1035. ret = -EINVAL;
  1036. } else {
  1037. ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
  1038. slot_id, ep_index);
  1039. }
  1040. if (ret)
  1041. goto free_priv;
  1042. spin_unlock_irqrestore(&xhci->lock, flags);
  1043. } else if (usb_endpoint_xfer_int(&urb->ep->desc)) {
  1044. spin_lock_irqsave(&xhci->lock, flags);
  1045. if (xhci->xhc_state & XHCI_STATE_DYING)
  1046. goto dying;
  1047. ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
  1048. slot_id, ep_index);
  1049. if (ret)
  1050. goto free_priv;
  1051. spin_unlock_irqrestore(&xhci->lock, flags);
  1052. } else {
  1053. spin_lock_irqsave(&xhci->lock, flags);
  1054. if (xhci->xhc_state & XHCI_STATE_DYING)
  1055. goto dying;
  1056. ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
  1057. slot_id, ep_index);
  1058. if (ret)
  1059. goto free_priv;
  1060. spin_unlock_irqrestore(&xhci->lock, flags);
  1061. }
  1062. exit:
  1063. return ret;
  1064. dying:
  1065. xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for "
  1066. "non-responsive xHCI host.\n",
  1067. urb->ep->desc.bEndpointAddress, urb);
  1068. ret = -ESHUTDOWN;
  1069. free_priv:
  1070. xhci_urb_free_priv(xhci, urb_priv);
  1071. urb->hcpriv = NULL;
  1072. spin_unlock_irqrestore(&xhci->lock, flags);
  1073. return ret;
  1074. }
  1075. /* Get the right ring for the given URB.
  1076. * If the endpoint supports streams, boundary check the URB's stream ID.
  1077. * If the endpoint doesn't support streams, return the singular endpoint ring.
  1078. */
  1079. static struct xhci_ring *xhci_urb_to_transfer_ring(struct xhci_hcd *xhci,
  1080. struct urb *urb)
  1081. {
  1082. unsigned int slot_id;
  1083. unsigned int ep_index;
  1084. unsigned int stream_id;
  1085. struct xhci_virt_ep *ep;
  1086. slot_id = urb->dev->slot_id;
  1087. ep_index = xhci_get_endpoint_index(&urb->ep->desc);
  1088. stream_id = urb->stream_id;
  1089. ep = &xhci->devs[slot_id]->eps[ep_index];
  1090. /* Common case: no streams */
  1091. if (!(ep->ep_state & EP_HAS_STREAMS))
  1092. return ep->ring;
  1093. if (stream_id == 0) {
  1094. xhci_warn(xhci,
  1095. "WARN: Slot ID %u, ep index %u has streams, "
  1096. "but URB has no stream ID.\n",
  1097. slot_id, ep_index);
  1098. return NULL;
  1099. }
  1100. if (stream_id < ep->stream_info->num_streams)
  1101. return ep->stream_info->stream_rings[stream_id];
  1102. xhci_warn(xhci,
  1103. "WARN: Slot ID %u, ep index %u has "
  1104. "stream IDs 1 to %u allocated, "
  1105. "but stream ID %u is requested.\n",
  1106. slot_id, ep_index,
  1107. ep->stream_info->num_streams - 1,
  1108. stream_id);
  1109. return NULL;
  1110. }
  1111. /*
  1112. * Remove the URB's TD from the endpoint ring. This may cause the HC to stop
  1113. * USB transfers, potentially stopping in the middle of a TRB buffer. The HC
  1114. * should pick up where it left off in the TD, unless a Set Transfer Ring
  1115. * Dequeue Pointer is issued.
  1116. *
  1117. * The TRBs that make up the buffers for the canceled URB will be "removed" from
  1118. * the ring. Since the ring is a contiguous structure, they can't be physically
  1119. * removed. Instead, there are two options:
  1120. *
  1121. * 1) If the HC is in the middle of processing the URB to be canceled, we
  1122. * simply move the ring's dequeue pointer past those TRBs using the Set
  1123. * Transfer Ring Dequeue Pointer command. This will be the common case,
  1124. * when drivers timeout on the last submitted URB and attempt to cancel.
  1125. *
  1126. * 2) If the HC is in the middle of a different TD, we turn the TRBs into a
  1127. * series of 1-TRB transfer no-op TDs. (No-ops shouldn't be chained.) The
  1128. * HC will need to invalidate the any TRBs it has cached after the stop
  1129. * endpoint command, as noted in the xHCI 0.95 errata.
  1130. *
  1131. * 3) The TD may have completed by the time the Stop Endpoint Command
  1132. * completes, so software needs to handle that case too.
  1133. *
  1134. * This function should protect against the TD enqueueing code ringing the
  1135. * doorbell while this code is waiting for a Stop Endpoint command to complete.
  1136. * It also needs to account for multiple cancellations on happening at the same
  1137. * time for the same endpoint.
  1138. *
  1139. * Note that this function can be called in any context, or so says
  1140. * usb_hcd_unlink_urb()
  1141. */
  1142. int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
  1143. {
  1144. unsigned long flags;
  1145. int ret, i;
  1146. u32 temp;
  1147. struct xhci_hcd *xhci;
  1148. struct urb_priv *urb_priv;
  1149. struct xhci_td *td;
  1150. unsigned int ep_index;
  1151. struct xhci_ring *ep_ring;
  1152. struct xhci_virt_ep *ep;
  1153. xhci = hcd_to_xhci(hcd);
  1154. spin_lock_irqsave(&xhci->lock, flags);
  1155. /* Make sure the URB hasn't completed or been unlinked already */
  1156. ret = usb_hcd_check_unlink_urb(hcd, urb, status);
  1157. if (ret || !urb->hcpriv)
  1158. goto done;
  1159. temp = xhci_readl(xhci, &xhci->op_regs->status);
  1160. if (temp == 0xffffffff || (xhci->xhc_state & XHCI_STATE_HALTED)) {
  1161. xhci_dbg(xhci, "HW died, freeing TD.\n");
  1162. urb_priv = urb->hcpriv;
  1163. for (i = urb_priv->td_cnt; i < urb_priv->length; i++) {
  1164. td = urb_priv->td[i];
  1165. if (!list_empty(&td->td_list))
  1166. list_del_init(&td->td_list);
  1167. if (!list_empty(&td->cancelled_td_list))
  1168. list_del_init(&td->cancelled_td_list);
  1169. }
  1170. usb_hcd_unlink_urb_from_ep(hcd, urb);
  1171. spin_unlock_irqrestore(&xhci->lock, flags);
  1172. usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
  1173. xhci_urb_free_priv(xhci, urb_priv);
  1174. return ret;
  1175. }
  1176. if ((xhci->xhc_state & XHCI_STATE_DYING) ||
  1177. (xhci->xhc_state & XHCI_STATE_HALTED)) {
  1178. xhci_dbg(xhci, "Ep 0x%x: URB %p to be canceled on "
  1179. "non-responsive xHCI host.\n",
  1180. urb->ep->desc.bEndpointAddress, urb);
  1181. /* Let the stop endpoint command watchdog timer (which set this
  1182. * state) finish cleaning up the endpoint TD lists. We must
  1183. * have caught it in the middle of dropping a lock and giving
  1184. * back an URB.
  1185. */
  1186. goto done;
  1187. }
  1188. ep_index = xhci_get_endpoint_index(&urb->ep->desc);
  1189. ep = &xhci->devs[urb->dev->slot_id]->eps[ep_index];
  1190. ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
  1191. if (!ep_ring) {
  1192. ret = -EINVAL;
  1193. goto done;
  1194. }
  1195. urb_priv = urb->hcpriv;
  1196. i = urb_priv->td_cnt;
  1197. if (i < urb_priv->length)
  1198. xhci_dbg(xhci, "Cancel URB %p, dev %s, ep 0x%x, "
  1199. "starting at offset 0x%llx\n",
  1200. urb, urb->dev->devpath,
  1201. urb->ep->desc.bEndpointAddress,
  1202. (unsigned long long) xhci_trb_virt_to_dma(
  1203. urb_priv->td[i]->start_seg,
  1204. urb_priv->td[i]->first_trb));
  1205. for (; i < urb_priv->length; i++) {
  1206. td = urb_priv->td[i];
  1207. list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list);
  1208. }
  1209. /* Queue a stop endpoint command, but only if this is
  1210. * the first cancellation to be handled.
  1211. */
  1212. if (!(ep->ep_state & EP_HALT_PENDING)) {
  1213. ep->ep_state |= EP_HALT_PENDING;
  1214. ep->stop_cmds_pending++;
  1215. ep->stop_cmd_timer.expires = jiffies +
  1216. XHCI_STOP_EP_CMD_TIMEOUT * HZ;
  1217. add_timer(&ep->stop_cmd_timer);
  1218. xhci_queue_stop_endpoint(xhci, urb->dev->slot_id, ep_index, 0);
  1219. xhci_ring_cmd_db(xhci);
  1220. }
  1221. done:
  1222. spin_unlock_irqrestore(&xhci->lock, flags);
  1223. return ret;
  1224. }
  1225. /* Drop an endpoint from a new bandwidth configuration for this device.
  1226. * Only one call to this function is allowed per endpoint before
  1227. * check_bandwidth() or reset_bandwidth() must be called.
  1228. * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
  1229. * add the endpoint to the schedule with possibly new parameters denoted by a
  1230. * different endpoint descriptor in usb_host_endpoint.
  1231. * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
  1232. * not allowed.
  1233. *
  1234. * The USB core will not allow URBs to be queued to an endpoint that is being
  1235. * disabled, so there's no need for mutual exclusion to protect
  1236. * the xhci->devs[slot_id] structure.
  1237. */
  1238. int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
  1239. struct usb_host_endpoint *ep)
  1240. {
  1241. struct xhci_hcd *xhci;
  1242. struct xhci_container_ctx *in_ctx, *out_ctx;
  1243. struct xhci_input_control_ctx *ctrl_ctx;
  1244. struct xhci_slot_ctx *slot_ctx;
  1245. unsigned int last_ctx;
  1246. unsigned int ep_index;
  1247. struct xhci_ep_ctx *ep_ctx;
  1248. u32 drop_flag;
  1249. u32 new_add_flags, new_drop_flags, new_slot_info;
  1250. int ret;
  1251. ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
  1252. if (ret <= 0)
  1253. return ret;
  1254. xhci = hcd_to_xhci(hcd);
  1255. if (xhci->xhc_state & XHCI_STATE_DYING)
  1256. return -ENODEV;
  1257. xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
  1258. drop_flag = xhci_get_endpoint_flag(&ep->desc);
  1259. if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
  1260. xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
  1261. __func__, drop_flag);
  1262. return 0;
  1263. }
  1264. in_ctx = xhci->devs[udev->slot_id]->in_ctx;
  1265. out_ctx = xhci->devs[udev->slot_id]->out_ctx;
  1266. ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
  1267. ep_index = xhci_get_endpoint_index(&ep->desc);
  1268. ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
  1269. /* If the HC already knows the endpoint is disabled,
  1270. * or the HCD has noted it is disabled, ignore this request
  1271. */
  1272. if (((ep_ctx->ep_info & cpu_to_le32(EP_STATE_MASK)) ==
  1273. cpu_to_le32(EP_STATE_DISABLED)) ||
  1274. le32_to_cpu(ctrl_ctx->drop_flags) &
  1275. xhci_get_endpoint_flag(&ep->desc)) {
  1276. xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
  1277. __func__, ep);
  1278. return 0;
  1279. }
  1280. ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
  1281. new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
  1282. ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
  1283. new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
  1284. last_ctx = xhci_last_valid_endpoint(le32_to_cpu(ctrl_ctx->add_flags));
  1285. slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
  1286. /* Update the last valid endpoint context, if we deleted the last one */
  1287. if ((le32_to_cpu(slot_ctx->dev_info) & LAST_CTX_MASK) >
  1288. LAST_CTX(last_ctx)) {
  1289. slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
  1290. slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(last_ctx));
  1291. }
  1292. new_slot_info = le32_to_cpu(slot_ctx->dev_info);
  1293. xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
  1294. xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x, new slot info = %#x\n",
  1295. (unsigned int) ep->desc.bEndpointAddress,
  1296. udev->slot_id,
  1297. (unsigned int) new_drop_flags,
  1298. (unsigned int) new_add_flags,
  1299. (unsigned int) new_slot_info);
  1300. return 0;
  1301. }
  1302. /* Add an endpoint to a new possible bandwidth configuration for this device.
  1303. * Only one call to this function is allowed per endpoint before
  1304. * check_bandwidth() or reset_bandwidth() must be called.
  1305. * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
  1306. * add the endpoint to the schedule with possibly new parameters denoted by a
  1307. * different endpoint descriptor in usb_host_endpoint.
  1308. * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
  1309. * not allowed.
  1310. *
  1311. * The USB core will not allow URBs to be queued to an endpoint until the
  1312. * configuration or alt setting is installed in the device, so there's no need
  1313. * for mutual exclusion to protect the xhci->devs[slot_id] structure.
  1314. */
  1315. int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
  1316. struct usb_host_endpoint *ep)
  1317. {
  1318. struct xhci_hcd *xhci;
  1319. struct xhci_container_ctx *in_ctx, *out_ctx;
  1320. unsigned int ep_index;
  1321. struct xhci_ep_ctx *ep_ctx;
  1322. struct xhci_slot_ctx *slot_ctx;
  1323. struct xhci_input_control_ctx *ctrl_ctx;
  1324. u32 added_ctxs;
  1325. unsigned int last_ctx;
  1326. u32 new_add_flags, new_drop_flags, new_slot_info;
  1327. struct xhci_virt_device *virt_dev;
  1328. int ret = 0;
  1329. ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
  1330. if (ret <= 0) {
  1331. /* So we won't queue a reset ep command for a root hub */
  1332. ep->hcpriv = NULL;
  1333. return ret;
  1334. }
  1335. xhci = hcd_to_xhci(hcd);
  1336. if (xhci->xhc_state & XHCI_STATE_DYING)
  1337. return -ENODEV;
  1338. added_ctxs = xhci_get_endpoint_flag(&ep->desc);
  1339. last_ctx = xhci_last_valid_endpoint(added_ctxs);
  1340. if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
  1341. /* FIXME when we have to issue an evaluate endpoint command to
  1342. * deal with ep0 max packet size changing once we get the
  1343. * descriptors
  1344. */
  1345. xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
  1346. __func__, added_ctxs);
  1347. return 0;
  1348. }
  1349. virt_dev = xhci->devs[udev->slot_id];
  1350. in_ctx = virt_dev->in_ctx;
  1351. out_ctx = virt_dev->out_ctx;
  1352. ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
  1353. ep_index = xhci_get_endpoint_index(&ep->desc);
  1354. ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
  1355. /* If this endpoint is already in use, and the upper layers are trying
  1356. * to add it again without dropping it, reject the addition.
  1357. */
  1358. if (virt_dev->eps[ep_index].ring &&
  1359. !(le32_to_cpu(ctrl_ctx->drop_flags) &
  1360. xhci_get_endpoint_flag(&ep->desc))) {
  1361. xhci_warn(xhci, "Trying to add endpoint 0x%x "
  1362. "without dropping it.\n",
  1363. (unsigned int) ep->desc.bEndpointAddress);
  1364. return -EINVAL;
  1365. }
  1366. /* If the HCD has already noted the endpoint is enabled,
  1367. * ignore this request.
  1368. */
  1369. if (le32_to_cpu(ctrl_ctx->add_flags) &
  1370. xhci_get_endpoint_flag(&ep->desc)) {
  1371. xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
  1372. __func__, ep);
  1373. return 0;
  1374. }
  1375. /*
  1376. * Configuration and alternate setting changes must be done in
  1377. * process context, not interrupt context (or so documenation
  1378. * for usb_set_interface() and usb_set_configuration() claim).
  1379. */
  1380. if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
  1381. dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
  1382. __func__, ep->desc.bEndpointAddress);
  1383. return -ENOMEM;
  1384. }
  1385. ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
  1386. new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
  1387. /* If xhci_endpoint_disable() was called for this endpoint, but the
  1388. * xHC hasn't been notified yet through the check_bandwidth() call,
  1389. * this re-adds a new state for the endpoint from the new endpoint
  1390. * descriptors. We must drop and re-add this endpoint, so we leave the
  1391. * drop flags alone.
  1392. */
  1393. new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
  1394. slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
  1395. /* Update the last valid endpoint context, if we just added one past */
  1396. if ((le32_to_cpu(slot_ctx->dev_info) & LAST_CTX_MASK) <
  1397. LAST_CTX(last_ctx)) {
  1398. slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
  1399. slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(last_ctx));
  1400. }
  1401. new_slot_info = le32_to_cpu(slot_ctx->dev_info);
  1402. /* Store the usb_device pointer for later use */
  1403. ep->hcpriv = udev;
  1404. xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x, new slot info = %#x\n",
  1405. (unsigned int) ep->desc.bEndpointAddress,
  1406. udev->slot_id,
  1407. (unsigned int) new_drop_flags,
  1408. (unsigned int) new_add_flags,
  1409. (unsigned int) new_slot_info);
  1410. return 0;
  1411. }
  1412. static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
  1413. {
  1414. struct xhci_input_control_ctx *ctrl_ctx;
  1415. struct xhci_ep_ctx *ep_ctx;
  1416. struct xhci_slot_ctx *slot_ctx;
  1417. int i;
  1418. /* When a device's add flag and drop flag are zero, any subsequent
  1419. * configure endpoint command will leave that endpoint's state
  1420. * untouched. Make sure we don't leave any old state in the input
  1421. * endpoint contexts.
  1422. */
  1423. ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
  1424. ctrl_ctx->drop_flags = 0;
  1425. ctrl_ctx->add_flags = 0;
  1426. slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
  1427. slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
  1428. /* Endpoint 0 is always valid */
  1429. slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
  1430. for (i = 1; i < 31; ++i) {
  1431. ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
  1432. ep_ctx->ep_info = 0;
  1433. ep_ctx->ep_info2 = 0;
  1434. ep_ctx->deq = 0;
  1435. ep_ctx->tx_info = 0;
  1436. }
  1437. }
  1438. static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
  1439. struct usb_device *udev, u32 *cmd_status)
  1440. {
  1441. int ret;
  1442. switch (*cmd_status) {
  1443. case COMP_ENOMEM:
  1444. dev_warn(&udev->dev, "Not enough host controller resources "
  1445. "for new device state.\n");
  1446. ret = -ENOMEM;
  1447. /* FIXME: can we allocate more resources for the HC? */
  1448. break;
  1449. case COMP_BW_ERR:
  1450. case COMP_2ND_BW_ERR:
  1451. dev_warn(&udev->dev, "Not enough bandwidth "
  1452. "for new device state.\n");
  1453. ret = -ENOSPC;
  1454. /* FIXME: can we go back to the old state? */
  1455. break;
  1456. case COMP_TRB_ERR:
  1457. /* the HCD set up something wrong */
  1458. dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
  1459. "add flag = 1, "
  1460. "and endpoint is not disabled.\n");
  1461. ret = -EINVAL;
  1462. break;
  1463. case COMP_DEV_ERR:
  1464. dev_warn(&udev->dev, "ERROR: Incompatible device for endpoint "
  1465. "configure command.\n");
  1466. ret = -ENODEV;
  1467. break;
  1468. case COMP_SUCCESS:
  1469. dev_dbg(&udev->dev, "Successful Endpoint Configure command\n");
  1470. ret = 0;
  1471. break;
  1472. default:
  1473. xhci_err(xhci, "ERROR: unexpected command completion "
  1474. "code 0x%x.\n", *cmd_status);
  1475. ret = -EINVAL;
  1476. break;
  1477. }
  1478. return ret;
  1479. }
  1480. static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
  1481. struct usb_device *udev, u32 *cmd_status)
  1482. {
  1483. int ret;
  1484. struct xhci_virt_device *virt_dev = xhci->devs[udev->slot_id];
  1485. switch (*cmd_status) {
  1486. case COMP_EINVAL:
  1487. dev_warn(&udev->dev, "WARN: xHCI driver setup invalid evaluate "
  1488. "context command.\n");
  1489. ret = -EINVAL;
  1490. break;
  1491. case COMP_EBADSLT:
  1492. dev_warn(&udev->dev, "WARN: slot not enabled for"
  1493. "evaluate context command.\n");
  1494. case COMP_CTX_STATE:
  1495. dev_warn(&udev->dev, "WARN: invalid context state for "
  1496. "evaluate context command.\n");
  1497. xhci_dbg_ctx(xhci, virt_dev->out_ctx, 1);
  1498. ret = -EINVAL;
  1499. break;
  1500. case COMP_DEV_ERR:
  1501. dev_warn(&udev->dev, "ERROR: Incompatible device for evaluate "
  1502. "context command.\n");
  1503. ret = -ENODEV;
  1504. break;
  1505. case COMP_MEL_ERR:
  1506. /* Max Exit Latency too large error */
  1507. dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
  1508. ret = -EINVAL;
  1509. break;
  1510. case COMP_SUCCESS:
  1511. dev_dbg(&udev->dev, "Successful evaluate context command\n");
  1512. ret = 0;
  1513. break;
  1514. default:
  1515. xhci_err(xhci, "ERROR: unexpected command completion "
  1516. "code 0x%x.\n", *cmd_status);
  1517. ret = -EINVAL;
  1518. break;
  1519. }
  1520. return ret;
  1521. }
  1522. static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
  1523. struct xhci_container_ctx *in_ctx)
  1524. {
  1525. struct xhci_input_control_ctx *ctrl_ctx;
  1526. u32 valid_add_flags;
  1527. u32 valid_drop_flags;
  1528. ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
  1529. /* Ignore the slot flag (bit 0), and the default control endpoint flag
  1530. * (bit 1). The default control endpoint is added during the Address
  1531. * Device command and is never removed until the slot is disabled.
  1532. */
  1533. valid_add_flags = ctrl_ctx->add_flags >> 2;
  1534. valid_drop_flags = ctrl_ctx->drop_flags >> 2;
  1535. /* Use hweight32 to count the number of ones in the add flags, or
  1536. * number of endpoints added. Don't count endpoints that are changed
  1537. * (both added and dropped).
  1538. */
  1539. return hweight32(valid_add_flags) -
  1540. hweight32(valid_add_flags & valid_drop_flags);
  1541. }
  1542. static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
  1543. struct xhci_container_ctx *in_ctx)
  1544. {
  1545. struct xhci_input_control_ctx *ctrl_ctx;
  1546. u32 valid_add_flags;
  1547. u32 valid_drop_flags;
  1548. ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
  1549. valid_add_flags = ctrl_ctx->add_flags >> 2;
  1550. valid_drop_flags = ctrl_ctx->drop_flags >> 2;
  1551. return hweight32(valid_drop_flags) -
  1552. hweight32(valid_add_flags & valid_drop_flags);
  1553. }
  1554. /*
  1555. * We need to reserve the new number of endpoints before the configure endpoint
  1556. * command completes. We can't subtract the dropped endpoints from the number
  1557. * of active endpoints until the command completes because we can oversubscribe
  1558. * the host in this case:
  1559. *
  1560. * - the first configure endpoint command drops more endpoints than it adds
  1561. * - a second configure endpoint command that adds more endpoints is queued
  1562. * - the first configure endpoint command fails, so the config is unchanged
  1563. * - the second command may succeed, even though there isn't enough resources
  1564. *
  1565. * Must be called with xhci->lock held.
  1566. */
  1567. static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
  1568. struct xhci_container_ctx *in_ctx)
  1569. {
  1570. u32 added_eps;
  1571. added_eps = xhci_count_num_new_endpoints(xhci, in_ctx);
  1572. if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
  1573. xhci_dbg(xhci, "Not enough ep ctxs: "
  1574. "%u active, need to add %u, limit is %u.\n",
  1575. xhci->num_active_eps, added_eps,
  1576. xhci->limit_active_eps);
  1577. return -ENOMEM;
  1578. }
  1579. xhci->num_active_eps += added_eps;
  1580. xhci_dbg(xhci, "Adding %u ep ctxs, %u now active.\n", added_eps,
  1581. xhci->num_active_eps);
  1582. return 0;
  1583. }
  1584. /*
  1585. * The configure endpoint was failed by the xHC for some other reason, so we
  1586. * need to revert the resources that failed configuration would have used.
  1587. *
  1588. * Must be called with xhci->lock held.
  1589. */
  1590. static void xhci_free_host_resources(struct xhci_hcd *xhci,
  1591. struct xhci_container_ctx *in_ctx)
  1592. {
  1593. u32 num_failed_eps;
  1594. num_failed_eps = xhci_count_num_new_endpoints(xhci, in_ctx);
  1595. xhci->num_active_eps -= num_failed_eps;
  1596. xhci_dbg(xhci, "Removing %u failed ep ctxs, %u now active.\n",
  1597. num_failed_eps,
  1598. xhci->num_active_eps);
  1599. }
  1600. /*
  1601. * Now that the command has completed, clean up the active endpoint count by
  1602. * subtracting out the endpoints that were dropped (but not changed).
  1603. *
  1604. * Must be called with xhci->lock held.
  1605. */
  1606. static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
  1607. struct xhci_container_ctx *in_ctx)
  1608. {
  1609. u32 num_dropped_eps;
  1610. num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, in_ctx);
  1611. xhci->num_active_eps -= num_dropped_eps;
  1612. if (num_dropped_eps)
  1613. xhci_dbg(xhci, "Removing %u dropped ep ctxs, %u now active.\n",
  1614. num_dropped_eps,
  1615. xhci->num_active_eps);
  1616. }
  1617. static unsigned int xhci_get_block_size(struct usb_device *udev)
  1618. {
  1619. switch (udev->speed) {
  1620. case USB_SPEED_LOW:
  1621. case USB_SPEED_FULL:
  1622. return FS_BLOCK;
  1623. case USB_SPEED_HIGH:
  1624. return HS_BLOCK;
  1625. case USB_SPEED_SUPER:
  1626. return SS_BLOCK;
  1627. case USB_SPEED_UNKNOWN:
  1628. case USB_SPEED_WIRELESS:
  1629. default:
  1630. /* Should never happen */
  1631. return 1;
  1632. }
  1633. }
  1634. static unsigned int
  1635. xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
  1636. {
  1637. if (interval_bw->overhead[LS_OVERHEAD_TYPE])
  1638. return LS_OVERHEAD;
  1639. if (interval_bw->overhead[FS_OVERHEAD_TYPE])
  1640. return FS_OVERHEAD;
  1641. return HS_OVERHEAD;
  1642. }
  1643. /* If we are changing a LS/FS device under a HS hub,
  1644. * make sure (if we are activating a new TT) that the HS bus has enough
  1645. * bandwidth for this new TT.
  1646. */
  1647. static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
  1648. struct xhci_virt_device *virt_dev,
  1649. int old_active_eps)
  1650. {
  1651. struct xhci_interval_bw_table *bw_table;
  1652. struct xhci_tt_bw_info *tt_info;
  1653. /* Find the bandwidth table for the root port this TT is attached to. */
  1654. bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table;
  1655. tt_info = virt_dev->tt_info;
  1656. /* If this TT already had active endpoints, the bandwidth for this TT
  1657. * has already been added. Removing all periodic endpoints (and thus
  1658. * making the TT enactive) will only decrease the bandwidth used.
  1659. */
  1660. if (old_active_eps)
  1661. return 0;
  1662. if (old_active_eps == 0 && tt_info->active_eps != 0) {
  1663. if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
  1664. return -ENOMEM;
  1665. return 0;
  1666. }
  1667. /* Not sure why we would have no new active endpoints...
  1668. *
  1669. * Maybe because of an Evaluate Context change for a hub update or a
  1670. * control endpoint 0 max packet size change?
  1671. * FIXME: skip the bandwidth calculation in that case.
  1672. */
  1673. return 0;
  1674. }
  1675. static int xhci_check_ss_bw(struct xhci_hcd *xhci,
  1676. struct xhci_virt_device *virt_dev)
  1677. {
  1678. unsigned int bw_reserved;
  1679. bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
  1680. if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
  1681. return -ENOMEM;
  1682. bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
  1683. if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
  1684. return -ENOMEM;
  1685. return 0;
  1686. }
  1687. /*
  1688. * This algorithm is a very conservative estimate of the worst-case scheduling
  1689. * scenario for any one interval. The hardware dynamically schedules the
  1690. * packets, so we can't tell which microframe could be the limiting factor in
  1691. * the bandwidth scheduling. This only takes into account periodic endpoints.
  1692. *
  1693. * Obviously, we can't solve an NP complete problem to find the minimum worst
  1694. * case scenario. Instead, we come up with an estimate that is no less than
  1695. * the worst case bandwidth used for any one microframe, but may be an
  1696. * over-estimate.
  1697. *
  1698. * We walk the requirements for each endpoint by interval, starting with the
  1699. * smallest interval, and place packets in the schedule where there is only one
  1700. * possible way to schedule packets for that interval. In order to simplify
  1701. * this algorithm, we record the largest max packet size for each interval, and
  1702. * assume all packets will be that size.
  1703. *
  1704. * For interval 0, we obviously must schedule all packets for each interval.
  1705. * The bandwidth for interval 0 is just the amount of data to be transmitted
  1706. * (the sum of all max ESIT payload sizes, plus any overhead per packet times
  1707. * the number of packets).
  1708. *
  1709. * For interval 1, we have two possible microframes to schedule those packets
  1710. * in. For this algorithm, if we can schedule the same number of packets for
  1711. * each possible scheduling opportunity (each microframe), we will do so. The
  1712. * remaining number of packets will be saved to be transmitted in the gaps in
  1713. * the next interval's scheduling sequence.
  1714. *
  1715. * As we move those remaining packets to be scheduled with interval 2 packets,
  1716. * we have to double the number of remaining packets to transmit. This is
  1717. * because the intervals are actually powers of 2, and we would be transmitting
  1718. * the previous interval's packets twice in this interval. We also have to be
  1719. * sure that when we look at the largest max packet size for this interval, we
  1720. * also look at the largest max packet size for the remaining packets and take
  1721. * the greater of the two.
  1722. *
  1723. * The algorithm continues to evenly distribute packets in each scheduling
  1724. * opportunity, and push the remaining packets out, until we get to the last
  1725. * interval. Then those packets and their associated overhead are just added
  1726. * to the bandwidth used.
  1727. */
  1728. static int xhci_check_bw_table(struct xhci_hcd *xhci,
  1729. struct xhci_virt_device *virt_dev,
  1730. int old_active_eps)
  1731. {
  1732. unsigned int bw_reserved;
  1733. unsigned int max_bandwidth;
  1734. unsigned int bw_used;
  1735. unsigned int block_size;
  1736. struct xhci_interval_bw_table *bw_table;
  1737. unsigned int packet_size = 0;
  1738. unsigned int overhead = 0;
  1739. unsigned int packets_transmitted = 0;
  1740. unsigned int packets_remaining = 0;
  1741. unsigned int i;
  1742. if (virt_dev->udev->speed == USB_SPEED_SUPER)
  1743. return xhci_check_ss_bw(xhci, virt_dev);
  1744. if (virt_dev->udev->speed == USB_SPEED_HIGH) {
  1745. max_bandwidth = HS_BW_LIMIT;
  1746. /* Convert percent of bus BW reserved to blocks reserved */
  1747. bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
  1748. } else {
  1749. max_bandwidth = FS_BW_LIMIT;
  1750. bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
  1751. }
  1752. bw_table = virt_dev->bw_table;
  1753. /* We need to translate the max packet size and max ESIT payloads into
  1754. * the units the hardware uses.
  1755. */
  1756. block_size = xhci_get_block_size(virt_dev->udev);
  1757. /* If we are manipulating a LS/FS device under a HS hub, double check
  1758. * that the HS bus has enough bandwidth if we are activing a new TT.
  1759. */
  1760. if (virt_dev->tt_info) {
  1761. xhci_dbg(xhci, "Recalculating BW for rootport %u\n",
  1762. virt_dev->real_port);
  1763. if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
  1764. xhci_warn(xhci, "Not enough bandwidth on HS bus for "
  1765. "newly activated TT.\n");
  1766. return -ENOMEM;
  1767. }
  1768. xhci_dbg(xhci, "Recalculating BW for TT slot %u port %u\n",
  1769. virt_dev->tt_info->slot_id,
  1770. virt_dev->tt_info->ttport);
  1771. } else {
  1772. xhci_dbg(xhci, "Recalculating BW for rootport %u\n",
  1773. virt_dev->real_port);
  1774. }
  1775. /* Add in how much bandwidth will be used for interval zero, or the
  1776. * rounded max ESIT payload + number of packets * largest overhead.
  1777. */
  1778. bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
  1779. bw_table->interval_bw[0].num_packets *
  1780. xhci_get_largest_overhead(&bw_table->interval_bw[0]);
  1781. for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
  1782. unsigned int bw_added;
  1783. unsigned int largest_mps;
  1784. unsigned int interval_overhead;
  1785. /*
  1786. * How many packets could we transmit in this interval?
  1787. * If packets didn't fit in the previous interval, we will need
  1788. * to transmit that many packets twice within this interval.
  1789. */
  1790. packets_remaining = 2 * packets_remaining +
  1791. bw_table->interval_bw[i].num_packets;
  1792. /* Find the largest max packet size of this or the previous
  1793. * interval.
  1794. */
  1795. if (list_empty(&bw_table->interval_bw[i].endpoints))
  1796. largest_mps = 0;
  1797. else {
  1798. struct xhci_virt_ep *virt_ep;
  1799. struct list_head *ep_entry;
  1800. ep_entry = bw_table->interval_bw[i].endpoints.next;
  1801. virt_ep = list_entry(ep_entry,
  1802. struct xhci_virt_ep, bw_endpoint_list);
  1803. /* Convert to blocks, rounding up */
  1804. largest_mps = DIV_ROUND_UP(
  1805. virt_ep->bw_info.max_packet_size,
  1806. block_size);
  1807. }
  1808. if (largest_mps > packet_size)
  1809. packet_size = largest_mps;
  1810. /* Use the larger overhead of this or the previous interval. */
  1811. interval_overhead = xhci_get_largest_overhead(
  1812. &bw_table->interval_bw[i]);
  1813. if (interval_overhead > overhead)
  1814. overhead = interval_overhead;
  1815. /* How many packets can we evenly distribute across
  1816. * (1 << (i + 1)) possible scheduling opportunities?
  1817. */
  1818. packets_transmitted = packets_remaining >> (i + 1);
  1819. /* Add in the bandwidth used for those scheduled packets */
  1820. bw_added = packets_transmitted * (overhead + packet_size);
  1821. /* How many packets do we have remaining to transmit? */
  1822. packets_remaining = packets_remaining % (1 << (i + 1));
  1823. /* What largest max packet size should those packets have? */
  1824. /* If we've transmitted all packets, don't carry over the
  1825. * largest packet size.
  1826. */
  1827. if (packets_remaining == 0) {
  1828. packet_size = 0;
  1829. overhead = 0;
  1830. } else if (packets_transmitted > 0) {
  1831. /* Otherwise if we do have remaining packets, and we've
  1832. * scheduled some packets in this interval, take the
  1833. * largest max packet size from endpoints with this
  1834. * interval.
  1835. */
  1836. packet_size = largest_mps;
  1837. overhead = interval_overhead;
  1838. }
  1839. /* Otherwise carry over packet_size and overhead from the last
  1840. * time we had a remainder.
  1841. */
  1842. bw_used += bw_added;
  1843. if (bw_used > max_bandwidth) {
  1844. xhci_warn(xhci, "Not enough bandwidth. "
  1845. "Proposed: %u, Max: %u\n",
  1846. bw_used, max_bandwidth);
  1847. return -ENOMEM;
  1848. }
  1849. }
  1850. /*
  1851. * Ok, we know we have some packets left over after even-handedly
  1852. * scheduling interval 15. We don't know which microframes they will
  1853. * fit into, so we over-schedule and say they will be scheduled every
  1854. * microframe.
  1855. */
  1856. if (packets_remaining > 0)
  1857. bw_used += overhead + packet_size;
  1858. if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
  1859. unsigned int port_index = virt_dev->real_port - 1;
  1860. /* OK, we're manipulating a HS device attached to a
  1861. * root port bandwidth domain. Include the number of active TTs
  1862. * in the bandwidth used.
  1863. */
  1864. bw_used += TT_HS_OVERHEAD *
  1865. xhci->rh_bw[port_index].num_active_tts;
  1866. }
  1867. xhci_dbg(xhci, "Final bandwidth: %u, Limit: %u, Reserved: %u, "
  1868. "Available: %u " "percent\n",
  1869. bw_used, max_bandwidth, bw_reserved,
  1870. (max_bandwidth - bw_used - bw_reserved) * 100 /
  1871. max_bandwidth);
  1872. bw_used += bw_reserved;
  1873. if (bw_used > max_bandwidth) {
  1874. xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
  1875. bw_used, max_bandwidth);
  1876. return -ENOMEM;
  1877. }
  1878. bw_table->bw_used = bw_used;
  1879. return 0;
  1880. }
  1881. static bool xhci_is_async_ep(unsigned int ep_type)
  1882. {
  1883. return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
  1884. ep_type != ISOC_IN_EP &&
  1885. ep_type != INT_IN_EP);
  1886. }
  1887. static bool xhci_is_sync_in_ep(unsigned int ep_type)
  1888. {
  1889. return (ep_type == ISOC_IN_EP || ep_type != INT_IN_EP);
  1890. }
  1891. static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
  1892. {
  1893. unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
  1894. if (ep_bw->ep_interval == 0)
  1895. return SS_OVERHEAD_BURST +
  1896. (ep_bw->mult * ep_bw->num_packets *
  1897. (SS_OVERHEAD + mps));
  1898. return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
  1899. (SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
  1900. 1 << ep_bw->ep_interval);
  1901. }
  1902. void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
  1903. struct xhci_bw_info *ep_bw,
  1904. struct xhci_interval_bw_table *bw_table,
  1905. struct usb_device *udev,
  1906. struct xhci_virt_ep *virt_ep,
  1907. struct xhci_tt_bw_info *tt_info)
  1908. {
  1909. struct xhci_interval_bw *interval_bw;
  1910. int normalized_interval;
  1911. if (xhci_is_async_ep(ep_bw->type))
  1912. return;
  1913. if (udev->speed == USB_SPEED_SUPER) {
  1914. if (xhci_is_sync_in_ep(ep_bw->type))
  1915. xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
  1916. xhci_get_ss_bw_consumed(ep_bw);
  1917. else
  1918. xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
  1919. xhci_get_ss_bw_consumed(ep_bw);
  1920. return;
  1921. }
  1922. /* SuperSpeed endpoints never get added to intervals in the table, so
  1923. * this check is only valid for HS/FS/LS devices.
  1924. */
  1925. if (list_empty(&virt_ep->bw_endpoint_list))
  1926. return;
  1927. /* For LS/FS devices, we need to translate the interval expressed in
  1928. * microframes to frames.
  1929. */
  1930. if (udev->speed == USB_SPEED_HIGH)
  1931. normalized_interval = ep_bw->ep_interval;
  1932. else
  1933. normalized_interval = ep_bw->ep_interval - 3;
  1934. if (normalized_interval == 0)
  1935. bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
  1936. interval_bw = &bw_table->interval_bw[normalized_interval];
  1937. interval_bw->num_packets -= ep_bw->num_packets;
  1938. switch (udev->speed) {
  1939. case USB_SPEED_LOW:
  1940. interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
  1941. break;
  1942. case USB_SPEED_FULL:
  1943. interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
  1944. break;
  1945. case USB_SPEED_HIGH:
  1946. interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
  1947. break;
  1948. case USB_SPEED_SUPER:
  1949. case USB_SPEED_UNKNOWN:
  1950. case USB_SPEED_WIRELESS:
  1951. /* Should never happen because only LS/FS/HS endpoints will get
  1952. * added to the endpoint list.
  1953. */
  1954. return;
  1955. }
  1956. if (tt_info)
  1957. tt_info->active_eps -= 1;
  1958. list_del_init(&virt_ep->bw_endpoint_list);
  1959. }
  1960. static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
  1961. struct xhci_bw_info *ep_bw,
  1962. struct xhci_interval_bw_table *bw_table,
  1963. struct usb_device *udev,
  1964. struct xhci_virt_ep *virt_ep,
  1965. struct xhci_tt_bw_info *tt_info)
  1966. {
  1967. struct xhci_interval_bw *interval_bw;
  1968. struct xhci_virt_ep *smaller_ep;
  1969. int normalized_interval;
  1970. if (xhci_is_async_ep(ep_bw->type))
  1971. return;
  1972. if (udev->speed == USB_SPEED_SUPER) {
  1973. if (xhci_is_sync_in_ep(ep_bw->type))
  1974. xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
  1975. xhci_get_ss_bw_consumed(ep_bw);
  1976. else
  1977. xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
  1978. xhci_get_ss_bw_consumed(ep_bw);
  1979. return;
  1980. }
  1981. /* For LS/FS devices, we need to translate the interval expressed in
  1982. * microframes to frames.
  1983. */
  1984. if (udev->speed == USB_SPEED_HIGH)
  1985. normalized_interval = ep_bw->ep_interval;
  1986. else
  1987. normalized_interval = ep_bw->ep_interval - 3;
  1988. if (normalized_interval == 0)
  1989. bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
  1990. interval_bw = &bw_table->interval_bw[normalized_interval];
  1991. interval_bw->num_packets += ep_bw->num_packets;
  1992. switch (udev->speed) {
  1993. case USB_SPEED_LOW:
  1994. interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
  1995. break;
  1996. case USB_SPEED_FULL:
  1997. interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
  1998. break;
  1999. case USB_SPEED_HIGH:
  2000. interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
  2001. break;
  2002. case USB_SPEED_SUPER:
  2003. case USB_SPEED_UNKNOWN:
  2004. case USB_SPEED_WIRELESS:
  2005. /* Should never happen because only LS/FS/HS endpoints will get
  2006. * added to the endpoint list.
  2007. */
  2008. return;
  2009. }
  2010. if (tt_info)
  2011. tt_info->active_eps += 1;
  2012. /* Insert the endpoint into the list, largest max packet size first. */
  2013. list_for_each_entry(smaller_ep, &interval_bw->endpoints,
  2014. bw_endpoint_list) {
  2015. if (ep_bw->max_packet_size >=
  2016. smaller_ep->bw_info.max_packet_size) {
  2017. /* Add the new ep before the smaller endpoint */
  2018. list_add_tail(&virt_ep->bw_endpoint_list,
  2019. &smaller_ep->bw_endpoint_list);
  2020. return;
  2021. }
  2022. }
  2023. /* Add the new endpoint at the end of the list. */
  2024. list_add_tail(&virt_ep->bw_endpoint_list,
  2025. &interval_bw->endpoints);
  2026. }
  2027. void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
  2028. struct xhci_virt_device *virt_dev,
  2029. int old_active_eps)
  2030. {
  2031. struct xhci_root_port_bw_info *rh_bw_info;
  2032. if (!virt_dev->tt_info)
  2033. return;
  2034. rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1];
  2035. if (old_active_eps == 0 &&
  2036. virt_dev->tt_info->active_eps != 0) {
  2037. rh_bw_info->num_active_tts += 1;
  2038. rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
  2039. } else if (old_active_eps != 0 &&
  2040. virt_dev->tt_info->active_eps == 0) {
  2041. rh_bw_info->num_active_tts -= 1;
  2042. rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
  2043. }
  2044. }
  2045. static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
  2046. struct xhci_virt_device *virt_dev,
  2047. struct xhci_container_ctx *in_ctx)
  2048. {
  2049. struct xhci_bw_info ep_bw_info[31];
  2050. int i;
  2051. struct xhci_input_control_ctx *ctrl_ctx;
  2052. int old_active_eps = 0;
  2053. if (virt_dev->tt_info)
  2054. old_active_eps = virt_dev->tt_info->active_eps;
  2055. ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
  2056. for (i = 0; i < 31; i++) {
  2057. if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
  2058. continue;
  2059. /* Make a copy of the BW info in case we need to revert this */
  2060. memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
  2061. sizeof(ep_bw_info[i]));
  2062. /* Drop the endpoint from the interval table if the endpoint is
  2063. * being dropped or changed.
  2064. */
  2065. if (EP_IS_DROPPED(ctrl_ctx, i))
  2066. xhci_drop_ep_from_interval_table(xhci,
  2067. &virt_dev->eps[i].bw_info,
  2068. virt_dev->bw_table,
  2069. virt_dev->udev,
  2070. &virt_dev->eps[i],
  2071. virt_dev->tt_info);
  2072. }
  2073. /* Overwrite the information stored in the endpoints' bw_info */
  2074. xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
  2075. for (i = 0; i < 31; i++) {
  2076. /* Add any changed or added endpoints to the interval table */
  2077. if (EP_IS_ADDED(ctrl_ctx, i))
  2078. xhci_add_ep_to_interval_table(xhci,
  2079. &virt_dev->eps[i].bw_info,
  2080. virt_dev->bw_table,
  2081. virt_dev->udev,
  2082. &virt_dev->eps[i],
  2083. virt_dev->tt_info);
  2084. }
  2085. if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
  2086. /* Ok, this fits in the bandwidth we have.
  2087. * Update the number of active TTs.
  2088. */
  2089. xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
  2090. return 0;
  2091. }
  2092. /* We don't have enough bandwidth for this, revert the stored info. */
  2093. for (i = 0; i < 31; i++) {
  2094. if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
  2095. continue;
  2096. /* Drop the new copies of any added or changed endpoints from
  2097. * the interval table.
  2098. */
  2099. if (EP_IS_ADDED(ctrl_ctx, i)) {
  2100. xhci_drop_ep_from_interval_table(xhci,
  2101. &virt_dev->eps[i].bw_info,
  2102. virt_dev->bw_table,
  2103. virt_dev->udev,
  2104. &virt_dev->eps[i],
  2105. virt_dev->tt_info);
  2106. }
  2107. /* Revert the endpoint back to its old information */
  2108. memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
  2109. sizeof(ep_bw_info[i]));
  2110. /* Add any changed or dropped endpoints back into the table */
  2111. if (EP_IS_DROPPED(ctrl_ctx, i))
  2112. xhci_add_ep_to_interval_table(xhci,
  2113. &virt_dev->eps[i].bw_info,
  2114. virt_dev->bw_table,
  2115. virt_dev->udev,
  2116. &virt_dev->eps[i],
  2117. virt_dev->tt_info);
  2118. }
  2119. return -ENOMEM;
  2120. }
  2121. /* Issue a configure endpoint command or evaluate context command
  2122. * and wait for it to finish.
  2123. */
  2124. static int xhci_configure_endpoint(struct xhci_hcd *xhci,
  2125. struct usb_device *udev,
  2126. struct xhci_command *command,
  2127. bool ctx_change, bool must_succeed)
  2128. {
  2129. int ret;
  2130. int timeleft;
  2131. unsigned long flags;
  2132. struct xhci_container_ctx *in_ctx;
  2133. struct completion *cmd_completion;
  2134. u32 *cmd_status;
  2135. struct xhci_virt_device *virt_dev;
  2136. union xhci_trb *cmd_trb;
  2137. spin_lock_irqsave(&xhci->lock, flags);
  2138. virt_dev = xhci->devs[udev->slot_id];
  2139. if (command)
  2140. in_ctx = command->in_ctx;
  2141. else
  2142. in_ctx = virt_dev->in_ctx;
  2143. if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
  2144. xhci_reserve_host_resources(xhci, in_ctx)) {
  2145. spin_unlock_irqrestore(&xhci->lock, flags);
  2146. xhci_warn(xhci, "Not enough host resources, "
  2147. "active endpoint contexts = %u\n",
  2148. xhci->num_active_eps);
  2149. return -ENOMEM;
  2150. }
  2151. if ((xhci->quirks & XHCI_SW_BW_CHECKING) &&
  2152. xhci_reserve_bandwidth(xhci, virt_dev, in_ctx)) {
  2153. if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
  2154. xhci_free_host_resources(xhci, in_ctx);
  2155. spin_unlock_irqrestore(&xhci->lock, flags);
  2156. xhci_warn(xhci, "Not enough bandwidth\n");
  2157. return -ENOMEM;
  2158. }
  2159. if (command) {
  2160. cmd_completion = command->completion;
  2161. cmd_status = &command->status;
  2162. command->command_trb = xhci->cmd_ring->enqueue;
  2163. /* Enqueue pointer can be left pointing to the link TRB,
  2164. * we must handle that
  2165. */
  2166. if (TRB_TYPE_LINK_LE32(command->command_trb->link.control))
  2167. command->command_trb =
  2168. xhci->cmd_ring->enq_seg->next->trbs;
  2169. list_add_tail(&command->cmd_list, &virt_dev->cmd_list);
  2170. } else {
  2171. cmd_completion = &virt_dev->cmd_completion;
  2172. cmd_status = &virt_dev->cmd_status;
  2173. }
  2174. init_completion(cmd_completion);
  2175. cmd_trb = xhci->cmd_ring->dequeue;
  2176. if (!ctx_change)
  2177. ret = xhci_queue_configure_endpoint(xhci, in_ctx->dma,
  2178. udev->slot_id, must_succeed);
  2179. else
  2180. ret = xhci_queue_evaluate_context(xhci, in_ctx->dma,
  2181. udev->slot_id, must_succeed);
  2182. if (ret < 0) {
  2183. if (command)
  2184. list_del(&command->cmd_list);
  2185. if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
  2186. xhci_free_host_resources(xhci, in_ctx);
  2187. spin_unlock_irqrestore(&xhci->lock, flags);
  2188. xhci_dbg(xhci, "FIXME allocate a new ring segment\n");
  2189. return -ENOMEM;
  2190. }
  2191. xhci_ring_cmd_db(xhci);
  2192. spin_unlock_irqrestore(&xhci->lock, flags);
  2193. /* Wait for the configure endpoint command to complete */
  2194. timeleft = wait_for_completion_interruptible_timeout(
  2195. cmd_completion,
  2196. XHCI_CMD_DEFAULT_TIMEOUT);
  2197. if (timeleft <= 0) {
  2198. xhci_warn(xhci, "%s while waiting for %s command\n",
  2199. timeleft == 0 ? "Timeout" : "Signal",
  2200. ctx_change == 0 ?
  2201. "configure endpoint" :
  2202. "evaluate context");
  2203. /* cancel the configure endpoint command */
  2204. ret = xhci_cancel_cmd(xhci, command, cmd_trb);
  2205. if (ret < 0)
  2206. return ret;
  2207. return -ETIME;
  2208. }
  2209. if (!ctx_change)
  2210. ret = xhci_configure_endpoint_result(xhci, udev, cmd_status);
  2211. else
  2212. ret = xhci_evaluate_context_result(xhci, udev, cmd_status);
  2213. if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
  2214. spin_lock_irqsave(&xhci->lock, flags);
  2215. /* If the command failed, remove the reserved resources.
  2216. * Otherwise, clean up the estimate to include dropped eps.
  2217. */
  2218. if (ret)
  2219. xhci_free_host_resources(xhci, in_ctx);
  2220. else
  2221. xhci_finish_resource_reservation(xhci, in_ctx);
  2222. spin_unlock_irqrestore(&xhci->lock, flags);
  2223. }
  2224. return ret;
  2225. }
  2226. /* Called after one or more calls to xhci_add_endpoint() or
  2227. * xhci_drop_endpoint(). If this call fails, the USB core is expected
  2228. * to call xhci_reset_bandwidth().
  2229. *
  2230. * Since we are in the middle of changing either configuration or
  2231. * installing a new alt setting, the USB core won't allow URBs to be
  2232. * enqueued for any endpoint on the old config or interface. Nothing
  2233. * else should be touching the xhci->devs[slot_id] structure, so we
  2234. * don't need to take the xhci->lock for manipulating that.
  2235. */
  2236. int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
  2237. {
  2238. int i;
  2239. int ret = 0;
  2240. struct xhci_hcd *xhci;
  2241. struct xhci_virt_device *virt_dev;
  2242. struct xhci_input_control_ctx *ctrl_ctx;
  2243. struct xhci_slot_ctx *slot_ctx;
  2244. ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
  2245. if (ret <= 0)
  2246. return ret;
  2247. xhci = hcd_to_xhci(hcd);
  2248. if (xhci->xhc_state & XHCI_STATE_DYING)
  2249. return -ENODEV;
  2250. xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
  2251. virt_dev = xhci->devs[udev->slot_id];
  2252. /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
  2253. ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
  2254. ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
  2255. ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
  2256. ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
  2257. /* Don't issue the command if there's no endpoints to update. */
  2258. if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
  2259. ctrl_ctx->drop_flags == 0)
  2260. return 0;
  2261. xhci_dbg(xhci, "New Input Control Context:\n");
  2262. slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
  2263. xhci_dbg_ctx(xhci, virt_dev->in_ctx,
  2264. LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
  2265. ret = xhci_configure_endpoint(xhci, udev, NULL,
  2266. false, false);
  2267. if (ret) {
  2268. /* Callee should call reset_bandwidth() */
  2269. return ret;
  2270. }
  2271. xhci_dbg(xhci, "Output context after successful config ep cmd:\n");
  2272. xhci_dbg_ctx(xhci, virt_dev->out_ctx,
  2273. LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
  2274. /* Free any rings that were dropped, but not changed. */
  2275. for (i = 1; i < 31; ++i) {
  2276. if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
  2277. !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1))))
  2278. xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
  2279. }
  2280. xhci_zero_in_ctx(xhci, virt_dev);
  2281. /*
  2282. * Install any rings for completely new endpoints or changed endpoints,
  2283. * and free or cache any old rings from changed endpoints.
  2284. */
  2285. for (i = 1; i < 31; ++i) {
  2286. if (!virt_dev->eps[i].new_ring)
  2287. continue;
  2288. /* Only cache or free the old ring if it exists.
  2289. * It may not if this is the first add of an endpoint.
  2290. */
  2291. if (virt_dev->eps[i].ring) {
  2292. xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
  2293. }
  2294. virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
  2295. virt_dev->eps[i].new_ring = NULL;
  2296. }
  2297. return ret;
  2298. }
  2299. void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
  2300. {
  2301. struct xhci_hcd *xhci;
  2302. struct xhci_virt_device *virt_dev;
  2303. int i, ret;
  2304. ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
  2305. if (ret <= 0)
  2306. return;
  2307. xhci = hcd_to_xhci(hcd);
  2308. xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
  2309. virt_dev = xhci->devs[udev->slot_id];
  2310. /* Free any rings allocated for added endpoints */
  2311. for (i = 0; i < 31; ++i) {
  2312. if (virt_dev->eps[i].new_ring) {
  2313. xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
  2314. virt_dev->eps[i].new_ring = NULL;
  2315. }
  2316. }
  2317. xhci_zero_in_ctx(xhci, virt_dev);
  2318. }
  2319. static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
  2320. struct xhci_container_ctx *in_ctx,
  2321. struct xhci_container_ctx *out_ctx,
  2322. u32 add_flags, u32 drop_flags)
  2323. {
  2324. struct xhci_input_control_ctx *ctrl_ctx;
  2325. ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
  2326. ctrl_ctx->add_flags = cpu_to_le32(add_flags);
  2327. ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
  2328. xhci_slot_copy(xhci, in_ctx, out_ctx);
  2329. ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
  2330. xhci_dbg(xhci, "Input Context:\n");
  2331. xhci_dbg_ctx(xhci, in_ctx, xhci_last_valid_endpoint(add_flags));
  2332. }
  2333. static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci,
  2334. unsigned int slot_id, unsigned int ep_index,
  2335. struct xhci_dequeue_state *deq_state)
  2336. {
  2337. struct xhci_container_ctx *in_ctx;
  2338. struct xhci_ep_ctx *ep_ctx;
  2339. u32 added_ctxs;
  2340. dma_addr_t addr;
  2341. xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
  2342. xhci->devs[slot_id]->out_ctx, ep_index);
  2343. in_ctx = xhci->devs[slot_id]->in_ctx;
  2344. ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
  2345. addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg,
  2346. deq_state->new_deq_ptr);
  2347. if (addr == 0) {
  2348. xhci_warn(xhci, "WARN Cannot submit config ep after "
  2349. "reset ep command\n");
  2350. xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n",
  2351. deq_state->new_deq_seg,
  2352. deq_state->new_deq_ptr);
  2353. return;
  2354. }
  2355. ep_ctx->deq = cpu_to_le64(addr | deq_state->new_cycle_state);
  2356. added_ctxs = xhci_get_endpoint_flag_from_index(ep_index);
  2357. xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx,
  2358. xhci->devs[slot_id]->out_ctx, added_ctxs, added_ctxs);
  2359. }
  2360. void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci,
  2361. struct usb_device *udev, unsigned int ep_index)
  2362. {
  2363. struct xhci_dequeue_state deq_state;
  2364. struct xhci_virt_ep *ep;
  2365. xhci_dbg(xhci, "Cleaning up stalled endpoint ring\n");
  2366. ep = &xhci->devs[udev->slot_id]->eps[ep_index];
  2367. /* We need to move the HW's dequeue pointer past this TD,
  2368. * or it will attempt to resend it on the next doorbell ring.
  2369. */
  2370. xhci_find_new_dequeue_state(xhci, udev->slot_id,
  2371. ep_index, ep->stopped_stream, ep->stopped_td,
  2372. &deq_state);
  2373. /* HW with the reset endpoint quirk will use the saved dequeue state to
  2374. * issue a configure endpoint command later.
  2375. */
  2376. if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) {
  2377. xhci_dbg(xhci, "Queueing new dequeue state\n");
  2378. xhci_queue_new_dequeue_state(xhci, udev->slot_id,
  2379. ep_index, ep->stopped_stream, &deq_state);
  2380. } else {
  2381. /* Better hope no one uses the input context between now and the
  2382. * reset endpoint completion!
  2383. * XXX: No idea how this hardware will react when stream rings
  2384. * are enabled.
  2385. */
  2386. xhci_dbg(xhci, "Setting up input context for "
  2387. "configure endpoint command\n");
  2388. xhci_setup_input_ctx_for_quirk(xhci, udev->slot_id,
  2389. ep_index, &deq_state);
  2390. }
  2391. }
  2392. /* Deal with stalled endpoints. The core should have sent the control message
  2393. * to clear the halt condition. However, we need to make the xHCI hardware
  2394. * reset its sequence number, since a device will expect a sequence number of
  2395. * zero after the halt condition is cleared.
  2396. * Context: in_interrupt
  2397. */
  2398. void xhci_endpoint_reset(struct usb_hcd *hcd,
  2399. struct usb_host_endpoint *ep)
  2400. {
  2401. struct xhci_hcd *xhci;
  2402. struct usb_device *udev;
  2403. unsigned int ep_index;
  2404. unsigned long flags;
  2405. int ret;
  2406. struct xhci_virt_ep *virt_ep;
  2407. xhci = hcd_to_xhci(hcd);
  2408. udev = (struct usb_device *) ep->hcpriv;
  2409. /* Called with a root hub endpoint (or an endpoint that wasn't added
  2410. * with xhci_add_endpoint()
  2411. */
  2412. if (!ep->hcpriv)
  2413. return;
  2414. ep_index = xhci_get_endpoint_index(&ep->desc);
  2415. virt_ep = &xhci->devs[udev->slot_id]->eps[ep_index];
  2416. if (!virt_ep->stopped_td) {
  2417. xhci_dbg(xhci, "Endpoint 0x%x not halted, refusing to reset.\n",
  2418. ep->desc.bEndpointAddress);
  2419. return;
  2420. }
  2421. if (usb_endpoint_xfer_control(&ep->desc)) {
  2422. xhci_dbg(xhci, "Control endpoint stall already handled.\n");
  2423. return;
  2424. }
  2425. xhci_dbg(xhci, "Queueing reset endpoint command\n");
  2426. spin_lock_irqsave(&xhci->lock, flags);
  2427. ret = xhci_queue_reset_ep(xhci, udev->slot_id, ep_index);
  2428. /*
  2429. * Can't change the ring dequeue pointer until it's transitioned to the
  2430. * stopped state, which is only upon a successful reset endpoint
  2431. * command. Better hope that last command worked!
  2432. */
  2433. if (!ret) {
  2434. xhci_cleanup_stalled_ring(xhci, udev, ep_index);
  2435. kfree(virt_ep->stopped_td);
  2436. xhci_ring_cmd_db(xhci);
  2437. }
  2438. virt_ep->stopped_td = NULL;
  2439. virt_ep->stopped_trb = NULL;
  2440. virt_ep->stopped_stream = 0;
  2441. spin_unlock_irqrestore(&xhci->lock, flags);
  2442. if (ret)
  2443. xhci_warn(xhci, "FIXME allocate a new ring segment\n");
  2444. }
  2445. static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
  2446. struct usb_device *udev, struct usb_host_endpoint *ep,
  2447. unsigned int slot_id)
  2448. {
  2449. int ret;
  2450. unsigned int ep_index;
  2451. unsigned int ep_state;
  2452. if (!ep)
  2453. return -EINVAL;
  2454. ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
  2455. if (ret <= 0)
  2456. return -EINVAL;
  2457. if (ep->ss_ep_comp.bmAttributes == 0) {
  2458. xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
  2459. " descriptor for ep 0x%x does not support streams\n",
  2460. ep->desc.bEndpointAddress);
  2461. return -EINVAL;
  2462. }
  2463. ep_index = xhci_get_endpoint_index(&ep->desc);
  2464. ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
  2465. if (ep_state & EP_HAS_STREAMS ||
  2466. ep_state & EP_GETTING_STREAMS) {
  2467. xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
  2468. "already has streams set up.\n",
  2469. ep->desc.bEndpointAddress);
  2470. xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
  2471. "dynamic stream context array reallocation.\n");
  2472. return -EINVAL;
  2473. }
  2474. if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
  2475. xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
  2476. "endpoint 0x%x; URBs are pending.\n",
  2477. ep->desc.bEndpointAddress);
  2478. return -EINVAL;
  2479. }
  2480. return 0;
  2481. }
  2482. static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
  2483. unsigned int *num_streams, unsigned int *num_stream_ctxs)
  2484. {
  2485. unsigned int max_streams;
  2486. /* The stream context array size must be a power of two */
  2487. *num_stream_ctxs = roundup_pow_of_two(*num_streams);
  2488. /*
  2489. * Find out how many primary stream array entries the host controller
  2490. * supports. Later we may use secondary stream arrays (similar to 2nd
  2491. * level page entries), but that's an optional feature for xHCI host
  2492. * controllers. xHCs must support at least 4 stream IDs.
  2493. */
  2494. max_streams = HCC_MAX_PSA(xhci->hcc_params);
  2495. if (*num_stream_ctxs > max_streams) {
  2496. xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
  2497. max_streams);
  2498. *num_stream_ctxs = max_streams;
  2499. *num_streams = max_streams;
  2500. }
  2501. }
  2502. /* Returns an error code if one of the endpoint already has streams.
  2503. * This does not change any data structures, it only checks and gathers
  2504. * information.
  2505. */
  2506. static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
  2507. struct usb_device *udev,
  2508. struct usb_host_endpoint **eps, unsigned int num_eps,
  2509. unsigned int *num_streams, u32 *changed_ep_bitmask)
  2510. {
  2511. unsigned int max_streams;
  2512. unsigned int endpoint_flag;
  2513. int i;
  2514. int ret;
  2515. for (i = 0; i < num_eps; i++) {
  2516. ret = xhci_check_streams_endpoint(xhci, udev,
  2517. eps[i], udev->slot_id);
  2518. if (ret < 0)
  2519. return ret;
  2520. max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
  2521. if (max_streams < (*num_streams - 1)) {
  2522. xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
  2523. eps[i]->desc.bEndpointAddress,
  2524. max_streams);
  2525. *num_streams = max_streams+1;
  2526. }
  2527. endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
  2528. if (*changed_ep_bitmask & endpoint_flag)
  2529. return -EINVAL;
  2530. *changed_ep_bitmask |= endpoint_flag;
  2531. }
  2532. return 0;
  2533. }
  2534. static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
  2535. struct usb_device *udev,
  2536. struct usb_host_endpoint **eps, unsigned int num_eps)
  2537. {
  2538. u32 changed_ep_bitmask = 0;
  2539. unsigned int slot_id;
  2540. unsigned int ep_index;
  2541. unsigned int ep_state;
  2542. int i;
  2543. slot_id = udev->slot_id;
  2544. if (!xhci->devs[slot_id])
  2545. return 0;
  2546. for (i = 0; i < num_eps; i++) {
  2547. ep_index = xhci_get_endpoint_index(&eps[i]->desc);
  2548. ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
  2549. /* Are streams already being freed for the endpoint? */
  2550. if (ep_state & EP_GETTING_NO_STREAMS) {
  2551. xhci_warn(xhci, "WARN Can't disable streams for "
  2552. "endpoint 0x%x\n, "
  2553. "streams are being disabled already.",
  2554. eps[i]->desc.bEndpointAddress);
  2555. return 0;
  2556. }
  2557. /* Are there actually any streams to free? */
  2558. if (!(ep_state & EP_HAS_STREAMS) &&
  2559. !(ep_state & EP_GETTING_STREAMS)) {
  2560. xhci_warn(xhci, "WARN Can't disable streams for "
  2561. "endpoint 0x%x\n, "
  2562. "streams are already disabled!",
  2563. eps[i]->desc.bEndpointAddress);
  2564. xhci_warn(xhci, "WARN xhci_free_streams() called "
  2565. "with non-streams endpoint\n");
  2566. return 0;
  2567. }
  2568. changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
  2569. }
  2570. return changed_ep_bitmask;
  2571. }
  2572. /*
  2573. * The USB device drivers use this function (though the HCD interface in USB
  2574. * core) to prepare a set of bulk endpoints to use streams. Streams are used to
  2575. * coordinate mass storage command queueing across multiple endpoints (basically
  2576. * a stream ID == a task ID).
  2577. *
  2578. * Setting up streams involves allocating the same size stream context array
  2579. * for each endpoint and issuing a configure endpoint command for all endpoints.
  2580. *
  2581. * Don't allow the call to succeed if one endpoint only supports one stream
  2582. * (which means it doesn't support streams at all).
  2583. *
  2584. * Drivers may get less stream IDs than they asked for, if the host controller
  2585. * hardware or endpoints claim they can't support the number of requested
  2586. * stream IDs.
  2587. */
  2588. int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
  2589. struct usb_host_endpoint **eps, unsigned int num_eps,
  2590. unsigned int num_streams, gfp_t mem_flags)
  2591. {
  2592. int i, ret;
  2593. struct xhci_hcd *xhci;
  2594. struct xhci_virt_device *vdev;
  2595. struct xhci_command *config_cmd;
  2596. unsigned int ep_index;
  2597. unsigned int num_stream_ctxs;
  2598. unsigned long flags;
  2599. u32 changed_ep_bitmask = 0;
  2600. if (!eps)
  2601. return -EINVAL;
  2602. /* Add one to the number of streams requested to account for
  2603. * stream 0 that is reserved for xHCI usage.
  2604. */
  2605. num_streams += 1;
  2606. xhci = hcd_to_xhci(hcd);
  2607. xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
  2608. num_streams);
  2609. config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
  2610. if (!config_cmd) {
  2611. xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
  2612. return -ENOMEM;
  2613. }
  2614. /* Check to make sure all endpoints are not already configured for
  2615. * streams. While we're at it, find the maximum number of streams that
  2616. * all the endpoints will support and check for duplicate endpoints.
  2617. */
  2618. spin_lock_irqsave(&xhci->lock, flags);
  2619. ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
  2620. num_eps, &num_streams, &changed_ep_bitmask);
  2621. if (ret < 0) {
  2622. xhci_free_command(xhci, config_cmd);
  2623. spin_unlock_irqrestore(&xhci->lock, flags);
  2624. return ret;
  2625. }
  2626. if (num_streams <= 1) {
  2627. xhci_warn(xhci, "WARN: endpoints can't handle "
  2628. "more than one stream.\n");
  2629. xhci_free_command(xhci, config_cmd);
  2630. spin_unlock_irqrestore(&xhci->lock, flags);
  2631. return -EINVAL;
  2632. }
  2633. vdev = xhci->devs[udev->slot_id];
  2634. /* Mark each endpoint as being in transition, so
  2635. * xhci_urb_enqueue() will reject all URBs.
  2636. */
  2637. for (i = 0; i < num_eps; i++) {
  2638. ep_index = xhci_get_endpoint_index(&eps[i]->desc);
  2639. vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
  2640. }
  2641. spin_unlock_irqrestore(&xhci->lock, flags);
  2642. /* Setup internal data structures and allocate HW data structures for
  2643. * streams (but don't install the HW structures in the input context
  2644. * until we're sure all memory allocation succeeded).
  2645. */
  2646. xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
  2647. xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
  2648. num_stream_ctxs, num_streams);
  2649. for (i = 0; i < num_eps; i++) {
  2650. ep_index = xhci_get_endpoint_index(&eps[i]->desc);
  2651. vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
  2652. num_stream_ctxs,
  2653. num_streams, mem_flags);
  2654. if (!vdev->eps[ep_index].stream_info)
  2655. goto cleanup;
  2656. /* Set maxPstreams in endpoint context and update deq ptr to
  2657. * point to stream context array. FIXME
  2658. */
  2659. }
  2660. /* Set up the input context for a configure endpoint command. */
  2661. for (i = 0; i < num_eps; i++) {
  2662. struct xhci_ep_ctx *ep_ctx;
  2663. ep_index = xhci_get_endpoint_index(&eps[i]->desc);
  2664. ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
  2665. xhci_endpoint_copy(xhci, config_cmd->in_ctx,
  2666. vdev->out_ctx, ep_index);
  2667. xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
  2668. vdev->eps[ep_index].stream_info);
  2669. }
  2670. /* Tell the HW to drop its old copy of the endpoint context info
  2671. * and add the updated copy from the input context.
  2672. */
  2673. xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
  2674. vdev->out_ctx, changed_ep_bitmask, changed_ep_bitmask);
  2675. /* Issue and wait for the configure endpoint command */
  2676. ret = xhci_configure_endpoint(xhci, udev, config_cmd,
  2677. false, false);
  2678. /* xHC rejected the configure endpoint command for some reason, so we
  2679. * leave the old ring intact and free our internal streams data
  2680. * structure.
  2681. */
  2682. if (ret < 0)
  2683. goto cleanup;
  2684. spin_lock_irqsave(&xhci->lock, flags);
  2685. for (i = 0; i < num_eps; i++) {
  2686. ep_index = xhci_get_endpoint_index(&eps[i]->desc);
  2687. vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
  2688. xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
  2689. udev->slot_id, ep_index);
  2690. vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
  2691. }
  2692. xhci_free_command(xhci, config_cmd);
  2693. spin_unlock_irqrestore(&xhci->lock, flags);
  2694. /* Subtract 1 for stream 0, which drivers can't use */
  2695. return num_streams - 1;
  2696. cleanup:
  2697. /* If it didn't work, free the streams! */
  2698. for (i = 0; i < num_eps; i++) {
  2699. ep_index = xhci_get_endpoint_index(&eps[i]->desc);
  2700. xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
  2701. vdev->eps[ep_index].stream_info = NULL;
  2702. /* FIXME Unset maxPstreams in endpoint context and
  2703. * update deq ptr to point to normal string ring.
  2704. */
  2705. vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
  2706. vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
  2707. xhci_endpoint_zero(xhci, vdev, eps[i]);
  2708. }
  2709. xhci_free_command(xhci, config_cmd);
  2710. return -ENOMEM;
  2711. }
  2712. /* Transition the endpoint from using streams to being a "normal" endpoint
  2713. * without streams.
  2714. *
  2715. * Modify the endpoint context state, submit a configure endpoint command,
  2716. * and free all endpoint rings for streams if that completes successfully.
  2717. */
  2718. int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
  2719. struct usb_host_endpoint **eps, unsigned int num_eps,
  2720. gfp_t mem_flags)
  2721. {
  2722. int i, ret;
  2723. struct xhci_hcd *xhci;
  2724. struct xhci_virt_device *vdev;
  2725. struct xhci_command *command;
  2726. unsigned int ep_index;
  2727. unsigned long flags;
  2728. u32 changed_ep_bitmask;
  2729. xhci = hcd_to_xhci(hcd);
  2730. vdev = xhci->devs[udev->slot_id];
  2731. /* Set up a configure endpoint command to remove the streams rings */
  2732. spin_lock_irqsave(&xhci->lock, flags);
  2733. changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
  2734. udev, eps, num_eps);
  2735. if (changed_ep_bitmask == 0) {
  2736. spin_unlock_irqrestore(&xhci->lock, flags);
  2737. return -EINVAL;
  2738. }
  2739. /* Use the xhci_command structure from the first endpoint. We may have
  2740. * allocated too many, but the driver may call xhci_free_streams() for
  2741. * each endpoint it grouped into one call to xhci_alloc_streams().
  2742. */
  2743. ep_index = xhci_get_endpoint_index(&eps[0]->desc);
  2744. command = vdev->eps[ep_index].stream_info->free_streams_command;
  2745. for (i = 0; i < num_eps; i++) {
  2746. struct xhci_ep_ctx *ep_ctx;
  2747. ep_index = xhci_get_endpoint_index(&eps[i]->desc);
  2748. ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
  2749. xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
  2750. EP_GETTING_NO_STREAMS;
  2751. xhci_endpoint_copy(xhci, command->in_ctx,
  2752. vdev->out_ctx, ep_index);
  2753. xhci_setup_no_streams_ep_input_ctx(xhci, ep_ctx,
  2754. &vdev->eps[ep_index]);
  2755. }
  2756. xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
  2757. vdev->out_ctx, changed_ep_bitmask, changed_ep_bitmask);
  2758. spin_unlock_irqrestore(&xhci->lock, flags);
  2759. /* Issue and wait for the configure endpoint command,
  2760. * which must succeed.
  2761. */
  2762. ret = xhci_configure_endpoint(xhci, udev, command,
  2763. false, true);
  2764. /* xHC rejected the configure endpoint command for some reason, so we
  2765. * leave the streams rings intact.
  2766. */
  2767. if (ret < 0)
  2768. return ret;
  2769. spin_lock_irqsave(&xhci->lock, flags);
  2770. for (i = 0; i < num_eps; i++) {
  2771. ep_index = xhci_get_endpoint_index(&eps[i]->desc);
  2772. xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
  2773. vdev->eps[ep_index].stream_info = NULL;
  2774. /* FIXME Unset maxPstreams in endpoint context and
  2775. * update deq ptr to point to normal string ring.
  2776. */
  2777. vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
  2778. vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
  2779. }
  2780. spin_unlock_irqrestore(&xhci->lock, flags);
  2781. return 0;
  2782. }
  2783. /*
  2784. * Deletes endpoint resources for endpoints that were active before a Reset
  2785. * Device command, or a Disable Slot command. The Reset Device command leaves
  2786. * the control endpoint intact, whereas the Disable Slot command deletes it.
  2787. *
  2788. * Must be called with xhci->lock held.
  2789. */
  2790. void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
  2791. struct xhci_virt_device *virt_dev, bool drop_control_ep)
  2792. {
  2793. int i;
  2794. unsigned int num_dropped_eps = 0;
  2795. unsigned int drop_flags = 0;
  2796. for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
  2797. if (virt_dev->eps[i].ring) {
  2798. drop_flags |= 1 << i;
  2799. num_dropped_eps++;
  2800. }
  2801. }
  2802. xhci->num_active_eps -= num_dropped_eps;
  2803. if (num_dropped_eps)
  2804. xhci_dbg(xhci, "Dropped %u ep ctxs, flags = 0x%x, "
  2805. "%u now active.\n",
  2806. num_dropped_eps, drop_flags,
  2807. xhci->num_active_eps);
  2808. }
  2809. /*
  2810. * This submits a Reset Device Command, which will set the device state to 0,
  2811. * set the device address to 0, and disable all the endpoints except the default
  2812. * control endpoint. The USB core should come back and call
  2813. * xhci_address_device(), and then re-set up the configuration. If this is
  2814. * called because of a usb_reset_and_verify_device(), then the old alternate
  2815. * settings will be re-installed through the normal bandwidth allocation
  2816. * functions.
  2817. *
  2818. * Wait for the Reset Device command to finish. Remove all structures
  2819. * associated with the endpoints that were disabled. Clear the input device
  2820. * structure? Cache the rings? Reset the control endpoint 0 max packet size?
  2821. *
  2822. * If the virt_dev to be reset does not exist or does not match the udev,
  2823. * it means the device is lost, possibly due to the xHC restore error and
  2824. * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
  2825. * re-allocate the device.
  2826. */
  2827. int xhci_discover_or_reset_device(struct usb_hcd *hcd, struct usb_device *udev)
  2828. {
  2829. int ret, i;
  2830. unsigned long flags;
  2831. struct xhci_hcd *xhci;
  2832. unsigned int slot_id;
  2833. struct xhci_virt_device *virt_dev;
  2834. struct xhci_command *reset_device_cmd;
  2835. int timeleft;
  2836. int last_freed_endpoint;
  2837. struct xhci_slot_ctx *slot_ctx;
  2838. int old_active_eps = 0;
  2839. ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
  2840. if (ret <= 0)
  2841. return ret;
  2842. xhci = hcd_to_xhci(hcd);
  2843. slot_id = udev->slot_id;
  2844. virt_dev = xhci->devs[slot_id];
  2845. if (!virt_dev) {
  2846. xhci_dbg(xhci, "The device to be reset with slot ID %u does "
  2847. "not exist. Re-allocate the device\n", slot_id);
  2848. ret = xhci_alloc_dev(hcd, udev);
  2849. if (ret == 1)
  2850. return 0;
  2851. else
  2852. return -EINVAL;
  2853. }
  2854. if (virt_dev->udev != udev) {
  2855. /* If the virt_dev and the udev does not match, this virt_dev
  2856. * may belong to another udev.
  2857. * Re-allocate the device.
  2858. */
  2859. xhci_dbg(xhci, "The device to be reset with slot ID %u does "
  2860. "not match the udev. Re-allocate the device\n",
  2861. slot_id);
  2862. ret = xhci_alloc_dev(hcd, udev);
  2863. if (ret == 1)
  2864. return 0;
  2865. else
  2866. return -EINVAL;
  2867. }
  2868. /* If device is not setup, there is no point in resetting it */
  2869. slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
  2870. if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
  2871. SLOT_STATE_DISABLED)
  2872. return 0;
  2873. xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
  2874. /* Allocate the command structure that holds the struct completion.
  2875. * Assume we're in process context, since the normal device reset
  2876. * process has to wait for the device anyway. Storage devices are
  2877. * reset as part of error handling, so use GFP_NOIO instead of
  2878. * GFP_KERNEL.
  2879. */
  2880. reset_device_cmd = xhci_alloc_command(xhci, false, true, GFP_NOIO);
  2881. if (!reset_device_cmd) {
  2882. xhci_dbg(xhci, "Couldn't allocate command structure.\n");
  2883. return -ENOMEM;
  2884. }
  2885. /* Attempt to submit the Reset Device command to the command ring */
  2886. spin_lock_irqsave(&xhci->lock, flags);
  2887. reset_device_cmd->command_trb = xhci->cmd_ring->enqueue;
  2888. /* Enqueue pointer can be left pointing to the link TRB,
  2889. * we must handle that
  2890. */
  2891. if (TRB_TYPE_LINK_LE32(reset_device_cmd->command_trb->link.control))
  2892. reset_device_cmd->command_trb =
  2893. xhci->cmd_ring->enq_seg->next->trbs;
  2894. list_add_tail(&reset_device_cmd->cmd_list, &virt_dev->cmd_list);
  2895. ret = xhci_queue_reset_device(xhci, slot_id);
  2896. if (ret) {
  2897. xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
  2898. list_del(&reset_device_cmd->cmd_list);
  2899. spin_unlock_irqrestore(&xhci->lock, flags);
  2900. goto command_cleanup;
  2901. }
  2902. xhci_ring_cmd_db(xhci);
  2903. spin_unlock_irqrestore(&xhci->lock, flags);
  2904. /* Wait for the Reset Device command to finish */
  2905. timeleft = wait_for_completion_interruptible_timeout(
  2906. reset_device_cmd->completion,
  2907. USB_CTRL_SET_TIMEOUT);
  2908. if (timeleft <= 0) {
  2909. xhci_warn(xhci, "%s while waiting for reset device command\n",
  2910. timeleft == 0 ? "Timeout" : "Signal");
  2911. spin_lock_irqsave(&xhci->lock, flags);
  2912. /* The timeout might have raced with the event ring handler, so
  2913. * only delete from the list if the item isn't poisoned.
  2914. */
  2915. if (reset_device_cmd->cmd_list.next != LIST_POISON1)
  2916. list_del(&reset_device_cmd->cmd_list);
  2917. spin_unlock_irqrestore(&xhci->lock, flags);
  2918. ret = -ETIME;
  2919. goto command_cleanup;
  2920. }
  2921. /* The Reset Device command can't fail, according to the 0.95/0.96 spec,
  2922. * unless we tried to reset a slot ID that wasn't enabled,
  2923. * or the device wasn't in the addressed or configured state.
  2924. */
  2925. ret = reset_device_cmd->status;
  2926. switch (ret) {
  2927. case COMP_EBADSLT: /* 0.95 completion code for bad slot ID */
  2928. case COMP_CTX_STATE: /* 0.96 completion code for same thing */
  2929. xhci_info(xhci, "Can't reset device (slot ID %u) in %s state\n",
  2930. slot_id,
  2931. xhci_get_slot_state(xhci, virt_dev->out_ctx));
  2932. xhci_info(xhci, "Not freeing device rings.\n");
  2933. /* Don't treat this as an error. May change my mind later. */
  2934. ret = 0;
  2935. goto command_cleanup;
  2936. case COMP_SUCCESS:
  2937. xhci_dbg(xhci, "Successful reset device command.\n");
  2938. break;
  2939. default:
  2940. if (xhci_is_vendor_info_code(xhci, ret))
  2941. break;
  2942. xhci_warn(xhci, "Unknown completion code %u for "
  2943. "reset device command.\n", ret);
  2944. ret = -EINVAL;
  2945. goto command_cleanup;
  2946. }
  2947. /* Free up host controller endpoint resources */
  2948. if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
  2949. spin_lock_irqsave(&xhci->lock, flags);
  2950. /* Don't delete the default control endpoint resources */
  2951. xhci_free_device_endpoint_resources(xhci, virt_dev, false);
  2952. spin_unlock_irqrestore(&xhci->lock, flags);
  2953. }
  2954. /* Everything but endpoint 0 is disabled, so free or cache the rings. */
  2955. last_freed_endpoint = 1;
  2956. for (i = 1; i < 31; ++i) {
  2957. struct xhci_virt_ep *ep = &virt_dev->eps[i];
  2958. if (ep->ep_state & EP_HAS_STREAMS) {
  2959. xhci_free_stream_info(xhci, ep->stream_info);
  2960. ep->stream_info = NULL;
  2961. ep->ep_state &= ~EP_HAS_STREAMS;
  2962. }
  2963. if (ep->ring) {
  2964. xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
  2965. last_freed_endpoint = i;
  2966. }
  2967. if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
  2968. xhci_drop_ep_from_interval_table(xhci,
  2969. &virt_dev->eps[i].bw_info,
  2970. virt_dev->bw_table,
  2971. udev,
  2972. &virt_dev->eps[i],
  2973. virt_dev->tt_info);
  2974. xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
  2975. }
  2976. /* If necessary, update the number of active TTs on this root port */
  2977. xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
  2978. xhci_dbg(xhci, "Output context after successful reset device cmd:\n");
  2979. xhci_dbg_ctx(xhci, virt_dev->out_ctx, last_freed_endpoint);
  2980. ret = 0;
  2981. command_cleanup:
  2982. xhci_free_command(xhci, reset_device_cmd);
  2983. return ret;
  2984. }
  2985. /*
  2986. * At this point, the struct usb_device is about to go away, the device has
  2987. * disconnected, and all traffic has been stopped and the endpoints have been
  2988. * disabled. Free any HC data structures associated with that device.
  2989. */
  2990. void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
  2991. {
  2992. struct xhci_hcd *xhci = hcd_to_xhci(hcd);
  2993. struct xhci_virt_device *virt_dev;
  2994. unsigned long flags;
  2995. u32 state;
  2996. int i, ret;
  2997. ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
  2998. /* If the host is halted due to driver unload, we still need to free the
  2999. * device.
  3000. */
  3001. if (ret <= 0 && ret != -ENODEV)
  3002. return;
  3003. virt_dev = xhci->devs[udev->slot_id];
  3004. /* Stop any wayward timer functions (which may grab the lock) */
  3005. for (i = 0; i < 31; ++i) {
  3006. virt_dev->eps[i].ep_state &= ~EP_HALT_PENDING;
  3007. del_timer_sync(&virt_dev->eps[i].stop_cmd_timer);
  3008. }
  3009. if (udev->usb2_hw_lpm_enabled) {
  3010. xhci_set_usb2_hardware_lpm(hcd, udev, 0);
  3011. udev->usb2_hw_lpm_enabled = 0;
  3012. }
  3013. spin_lock_irqsave(&xhci->lock, flags);
  3014. /* Don't disable the slot if the host controller is dead. */
  3015. state = xhci_readl(xhci, &xhci->op_regs->status);
  3016. if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
  3017. (xhci->xhc_state & XHCI_STATE_HALTED)) {
  3018. xhci_free_virt_device(xhci, udev->slot_id);
  3019. spin_unlock_irqrestore(&xhci->lock, flags);
  3020. return;
  3021. }
  3022. if (xhci_queue_slot_control(xhci, TRB_DISABLE_SLOT, udev->slot_id)) {
  3023. spin_unlock_irqrestore(&xhci->lock, flags);
  3024. xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
  3025. return;
  3026. }
  3027. xhci_ring_cmd_db(xhci);
  3028. spin_unlock_irqrestore(&xhci->lock, flags);
  3029. /*
  3030. * Event command completion handler will free any data structures
  3031. * associated with the slot. XXX Can free sleep?
  3032. */
  3033. }
  3034. /*
  3035. * Checks if we have enough host controller resources for the default control
  3036. * endpoint.
  3037. *
  3038. * Must be called with xhci->lock held.
  3039. */
  3040. static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
  3041. {
  3042. if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
  3043. xhci_dbg(xhci, "Not enough ep ctxs: "
  3044. "%u active, need to add 1, limit is %u.\n",
  3045. xhci->num_active_eps, xhci->limit_active_eps);
  3046. return -ENOMEM;
  3047. }
  3048. xhci->num_active_eps += 1;
  3049. xhci_dbg(xhci, "Adding 1 ep ctx, %u now active.\n",
  3050. xhci->num_active_eps);
  3051. return 0;
  3052. }
  3053. /*
  3054. * Returns 0 if the xHC ran out of device slots, the Enable Slot command
  3055. * timed out, or allocating memory failed. Returns 1 on success.
  3056. */
  3057. int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
  3058. {
  3059. struct xhci_hcd *xhci = hcd_to_xhci(hcd);
  3060. unsigned long flags;
  3061. int timeleft;
  3062. int ret;
  3063. union xhci_trb *cmd_trb;
  3064. spin_lock_irqsave(&xhci->lock, flags);
  3065. cmd_trb = xhci->cmd_ring->dequeue;
  3066. ret = xhci_queue_slot_control(xhci, TRB_ENABLE_SLOT, 0);
  3067. if (ret) {
  3068. spin_unlock_irqrestore(&xhci->lock, flags);
  3069. xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
  3070. return 0;
  3071. }
  3072. xhci_ring_cmd_db(xhci);
  3073. spin_unlock_irqrestore(&xhci->lock, flags);
  3074. /* XXX: how much time for xHC slot assignment? */
  3075. timeleft = wait_for_completion_interruptible_timeout(&xhci->addr_dev,
  3076. XHCI_CMD_DEFAULT_TIMEOUT);
  3077. if (timeleft <= 0) {
  3078. xhci_warn(xhci, "%s while waiting for a slot\n",
  3079. timeleft == 0 ? "Timeout" : "Signal");
  3080. /* cancel the enable slot request */
  3081. return xhci_cancel_cmd(xhci, NULL, cmd_trb);
  3082. }
  3083. if (!xhci->slot_id) {
  3084. xhci_err(xhci, "Error while assigning device slot ID\n");
  3085. return 0;
  3086. }
  3087. if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
  3088. spin_lock_irqsave(&xhci->lock, flags);
  3089. ret = xhci_reserve_host_control_ep_resources(xhci);
  3090. if (ret) {
  3091. spin_unlock_irqrestore(&xhci->lock, flags);
  3092. xhci_warn(xhci, "Not enough host resources, "
  3093. "active endpoint contexts = %u\n",
  3094. xhci->num_active_eps);
  3095. goto disable_slot;
  3096. }
  3097. spin_unlock_irqrestore(&xhci->lock, flags);
  3098. }
  3099. /* Use GFP_NOIO, since this function can be called from
  3100. * xhci_discover_or_reset_device(), which may be called as part of
  3101. * mass storage driver error handling.
  3102. */
  3103. if (!xhci_alloc_virt_device(xhci, xhci->slot_id, udev, GFP_NOIO)) {
  3104. xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
  3105. goto disable_slot;
  3106. }
  3107. udev->slot_id = xhci->slot_id;
  3108. /* Is this a LS or FS device under a HS hub? */
  3109. /* Hub or peripherial? */
  3110. return 1;
  3111. disable_slot:
  3112. /* Disable slot, if we can do it without mem alloc */
  3113. spin_lock_irqsave(&xhci->lock, flags);
  3114. if (!xhci_queue_slot_control(xhci, TRB_DISABLE_SLOT, udev->slot_id))
  3115. xhci_ring_cmd_db(xhci);
  3116. spin_unlock_irqrestore(&xhci->lock, flags);
  3117. return 0;
  3118. }
  3119. /*
  3120. * Issue an Address Device command (which will issue a SetAddress request to
  3121. * the device).
  3122. * We should be protected by the usb_address0_mutex in khubd's hub_port_init, so
  3123. * we should only issue and wait on one address command at the same time.
  3124. *
  3125. * We add one to the device address issued by the hardware because the USB core
  3126. * uses address 1 for the root hubs (even though they're not really devices).
  3127. */
  3128. int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
  3129. {
  3130. unsigned long flags;
  3131. int timeleft;
  3132. struct xhci_virt_device *virt_dev;
  3133. int ret = 0;
  3134. struct xhci_hcd *xhci = hcd_to_xhci(hcd);
  3135. struct xhci_slot_ctx *slot_ctx;
  3136. struct xhci_input_control_ctx *ctrl_ctx;
  3137. u64 temp_64;
  3138. union xhci_trb *cmd_trb;
  3139. if (!udev->slot_id) {
  3140. xhci_dbg(xhci, "Bad Slot ID %d\n", udev->slot_id);
  3141. return -EINVAL;
  3142. }
  3143. virt_dev = xhci->devs[udev->slot_id];
  3144. if (WARN_ON(!virt_dev)) {
  3145. /*
  3146. * In plug/unplug torture test with an NEC controller,
  3147. * a zero-dereference was observed once due to virt_dev = 0.
  3148. * Print useful debug rather than crash if it is observed again!
  3149. */
  3150. xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
  3151. udev->slot_id);
  3152. return -EINVAL;
  3153. }
  3154. slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
  3155. /*
  3156. * If this is the first Set Address since device plug-in or
  3157. * virt_device realloaction after a resume with an xHCI power loss,
  3158. * then set up the slot context.
  3159. */
  3160. if (!slot_ctx->dev_info)
  3161. xhci_setup_addressable_virt_dev(xhci, udev);
  3162. /* Otherwise, update the control endpoint ring enqueue pointer. */
  3163. else
  3164. xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
  3165. ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
  3166. ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
  3167. ctrl_ctx->drop_flags = 0;
  3168. xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
  3169. xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
  3170. spin_lock_irqsave(&xhci->lock, flags);
  3171. cmd_trb = xhci->cmd_ring->dequeue;
  3172. ret = xhci_queue_address_device(xhci, virt_dev->in_ctx->dma,
  3173. udev->slot_id);
  3174. if (ret) {
  3175. spin_unlock_irqrestore(&xhci->lock, flags);
  3176. xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
  3177. return ret;
  3178. }
  3179. xhci_ring_cmd_db(xhci);
  3180. spin_unlock_irqrestore(&xhci->lock, flags);
  3181. /* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
  3182. timeleft = wait_for_completion_interruptible_timeout(&xhci->addr_dev,
  3183. XHCI_CMD_DEFAULT_TIMEOUT);
  3184. /* FIXME: From section 4.3.4: "Software shall be responsible for timing
  3185. * the SetAddress() "recovery interval" required by USB and aborting the
  3186. * command on a timeout.
  3187. */
  3188. if (timeleft <= 0) {
  3189. xhci_warn(xhci, "%s while waiting for address device command\n",
  3190. timeleft == 0 ? "Timeout" : "Signal");
  3191. /* cancel the address device command */
  3192. ret = xhci_cancel_cmd(xhci, NULL, cmd_trb);
  3193. if (ret < 0)
  3194. return ret;
  3195. return -ETIME;
  3196. }
  3197. switch (virt_dev->cmd_status) {
  3198. case COMP_CTX_STATE:
  3199. case COMP_EBADSLT:
  3200. xhci_err(xhci, "Setup ERROR: address device command for slot %d.\n",
  3201. udev->slot_id);
  3202. ret = -EINVAL;
  3203. break;
  3204. case COMP_TX_ERR:
  3205. dev_warn(&udev->dev, "Device not responding to set address.\n");
  3206. ret = -EPROTO;
  3207. break;
  3208. case COMP_DEV_ERR:
  3209. dev_warn(&udev->dev, "ERROR: Incompatible device for address "
  3210. "device command.\n");
  3211. ret = -ENODEV;
  3212. break;
  3213. case COMP_SUCCESS:
  3214. xhci_dbg(xhci, "Successful Address Device command\n");
  3215. break;
  3216. default:
  3217. xhci_err(xhci, "ERROR: unexpected command completion "
  3218. "code 0x%x.\n", virt_dev->cmd_status);
  3219. xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
  3220. xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
  3221. ret = -EINVAL;
  3222. break;
  3223. }
  3224. if (ret) {
  3225. return ret;
  3226. }
  3227. temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
  3228. xhci_dbg(xhci, "Op regs DCBAA ptr = %#016llx\n", temp_64);
  3229. xhci_dbg(xhci, "Slot ID %d dcbaa entry @%p = %#016llx\n",
  3230. udev->slot_id,
  3231. &xhci->dcbaa->dev_context_ptrs[udev->slot_id],
  3232. (unsigned long long)
  3233. le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
  3234. xhci_dbg(xhci, "Output Context DMA address = %#08llx\n",
  3235. (unsigned long long)virt_dev->out_ctx->dma);
  3236. xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
  3237. xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
  3238. xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
  3239. xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
  3240. /*
  3241. * USB core uses address 1 for the roothubs, so we add one to the
  3242. * address given back to us by the HC.
  3243. */
  3244. slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
  3245. /* Use kernel assigned address for devices; store xHC assigned
  3246. * address locally. */
  3247. virt_dev->address = (le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK)
  3248. + 1;
  3249. /* Zero the input context control for later use */
  3250. ctrl_ctx->add_flags = 0;
  3251. ctrl_ctx->drop_flags = 0;
  3252. xhci_dbg(xhci, "Internal device address = %d\n", virt_dev->address);
  3253. return 0;
  3254. }
  3255. #ifdef CONFIG_USB_SUSPEND
  3256. /* BESL to HIRD Encoding array for USB2 LPM */
  3257. static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
  3258. 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
  3259. /* Calculate HIRD/BESL for USB2 PORTPMSC*/
  3260. static int xhci_calculate_hird_besl(struct xhci_hcd *xhci,
  3261. struct usb_device *udev)
  3262. {
  3263. int u2del, besl, besl_host;
  3264. int besl_device = 0;
  3265. u32 field;
  3266. u2del = HCS_U2_LATENCY(xhci->hcs_params3);
  3267. field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
  3268. if (field & USB_BESL_SUPPORT) {
  3269. for (besl_host = 0; besl_host < 16; besl_host++) {
  3270. if (xhci_besl_encoding[besl_host] >= u2del)
  3271. break;
  3272. }
  3273. /* Use baseline BESL value as default */
  3274. if (field & USB_BESL_BASELINE_VALID)
  3275. besl_device = USB_GET_BESL_BASELINE(field);
  3276. else if (field & USB_BESL_DEEP_VALID)
  3277. besl_device = USB_GET_BESL_DEEP(field);
  3278. } else {
  3279. if (u2del <= 50)
  3280. besl_host = 0;
  3281. else
  3282. besl_host = (u2del - 51) / 75 + 1;
  3283. }
  3284. besl = besl_host + besl_device;
  3285. if (besl > 15)
  3286. besl = 15;
  3287. return besl;
  3288. }
  3289. static int xhci_usb2_software_lpm_test(struct usb_hcd *hcd,
  3290. struct usb_device *udev)
  3291. {
  3292. struct xhci_hcd *xhci = hcd_to_xhci(hcd);
  3293. struct dev_info *dev_info;
  3294. __le32 __iomem **port_array;
  3295. __le32 __iomem *addr, *pm_addr;
  3296. u32 temp, dev_id;
  3297. unsigned int port_num;
  3298. unsigned long flags;
  3299. int hird;
  3300. int ret;
  3301. if (hcd->speed == HCD_USB3 || !xhci->sw_lpm_support ||
  3302. !udev->lpm_capable)
  3303. return -EINVAL;
  3304. /* we only support lpm for non-hub device connected to root hub yet */
  3305. if (!udev->parent || udev->parent->parent ||
  3306. udev->descriptor.bDeviceClass == USB_CLASS_HUB)
  3307. return -EINVAL;
  3308. spin_lock_irqsave(&xhci->lock, flags);
  3309. /* Look for devices in lpm_failed_devs list */
  3310. dev_id = le16_to_cpu(udev->descriptor.idVendor) << 16 |
  3311. le16_to_cpu(udev->descriptor.idProduct);
  3312. list_for_each_entry(dev_info, &xhci->lpm_failed_devs, list) {
  3313. if (dev_info->dev_id == dev_id) {
  3314. ret = -EINVAL;
  3315. goto finish;
  3316. }
  3317. }
  3318. port_array = xhci->usb2_ports;
  3319. port_num = udev->portnum - 1;
  3320. if (port_num > HCS_MAX_PORTS(xhci->hcs_params1)) {
  3321. xhci_dbg(xhci, "invalid port number %d\n", udev->portnum);
  3322. ret = -EINVAL;
  3323. goto finish;
  3324. }
  3325. /*
  3326. * Test USB 2.0 software LPM.
  3327. * FIXME: some xHCI 1.0 hosts may implement a new register to set up
  3328. * hardware-controlled USB 2.0 LPM. See section 5.4.11 and 4.23.5.1.1.1
  3329. * in the June 2011 errata release.
  3330. */
  3331. xhci_dbg(xhci, "test port %d software LPM\n", port_num);
  3332. /*
  3333. * Set L1 Device Slot and HIRD/BESL.
  3334. * Check device's USB 2.0 extension descriptor to determine whether
  3335. * HIRD or BESL shoule be used. See USB2.0 LPM errata.
  3336. */
  3337. pm_addr = port_array[port_num] + 1;
  3338. hird = xhci_calculate_hird_besl(xhci, udev);
  3339. temp = PORT_L1DS(udev->slot_id) | PORT_HIRD(hird);
  3340. xhci_writel(xhci, temp, pm_addr);
  3341. /* Set port link state to U2(L1) */
  3342. addr = port_array[port_num];
  3343. xhci_set_link_state(xhci, port_array, port_num, XDEV_U2);
  3344. /* wait for ACK */
  3345. spin_unlock_irqrestore(&xhci->lock, flags);
  3346. msleep(10);
  3347. spin_lock_irqsave(&xhci->lock, flags);
  3348. /* Check L1 Status */
  3349. ret = handshake(xhci, pm_addr, PORT_L1S_MASK, PORT_L1S_SUCCESS, 125);
  3350. if (ret != -ETIMEDOUT) {
  3351. /* enter L1 successfully */
  3352. temp = xhci_readl(xhci, addr);
  3353. xhci_dbg(xhci, "port %d entered L1 state, port status 0x%x\n",
  3354. port_num, temp);
  3355. ret = 0;
  3356. } else {
  3357. temp = xhci_readl(xhci, pm_addr);
  3358. xhci_dbg(xhci, "port %d software lpm failed, L1 status %d\n",
  3359. port_num, temp & PORT_L1S_MASK);
  3360. ret = -EINVAL;
  3361. }
  3362. /* Resume the port */
  3363. xhci_set_link_state(xhci, port_array, port_num, XDEV_U0);
  3364. spin_unlock_irqrestore(&xhci->lock, flags);
  3365. msleep(10);
  3366. spin_lock_irqsave(&xhci->lock, flags);
  3367. /* Clear PLC */
  3368. xhci_test_and_clear_bit(xhci, port_array, port_num, PORT_PLC);
  3369. /* Check PORTSC to make sure the device is in the right state */
  3370. if (!ret) {
  3371. temp = xhci_readl(xhci, addr);
  3372. xhci_dbg(xhci, "resumed port %d status 0x%x\n", port_num, temp);
  3373. if (!(temp & PORT_CONNECT) || !(temp & PORT_PE) ||
  3374. (temp & PORT_PLS_MASK) != XDEV_U0) {
  3375. xhci_dbg(xhci, "port L1 resume fail\n");
  3376. ret = -EINVAL;
  3377. }
  3378. }
  3379. if (ret) {
  3380. /* Insert dev to lpm_failed_devs list */
  3381. xhci_warn(xhci, "device LPM test failed, may disconnect and "
  3382. "re-enumerate\n");
  3383. dev_info = kzalloc(sizeof(struct dev_info), GFP_ATOMIC);
  3384. if (!dev_info) {
  3385. ret = -ENOMEM;
  3386. goto finish;
  3387. }
  3388. dev_info->dev_id = dev_id;
  3389. INIT_LIST_HEAD(&dev_info->list);
  3390. list_add(&dev_info->list, &xhci->lpm_failed_devs);
  3391. } else {
  3392. xhci_ring_device(xhci, udev->slot_id);
  3393. }
  3394. finish:
  3395. spin_unlock_irqrestore(&xhci->lock, flags);
  3396. return ret;
  3397. }
  3398. int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
  3399. struct usb_device *udev, int enable)
  3400. {
  3401. struct xhci_hcd *xhci = hcd_to_xhci(hcd);
  3402. __le32 __iomem **port_array;
  3403. __le32 __iomem *pm_addr;
  3404. u32 temp;
  3405. unsigned int port_num;
  3406. unsigned long flags;
  3407. int hird;
  3408. if (hcd->speed == HCD_USB3 || !xhci->hw_lpm_support ||
  3409. !udev->lpm_capable)
  3410. return -EPERM;
  3411. if (!udev->parent || udev->parent->parent ||
  3412. udev->descriptor.bDeviceClass == USB_CLASS_HUB)
  3413. return -EPERM;
  3414. if (udev->usb2_hw_lpm_capable != 1)
  3415. return -EPERM;
  3416. spin_lock_irqsave(&xhci->lock, flags);
  3417. port_array = xhci->usb2_ports;
  3418. port_num = udev->portnum - 1;
  3419. pm_addr = port_array[port_num] + 1;
  3420. temp = xhci_readl(xhci, pm_addr);
  3421. xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
  3422. enable ? "enable" : "disable", port_num);
  3423. hird = xhci_calculate_hird_besl(xhci, udev);
  3424. if (enable) {
  3425. temp &= ~PORT_HIRD_MASK;
  3426. temp |= PORT_HIRD(hird) | PORT_RWE;
  3427. xhci_writel(xhci, temp, pm_addr);
  3428. temp = xhci_readl(xhci, pm_addr);
  3429. temp |= PORT_HLE;
  3430. xhci_writel(xhci, temp, pm_addr);
  3431. } else {
  3432. temp &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK);
  3433. xhci_writel(xhci, temp, pm_addr);
  3434. }
  3435. spin_unlock_irqrestore(&xhci->lock, flags);
  3436. return 0;
  3437. }
  3438. int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
  3439. {
  3440. struct xhci_hcd *xhci = hcd_to_xhci(hcd);
  3441. int ret;
  3442. ret = xhci_usb2_software_lpm_test(hcd, udev);
  3443. if (!ret) {
  3444. xhci_dbg(xhci, "software LPM test succeed\n");
  3445. if (xhci->hw_lpm_support == 1) {
  3446. udev->usb2_hw_lpm_capable = 1;
  3447. ret = xhci_set_usb2_hardware_lpm(hcd, udev, 1);
  3448. if (!ret)
  3449. udev->usb2_hw_lpm_enabled = 1;
  3450. }
  3451. }
  3452. return 0;
  3453. }
  3454. #else
  3455. int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
  3456. struct usb_device *udev, int enable)
  3457. {
  3458. return 0;
  3459. }
  3460. int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
  3461. {
  3462. return 0;
  3463. }
  3464. #endif /* CONFIG_USB_SUSPEND */
  3465. /*---------------------- USB 3.0 Link PM functions ------------------------*/
  3466. #ifdef CONFIG_PM
  3467. /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */
  3468. static unsigned long long xhci_service_interval_to_ns(
  3469. struct usb_endpoint_descriptor *desc)
  3470. {
  3471. return (1 << (desc->bInterval - 1)) * 125 * 1000;
  3472. }
  3473. static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev,
  3474. enum usb3_link_state state)
  3475. {
  3476. unsigned long long sel;
  3477. unsigned long long pel;
  3478. unsigned int max_sel_pel;
  3479. char *state_name;
  3480. switch (state) {
  3481. case USB3_LPM_U1:
  3482. /* Convert SEL and PEL stored in nanoseconds to microseconds */
  3483. sel = DIV_ROUND_UP(udev->u1_params.sel, 1000);
  3484. pel = DIV_ROUND_UP(udev->u1_params.pel, 1000);
  3485. max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL;
  3486. state_name = "U1";
  3487. break;
  3488. case USB3_LPM_U2:
  3489. sel = DIV_ROUND_UP(udev->u2_params.sel, 1000);
  3490. pel = DIV_ROUND_UP(udev->u2_params.pel, 1000);
  3491. max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL;
  3492. state_name = "U2";
  3493. break;
  3494. default:
  3495. dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n",
  3496. __func__);
  3497. return USB3_LPM_DISABLED;
  3498. }
  3499. if (sel <= max_sel_pel && pel <= max_sel_pel)
  3500. return USB3_LPM_DEVICE_INITIATED;
  3501. if (sel > max_sel_pel)
  3502. dev_dbg(&udev->dev, "Device-initiated %s disabled "
  3503. "due to long SEL %llu ms\n",
  3504. state_name, sel);
  3505. else
  3506. dev_dbg(&udev->dev, "Device-initiated %s disabled "
  3507. "due to long PEL %llu\n ms",
  3508. state_name, pel);
  3509. return USB3_LPM_DISABLED;
  3510. }
  3511. /* Returns the hub-encoded U1 timeout value.
  3512. * The U1 timeout should be the maximum of the following values:
  3513. * - For control endpoints, U1 system exit latency (SEL) * 3
  3514. * - For bulk endpoints, U1 SEL * 5
  3515. * - For interrupt endpoints:
  3516. * - Notification EPs, U1 SEL * 3
  3517. * - Periodic EPs, max(105% of bInterval, U1 SEL * 2)
  3518. * - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2)
  3519. */
  3520. static u16 xhci_calculate_intel_u1_timeout(struct usb_device *udev,
  3521. struct usb_endpoint_descriptor *desc)
  3522. {
  3523. unsigned long long timeout_ns;
  3524. int ep_type;
  3525. int intr_type;
  3526. ep_type = usb_endpoint_type(desc);
  3527. switch (ep_type) {
  3528. case USB_ENDPOINT_XFER_CONTROL:
  3529. timeout_ns = udev->u1_params.sel * 3;
  3530. break;
  3531. case USB_ENDPOINT_XFER_BULK:
  3532. timeout_ns = udev->u1_params.sel * 5;
  3533. break;
  3534. case USB_ENDPOINT_XFER_INT:
  3535. intr_type = usb_endpoint_interrupt_type(desc);
  3536. if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) {
  3537. timeout_ns = udev->u1_params.sel * 3;
  3538. break;
  3539. }
  3540. /* Otherwise the calculation is the same as isoc eps */
  3541. case USB_ENDPOINT_XFER_ISOC:
  3542. timeout_ns = xhci_service_interval_to_ns(desc);
  3543. timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100);
  3544. if (timeout_ns < udev->u1_params.sel * 2)
  3545. timeout_ns = udev->u1_params.sel * 2;
  3546. break;
  3547. default:
  3548. return 0;
  3549. }
  3550. /* The U1 timeout is encoded in 1us intervals. */
  3551. timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000);
  3552. /* Don't return a timeout of zero, because that's USB3_LPM_DISABLED. */
  3553. if (timeout_ns == USB3_LPM_DISABLED)
  3554. timeout_ns++;
  3555. /* If the necessary timeout value is bigger than what we can set in the
  3556. * USB 3.0 hub, we have to disable hub-initiated U1.
  3557. */
  3558. if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT)
  3559. return timeout_ns;
  3560. dev_dbg(&udev->dev, "Hub-initiated U1 disabled "
  3561. "due to long timeout %llu ms\n", timeout_ns);
  3562. return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1);
  3563. }
  3564. /* Returns the hub-encoded U2 timeout value.
  3565. * The U2 timeout should be the maximum of:
  3566. * - 10 ms (to avoid the bandwidth impact on the scheduler)
  3567. * - largest bInterval of any active periodic endpoint (to avoid going
  3568. * into lower power link states between intervals).
  3569. * - the U2 Exit Latency of the device
  3570. */
  3571. static u16 xhci_calculate_intel_u2_timeout(struct usb_device *udev,
  3572. struct usb_endpoint_descriptor *desc)
  3573. {
  3574. unsigned long long timeout_ns;
  3575. unsigned long long u2_del_ns;
  3576. timeout_ns = 10 * 1000 * 1000;
  3577. if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) &&
  3578. (xhci_service_interval_to_ns(desc) > timeout_ns))
  3579. timeout_ns = xhci_service_interval_to_ns(desc);
  3580. u2_del_ns = udev->bos->ss_cap->bU2DevExitLat * 1000;
  3581. if (u2_del_ns > timeout_ns)
  3582. timeout_ns = u2_del_ns;
  3583. /* The U2 timeout is encoded in 256us intervals */
  3584. timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000);
  3585. /* If the necessary timeout value is bigger than what we can set in the
  3586. * USB 3.0 hub, we have to disable hub-initiated U2.
  3587. */
  3588. if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT)
  3589. return timeout_ns;
  3590. dev_dbg(&udev->dev, "Hub-initiated U2 disabled "
  3591. "due to long timeout %llu ms\n", timeout_ns);
  3592. return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2);
  3593. }
  3594. static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci,
  3595. struct usb_device *udev,
  3596. struct usb_endpoint_descriptor *desc,
  3597. enum usb3_link_state state,
  3598. u16 *timeout)
  3599. {
  3600. if (state == USB3_LPM_U1) {
  3601. if (xhci->quirks & XHCI_INTEL_HOST)
  3602. return xhci_calculate_intel_u1_timeout(udev, desc);
  3603. } else {
  3604. if (xhci->quirks & XHCI_INTEL_HOST)
  3605. return xhci_calculate_intel_u2_timeout(udev, desc);
  3606. }
  3607. return USB3_LPM_DISABLED;
  3608. }
  3609. static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci,
  3610. struct usb_device *udev,
  3611. struct usb_endpoint_descriptor *desc,
  3612. enum usb3_link_state state,
  3613. u16 *timeout)
  3614. {
  3615. u16 alt_timeout;
  3616. alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev,
  3617. desc, state, timeout);
  3618. /* If we found we can't enable hub-initiated LPM, or
  3619. * the U1 or U2 exit latency was too high to allow
  3620. * device-initiated LPM as well, just stop searching.
  3621. */
  3622. if (alt_timeout == USB3_LPM_DISABLED ||
  3623. alt_timeout == USB3_LPM_DEVICE_INITIATED) {
  3624. *timeout = alt_timeout;
  3625. return -E2BIG;
  3626. }
  3627. if (alt_timeout > *timeout)
  3628. *timeout = alt_timeout;
  3629. return 0;
  3630. }
  3631. static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci,
  3632. struct usb_device *udev,
  3633. struct usb_host_interface *alt,
  3634. enum usb3_link_state state,
  3635. u16 *timeout)
  3636. {
  3637. int j;
  3638. for (j = 0; j < alt->desc.bNumEndpoints; j++) {
  3639. if (xhci_update_timeout_for_endpoint(xhci, udev,
  3640. &alt->endpoint[j].desc, state, timeout))
  3641. return -E2BIG;
  3642. continue;
  3643. }
  3644. return 0;
  3645. }
  3646. static int xhci_check_intel_tier_policy(struct usb_device *udev,
  3647. enum usb3_link_state state)
  3648. {
  3649. struct usb_device *parent;
  3650. unsigned int num_hubs;
  3651. if (state == USB3_LPM_U2)
  3652. return 0;
  3653. /* Don't enable U1 if the device is on a 2nd tier hub or lower. */
  3654. for (parent = udev->parent, num_hubs = 0; parent->parent;
  3655. parent = parent->parent)
  3656. num_hubs++;
  3657. if (num_hubs < 2)
  3658. return 0;
  3659. dev_dbg(&udev->dev, "Disabling U1 link state for device"
  3660. " below second-tier hub.\n");
  3661. dev_dbg(&udev->dev, "Plug device into first-tier hub "
  3662. "to decrease power consumption.\n");
  3663. return -E2BIG;
  3664. }
  3665. static int xhci_check_tier_policy(struct xhci_hcd *xhci,
  3666. struct usb_device *udev,
  3667. enum usb3_link_state state)
  3668. {
  3669. if (xhci->quirks & XHCI_INTEL_HOST)
  3670. return xhci_check_intel_tier_policy(udev, state);
  3671. return -EINVAL;
  3672. }
  3673. /* Returns the U1 or U2 timeout that should be enabled.
  3674. * If the tier check or timeout setting functions return with a non-zero exit
  3675. * code, that means the timeout value has been finalized and we shouldn't look
  3676. * at any more endpoints.
  3677. */
  3678. static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd,
  3679. struct usb_device *udev, enum usb3_link_state state)
  3680. {
  3681. struct xhci_hcd *xhci = hcd_to_xhci(hcd);
  3682. struct usb_host_config *config;
  3683. char *state_name;
  3684. int i;
  3685. u16 timeout = USB3_LPM_DISABLED;
  3686. if (state == USB3_LPM_U1)
  3687. state_name = "U1";
  3688. else if (state == USB3_LPM_U2)
  3689. state_name = "U2";
  3690. else {
  3691. dev_warn(&udev->dev, "Can't enable unknown link state %i\n",
  3692. state);
  3693. return timeout;
  3694. }
  3695. if (xhci_check_tier_policy(xhci, udev, state) < 0)
  3696. return timeout;
  3697. /* Gather some information about the currently installed configuration
  3698. * and alternate interface settings.
  3699. */
  3700. if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc,
  3701. state, &timeout))
  3702. return timeout;
  3703. config = udev->actconfig;
  3704. if (!config)
  3705. return timeout;
  3706. for (i = 0; i < USB_MAXINTERFACES; i++) {
  3707. struct usb_driver *driver;
  3708. struct usb_interface *intf = config->interface[i];
  3709. if (!intf)
  3710. continue;
  3711. /* Check if any currently bound drivers want hub-initiated LPM
  3712. * disabled.
  3713. */
  3714. if (intf->dev.driver) {
  3715. driver = to_usb_driver(intf->dev.driver);
  3716. if (driver && driver->disable_hub_initiated_lpm) {
  3717. dev_dbg(&udev->dev, "Hub-initiated %s disabled "
  3718. "at request of driver %s\n",
  3719. state_name, driver->name);
  3720. return xhci_get_timeout_no_hub_lpm(udev, state);
  3721. }
  3722. }
  3723. /* Not sure how this could happen... */
  3724. if (!intf->cur_altsetting)
  3725. continue;
  3726. if (xhci_update_timeout_for_interface(xhci, udev,
  3727. intf->cur_altsetting,
  3728. state, &timeout))
  3729. return timeout;
  3730. }
  3731. return timeout;
  3732. }
  3733. /*
  3734. * Issue an Evaluate Context command to change the Maximum Exit Latency in the
  3735. * slot context. If that succeeds, store the new MEL in the xhci_virt_device.
  3736. */
  3737. static int xhci_change_max_exit_latency(struct xhci_hcd *xhci,
  3738. struct usb_device *udev, u16 max_exit_latency)
  3739. {
  3740. struct xhci_virt_device *virt_dev;
  3741. struct xhci_command *command;
  3742. struct xhci_input_control_ctx *ctrl_ctx;
  3743. struct xhci_slot_ctx *slot_ctx;
  3744. unsigned long flags;
  3745. int ret;
  3746. spin_lock_irqsave(&xhci->lock, flags);
  3747. if (max_exit_latency == xhci->devs[udev->slot_id]->current_mel) {
  3748. spin_unlock_irqrestore(&xhci->lock, flags);
  3749. return 0;
  3750. }
  3751. /* Attempt to issue an Evaluate Context command to change the MEL. */
  3752. virt_dev = xhci->devs[udev->slot_id];
  3753. command = xhci->lpm_command;
  3754. xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx);
  3755. spin_unlock_irqrestore(&xhci->lock, flags);
  3756. ctrl_ctx = xhci_get_input_control_ctx(xhci, command->in_ctx);
  3757. ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
  3758. slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
  3759. slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT));
  3760. slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency);
  3761. xhci_dbg(xhci, "Set up evaluate context for LPM MEL change.\n");
  3762. xhci_dbg(xhci, "Slot %u Input Context:\n", udev->slot_id);
  3763. xhci_dbg_ctx(xhci, command->in_ctx, 0);
  3764. /* Issue and wait for the evaluate context command. */
  3765. ret = xhci_configure_endpoint(xhci, udev, command,
  3766. true, true);
  3767. xhci_dbg(xhci, "Slot %u Output Context:\n", udev->slot_id);
  3768. xhci_dbg_ctx(xhci, virt_dev->out_ctx, 0);
  3769. if (!ret) {
  3770. spin_lock_irqsave(&xhci->lock, flags);
  3771. virt_dev->current_mel = max_exit_latency;
  3772. spin_unlock_irqrestore(&xhci->lock, flags);
  3773. }
  3774. return ret;
  3775. }
  3776. static int calculate_max_exit_latency(struct usb_device *udev,
  3777. enum usb3_link_state state_changed,
  3778. u16 hub_encoded_timeout)
  3779. {
  3780. unsigned long long u1_mel_us = 0;
  3781. unsigned long long u2_mel_us = 0;
  3782. unsigned long long mel_us = 0;
  3783. bool disabling_u1;
  3784. bool disabling_u2;
  3785. bool enabling_u1;
  3786. bool enabling_u2;
  3787. disabling_u1 = (state_changed == USB3_LPM_U1 &&
  3788. hub_encoded_timeout == USB3_LPM_DISABLED);
  3789. disabling_u2 = (state_changed == USB3_LPM_U2 &&
  3790. hub_encoded_timeout == USB3_LPM_DISABLED);
  3791. enabling_u1 = (state_changed == USB3_LPM_U1 &&
  3792. hub_encoded_timeout != USB3_LPM_DISABLED);
  3793. enabling_u2 = (state_changed == USB3_LPM_U2 &&
  3794. hub_encoded_timeout != USB3_LPM_DISABLED);
  3795. /* If U1 was already enabled and we're not disabling it,
  3796. * or we're going to enable U1, account for the U1 max exit latency.
  3797. */
  3798. if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) ||
  3799. enabling_u1)
  3800. u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000);
  3801. if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) ||
  3802. enabling_u2)
  3803. u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000);
  3804. if (u1_mel_us > u2_mel_us)
  3805. mel_us = u1_mel_us;
  3806. else
  3807. mel_us = u2_mel_us;
  3808. /* xHCI host controller max exit latency field is only 16 bits wide. */
  3809. if (mel_us > MAX_EXIT) {
  3810. dev_warn(&udev->dev, "Link PM max exit latency of %lluus "
  3811. "is too big.\n", mel_us);
  3812. return -E2BIG;
  3813. }
  3814. return mel_us;
  3815. }
  3816. /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */
  3817. int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
  3818. struct usb_device *udev, enum usb3_link_state state)
  3819. {
  3820. struct xhci_hcd *xhci;
  3821. u16 hub_encoded_timeout;
  3822. int mel;
  3823. int ret;
  3824. xhci = hcd_to_xhci(hcd);
  3825. /* The LPM timeout values are pretty host-controller specific, so don't
  3826. * enable hub-initiated timeouts unless the vendor has provided
  3827. * information about their timeout algorithm.
  3828. */
  3829. if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
  3830. !xhci->devs[udev->slot_id])
  3831. return USB3_LPM_DISABLED;
  3832. hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state);
  3833. mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout);
  3834. if (mel < 0) {
  3835. /* Max Exit Latency is too big, disable LPM. */
  3836. hub_encoded_timeout = USB3_LPM_DISABLED;
  3837. mel = 0;
  3838. }
  3839. ret = xhci_change_max_exit_latency(xhci, udev, mel);
  3840. if (ret)
  3841. return ret;
  3842. return hub_encoded_timeout;
  3843. }
  3844. int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
  3845. struct usb_device *udev, enum usb3_link_state state)
  3846. {
  3847. struct xhci_hcd *xhci;
  3848. u16 mel;
  3849. int ret;
  3850. xhci = hcd_to_xhci(hcd);
  3851. if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
  3852. !xhci->devs[udev->slot_id])
  3853. return 0;
  3854. mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED);
  3855. ret = xhci_change_max_exit_latency(xhci, udev, mel);
  3856. if (ret)
  3857. return ret;
  3858. return 0;
  3859. }
  3860. #else /* CONFIG_PM */
  3861. int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
  3862. struct usb_device *udev, enum usb3_link_state state)
  3863. {
  3864. return USB3_LPM_DISABLED;
  3865. }
  3866. int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
  3867. struct usb_device *udev, enum usb3_link_state state)
  3868. {
  3869. return 0;
  3870. }
  3871. #endif /* CONFIG_PM */
  3872. /*-------------------------------------------------------------------------*/
  3873. /* Once a hub descriptor is fetched for a device, we need to update the xHC's
  3874. * internal data structures for the device.
  3875. */
  3876. int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
  3877. struct usb_tt *tt, gfp_t mem_flags)
  3878. {
  3879. struct xhci_hcd *xhci = hcd_to_xhci(hcd);
  3880. struct xhci_virt_device *vdev;
  3881. struct xhci_command *config_cmd;
  3882. struct xhci_input_control_ctx *ctrl_ctx;
  3883. struct xhci_slot_ctx *slot_ctx;
  3884. unsigned long flags;
  3885. unsigned think_time;
  3886. int ret;
  3887. /* Ignore root hubs */
  3888. if (!hdev->parent)
  3889. return 0;
  3890. vdev = xhci->devs[hdev->slot_id];
  3891. if (!vdev) {
  3892. xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
  3893. return -EINVAL;
  3894. }
  3895. config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
  3896. if (!config_cmd) {
  3897. xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
  3898. return -ENOMEM;
  3899. }
  3900. spin_lock_irqsave(&xhci->lock, flags);
  3901. if (hdev->speed == USB_SPEED_HIGH &&
  3902. xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
  3903. xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
  3904. xhci_free_command(xhci, config_cmd);
  3905. spin_unlock_irqrestore(&xhci->lock, flags);
  3906. return -ENOMEM;
  3907. }
  3908. xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
  3909. ctrl_ctx = xhci_get_input_control_ctx(xhci, config_cmd->in_ctx);
  3910. ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
  3911. slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
  3912. slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
  3913. if (tt->multi)
  3914. slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
  3915. if (xhci->hci_version > 0x95) {
  3916. xhci_dbg(xhci, "xHCI version %x needs hub "
  3917. "TT think time and number of ports\n",
  3918. (unsigned int) xhci->hci_version);
  3919. slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
  3920. /* Set TT think time - convert from ns to FS bit times.
  3921. * 0 = 8 FS bit times, 1 = 16 FS bit times,
  3922. * 2 = 24 FS bit times, 3 = 32 FS bit times.
  3923. *
  3924. * xHCI 1.0: this field shall be 0 if the device is not a
  3925. * High-spped hub.
  3926. */
  3927. think_time = tt->think_time;
  3928. if (think_time != 0)
  3929. think_time = (think_time / 666) - 1;
  3930. if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
  3931. slot_ctx->tt_info |=
  3932. cpu_to_le32(TT_THINK_TIME(think_time));
  3933. } else {
  3934. xhci_dbg(xhci, "xHCI version %x doesn't need hub "
  3935. "TT think time or number of ports\n",
  3936. (unsigned int) xhci->hci_version);
  3937. }
  3938. slot_ctx->dev_state = 0;
  3939. spin_unlock_irqrestore(&xhci->lock, flags);
  3940. xhci_dbg(xhci, "Set up %s for hub device.\n",
  3941. (xhci->hci_version > 0x95) ?
  3942. "configure endpoint" : "evaluate context");
  3943. xhci_dbg(xhci, "Slot %u Input Context:\n", hdev->slot_id);
  3944. xhci_dbg_ctx(xhci, config_cmd->in_ctx, 0);
  3945. /* Issue and wait for the configure endpoint or
  3946. * evaluate context command.
  3947. */
  3948. if (xhci->hci_version > 0x95)
  3949. ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
  3950. false, false);
  3951. else
  3952. ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
  3953. true, false);
  3954. xhci_dbg(xhci, "Slot %u Output Context:\n", hdev->slot_id);
  3955. xhci_dbg_ctx(xhci, vdev->out_ctx, 0);
  3956. xhci_free_command(xhci, config_cmd);
  3957. return ret;
  3958. }
  3959. int xhci_get_frame(struct usb_hcd *hcd)
  3960. {
  3961. struct xhci_hcd *xhci = hcd_to_xhci(hcd);
  3962. /* EHCI mods by the periodic size. Why? */
  3963. return xhci_readl(xhci, &xhci->run_regs->microframe_index) >> 3;
  3964. }
  3965. int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
  3966. {
  3967. struct xhci_hcd *xhci;
  3968. struct device *dev = hcd->self.controller;
  3969. int retval;
  3970. u32 temp;
  3971. /* Accept arbitrarily long scatter-gather lists */
  3972. hcd->self.sg_tablesize = ~0;
  3973. /* XHCI controllers don't stop the ep queue on short packets :| */
  3974. hcd->self.no_stop_on_short = 1;
  3975. if (usb_hcd_is_primary_hcd(hcd)) {
  3976. xhci = kzalloc(sizeof(struct xhci_hcd), GFP_KERNEL);
  3977. if (!xhci)
  3978. return -ENOMEM;
  3979. *((struct xhci_hcd **) hcd->hcd_priv) = xhci;
  3980. xhci->main_hcd = hcd;
  3981. /* Mark the first roothub as being USB 2.0.
  3982. * The xHCI driver will register the USB 3.0 roothub.
  3983. */
  3984. hcd->speed = HCD_USB2;
  3985. hcd->self.root_hub->speed = USB_SPEED_HIGH;
  3986. /*
  3987. * USB 2.0 roothub under xHCI has an integrated TT,
  3988. * (rate matching hub) as opposed to having an OHCI/UHCI
  3989. * companion controller.
  3990. */
  3991. hcd->has_tt = 1;
  3992. } else {
  3993. /* xHCI private pointer was set in xhci_pci_probe for the second
  3994. * registered roothub.
  3995. */
  3996. xhci = hcd_to_xhci(hcd);
  3997. temp = xhci_readl(xhci, &xhci->cap_regs->hcc_params);
  3998. if (HCC_64BIT_ADDR(temp)) {
  3999. xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
  4000. dma_set_mask(hcd->self.controller, DMA_BIT_MASK(64));
  4001. } else {
  4002. dma_set_mask(hcd->self.controller, DMA_BIT_MASK(32));
  4003. }
  4004. return 0;
  4005. }
  4006. xhci->cap_regs = hcd->regs;
  4007. xhci->op_regs = hcd->regs +
  4008. HC_LENGTH(xhci_readl(xhci, &xhci->cap_regs->hc_capbase));
  4009. xhci->run_regs = hcd->regs +
  4010. (xhci_readl(xhci, &xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
  4011. /* Cache read-only capability registers */
  4012. xhci->hcs_params1 = xhci_readl(xhci, &xhci->cap_regs->hcs_params1);
  4013. xhci->hcs_params2 = xhci_readl(xhci, &xhci->cap_regs->hcs_params2);
  4014. xhci->hcs_params3 = xhci_readl(xhci, &xhci->cap_regs->hcs_params3);
  4015. xhci->hcc_params = xhci_readl(xhci, &xhci->cap_regs->hc_capbase);
  4016. xhci->hci_version = HC_VERSION(xhci->hcc_params);
  4017. xhci->hcc_params = xhci_readl(xhci, &xhci->cap_regs->hcc_params);
  4018. xhci_print_registers(xhci);
  4019. get_quirks(dev, xhci);
  4020. /* Make sure the HC is halted. */
  4021. retval = xhci_halt(xhci);
  4022. if (retval)
  4023. goto error;
  4024. xhci_dbg(xhci, "Resetting HCD\n");
  4025. /* Reset the internal HC memory state and registers. */
  4026. retval = xhci_reset(xhci);
  4027. if (retval)
  4028. goto error;
  4029. xhci_dbg(xhci, "Reset complete\n");
  4030. temp = xhci_readl(xhci, &xhci->cap_regs->hcc_params);
  4031. if (HCC_64BIT_ADDR(temp)) {
  4032. xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
  4033. dma_set_mask(hcd->self.controller, DMA_BIT_MASK(64));
  4034. } else {
  4035. dma_set_mask(hcd->self.controller, DMA_BIT_MASK(32));
  4036. }
  4037. xhci_dbg(xhci, "Calling HCD init\n");
  4038. /* Initialize HCD and host controller data structures. */
  4039. retval = xhci_init(hcd);
  4040. if (retval)
  4041. goto error;
  4042. xhci_dbg(xhci, "Called HCD init\n");
  4043. return 0;
  4044. error:
  4045. kfree(xhci);
  4046. return retval;
  4047. }
  4048. MODULE_DESCRIPTION(DRIVER_DESC);
  4049. MODULE_AUTHOR(DRIVER_AUTHOR);
  4050. MODULE_LICENSE("GPL");
  4051. static int __init xhci_hcd_init(void)
  4052. {
  4053. int retval;
  4054. retval = xhci_register_pci();
  4055. if (retval < 0) {
  4056. printk(KERN_DEBUG "Problem registering PCI driver.");
  4057. return retval;
  4058. }
  4059. retval = xhci_register_plat();
  4060. if (retval < 0) {
  4061. printk(KERN_DEBUG "Problem registering platform driver.");
  4062. goto unreg_pci;
  4063. }
  4064. /*
  4065. * Check the compiler generated sizes of structures that must be laid
  4066. * out in specific ways for hardware access.
  4067. */
  4068. BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
  4069. BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
  4070. BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
  4071. /* xhci_device_control has eight fields, and also
  4072. * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
  4073. */
  4074. BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
  4075. BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
  4076. BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
  4077. BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 7*32/8);
  4078. BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
  4079. /* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
  4080. BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
  4081. return 0;
  4082. unreg_pci:
  4083. xhci_unregister_pci();
  4084. return retval;
  4085. }
  4086. module_init(xhci_hcd_init);
  4087. static void __exit xhci_hcd_cleanup(void)
  4088. {
  4089. xhci_unregister_pci();
  4090. xhci_unregister_plat();
  4091. }
  4092. module_exit(xhci_hcd_cleanup);