intel_ddi.c 37 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359
  1. /*
  2. * Copyright © 2012 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eugeni Dodonov <eugeni.dodonov@intel.com>
  25. *
  26. */
  27. #include "i915_drv.h"
  28. #include "intel_drv.h"
  29. /* HDMI/DVI modes ignore everything but the last 2 items. So we share
  30. * them for both DP and FDI transports, allowing those ports to
  31. * automatically adapt to HDMI connections as well
  32. */
  33. static const u32 hsw_ddi_translations_dp[] = {
  34. 0x00FFFFFF, 0x0006000E, /* DP parameters */
  35. 0x00D75FFF, 0x0005000A,
  36. 0x00C30FFF, 0x00040006,
  37. 0x80AAAFFF, 0x000B0000,
  38. 0x00FFFFFF, 0x0005000A,
  39. 0x00D75FFF, 0x000C0004,
  40. 0x80C30FFF, 0x000B0000,
  41. 0x00FFFFFF, 0x00040006,
  42. 0x80D75FFF, 0x000B0000,
  43. 0x00FFFFFF, 0x00040006 /* HDMI parameters */
  44. };
  45. static const u32 hsw_ddi_translations_fdi[] = {
  46. 0x00FFFFFF, 0x0007000E, /* FDI parameters */
  47. 0x00D75FFF, 0x000F000A,
  48. 0x00C30FFF, 0x00060006,
  49. 0x00AAAFFF, 0x001E0000,
  50. 0x00FFFFFF, 0x000F000A,
  51. 0x00D75FFF, 0x00160004,
  52. 0x00C30FFF, 0x001E0000,
  53. 0x00FFFFFF, 0x00060006,
  54. 0x00D75FFF, 0x001E0000,
  55. 0x00FFFFFF, 0x00040006 /* HDMI parameters */
  56. };
  57. static enum port intel_ddi_get_encoder_port(struct intel_encoder *intel_encoder)
  58. {
  59. struct drm_encoder *encoder = &intel_encoder->base;
  60. int type = intel_encoder->type;
  61. if (type == INTEL_OUTPUT_DISPLAYPORT || type == INTEL_OUTPUT_EDP ||
  62. type == INTEL_OUTPUT_HDMI || type == INTEL_OUTPUT_UNKNOWN) {
  63. struct intel_digital_port *intel_dig_port =
  64. enc_to_dig_port(encoder);
  65. return intel_dig_port->port;
  66. } else if (type == INTEL_OUTPUT_ANALOG) {
  67. return PORT_E;
  68. } else {
  69. DRM_ERROR("Invalid DDI encoder type %d\n", type);
  70. BUG();
  71. }
  72. }
  73. /* On Haswell, DDI port buffers must be programmed with correct values
  74. * in advance. The buffer values are different for FDI and DP modes,
  75. * but the HDMI/DVI fields are shared among those. So we program the DDI
  76. * in either FDI or DP modes only, as HDMI connections will work with both
  77. * of those
  78. */
  79. static void intel_prepare_ddi_buffers(struct drm_device *dev, enum port port)
  80. {
  81. struct drm_i915_private *dev_priv = dev->dev_private;
  82. u32 reg;
  83. int i;
  84. const u32 *ddi_translations = (port == PORT_E) ?
  85. hsw_ddi_translations_fdi :
  86. hsw_ddi_translations_dp;
  87. for (i = 0, reg = DDI_BUF_TRANS(port);
  88. i < ARRAY_SIZE(hsw_ddi_translations_fdi); i++) {
  89. I915_WRITE(reg, ddi_translations[i]);
  90. reg += 4;
  91. }
  92. }
  93. /* Program DDI buffers translations for DP. By default, program ports A-D in DP
  94. * mode and port E for FDI.
  95. */
  96. void intel_prepare_ddi(struct drm_device *dev)
  97. {
  98. int port;
  99. if (!HAS_DDI(dev))
  100. return;
  101. for (port = PORT_A; port <= PORT_E; port++)
  102. intel_prepare_ddi_buffers(dev, port);
  103. }
  104. static const long hsw_ddi_buf_ctl_values[] = {
  105. DDI_BUF_EMP_400MV_0DB_HSW,
  106. DDI_BUF_EMP_400MV_3_5DB_HSW,
  107. DDI_BUF_EMP_400MV_6DB_HSW,
  108. DDI_BUF_EMP_400MV_9_5DB_HSW,
  109. DDI_BUF_EMP_600MV_0DB_HSW,
  110. DDI_BUF_EMP_600MV_3_5DB_HSW,
  111. DDI_BUF_EMP_600MV_6DB_HSW,
  112. DDI_BUF_EMP_800MV_0DB_HSW,
  113. DDI_BUF_EMP_800MV_3_5DB_HSW
  114. };
  115. static void intel_wait_ddi_buf_idle(struct drm_i915_private *dev_priv,
  116. enum port port)
  117. {
  118. uint32_t reg = DDI_BUF_CTL(port);
  119. int i;
  120. for (i = 0; i < 8; i++) {
  121. udelay(1);
  122. if (I915_READ(reg) & DDI_BUF_IS_IDLE)
  123. return;
  124. }
  125. DRM_ERROR("Timeout waiting for DDI BUF %c idle bit\n", port_name(port));
  126. }
  127. /* Starting with Haswell, different DDI ports can work in FDI mode for
  128. * connection to the PCH-located connectors. For this, it is necessary to train
  129. * both the DDI port and PCH receiver for the desired DDI buffer settings.
  130. *
  131. * The recommended port to work in FDI mode is DDI E, which we use here. Also,
  132. * please note that when FDI mode is active on DDI E, it shares 2 lines with
  133. * DDI A (which is used for eDP)
  134. */
  135. void hsw_fdi_link_train(struct drm_crtc *crtc)
  136. {
  137. struct drm_device *dev = crtc->dev;
  138. struct drm_i915_private *dev_priv = dev->dev_private;
  139. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  140. u32 temp, i, rx_ctl_val;
  141. /* Set the FDI_RX_MISC pwrdn lanes and the 2 workarounds listed at the
  142. * mode set "sequence for CRT port" document:
  143. * - TP1 to TP2 time with the default value
  144. * - FDI delay to 90h
  145. *
  146. * WaFDIAutoLinkSetTimingOverrride:hsw
  147. */
  148. I915_WRITE(_FDI_RXA_MISC, FDI_RX_PWRDN_LANE1_VAL(2) |
  149. FDI_RX_PWRDN_LANE0_VAL(2) |
  150. FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
  151. /* Enable the PCH Receiver FDI PLL */
  152. rx_ctl_val = dev_priv->fdi_rx_config | FDI_RX_ENHANCE_FRAME_ENABLE |
  153. FDI_RX_PLL_ENABLE |
  154. FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
  155. I915_WRITE(_FDI_RXA_CTL, rx_ctl_val);
  156. POSTING_READ(_FDI_RXA_CTL);
  157. udelay(220);
  158. /* Switch from Rawclk to PCDclk */
  159. rx_ctl_val |= FDI_PCDCLK;
  160. I915_WRITE(_FDI_RXA_CTL, rx_ctl_val);
  161. /* Configure Port Clock Select */
  162. I915_WRITE(PORT_CLK_SEL(PORT_E), intel_crtc->ddi_pll_sel);
  163. /* Start the training iterating through available voltages and emphasis,
  164. * testing each value twice. */
  165. for (i = 0; i < ARRAY_SIZE(hsw_ddi_buf_ctl_values) * 2; i++) {
  166. /* Configure DP_TP_CTL with auto-training */
  167. I915_WRITE(DP_TP_CTL(PORT_E),
  168. DP_TP_CTL_FDI_AUTOTRAIN |
  169. DP_TP_CTL_ENHANCED_FRAME_ENABLE |
  170. DP_TP_CTL_LINK_TRAIN_PAT1 |
  171. DP_TP_CTL_ENABLE);
  172. /* Configure and enable DDI_BUF_CTL for DDI E with next voltage.
  173. * DDI E does not support port reversal, the functionality is
  174. * achieved on the PCH side in FDI_RX_CTL, so no need to set the
  175. * port reversal bit */
  176. I915_WRITE(DDI_BUF_CTL(PORT_E),
  177. DDI_BUF_CTL_ENABLE |
  178. ((intel_crtc->config.fdi_lanes - 1) << 1) |
  179. hsw_ddi_buf_ctl_values[i / 2]);
  180. POSTING_READ(DDI_BUF_CTL(PORT_E));
  181. udelay(600);
  182. /* Program PCH FDI Receiver TU */
  183. I915_WRITE(_FDI_RXA_TUSIZE1, TU_SIZE(64));
  184. /* Enable PCH FDI Receiver with auto-training */
  185. rx_ctl_val |= FDI_RX_ENABLE | FDI_LINK_TRAIN_AUTO;
  186. I915_WRITE(_FDI_RXA_CTL, rx_ctl_val);
  187. POSTING_READ(_FDI_RXA_CTL);
  188. /* Wait for FDI receiver lane calibration */
  189. udelay(30);
  190. /* Unset FDI_RX_MISC pwrdn lanes */
  191. temp = I915_READ(_FDI_RXA_MISC);
  192. temp &= ~(FDI_RX_PWRDN_LANE1_MASK | FDI_RX_PWRDN_LANE0_MASK);
  193. I915_WRITE(_FDI_RXA_MISC, temp);
  194. POSTING_READ(_FDI_RXA_MISC);
  195. /* Wait for FDI auto training time */
  196. udelay(5);
  197. temp = I915_READ(DP_TP_STATUS(PORT_E));
  198. if (temp & DP_TP_STATUS_AUTOTRAIN_DONE) {
  199. DRM_DEBUG_KMS("FDI link training done on step %d\n", i);
  200. /* Enable normal pixel sending for FDI */
  201. I915_WRITE(DP_TP_CTL(PORT_E),
  202. DP_TP_CTL_FDI_AUTOTRAIN |
  203. DP_TP_CTL_LINK_TRAIN_NORMAL |
  204. DP_TP_CTL_ENHANCED_FRAME_ENABLE |
  205. DP_TP_CTL_ENABLE);
  206. return;
  207. }
  208. temp = I915_READ(DDI_BUF_CTL(PORT_E));
  209. temp &= ~DDI_BUF_CTL_ENABLE;
  210. I915_WRITE(DDI_BUF_CTL(PORT_E), temp);
  211. POSTING_READ(DDI_BUF_CTL(PORT_E));
  212. /* Disable DP_TP_CTL and FDI_RX_CTL and retry */
  213. temp = I915_READ(DP_TP_CTL(PORT_E));
  214. temp &= ~(DP_TP_CTL_ENABLE | DP_TP_CTL_LINK_TRAIN_MASK);
  215. temp |= DP_TP_CTL_LINK_TRAIN_PAT1;
  216. I915_WRITE(DP_TP_CTL(PORT_E), temp);
  217. POSTING_READ(DP_TP_CTL(PORT_E));
  218. intel_wait_ddi_buf_idle(dev_priv, PORT_E);
  219. rx_ctl_val &= ~FDI_RX_ENABLE;
  220. I915_WRITE(_FDI_RXA_CTL, rx_ctl_val);
  221. POSTING_READ(_FDI_RXA_CTL);
  222. /* Reset FDI_RX_MISC pwrdn lanes */
  223. temp = I915_READ(_FDI_RXA_MISC);
  224. temp &= ~(FDI_RX_PWRDN_LANE1_MASK | FDI_RX_PWRDN_LANE0_MASK);
  225. temp |= FDI_RX_PWRDN_LANE1_VAL(2) | FDI_RX_PWRDN_LANE0_VAL(2);
  226. I915_WRITE(_FDI_RXA_MISC, temp);
  227. POSTING_READ(_FDI_RXA_MISC);
  228. }
  229. DRM_ERROR("FDI link training failed!\n");
  230. }
  231. static void intel_ddi_mode_set(struct intel_encoder *encoder)
  232. {
  233. struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
  234. int port = intel_ddi_get_encoder_port(encoder);
  235. int pipe = crtc->pipe;
  236. int type = encoder->type;
  237. struct drm_display_mode *adjusted_mode = &crtc->config.adjusted_mode;
  238. DRM_DEBUG_KMS("Preparing DDI mode on port %c, pipe %c\n",
  239. port_name(port), pipe_name(pipe));
  240. crtc->eld_vld = false;
  241. if (type == INTEL_OUTPUT_DISPLAYPORT || type == INTEL_OUTPUT_EDP) {
  242. struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
  243. struct intel_digital_port *intel_dig_port =
  244. enc_to_dig_port(&encoder->base);
  245. intel_dp->DP = intel_dig_port->saved_port_bits |
  246. DDI_BUF_CTL_ENABLE | DDI_BUF_EMP_400MV_0DB_HSW;
  247. intel_dp->DP |= DDI_PORT_WIDTH(intel_dp->lane_count);
  248. if (intel_dp->has_audio) {
  249. DRM_DEBUG_DRIVER("DP audio on pipe %c on DDI\n",
  250. pipe_name(crtc->pipe));
  251. /* write eld */
  252. DRM_DEBUG_DRIVER("DP audio: write eld information\n");
  253. intel_write_eld(&encoder->base, adjusted_mode);
  254. }
  255. intel_dp_init_link_config(intel_dp);
  256. } else if (type == INTEL_OUTPUT_HDMI) {
  257. struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&encoder->base);
  258. if (intel_hdmi->has_audio) {
  259. /* Proper support for digital audio needs a new logic
  260. * and a new set of registers, so we leave it for future
  261. * patch bombing.
  262. */
  263. DRM_DEBUG_DRIVER("HDMI audio on pipe %c on DDI\n",
  264. pipe_name(crtc->pipe));
  265. /* write eld */
  266. DRM_DEBUG_DRIVER("HDMI audio: write eld information\n");
  267. intel_write_eld(&encoder->base, adjusted_mode);
  268. }
  269. intel_hdmi->set_infoframes(&encoder->base, adjusted_mode);
  270. }
  271. }
  272. static struct intel_encoder *
  273. intel_ddi_get_crtc_encoder(struct drm_crtc *crtc)
  274. {
  275. struct drm_device *dev = crtc->dev;
  276. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  277. struct intel_encoder *intel_encoder, *ret = NULL;
  278. int num_encoders = 0;
  279. for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
  280. ret = intel_encoder;
  281. num_encoders++;
  282. }
  283. if (num_encoders != 1)
  284. WARN(1, "%d encoders on crtc for pipe %c\n", num_encoders,
  285. pipe_name(intel_crtc->pipe));
  286. BUG_ON(ret == NULL);
  287. return ret;
  288. }
  289. void intel_ddi_put_crtc_pll(struct drm_crtc *crtc)
  290. {
  291. struct drm_i915_private *dev_priv = crtc->dev->dev_private;
  292. struct intel_ddi_plls *plls = &dev_priv->ddi_plls;
  293. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  294. uint32_t val;
  295. switch (intel_crtc->ddi_pll_sel) {
  296. case PORT_CLK_SEL_SPLL:
  297. plls->spll_refcount--;
  298. if (plls->spll_refcount == 0) {
  299. DRM_DEBUG_KMS("Disabling SPLL\n");
  300. val = I915_READ(SPLL_CTL);
  301. WARN_ON(!(val & SPLL_PLL_ENABLE));
  302. I915_WRITE(SPLL_CTL, val & ~SPLL_PLL_ENABLE);
  303. POSTING_READ(SPLL_CTL);
  304. }
  305. break;
  306. case PORT_CLK_SEL_WRPLL1:
  307. plls->wrpll1_refcount--;
  308. if (plls->wrpll1_refcount == 0) {
  309. DRM_DEBUG_KMS("Disabling WRPLL 1\n");
  310. val = I915_READ(WRPLL_CTL1);
  311. WARN_ON(!(val & WRPLL_PLL_ENABLE));
  312. I915_WRITE(WRPLL_CTL1, val & ~WRPLL_PLL_ENABLE);
  313. POSTING_READ(WRPLL_CTL1);
  314. }
  315. break;
  316. case PORT_CLK_SEL_WRPLL2:
  317. plls->wrpll2_refcount--;
  318. if (plls->wrpll2_refcount == 0) {
  319. DRM_DEBUG_KMS("Disabling WRPLL 2\n");
  320. val = I915_READ(WRPLL_CTL2);
  321. WARN_ON(!(val & WRPLL_PLL_ENABLE));
  322. I915_WRITE(WRPLL_CTL2, val & ~WRPLL_PLL_ENABLE);
  323. POSTING_READ(WRPLL_CTL2);
  324. }
  325. break;
  326. }
  327. WARN(plls->spll_refcount < 0, "Invalid SPLL refcount\n");
  328. WARN(plls->wrpll1_refcount < 0, "Invalid WRPLL1 refcount\n");
  329. WARN(plls->wrpll2_refcount < 0, "Invalid WRPLL2 refcount\n");
  330. intel_crtc->ddi_pll_sel = PORT_CLK_SEL_NONE;
  331. }
  332. #define LC_FREQ 2700
  333. #define LC_FREQ_2K (LC_FREQ * 2000)
  334. #define P_MIN 2
  335. #define P_MAX 64
  336. #define P_INC 2
  337. /* Constraints for PLL good behavior */
  338. #define REF_MIN 48
  339. #define REF_MAX 400
  340. #define VCO_MIN 2400
  341. #define VCO_MAX 4800
  342. #define ABS_DIFF(a, b) ((a > b) ? (a - b) : (b - a))
  343. struct wrpll_rnp {
  344. unsigned p, n2, r2;
  345. };
  346. static unsigned wrpll_get_budget_for_freq(int clock)
  347. {
  348. unsigned budget;
  349. switch (clock) {
  350. case 25175000:
  351. case 25200000:
  352. case 27000000:
  353. case 27027000:
  354. case 37762500:
  355. case 37800000:
  356. case 40500000:
  357. case 40541000:
  358. case 54000000:
  359. case 54054000:
  360. case 59341000:
  361. case 59400000:
  362. case 72000000:
  363. case 74176000:
  364. case 74250000:
  365. case 81000000:
  366. case 81081000:
  367. case 89012000:
  368. case 89100000:
  369. case 108000000:
  370. case 108108000:
  371. case 111264000:
  372. case 111375000:
  373. case 148352000:
  374. case 148500000:
  375. case 162000000:
  376. case 162162000:
  377. case 222525000:
  378. case 222750000:
  379. case 296703000:
  380. case 297000000:
  381. budget = 0;
  382. break;
  383. case 233500000:
  384. case 245250000:
  385. case 247750000:
  386. case 253250000:
  387. case 298000000:
  388. budget = 1500;
  389. break;
  390. case 169128000:
  391. case 169500000:
  392. case 179500000:
  393. case 202000000:
  394. budget = 2000;
  395. break;
  396. case 256250000:
  397. case 262500000:
  398. case 270000000:
  399. case 272500000:
  400. case 273750000:
  401. case 280750000:
  402. case 281250000:
  403. case 286000000:
  404. case 291750000:
  405. budget = 4000;
  406. break;
  407. case 267250000:
  408. case 268500000:
  409. budget = 5000;
  410. break;
  411. default:
  412. budget = 1000;
  413. break;
  414. }
  415. return budget;
  416. }
  417. static void wrpll_update_rnp(uint64_t freq2k, unsigned budget,
  418. unsigned r2, unsigned n2, unsigned p,
  419. struct wrpll_rnp *best)
  420. {
  421. uint64_t a, b, c, d, diff, diff_best;
  422. /* No best (r,n,p) yet */
  423. if (best->p == 0) {
  424. best->p = p;
  425. best->n2 = n2;
  426. best->r2 = r2;
  427. return;
  428. }
  429. /*
  430. * Output clock is (LC_FREQ_2K / 2000) * N / (P * R), which compares to
  431. * freq2k.
  432. *
  433. * delta = 1e6 *
  434. * abs(freq2k - (LC_FREQ_2K * n2/(p * r2))) /
  435. * freq2k;
  436. *
  437. * and we would like delta <= budget.
  438. *
  439. * If the discrepancy is above the PPM-based budget, always prefer to
  440. * improve upon the previous solution. However, if you're within the
  441. * budget, try to maximize Ref * VCO, that is N / (P * R^2).
  442. */
  443. a = freq2k * budget * p * r2;
  444. b = freq2k * budget * best->p * best->r2;
  445. diff = ABS_DIFF((freq2k * p * r2), (LC_FREQ_2K * n2));
  446. diff_best = ABS_DIFF((freq2k * best->p * best->r2),
  447. (LC_FREQ_2K * best->n2));
  448. c = 1000000 * diff;
  449. d = 1000000 * diff_best;
  450. if (a < c && b < d) {
  451. /* If both are above the budget, pick the closer */
  452. if (best->p * best->r2 * diff < p * r2 * diff_best) {
  453. best->p = p;
  454. best->n2 = n2;
  455. best->r2 = r2;
  456. }
  457. } else if (a >= c && b < d) {
  458. /* If A is below the threshold but B is above it? Update. */
  459. best->p = p;
  460. best->n2 = n2;
  461. best->r2 = r2;
  462. } else if (a >= c && b >= d) {
  463. /* Both are below the limit, so pick the higher n2/(r2*r2) */
  464. if (n2 * best->r2 * best->r2 > best->n2 * r2 * r2) {
  465. best->p = p;
  466. best->n2 = n2;
  467. best->r2 = r2;
  468. }
  469. }
  470. /* Otherwise a < c && b >= d, do nothing */
  471. }
  472. static void
  473. intel_ddi_calculate_wrpll(int clock /* in Hz */,
  474. unsigned *r2_out, unsigned *n2_out, unsigned *p_out)
  475. {
  476. uint64_t freq2k;
  477. unsigned p, n2, r2;
  478. struct wrpll_rnp best = { 0, 0, 0 };
  479. unsigned budget;
  480. freq2k = clock / 100;
  481. budget = wrpll_get_budget_for_freq(clock);
  482. /* Special case handling for 540 pixel clock: bypass WR PLL entirely
  483. * and directly pass the LC PLL to it. */
  484. if (freq2k == 5400000) {
  485. *n2_out = 2;
  486. *p_out = 1;
  487. *r2_out = 2;
  488. return;
  489. }
  490. /*
  491. * Ref = LC_FREQ / R, where Ref is the actual reference input seen by
  492. * the WR PLL.
  493. *
  494. * We want R so that REF_MIN <= Ref <= REF_MAX.
  495. * Injecting R2 = 2 * R gives:
  496. * REF_MAX * r2 > LC_FREQ * 2 and
  497. * REF_MIN * r2 < LC_FREQ * 2
  498. *
  499. * Which means the desired boundaries for r2 are:
  500. * LC_FREQ * 2 / REF_MAX < r2 < LC_FREQ * 2 / REF_MIN
  501. *
  502. */
  503. for (r2 = LC_FREQ * 2 / REF_MAX + 1;
  504. r2 <= LC_FREQ * 2 / REF_MIN;
  505. r2++) {
  506. /*
  507. * VCO = N * Ref, that is: VCO = N * LC_FREQ / R
  508. *
  509. * Once again we want VCO_MIN <= VCO <= VCO_MAX.
  510. * Injecting R2 = 2 * R and N2 = 2 * N, we get:
  511. * VCO_MAX * r2 > n2 * LC_FREQ and
  512. * VCO_MIN * r2 < n2 * LC_FREQ)
  513. *
  514. * Which means the desired boundaries for n2 are:
  515. * VCO_MIN * r2 / LC_FREQ < n2 < VCO_MAX * r2 / LC_FREQ
  516. */
  517. for (n2 = VCO_MIN * r2 / LC_FREQ + 1;
  518. n2 <= VCO_MAX * r2 / LC_FREQ;
  519. n2++) {
  520. for (p = P_MIN; p <= P_MAX; p += P_INC)
  521. wrpll_update_rnp(freq2k, budget,
  522. r2, n2, p, &best);
  523. }
  524. }
  525. *n2_out = best.n2;
  526. *p_out = best.p;
  527. *r2_out = best.r2;
  528. DRM_DEBUG_KMS("WRPLL: %dHz refresh rate with p=%d, n2=%d r2=%d\n",
  529. clock, *p_out, *n2_out, *r2_out);
  530. }
  531. bool intel_ddi_pll_mode_set(struct drm_crtc *crtc)
  532. {
  533. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  534. struct intel_encoder *intel_encoder = intel_ddi_get_crtc_encoder(crtc);
  535. struct drm_encoder *encoder = &intel_encoder->base;
  536. struct drm_i915_private *dev_priv = crtc->dev->dev_private;
  537. struct intel_ddi_plls *plls = &dev_priv->ddi_plls;
  538. int type = intel_encoder->type;
  539. enum pipe pipe = intel_crtc->pipe;
  540. uint32_t reg, val;
  541. int clock = intel_crtc->config.port_clock;
  542. /* TODO: reuse PLLs when possible (compare values) */
  543. intel_ddi_put_crtc_pll(crtc);
  544. if (type == INTEL_OUTPUT_DISPLAYPORT || type == INTEL_OUTPUT_EDP) {
  545. struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
  546. switch (intel_dp->link_bw) {
  547. case DP_LINK_BW_1_62:
  548. intel_crtc->ddi_pll_sel = PORT_CLK_SEL_LCPLL_810;
  549. break;
  550. case DP_LINK_BW_2_7:
  551. intel_crtc->ddi_pll_sel = PORT_CLK_SEL_LCPLL_1350;
  552. break;
  553. case DP_LINK_BW_5_4:
  554. intel_crtc->ddi_pll_sel = PORT_CLK_SEL_LCPLL_2700;
  555. break;
  556. default:
  557. DRM_ERROR("Link bandwidth %d unsupported\n",
  558. intel_dp->link_bw);
  559. return false;
  560. }
  561. /* We don't need to turn any PLL on because we'll use LCPLL. */
  562. return true;
  563. } else if (type == INTEL_OUTPUT_HDMI) {
  564. unsigned p, n2, r2;
  565. if (plls->wrpll1_refcount == 0) {
  566. DRM_DEBUG_KMS("Using WRPLL 1 on pipe %c\n",
  567. pipe_name(pipe));
  568. plls->wrpll1_refcount++;
  569. reg = WRPLL_CTL1;
  570. intel_crtc->ddi_pll_sel = PORT_CLK_SEL_WRPLL1;
  571. } else if (plls->wrpll2_refcount == 0) {
  572. DRM_DEBUG_KMS("Using WRPLL 2 on pipe %c\n",
  573. pipe_name(pipe));
  574. plls->wrpll2_refcount++;
  575. reg = WRPLL_CTL2;
  576. intel_crtc->ddi_pll_sel = PORT_CLK_SEL_WRPLL2;
  577. } else {
  578. DRM_ERROR("No WRPLLs available!\n");
  579. return false;
  580. }
  581. WARN(I915_READ(reg) & WRPLL_PLL_ENABLE,
  582. "WRPLL already enabled\n");
  583. intel_ddi_calculate_wrpll(clock * 1000, &r2, &n2, &p);
  584. val = WRPLL_PLL_ENABLE | WRPLL_PLL_SELECT_LCPLL_2700 |
  585. WRPLL_DIVIDER_REFERENCE(r2) | WRPLL_DIVIDER_FEEDBACK(n2) |
  586. WRPLL_DIVIDER_POST(p);
  587. } else if (type == INTEL_OUTPUT_ANALOG) {
  588. if (plls->spll_refcount == 0) {
  589. DRM_DEBUG_KMS("Using SPLL on pipe %c\n",
  590. pipe_name(pipe));
  591. plls->spll_refcount++;
  592. reg = SPLL_CTL;
  593. intel_crtc->ddi_pll_sel = PORT_CLK_SEL_SPLL;
  594. } else {
  595. DRM_ERROR("SPLL already in use\n");
  596. return false;
  597. }
  598. WARN(I915_READ(reg) & SPLL_PLL_ENABLE,
  599. "SPLL already enabled\n");
  600. val = SPLL_PLL_ENABLE | SPLL_PLL_FREQ_1350MHz | SPLL_PLL_SSC;
  601. } else {
  602. WARN(1, "Invalid DDI encoder type %d\n", type);
  603. return false;
  604. }
  605. I915_WRITE(reg, val);
  606. udelay(20);
  607. return true;
  608. }
  609. void intel_ddi_set_pipe_settings(struct drm_crtc *crtc)
  610. {
  611. struct drm_i915_private *dev_priv = crtc->dev->dev_private;
  612. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  613. struct intel_encoder *intel_encoder = intel_ddi_get_crtc_encoder(crtc);
  614. enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
  615. int type = intel_encoder->type;
  616. uint32_t temp;
  617. if (type == INTEL_OUTPUT_DISPLAYPORT || type == INTEL_OUTPUT_EDP) {
  618. temp = TRANS_MSA_SYNC_CLK;
  619. switch (intel_crtc->config.pipe_bpp) {
  620. case 18:
  621. temp |= TRANS_MSA_6_BPC;
  622. break;
  623. case 24:
  624. temp |= TRANS_MSA_8_BPC;
  625. break;
  626. case 30:
  627. temp |= TRANS_MSA_10_BPC;
  628. break;
  629. case 36:
  630. temp |= TRANS_MSA_12_BPC;
  631. break;
  632. default:
  633. BUG();
  634. }
  635. I915_WRITE(TRANS_MSA_MISC(cpu_transcoder), temp);
  636. }
  637. }
  638. void intel_ddi_enable_transcoder_func(struct drm_crtc *crtc)
  639. {
  640. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  641. struct intel_encoder *intel_encoder = intel_ddi_get_crtc_encoder(crtc);
  642. struct drm_encoder *encoder = &intel_encoder->base;
  643. struct drm_i915_private *dev_priv = crtc->dev->dev_private;
  644. enum pipe pipe = intel_crtc->pipe;
  645. enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
  646. enum port port = intel_ddi_get_encoder_port(intel_encoder);
  647. int type = intel_encoder->type;
  648. uint32_t temp;
  649. /* Enable TRANS_DDI_FUNC_CTL for the pipe to work in HDMI mode */
  650. temp = TRANS_DDI_FUNC_ENABLE;
  651. temp |= TRANS_DDI_SELECT_PORT(port);
  652. switch (intel_crtc->config.pipe_bpp) {
  653. case 18:
  654. temp |= TRANS_DDI_BPC_6;
  655. break;
  656. case 24:
  657. temp |= TRANS_DDI_BPC_8;
  658. break;
  659. case 30:
  660. temp |= TRANS_DDI_BPC_10;
  661. break;
  662. case 36:
  663. temp |= TRANS_DDI_BPC_12;
  664. break;
  665. default:
  666. BUG();
  667. }
  668. if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
  669. temp |= TRANS_DDI_PVSYNC;
  670. if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
  671. temp |= TRANS_DDI_PHSYNC;
  672. if (cpu_transcoder == TRANSCODER_EDP) {
  673. switch (pipe) {
  674. case PIPE_A:
  675. /* Can only use the always-on power well for eDP when
  676. * not using the panel fitter, and when not using motion
  677. * blur mitigation (which we don't support). */
  678. if (intel_crtc->config.pch_pfit.size)
  679. temp |= TRANS_DDI_EDP_INPUT_A_ONOFF;
  680. else
  681. temp |= TRANS_DDI_EDP_INPUT_A_ON;
  682. break;
  683. case PIPE_B:
  684. temp |= TRANS_DDI_EDP_INPUT_B_ONOFF;
  685. break;
  686. case PIPE_C:
  687. temp |= TRANS_DDI_EDP_INPUT_C_ONOFF;
  688. break;
  689. default:
  690. BUG();
  691. break;
  692. }
  693. }
  694. if (type == INTEL_OUTPUT_HDMI) {
  695. struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
  696. if (intel_hdmi->has_hdmi_sink)
  697. temp |= TRANS_DDI_MODE_SELECT_HDMI;
  698. else
  699. temp |= TRANS_DDI_MODE_SELECT_DVI;
  700. } else if (type == INTEL_OUTPUT_ANALOG) {
  701. temp |= TRANS_DDI_MODE_SELECT_FDI;
  702. temp |= (intel_crtc->config.fdi_lanes - 1) << 1;
  703. } else if (type == INTEL_OUTPUT_DISPLAYPORT ||
  704. type == INTEL_OUTPUT_EDP) {
  705. struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
  706. temp |= TRANS_DDI_MODE_SELECT_DP_SST;
  707. temp |= DDI_PORT_WIDTH(intel_dp->lane_count);
  708. } else {
  709. WARN(1, "Invalid encoder type %d for pipe %c\n",
  710. intel_encoder->type, pipe_name(pipe));
  711. }
  712. I915_WRITE(TRANS_DDI_FUNC_CTL(cpu_transcoder), temp);
  713. }
  714. void intel_ddi_disable_transcoder_func(struct drm_i915_private *dev_priv,
  715. enum transcoder cpu_transcoder)
  716. {
  717. uint32_t reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
  718. uint32_t val = I915_READ(reg);
  719. val &= ~(TRANS_DDI_FUNC_ENABLE | TRANS_DDI_PORT_MASK);
  720. val |= TRANS_DDI_PORT_NONE;
  721. I915_WRITE(reg, val);
  722. }
  723. bool intel_ddi_connector_get_hw_state(struct intel_connector *intel_connector)
  724. {
  725. struct drm_device *dev = intel_connector->base.dev;
  726. struct drm_i915_private *dev_priv = dev->dev_private;
  727. struct intel_encoder *intel_encoder = intel_connector->encoder;
  728. int type = intel_connector->base.connector_type;
  729. enum port port = intel_ddi_get_encoder_port(intel_encoder);
  730. enum pipe pipe = 0;
  731. enum transcoder cpu_transcoder;
  732. uint32_t tmp;
  733. if (!intel_encoder->get_hw_state(intel_encoder, &pipe))
  734. return false;
  735. if (port == PORT_A)
  736. cpu_transcoder = TRANSCODER_EDP;
  737. else
  738. cpu_transcoder = (enum transcoder) pipe;
  739. tmp = I915_READ(TRANS_DDI_FUNC_CTL(cpu_transcoder));
  740. switch (tmp & TRANS_DDI_MODE_SELECT_MASK) {
  741. case TRANS_DDI_MODE_SELECT_HDMI:
  742. case TRANS_DDI_MODE_SELECT_DVI:
  743. return (type == DRM_MODE_CONNECTOR_HDMIA);
  744. case TRANS_DDI_MODE_SELECT_DP_SST:
  745. if (type == DRM_MODE_CONNECTOR_eDP)
  746. return true;
  747. case TRANS_DDI_MODE_SELECT_DP_MST:
  748. return (type == DRM_MODE_CONNECTOR_DisplayPort);
  749. case TRANS_DDI_MODE_SELECT_FDI:
  750. return (type == DRM_MODE_CONNECTOR_VGA);
  751. default:
  752. return false;
  753. }
  754. }
  755. bool intel_ddi_get_hw_state(struct intel_encoder *encoder,
  756. enum pipe *pipe)
  757. {
  758. struct drm_device *dev = encoder->base.dev;
  759. struct drm_i915_private *dev_priv = dev->dev_private;
  760. enum port port = intel_ddi_get_encoder_port(encoder);
  761. u32 tmp;
  762. int i;
  763. tmp = I915_READ(DDI_BUF_CTL(port));
  764. if (!(tmp & DDI_BUF_CTL_ENABLE))
  765. return false;
  766. if (port == PORT_A) {
  767. tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
  768. switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
  769. case TRANS_DDI_EDP_INPUT_A_ON:
  770. case TRANS_DDI_EDP_INPUT_A_ONOFF:
  771. *pipe = PIPE_A;
  772. break;
  773. case TRANS_DDI_EDP_INPUT_B_ONOFF:
  774. *pipe = PIPE_B;
  775. break;
  776. case TRANS_DDI_EDP_INPUT_C_ONOFF:
  777. *pipe = PIPE_C;
  778. break;
  779. }
  780. return true;
  781. } else {
  782. for (i = TRANSCODER_A; i <= TRANSCODER_C; i++) {
  783. tmp = I915_READ(TRANS_DDI_FUNC_CTL(i));
  784. if ((tmp & TRANS_DDI_PORT_MASK)
  785. == TRANS_DDI_SELECT_PORT(port)) {
  786. *pipe = i;
  787. return true;
  788. }
  789. }
  790. }
  791. DRM_DEBUG_KMS("No pipe for ddi port %c found\n", port_name(port));
  792. return false;
  793. }
  794. static uint32_t intel_ddi_get_crtc_pll(struct drm_i915_private *dev_priv,
  795. enum pipe pipe)
  796. {
  797. uint32_t temp, ret;
  798. enum port port = I915_MAX_PORTS;
  799. enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
  800. pipe);
  801. int i;
  802. if (cpu_transcoder == TRANSCODER_EDP) {
  803. port = PORT_A;
  804. } else {
  805. temp = I915_READ(TRANS_DDI_FUNC_CTL(cpu_transcoder));
  806. temp &= TRANS_DDI_PORT_MASK;
  807. for (i = PORT_B; i <= PORT_E; i++)
  808. if (temp == TRANS_DDI_SELECT_PORT(i))
  809. port = i;
  810. }
  811. if (port == I915_MAX_PORTS) {
  812. WARN(1, "Pipe %c enabled on an unknown port\n",
  813. pipe_name(pipe));
  814. ret = PORT_CLK_SEL_NONE;
  815. } else {
  816. ret = I915_READ(PORT_CLK_SEL(port));
  817. DRM_DEBUG_KMS("Pipe %c connected to port %c using clock "
  818. "0x%08x\n", pipe_name(pipe), port_name(port),
  819. ret);
  820. }
  821. return ret;
  822. }
  823. void intel_ddi_setup_hw_pll_state(struct drm_device *dev)
  824. {
  825. struct drm_i915_private *dev_priv = dev->dev_private;
  826. enum pipe pipe;
  827. struct intel_crtc *intel_crtc;
  828. for_each_pipe(pipe) {
  829. intel_crtc =
  830. to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
  831. if (!intel_crtc->active)
  832. continue;
  833. intel_crtc->ddi_pll_sel = intel_ddi_get_crtc_pll(dev_priv,
  834. pipe);
  835. switch (intel_crtc->ddi_pll_sel) {
  836. case PORT_CLK_SEL_SPLL:
  837. dev_priv->ddi_plls.spll_refcount++;
  838. break;
  839. case PORT_CLK_SEL_WRPLL1:
  840. dev_priv->ddi_plls.wrpll1_refcount++;
  841. break;
  842. case PORT_CLK_SEL_WRPLL2:
  843. dev_priv->ddi_plls.wrpll2_refcount++;
  844. break;
  845. }
  846. }
  847. }
  848. void intel_ddi_enable_pipe_clock(struct intel_crtc *intel_crtc)
  849. {
  850. struct drm_crtc *crtc = &intel_crtc->base;
  851. struct drm_i915_private *dev_priv = crtc->dev->dev_private;
  852. struct intel_encoder *intel_encoder = intel_ddi_get_crtc_encoder(crtc);
  853. enum port port = intel_ddi_get_encoder_port(intel_encoder);
  854. enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
  855. if (cpu_transcoder != TRANSCODER_EDP)
  856. I915_WRITE(TRANS_CLK_SEL(cpu_transcoder),
  857. TRANS_CLK_SEL_PORT(port));
  858. }
  859. void intel_ddi_disable_pipe_clock(struct intel_crtc *intel_crtc)
  860. {
  861. struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
  862. enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
  863. if (cpu_transcoder != TRANSCODER_EDP)
  864. I915_WRITE(TRANS_CLK_SEL(cpu_transcoder),
  865. TRANS_CLK_SEL_DISABLED);
  866. }
  867. static void intel_ddi_pre_enable(struct intel_encoder *intel_encoder)
  868. {
  869. struct drm_encoder *encoder = &intel_encoder->base;
  870. struct drm_crtc *crtc = encoder->crtc;
  871. struct drm_i915_private *dev_priv = encoder->dev->dev_private;
  872. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  873. enum port port = intel_ddi_get_encoder_port(intel_encoder);
  874. int type = intel_encoder->type;
  875. if (type == INTEL_OUTPUT_EDP) {
  876. struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
  877. ironlake_edp_panel_vdd_on(intel_dp);
  878. ironlake_edp_panel_on(intel_dp);
  879. ironlake_edp_panel_vdd_off(intel_dp, true);
  880. }
  881. WARN_ON(intel_crtc->ddi_pll_sel == PORT_CLK_SEL_NONE);
  882. I915_WRITE(PORT_CLK_SEL(port), intel_crtc->ddi_pll_sel);
  883. if (type == INTEL_OUTPUT_DISPLAYPORT || type == INTEL_OUTPUT_EDP) {
  884. struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
  885. intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
  886. intel_dp_start_link_train(intel_dp);
  887. intel_dp_complete_link_train(intel_dp);
  888. if (port != PORT_A)
  889. intel_dp_stop_link_train(intel_dp);
  890. }
  891. }
  892. static void intel_ddi_post_disable(struct intel_encoder *intel_encoder)
  893. {
  894. struct drm_encoder *encoder = &intel_encoder->base;
  895. struct drm_i915_private *dev_priv = encoder->dev->dev_private;
  896. enum port port = intel_ddi_get_encoder_port(intel_encoder);
  897. int type = intel_encoder->type;
  898. uint32_t val;
  899. bool wait = false;
  900. val = I915_READ(DDI_BUF_CTL(port));
  901. if (val & DDI_BUF_CTL_ENABLE) {
  902. val &= ~DDI_BUF_CTL_ENABLE;
  903. I915_WRITE(DDI_BUF_CTL(port), val);
  904. wait = true;
  905. }
  906. val = I915_READ(DP_TP_CTL(port));
  907. val &= ~(DP_TP_CTL_ENABLE | DP_TP_CTL_LINK_TRAIN_MASK);
  908. val |= DP_TP_CTL_LINK_TRAIN_PAT1;
  909. I915_WRITE(DP_TP_CTL(port), val);
  910. if (wait)
  911. intel_wait_ddi_buf_idle(dev_priv, port);
  912. if (type == INTEL_OUTPUT_EDP) {
  913. struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
  914. ironlake_edp_panel_vdd_on(intel_dp);
  915. ironlake_edp_panel_off(intel_dp);
  916. }
  917. I915_WRITE(PORT_CLK_SEL(port), PORT_CLK_SEL_NONE);
  918. }
  919. static void intel_enable_ddi(struct intel_encoder *intel_encoder)
  920. {
  921. struct drm_encoder *encoder = &intel_encoder->base;
  922. struct drm_crtc *crtc = encoder->crtc;
  923. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  924. int pipe = intel_crtc->pipe;
  925. struct drm_device *dev = encoder->dev;
  926. struct drm_i915_private *dev_priv = dev->dev_private;
  927. enum port port = intel_ddi_get_encoder_port(intel_encoder);
  928. int type = intel_encoder->type;
  929. uint32_t tmp;
  930. if (type == INTEL_OUTPUT_HDMI) {
  931. struct intel_digital_port *intel_dig_port =
  932. enc_to_dig_port(encoder);
  933. /* In HDMI/DVI mode, the port width, and swing/emphasis values
  934. * are ignored so nothing special needs to be done besides
  935. * enabling the port.
  936. */
  937. I915_WRITE(DDI_BUF_CTL(port),
  938. intel_dig_port->saved_port_bits |
  939. DDI_BUF_CTL_ENABLE);
  940. } else if (type == INTEL_OUTPUT_EDP) {
  941. struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
  942. if (port == PORT_A)
  943. intel_dp_stop_link_train(intel_dp);
  944. ironlake_edp_backlight_on(intel_dp);
  945. intel_edp_psr_enable(intel_dp);
  946. }
  947. if (intel_crtc->eld_vld && type != INTEL_OUTPUT_EDP) {
  948. tmp = I915_READ(HSW_AUD_PIN_ELD_CP_VLD);
  949. tmp |= ((AUDIO_OUTPUT_ENABLE_A | AUDIO_ELD_VALID_A) << (pipe * 4));
  950. I915_WRITE(HSW_AUD_PIN_ELD_CP_VLD, tmp);
  951. }
  952. }
  953. static void intel_disable_ddi(struct intel_encoder *intel_encoder)
  954. {
  955. struct drm_encoder *encoder = &intel_encoder->base;
  956. struct drm_crtc *crtc = encoder->crtc;
  957. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  958. int pipe = intel_crtc->pipe;
  959. int type = intel_encoder->type;
  960. struct drm_device *dev = encoder->dev;
  961. struct drm_i915_private *dev_priv = dev->dev_private;
  962. uint32_t tmp;
  963. if (intel_crtc->eld_vld && type != INTEL_OUTPUT_EDP) {
  964. tmp = I915_READ(HSW_AUD_PIN_ELD_CP_VLD);
  965. tmp &= ~((AUDIO_OUTPUT_ENABLE_A | AUDIO_ELD_VALID_A) <<
  966. (pipe * 4));
  967. I915_WRITE(HSW_AUD_PIN_ELD_CP_VLD, tmp);
  968. }
  969. if (type == INTEL_OUTPUT_EDP) {
  970. struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
  971. intel_edp_psr_disable(intel_dp);
  972. ironlake_edp_backlight_off(intel_dp);
  973. }
  974. }
  975. int intel_ddi_get_cdclk_freq(struct drm_i915_private *dev_priv)
  976. {
  977. if (I915_READ(HSW_FUSE_STRAP) & HSW_CDCLK_LIMIT)
  978. return 450000;
  979. else if ((I915_READ(LCPLL_CTL) & LCPLL_CLK_FREQ_MASK) ==
  980. LCPLL_CLK_FREQ_450)
  981. return 450000;
  982. else if (IS_ULT(dev_priv->dev))
  983. return 337500;
  984. else
  985. return 540000;
  986. }
  987. void intel_ddi_pll_init(struct drm_device *dev)
  988. {
  989. struct drm_i915_private *dev_priv = dev->dev_private;
  990. uint32_t val = I915_READ(LCPLL_CTL);
  991. /* The LCPLL register should be turned on by the BIOS. For now let's
  992. * just check its state and print errors in case something is wrong.
  993. * Don't even try to turn it on.
  994. */
  995. DRM_DEBUG_KMS("CDCLK running at %dKHz\n",
  996. intel_ddi_get_cdclk_freq(dev_priv));
  997. if (val & LCPLL_CD_SOURCE_FCLK)
  998. DRM_ERROR("CDCLK source is not LCPLL\n");
  999. if (val & LCPLL_PLL_DISABLE)
  1000. DRM_ERROR("LCPLL is disabled\n");
  1001. }
  1002. void intel_ddi_prepare_link_retrain(struct drm_encoder *encoder)
  1003. {
  1004. struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
  1005. struct intel_dp *intel_dp = &intel_dig_port->dp;
  1006. struct drm_i915_private *dev_priv = encoder->dev->dev_private;
  1007. enum port port = intel_dig_port->port;
  1008. uint32_t val;
  1009. bool wait = false;
  1010. if (I915_READ(DP_TP_CTL(port)) & DP_TP_CTL_ENABLE) {
  1011. val = I915_READ(DDI_BUF_CTL(port));
  1012. if (val & DDI_BUF_CTL_ENABLE) {
  1013. val &= ~DDI_BUF_CTL_ENABLE;
  1014. I915_WRITE(DDI_BUF_CTL(port), val);
  1015. wait = true;
  1016. }
  1017. val = I915_READ(DP_TP_CTL(port));
  1018. val &= ~(DP_TP_CTL_ENABLE | DP_TP_CTL_LINK_TRAIN_MASK);
  1019. val |= DP_TP_CTL_LINK_TRAIN_PAT1;
  1020. I915_WRITE(DP_TP_CTL(port), val);
  1021. POSTING_READ(DP_TP_CTL(port));
  1022. if (wait)
  1023. intel_wait_ddi_buf_idle(dev_priv, port);
  1024. }
  1025. val = DP_TP_CTL_ENABLE | DP_TP_CTL_MODE_SST |
  1026. DP_TP_CTL_LINK_TRAIN_PAT1 | DP_TP_CTL_SCRAMBLE_DISABLE;
  1027. if (intel_dp->link_configuration[1] & DP_LANE_COUNT_ENHANCED_FRAME_EN)
  1028. val |= DP_TP_CTL_ENHANCED_FRAME_ENABLE;
  1029. I915_WRITE(DP_TP_CTL(port), val);
  1030. POSTING_READ(DP_TP_CTL(port));
  1031. intel_dp->DP |= DDI_BUF_CTL_ENABLE;
  1032. I915_WRITE(DDI_BUF_CTL(port), intel_dp->DP);
  1033. POSTING_READ(DDI_BUF_CTL(port));
  1034. udelay(600);
  1035. }
  1036. void intel_ddi_fdi_disable(struct drm_crtc *crtc)
  1037. {
  1038. struct drm_i915_private *dev_priv = crtc->dev->dev_private;
  1039. struct intel_encoder *intel_encoder = intel_ddi_get_crtc_encoder(crtc);
  1040. uint32_t val;
  1041. intel_ddi_post_disable(intel_encoder);
  1042. val = I915_READ(_FDI_RXA_CTL);
  1043. val &= ~FDI_RX_ENABLE;
  1044. I915_WRITE(_FDI_RXA_CTL, val);
  1045. val = I915_READ(_FDI_RXA_MISC);
  1046. val &= ~(FDI_RX_PWRDN_LANE1_MASK | FDI_RX_PWRDN_LANE0_MASK);
  1047. val |= FDI_RX_PWRDN_LANE1_VAL(2) | FDI_RX_PWRDN_LANE0_VAL(2);
  1048. I915_WRITE(_FDI_RXA_MISC, val);
  1049. val = I915_READ(_FDI_RXA_CTL);
  1050. val &= ~FDI_PCDCLK;
  1051. I915_WRITE(_FDI_RXA_CTL, val);
  1052. val = I915_READ(_FDI_RXA_CTL);
  1053. val &= ~FDI_RX_PLL_ENABLE;
  1054. I915_WRITE(_FDI_RXA_CTL, val);
  1055. }
  1056. static void intel_ddi_hot_plug(struct intel_encoder *intel_encoder)
  1057. {
  1058. struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
  1059. int type = intel_encoder->type;
  1060. if (type == INTEL_OUTPUT_DISPLAYPORT || type == INTEL_OUTPUT_EDP)
  1061. intel_dp_check_link_status(intel_dp);
  1062. }
  1063. static void intel_ddi_get_config(struct intel_encoder *encoder,
  1064. struct intel_crtc_config *pipe_config)
  1065. {
  1066. struct drm_i915_private *dev_priv = encoder->base.dev->dev_private;
  1067. struct intel_crtc *intel_crtc = to_intel_crtc(encoder->base.crtc);
  1068. enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
  1069. u32 temp, flags = 0;
  1070. temp = I915_READ(TRANS_DDI_FUNC_CTL(cpu_transcoder));
  1071. if (temp & TRANS_DDI_PHSYNC)
  1072. flags |= DRM_MODE_FLAG_PHSYNC;
  1073. else
  1074. flags |= DRM_MODE_FLAG_NHSYNC;
  1075. if (temp & TRANS_DDI_PVSYNC)
  1076. flags |= DRM_MODE_FLAG_PVSYNC;
  1077. else
  1078. flags |= DRM_MODE_FLAG_NVSYNC;
  1079. pipe_config->adjusted_mode.flags |= flags;
  1080. }
  1081. static void intel_ddi_destroy(struct drm_encoder *encoder)
  1082. {
  1083. /* HDMI has nothing special to destroy, so we can go with this. */
  1084. intel_dp_encoder_destroy(encoder);
  1085. }
  1086. static bool intel_ddi_compute_config(struct intel_encoder *encoder,
  1087. struct intel_crtc_config *pipe_config)
  1088. {
  1089. int type = encoder->type;
  1090. int port = intel_ddi_get_encoder_port(encoder);
  1091. WARN(type == INTEL_OUTPUT_UNKNOWN, "compute_config() on unknown output!\n");
  1092. if (port == PORT_A)
  1093. pipe_config->cpu_transcoder = TRANSCODER_EDP;
  1094. if (type == INTEL_OUTPUT_HDMI)
  1095. return intel_hdmi_compute_config(encoder, pipe_config);
  1096. else
  1097. return intel_dp_compute_config(encoder, pipe_config);
  1098. }
  1099. static const struct drm_encoder_funcs intel_ddi_funcs = {
  1100. .destroy = intel_ddi_destroy,
  1101. };
  1102. void intel_ddi_init(struct drm_device *dev, enum port port)
  1103. {
  1104. struct drm_i915_private *dev_priv = dev->dev_private;
  1105. struct intel_digital_port *intel_dig_port;
  1106. struct intel_encoder *intel_encoder;
  1107. struct drm_encoder *encoder;
  1108. struct intel_connector *hdmi_connector = NULL;
  1109. struct intel_connector *dp_connector = NULL;
  1110. intel_dig_port = kzalloc(sizeof(struct intel_digital_port), GFP_KERNEL);
  1111. if (!intel_dig_port)
  1112. return;
  1113. dp_connector = kzalloc(sizeof(struct intel_connector), GFP_KERNEL);
  1114. if (!dp_connector) {
  1115. kfree(intel_dig_port);
  1116. return;
  1117. }
  1118. intel_encoder = &intel_dig_port->base;
  1119. encoder = &intel_encoder->base;
  1120. drm_encoder_init(dev, encoder, &intel_ddi_funcs,
  1121. DRM_MODE_ENCODER_TMDS);
  1122. intel_encoder->compute_config = intel_ddi_compute_config;
  1123. intel_encoder->mode_set = intel_ddi_mode_set;
  1124. intel_encoder->enable = intel_enable_ddi;
  1125. intel_encoder->pre_enable = intel_ddi_pre_enable;
  1126. intel_encoder->disable = intel_disable_ddi;
  1127. intel_encoder->post_disable = intel_ddi_post_disable;
  1128. intel_encoder->get_hw_state = intel_ddi_get_hw_state;
  1129. intel_encoder->get_config = intel_ddi_get_config;
  1130. intel_dig_port->port = port;
  1131. intel_dig_port->saved_port_bits = I915_READ(DDI_BUF_CTL(port)) &
  1132. (DDI_BUF_PORT_REVERSAL |
  1133. DDI_A_4_LANES);
  1134. intel_dig_port->dp.output_reg = DDI_BUF_CTL(port);
  1135. intel_encoder->type = INTEL_OUTPUT_UNKNOWN;
  1136. intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
  1137. intel_encoder->cloneable = false;
  1138. intel_encoder->hot_plug = intel_ddi_hot_plug;
  1139. if (!intel_dp_init_connector(intel_dig_port, dp_connector)) {
  1140. drm_encoder_cleanup(encoder);
  1141. kfree(intel_dig_port);
  1142. kfree(dp_connector);
  1143. return;
  1144. }
  1145. if (intel_encoder->type != INTEL_OUTPUT_EDP) {
  1146. hdmi_connector = kzalloc(sizeof(struct intel_connector),
  1147. GFP_KERNEL);
  1148. if (!hdmi_connector) {
  1149. return;
  1150. }
  1151. intel_dig_port->hdmi.hdmi_reg = DDI_BUF_CTL(port);
  1152. intel_hdmi_init_connector(intel_dig_port, hdmi_connector);
  1153. }
  1154. }