intel_dp.c 100 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575
  1. /*
  2. * Copyright © 2008 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Keith Packard <keithp@keithp.com>
  25. *
  26. */
  27. #include <linux/i2c.h>
  28. #include <linux/slab.h>
  29. #include <linux/export.h>
  30. #include <drm/drmP.h>
  31. #include <drm/drm_crtc.h>
  32. #include <drm/drm_crtc_helper.h>
  33. #include <drm/drm_edid.h>
  34. #include "intel_drv.h"
  35. #include <drm/i915_drm.h>
  36. #include "i915_drv.h"
  37. #define DP_LINK_CHECK_TIMEOUT (10 * 1000)
  38. struct dp_link_dpll {
  39. int link_bw;
  40. struct dpll dpll;
  41. };
  42. static const struct dp_link_dpll gen4_dpll[] = {
  43. { DP_LINK_BW_1_62,
  44. { .p1 = 2, .p2 = 10, .n = 2, .m1 = 23, .m2 = 8 } },
  45. { DP_LINK_BW_2_7,
  46. { .p1 = 1, .p2 = 10, .n = 1, .m1 = 14, .m2 = 2 } }
  47. };
  48. static const struct dp_link_dpll pch_dpll[] = {
  49. { DP_LINK_BW_1_62,
  50. { .p1 = 2, .p2 = 10, .n = 1, .m1 = 12, .m2 = 9 } },
  51. { DP_LINK_BW_2_7,
  52. { .p1 = 1, .p2 = 10, .n = 2, .m1 = 14, .m2 = 8 } }
  53. };
  54. static const struct dp_link_dpll vlv_dpll[] = {
  55. { DP_LINK_BW_1_62,
  56. { .p1 = 3, .p2 = 2, .n = 5, .m1 = 5, .m2 = 3 } },
  57. { DP_LINK_BW_2_7,
  58. { .p1 = 2, .p2 = 2, .n = 1, .m1 = 2, .m2 = 27 } }
  59. };
  60. /**
  61. * is_edp - is the given port attached to an eDP panel (either CPU or PCH)
  62. * @intel_dp: DP struct
  63. *
  64. * If a CPU or PCH DP output is attached to an eDP panel, this function
  65. * will return true, and false otherwise.
  66. */
  67. static bool is_edp(struct intel_dp *intel_dp)
  68. {
  69. struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
  70. return intel_dig_port->base.type == INTEL_OUTPUT_EDP;
  71. }
  72. static struct drm_device *intel_dp_to_dev(struct intel_dp *intel_dp)
  73. {
  74. struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
  75. return intel_dig_port->base.base.dev;
  76. }
  77. static struct intel_dp *intel_attached_dp(struct drm_connector *connector)
  78. {
  79. return enc_to_intel_dp(&intel_attached_encoder(connector)->base);
  80. }
  81. static void intel_dp_link_down(struct intel_dp *intel_dp);
  82. static int
  83. intel_dp_max_link_bw(struct intel_dp *intel_dp)
  84. {
  85. int max_link_bw = intel_dp->dpcd[DP_MAX_LINK_RATE];
  86. switch (max_link_bw) {
  87. case DP_LINK_BW_1_62:
  88. case DP_LINK_BW_2_7:
  89. break;
  90. case DP_LINK_BW_5_4: /* 1.2 capable displays may advertise higher bw */
  91. max_link_bw = DP_LINK_BW_2_7;
  92. break;
  93. default:
  94. WARN(1, "invalid max DP link bw val %x, using 1.62Gbps\n",
  95. max_link_bw);
  96. max_link_bw = DP_LINK_BW_1_62;
  97. break;
  98. }
  99. return max_link_bw;
  100. }
  101. /*
  102. * The units on the numbers in the next two are... bizarre. Examples will
  103. * make it clearer; this one parallels an example in the eDP spec.
  104. *
  105. * intel_dp_max_data_rate for one lane of 2.7GHz evaluates as:
  106. *
  107. * 270000 * 1 * 8 / 10 == 216000
  108. *
  109. * The actual data capacity of that configuration is 2.16Gbit/s, so the
  110. * units are decakilobits. ->clock in a drm_display_mode is in kilohertz -
  111. * or equivalently, kilopixels per second - so for 1680x1050R it'd be
  112. * 119000. At 18bpp that's 2142000 kilobits per second.
  113. *
  114. * Thus the strange-looking division by 10 in intel_dp_link_required, to
  115. * get the result in decakilobits instead of kilobits.
  116. */
  117. static int
  118. intel_dp_link_required(int pixel_clock, int bpp)
  119. {
  120. return (pixel_clock * bpp + 9) / 10;
  121. }
  122. static int
  123. intel_dp_max_data_rate(int max_link_clock, int max_lanes)
  124. {
  125. return (max_link_clock * max_lanes * 8) / 10;
  126. }
  127. static int
  128. intel_dp_mode_valid(struct drm_connector *connector,
  129. struct drm_display_mode *mode)
  130. {
  131. struct intel_dp *intel_dp = intel_attached_dp(connector);
  132. struct intel_connector *intel_connector = to_intel_connector(connector);
  133. struct drm_display_mode *fixed_mode = intel_connector->panel.fixed_mode;
  134. int target_clock = mode->clock;
  135. int max_rate, mode_rate, max_lanes, max_link_clock;
  136. if (is_edp(intel_dp) && fixed_mode) {
  137. if (mode->hdisplay > fixed_mode->hdisplay)
  138. return MODE_PANEL;
  139. if (mode->vdisplay > fixed_mode->vdisplay)
  140. return MODE_PANEL;
  141. target_clock = fixed_mode->clock;
  142. }
  143. max_link_clock = drm_dp_bw_code_to_link_rate(intel_dp_max_link_bw(intel_dp));
  144. max_lanes = drm_dp_max_lane_count(intel_dp->dpcd);
  145. max_rate = intel_dp_max_data_rate(max_link_clock, max_lanes);
  146. mode_rate = intel_dp_link_required(target_clock, 18);
  147. if (mode_rate > max_rate)
  148. return MODE_CLOCK_HIGH;
  149. if (mode->clock < 10000)
  150. return MODE_CLOCK_LOW;
  151. if (mode->flags & DRM_MODE_FLAG_DBLCLK)
  152. return MODE_H_ILLEGAL;
  153. return MODE_OK;
  154. }
  155. static uint32_t
  156. pack_aux(uint8_t *src, int src_bytes)
  157. {
  158. int i;
  159. uint32_t v = 0;
  160. if (src_bytes > 4)
  161. src_bytes = 4;
  162. for (i = 0; i < src_bytes; i++)
  163. v |= ((uint32_t) src[i]) << ((3-i) * 8);
  164. return v;
  165. }
  166. static void
  167. unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
  168. {
  169. int i;
  170. if (dst_bytes > 4)
  171. dst_bytes = 4;
  172. for (i = 0; i < dst_bytes; i++)
  173. dst[i] = src >> ((3-i) * 8);
  174. }
  175. /* hrawclock is 1/4 the FSB frequency */
  176. static int
  177. intel_hrawclk(struct drm_device *dev)
  178. {
  179. struct drm_i915_private *dev_priv = dev->dev_private;
  180. uint32_t clkcfg;
  181. /* There is no CLKCFG reg in Valleyview. VLV hrawclk is 200 MHz */
  182. if (IS_VALLEYVIEW(dev))
  183. return 200;
  184. clkcfg = I915_READ(CLKCFG);
  185. switch (clkcfg & CLKCFG_FSB_MASK) {
  186. case CLKCFG_FSB_400:
  187. return 100;
  188. case CLKCFG_FSB_533:
  189. return 133;
  190. case CLKCFG_FSB_667:
  191. return 166;
  192. case CLKCFG_FSB_800:
  193. return 200;
  194. case CLKCFG_FSB_1067:
  195. return 266;
  196. case CLKCFG_FSB_1333:
  197. return 333;
  198. /* these two are just a guess; one of them might be right */
  199. case CLKCFG_FSB_1600:
  200. case CLKCFG_FSB_1600_ALT:
  201. return 400;
  202. default:
  203. return 133;
  204. }
  205. }
  206. static bool ironlake_edp_have_panel_power(struct intel_dp *intel_dp)
  207. {
  208. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  209. struct drm_i915_private *dev_priv = dev->dev_private;
  210. u32 pp_stat_reg;
  211. pp_stat_reg = IS_VALLEYVIEW(dev) ? PIPEA_PP_STATUS : PCH_PP_STATUS;
  212. return (I915_READ(pp_stat_reg) & PP_ON) != 0;
  213. }
  214. static bool ironlake_edp_have_panel_vdd(struct intel_dp *intel_dp)
  215. {
  216. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  217. struct drm_i915_private *dev_priv = dev->dev_private;
  218. u32 pp_ctrl_reg;
  219. pp_ctrl_reg = IS_VALLEYVIEW(dev) ? PIPEA_PP_CONTROL : PCH_PP_CONTROL;
  220. return (I915_READ(pp_ctrl_reg) & EDP_FORCE_VDD) != 0;
  221. }
  222. static void
  223. intel_dp_check_edp(struct intel_dp *intel_dp)
  224. {
  225. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  226. struct drm_i915_private *dev_priv = dev->dev_private;
  227. u32 pp_stat_reg, pp_ctrl_reg;
  228. if (!is_edp(intel_dp))
  229. return;
  230. pp_stat_reg = IS_VALLEYVIEW(dev) ? PIPEA_PP_STATUS : PCH_PP_STATUS;
  231. pp_ctrl_reg = IS_VALLEYVIEW(dev) ? PIPEA_PP_CONTROL : PCH_PP_CONTROL;
  232. if (!ironlake_edp_have_panel_power(intel_dp) && !ironlake_edp_have_panel_vdd(intel_dp)) {
  233. WARN(1, "eDP powered off while attempting aux channel communication.\n");
  234. DRM_DEBUG_KMS("Status 0x%08x Control 0x%08x\n",
  235. I915_READ(pp_stat_reg),
  236. I915_READ(pp_ctrl_reg));
  237. }
  238. }
  239. static uint32_t
  240. intel_dp_aux_wait_done(struct intel_dp *intel_dp, bool has_aux_irq)
  241. {
  242. struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
  243. struct drm_device *dev = intel_dig_port->base.base.dev;
  244. struct drm_i915_private *dev_priv = dev->dev_private;
  245. uint32_t ch_ctl = intel_dp->aux_ch_ctl_reg;
  246. uint32_t status;
  247. bool done;
  248. #define C (((status = I915_READ_NOTRACE(ch_ctl)) & DP_AUX_CH_CTL_SEND_BUSY) == 0)
  249. if (has_aux_irq)
  250. done = wait_event_timeout(dev_priv->gmbus_wait_queue, C,
  251. msecs_to_jiffies_timeout(10));
  252. else
  253. done = wait_for_atomic(C, 10) == 0;
  254. if (!done)
  255. DRM_ERROR("dp aux hw did not signal timeout (has irq: %i)!\n",
  256. has_aux_irq);
  257. #undef C
  258. return status;
  259. }
  260. static uint32_t get_aux_clock_divider(struct intel_dp *intel_dp,
  261. int index)
  262. {
  263. struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
  264. struct drm_device *dev = intel_dig_port->base.base.dev;
  265. struct drm_i915_private *dev_priv = dev->dev_private;
  266. /* The clock divider is based off the hrawclk,
  267. * and would like to run at 2MHz. So, take the
  268. * hrawclk value and divide by 2 and use that
  269. *
  270. * Note that PCH attached eDP panels should use a 125MHz input
  271. * clock divider.
  272. */
  273. if (IS_VALLEYVIEW(dev)) {
  274. return index ? 0 : 100;
  275. } else if (intel_dig_port->port == PORT_A) {
  276. if (index)
  277. return 0;
  278. if (HAS_DDI(dev))
  279. return DIV_ROUND_CLOSEST(intel_ddi_get_cdclk_freq(dev_priv), 2000);
  280. else if (IS_GEN6(dev) || IS_GEN7(dev))
  281. return 200; /* SNB & IVB eDP input clock at 400Mhz */
  282. else
  283. return 225; /* eDP input clock at 450Mhz */
  284. } else if (dev_priv->pch_id == INTEL_PCH_LPT_DEVICE_ID_TYPE) {
  285. /* Workaround for non-ULT HSW */
  286. switch (index) {
  287. case 0: return 63;
  288. case 1: return 72;
  289. default: return 0;
  290. }
  291. } else if (HAS_PCH_SPLIT(dev)) {
  292. return index ? 0 : DIV_ROUND_UP(intel_pch_rawclk(dev), 2);
  293. } else {
  294. return index ? 0 :intel_hrawclk(dev) / 2;
  295. }
  296. }
  297. static int
  298. intel_dp_aux_ch(struct intel_dp *intel_dp,
  299. uint8_t *send, int send_bytes,
  300. uint8_t *recv, int recv_size)
  301. {
  302. struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
  303. struct drm_device *dev = intel_dig_port->base.base.dev;
  304. struct drm_i915_private *dev_priv = dev->dev_private;
  305. uint32_t ch_ctl = intel_dp->aux_ch_ctl_reg;
  306. uint32_t ch_data = ch_ctl + 4;
  307. uint32_t aux_clock_divider;
  308. int i, ret, recv_bytes;
  309. uint32_t status;
  310. int try, precharge, clock = 0;
  311. bool has_aux_irq = INTEL_INFO(dev)->gen >= 5 && !IS_VALLEYVIEW(dev);
  312. /* dp aux is extremely sensitive to irq latency, hence request the
  313. * lowest possible wakeup latency and so prevent the cpu from going into
  314. * deep sleep states.
  315. */
  316. pm_qos_update_request(&dev_priv->pm_qos, 0);
  317. intel_dp_check_edp(intel_dp);
  318. if (IS_GEN6(dev))
  319. precharge = 3;
  320. else
  321. precharge = 5;
  322. intel_aux_display_runtime_get(dev_priv);
  323. /* Try to wait for any previous AUX channel activity */
  324. for (try = 0; try < 3; try++) {
  325. status = I915_READ_NOTRACE(ch_ctl);
  326. if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
  327. break;
  328. msleep(1);
  329. }
  330. if (try == 3) {
  331. WARN(1, "dp_aux_ch not started status 0x%08x\n",
  332. I915_READ(ch_ctl));
  333. ret = -EBUSY;
  334. goto out;
  335. }
  336. while ((aux_clock_divider = get_aux_clock_divider(intel_dp, clock++))) {
  337. /* Must try at least 3 times according to DP spec */
  338. for (try = 0; try < 5; try++) {
  339. /* Load the send data into the aux channel data registers */
  340. for (i = 0; i < send_bytes; i += 4)
  341. I915_WRITE(ch_data + i,
  342. pack_aux(send + i, send_bytes - i));
  343. /* Send the command and wait for it to complete */
  344. I915_WRITE(ch_ctl,
  345. DP_AUX_CH_CTL_SEND_BUSY |
  346. (has_aux_irq ? DP_AUX_CH_CTL_INTERRUPT : 0) |
  347. DP_AUX_CH_CTL_TIME_OUT_400us |
  348. (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
  349. (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
  350. (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT) |
  351. DP_AUX_CH_CTL_DONE |
  352. DP_AUX_CH_CTL_TIME_OUT_ERROR |
  353. DP_AUX_CH_CTL_RECEIVE_ERROR);
  354. status = intel_dp_aux_wait_done(intel_dp, has_aux_irq);
  355. /* Clear done status and any errors */
  356. I915_WRITE(ch_ctl,
  357. status |
  358. DP_AUX_CH_CTL_DONE |
  359. DP_AUX_CH_CTL_TIME_OUT_ERROR |
  360. DP_AUX_CH_CTL_RECEIVE_ERROR);
  361. if (status & (DP_AUX_CH_CTL_TIME_OUT_ERROR |
  362. DP_AUX_CH_CTL_RECEIVE_ERROR))
  363. continue;
  364. if (status & DP_AUX_CH_CTL_DONE)
  365. break;
  366. }
  367. if (status & DP_AUX_CH_CTL_DONE)
  368. break;
  369. }
  370. if ((status & DP_AUX_CH_CTL_DONE) == 0) {
  371. DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
  372. ret = -EBUSY;
  373. goto out;
  374. }
  375. /* Check for timeout or receive error.
  376. * Timeouts occur when the sink is not connected
  377. */
  378. if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
  379. DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
  380. ret = -EIO;
  381. goto out;
  382. }
  383. /* Timeouts occur when the device isn't connected, so they're
  384. * "normal" -- don't fill the kernel log with these */
  385. if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
  386. DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
  387. ret = -ETIMEDOUT;
  388. goto out;
  389. }
  390. /* Unload any bytes sent back from the other side */
  391. recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
  392. DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
  393. if (recv_bytes > recv_size)
  394. recv_bytes = recv_size;
  395. for (i = 0; i < recv_bytes; i += 4)
  396. unpack_aux(I915_READ(ch_data + i),
  397. recv + i, recv_bytes - i);
  398. ret = recv_bytes;
  399. out:
  400. pm_qos_update_request(&dev_priv->pm_qos, PM_QOS_DEFAULT_VALUE);
  401. intel_aux_display_runtime_put(dev_priv);
  402. return ret;
  403. }
  404. /* Write data to the aux channel in native mode */
  405. static int
  406. intel_dp_aux_native_write(struct intel_dp *intel_dp,
  407. uint16_t address, uint8_t *send, int send_bytes)
  408. {
  409. int ret;
  410. uint8_t msg[20];
  411. int msg_bytes;
  412. uint8_t ack;
  413. intel_dp_check_edp(intel_dp);
  414. if (send_bytes > 16)
  415. return -1;
  416. msg[0] = AUX_NATIVE_WRITE << 4;
  417. msg[1] = address >> 8;
  418. msg[2] = address & 0xff;
  419. msg[3] = send_bytes - 1;
  420. memcpy(&msg[4], send, send_bytes);
  421. msg_bytes = send_bytes + 4;
  422. for (;;) {
  423. ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes, &ack, 1);
  424. if (ret < 0)
  425. return ret;
  426. if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK)
  427. break;
  428. else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
  429. udelay(100);
  430. else
  431. return -EIO;
  432. }
  433. return send_bytes;
  434. }
  435. /* Write a single byte to the aux channel in native mode */
  436. static int
  437. intel_dp_aux_native_write_1(struct intel_dp *intel_dp,
  438. uint16_t address, uint8_t byte)
  439. {
  440. return intel_dp_aux_native_write(intel_dp, address, &byte, 1);
  441. }
  442. /* read bytes from a native aux channel */
  443. static int
  444. intel_dp_aux_native_read(struct intel_dp *intel_dp,
  445. uint16_t address, uint8_t *recv, int recv_bytes)
  446. {
  447. uint8_t msg[4];
  448. int msg_bytes;
  449. uint8_t reply[20];
  450. int reply_bytes;
  451. uint8_t ack;
  452. int ret;
  453. intel_dp_check_edp(intel_dp);
  454. msg[0] = AUX_NATIVE_READ << 4;
  455. msg[1] = address >> 8;
  456. msg[2] = address & 0xff;
  457. msg[3] = recv_bytes - 1;
  458. msg_bytes = 4;
  459. reply_bytes = recv_bytes + 1;
  460. for (;;) {
  461. ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes,
  462. reply, reply_bytes);
  463. if (ret == 0)
  464. return -EPROTO;
  465. if (ret < 0)
  466. return ret;
  467. ack = reply[0];
  468. if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK) {
  469. memcpy(recv, reply + 1, ret - 1);
  470. return ret - 1;
  471. }
  472. else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
  473. udelay(100);
  474. else
  475. return -EIO;
  476. }
  477. }
  478. static int
  479. intel_dp_i2c_aux_ch(struct i2c_adapter *adapter, int mode,
  480. uint8_t write_byte, uint8_t *read_byte)
  481. {
  482. struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
  483. struct intel_dp *intel_dp = container_of(adapter,
  484. struct intel_dp,
  485. adapter);
  486. uint16_t address = algo_data->address;
  487. uint8_t msg[5];
  488. uint8_t reply[2];
  489. unsigned retry;
  490. int msg_bytes;
  491. int reply_bytes;
  492. int ret;
  493. intel_dp_check_edp(intel_dp);
  494. /* Set up the command byte */
  495. if (mode & MODE_I2C_READ)
  496. msg[0] = AUX_I2C_READ << 4;
  497. else
  498. msg[0] = AUX_I2C_WRITE << 4;
  499. if (!(mode & MODE_I2C_STOP))
  500. msg[0] |= AUX_I2C_MOT << 4;
  501. msg[1] = address >> 8;
  502. msg[2] = address;
  503. switch (mode) {
  504. case MODE_I2C_WRITE:
  505. msg[3] = 0;
  506. msg[4] = write_byte;
  507. msg_bytes = 5;
  508. reply_bytes = 1;
  509. break;
  510. case MODE_I2C_READ:
  511. msg[3] = 0;
  512. msg_bytes = 4;
  513. reply_bytes = 2;
  514. break;
  515. default:
  516. msg_bytes = 3;
  517. reply_bytes = 1;
  518. break;
  519. }
  520. for (retry = 0; retry < 5; retry++) {
  521. ret = intel_dp_aux_ch(intel_dp,
  522. msg, msg_bytes,
  523. reply, reply_bytes);
  524. if (ret < 0) {
  525. DRM_DEBUG_KMS("aux_ch failed %d\n", ret);
  526. return ret;
  527. }
  528. switch (reply[0] & AUX_NATIVE_REPLY_MASK) {
  529. case AUX_NATIVE_REPLY_ACK:
  530. /* I2C-over-AUX Reply field is only valid
  531. * when paired with AUX ACK.
  532. */
  533. break;
  534. case AUX_NATIVE_REPLY_NACK:
  535. DRM_DEBUG_KMS("aux_ch native nack\n");
  536. return -EREMOTEIO;
  537. case AUX_NATIVE_REPLY_DEFER:
  538. udelay(100);
  539. continue;
  540. default:
  541. DRM_ERROR("aux_ch invalid native reply 0x%02x\n",
  542. reply[0]);
  543. return -EREMOTEIO;
  544. }
  545. switch (reply[0] & AUX_I2C_REPLY_MASK) {
  546. case AUX_I2C_REPLY_ACK:
  547. if (mode == MODE_I2C_READ) {
  548. *read_byte = reply[1];
  549. }
  550. return reply_bytes - 1;
  551. case AUX_I2C_REPLY_NACK:
  552. DRM_DEBUG_KMS("aux_i2c nack\n");
  553. return -EREMOTEIO;
  554. case AUX_I2C_REPLY_DEFER:
  555. DRM_DEBUG_KMS("aux_i2c defer\n");
  556. udelay(100);
  557. break;
  558. default:
  559. DRM_ERROR("aux_i2c invalid reply 0x%02x\n", reply[0]);
  560. return -EREMOTEIO;
  561. }
  562. }
  563. DRM_ERROR("too many retries, giving up\n");
  564. return -EREMOTEIO;
  565. }
  566. static int
  567. intel_dp_i2c_init(struct intel_dp *intel_dp,
  568. struct intel_connector *intel_connector, const char *name)
  569. {
  570. int ret;
  571. DRM_DEBUG_KMS("i2c_init %s\n", name);
  572. intel_dp->algo.running = false;
  573. intel_dp->algo.address = 0;
  574. intel_dp->algo.aux_ch = intel_dp_i2c_aux_ch;
  575. memset(&intel_dp->adapter, '\0', sizeof(intel_dp->adapter));
  576. intel_dp->adapter.owner = THIS_MODULE;
  577. intel_dp->adapter.class = I2C_CLASS_DDC;
  578. strncpy(intel_dp->adapter.name, name, sizeof(intel_dp->adapter.name) - 1);
  579. intel_dp->adapter.name[sizeof(intel_dp->adapter.name) - 1] = '\0';
  580. intel_dp->adapter.algo_data = &intel_dp->algo;
  581. intel_dp->adapter.dev.parent = &intel_connector->base.kdev;
  582. ironlake_edp_panel_vdd_on(intel_dp);
  583. ret = i2c_dp_aux_add_bus(&intel_dp->adapter);
  584. ironlake_edp_panel_vdd_off(intel_dp, false);
  585. return ret;
  586. }
  587. static void
  588. intel_dp_set_clock(struct intel_encoder *encoder,
  589. struct intel_crtc_config *pipe_config, int link_bw)
  590. {
  591. struct drm_device *dev = encoder->base.dev;
  592. const struct dp_link_dpll *divisor = NULL;
  593. int i, count = 0;
  594. if (IS_G4X(dev)) {
  595. divisor = gen4_dpll;
  596. count = ARRAY_SIZE(gen4_dpll);
  597. } else if (IS_HASWELL(dev)) {
  598. /* Haswell has special-purpose DP DDI clocks. */
  599. } else if (HAS_PCH_SPLIT(dev)) {
  600. divisor = pch_dpll;
  601. count = ARRAY_SIZE(pch_dpll);
  602. } else if (IS_VALLEYVIEW(dev)) {
  603. divisor = vlv_dpll;
  604. count = ARRAY_SIZE(vlv_dpll);
  605. }
  606. if (divisor && count) {
  607. for (i = 0; i < count; i++) {
  608. if (link_bw == divisor[i].link_bw) {
  609. pipe_config->dpll = divisor[i].dpll;
  610. pipe_config->clock_set = true;
  611. break;
  612. }
  613. }
  614. }
  615. }
  616. bool
  617. intel_dp_compute_config(struct intel_encoder *encoder,
  618. struct intel_crtc_config *pipe_config)
  619. {
  620. struct drm_device *dev = encoder->base.dev;
  621. struct drm_i915_private *dev_priv = dev->dev_private;
  622. struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
  623. struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
  624. enum port port = dp_to_dig_port(intel_dp)->port;
  625. struct intel_crtc *intel_crtc = encoder->new_crtc;
  626. struct intel_connector *intel_connector = intel_dp->attached_connector;
  627. int lane_count, clock;
  628. int max_lane_count = drm_dp_max_lane_count(intel_dp->dpcd);
  629. int max_clock = intel_dp_max_link_bw(intel_dp) == DP_LINK_BW_2_7 ? 1 : 0;
  630. int bpp, mode_rate;
  631. static int bws[2] = { DP_LINK_BW_1_62, DP_LINK_BW_2_7 };
  632. int link_avail, link_clock;
  633. if (HAS_PCH_SPLIT(dev) && !HAS_DDI(dev) && port != PORT_A)
  634. pipe_config->has_pch_encoder = true;
  635. pipe_config->has_dp_encoder = true;
  636. if (is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
  637. intel_fixed_panel_mode(intel_connector->panel.fixed_mode,
  638. adjusted_mode);
  639. if (!HAS_PCH_SPLIT(dev))
  640. intel_gmch_panel_fitting(intel_crtc, pipe_config,
  641. intel_connector->panel.fitting_mode);
  642. else
  643. intel_pch_panel_fitting(intel_crtc, pipe_config,
  644. intel_connector->panel.fitting_mode);
  645. }
  646. if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
  647. return false;
  648. DRM_DEBUG_KMS("DP link computation with max lane count %i "
  649. "max bw %02x pixel clock %iKHz\n",
  650. max_lane_count, bws[max_clock], adjusted_mode->clock);
  651. /* Walk through all bpp values. Luckily they're all nicely spaced with 2
  652. * bpc in between. */
  653. bpp = pipe_config->pipe_bpp;
  654. if (is_edp(intel_dp) && dev_priv->vbt.edp_bpp) {
  655. DRM_DEBUG_KMS("clamping bpp for eDP panel to BIOS-provided %i\n",
  656. dev_priv->vbt.edp_bpp);
  657. bpp = min_t(int, bpp, dev_priv->vbt.edp_bpp);
  658. }
  659. for (; bpp >= 6*3; bpp -= 2*3) {
  660. mode_rate = intel_dp_link_required(adjusted_mode->clock, bpp);
  661. for (clock = 0; clock <= max_clock; clock++) {
  662. for (lane_count = 1; lane_count <= max_lane_count; lane_count <<= 1) {
  663. link_clock = drm_dp_bw_code_to_link_rate(bws[clock]);
  664. link_avail = intel_dp_max_data_rate(link_clock,
  665. lane_count);
  666. if (mode_rate <= link_avail) {
  667. goto found;
  668. }
  669. }
  670. }
  671. }
  672. return false;
  673. found:
  674. if (intel_dp->color_range_auto) {
  675. /*
  676. * See:
  677. * CEA-861-E - 5.1 Default Encoding Parameters
  678. * VESA DisplayPort Ver.1.2a - 5.1.1.1 Video Colorimetry
  679. */
  680. if (bpp != 18 && drm_match_cea_mode(adjusted_mode) > 1)
  681. intel_dp->color_range = DP_COLOR_RANGE_16_235;
  682. else
  683. intel_dp->color_range = 0;
  684. }
  685. if (intel_dp->color_range)
  686. pipe_config->limited_color_range = true;
  687. intel_dp->link_bw = bws[clock];
  688. intel_dp->lane_count = lane_count;
  689. pipe_config->pipe_bpp = bpp;
  690. pipe_config->port_clock = drm_dp_bw_code_to_link_rate(intel_dp->link_bw);
  691. DRM_DEBUG_KMS("DP link bw %02x lane count %d clock %d bpp %d\n",
  692. intel_dp->link_bw, intel_dp->lane_count,
  693. pipe_config->port_clock, bpp);
  694. DRM_DEBUG_KMS("DP link bw required %i available %i\n",
  695. mode_rate, link_avail);
  696. intel_link_compute_m_n(bpp, lane_count,
  697. adjusted_mode->clock, pipe_config->port_clock,
  698. &pipe_config->dp_m_n);
  699. intel_dp_set_clock(encoder, pipe_config, intel_dp->link_bw);
  700. return true;
  701. }
  702. void intel_dp_init_link_config(struct intel_dp *intel_dp)
  703. {
  704. memset(intel_dp->link_configuration, 0, DP_LINK_CONFIGURATION_SIZE);
  705. intel_dp->link_configuration[0] = intel_dp->link_bw;
  706. intel_dp->link_configuration[1] = intel_dp->lane_count;
  707. intel_dp->link_configuration[8] = DP_SET_ANSI_8B10B;
  708. /*
  709. * Check for DPCD version > 1.1 and enhanced framing support
  710. */
  711. if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
  712. (intel_dp->dpcd[DP_MAX_LANE_COUNT] & DP_ENHANCED_FRAME_CAP)) {
  713. intel_dp->link_configuration[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN;
  714. }
  715. }
  716. static void ironlake_set_pll_cpu_edp(struct intel_dp *intel_dp)
  717. {
  718. struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
  719. struct intel_crtc *crtc = to_intel_crtc(dig_port->base.base.crtc);
  720. struct drm_device *dev = crtc->base.dev;
  721. struct drm_i915_private *dev_priv = dev->dev_private;
  722. u32 dpa_ctl;
  723. DRM_DEBUG_KMS("eDP PLL enable for clock %d\n", crtc->config.port_clock);
  724. dpa_ctl = I915_READ(DP_A);
  725. dpa_ctl &= ~DP_PLL_FREQ_MASK;
  726. if (crtc->config.port_clock == 162000) {
  727. /* For a long time we've carried around a ILK-DevA w/a for the
  728. * 160MHz clock. If we're really unlucky, it's still required.
  729. */
  730. DRM_DEBUG_KMS("160MHz cpu eDP clock, might need ilk devA w/a\n");
  731. dpa_ctl |= DP_PLL_FREQ_160MHZ;
  732. intel_dp->DP |= DP_PLL_FREQ_160MHZ;
  733. } else {
  734. dpa_ctl |= DP_PLL_FREQ_270MHZ;
  735. intel_dp->DP |= DP_PLL_FREQ_270MHZ;
  736. }
  737. I915_WRITE(DP_A, dpa_ctl);
  738. POSTING_READ(DP_A);
  739. udelay(500);
  740. }
  741. static void intel_dp_mode_set(struct intel_encoder *encoder)
  742. {
  743. struct drm_device *dev = encoder->base.dev;
  744. struct drm_i915_private *dev_priv = dev->dev_private;
  745. struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
  746. enum port port = dp_to_dig_port(intel_dp)->port;
  747. struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
  748. struct drm_display_mode *adjusted_mode = &crtc->config.adjusted_mode;
  749. /*
  750. * There are four kinds of DP registers:
  751. *
  752. * IBX PCH
  753. * SNB CPU
  754. * IVB CPU
  755. * CPT PCH
  756. *
  757. * IBX PCH and CPU are the same for almost everything,
  758. * except that the CPU DP PLL is configured in this
  759. * register
  760. *
  761. * CPT PCH is quite different, having many bits moved
  762. * to the TRANS_DP_CTL register instead. That
  763. * configuration happens (oddly) in ironlake_pch_enable
  764. */
  765. /* Preserve the BIOS-computed detected bit. This is
  766. * supposed to be read-only.
  767. */
  768. intel_dp->DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
  769. /* Handle DP bits in common between all three register formats */
  770. intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
  771. intel_dp->DP |= DP_PORT_WIDTH(intel_dp->lane_count);
  772. if (intel_dp->has_audio) {
  773. DRM_DEBUG_DRIVER("Enabling DP audio on pipe %c\n",
  774. pipe_name(crtc->pipe));
  775. intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
  776. intel_write_eld(&encoder->base, adjusted_mode);
  777. }
  778. intel_dp_init_link_config(intel_dp);
  779. /* Split out the IBX/CPU vs CPT settings */
  780. if (port == PORT_A && IS_GEN7(dev) && !IS_VALLEYVIEW(dev)) {
  781. if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
  782. intel_dp->DP |= DP_SYNC_HS_HIGH;
  783. if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
  784. intel_dp->DP |= DP_SYNC_VS_HIGH;
  785. intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
  786. if (intel_dp->link_configuration[1] & DP_LANE_COUNT_ENHANCED_FRAME_EN)
  787. intel_dp->DP |= DP_ENHANCED_FRAMING;
  788. intel_dp->DP |= crtc->pipe << 29;
  789. } else if (!HAS_PCH_CPT(dev) || port == PORT_A) {
  790. if (!HAS_PCH_SPLIT(dev) && !IS_VALLEYVIEW(dev))
  791. intel_dp->DP |= intel_dp->color_range;
  792. if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
  793. intel_dp->DP |= DP_SYNC_HS_HIGH;
  794. if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
  795. intel_dp->DP |= DP_SYNC_VS_HIGH;
  796. intel_dp->DP |= DP_LINK_TRAIN_OFF;
  797. if (intel_dp->link_configuration[1] & DP_LANE_COUNT_ENHANCED_FRAME_EN)
  798. intel_dp->DP |= DP_ENHANCED_FRAMING;
  799. if (crtc->pipe == 1)
  800. intel_dp->DP |= DP_PIPEB_SELECT;
  801. } else {
  802. intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
  803. }
  804. if (port == PORT_A && !IS_VALLEYVIEW(dev))
  805. ironlake_set_pll_cpu_edp(intel_dp);
  806. }
  807. #define IDLE_ON_MASK (PP_ON | 0 | PP_SEQUENCE_MASK | 0 | PP_SEQUENCE_STATE_MASK)
  808. #define IDLE_ON_VALUE (PP_ON | 0 | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_ON_IDLE)
  809. #define IDLE_OFF_MASK (PP_ON | 0 | PP_SEQUENCE_MASK | 0 | PP_SEQUENCE_STATE_MASK)
  810. #define IDLE_OFF_VALUE (0 | 0 | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_OFF_IDLE)
  811. #define IDLE_CYCLE_MASK (PP_ON | 0 | PP_SEQUENCE_MASK | PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK)
  812. #define IDLE_CYCLE_VALUE (0 | 0 | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_OFF_IDLE)
  813. static void ironlake_wait_panel_status(struct intel_dp *intel_dp,
  814. u32 mask,
  815. u32 value)
  816. {
  817. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  818. struct drm_i915_private *dev_priv = dev->dev_private;
  819. u32 pp_stat_reg, pp_ctrl_reg;
  820. pp_stat_reg = IS_VALLEYVIEW(dev) ? PIPEA_PP_STATUS : PCH_PP_STATUS;
  821. pp_ctrl_reg = IS_VALLEYVIEW(dev) ? PIPEA_PP_CONTROL : PCH_PP_CONTROL;
  822. DRM_DEBUG_KMS("mask %08x value %08x status %08x control %08x\n",
  823. mask, value,
  824. I915_READ(pp_stat_reg),
  825. I915_READ(pp_ctrl_reg));
  826. if (_wait_for((I915_READ(pp_stat_reg) & mask) == value, 5000, 10)) {
  827. DRM_ERROR("Panel status timeout: status %08x control %08x\n",
  828. I915_READ(pp_stat_reg),
  829. I915_READ(pp_ctrl_reg));
  830. }
  831. }
  832. static void ironlake_wait_panel_on(struct intel_dp *intel_dp)
  833. {
  834. DRM_DEBUG_KMS("Wait for panel power on\n");
  835. ironlake_wait_panel_status(intel_dp, IDLE_ON_MASK, IDLE_ON_VALUE);
  836. }
  837. static void ironlake_wait_panel_off(struct intel_dp *intel_dp)
  838. {
  839. DRM_DEBUG_KMS("Wait for panel power off time\n");
  840. ironlake_wait_panel_status(intel_dp, IDLE_OFF_MASK, IDLE_OFF_VALUE);
  841. }
  842. static void ironlake_wait_panel_power_cycle(struct intel_dp *intel_dp)
  843. {
  844. DRM_DEBUG_KMS("Wait for panel power cycle\n");
  845. ironlake_wait_panel_status(intel_dp, IDLE_CYCLE_MASK, IDLE_CYCLE_VALUE);
  846. }
  847. /* Read the current pp_control value, unlocking the register if it
  848. * is locked
  849. */
  850. static u32 ironlake_get_pp_control(struct intel_dp *intel_dp)
  851. {
  852. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  853. struct drm_i915_private *dev_priv = dev->dev_private;
  854. u32 control;
  855. u32 pp_ctrl_reg;
  856. pp_ctrl_reg = IS_VALLEYVIEW(dev) ? PIPEA_PP_CONTROL : PCH_PP_CONTROL;
  857. control = I915_READ(pp_ctrl_reg);
  858. control &= ~PANEL_UNLOCK_MASK;
  859. control |= PANEL_UNLOCK_REGS;
  860. return control;
  861. }
  862. void ironlake_edp_panel_vdd_on(struct intel_dp *intel_dp)
  863. {
  864. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  865. struct drm_i915_private *dev_priv = dev->dev_private;
  866. u32 pp;
  867. u32 pp_stat_reg, pp_ctrl_reg;
  868. if (!is_edp(intel_dp))
  869. return;
  870. DRM_DEBUG_KMS("Turn eDP VDD on\n");
  871. WARN(intel_dp->want_panel_vdd,
  872. "eDP VDD already requested on\n");
  873. intel_dp->want_panel_vdd = true;
  874. if (ironlake_edp_have_panel_vdd(intel_dp)) {
  875. DRM_DEBUG_KMS("eDP VDD already on\n");
  876. return;
  877. }
  878. if (!ironlake_edp_have_panel_power(intel_dp))
  879. ironlake_wait_panel_power_cycle(intel_dp);
  880. pp = ironlake_get_pp_control(intel_dp);
  881. pp |= EDP_FORCE_VDD;
  882. pp_stat_reg = IS_VALLEYVIEW(dev) ? PIPEA_PP_STATUS : PCH_PP_STATUS;
  883. pp_ctrl_reg = IS_VALLEYVIEW(dev) ? PIPEA_PP_CONTROL : PCH_PP_CONTROL;
  884. I915_WRITE(pp_ctrl_reg, pp);
  885. POSTING_READ(pp_ctrl_reg);
  886. DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
  887. I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
  888. /*
  889. * If the panel wasn't on, delay before accessing aux channel
  890. */
  891. if (!ironlake_edp_have_panel_power(intel_dp)) {
  892. DRM_DEBUG_KMS("eDP was not running\n");
  893. msleep(intel_dp->panel_power_up_delay);
  894. }
  895. }
  896. static void ironlake_panel_vdd_off_sync(struct intel_dp *intel_dp)
  897. {
  898. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  899. struct drm_i915_private *dev_priv = dev->dev_private;
  900. u32 pp;
  901. u32 pp_stat_reg, pp_ctrl_reg;
  902. WARN_ON(!mutex_is_locked(&dev->mode_config.mutex));
  903. if (!intel_dp->want_panel_vdd && ironlake_edp_have_panel_vdd(intel_dp)) {
  904. pp = ironlake_get_pp_control(intel_dp);
  905. pp &= ~EDP_FORCE_VDD;
  906. pp_stat_reg = IS_VALLEYVIEW(dev) ? PIPEA_PP_STATUS : PCH_PP_STATUS;
  907. pp_ctrl_reg = IS_VALLEYVIEW(dev) ? PIPEA_PP_CONTROL : PCH_PP_CONTROL;
  908. I915_WRITE(pp_ctrl_reg, pp);
  909. POSTING_READ(pp_ctrl_reg);
  910. /* Make sure sequencer is idle before allowing subsequent activity */
  911. DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
  912. I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
  913. msleep(intel_dp->panel_power_down_delay);
  914. }
  915. }
  916. static void ironlake_panel_vdd_work(struct work_struct *__work)
  917. {
  918. struct intel_dp *intel_dp = container_of(to_delayed_work(__work),
  919. struct intel_dp, panel_vdd_work);
  920. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  921. mutex_lock(&dev->mode_config.mutex);
  922. ironlake_panel_vdd_off_sync(intel_dp);
  923. mutex_unlock(&dev->mode_config.mutex);
  924. }
  925. void ironlake_edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync)
  926. {
  927. if (!is_edp(intel_dp))
  928. return;
  929. DRM_DEBUG_KMS("Turn eDP VDD off %d\n", intel_dp->want_panel_vdd);
  930. WARN(!intel_dp->want_panel_vdd, "eDP VDD not forced on");
  931. intel_dp->want_panel_vdd = false;
  932. if (sync) {
  933. ironlake_panel_vdd_off_sync(intel_dp);
  934. } else {
  935. /*
  936. * Queue the timer to fire a long
  937. * time from now (relative to the power down delay)
  938. * to keep the panel power up across a sequence of operations
  939. */
  940. schedule_delayed_work(&intel_dp->panel_vdd_work,
  941. msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5));
  942. }
  943. }
  944. void ironlake_edp_panel_on(struct intel_dp *intel_dp)
  945. {
  946. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  947. struct drm_i915_private *dev_priv = dev->dev_private;
  948. u32 pp;
  949. u32 pp_ctrl_reg;
  950. if (!is_edp(intel_dp))
  951. return;
  952. DRM_DEBUG_KMS("Turn eDP power on\n");
  953. if (ironlake_edp_have_panel_power(intel_dp)) {
  954. DRM_DEBUG_KMS("eDP power already on\n");
  955. return;
  956. }
  957. ironlake_wait_panel_power_cycle(intel_dp);
  958. pp = ironlake_get_pp_control(intel_dp);
  959. if (IS_GEN5(dev)) {
  960. /* ILK workaround: disable reset around power sequence */
  961. pp &= ~PANEL_POWER_RESET;
  962. I915_WRITE(PCH_PP_CONTROL, pp);
  963. POSTING_READ(PCH_PP_CONTROL);
  964. }
  965. pp |= POWER_TARGET_ON;
  966. if (!IS_GEN5(dev))
  967. pp |= PANEL_POWER_RESET;
  968. pp_ctrl_reg = IS_VALLEYVIEW(dev) ? PIPEA_PP_CONTROL : PCH_PP_CONTROL;
  969. I915_WRITE(pp_ctrl_reg, pp);
  970. POSTING_READ(pp_ctrl_reg);
  971. ironlake_wait_panel_on(intel_dp);
  972. if (IS_GEN5(dev)) {
  973. pp |= PANEL_POWER_RESET; /* restore panel reset bit */
  974. I915_WRITE(PCH_PP_CONTROL, pp);
  975. POSTING_READ(PCH_PP_CONTROL);
  976. }
  977. }
  978. void ironlake_edp_panel_off(struct intel_dp *intel_dp)
  979. {
  980. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  981. struct drm_i915_private *dev_priv = dev->dev_private;
  982. u32 pp;
  983. u32 pp_ctrl_reg;
  984. if (!is_edp(intel_dp))
  985. return;
  986. DRM_DEBUG_KMS("Turn eDP power off\n");
  987. WARN(!intel_dp->want_panel_vdd, "Need VDD to turn off panel\n");
  988. pp = ironlake_get_pp_control(intel_dp);
  989. /* We need to switch off panel power _and_ force vdd, for otherwise some
  990. * panels get very unhappy and cease to work. */
  991. pp &= ~(POWER_TARGET_ON | EDP_FORCE_VDD | PANEL_POWER_RESET | EDP_BLC_ENABLE);
  992. pp_ctrl_reg = IS_VALLEYVIEW(dev) ? PIPEA_PP_CONTROL : PCH_PP_CONTROL;
  993. I915_WRITE(pp_ctrl_reg, pp);
  994. POSTING_READ(pp_ctrl_reg);
  995. intel_dp->want_panel_vdd = false;
  996. ironlake_wait_panel_off(intel_dp);
  997. }
  998. void ironlake_edp_backlight_on(struct intel_dp *intel_dp)
  999. {
  1000. struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
  1001. struct drm_device *dev = intel_dig_port->base.base.dev;
  1002. struct drm_i915_private *dev_priv = dev->dev_private;
  1003. int pipe = to_intel_crtc(intel_dig_port->base.base.crtc)->pipe;
  1004. u32 pp;
  1005. u32 pp_ctrl_reg;
  1006. if (!is_edp(intel_dp))
  1007. return;
  1008. DRM_DEBUG_KMS("\n");
  1009. /*
  1010. * If we enable the backlight right away following a panel power
  1011. * on, we may see slight flicker as the panel syncs with the eDP
  1012. * link. So delay a bit to make sure the image is solid before
  1013. * allowing it to appear.
  1014. */
  1015. msleep(intel_dp->backlight_on_delay);
  1016. pp = ironlake_get_pp_control(intel_dp);
  1017. pp |= EDP_BLC_ENABLE;
  1018. pp_ctrl_reg = IS_VALLEYVIEW(dev) ? PIPEA_PP_CONTROL : PCH_PP_CONTROL;
  1019. I915_WRITE(pp_ctrl_reg, pp);
  1020. POSTING_READ(pp_ctrl_reg);
  1021. intel_panel_enable_backlight(dev, pipe);
  1022. }
  1023. void ironlake_edp_backlight_off(struct intel_dp *intel_dp)
  1024. {
  1025. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  1026. struct drm_i915_private *dev_priv = dev->dev_private;
  1027. u32 pp;
  1028. u32 pp_ctrl_reg;
  1029. if (!is_edp(intel_dp))
  1030. return;
  1031. intel_panel_disable_backlight(dev);
  1032. DRM_DEBUG_KMS("\n");
  1033. pp = ironlake_get_pp_control(intel_dp);
  1034. pp &= ~EDP_BLC_ENABLE;
  1035. pp_ctrl_reg = IS_VALLEYVIEW(dev) ? PIPEA_PP_CONTROL : PCH_PP_CONTROL;
  1036. I915_WRITE(pp_ctrl_reg, pp);
  1037. POSTING_READ(pp_ctrl_reg);
  1038. msleep(intel_dp->backlight_off_delay);
  1039. }
  1040. static void ironlake_edp_pll_on(struct intel_dp *intel_dp)
  1041. {
  1042. struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
  1043. struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
  1044. struct drm_device *dev = crtc->dev;
  1045. struct drm_i915_private *dev_priv = dev->dev_private;
  1046. u32 dpa_ctl;
  1047. assert_pipe_disabled(dev_priv,
  1048. to_intel_crtc(crtc)->pipe);
  1049. DRM_DEBUG_KMS("\n");
  1050. dpa_ctl = I915_READ(DP_A);
  1051. WARN(dpa_ctl & DP_PLL_ENABLE, "dp pll on, should be off\n");
  1052. WARN(dpa_ctl & DP_PORT_EN, "dp port still on, should be off\n");
  1053. /* We don't adjust intel_dp->DP while tearing down the link, to
  1054. * facilitate link retraining (e.g. after hotplug). Hence clear all
  1055. * enable bits here to ensure that we don't enable too much. */
  1056. intel_dp->DP &= ~(DP_PORT_EN | DP_AUDIO_OUTPUT_ENABLE);
  1057. intel_dp->DP |= DP_PLL_ENABLE;
  1058. I915_WRITE(DP_A, intel_dp->DP);
  1059. POSTING_READ(DP_A);
  1060. udelay(200);
  1061. }
  1062. static void ironlake_edp_pll_off(struct intel_dp *intel_dp)
  1063. {
  1064. struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
  1065. struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
  1066. struct drm_device *dev = crtc->dev;
  1067. struct drm_i915_private *dev_priv = dev->dev_private;
  1068. u32 dpa_ctl;
  1069. assert_pipe_disabled(dev_priv,
  1070. to_intel_crtc(crtc)->pipe);
  1071. dpa_ctl = I915_READ(DP_A);
  1072. WARN((dpa_ctl & DP_PLL_ENABLE) == 0,
  1073. "dp pll off, should be on\n");
  1074. WARN(dpa_ctl & DP_PORT_EN, "dp port still on, should be off\n");
  1075. /* We can't rely on the value tracked for the DP register in
  1076. * intel_dp->DP because link_down must not change that (otherwise link
  1077. * re-training will fail. */
  1078. dpa_ctl &= ~DP_PLL_ENABLE;
  1079. I915_WRITE(DP_A, dpa_ctl);
  1080. POSTING_READ(DP_A);
  1081. udelay(200);
  1082. }
  1083. /* If the sink supports it, try to set the power state appropriately */
  1084. void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode)
  1085. {
  1086. int ret, i;
  1087. /* Should have a valid DPCD by this point */
  1088. if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
  1089. return;
  1090. if (mode != DRM_MODE_DPMS_ON) {
  1091. ret = intel_dp_aux_native_write_1(intel_dp, DP_SET_POWER,
  1092. DP_SET_POWER_D3);
  1093. if (ret != 1)
  1094. DRM_DEBUG_DRIVER("failed to write sink power state\n");
  1095. } else {
  1096. /*
  1097. * When turning on, we need to retry for 1ms to give the sink
  1098. * time to wake up.
  1099. */
  1100. for (i = 0; i < 3; i++) {
  1101. ret = intel_dp_aux_native_write_1(intel_dp,
  1102. DP_SET_POWER,
  1103. DP_SET_POWER_D0);
  1104. if (ret == 1)
  1105. break;
  1106. msleep(1);
  1107. }
  1108. }
  1109. }
  1110. static bool intel_dp_get_hw_state(struct intel_encoder *encoder,
  1111. enum pipe *pipe)
  1112. {
  1113. struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
  1114. enum port port = dp_to_dig_port(intel_dp)->port;
  1115. struct drm_device *dev = encoder->base.dev;
  1116. struct drm_i915_private *dev_priv = dev->dev_private;
  1117. u32 tmp = I915_READ(intel_dp->output_reg);
  1118. if (!(tmp & DP_PORT_EN))
  1119. return false;
  1120. if (port == PORT_A && IS_GEN7(dev) && !IS_VALLEYVIEW(dev)) {
  1121. *pipe = PORT_TO_PIPE_CPT(tmp);
  1122. } else if (!HAS_PCH_CPT(dev) || port == PORT_A) {
  1123. *pipe = PORT_TO_PIPE(tmp);
  1124. } else {
  1125. u32 trans_sel;
  1126. u32 trans_dp;
  1127. int i;
  1128. switch (intel_dp->output_reg) {
  1129. case PCH_DP_B:
  1130. trans_sel = TRANS_DP_PORT_SEL_B;
  1131. break;
  1132. case PCH_DP_C:
  1133. trans_sel = TRANS_DP_PORT_SEL_C;
  1134. break;
  1135. case PCH_DP_D:
  1136. trans_sel = TRANS_DP_PORT_SEL_D;
  1137. break;
  1138. default:
  1139. return true;
  1140. }
  1141. for_each_pipe(i) {
  1142. trans_dp = I915_READ(TRANS_DP_CTL(i));
  1143. if ((trans_dp & TRANS_DP_PORT_SEL_MASK) == trans_sel) {
  1144. *pipe = i;
  1145. return true;
  1146. }
  1147. }
  1148. DRM_DEBUG_KMS("No pipe for dp port 0x%x found\n",
  1149. intel_dp->output_reg);
  1150. }
  1151. return true;
  1152. }
  1153. static void intel_dp_get_config(struct intel_encoder *encoder,
  1154. struct intel_crtc_config *pipe_config)
  1155. {
  1156. struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
  1157. u32 tmp, flags = 0;
  1158. struct drm_device *dev = encoder->base.dev;
  1159. struct drm_i915_private *dev_priv = dev->dev_private;
  1160. enum port port = dp_to_dig_port(intel_dp)->port;
  1161. struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
  1162. if ((port == PORT_A) || !HAS_PCH_CPT(dev)) {
  1163. tmp = I915_READ(intel_dp->output_reg);
  1164. if (tmp & DP_SYNC_HS_HIGH)
  1165. flags |= DRM_MODE_FLAG_PHSYNC;
  1166. else
  1167. flags |= DRM_MODE_FLAG_NHSYNC;
  1168. if (tmp & DP_SYNC_VS_HIGH)
  1169. flags |= DRM_MODE_FLAG_PVSYNC;
  1170. else
  1171. flags |= DRM_MODE_FLAG_NVSYNC;
  1172. } else {
  1173. tmp = I915_READ(TRANS_DP_CTL(crtc->pipe));
  1174. if (tmp & TRANS_DP_HSYNC_ACTIVE_HIGH)
  1175. flags |= DRM_MODE_FLAG_PHSYNC;
  1176. else
  1177. flags |= DRM_MODE_FLAG_NHSYNC;
  1178. if (tmp & TRANS_DP_VSYNC_ACTIVE_HIGH)
  1179. flags |= DRM_MODE_FLAG_PVSYNC;
  1180. else
  1181. flags |= DRM_MODE_FLAG_NVSYNC;
  1182. }
  1183. pipe_config->adjusted_mode.flags |= flags;
  1184. if (dp_to_dig_port(intel_dp)->port == PORT_A) {
  1185. if ((I915_READ(DP_A) & DP_PLL_FREQ_MASK) == DP_PLL_FREQ_160MHZ)
  1186. pipe_config->port_clock = 162000;
  1187. else
  1188. pipe_config->port_clock = 270000;
  1189. }
  1190. }
  1191. static bool is_edp_psr(struct intel_dp *intel_dp)
  1192. {
  1193. return is_edp(intel_dp) &&
  1194. intel_dp->psr_dpcd[0] & DP_PSR_IS_SUPPORTED;
  1195. }
  1196. static bool intel_edp_is_psr_enabled(struct drm_device *dev)
  1197. {
  1198. struct drm_i915_private *dev_priv = dev->dev_private;
  1199. if (!IS_HASWELL(dev))
  1200. return false;
  1201. return I915_READ(EDP_PSR_CTL) & EDP_PSR_ENABLE;
  1202. }
  1203. static void intel_edp_psr_write_vsc(struct intel_dp *intel_dp,
  1204. struct edp_vsc_psr *vsc_psr)
  1205. {
  1206. struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
  1207. struct drm_device *dev = dig_port->base.base.dev;
  1208. struct drm_i915_private *dev_priv = dev->dev_private;
  1209. struct intel_crtc *crtc = to_intel_crtc(dig_port->base.base.crtc);
  1210. u32 ctl_reg = HSW_TVIDEO_DIP_CTL(crtc->config.cpu_transcoder);
  1211. u32 data_reg = HSW_TVIDEO_DIP_VSC_DATA(crtc->config.cpu_transcoder);
  1212. uint32_t *data = (uint32_t *) vsc_psr;
  1213. unsigned int i;
  1214. /* As per BSPec (Pipe Video Data Island Packet), we need to disable
  1215. the video DIP being updated before program video DIP data buffer
  1216. registers for DIP being updated. */
  1217. I915_WRITE(ctl_reg, 0);
  1218. POSTING_READ(ctl_reg);
  1219. for (i = 0; i < VIDEO_DIP_VSC_DATA_SIZE; i += 4) {
  1220. if (i < sizeof(struct edp_vsc_psr))
  1221. I915_WRITE(data_reg + i, *data++);
  1222. else
  1223. I915_WRITE(data_reg + i, 0);
  1224. }
  1225. I915_WRITE(ctl_reg, VIDEO_DIP_ENABLE_VSC_HSW);
  1226. POSTING_READ(ctl_reg);
  1227. }
  1228. static void intel_edp_psr_setup(struct intel_dp *intel_dp)
  1229. {
  1230. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  1231. struct drm_i915_private *dev_priv = dev->dev_private;
  1232. struct edp_vsc_psr psr_vsc;
  1233. if (intel_dp->psr_setup_done)
  1234. return;
  1235. /* Prepare VSC packet as per EDP 1.3 spec, Table 3.10 */
  1236. memset(&psr_vsc, 0, sizeof(psr_vsc));
  1237. psr_vsc.sdp_header.HB0 = 0;
  1238. psr_vsc.sdp_header.HB1 = 0x7;
  1239. psr_vsc.sdp_header.HB2 = 0x2;
  1240. psr_vsc.sdp_header.HB3 = 0x8;
  1241. intel_edp_psr_write_vsc(intel_dp, &psr_vsc);
  1242. /* Avoid continuous PSR exit by masking memup and hpd */
  1243. I915_WRITE(EDP_PSR_DEBUG_CTL, EDP_PSR_DEBUG_MASK_MEMUP |
  1244. EDP_PSR_DEBUG_MASK_HPD);
  1245. intel_dp->psr_setup_done = true;
  1246. }
  1247. static void intel_edp_psr_enable_sink(struct intel_dp *intel_dp)
  1248. {
  1249. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  1250. struct drm_i915_private *dev_priv = dev->dev_private;
  1251. uint32_t aux_clock_divider = get_aux_clock_divider(intel_dp, 0);
  1252. int precharge = 0x3;
  1253. int msg_size = 5; /* Header(4) + Message(1) */
  1254. /* Enable PSR in sink */
  1255. if (intel_dp->psr_dpcd[1] & DP_PSR_NO_TRAIN_ON_EXIT)
  1256. intel_dp_aux_native_write_1(intel_dp, DP_PSR_EN_CFG,
  1257. DP_PSR_ENABLE &
  1258. ~DP_PSR_MAIN_LINK_ACTIVE);
  1259. else
  1260. intel_dp_aux_native_write_1(intel_dp, DP_PSR_EN_CFG,
  1261. DP_PSR_ENABLE |
  1262. DP_PSR_MAIN_LINK_ACTIVE);
  1263. /* Setup AUX registers */
  1264. I915_WRITE(EDP_PSR_AUX_DATA1, EDP_PSR_DPCD_COMMAND);
  1265. I915_WRITE(EDP_PSR_AUX_DATA2, EDP_PSR_DPCD_NORMAL_OPERATION);
  1266. I915_WRITE(EDP_PSR_AUX_CTL,
  1267. DP_AUX_CH_CTL_TIME_OUT_400us |
  1268. (msg_size << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
  1269. (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
  1270. (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT));
  1271. }
  1272. static void intel_edp_psr_enable_source(struct intel_dp *intel_dp)
  1273. {
  1274. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  1275. struct drm_i915_private *dev_priv = dev->dev_private;
  1276. uint32_t max_sleep_time = 0x1f;
  1277. uint32_t idle_frames = 1;
  1278. uint32_t val = 0x0;
  1279. if (intel_dp->psr_dpcd[1] & DP_PSR_NO_TRAIN_ON_EXIT) {
  1280. val |= EDP_PSR_LINK_STANDBY;
  1281. val |= EDP_PSR_TP2_TP3_TIME_0us;
  1282. val |= EDP_PSR_TP1_TIME_0us;
  1283. val |= EDP_PSR_SKIP_AUX_EXIT;
  1284. } else
  1285. val |= EDP_PSR_LINK_DISABLE;
  1286. I915_WRITE(EDP_PSR_CTL, val |
  1287. EDP_PSR_MIN_LINK_ENTRY_TIME_8_LINES |
  1288. max_sleep_time << EDP_PSR_MAX_SLEEP_TIME_SHIFT |
  1289. idle_frames << EDP_PSR_IDLE_FRAME_SHIFT |
  1290. EDP_PSR_ENABLE);
  1291. }
  1292. static bool intel_edp_psr_match_conditions(struct intel_dp *intel_dp)
  1293. {
  1294. struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
  1295. struct drm_device *dev = dig_port->base.base.dev;
  1296. struct drm_i915_private *dev_priv = dev->dev_private;
  1297. struct drm_crtc *crtc = dig_port->base.base.crtc;
  1298. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1299. struct drm_i915_gem_object *obj = to_intel_framebuffer(crtc->fb)->obj;
  1300. struct intel_encoder *intel_encoder = &dp_to_dig_port(intel_dp)->base;
  1301. if (!IS_HASWELL(dev)) {
  1302. DRM_DEBUG_KMS("PSR not supported on this platform\n");
  1303. dev_priv->no_psr_reason = PSR_NO_SOURCE;
  1304. return false;
  1305. }
  1306. if ((intel_encoder->type != INTEL_OUTPUT_EDP) ||
  1307. (dig_port->port != PORT_A)) {
  1308. DRM_DEBUG_KMS("HSW ties PSR to DDI A (eDP)\n");
  1309. dev_priv->no_psr_reason = PSR_HSW_NOT_DDIA;
  1310. return false;
  1311. }
  1312. if (!is_edp_psr(intel_dp)) {
  1313. DRM_DEBUG_KMS("PSR not supported by this panel\n");
  1314. dev_priv->no_psr_reason = PSR_NO_SINK;
  1315. return false;
  1316. }
  1317. if (!i915_enable_psr) {
  1318. DRM_DEBUG_KMS("PSR disable by flag\n");
  1319. dev_priv->no_psr_reason = PSR_MODULE_PARAM;
  1320. return false;
  1321. }
  1322. crtc = dig_port->base.base.crtc;
  1323. if (crtc == NULL) {
  1324. DRM_DEBUG_KMS("crtc not active for PSR\n");
  1325. dev_priv->no_psr_reason = PSR_CRTC_NOT_ACTIVE;
  1326. return false;
  1327. }
  1328. intel_crtc = to_intel_crtc(crtc);
  1329. if (!intel_crtc->active || !crtc->fb || !crtc->mode.clock) {
  1330. DRM_DEBUG_KMS("crtc not active for PSR\n");
  1331. dev_priv->no_psr_reason = PSR_CRTC_NOT_ACTIVE;
  1332. return false;
  1333. }
  1334. obj = to_intel_framebuffer(crtc->fb)->obj;
  1335. if (obj->tiling_mode != I915_TILING_X ||
  1336. obj->fence_reg == I915_FENCE_REG_NONE) {
  1337. DRM_DEBUG_KMS("PSR condition failed: fb not tiled or fenced\n");
  1338. dev_priv->no_psr_reason = PSR_NOT_TILED;
  1339. return false;
  1340. }
  1341. if (I915_READ(SPRCTL(intel_crtc->pipe)) & SPRITE_ENABLE) {
  1342. DRM_DEBUG_KMS("PSR condition failed: Sprite is Enabled\n");
  1343. dev_priv->no_psr_reason = PSR_SPRITE_ENABLED;
  1344. return false;
  1345. }
  1346. if (I915_READ(HSW_STEREO_3D_CTL(intel_crtc->config.cpu_transcoder)) &
  1347. S3D_ENABLE) {
  1348. DRM_DEBUG_KMS("PSR condition failed: Stereo 3D is Enabled\n");
  1349. dev_priv->no_psr_reason = PSR_S3D_ENABLED;
  1350. return false;
  1351. }
  1352. if (crtc->mode.flags & DRM_MODE_FLAG_INTERLACE) {
  1353. DRM_DEBUG_KMS("PSR condition failed: Interlaced is Enabled\n");
  1354. dev_priv->no_psr_reason = PSR_INTERLACED_ENABLED;
  1355. return false;
  1356. }
  1357. return true;
  1358. }
  1359. static void intel_edp_psr_do_enable(struct intel_dp *intel_dp)
  1360. {
  1361. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  1362. if (!intel_edp_psr_match_conditions(intel_dp) ||
  1363. intel_edp_is_psr_enabled(dev))
  1364. return;
  1365. /* Setup PSR once */
  1366. intel_edp_psr_setup(intel_dp);
  1367. /* Enable PSR on the panel */
  1368. intel_edp_psr_enable_sink(intel_dp);
  1369. /* Enable PSR on the host */
  1370. intel_edp_psr_enable_source(intel_dp);
  1371. }
  1372. void intel_edp_psr_enable(struct intel_dp *intel_dp)
  1373. {
  1374. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  1375. if (intel_edp_psr_match_conditions(intel_dp) &&
  1376. !intel_edp_is_psr_enabled(dev))
  1377. intel_edp_psr_do_enable(intel_dp);
  1378. }
  1379. void intel_edp_psr_disable(struct intel_dp *intel_dp)
  1380. {
  1381. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  1382. struct drm_i915_private *dev_priv = dev->dev_private;
  1383. if (!intel_edp_is_psr_enabled(dev))
  1384. return;
  1385. I915_WRITE(EDP_PSR_CTL, I915_READ(EDP_PSR_CTL) & ~EDP_PSR_ENABLE);
  1386. /* Wait till PSR is idle */
  1387. if (_wait_for((I915_READ(EDP_PSR_STATUS_CTL) &
  1388. EDP_PSR_STATUS_STATE_MASK) == 0, 2000, 10))
  1389. DRM_ERROR("Timed out waiting for PSR Idle State\n");
  1390. }
  1391. void intel_edp_psr_update(struct drm_device *dev)
  1392. {
  1393. struct intel_encoder *encoder;
  1394. struct intel_dp *intel_dp = NULL;
  1395. list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head)
  1396. if (encoder->type == INTEL_OUTPUT_EDP) {
  1397. intel_dp = enc_to_intel_dp(&encoder->base);
  1398. if (!is_edp_psr(intel_dp))
  1399. return;
  1400. if (!intel_edp_psr_match_conditions(intel_dp))
  1401. intel_edp_psr_disable(intel_dp);
  1402. else
  1403. if (!intel_edp_is_psr_enabled(dev))
  1404. intel_edp_psr_do_enable(intel_dp);
  1405. }
  1406. }
  1407. static void intel_disable_dp(struct intel_encoder *encoder)
  1408. {
  1409. struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
  1410. enum port port = dp_to_dig_port(intel_dp)->port;
  1411. struct drm_device *dev = encoder->base.dev;
  1412. /* Make sure the panel is off before trying to change the mode. But also
  1413. * ensure that we have vdd while we switch off the panel. */
  1414. ironlake_edp_panel_vdd_on(intel_dp);
  1415. ironlake_edp_backlight_off(intel_dp);
  1416. intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
  1417. ironlake_edp_panel_off(intel_dp);
  1418. /* cpu edp my only be disable _after_ the cpu pipe/plane is disabled. */
  1419. if (!(port == PORT_A || IS_VALLEYVIEW(dev)))
  1420. intel_dp_link_down(intel_dp);
  1421. }
  1422. static void intel_post_disable_dp(struct intel_encoder *encoder)
  1423. {
  1424. struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
  1425. enum port port = dp_to_dig_port(intel_dp)->port;
  1426. struct drm_device *dev = encoder->base.dev;
  1427. if (port == PORT_A || IS_VALLEYVIEW(dev)) {
  1428. intel_dp_link_down(intel_dp);
  1429. if (!IS_VALLEYVIEW(dev))
  1430. ironlake_edp_pll_off(intel_dp);
  1431. }
  1432. }
  1433. static void intel_enable_dp(struct intel_encoder *encoder)
  1434. {
  1435. struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
  1436. struct drm_device *dev = encoder->base.dev;
  1437. struct drm_i915_private *dev_priv = dev->dev_private;
  1438. uint32_t dp_reg = I915_READ(intel_dp->output_reg);
  1439. if (WARN_ON(dp_reg & DP_PORT_EN))
  1440. return;
  1441. ironlake_edp_panel_vdd_on(intel_dp);
  1442. intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
  1443. intel_dp_start_link_train(intel_dp);
  1444. ironlake_edp_panel_on(intel_dp);
  1445. ironlake_edp_panel_vdd_off(intel_dp, true);
  1446. intel_dp_complete_link_train(intel_dp);
  1447. intel_dp_stop_link_train(intel_dp);
  1448. ironlake_edp_backlight_on(intel_dp);
  1449. }
  1450. static void g4x_enable_dp(struct intel_encoder *encoder)
  1451. {
  1452. intel_enable_dp(encoder);
  1453. }
  1454. static void vlv_enable_dp(struct intel_encoder *encoder)
  1455. {
  1456. }
  1457. static void g4x_pre_enable_dp(struct intel_encoder *encoder)
  1458. {
  1459. struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
  1460. struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
  1461. if (dport->port == PORT_A)
  1462. ironlake_edp_pll_on(intel_dp);
  1463. }
  1464. static void vlv_pre_enable_dp(struct intel_encoder *encoder)
  1465. {
  1466. struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
  1467. struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
  1468. struct drm_device *dev = encoder->base.dev;
  1469. struct drm_i915_private *dev_priv = dev->dev_private;
  1470. struct intel_crtc *intel_crtc = to_intel_crtc(encoder->base.crtc);
  1471. int port = vlv_dport_to_channel(dport);
  1472. int pipe = intel_crtc->pipe;
  1473. u32 val;
  1474. mutex_lock(&dev_priv->dpio_lock);
  1475. val = vlv_dpio_read(dev_priv, pipe, DPIO_DATA_LANE_A(port));
  1476. val = 0;
  1477. if (pipe)
  1478. val |= (1<<21);
  1479. else
  1480. val &= ~(1<<21);
  1481. val |= 0x001000c4;
  1482. vlv_dpio_write(dev_priv, pipe, DPIO_DATA_CHANNEL(port), val);
  1483. vlv_dpio_write(dev_priv, pipe, DPIO_PCS_CLOCKBUF0(port), 0x00760018);
  1484. vlv_dpio_write(dev_priv, pipe, DPIO_PCS_CLOCKBUF8(port), 0x00400888);
  1485. mutex_unlock(&dev_priv->dpio_lock);
  1486. intel_enable_dp(encoder);
  1487. vlv_wait_port_ready(dev_priv, port);
  1488. }
  1489. static void vlv_dp_pre_pll_enable(struct intel_encoder *encoder)
  1490. {
  1491. struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
  1492. struct drm_device *dev = encoder->base.dev;
  1493. struct drm_i915_private *dev_priv = dev->dev_private;
  1494. struct intel_crtc *intel_crtc =
  1495. to_intel_crtc(encoder->base.crtc);
  1496. int port = vlv_dport_to_channel(dport);
  1497. int pipe = intel_crtc->pipe;
  1498. /* Program Tx lane resets to default */
  1499. mutex_lock(&dev_priv->dpio_lock);
  1500. vlv_dpio_write(dev_priv, pipe, DPIO_PCS_TX(port),
  1501. DPIO_PCS_TX_LANE2_RESET |
  1502. DPIO_PCS_TX_LANE1_RESET);
  1503. vlv_dpio_write(dev_priv, pipe, DPIO_PCS_CLK(port),
  1504. DPIO_PCS_CLK_CRI_RXEB_EIOS_EN |
  1505. DPIO_PCS_CLK_CRI_RXDIGFILTSG_EN |
  1506. (1<<DPIO_PCS_CLK_DATAWIDTH_SHIFT) |
  1507. DPIO_PCS_CLK_SOFT_RESET);
  1508. /* Fix up inter-pair skew failure */
  1509. vlv_dpio_write(dev_priv, pipe, DPIO_PCS_STAGGER1(port), 0x00750f00);
  1510. vlv_dpio_write(dev_priv, pipe, DPIO_TX_CTL(port), 0x00001500);
  1511. vlv_dpio_write(dev_priv, pipe, DPIO_TX_LANE(port), 0x40400000);
  1512. mutex_unlock(&dev_priv->dpio_lock);
  1513. }
  1514. /*
  1515. * Native read with retry for link status and receiver capability reads for
  1516. * cases where the sink may still be asleep.
  1517. */
  1518. static bool
  1519. intel_dp_aux_native_read_retry(struct intel_dp *intel_dp, uint16_t address,
  1520. uint8_t *recv, int recv_bytes)
  1521. {
  1522. int ret, i;
  1523. /*
  1524. * Sinks are *supposed* to come up within 1ms from an off state,
  1525. * but we're also supposed to retry 3 times per the spec.
  1526. */
  1527. for (i = 0; i < 3; i++) {
  1528. ret = intel_dp_aux_native_read(intel_dp, address, recv,
  1529. recv_bytes);
  1530. if (ret == recv_bytes)
  1531. return true;
  1532. msleep(1);
  1533. }
  1534. return false;
  1535. }
  1536. /*
  1537. * Fetch AUX CH registers 0x202 - 0x207 which contain
  1538. * link status information
  1539. */
  1540. static bool
  1541. intel_dp_get_link_status(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
  1542. {
  1543. return intel_dp_aux_native_read_retry(intel_dp,
  1544. DP_LANE0_1_STATUS,
  1545. link_status,
  1546. DP_LINK_STATUS_SIZE);
  1547. }
  1548. #if 0
  1549. static char *voltage_names[] = {
  1550. "0.4V", "0.6V", "0.8V", "1.2V"
  1551. };
  1552. static char *pre_emph_names[] = {
  1553. "0dB", "3.5dB", "6dB", "9.5dB"
  1554. };
  1555. static char *link_train_names[] = {
  1556. "pattern 1", "pattern 2", "idle", "off"
  1557. };
  1558. #endif
  1559. /*
  1560. * These are source-specific values; current Intel hardware supports
  1561. * a maximum voltage of 800mV and a maximum pre-emphasis of 6dB
  1562. */
  1563. static uint8_t
  1564. intel_dp_voltage_max(struct intel_dp *intel_dp)
  1565. {
  1566. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  1567. enum port port = dp_to_dig_port(intel_dp)->port;
  1568. if (IS_VALLEYVIEW(dev))
  1569. return DP_TRAIN_VOLTAGE_SWING_1200;
  1570. else if (IS_GEN7(dev) && port == PORT_A)
  1571. return DP_TRAIN_VOLTAGE_SWING_800;
  1572. else if (HAS_PCH_CPT(dev) && port != PORT_A)
  1573. return DP_TRAIN_VOLTAGE_SWING_1200;
  1574. else
  1575. return DP_TRAIN_VOLTAGE_SWING_800;
  1576. }
  1577. static uint8_t
  1578. intel_dp_pre_emphasis_max(struct intel_dp *intel_dp, uint8_t voltage_swing)
  1579. {
  1580. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  1581. enum port port = dp_to_dig_port(intel_dp)->port;
  1582. if (HAS_DDI(dev)) {
  1583. switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
  1584. case DP_TRAIN_VOLTAGE_SWING_400:
  1585. return DP_TRAIN_PRE_EMPHASIS_9_5;
  1586. case DP_TRAIN_VOLTAGE_SWING_600:
  1587. return DP_TRAIN_PRE_EMPHASIS_6;
  1588. case DP_TRAIN_VOLTAGE_SWING_800:
  1589. return DP_TRAIN_PRE_EMPHASIS_3_5;
  1590. case DP_TRAIN_VOLTAGE_SWING_1200:
  1591. default:
  1592. return DP_TRAIN_PRE_EMPHASIS_0;
  1593. }
  1594. } else if (IS_VALLEYVIEW(dev)) {
  1595. switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
  1596. case DP_TRAIN_VOLTAGE_SWING_400:
  1597. return DP_TRAIN_PRE_EMPHASIS_9_5;
  1598. case DP_TRAIN_VOLTAGE_SWING_600:
  1599. return DP_TRAIN_PRE_EMPHASIS_6;
  1600. case DP_TRAIN_VOLTAGE_SWING_800:
  1601. return DP_TRAIN_PRE_EMPHASIS_3_5;
  1602. case DP_TRAIN_VOLTAGE_SWING_1200:
  1603. default:
  1604. return DP_TRAIN_PRE_EMPHASIS_0;
  1605. }
  1606. } else if (IS_GEN7(dev) && port == PORT_A) {
  1607. switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
  1608. case DP_TRAIN_VOLTAGE_SWING_400:
  1609. return DP_TRAIN_PRE_EMPHASIS_6;
  1610. case DP_TRAIN_VOLTAGE_SWING_600:
  1611. case DP_TRAIN_VOLTAGE_SWING_800:
  1612. return DP_TRAIN_PRE_EMPHASIS_3_5;
  1613. default:
  1614. return DP_TRAIN_PRE_EMPHASIS_0;
  1615. }
  1616. } else {
  1617. switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
  1618. case DP_TRAIN_VOLTAGE_SWING_400:
  1619. return DP_TRAIN_PRE_EMPHASIS_6;
  1620. case DP_TRAIN_VOLTAGE_SWING_600:
  1621. return DP_TRAIN_PRE_EMPHASIS_6;
  1622. case DP_TRAIN_VOLTAGE_SWING_800:
  1623. return DP_TRAIN_PRE_EMPHASIS_3_5;
  1624. case DP_TRAIN_VOLTAGE_SWING_1200:
  1625. default:
  1626. return DP_TRAIN_PRE_EMPHASIS_0;
  1627. }
  1628. }
  1629. }
  1630. static uint32_t intel_vlv_signal_levels(struct intel_dp *intel_dp)
  1631. {
  1632. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  1633. struct drm_i915_private *dev_priv = dev->dev_private;
  1634. struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
  1635. struct intel_crtc *intel_crtc =
  1636. to_intel_crtc(dport->base.base.crtc);
  1637. unsigned long demph_reg_value, preemph_reg_value,
  1638. uniqtranscale_reg_value;
  1639. uint8_t train_set = intel_dp->train_set[0];
  1640. int port = vlv_dport_to_channel(dport);
  1641. int pipe = intel_crtc->pipe;
  1642. switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
  1643. case DP_TRAIN_PRE_EMPHASIS_0:
  1644. preemph_reg_value = 0x0004000;
  1645. switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
  1646. case DP_TRAIN_VOLTAGE_SWING_400:
  1647. demph_reg_value = 0x2B405555;
  1648. uniqtranscale_reg_value = 0x552AB83A;
  1649. break;
  1650. case DP_TRAIN_VOLTAGE_SWING_600:
  1651. demph_reg_value = 0x2B404040;
  1652. uniqtranscale_reg_value = 0x5548B83A;
  1653. break;
  1654. case DP_TRAIN_VOLTAGE_SWING_800:
  1655. demph_reg_value = 0x2B245555;
  1656. uniqtranscale_reg_value = 0x5560B83A;
  1657. break;
  1658. case DP_TRAIN_VOLTAGE_SWING_1200:
  1659. demph_reg_value = 0x2B405555;
  1660. uniqtranscale_reg_value = 0x5598DA3A;
  1661. break;
  1662. default:
  1663. return 0;
  1664. }
  1665. break;
  1666. case DP_TRAIN_PRE_EMPHASIS_3_5:
  1667. preemph_reg_value = 0x0002000;
  1668. switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
  1669. case DP_TRAIN_VOLTAGE_SWING_400:
  1670. demph_reg_value = 0x2B404040;
  1671. uniqtranscale_reg_value = 0x5552B83A;
  1672. break;
  1673. case DP_TRAIN_VOLTAGE_SWING_600:
  1674. demph_reg_value = 0x2B404848;
  1675. uniqtranscale_reg_value = 0x5580B83A;
  1676. break;
  1677. case DP_TRAIN_VOLTAGE_SWING_800:
  1678. demph_reg_value = 0x2B404040;
  1679. uniqtranscale_reg_value = 0x55ADDA3A;
  1680. break;
  1681. default:
  1682. return 0;
  1683. }
  1684. break;
  1685. case DP_TRAIN_PRE_EMPHASIS_6:
  1686. preemph_reg_value = 0x0000000;
  1687. switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
  1688. case DP_TRAIN_VOLTAGE_SWING_400:
  1689. demph_reg_value = 0x2B305555;
  1690. uniqtranscale_reg_value = 0x5570B83A;
  1691. break;
  1692. case DP_TRAIN_VOLTAGE_SWING_600:
  1693. demph_reg_value = 0x2B2B4040;
  1694. uniqtranscale_reg_value = 0x55ADDA3A;
  1695. break;
  1696. default:
  1697. return 0;
  1698. }
  1699. break;
  1700. case DP_TRAIN_PRE_EMPHASIS_9_5:
  1701. preemph_reg_value = 0x0006000;
  1702. switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
  1703. case DP_TRAIN_VOLTAGE_SWING_400:
  1704. demph_reg_value = 0x1B405555;
  1705. uniqtranscale_reg_value = 0x55ADDA3A;
  1706. break;
  1707. default:
  1708. return 0;
  1709. }
  1710. break;
  1711. default:
  1712. return 0;
  1713. }
  1714. mutex_lock(&dev_priv->dpio_lock);
  1715. vlv_dpio_write(dev_priv, pipe, DPIO_TX_OCALINIT(port), 0x00000000);
  1716. vlv_dpio_write(dev_priv, pipe, DPIO_TX_SWING_CTL4(port), demph_reg_value);
  1717. vlv_dpio_write(dev_priv, pipe, DPIO_TX_SWING_CTL2(port),
  1718. uniqtranscale_reg_value);
  1719. vlv_dpio_write(dev_priv, pipe, DPIO_TX_SWING_CTL3(port), 0x0C782040);
  1720. vlv_dpio_write(dev_priv, pipe, DPIO_PCS_STAGGER0(port), 0x00030000);
  1721. vlv_dpio_write(dev_priv, pipe, DPIO_PCS_CTL_OVER1(port), preemph_reg_value);
  1722. vlv_dpio_write(dev_priv, pipe, DPIO_TX_OCALINIT(port), 0x80000000);
  1723. mutex_unlock(&dev_priv->dpio_lock);
  1724. return 0;
  1725. }
  1726. static void
  1727. intel_get_adjust_train(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
  1728. {
  1729. uint8_t v = 0;
  1730. uint8_t p = 0;
  1731. int lane;
  1732. uint8_t voltage_max;
  1733. uint8_t preemph_max;
  1734. for (lane = 0; lane < intel_dp->lane_count; lane++) {
  1735. uint8_t this_v = drm_dp_get_adjust_request_voltage(link_status, lane);
  1736. uint8_t this_p = drm_dp_get_adjust_request_pre_emphasis(link_status, lane);
  1737. if (this_v > v)
  1738. v = this_v;
  1739. if (this_p > p)
  1740. p = this_p;
  1741. }
  1742. voltage_max = intel_dp_voltage_max(intel_dp);
  1743. if (v >= voltage_max)
  1744. v = voltage_max | DP_TRAIN_MAX_SWING_REACHED;
  1745. preemph_max = intel_dp_pre_emphasis_max(intel_dp, v);
  1746. if (p >= preemph_max)
  1747. p = preemph_max | DP_TRAIN_MAX_PRE_EMPHASIS_REACHED;
  1748. for (lane = 0; lane < 4; lane++)
  1749. intel_dp->train_set[lane] = v | p;
  1750. }
  1751. static uint32_t
  1752. intel_gen4_signal_levels(uint8_t train_set)
  1753. {
  1754. uint32_t signal_levels = 0;
  1755. switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
  1756. case DP_TRAIN_VOLTAGE_SWING_400:
  1757. default:
  1758. signal_levels |= DP_VOLTAGE_0_4;
  1759. break;
  1760. case DP_TRAIN_VOLTAGE_SWING_600:
  1761. signal_levels |= DP_VOLTAGE_0_6;
  1762. break;
  1763. case DP_TRAIN_VOLTAGE_SWING_800:
  1764. signal_levels |= DP_VOLTAGE_0_8;
  1765. break;
  1766. case DP_TRAIN_VOLTAGE_SWING_1200:
  1767. signal_levels |= DP_VOLTAGE_1_2;
  1768. break;
  1769. }
  1770. switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
  1771. case DP_TRAIN_PRE_EMPHASIS_0:
  1772. default:
  1773. signal_levels |= DP_PRE_EMPHASIS_0;
  1774. break;
  1775. case DP_TRAIN_PRE_EMPHASIS_3_5:
  1776. signal_levels |= DP_PRE_EMPHASIS_3_5;
  1777. break;
  1778. case DP_TRAIN_PRE_EMPHASIS_6:
  1779. signal_levels |= DP_PRE_EMPHASIS_6;
  1780. break;
  1781. case DP_TRAIN_PRE_EMPHASIS_9_5:
  1782. signal_levels |= DP_PRE_EMPHASIS_9_5;
  1783. break;
  1784. }
  1785. return signal_levels;
  1786. }
  1787. /* Gen6's DP voltage swing and pre-emphasis control */
  1788. static uint32_t
  1789. intel_gen6_edp_signal_levels(uint8_t train_set)
  1790. {
  1791. int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
  1792. DP_TRAIN_PRE_EMPHASIS_MASK);
  1793. switch (signal_levels) {
  1794. case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
  1795. case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
  1796. return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
  1797. case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
  1798. return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B;
  1799. case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
  1800. case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_6:
  1801. return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B;
  1802. case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
  1803. case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
  1804. return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B;
  1805. case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
  1806. case DP_TRAIN_VOLTAGE_SWING_1200 | DP_TRAIN_PRE_EMPHASIS_0:
  1807. return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B;
  1808. default:
  1809. DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
  1810. "0x%x\n", signal_levels);
  1811. return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
  1812. }
  1813. }
  1814. /* Gen7's DP voltage swing and pre-emphasis control */
  1815. static uint32_t
  1816. intel_gen7_edp_signal_levels(uint8_t train_set)
  1817. {
  1818. int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
  1819. DP_TRAIN_PRE_EMPHASIS_MASK);
  1820. switch (signal_levels) {
  1821. case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
  1822. return EDP_LINK_TRAIN_400MV_0DB_IVB;
  1823. case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
  1824. return EDP_LINK_TRAIN_400MV_3_5DB_IVB;
  1825. case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
  1826. return EDP_LINK_TRAIN_400MV_6DB_IVB;
  1827. case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
  1828. return EDP_LINK_TRAIN_600MV_0DB_IVB;
  1829. case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
  1830. return EDP_LINK_TRAIN_600MV_3_5DB_IVB;
  1831. case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
  1832. return EDP_LINK_TRAIN_800MV_0DB_IVB;
  1833. case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
  1834. return EDP_LINK_TRAIN_800MV_3_5DB_IVB;
  1835. default:
  1836. DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
  1837. "0x%x\n", signal_levels);
  1838. return EDP_LINK_TRAIN_500MV_0DB_IVB;
  1839. }
  1840. }
  1841. /* Gen7.5's (HSW) DP voltage swing and pre-emphasis control */
  1842. static uint32_t
  1843. intel_hsw_signal_levels(uint8_t train_set)
  1844. {
  1845. int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
  1846. DP_TRAIN_PRE_EMPHASIS_MASK);
  1847. switch (signal_levels) {
  1848. case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
  1849. return DDI_BUF_EMP_400MV_0DB_HSW;
  1850. case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
  1851. return DDI_BUF_EMP_400MV_3_5DB_HSW;
  1852. case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
  1853. return DDI_BUF_EMP_400MV_6DB_HSW;
  1854. case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_9_5:
  1855. return DDI_BUF_EMP_400MV_9_5DB_HSW;
  1856. case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
  1857. return DDI_BUF_EMP_600MV_0DB_HSW;
  1858. case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
  1859. return DDI_BUF_EMP_600MV_3_5DB_HSW;
  1860. case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_6:
  1861. return DDI_BUF_EMP_600MV_6DB_HSW;
  1862. case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
  1863. return DDI_BUF_EMP_800MV_0DB_HSW;
  1864. case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
  1865. return DDI_BUF_EMP_800MV_3_5DB_HSW;
  1866. default:
  1867. DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
  1868. "0x%x\n", signal_levels);
  1869. return DDI_BUF_EMP_400MV_0DB_HSW;
  1870. }
  1871. }
  1872. /* Properly updates "DP" with the correct signal levels. */
  1873. static void
  1874. intel_dp_set_signal_levels(struct intel_dp *intel_dp, uint32_t *DP)
  1875. {
  1876. struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
  1877. enum port port = intel_dig_port->port;
  1878. struct drm_device *dev = intel_dig_port->base.base.dev;
  1879. uint32_t signal_levels, mask;
  1880. uint8_t train_set = intel_dp->train_set[0];
  1881. if (HAS_DDI(dev)) {
  1882. signal_levels = intel_hsw_signal_levels(train_set);
  1883. mask = DDI_BUF_EMP_MASK;
  1884. } else if (IS_VALLEYVIEW(dev)) {
  1885. signal_levels = intel_vlv_signal_levels(intel_dp);
  1886. mask = 0;
  1887. } else if (IS_GEN7(dev) && port == PORT_A) {
  1888. signal_levels = intel_gen7_edp_signal_levels(train_set);
  1889. mask = EDP_LINK_TRAIN_VOL_EMP_MASK_IVB;
  1890. } else if (IS_GEN6(dev) && port == PORT_A) {
  1891. signal_levels = intel_gen6_edp_signal_levels(train_set);
  1892. mask = EDP_LINK_TRAIN_VOL_EMP_MASK_SNB;
  1893. } else {
  1894. signal_levels = intel_gen4_signal_levels(train_set);
  1895. mask = DP_VOLTAGE_MASK | DP_PRE_EMPHASIS_MASK;
  1896. }
  1897. DRM_DEBUG_KMS("Using signal levels %08x\n", signal_levels);
  1898. *DP = (*DP & ~mask) | signal_levels;
  1899. }
  1900. static bool
  1901. intel_dp_set_link_train(struct intel_dp *intel_dp,
  1902. uint32_t dp_reg_value,
  1903. uint8_t dp_train_pat)
  1904. {
  1905. struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
  1906. struct drm_device *dev = intel_dig_port->base.base.dev;
  1907. struct drm_i915_private *dev_priv = dev->dev_private;
  1908. enum port port = intel_dig_port->port;
  1909. int ret;
  1910. if (HAS_DDI(dev)) {
  1911. uint32_t temp = I915_READ(DP_TP_CTL(port));
  1912. if (dp_train_pat & DP_LINK_SCRAMBLING_DISABLE)
  1913. temp |= DP_TP_CTL_SCRAMBLE_DISABLE;
  1914. else
  1915. temp &= ~DP_TP_CTL_SCRAMBLE_DISABLE;
  1916. temp &= ~DP_TP_CTL_LINK_TRAIN_MASK;
  1917. switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
  1918. case DP_TRAINING_PATTERN_DISABLE:
  1919. temp |= DP_TP_CTL_LINK_TRAIN_NORMAL;
  1920. break;
  1921. case DP_TRAINING_PATTERN_1:
  1922. temp |= DP_TP_CTL_LINK_TRAIN_PAT1;
  1923. break;
  1924. case DP_TRAINING_PATTERN_2:
  1925. temp |= DP_TP_CTL_LINK_TRAIN_PAT2;
  1926. break;
  1927. case DP_TRAINING_PATTERN_3:
  1928. temp |= DP_TP_CTL_LINK_TRAIN_PAT3;
  1929. break;
  1930. }
  1931. I915_WRITE(DP_TP_CTL(port), temp);
  1932. } else if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || port != PORT_A)) {
  1933. dp_reg_value &= ~DP_LINK_TRAIN_MASK_CPT;
  1934. switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
  1935. case DP_TRAINING_PATTERN_DISABLE:
  1936. dp_reg_value |= DP_LINK_TRAIN_OFF_CPT;
  1937. break;
  1938. case DP_TRAINING_PATTERN_1:
  1939. dp_reg_value |= DP_LINK_TRAIN_PAT_1_CPT;
  1940. break;
  1941. case DP_TRAINING_PATTERN_2:
  1942. dp_reg_value |= DP_LINK_TRAIN_PAT_2_CPT;
  1943. break;
  1944. case DP_TRAINING_PATTERN_3:
  1945. DRM_ERROR("DP training pattern 3 not supported\n");
  1946. dp_reg_value |= DP_LINK_TRAIN_PAT_2_CPT;
  1947. break;
  1948. }
  1949. } else {
  1950. dp_reg_value &= ~DP_LINK_TRAIN_MASK;
  1951. switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
  1952. case DP_TRAINING_PATTERN_DISABLE:
  1953. dp_reg_value |= DP_LINK_TRAIN_OFF;
  1954. break;
  1955. case DP_TRAINING_PATTERN_1:
  1956. dp_reg_value |= DP_LINK_TRAIN_PAT_1;
  1957. break;
  1958. case DP_TRAINING_PATTERN_2:
  1959. dp_reg_value |= DP_LINK_TRAIN_PAT_2;
  1960. break;
  1961. case DP_TRAINING_PATTERN_3:
  1962. DRM_ERROR("DP training pattern 3 not supported\n");
  1963. dp_reg_value |= DP_LINK_TRAIN_PAT_2;
  1964. break;
  1965. }
  1966. }
  1967. I915_WRITE(intel_dp->output_reg, dp_reg_value);
  1968. POSTING_READ(intel_dp->output_reg);
  1969. intel_dp_aux_native_write_1(intel_dp,
  1970. DP_TRAINING_PATTERN_SET,
  1971. dp_train_pat);
  1972. if ((dp_train_pat & DP_TRAINING_PATTERN_MASK) !=
  1973. DP_TRAINING_PATTERN_DISABLE) {
  1974. ret = intel_dp_aux_native_write(intel_dp,
  1975. DP_TRAINING_LANE0_SET,
  1976. intel_dp->train_set,
  1977. intel_dp->lane_count);
  1978. if (ret != intel_dp->lane_count)
  1979. return false;
  1980. }
  1981. return true;
  1982. }
  1983. static void intel_dp_set_idle_link_train(struct intel_dp *intel_dp)
  1984. {
  1985. struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
  1986. struct drm_device *dev = intel_dig_port->base.base.dev;
  1987. struct drm_i915_private *dev_priv = dev->dev_private;
  1988. enum port port = intel_dig_port->port;
  1989. uint32_t val;
  1990. if (!HAS_DDI(dev))
  1991. return;
  1992. val = I915_READ(DP_TP_CTL(port));
  1993. val &= ~DP_TP_CTL_LINK_TRAIN_MASK;
  1994. val |= DP_TP_CTL_LINK_TRAIN_IDLE;
  1995. I915_WRITE(DP_TP_CTL(port), val);
  1996. /*
  1997. * On PORT_A we can have only eDP in SST mode. There the only reason
  1998. * we need to set idle transmission mode is to work around a HW issue
  1999. * where we enable the pipe while not in idle link-training mode.
  2000. * In this case there is requirement to wait for a minimum number of
  2001. * idle patterns to be sent.
  2002. */
  2003. if (port == PORT_A)
  2004. return;
  2005. if (wait_for((I915_READ(DP_TP_STATUS(port)) & DP_TP_STATUS_IDLE_DONE),
  2006. 1))
  2007. DRM_ERROR("Timed out waiting for DP idle patterns\n");
  2008. }
  2009. /* Enable corresponding port and start training pattern 1 */
  2010. void
  2011. intel_dp_start_link_train(struct intel_dp *intel_dp)
  2012. {
  2013. struct drm_encoder *encoder = &dp_to_dig_port(intel_dp)->base.base;
  2014. struct drm_device *dev = encoder->dev;
  2015. int i;
  2016. uint8_t voltage;
  2017. int voltage_tries, loop_tries;
  2018. uint32_t DP = intel_dp->DP;
  2019. if (HAS_DDI(dev))
  2020. intel_ddi_prepare_link_retrain(encoder);
  2021. /* Write the link configuration data */
  2022. intel_dp_aux_native_write(intel_dp, DP_LINK_BW_SET,
  2023. intel_dp->link_configuration,
  2024. DP_LINK_CONFIGURATION_SIZE);
  2025. DP |= DP_PORT_EN;
  2026. memset(intel_dp->train_set, 0, 4);
  2027. voltage = 0xff;
  2028. voltage_tries = 0;
  2029. loop_tries = 0;
  2030. for (;;) {
  2031. /* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */
  2032. uint8_t link_status[DP_LINK_STATUS_SIZE];
  2033. intel_dp_set_signal_levels(intel_dp, &DP);
  2034. /* Set training pattern 1 */
  2035. if (!intel_dp_set_link_train(intel_dp, DP,
  2036. DP_TRAINING_PATTERN_1 |
  2037. DP_LINK_SCRAMBLING_DISABLE))
  2038. break;
  2039. drm_dp_link_train_clock_recovery_delay(intel_dp->dpcd);
  2040. if (!intel_dp_get_link_status(intel_dp, link_status)) {
  2041. DRM_ERROR("failed to get link status\n");
  2042. break;
  2043. }
  2044. if (drm_dp_clock_recovery_ok(link_status, intel_dp->lane_count)) {
  2045. DRM_DEBUG_KMS("clock recovery OK\n");
  2046. break;
  2047. }
  2048. /* Check to see if we've tried the max voltage */
  2049. for (i = 0; i < intel_dp->lane_count; i++)
  2050. if ((intel_dp->train_set[i] & DP_TRAIN_MAX_SWING_REACHED) == 0)
  2051. break;
  2052. if (i == intel_dp->lane_count) {
  2053. ++loop_tries;
  2054. if (loop_tries == 5) {
  2055. DRM_DEBUG_KMS("too many full retries, give up\n");
  2056. break;
  2057. }
  2058. memset(intel_dp->train_set, 0, 4);
  2059. voltage_tries = 0;
  2060. continue;
  2061. }
  2062. /* Check to see if we've tried the same voltage 5 times */
  2063. if ((intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK) == voltage) {
  2064. ++voltage_tries;
  2065. if (voltage_tries == 5) {
  2066. DRM_DEBUG_KMS("too many voltage retries, give up\n");
  2067. break;
  2068. }
  2069. } else
  2070. voltage_tries = 0;
  2071. voltage = intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK;
  2072. /* Compute new intel_dp->train_set as requested by target */
  2073. intel_get_adjust_train(intel_dp, link_status);
  2074. }
  2075. intel_dp->DP = DP;
  2076. }
  2077. void
  2078. intel_dp_complete_link_train(struct intel_dp *intel_dp)
  2079. {
  2080. bool channel_eq = false;
  2081. int tries, cr_tries;
  2082. uint32_t DP = intel_dp->DP;
  2083. /* channel equalization */
  2084. tries = 0;
  2085. cr_tries = 0;
  2086. channel_eq = false;
  2087. for (;;) {
  2088. uint8_t link_status[DP_LINK_STATUS_SIZE];
  2089. if (cr_tries > 5) {
  2090. DRM_ERROR("failed to train DP, aborting\n");
  2091. intel_dp_link_down(intel_dp);
  2092. break;
  2093. }
  2094. intel_dp_set_signal_levels(intel_dp, &DP);
  2095. /* channel eq pattern */
  2096. if (!intel_dp_set_link_train(intel_dp, DP,
  2097. DP_TRAINING_PATTERN_2 |
  2098. DP_LINK_SCRAMBLING_DISABLE))
  2099. break;
  2100. drm_dp_link_train_channel_eq_delay(intel_dp->dpcd);
  2101. if (!intel_dp_get_link_status(intel_dp, link_status))
  2102. break;
  2103. /* Make sure clock is still ok */
  2104. if (!drm_dp_clock_recovery_ok(link_status, intel_dp->lane_count)) {
  2105. intel_dp_start_link_train(intel_dp);
  2106. cr_tries++;
  2107. continue;
  2108. }
  2109. if (drm_dp_channel_eq_ok(link_status, intel_dp->lane_count)) {
  2110. channel_eq = true;
  2111. break;
  2112. }
  2113. /* Try 5 times, then try clock recovery if that fails */
  2114. if (tries > 5) {
  2115. intel_dp_link_down(intel_dp);
  2116. intel_dp_start_link_train(intel_dp);
  2117. tries = 0;
  2118. cr_tries++;
  2119. continue;
  2120. }
  2121. /* Compute new intel_dp->train_set as requested by target */
  2122. intel_get_adjust_train(intel_dp, link_status);
  2123. ++tries;
  2124. }
  2125. intel_dp_set_idle_link_train(intel_dp);
  2126. intel_dp->DP = DP;
  2127. if (channel_eq)
  2128. DRM_DEBUG_KMS("Channel EQ done. DP Training successful\n");
  2129. }
  2130. void intel_dp_stop_link_train(struct intel_dp *intel_dp)
  2131. {
  2132. intel_dp_set_link_train(intel_dp, intel_dp->DP,
  2133. DP_TRAINING_PATTERN_DISABLE);
  2134. }
  2135. static void
  2136. intel_dp_link_down(struct intel_dp *intel_dp)
  2137. {
  2138. struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
  2139. enum port port = intel_dig_port->port;
  2140. struct drm_device *dev = intel_dig_port->base.base.dev;
  2141. struct drm_i915_private *dev_priv = dev->dev_private;
  2142. struct intel_crtc *intel_crtc =
  2143. to_intel_crtc(intel_dig_port->base.base.crtc);
  2144. uint32_t DP = intel_dp->DP;
  2145. /*
  2146. * DDI code has a strict mode set sequence and we should try to respect
  2147. * it, otherwise we might hang the machine in many different ways. So we
  2148. * really should be disabling the port only on a complete crtc_disable
  2149. * sequence. This function is just called under two conditions on DDI
  2150. * code:
  2151. * - Link train failed while doing crtc_enable, and on this case we
  2152. * really should respect the mode set sequence and wait for a
  2153. * crtc_disable.
  2154. * - Someone turned the monitor off and intel_dp_check_link_status
  2155. * called us. We don't need to disable the whole port on this case, so
  2156. * when someone turns the monitor on again,
  2157. * intel_ddi_prepare_link_retrain will take care of redoing the link
  2158. * train.
  2159. */
  2160. if (HAS_DDI(dev))
  2161. return;
  2162. if (WARN_ON((I915_READ(intel_dp->output_reg) & DP_PORT_EN) == 0))
  2163. return;
  2164. DRM_DEBUG_KMS("\n");
  2165. if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || port != PORT_A)) {
  2166. DP &= ~DP_LINK_TRAIN_MASK_CPT;
  2167. I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE_CPT);
  2168. } else {
  2169. DP &= ~DP_LINK_TRAIN_MASK;
  2170. I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE);
  2171. }
  2172. POSTING_READ(intel_dp->output_reg);
  2173. /* We don't really know why we're doing this */
  2174. intel_wait_for_vblank(dev, intel_crtc->pipe);
  2175. if (HAS_PCH_IBX(dev) &&
  2176. I915_READ(intel_dp->output_reg) & DP_PIPEB_SELECT) {
  2177. struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
  2178. /* Hardware workaround: leaving our transcoder select
  2179. * set to transcoder B while it's off will prevent the
  2180. * corresponding HDMI output on transcoder A.
  2181. *
  2182. * Combine this with another hardware workaround:
  2183. * transcoder select bit can only be cleared while the
  2184. * port is enabled.
  2185. */
  2186. DP &= ~DP_PIPEB_SELECT;
  2187. I915_WRITE(intel_dp->output_reg, DP);
  2188. /* Changes to enable or select take place the vblank
  2189. * after being written.
  2190. */
  2191. if (WARN_ON(crtc == NULL)) {
  2192. /* We should never try to disable a port without a crtc
  2193. * attached. For paranoia keep the code around for a
  2194. * bit. */
  2195. POSTING_READ(intel_dp->output_reg);
  2196. msleep(50);
  2197. } else
  2198. intel_wait_for_vblank(dev, intel_crtc->pipe);
  2199. }
  2200. DP &= ~DP_AUDIO_OUTPUT_ENABLE;
  2201. I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
  2202. POSTING_READ(intel_dp->output_reg);
  2203. msleep(intel_dp->panel_power_down_delay);
  2204. }
  2205. static bool
  2206. intel_dp_get_dpcd(struct intel_dp *intel_dp)
  2207. {
  2208. char dpcd_hex_dump[sizeof(intel_dp->dpcd) * 3];
  2209. if (intel_dp_aux_native_read_retry(intel_dp, 0x000, intel_dp->dpcd,
  2210. sizeof(intel_dp->dpcd)) == 0)
  2211. return false; /* aux transfer failed */
  2212. hex_dump_to_buffer(intel_dp->dpcd, sizeof(intel_dp->dpcd),
  2213. 32, 1, dpcd_hex_dump, sizeof(dpcd_hex_dump), false);
  2214. DRM_DEBUG_KMS("DPCD: %s\n", dpcd_hex_dump);
  2215. if (intel_dp->dpcd[DP_DPCD_REV] == 0)
  2216. return false; /* DPCD not present */
  2217. /* Check if the panel supports PSR */
  2218. memset(intel_dp->psr_dpcd, 0, sizeof(intel_dp->psr_dpcd));
  2219. intel_dp_aux_native_read_retry(intel_dp, DP_PSR_SUPPORT,
  2220. intel_dp->psr_dpcd,
  2221. sizeof(intel_dp->psr_dpcd));
  2222. if (is_edp_psr(intel_dp))
  2223. DRM_DEBUG_KMS("Detected EDP PSR Panel.\n");
  2224. if (!(intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
  2225. DP_DWN_STRM_PORT_PRESENT))
  2226. return true; /* native DP sink */
  2227. if (intel_dp->dpcd[DP_DPCD_REV] == 0x10)
  2228. return true; /* no per-port downstream info */
  2229. if (intel_dp_aux_native_read_retry(intel_dp, DP_DOWNSTREAM_PORT_0,
  2230. intel_dp->downstream_ports,
  2231. DP_MAX_DOWNSTREAM_PORTS) == 0)
  2232. return false; /* downstream port status fetch failed */
  2233. return true;
  2234. }
  2235. static void
  2236. intel_dp_probe_oui(struct intel_dp *intel_dp)
  2237. {
  2238. u8 buf[3];
  2239. if (!(intel_dp->dpcd[DP_DOWN_STREAM_PORT_COUNT] & DP_OUI_SUPPORT))
  2240. return;
  2241. ironlake_edp_panel_vdd_on(intel_dp);
  2242. if (intel_dp_aux_native_read_retry(intel_dp, DP_SINK_OUI, buf, 3))
  2243. DRM_DEBUG_KMS("Sink OUI: %02hx%02hx%02hx\n",
  2244. buf[0], buf[1], buf[2]);
  2245. if (intel_dp_aux_native_read_retry(intel_dp, DP_BRANCH_OUI, buf, 3))
  2246. DRM_DEBUG_KMS("Branch OUI: %02hx%02hx%02hx\n",
  2247. buf[0], buf[1], buf[2]);
  2248. ironlake_edp_panel_vdd_off(intel_dp, false);
  2249. }
  2250. static bool
  2251. intel_dp_get_sink_irq(struct intel_dp *intel_dp, u8 *sink_irq_vector)
  2252. {
  2253. int ret;
  2254. ret = intel_dp_aux_native_read_retry(intel_dp,
  2255. DP_DEVICE_SERVICE_IRQ_VECTOR,
  2256. sink_irq_vector, 1);
  2257. if (!ret)
  2258. return false;
  2259. return true;
  2260. }
  2261. static void
  2262. intel_dp_handle_test_request(struct intel_dp *intel_dp)
  2263. {
  2264. /* NAK by default */
  2265. intel_dp_aux_native_write_1(intel_dp, DP_TEST_RESPONSE, DP_TEST_NAK);
  2266. }
  2267. /*
  2268. * According to DP spec
  2269. * 5.1.2:
  2270. * 1. Read DPCD
  2271. * 2. Configure link according to Receiver Capabilities
  2272. * 3. Use Link Training from 2.5.3.3 and 3.5.1.3
  2273. * 4. Check link status on receipt of hot-plug interrupt
  2274. */
  2275. void
  2276. intel_dp_check_link_status(struct intel_dp *intel_dp)
  2277. {
  2278. struct intel_encoder *intel_encoder = &dp_to_dig_port(intel_dp)->base;
  2279. u8 sink_irq_vector;
  2280. u8 link_status[DP_LINK_STATUS_SIZE];
  2281. if (!intel_encoder->connectors_active)
  2282. return;
  2283. if (WARN_ON(!intel_encoder->base.crtc))
  2284. return;
  2285. /* Try to read receiver status if the link appears to be up */
  2286. if (!intel_dp_get_link_status(intel_dp, link_status)) {
  2287. intel_dp_link_down(intel_dp);
  2288. return;
  2289. }
  2290. /* Now read the DPCD to see if it's actually running */
  2291. if (!intel_dp_get_dpcd(intel_dp)) {
  2292. intel_dp_link_down(intel_dp);
  2293. return;
  2294. }
  2295. /* Try to read the source of the interrupt */
  2296. if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
  2297. intel_dp_get_sink_irq(intel_dp, &sink_irq_vector)) {
  2298. /* Clear interrupt source */
  2299. intel_dp_aux_native_write_1(intel_dp,
  2300. DP_DEVICE_SERVICE_IRQ_VECTOR,
  2301. sink_irq_vector);
  2302. if (sink_irq_vector & DP_AUTOMATED_TEST_REQUEST)
  2303. intel_dp_handle_test_request(intel_dp);
  2304. if (sink_irq_vector & (DP_CP_IRQ | DP_SINK_SPECIFIC_IRQ))
  2305. DRM_DEBUG_DRIVER("CP or sink specific irq unhandled\n");
  2306. }
  2307. if (!drm_dp_channel_eq_ok(link_status, intel_dp->lane_count)) {
  2308. DRM_DEBUG_KMS("%s: channel EQ not ok, retraining\n",
  2309. drm_get_encoder_name(&intel_encoder->base));
  2310. intel_dp_start_link_train(intel_dp);
  2311. intel_dp_complete_link_train(intel_dp);
  2312. intel_dp_stop_link_train(intel_dp);
  2313. }
  2314. }
  2315. /* XXX this is probably wrong for multiple downstream ports */
  2316. static enum drm_connector_status
  2317. intel_dp_detect_dpcd(struct intel_dp *intel_dp)
  2318. {
  2319. uint8_t *dpcd = intel_dp->dpcd;
  2320. bool hpd;
  2321. uint8_t type;
  2322. if (!intel_dp_get_dpcd(intel_dp))
  2323. return connector_status_disconnected;
  2324. /* if there's no downstream port, we're done */
  2325. if (!(dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_PRESENT))
  2326. return connector_status_connected;
  2327. /* If we're HPD-aware, SINK_COUNT changes dynamically */
  2328. hpd = !!(intel_dp->downstream_ports[0] & DP_DS_PORT_HPD);
  2329. if (hpd) {
  2330. uint8_t reg;
  2331. if (!intel_dp_aux_native_read_retry(intel_dp, DP_SINK_COUNT,
  2332. &reg, 1))
  2333. return connector_status_unknown;
  2334. return DP_GET_SINK_COUNT(reg) ? connector_status_connected
  2335. : connector_status_disconnected;
  2336. }
  2337. /* If no HPD, poke DDC gently */
  2338. if (drm_probe_ddc(&intel_dp->adapter))
  2339. return connector_status_connected;
  2340. /* Well we tried, say unknown for unreliable port types */
  2341. type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;
  2342. if (type == DP_DS_PORT_TYPE_VGA || type == DP_DS_PORT_TYPE_NON_EDID)
  2343. return connector_status_unknown;
  2344. /* Anything else is out of spec, warn and ignore */
  2345. DRM_DEBUG_KMS("Broken DP branch device, ignoring\n");
  2346. return connector_status_disconnected;
  2347. }
  2348. static enum drm_connector_status
  2349. ironlake_dp_detect(struct intel_dp *intel_dp)
  2350. {
  2351. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  2352. struct drm_i915_private *dev_priv = dev->dev_private;
  2353. struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
  2354. enum drm_connector_status status;
  2355. /* Can't disconnect eDP, but you can close the lid... */
  2356. if (is_edp(intel_dp)) {
  2357. status = intel_panel_detect(dev);
  2358. if (status == connector_status_unknown)
  2359. status = connector_status_connected;
  2360. return status;
  2361. }
  2362. if (!ibx_digital_port_connected(dev_priv, intel_dig_port))
  2363. return connector_status_disconnected;
  2364. return intel_dp_detect_dpcd(intel_dp);
  2365. }
  2366. static enum drm_connector_status
  2367. g4x_dp_detect(struct intel_dp *intel_dp)
  2368. {
  2369. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  2370. struct drm_i915_private *dev_priv = dev->dev_private;
  2371. struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
  2372. uint32_t bit;
  2373. /* Can't disconnect eDP, but you can close the lid... */
  2374. if (is_edp(intel_dp)) {
  2375. enum drm_connector_status status;
  2376. status = intel_panel_detect(dev);
  2377. if (status == connector_status_unknown)
  2378. status = connector_status_connected;
  2379. return status;
  2380. }
  2381. switch (intel_dig_port->port) {
  2382. case PORT_B:
  2383. bit = PORTB_HOTPLUG_LIVE_STATUS;
  2384. break;
  2385. case PORT_C:
  2386. bit = PORTC_HOTPLUG_LIVE_STATUS;
  2387. break;
  2388. case PORT_D:
  2389. bit = PORTD_HOTPLUG_LIVE_STATUS;
  2390. break;
  2391. default:
  2392. return connector_status_unknown;
  2393. }
  2394. if ((I915_READ(PORT_HOTPLUG_STAT) & bit) == 0)
  2395. return connector_status_disconnected;
  2396. return intel_dp_detect_dpcd(intel_dp);
  2397. }
  2398. static struct edid *
  2399. intel_dp_get_edid(struct drm_connector *connector, struct i2c_adapter *adapter)
  2400. {
  2401. struct intel_connector *intel_connector = to_intel_connector(connector);
  2402. /* use cached edid if we have one */
  2403. if (intel_connector->edid) {
  2404. struct edid *edid;
  2405. int size;
  2406. /* invalid edid */
  2407. if (IS_ERR(intel_connector->edid))
  2408. return NULL;
  2409. size = (intel_connector->edid->extensions + 1) * EDID_LENGTH;
  2410. edid = kmemdup(intel_connector->edid, size, GFP_KERNEL);
  2411. if (!edid)
  2412. return NULL;
  2413. return edid;
  2414. }
  2415. return drm_get_edid(connector, adapter);
  2416. }
  2417. static int
  2418. intel_dp_get_edid_modes(struct drm_connector *connector, struct i2c_adapter *adapter)
  2419. {
  2420. struct intel_connector *intel_connector = to_intel_connector(connector);
  2421. /* use cached edid if we have one */
  2422. if (intel_connector->edid) {
  2423. /* invalid edid */
  2424. if (IS_ERR(intel_connector->edid))
  2425. return 0;
  2426. return intel_connector_update_modes(connector,
  2427. intel_connector->edid);
  2428. }
  2429. return intel_ddc_get_modes(connector, adapter);
  2430. }
  2431. static enum drm_connector_status
  2432. intel_dp_detect(struct drm_connector *connector, bool force)
  2433. {
  2434. struct intel_dp *intel_dp = intel_attached_dp(connector);
  2435. struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
  2436. struct intel_encoder *intel_encoder = &intel_dig_port->base;
  2437. struct drm_device *dev = connector->dev;
  2438. enum drm_connector_status status;
  2439. struct edid *edid = NULL;
  2440. DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
  2441. connector->base.id, drm_get_connector_name(connector));
  2442. intel_dp->has_audio = false;
  2443. if (HAS_PCH_SPLIT(dev))
  2444. status = ironlake_dp_detect(intel_dp);
  2445. else
  2446. status = g4x_dp_detect(intel_dp);
  2447. if (status != connector_status_connected)
  2448. return status;
  2449. intel_dp_probe_oui(intel_dp);
  2450. if (intel_dp->force_audio != HDMI_AUDIO_AUTO) {
  2451. intel_dp->has_audio = (intel_dp->force_audio == HDMI_AUDIO_ON);
  2452. } else {
  2453. edid = intel_dp_get_edid(connector, &intel_dp->adapter);
  2454. if (edid) {
  2455. intel_dp->has_audio = drm_detect_monitor_audio(edid);
  2456. kfree(edid);
  2457. }
  2458. }
  2459. if (intel_encoder->type != INTEL_OUTPUT_EDP)
  2460. intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
  2461. return connector_status_connected;
  2462. }
  2463. static int intel_dp_get_modes(struct drm_connector *connector)
  2464. {
  2465. struct intel_dp *intel_dp = intel_attached_dp(connector);
  2466. struct intel_connector *intel_connector = to_intel_connector(connector);
  2467. struct drm_device *dev = connector->dev;
  2468. int ret;
  2469. /* We should parse the EDID data and find out if it has an audio sink
  2470. */
  2471. ret = intel_dp_get_edid_modes(connector, &intel_dp->adapter);
  2472. if (ret)
  2473. return ret;
  2474. /* if eDP has no EDID, fall back to fixed mode */
  2475. if (is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
  2476. struct drm_display_mode *mode;
  2477. mode = drm_mode_duplicate(dev,
  2478. intel_connector->panel.fixed_mode);
  2479. if (mode) {
  2480. drm_mode_probed_add(connector, mode);
  2481. return 1;
  2482. }
  2483. }
  2484. return 0;
  2485. }
  2486. static bool
  2487. intel_dp_detect_audio(struct drm_connector *connector)
  2488. {
  2489. struct intel_dp *intel_dp = intel_attached_dp(connector);
  2490. struct edid *edid;
  2491. bool has_audio = false;
  2492. edid = intel_dp_get_edid(connector, &intel_dp->adapter);
  2493. if (edid) {
  2494. has_audio = drm_detect_monitor_audio(edid);
  2495. kfree(edid);
  2496. }
  2497. return has_audio;
  2498. }
  2499. static int
  2500. intel_dp_set_property(struct drm_connector *connector,
  2501. struct drm_property *property,
  2502. uint64_t val)
  2503. {
  2504. struct drm_i915_private *dev_priv = connector->dev->dev_private;
  2505. struct intel_connector *intel_connector = to_intel_connector(connector);
  2506. struct intel_encoder *intel_encoder = intel_attached_encoder(connector);
  2507. struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
  2508. int ret;
  2509. ret = drm_object_property_set_value(&connector->base, property, val);
  2510. if (ret)
  2511. return ret;
  2512. if (property == dev_priv->force_audio_property) {
  2513. int i = val;
  2514. bool has_audio;
  2515. if (i == intel_dp->force_audio)
  2516. return 0;
  2517. intel_dp->force_audio = i;
  2518. if (i == HDMI_AUDIO_AUTO)
  2519. has_audio = intel_dp_detect_audio(connector);
  2520. else
  2521. has_audio = (i == HDMI_AUDIO_ON);
  2522. if (has_audio == intel_dp->has_audio)
  2523. return 0;
  2524. intel_dp->has_audio = has_audio;
  2525. goto done;
  2526. }
  2527. if (property == dev_priv->broadcast_rgb_property) {
  2528. bool old_auto = intel_dp->color_range_auto;
  2529. uint32_t old_range = intel_dp->color_range;
  2530. switch (val) {
  2531. case INTEL_BROADCAST_RGB_AUTO:
  2532. intel_dp->color_range_auto = true;
  2533. break;
  2534. case INTEL_BROADCAST_RGB_FULL:
  2535. intel_dp->color_range_auto = false;
  2536. intel_dp->color_range = 0;
  2537. break;
  2538. case INTEL_BROADCAST_RGB_LIMITED:
  2539. intel_dp->color_range_auto = false;
  2540. intel_dp->color_range = DP_COLOR_RANGE_16_235;
  2541. break;
  2542. default:
  2543. return -EINVAL;
  2544. }
  2545. if (old_auto == intel_dp->color_range_auto &&
  2546. old_range == intel_dp->color_range)
  2547. return 0;
  2548. goto done;
  2549. }
  2550. if (is_edp(intel_dp) &&
  2551. property == connector->dev->mode_config.scaling_mode_property) {
  2552. if (val == DRM_MODE_SCALE_NONE) {
  2553. DRM_DEBUG_KMS("no scaling not supported\n");
  2554. return -EINVAL;
  2555. }
  2556. if (intel_connector->panel.fitting_mode == val) {
  2557. /* the eDP scaling property is not changed */
  2558. return 0;
  2559. }
  2560. intel_connector->panel.fitting_mode = val;
  2561. goto done;
  2562. }
  2563. return -EINVAL;
  2564. done:
  2565. if (intel_encoder->base.crtc)
  2566. intel_crtc_restore_mode(intel_encoder->base.crtc);
  2567. return 0;
  2568. }
  2569. static void
  2570. intel_dp_connector_destroy(struct drm_connector *connector)
  2571. {
  2572. struct intel_connector *intel_connector = to_intel_connector(connector);
  2573. if (!IS_ERR_OR_NULL(intel_connector->edid))
  2574. kfree(intel_connector->edid);
  2575. /* Can't call is_edp() since the encoder may have been destroyed
  2576. * already. */
  2577. if (connector->connector_type == DRM_MODE_CONNECTOR_eDP)
  2578. intel_panel_fini(&intel_connector->panel);
  2579. drm_sysfs_connector_remove(connector);
  2580. drm_connector_cleanup(connector);
  2581. kfree(connector);
  2582. }
  2583. void intel_dp_encoder_destroy(struct drm_encoder *encoder)
  2584. {
  2585. struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
  2586. struct intel_dp *intel_dp = &intel_dig_port->dp;
  2587. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  2588. i2c_del_adapter(&intel_dp->adapter);
  2589. drm_encoder_cleanup(encoder);
  2590. if (is_edp(intel_dp)) {
  2591. cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
  2592. mutex_lock(&dev->mode_config.mutex);
  2593. ironlake_panel_vdd_off_sync(intel_dp);
  2594. mutex_unlock(&dev->mode_config.mutex);
  2595. }
  2596. kfree(intel_dig_port);
  2597. }
  2598. static const struct drm_connector_funcs intel_dp_connector_funcs = {
  2599. .dpms = intel_connector_dpms,
  2600. .detect = intel_dp_detect,
  2601. .fill_modes = drm_helper_probe_single_connector_modes,
  2602. .set_property = intel_dp_set_property,
  2603. .destroy = intel_dp_connector_destroy,
  2604. };
  2605. static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
  2606. .get_modes = intel_dp_get_modes,
  2607. .mode_valid = intel_dp_mode_valid,
  2608. .best_encoder = intel_best_encoder,
  2609. };
  2610. static const struct drm_encoder_funcs intel_dp_enc_funcs = {
  2611. .destroy = intel_dp_encoder_destroy,
  2612. };
  2613. static void
  2614. intel_dp_hot_plug(struct intel_encoder *intel_encoder)
  2615. {
  2616. struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
  2617. intel_dp_check_link_status(intel_dp);
  2618. }
  2619. /* Return which DP Port should be selected for Transcoder DP control */
  2620. int
  2621. intel_trans_dp_port_sel(struct drm_crtc *crtc)
  2622. {
  2623. struct drm_device *dev = crtc->dev;
  2624. struct intel_encoder *intel_encoder;
  2625. struct intel_dp *intel_dp;
  2626. for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
  2627. intel_dp = enc_to_intel_dp(&intel_encoder->base);
  2628. if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT ||
  2629. intel_encoder->type == INTEL_OUTPUT_EDP)
  2630. return intel_dp->output_reg;
  2631. }
  2632. return -1;
  2633. }
  2634. /* check the VBT to see whether the eDP is on DP-D port */
  2635. bool intel_dpd_is_edp(struct drm_device *dev)
  2636. {
  2637. struct drm_i915_private *dev_priv = dev->dev_private;
  2638. struct child_device_config *p_child;
  2639. int i;
  2640. if (!dev_priv->vbt.child_dev_num)
  2641. return false;
  2642. for (i = 0; i < dev_priv->vbt.child_dev_num; i++) {
  2643. p_child = dev_priv->vbt.child_dev + i;
  2644. if (p_child->dvo_port == PORT_IDPD &&
  2645. p_child->device_type == DEVICE_TYPE_eDP)
  2646. return true;
  2647. }
  2648. return false;
  2649. }
  2650. static void
  2651. intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
  2652. {
  2653. struct intel_connector *intel_connector = to_intel_connector(connector);
  2654. intel_attach_force_audio_property(connector);
  2655. intel_attach_broadcast_rgb_property(connector);
  2656. intel_dp->color_range_auto = true;
  2657. if (is_edp(intel_dp)) {
  2658. drm_mode_create_scaling_mode_property(connector->dev);
  2659. drm_object_attach_property(
  2660. &connector->base,
  2661. connector->dev->mode_config.scaling_mode_property,
  2662. DRM_MODE_SCALE_ASPECT);
  2663. intel_connector->panel.fitting_mode = DRM_MODE_SCALE_ASPECT;
  2664. }
  2665. }
  2666. static void
  2667. intel_dp_init_panel_power_sequencer(struct drm_device *dev,
  2668. struct intel_dp *intel_dp,
  2669. struct edp_power_seq *out)
  2670. {
  2671. struct drm_i915_private *dev_priv = dev->dev_private;
  2672. struct edp_power_seq cur, vbt, spec, final;
  2673. u32 pp_on, pp_off, pp_div, pp;
  2674. int pp_control_reg, pp_on_reg, pp_off_reg, pp_div_reg;
  2675. if (HAS_PCH_SPLIT(dev)) {
  2676. pp_control_reg = PCH_PP_CONTROL;
  2677. pp_on_reg = PCH_PP_ON_DELAYS;
  2678. pp_off_reg = PCH_PP_OFF_DELAYS;
  2679. pp_div_reg = PCH_PP_DIVISOR;
  2680. } else {
  2681. pp_control_reg = PIPEA_PP_CONTROL;
  2682. pp_on_reg = PIPEA_PP_ON_DELAYS;
  2683. pp_off_reg = PIPEA_PP_OFF_DELAYS;
  2684. pp_div_reg = PIPEA_PP_DIVISOR;
  2685. }
  2686. /* Workaround: Need to write PP_CONTROL with the unlock key as
  2687. * the very first thing. */
  2688. pp = ironlake_get_pp_control(intel_dp);
  2689. I915_WRITE(pp_control_reg, pp);
  2690. pp_on = I915_READ(pp_on_reg);
  2691. pp_off = I915_READ(pp_off_reg);
  2692. pp_div = I915_READ(pp_div_reg);
  2693. /* Pull timing values out of registers */
  2694. cur.t1_t3 = (pp_on & PANEL_POWER_UP_DELAY_MASK) >>
  2695. PANEL_POWER_UP_DELAY_SHIFT;
  2696. cur.t8 = (pp_on & PANEL_LIGHT_ON_DELAY_MASK) >>
  2697. PANEL_LIGHT_ON_DELAY_SHIFT;
  2698. cur.t9 = (pp_off & PANEL_LIGHT_OFF_DELAY_MASK) >>
  2699. PANEL_LIGHT_OFF_DELAY_SHIFT;
  2700. cur.t10 = (pp_off & PANEL_POWER_DOWN_DELAY_MASK) >>
  2701. PANEL_POWER_DOWN_DELAY_SHIFT;
  2702. cur.t11_t12 = ((pp_div & PANEL_POWER_CYCLE_DELAY_MASK) >>
  2703. PANEL_POWER_CYCLE_DELAY_SHIFT) * 1000;
  2704. DRM_DEBUG_KMS("cur t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
  2705. cur.t1_t3, cur.t8, cur.t9, cur.t10, cur.t11_t12);
  2706. vbt = dev_priv->vbt.edp_pps;
  2707. /* Upper limits from eDP 1.3 spec. Note that we use the clunky units of
  2708. * our hw here, which are all in 100usec. */
  2709. spec.t1_t3 = 210 * 10;
  2710. spec.t8 = 50 * 10; /* no limit for t8, use t7 instead */
  2711. spec.t9 = 50 * 10; /* no limit for t9, make it symmetric with t8 */
  2712. spec.t10 = 500 * 10;
  2713. /* This one is special and actually in units of 100ms, but zero
  2714. * based in the hw (so we need to add 100 ms). But the sw vbt
  2715. * table multiplies it with 1000 to make it in units of 100usec,
  2716. * too. */
  2717. spec.t11_t12 = (510 + 100) * 10;
  2718. DRM_DEBUG_KMS("vbt t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
  2719. vbt.t1_t3, vbt.t8, vbt.t9, vbt.t10, vbt.t11_t12);
  2720. /* Use the max of the register settings and vbt. If both are
  2721. * unset, fall back to the spec limits. */
  2722. #define assign_final(field) final.field = (max(cur.field, vbt.field) == 0 ? \
  2723. spec.field : \
  2724. max(cur.field, vbt.field))
  2725. assign_final(t1_t3);
  2726. assign_final(t8);
  2727. assign_final(t9);
  2728. assign_final(t10);
  2729. assign_final(t11_t12);
  2730. #undef assign_final
  2731. #define get_delay(field) (DIV_ROUND_UP(final.field, 10))
  2732. intel_dp->panel_power_up_delay = get_delay(t1_t3);
  2733. intel_dp->backlight_on_delay = get_delay(t8);
  2734. intel_dp->backlight_off_delay = get_delay(t9);
  2735. intel_dp->panel_power_down_delay = get_delay(t10);
  2736. intel_dp->panel_power_cycle_delay = get_delay(t11_t12);
  2737. #undef get_delay
  2738. DRM_DEBUG_KMS("panel power up delay %d, power down delay %d, power cycle delay %d\n",
  2739. intel_dp->panel_power_up_delay, intel_dp->panel_power_down_delay,
  2740. intel_dp->panel_power_cycle_delay);
  2741. DRM_DEBUG_KMS("backlight on delay %d, off delay %d\n",
  2742. intel_dp->backlight_on_delay, intel_dp->backlight_off_delay);
  2743. if (out)
  2744. *out = final;
  2745. }
  2746. static void
  2747. intel_dp_init_panel_power_sequencer_registers(struct drm_device *dev,
  2748. struct intel_dp *intel_dp,
  2749. struct edp_power_seq *seq)
  2750. {
  2751. struct drm_i915_private *dev_priv = dev->dev_private;
  2752. u32 pp_on, pp_off, pp_div, port_sel = 0;
  2753. int div = HAS_PCH_SPLIT(dev) ? intel_pch_rawclk(dev) : intel_hrawclk(dev);
  2754. int pp_on_reg, pp_off_reg, pp_div_reg;
  2755. if (HAS_PCH_SPLIT(dev)) {
  2756. pp_on_reg = PCH_PP_ON_DELAYS;
  2757. pp_off_reg = PCH_PP_OFF_DELAYS;
  2758. pp_div_reg = PCH_PP_DIVISOR;
  2759. } else {
  2760. pp_on_reg = PIPEA_PP_ON_DELAYS;
  2761. pp_off_reg = PIPEA_PP_OFF_DELAYS;
  2762. pp_div_reg = PIPEA_PP_DIVISOR;
  2763. }
  2764. /* And finally store the new values in the power sequencer. */
  2765. pp_on = (seq->t1_t3 << PANEL_POWER_UP_DELAY_SHIFT) |
  2766. (seq->t8 << PANEL_LIGHT_ON_DELAY_SHIFT);
  2767. pp_off = (seq->t9 << PANEL_LIGHT_OFF_DELAY_SHIFT) |
  2768. (seq->t10 << PANEL_POWER_DOWN_DELAY_SHIFT);
  2769. /* Compute the divisor for the pp clock, simply match the Bspec
  2770. * formula. */
  2771. pp_div = ((100 * div)/2 - 1) << PP_REFERENCE_DIVIDER_SHIFT;
  2772. pp_div |= (DIV_ROUND_UP(seq->t11_t12, 1000)
  2773. << PANEL_POWER_CYCLE_DELAY_SHIFT);
  2774. /* Haswell doesn't have any port selection bits for the panel
  2775. * power sequencer any more. */
  2776. if (IS_VALLEYVIEW(dev)) {
  2777. port_sel = I915_READ(pp_on_reg) & 0xc0000000;
  2778. } else if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
  2779. if (dp_to_dig_port(intel_dp)->port == PORT_A)
  2780. port_sel = PANEL_POWER_PORT_DP_A;
  2781. else
  2782. port_sel = PANEL_POWER_PORT_DP_D;
  2783. }
  2784. pp_on |= port_sel;
  2785. I915_WRITE(pp_on_reg, pp_on);
  2786. I915_WRITE(pp_off_reg, pp_off);
  2787. I915_WRITE(pp_div_reg, pp_div);
  2788. DRM_DEBUG_KMS("panel power sequencer register settings: PP_ON %#x, PP_OFF %#x, PP_DIV %#x\n",
  2789. I915_READ(pp_on_reg),
  2790. I915_READ(pp_off_reg),
  2791. I915_READ(pp_div_reg));
  2792. }
  2793. static bool intel_edp_init_connector(struct intel_dp *intel_dp,
  2794. struct intel_connector *intel_connector)
  2795. {
  2796. struct drm_connector *connector = &intel_connector->base;
  2797. struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
  2798. struct drm_device *dev = intel_dig_port->base.base.dev;
  2799. struct drm_i915_private *dev_priv = dev->dev_private;
  2800. struct drm_display_mode *fixed_mode = NULL;
  2801. struct edp_power_seq power_seq = { 0 };
  2802. bool has_dpcd;
  2803. struct drm_display_mode *scan;
  2804. struct edid *edid;
  2805. if (!is_edp(intel_dp))
  2806. return true;
  2807. intel_dp_init_panel_power_sequencer(dev, intel_dp, &power_seq);
  2808. /* Cache DPCD and EDID for edp. */
  2809. ironlake_edp_panel_vdd_on(intel_dp);
  2810. has_dpcd = intel_dp_get_dpcd(intel_dp);
  2811. ironlake_edp_panel_vdd_off(intel_dp, false);
  2812. if (has_dpcd) {
  2813. if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11)
  2814. dev_priv->no_aux_handshake =
  2815. intel_dp->dpcd[DP_MAX_DOWNSPREAD] &
  2816. DP_NO_AUX_HANDSHAKE_LINK_TRAINING;
  2817. } else {
  2818. /* if this fails, presume the device is a ghost */
  2819. DRM_INFO("failed to retrieve link info, disabling eDP\n");
  2820. return false;
  2821. }
  2822. /* We now know it's not a ghost, init power sequence regs. */
  2823. intel_dp_init_panel_power_sequencer_registers(dev, intel_dp,
  2824. &power_seq);
  2825. ironlake_edp_panel_vdd_on(intel_dp);
  2826. edid = drm_get_edid(connector, &intel_dp->adapter);
  2827. if (edid) {
  2828. if (drm_add_edid_modes(connector, edid)) {
  2829. drm_mode_connector_update_edid_property(connector,
  2830. edid);
  2831. drm_edid_to_eld(connector, edid);
  2832. } else {
  2833. kfree(edid);
  2834. edid = ERR_PTR(-EINVAL);
  2835. }
  2836. } else {
  2837. edid = ERR_PTR(-ENOENT);
  2838. }
  2839. intel_connector->edid = edid;
  2840. /* prefer fixed mode from EDID if available */
  2841. list_for_each_entry(scan, &connector->probed_modes, head) {
  2842. if ((scan->type & DRM_MODE_TYPE_PREFERRED)) {
  2843. fixed_mode = drm_mode_duplicate(dev, scan);
  2844. break;
  2845. }
  2846. }
  2847. /* fallback to VBT if available for eDP */
  2848. if (!fixed_mode && dev_priv->vbt.lfp_lvds_vbt_mode) {
  2849. fixed_mode = drm_mode_duplicate(dev,
  2850. dev_priv->vbt.lfp_lvds_vbt_mode);
  2851. if (fixed_mode)
  2852. fixed_mode->type |= DRM_MODE_TYPE_PREFERRED;
  2853. }
  2854. ironlake_edp_panel_vdd_off(intel_dp, false);
  2855. intel_panel_init(&intel_connector->panel, fixed_mode);
  2856. intel_panel_setup_backlight(connector);
  2857. return true;
  2858. }
  2859. bool
  2860. intel_dp_init_connector(struct intel_digital_port *intel_dig_port,
  2861. struct intel_connector *intel_connector)
  2862. {
  2863. struct drm_connector *connector = &intel_connector->base;
  2864. struct intel_dp *intel_dp = &intel_dig_port->dp;
  2865. struct intel_encoder *intel_encoder = &intel_dig_port->base;
  2866. struct drm_device *dev = intel_encoder->base.dev;
  2867. struct drm_i915_private *dev_priv = dev->dev_private;
  2868. enum port port = intel_dig_port->port;
  2869. const char *name = NULL;
  2870. int type, error;
  2871. /* Preserve the current hw state. */
  2872. intel_dp->DP = I915_READ(intel_dp->output_reg);
  2873. intel_dp->attached_connector = intel_connector;
  2874. type = DRM_MODE_CONNECTOR_DisplayPort;
  2875. /*
  2876. * FIXME : We need to initialize built-in panels before external panels.
  2877. * For X0, DP_C is fixed as eDP. Revisit this as part of VLV eDP cleanup
  2878. */
  2879. switch (port) {
  2880. case PORT_A:
  2881. type = DRM_MODE_CONNECTOR_eDP;
  2882. break;
  2883. case PORT_C:
  2884. if (IS_VALLEYVIEW(dev))
  2885. type = DRM_MODE_CONNECTOR_eDP;
  2886. break;
  2887. case PORT_D:
  2888. if (HAS_PCH_SPLIT(dev) && intel_dpd_is_edp(dev))
  2889. type = DRM_MODE_CONNECTOR_eDP;
  2890. break;
  2891. default: /* silence GCC warning */
  2892. break;
  2893. }
  2894. /*
  2895. * For eDP we always set the encoder type to INTEL_OUTPUT_EDP, but
  2896. * for DP the encoder type can be set by the caller to
  2897. * INTEL_OUTPUT_UNKNOWN for DDI, so don't rewrite it.
  2898. */
  2899. if (type == DRM_MODE_CONNECTOR_eDP)
  2900. intel_encoder->type = INTEL_OUTPUT_EDP;
  2901. DRM_DEBUG_KMS("Adding %s connector on port %c\n",
  2902. type == DRM_MODE_CONNECTOR_eDP ? "eDP" : "DP",
  2903. port_name(port));
  2904. drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
  2905. drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
  2906. connector->interlace_allowed = true;
  2907. connector->doublescan_allowed = 0;
  2908. INIT_DELAYED_WORK(&intel_dp->panel_vdd_work,
  2909. ironlake_panel_vdd_work);
  2910. intel_connector_attach_encoder(intel_connector, intel_encoder);
  2911. drm_sysfs_connector_add(connector);
  2912. if (HAS_DDI(dev))
  2913. intel_connector->get_hw_state = intel_ddi_connector_get_hw_state;
  2914. else
  2915. intel_connector->get_hw_state = intel_connector_get_hw_state;
  2916. intel_dp->aux_ch_ctl_reg = intel_dp->output_reg + 0x10;
  2917. if (HAS_DDI(dev)) {
  2918. switch (intel_dig_port->port) {
  2919. case PORT_A:
  2920. intel_dp->aux_ch_ctl_reg = DPA_AUX_CH_CTL;
  2921. break;
  2922. case PORT_B:
  2923. intel_dp->aux_ch_ctl_reg = PCH_DPB_AUX_CH_CTL;
  2924. break;
  2925. case PORT_C:
  2926. intel_dp->aux_ch_ctl_reg = PCH_DPC_AUX_CH_CTL;
  2927. break;
  2928. case PORT_D:
  2929. intel_dp->aux_ch_ctl_reg = PCH_DPD_AUX_CH_CTL;
  2930. break;
  2931. default:
  2932. BUG();
  2933. }
  2934. }
  2935. /* Set up the DDC bus. */
  2936. switch (port) {
  2937. case PORT_A:
  2938. intel_encoder->hpd_pin = HPD_PORT_A;
  2939. name = "DPDDC-A";
  2940. break;
  2941. case PORT_B:
  2942. intel_encoder->hpd_pin = HPD_PORT_B;
  2943. name = "DPDDC-B";
  2944. break;
  2945. case PORT_C:
  2946. intel_encoder->hpd_pin = HPD_PORT_C;
  2947. name = "DPDDC-C";
  2948. break;
  2949. case PORT_D:
  2950. intel_encoder->hpd_pin = HPD_PORT_D;
  2951. name = "DPDDC-D";
  2952. break;
  2953. default:
  2954. BUG();
  2955. }
  2956. error = intel_dp_i2c_init(intel_dp, intel_connector, name);
  2957. WARN(error, "intel_dp_i2c_init failed with error %d for port %c\n",
  2958. error, port_name(port));
  2959. intel_dp->psr_setup_done = false;
  2960. if (!intel_edp_init_connector(intel_dp, intel_connector)) {
  2961. i2c_del_adapter(&intel_dp->adapter);
  2962. if (is_edp(intel_dp)) {
  2963. cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
  2964. mutex_lock(&dev->mode_config.mutex);
  2965. ironlake_panel_vdd_off_sync(intel_dp);
  2966. mutex_unlock(&dev->mode_config.mutex);
  2967. }
  2968. drm_sysfs_connector_remove(connector);
  2969. drm_connector_cleanup(connector);
  2970. return false;
  2971. }
  2972. intel_dp_add_properties(intel_dp, connector);
  2973. /* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
  2974. * 0xd. Failure to do so will result in spurious interrupts being
  2975. * generated on the port when a cable is not attached.
  2976. */
  2977. if (IS_G4X(dev) && !IS_GM45(dev)) {
  2978. u32 temp = I915_READ(PEG_BAND_GAP_DATA);
  2979. I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
  2980. }
  2981. return true;
  2982. }
  2983. void
  2984. intel_dp_init(struct drm_device *dev, int output_reg, enum port port)
  2985. {
  2986. struct intel_digital_port *intel_dig_port;
  2987. struct intel_encoder *intel_encoder;
  2988. struct drm_encoder *encoder;
  2989. struct intel_connector *intel_connector;
  2990. intel_dig_port = kzalloc(sizeof(struct intel_digital_port), GFP_KERNEL);
  2991. if (!intel_dig_port)
  2992. return;
  2993. intel_connector = kzalloc(sizeof(struct intel_connector), GFP_KERNEL);
  2994. if (!intel_connector) {
  2995. kfree(intel_dig_port);
  2996. return;
  2997. }
  2998. intel_encoder = &intel_dig_port->base;
  2999. encoder = &intel_encoder->base;
  3000. drm_encoder_init(dev, &intel_encoder->base, &intel_dp_enc_funcs,
  3001. DRM_MODE_ENCODER_TMDS);
  3002. intel_encoder->compute_config = intel_dp_compute_config;
  3003. intel_encoder->mode_set = intel_dp_mode_set;
  3004. intel_encoder->disable = intel_disable_dp;
  3005. intel_encoder->post_disable = intel_post_disable_dp;
  3006. intel_encoder->get_hw_state = intel_dp_get_hw_state;
  3007. intel_encoder->get_config = intel_dp_get_config;
  3008. if (IS_VALLEYVIEW(dev)) {
  3009. intel_encoder->pre_pll_enable = vlv_dp_pre_pll_enable;
  3010. intel_encoder->pre_enable = vlv_pre_enable_dp;
  3011. intel_encoder->enable = vlv_enable_dp;
  3012. } else {
  3013. intel_encoder->pre_enable = g4x_pre_enable_dp;
  3014. intel_encoder->enable = g4x_enable_dp;
  3015. }
  3016. intel_dig_port->port = port;
  3017. intel_dig_port->dp.output_reg = output_reg;
  3018. intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
  3019. intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
  3020. intel_encoder->cloneable = false;
  3021. intel_encoder->hot_plug = intel_dp_hot_plug;
  3022. if (!intel_dp_init_connector(intel_dig_port, intel_connector)) {
  3023. drm_encoder_cleanup(encoder);
  3024. kfree(intel_dig_port);
  3025. kfree(intel_connector);
  3026. }
  3027. }