core.c 18 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800
  1. /*
  2. * The NFC Controller Interface is the communication protocol between an
  3. * NFC Controller (NFCC) and a Device Host (DH).
  4. *
  5. * Copyright (C) 2011 Texas Instruments, Inc.
  6. *
  7. * Written by Ilan Elias <ilane@ti.com>
  8. *
  9. * Acknowledgements:
  10. * This file is based on hci_core.c, which was written
  11. * by Maxim Krasnyansky.
  12. *
  13. * This program is free software; you can redistribute it and/or modify
  14. * it under the terms of the GNU General Public License version 2
  15. * as published by the Free Software Foundation
  16. *
  17. * This program is distributed in the hope that it will be useful,
  18. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  19. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  20. * GNU General Public License for more details.
  21. *
  22. * You should have received a copy of the GNU General Public License
  23. * along with this program; if not, write to the Free Software
  24. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  25. *
  26. */
  27. #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  28. #include <linux/types.h>
  29. #include <linux/workqueue.h>
  30. #include <linux/completion.h>
  31. #include <linux/export.h>
  32. #include <linux/sched.h>
  33. #include <linux/bitops.h>
  34. #include <linux/skbuff.h>
  35. #include "../nfc.h"
  36. #include <net/nfc/nci.h>
  37. #include <net/nfc/nci_core.h>
  38. #include <linux/nfc.h>
  39. static void nci_cmd_work(struct work_struct *work);
  40. static void nci_rx_work(struct work_struct *work);
  41. static void nci_tx_work(struct work_struct *work);
  42. /* ---- NCI requests ---- */
  43. void nci_req_complete(struct nci_dev *ndev, int result)
  44. {
  45. if (ndev->req_status == NCI_REQ_PEND) {
  46. ndev->req_result = result;
  47. ndev->req_status = NCI_REQ_DONE;
  48. complete(&ndev->req_completion);
  49. }
  50. }
  51. static void nci_req_cancel(struct nci_dev *ndev, int err)
  52. {
  53. if (ndev->req_status == NCI_REQ_PEND) {
  54. ndev->req_result = err;
  55. ndev->req_status = NCI_REQ_CANCELED;
  56. complete(&ndev->req_completion);
  57. }
  58. }
  59. /* Execute request and wait for completion. */
  60. static int __nci_request(struct nci_dev *ndev,
  61. void (*req)(struct nci_dev *ndev, unsigned long opt),
  62. unsigned long opt,
  63. __u32 timeout)
  64. {
  65. int rc = 0;
  66. unsigned long completion_rc;
  67. ndev->req_status = NCI_REQ_PEND;
  68. init_completion(&ndev->req_completion);
  69. req(ndev, opt);
  70. completion_rc = wait_for_completion_interruptible_timeout(
  71. &ndev->req_completion,
  72. timeout);
  73. nfc_dbg("wait_for_completion return %ld", completion_rc);
  74. if (completion_rc > 0) {
  75. switch (ndev->req_status) {
  76. case NCI_REQ_DONE:
  77. rc = nci_to_errno(ndev->req_result);
  78. break;
  79. case NCI_REQ_CANCELED:
  80. rc = -ndev->req_result;
  81. break;
  82. default:
  83. rc = -ETIMEDOUT;
  84. break;
  85. }
  86. } else {
  87. pr_err("wait_for_completion_interruptible_timeout failed %ld\n",
  88. completion_rc);
  89. rc = ((completion_rc == 0) ? (-ETIMEDOUT) : (completion_rc));
  90. }
  91. ndev->req_status = ndev->req_result = 0;
  92. return rc;
  93. }
  94. static inline int nci_request(struct nci_dev *ndev,
  95. void (*req)(struct nci_dev *ndev, unsigned long opt),
  96. unsigned long opt, __u32 timeout)
  97. {
  98. int rc;
  99. if (!test_bit(NCI_UP, &ndev->flags))
  100. return -ENETDOWN;
  101. /* Serialize all requests */
  102. mutex_lock(&ndev->req_lock);
  103. rc = __nci_request(ndev, req, opt, timeout);
  104. mutex_unlock(&ndev->req_lock);
  105. return rc;
  106. }
  107. static void nci_reset_req(struct nci_dev *ndev, unsigned long opt)
  108. {
  109. struct nci_core_reset_cmd cmd;
  110. cmd.reset_type = NCI_RESET_TYPE_RESET_CONFIG;
  111. nci_send_cmd(ndev, NCI_OP_CORE_RESET_CMD, 1, &cmd);
  112. }
  113. static void nci_init_req(struct nci_dev *ndev, unsigned long opt)
  114. {
  115. nci_send_cmd(ndev, NCI_OP_CORE_INIT_CMD, 0, NULL);
  116. }
  117. static void nci_init_complete_req(struct nci_dev *ndev, unsigned long opt)
  118. {
  119. struct nci_rf_disc_map_cmd cmd;
  120. struct disc_map_config *cfg = cmd.mapping_configs;
  121. __u8 *num = &cmd.num_mapping_configs;
  122. int i;
  123. /* set rf mapping configurations */
  124. *num = 0;
  125. /* by default mapping is set to NCI_RF_INTERFACE_FRAME */
  126. for (i = 0; i < ndev->num_supported_rf_interfaces; i++) {
  127. if (ndev->supported_rf_interfaces[i] ==
  128. NCI_RF_INTERFACE_ISO_DEP) {
  129. cfg[*num].rf_protocol = NCI_RF_PROTOCOL_ISO_DEP;
  130. cfg[*num].mode = NCI_DISC_MAP_MODE_BOTH;
  131. cfg[*num].rf_interface_type = NCI_RF_INTERFACE_ISO_DEP;
  132. (*num)++;
  133. } else if (ndev->supported_rf_interfaces[i] ==
  134. NCI_RF_INTERFACE_NFC_DEP) {
  135. cfg[*num].rf_protocol = NCI_RF_PROTOCOL_NFC_DEP;
  136. cfg[*num].mode = NCI_DISC_MAP_MODE_BOTH;
  137. cfg[*num].rf_interface_type = NCI_RF_INTERFACE_NFC_DEP;
  138. (*num)++;
  139. }
  140. if (*num == NCI_MAX_NUM_MAPPING_CONFIGS)
  141. break;
  142. }
  143. nci_send_cmd(ndev, NCI_OP_RF_DISCOVER_MAP_CMD,
  144. (1 + ((*num)*sizeof(struct disc_map_config))),
  145. &cmd);
  146. }
  147. static void nci_rf_discover_req(struct nci_dev *ndev, unsigned long opt)
  148. {
  149. struct nci_rf_disc_cmd cmd;
  150. __u32 protocols = opt;
  151. cmd.num_disc_configs = 0;
  152. if ((cmd.num_disc_configs < NCI_MAX_NUM_RF_CONFIGS) &&
  153. (protocols & NFC_PROTO_JEWEL_MASK
  154. || protocols & NFC_PROTO_MIFARE_MASK
  155. || protocols & NFC_PROTO_ISO14443_MASK
  156. || protocols & NFC_PROTO_NFC_DEP_MASK)) {
  157. cmd.disc_configs[cmd.num_disc_configs].type =
  158. NCI_DISCOVERY_TYPE_POLL_A_PASSIVE;
  159. cmd.disc_configs[cmd.num_disc_configs].frequency = 1;
  160. cmd.num_disc_configs++;
  161. }
  162. if ((cmd.num_disc_configs < NCI_MAX_NUM_RF_CONFIGS) &&
  163. (protocols & NFC_PROTO_ISO14443_MASK)) {
  164. cmd.disc_configs[cmd.num_disc_configs].type =
  165. NCI_DISCOVERY_TYPE_POLL_B_PASSIVE;
  166. cmd.disc_configs[cmd.num_disc_configs].frequency = 1;
  167. cmd.num_disc_configs++;
  168. }
  169. if ((cmd.num_disc_configs < NCI_MAX_NUM_RF_CONFIGS) &&
  170. (protocols & NFC_PROTO_FELICA_MASK
  171. || protocols & NFC_PROTO_NFC_DEP_MASK)) {
  172. cmd.disc_configs[cmd.num_disc_configs].type =
  173. NCI_DISCOVERY_TYPE_POLL_F_PASSIVE;
  174. cmd.disc_configs[cmd.num_disc_configs].frequency = 1;
  175. cmd.num_disc_configs++;
  176. }
  177. nci_send_cmd(ndev, NCI_OP_RF_DISCOVER_CMD,
  178. (1 + (cmd.num_disc_configs*sizeof(struct disc_config))),
  179. &cmd);
  180. }
  181. static void nci_rf_deactivate_req(struct nci_dev *ndev, unsigned long opt)
  182. {
  183. struct nci_rf_deactivate_cmd cmd;
  184. cmd.type = NCI_DEACTIVATE_TYPE_IDLE_MODE;
  185. nci_send_cmd(ndev, NCI_OP_RF_DEACTIVATE_CMD,
  186. sizeof(struct nci_rf_deactivate_cmd),
  187. &cmd);
  188. }
  189. static int nci_open_device(struct nci_dev *ndev)
  190. {
  191. int rc = 0;
  192. mutex_lock(&ndev->req_lock);
  193. if (test_bit(NCI_UP, &ndev->flags)) {
  194. rc = -EALREADY;
  195. goto done;
  196. }
  197. if (ndev->ops->open(ndev)) {
  198. rc = -EIO;
  199. goto done;
  200. }
  201. atomic_set(&ndev->cmd_cnt, 1);
  202. set_bit(NCI_INIT, &ndev->flags);
  203. rc = __nci_request(ndev, nci_reset_req, 0,
  204. msecs_to_jiffies(NCI_RESET_TIMEOUT));
  205. if (!rc) {
  206. rc = __nci_request(ndev, nci_init_req, 0,
  207. msecs_to_jiffies(NCI_INIT_TIMEOUT));
  208. }
  209. if (!rc) {
  210. rc = __nci_request(ndev, nci_init_complete_req, 0,
  211. msecs_to_jiffies(NCI_INIT_TIMEOUT));
  212. }
  213. clear_bit(NCI_INIT, &ndev->flags);
  214. if (!rc) {
  215. set_bit(NCI_UP, &ndev->flags);
  216. } else {
  217. /* Init failed, cleanup */
  218. skb_queue_purge(&ndev->cmd_q);
  219. skb_queue_purge(&ndev->rx_q);
  220. skb_queue_purge(&ndev->tx_q);
  221. ndev->ops->close(ndev);
  222. ndev->flags = 0;
  223. }
  224. done:
  225. mutex_unlock(&ndev->req_lock);
  226. return rc;
  227. }
  228. static int nci_close_device(struct nci_dev *ndev)
  229. {
  230. nci_req_cancel(ndev, ENODEV);
  231. mutex_lock(&ndev->req_lock);
  232. if (!test_and_clear_bit(NCI_UP, &ndev->flags)) {
  233. del_timer_sync(&ndev->cmd_timer);
  234. mutex_unlock(&ndev->req_lock);
  235. return 0;
  236. }
  237. /* Drop RX and TX queues */
  238. skb_queue_purge(&ndev->rx_q);
  239. skb_queue_purge(&ndev->tx_q);
  240. /* Flush RX and TX wq */
  241. flush_workqueue(ndev->rx_wq);
  242. flush_workqueue(ndev->tx_wq);
  243. /* Reset device */
  244. skb_queue_purge(&ndev->cmd_q);
  245. atomic_set(&ndev->cmd_cnt, 1);
  246. set_bit(NCI_INIT, &ndev->flags);
  247. __nci_request(ndev, nci_reset_req, 0,
  248. msecs_to_jiffies(NCI_RESET_TIMEOUT));
  249. clear_bit(NCI_INIT, &ndev->flags);
  250. /* Flush cmd wq */
  251. flush_workqueue(ndev->cmd_wq);
  252. /* After this point our queues are empty
  253. * and no works are scheduled. */
  254. ndev->ops->close(ndev);
  255. /* Clear flags */
  256. ndev->flags = 0;
  257. mutex_unlock(&ndev->req_lock);
  258. return 0;
  259. }
  260. /* NCI command timer function */
  261. static void nci_cmd_timer(unsigned long arg)
  262. {
  263. struct nci_dev *ndev = (void *) arg;
  264. nfc_dbg("entry");
  265. atomic_set(&ndev->cmd_cnt, 1);
  266. queue_work(ndev->cmd_wq, &ndev->cmd_work);
  267. }
  268. static int nci_dev_up(struct nfc_dev *nfc_dev)
  269. {
  270. struct nci_dev *ndev = nfc_get_drvdata(nfc_dev);
  271. nfc_dbg("entry");
  272. return nci_open_device(ndev);
  273. }
  274. static int nci_dev_down(struct nfc_dev *nfc_dev)
  275. {
  276. struct nci_dev *ndev = nfc_get_drvdata(nfc_dev);
  277. nfc_dbg("entry");
  278. return nci_close_device(ndev);
  279. }
  280. static int nci_start_poll(struct nfc_dev *nfc_dev, __u32 protocols)
  281. {
  282. struct nci_dev *ndev = nfc_get_drvdata(nfc_dev);
  283. int rc;
  284. nfc_dbg("entry");
  285. if (test_bit(NCI_DISCOVERY, &ndev->flags)) {
  286. pr_err("unable to start poll, since poll is already active\n");
  287. return -EBUSY;
  288. }
  289. if (ndev->target_active_prot) {
  290. pr_err("there is an active target\n");
  291. return -EBUSY;
  292. }
  293. if (test_bit(NCI_POLL_ACTIVE, &ndev->flags)) {
  294. nfc_dbg("target is active, implicitly deactivate...");
  295. rc = nci_request(ndev, nci_rf_deactivate_req, 0,
  296. msecs_to_jiffies(NCI_RF_DEACTIVATE_TIMEOUT));
  297. if (rc)
  298. return -EBUSY;
  299. }
  300. rc = nci_request(ndev, nci_rf_discover_req, protocols,
  301. msecs_to_jiffies(NCI_RF_DISC_TIMEOUT));
  302. if (!rc)
  303. ndev->poll_prots = protocols;
  304. return rc;
  305. }
  306. static void nci_stop_poll(struct nfc_dev *nfc_dev)
  307. {
  308. struct nci_dev *ndev = nfc_get_drvdata(nfc_dev);
  309. nfc_dbg("entry");
  310. if (!test_bit(NCI_DISCOVERY, &ndev->flags)) {
  311. pr_err("unable to stop poll, since poll is not active\n");
  312. return;
  313. }
  314. nci_request(ndev, nci_rf_deactivate_req, 0,
  315. msecs_to_jiffies(NCI_RF_DEACTIVATE_TIMEOUT));
  316. }
  317. static int nci_activate_target(struct nfc_dev *nfc_dev, __u32 target_idx,
  318. __u32 protocol)
  319. {
  320. struct nci_dev *ndev = nfc_get_drvdata(nfc_dev);
  321. nfc_dbg("entry, target_idx %d, protocol 0x%x", target_idx, protocol);
  322. if (!test_bit(NCI_POLL_ACTIVE, &ndev->flags)) {
  323. pr_err("there is no available target to activate\n");
  324. return -EINVAL;
  325. }
  326. if (ndev->target_active_prot) {
  327. pr_err("there is already an active target\n");
  328. return -EBUSY;
  329. }
  330. if (!(ndev->target_available_prots & (1 << protocol))) {
  331. pr_err("target does not support the requested protocol 0x%x\n",
  332. protocol);
  333. return -EINVAL;
  334. }
  335. ndev->target_active_prot = protocol;
  336. ndev->target_available_prots = 0;
  337. return 0;
  338. }
  339. static void nci_deactivate_target(struct nfc_dev *nfc_dev, __u32 target_idx)
  340. {
  341. struct nci_dev *ndev = nfc_get_drvdata(nfc_dev);
  342. nfc_dbg("entry, target_idx %d", target_idx);
  343. if (!ndev->target_active_prot) {
  344. pr_err("unable to deactivate target, no active target\n");
  345. return;
  346. }
  347. ndev->target_active_prot = 0;
  348. if (test_bit(NCI_POLL_ACTIVE, &ndev->flags)) {
  349. nci_request(ndev, nci_rf_deactivate_req, 0,
  350. msecs_to_jiffies(NCI_RF_DEACTIVATE_TIMEOUT));
  351. }
  352. }
  353. static int nci_data_exchange(struct nfc_dev *nfc_dev, __u32 target_idx,
  354. struct sk_buff *skb,
  355. data_exchange_cb_t cb,
  356. void *cb_context)
  357. {
  358. struct nci_dev *ndev = nfc_get_drvdata(nfc_dev);
  359. int rc;
  360. nfc_dbg("entry, target_idx %d, len %d", target_idx, skb->len);
  361. if (!ndev->target_active_prot) {
  362. pr_err("unable to exchange data, no active target\n");
  363. return -EINVAL;
  364. }
  365. if (test_and_set_bit(NCI_DATA_EXCHANGE, &ndev->flags))
  366. return -EBUSY;
  367. /* store cb and context to be used on receiving data */
  368. ndev->data_exchange_cb = cb;
  369. ndev->data_exchange_cb_context = cb_context;
  370. rc = nci_send_data(ndev, NCI_STATIC_RF_CONN_ID, skb);
  371. if (rc)
  372. clear_bit(NCI_DATA_EXCHANGE, &ndev->flags);
  373. return rc;
  374. }
  375. static struct nfc_ops nci_nfc_ops = {
  376. .dev_up = nci_dev_up,
  377. .dev_down = nci_dev_down,
  378. .start_poll = nci_start_poll,
  379. .stop_poll = nci_stop_poll,
  380. .activate_target = nci_activate_target,
  381. .deactivate_target = nci_deactivate_target,
  382. .data_exchange = nci_data_exchange,
  383. };
  384. /* ---- Interface to NCI drivers ---- */
  385. /**
  386. * nci_allocate_device - allocate a new nci device
  387. *
  388. * @ops: device operations
  389. * @supported_protocols: NFC protocols supported by the device
  390. */
  391. struct nci_dev *nci_allocate_device(struct nci_ops *ops,
  392. __u32 supported_protocols,
  393. int tx_headroom,
  394. int tx_tailroom)
  395. {
  396. struct nci_dev *ndev;
  397. nfc_dbg("entry, supported_protocols 0x%x", supported_protocols);
  398. if (!ops->open || !ops->close || !ops->send)
  399. return NULL;
  400. if (!supported_protocols)
  401. return NULL;
  402. ndev = kzalloc(sizeof(struct nci_dev), GFP_KERNEL);
  403. if (!ndev)
  404. return NULL;
  405. ndev->ops = ops;
  406. ndev->tx_headroom = tx_headroom;
  407. ndev->tx_tailroom = tx_tailroom;
  408. ndev->nfc_dev = nfc_allocate_device(&nci_nfc_ops,
  409. supported_protocols,
  410. tx_headroom + NCI_DATA_HDR_SIZE,
  411. tx_tailroom);
  412. if (!ndev->nfc_dev)
  413. goto free_exit;
  414. nfc_set_drvdata(ndev->nfc_dev, ndev);
  415. return ndev;
  416. free_exit:
  417. kfree(ndev);
  418. return NULL;
  419. }
  420. EXPORT_SYMBOL(nci_allocate_device);
  421. /**
  422. * nci_free_device - deallocate nci device
  423. *
  424. * @ndev: The nci device to deallocate
  425. */
  426. void nci_free_device(struct nci_dev *ndev)
  427. {
  428. nfc_dbg("entry");
  429. nfc_free_device(ndev->nfc_dev);
  430. kfree(ndev);
  431. }
  432. EXPORT_SYMBOL(nci_free_device);
  433. /**
  434. * nci_register_device - register a nci device in the nfc subsystem
  435. *
  436. * @dev: The nci device to register
  437. */
  438. int nci_register_device(struct nci_dev *ndev)
  439. {
  440. int rc;
  441. struct device *dev = &ndev->nfc_dev->dev;
  442. char name[32];
  443. nfc_dbg("entry");
  444. rc = nfc_register_device(ndev->nfc_dev);
  445. if (rc)
  446. goto exit;
  447. ndev->flags = 0;
  448. INIT_WORK(&ndev->cmd_work, nci_cmd_work);
  449. snprintf(name, sizeof(name), "%s_nci_cmd_wq", dev_name(dev));
  450. ndev->cmd_wq = create_singlethread_workqueue(name);
  451. if (!ndev->cmd_wq) {
  452. rc = -ENOMEM;
  453. goto unreg_exit;
  454. }
  455. INIT_WORK(&ndev->rx_work, nci_rx_work);
  456. snprintf(name, sizeof(name), "%s_nci_rx_wq", dev_name(dev));
  457. ndev->rx_wq = create_singlethread_workqueue(name);
  458. if (!ndev->rx_wq) {
  459. rc = -ENOMEM;
  460. goto destroy_cmd_wq_exit;
  461. }
  462. INIT_WORK(&ndev->tx_work, nci_tx_work);
  463. snprintf(name, sizeof(name), "%s_nci_tx_wq", dev_name(dev));
  464. ndev->tx_wq = create_singlethread_workqueue(name);
  465. if (!ndev->tx_wq) {
  466. rc = -ENOMEM;
  467. goto destroy_rx_wq_exit;
  468. }
  469. skb_queue_head_init(&ndev->cmd_q);
  470. skb_queue_head_init(&ndev->rx_q);
  471. skb_queue_head_init(&ndev->tx_q);
  472. setup_timer(&ndev->cmd_timer, nci_cmd_timer,
  473. (unsigned long) ndev);
  474. mutex_init(&ndev->req_lock);
  475. goto exit;
  476. destroy_rx_wq_exit:
  477. destroy_workqueue(ndev->rx_wq);
  478. destroy_cmd_wq_exit:
  479. destroy_workqueue(ndev->cmd_wq);
  480. unreg_exit:
  481. nfc_unregister_device(ndev->nfc_dev);
  482. exit:
  483. return rc;
  484. }
  485. EXPORT_SYMBOL(nci_register_device);
  486. /**
  487. * nci_unregister_device - unregister a nci device in the nfc subsystem
  488. *
  489. * @dev: The nci device to unregister
  490. */
  491. void nci_unregister_device(struct nci_dev *ndev)
  492. {
  493. nfc_dbg("entry");
  494. nci_close_device(ndev);
  495. destroy_workqueue(ndev->cmd_wq);
  496. destroy_workqueue(ndev->rx_wq);
  497. destroy_workqueue(ndev->tx_wq);
  498. nfc_unregister_device(ndev->nfc_dev);
  499. }
  500. EXPORT_SYMBOL(nci_unregister_device);
  501. /**
  502. * nci_recv_frame - receive frame from NCI drivers
  503. *
  504. * @skb: The sk_buff to receive
  505. */
  506. int nci_recv_frame(struct sk_buff *skb)
  507. {
  508. struct nci_dev *ndev = (struct nci_dev *) skb->dev;
  509. nfc_dbg("entry, len %d", skb->len);
  510. if (!ndev || (!test_bit(NCI_UP, &ndev->flags)
  511. && !test_bit(NCI_INIT, &ndev->flags))) {
  512. kfree_skb(skb);
  513. return -ENXIO;
  514. }
  515. /* Queue frame for rx worker thread */
  516. skb_queue_tail(&ndev->rx_q, skb);
  517. queue_work(ndev->rx_wq, &ndev->rx_work);
  518. return 0;
  519. }
  520. EXPORT_SYMBOL(nci_recv_frame);
  521. static int nci_send_frame(struct sk_buff *skb)
  522. {
  523. struct nci_dev *ndev = (struct nci_dev *) skb->dev;
  524. nfc_dbg("entry, len %d", skb->len);
  525. if (!ndev) {
  526. kfree_skb(skb);
  527. return -ENODEV;
  528. }
  529. /* Get rid of skb owner, prior to sending to the driver. */
  530. skb_orphan(skb);
  531. return ndev->ops->send(skb);
  532. }
  533. /* Send NCI command */
  534. int nci_send_cmd(struct nci_dev *ndev, __u16 opcode, __u8 plen, void *payload)
  535. {
  536. struct nci_ctrl_hdr *hdr;
  537. struct sk_buff *skb;
  538. nfc_dbg("entry, opcode 0x%x, plen %d", opcode, plen);
  539. skb = nci_skb_alloc(ndev, (NCI_CTRL_HDR_SIZE + plen), GFP_KERNEL);
  540. if (!skb) {
  541. pr_err("no memory for command\n");
  542. return -ENOMEM;
  543. }
  544. hdr = (struct nci_ctrl_hdr *) skb_put(skb, NCI_CTRL_HDR_SIZE);
  545. hdr->gid = nci_opcode_gid(opcode);
  546. hdr->oid = nci_opcode_oid(opcode);
  547. hdr->plen = plen;
  548. nci_mt_set((__u8 *)hdr, NCI_MT_CMD_PKT);
  549. nci_pbf_set((__u8 *)hdr, NCI_PBF_LAST);
  550. if (plen)
  551. memcpy(skb_put(skb, plen), payload, plen);
  552. skb->dev = (void *) ndev;
  553. skb_queue_tail(&ndev->cmd_q, skb);
  554. queue_work(ndev->cmd_wq, &ndev->cmd_work);
  555. return 0;
  556. }
  557. /* ---- NCI TX Data worker thread ---- */
  558. static void nci_tx_work(struct work_struct *work)
  559. {
  560. struct nci_dev *ndev = container_of(work, struct nci_dev, tx_work);
  561. struct sk_buff *skb;
  562. nfc_dbg("entry, credits_cnt %d", atomic_read(&ndev->credits_cnt));
  563. /* Send queued tx data */
  564. while (atomic_read(&ndev->credits_cnt)) {
  565. skb = skb_dequeue(&ndev->tx_q);
  566. if (!skb)
  567. return;
  568. /* Check if data flow control is used */
  569. if (atomic_read(&ndev->credits_cnt) !=
  570. NCI_DATA_FLOW_CONTROL_NOT_USED)
  571. atomic_dec(&ndev->credits_cnt);
  572. nfc_dbg("NCI TX: MT=data, PBF=%d, conn_id=%d, plen=%d",
  573. nci_pbf(skb->data),
  574. nci_conn_id(skb->data),
  575. nci_plen(skb->data));
  576. nci_send_frame(skb);
  577. }
  578. }
  579. /* ----- NCI RX worker thread (data & control) ----- */
  580. static void nci_rx_work(struct work_struct *work)
  581. {
  582. struct nci_dev *ndev = container_of(work, struct nci_dev, rx_work);
  583. struct sk_buff *skb;
  584. while ((skb = skb_dequeue(&ndev->rx_q))) {
  585. /* Process frame */
  586. switch (nci_mt(skb->data)) {
  587. case NCI_MT_RSP_PKT:
  588. nci_rsp_packet(ndev, skb);
  589. break;
  590. case NCI_MT_NTF_PKT:
  591. nci_ntf_packet(ndev, skb);
  592. break;
  593. case NCI_MT_DATA_PKT:
  594. nci_rx_data_packet(ndev, skb);
  595. break;
  596. default:
  597. pr_err("unknown MT 0x%x\n", nci_mt(skb->data));
  598. kfree_skb(skb);
  599. break;
  600. }
  601. }
  602. }
  603. /* ----- NCI TX CMD worker thread ----- */
  604. static void nci_cmd_work(struct work_struct *work)
  605. {
  606. struct nci_dev *ndev = container_of(work, struct nci_dev, cmd_work);
  607. struct sk_buff *skb;
  608. nfc_dbg("entry, cmd_cnt %d", atomic_read(&ndev->cmd_cnt));
  609. /* Send queued command */
  610. if (atomic_read(&ndev->cmd_cnt)) {
  611. skb = skb_dequeue(&ndev->cmd_q);
  612. if (!skb)
  613. return;
  614. atomic_dec(&ndev->cmd_cnt);
  615. nfc_dbg("NCI TX: MT=cmd, PBF=%d, GID=0x%x, OID=0x%x, plen=%d",
  616. nci_pbf(skb->data),
  617. nci_opcode_gid(nci_opcode(skb->data)),
  618. nci_opcode_oid(nci_opcode(skb->data)),
  619. nci_plen(skb->data));
  620. nci_send_frame(skb);
  621. mod_timer(&ndev->cmd_timer,
  622. jiffies + msecs_to_jiffies(NCI_CMD_TIMEOUT));
  623. }
  624. }