smp.c 7.4 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283
  1. /*
  2. * Copyright 2003-2011 NetLogic Microsystems, Inc. (NetLogic). All rights
  3. * reserved.
  4. *
  5. * This software is available to you under a choice of one of two
  6. * licenses. You may choose to be licensed under the terms of the GNU
  7. * General Public License (GPL) Version 2, available from the file
  8. * COPYING in the main directory of this source tree, or the NetLogic
  9. * license below:
  10. *
  11. * Redistribution and use in source and binary forms, with or without
  12. * modification, are permitted provided that the following conditions
  13. * are met:
  14. *
  15. * 1. Redistributions of source code must retain the above copyright
  16. * notice, this list of conditions and the following disclaimer.
  17. * 2. Redistributions in binary form must reproduce the above copyright
  18. * notice, this list of conditions and the following disclaimer in
  19. * the documentation and/or other materials provided with the
  20. * distribution.
  21. *
  22. * THIS SOFTWARE IS PROVIDED BY NETLOGIC ``AS IS'' AND ANY EXPRESS OR
  23. * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
  24. * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
  25. * ARE DISCLAIMED. IN NO EVENT SHALL NETLOGIC OR CONTRIBUTORS BE LIABLE
  26. * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
  27. * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
  28. * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
  29. * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
  30. * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
  31. * OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN
  32. * IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  33. */
  34. #include <linux/kernel.h>
  35. #include <linux/delay.h>
  36. #include <linux/init.h>
  37. #include <linux/smp.h>
  38. #include <linux/irq.h>
  39. #include <asm/mmu_context.h>
  40. #include <asm/netlogic/interrupt.h>
  41. #include <asm/netlogic/mips-extns.h>
  42. #include <asm/netlogic/haldefs.h>
  43. #include <asm/netlogic/common.h>
  44. #if defined(CONFIG_CPU_XLP)
  45. #include <asm/netlogic/xlp-hal/iomap.h>
  46. #include <asm/netlogic/xlp-hal/xlp.h>
  47. #include <asm/netlogic/xlp-hal/pic.h>
  48. #elif defined(CONFIG_CPU_XLR)
  49. #include <asm/netlogic/xlr/iomap.h>
  50. #include <asm/netlogic/xlr/pic.h>
  51. #include <asm/netlogic/xlr/xlr.h>
  52. #else
  53. #error "Unknown CPU"
  54. #endif
  55. void nlm_send_ipi_single(int logical_cpu, unsigned int action)
  56. {
  57. int cpu, node;
  58. uint64_t picbase;
  59. cpu = cpu_logical_map(logical_cpu);
  60. node = cpu / NLM_CPUS_PER_NODE;
  61. picbase = nlm_get_node(node)->picbase;
  62. if (action & SMP_CALL_FUNCTION)
  63. nlm_pic_send_ipi(picbase, cpu, IRQ_IPI_SMP_FUNCTION, 0);
  64. if (action & SMP_RESCHEDULE_YOURSELF)
  65. nlm_pic_send_ipi(picbase, cpu, IRQ_IPI_SMP_RESCHEDULE, 0);
  66. }
  67. void nlm_send_ipi_mask(const struct cpumask *mask, unsigned int action)
  68. {
  69. int cpu;
  70. for_each_cpu(cpu, mask) {
  71. nlm_send_ipi_single(cpu, action);
  72. }
  73. }
  74. /* IRQ_IPI_SMP_FUNCTION Handler */
  75. void nlm_smp_function_ipi_handler(unsigned int irq, struct irq_desc *desc)
  76. {
  77. write_c0_eirr(1ull << irq);
  78. smp_call_function_interrupt();
  79. }
  80. /* IRQ_IPI_SMP_RESCHEDULE handler */
  81. void nlm_smp_resched_ipi_handler(unsigned int irq, struct irq_desc *desc)
  82. {
  83. write_c0_eirr(1ull << irq);
  84. scheduler_ipi();
  85. }
  86. /*
  87. * Called before going into mips code, early cpu init
  88. */
  89. void nlm_early_init_secondary(int cpu)
  90. {
  91. change_c0_config(CONF_CM_CMASK, 0x3);
  92. #ifdef CONFIG_CPU_XLP
  93. /* mmu init, once per core */
  94. if (cpu % NLM_THREADS_PER_CORE == 0)
  95. xlp_mmu_init();
  96. #endif
  97. write_c0_ebase(nlm_current_node()->ebase);
  98. }
  99. /*
  100. * Code to run on secondary just after probing the CPU
  101. */
  102. static void __cpuinit nlm_init_secondary(void)
  103. {
  104. int hwtid;
  105. hwtid = hard_smp_processor_id();
  106. current_cpu_data.core = hwtid / NLM_THREADS_PER_CORE;
  107. nlm_percpu_init(hwtid);
  108. nlm_smp_irq_init(hwtid);
  109. }
  110. void nlm_prepare_cpus(unsigned int max_cpus)
  111. {
  112. /* declare we are SMT capable */
  113. smp_num_siblings = nlm_threads_per_core;
  114. }
  115. void nlm_smp_finish(void)
  116. {
  117. local_irq_enable();
  118. }
  119. void nlm_cpus_done(void)
  120. {
  121. }
  122. /*
  123. * Boot all other cpus in the system, initialize them, and bring them into
  124. * the boot function
  125. */
  126. int nlm_cpu_ready[NR_CPUS];
  127. unsigned long nlm_next_gp;
  128. unsigned long nlm_next_sp;
  129. cpumask_t phys_cpu_present_map;
  130. void nlm_boot_secondary(int logical_cpu, struct task_struct *idle)
  131. {
  132. int cpu, node;
  133. cpu = cpu_logical_map(logical_cpu);
  134. node = cpu / NLM_CPUS_PER_NODE;
  135. nlm_next_sp = (unsigned long)__KSTK_TOS(idle);
  136. nlm_next_gp = (unsigned long)task_thread_info(idle);
  137. /* barrier for sp/gp store above */
  138. __sync();
  139. nlm_pic_send_ipi(nlm_get_node(node)->picbase, cpu, 1, 1); /* NMI */
  140. }
  141. void __init nlm_smp_setup(void)
  142. {
  143. unsigned int boot_cpu;
  144. int num_cpus, i, ncore;
  145. boot_cpu = hard_smp_processor_id();
  146. cpumask_clear(&phys_cpu_present_map);
  147. cpumask_set_cpu(boot_cpu, &phys_cpu_present_map);
  148. __cpu_number_map[boot_cpu] = 0;
  149. __cpu_logical_map[0] = boot_cpu;
  150. set_cpu_possible(0, true);
  151. num_cpus = 1;
  152. for (i = 0; i < NR_CPUS; i++) {
  153. /*
  154. * nlm_cpu_ready array is not set for the boot_cpu,
  155. * it is only set for ASPs (see smpboot.S)
  156. */
  157. if (nlm_cpu_ready[i]) {
  158. cpumask_set_cpu(i, &phys_cpu_present_map);
  159. __cpu_number_map[i] = num_cpus;
  160. __cpu_logical_map[num_cpus] = i;
  161. set_cpu_possible(num_cpus, true);
  162. ++num_cpus;
  163. }
  164. }
  165. /* check with the cores we have worken up */
  166. for (ncore = 0, i = 0; i < NLM_NR_NODES; i++)
  167. ncore += hweight32(nlm_get_node(i)->coremask);
  168. pr_info("Phys CPU present map: %lx, possible map %lx\n",
  169. (unsigned long)cpumask_bits(&phys_cpu_present_map)[0],
  170. (unsigned long)cpumask_bits(cpu_possible_mask)[0]);
  171. pr_info("Detected (%dc%dt) %d Slave CPU(s)\n", ncore,
  172. nlm_threads_per_core, num_cpus);
  173. nlm_set_nmi_handler(nlm_boot_secondary_cpus);
  174. }
  175. static int nlm_parse_cpumask(cpumask_t *wakeup_mask)
  176. {
  177. uint32_t core0_thr_mask, core_thr_mask;
  178. int threadmode, i, j;
  179. core0_thr_mask = 0;
  180. for (i = 0; i < NLM_THREADS_PER_CORE; i++)
  181. if (cpumask_test_cpu(i, wakeup_mask))
  182. core0_thr_mask |= (1 << i);
  183. switch (core0_thr_mask) {
  184. case 1:
  185. nlm_threads_per_core = 1;
  186. threadmode = 0;
  187. break;
  188. case 3:
  189. nlm_threads_per_core = 2;
  190. threadmode = 2;
  191. break;
  192. case 0xf:
  193. nlm_threads_per_core = 4;
  194. threadmode = 3;
  195. break;
  196. default:
  197. goto unsupp;
  198. }
  199. /* Verify other cores CPU masks */
  200. for (i = 0; i < NR_CPUS; i += NLM_THREADS_PER_CORE) {
  201. core_thr_mask = 0;
  202. for (j = 0; j < NLM_THREADS_PER_CORE; j++)
  203. if (cpumask_test_cpu(i + j, wakeup_mask))
  204. core_thr_mask |= (1 << j);
  205. if (core_thr_mask != 0 && core_thr_mask != core0_thr_mask)
  206. goto unsupp;
  207. }
  208. return threadmode;
  209. unsupp:
  210. panic("Unsupported CPU mask %lx\n",
  211. (unsigned long)cpumask_bits(wakeup_mask)[0]);
  212. return 0;
  213. }
  214. int __cpuinit nlm_wakeup_secondary_cpus(void)
  215. {
  216. unsigned long reset_vec;
  217. char *reset_data;
  218. int threadmode;
  219. /* Update reset entry point with CPU init code */
  220. reset_vec = CKSEG1ADDR(RESET_VEC_PHYS);
  221. memcpy((void *)reset_vec, (void *)nlm_reset_entry,
  222. (nlm_reset_entry_end - nlm_reset_entry));
  223. /* verify the mask and setup core config variables */
  224. threadmode = nlm_parse_cpumask(&nlm_cpumask);
  225. /* Setup CPU init parameters */
  226. reset_data = (char *)CKSEG1ADDR(RESET_DATA_PHYS);
  227. *(int *)(reset_data + BOOT_THREAD_MODE) = threadmode;
  228. #ifdef CONFIG_CPU_XLP
  229. xlp_wakeup_secondary_cpus();
  230. #else
  231. xlr_wakeup_secondary_cpus();
  232. #endif
  233. return 0;
  234. }
  235. struct plat_smp_ops nlm_smp_ops = {
  236. .send_ipi_single = nlm_send_ipi_single,
  237. .send_ipi_mask = nlm_send_ipi_mask,
  238. .init_secondary = nlm_init_secondary,
  239. .smp_finish = nlm_smp_finish,
  240. .cpus_done = nlm_cpus_done,
  241. .boot_secondary = nlm_boot_secondary,
  242. .smp_setup = nlm_smp_setup,
  243. .prepare_cpus = nlm_prepare_cpus,
  244. };