sched.c 164 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668
  1. /*
  2. * kernel/sched.c
  3. *
  4. * Kernel scheduler and related syscalls
  5. *
  6. * Copyright (C) 1991-2002 Linus Torvalds
  7. *
  8. * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
  9. * make semaphores SMP safe
  10. * 1998-11-19 Implemented schedule_timeout() and related stuff
  11. * by Andrea Arcangeli
  12. * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
  13. * hybrid priority-list and round-robin design with
  14. * an array-switch method of distributing timeslices
  15. * and per-CPU runqueues. Cleanups and useful suggestions
  16. * by Davide Libenzi, preemptible kernel bits by Robert Love.
  17. * 2003-09-03 Interactivity tuning by Con Kolivas.
  18. * 2004-04-02 Scheduler domains code by Nick Piggin
  19. * 2007-04-15 Work begun on replacing all interactivity tuning with a
  20. * fair scheduling design by Con Kolivas.
  21. * 2007-05-05 Load balancing (smp-nice) and other improvements
  22. * by Peter Williams
  23. * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
  24. * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
  25. */
  26. #include <linux/mm.h>
  27. #include <linux/module.h>
  28. #include <linux/nmi.h>
  29. #include <linux/init.h>
  30. #include <linux/uaccess.h>
  31. #include <linux/highmem.h>
  32. #include <linux/smp_lock.h>
  33. #include <asm/mmu_context.h>
  34. #include <linux/interrupt.h>
  35. #include <linux/capability.h>
  36. #include <linux/completion.h>
  37. #include <linux/kernel_stat.h>
  38. #include <linux/debug_locks.h>
  39. #include <linux/security.h>
  40. #include <linux/notifier.h>
  41. #include <linux/profile.h>
  42. #include <linux/freezer.h>
  43. #include <linux/vmalloc.h>
  44. #include <linux/blkdev.h>
  45. #include <linux/delay.h>
  46. #include <linux/smp.h>
  47. #include <linux/threads.h>
  48. #include <linux/timer.h>
  49. #include <linux/rcupdate.h>
  50. #include <linux/cpu.h>
  51. #include <linux/cpuset.h>
  52. #include <linux/percpu.h>
  53. #include <linux/kthread.h>
  54. #include <linux/seq_file.h>
  55. #include <linux/sysctl.h>
  56. #include <linux/syscalls.h>
  57. #include <linux/times.h>
  58. #include <linux/tsacct_kern.h>
  59. #include <linux/kprobes.h>
  60. #include <linux/delayacct.h>
  61. #include <linux/reciprocal_div.h>
  62. #include <linux/unistd.h>
  63. #include <asm/tlb.h>
  64. /*
  65. * Scheduler clock - returns current time in nanosec units.
  66. * This is default implementation.
  67. * Architectures and sub-architectures can override this.
  68. */
  69. unsigned long long __attribute__((weak)) sched_clock(void)
  70. {
  71. return (unsigned long long)jiffies * (1000000000 / HZ);
  72. }
  73. /*
  74. * Convert user-nice values [ -20 ... 0 ... 19 ]
  75. * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
  76. * and back.
  77. */
  78. #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
  79. #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
  80. #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
  81. /*
  82. * 'User priority' is the nice value converted to something we
  83. * can work with better when scaling various scheduler parameters,
  84. * it's a [ 0 ... 39 ] range.
  85. */
  86. #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
  87. #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
  88. #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
  89. /*
  90. * Some helpers for converting nanosecond timing to jiffy resolution
  91. */
  92. #define NS_TO_JIFFIES(TIME) ((TIME) / (1000000000 / HZ))
  93. #define JIFFIES_TO_NS(TIME) ((TIME) * (1000000000 / HZ))
  94. #define NICE_0_LOAD SCHED_LOAD_SCALE
  95. #define NICE_0_SHIFT SCHED_LOAD_SHIFT
  96. /*
  97. * These are the 'tuning knobs' of the scheduler:
  98. *
  99. * Minimum timeslice is 5 msecs (or 1 jiffy, whichever is larger),
  100. * default timeslice is 100 msecs, maximum timeslice is 800 msecs.
  101. * Timeslices get refilled after they expire.
  102. */
  103. #define MIN_TIMESLICE max(5 * HZ / 1000, 1)
  104. #define DEF_TIMESLICE (100 * HZ / 1000)
  105. #ifdef CONFIG_SMP
  106. /*
  107. * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
  108. * Since cpu_power is a 'constant', we can use a reciprocal divide.
  109. */
  110. static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
  111. {
  112. return reciprocal_divide(load, sg->reciprocal_cpu_power);
  113. }
  114. /*
  115. * Each time a sched group cpu_power is changed,
  116. * we must compute its reciprocal value
  117. */
  118. static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
  119. {
  120. sg->__cpu_power += val;
  121. sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
  122. }
  123. #endif
  124. #define SCALE_PRIO(x, prio) \
  125. max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO / 2), MIN_TIMESLICE)
  126. /*
  127. * static_prio_timeslice() scales user-nice values [ -20 ... 0 ... 19 ]
  128. * to time slice values: [800ms ... 100ms ... 5ms]
  129. */
  130. static unsigned int static_prio_timeslice(int static_prio)
  131. {
  132. if (static_prio == NICE_TO_PRIO(19))
  133. return 1;
  134. if (static_prio < NICE_TO_PRIO(0))
  135. return SCALE_PRIO(DEF_TIMESLICE * 4, static_prio);
  136. else
  137. return SCALE_PRIO(DEF_TIMESLICE, static_prio);
  138. }
  139. static inline int rt_policy(int policy)
  140. {
  141. if (unlikely(policy == SCHED_FIFO) || unlikely(policy == SCHED_RR))
  142. return 1;
  143. return 0;
  144. }
  145. static inline int task_has_rt_policy(struct task_struct *p)
  146. {
  147. return rt_policy(p->policy);
  148. }
  149. /*
  150. * This is the priority-queue data structure of the RT scheduling class:
  151. */
  152. struct rt_prio_array {
  153. DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
  154. struct list_head queue[MAX_RT_PRIO];
  155. };
  156. struct load_stat {
  157. struct load_weight load;
  158. u64 load_update_start, load_update_last;
  159. unsigned long delta_fair, delta_exec, delta_stat;
  160. };
  161. /* CFS-related fields in a runqueue */
  162. struct cfs_rq {
  163. struct load_weight load;
  164. unsigned long nr_running;
  165. s64 fair_clock;
  166. u64 exec_clock;
  167. s64 wait_runtime;
  168. u64 sleeper_bonus;
  169. unsigned long wait_runtime_overruns, wait_runtime_underruns;
  170. struct rb_root tasks_timeline;
  171. struct rb_node *rb_leftmost;
  172. struct rb_node *rb_load_balance_curr;
  173. #ifdef CONFIG_FAIR_GROUP_SCHED
  174. /* 'curr' points to currently running entity on this cfs_rq.
  175. * It is set to NULL otherwise (i.e when none are currently running).
  176. */
  177. struct sched_entity *curr;
  178. struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
  179. /* leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
  180. * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
  181. * (like users, containers etc.)
  182. *
  183. * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
  184. * list is used during load balance.
  185. */
  186. struct list_head leaf_cfs_rq_list; /* Better name : task_cfs_rq_list? */
  187. #endif
  188. };
  189. /* Real-Time classes' related field in a runqueue: */
  190. struct rt_rq {
  191. struct rt_prio_array active;
  192. int rt_load_balance_idx;
  193. struct list_head *rt_load_balance_head, *rt_load_balance_curr;
  194. };
  195. /*
  196. * This is the main, per-CPU runqueue data structure.
  197. *
  198. * Locking rule: those places that want to lock multiple runqueues
  199. * (such as the load balancing or the thread migration code), lock
  200. * acquire operations must be ordered by ascending &runqueue.
  201. */
  202. struct rq {
  203. spinlock_t lock; /* runqueue lock */
  204. /*
  205. * nr_running and cpu_load should be in the same cacheline because
  206. * remote CPUs use both these fields when doing load calculation.
  207. */
  208. unsigned long nr_running;
  209. #define CPU_LOAD_IDX_MAX 5
  210. unsigned long cpu_load[CPU_LOAD_IDX_MAX];
  211. unsigned char idle_at_tick;
  212. #ifdef CONFIG_NO_HZ
  213. unsigned char in_nohz_recently;
  214. #endif
  215. struct load_stat ls; /* capture load from *all* tasks on this cpu */
  216. unsigned long nr_load_updates;
  217. u64 nr_switches;
  218. struct cfs_rq cfs;
  219. #ifdef CONFIG_FAIR_GROUP_SCHED
  220. struct list_head leaf_cfs_rq_list; /* list of leaf cfs_rq on this cpu */
  221. #endif
  222. struct rt_rq rt;
  223. /*
  224. * This is part of a global counter where only the total sum
  225. * over all CPUs matters. A task can increase this counter on
  226. * one CPU and if it got migrated afterwards it may decrease
  227. * it on another CPU. Always updated under the runqueue lock:
  228. */
  229. unsigned long nr_uninterruptible;
  230. struct task_struct *curr, *idle;
  231. unsigned long next_balance;
  232. struct mm_struct *prev_mm;
  233. u64 clock, prev_clock_raw;
  234. s64 clock_max_delta;
  235. unsigned int clock_warps, clock_overflows;
  236. unsigned int clock_unstable_events;
  237. atomic_t nr_iowait;
  238. #ifdef CONFIG_SMP
  239. struct sched_domain *sd;
  240. /* For active balancing */
  241. int active_balance;
  242. int push_cpu;
  243. int cpu; /* cpu of this runqueue */
  244. struct task_struct *migration_thread;
  245. struct list_head migration_queue;
  246. #endif
  247. #ifdef CONFIG_SCHEDSTATS
  248. /* latency stats */
  249. struct sched_info rq_sched_info;
  250. /* sys_sched_yield() stats */
  251. unsigned long yld_exp_empty;
  252. unsigned long yld_act_empty;
  253. unsigned long yld_both_empty;
  254. unsigned long yld_cnt;
  255. /* schedule() stats */
  256. unsigned long sched_switch;
  257. unsigned long sched_cnt;
  258. unsigned long sched_goidle;
  259. /* try_to_wake_up() stats */
  260. unsigned long ttwu_cnt;
  261. unsigned long ttwu_local;
  262. #endif
  263. struct lock_class_key rq_lock_key;
  264. };
  265. static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
  266. static DEFINE_MUTEX(sched_hotcpu_mutex);
  267. static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
  268. {
  269. rq->curr->sched_class->check_preempt_curr(rq, p);
  270. }
  271. static inline int cpu_of(struct rq *rq)
  272. {
  273. #ifdef CONFIG_SMP
  274. return rq->cpu;
  275. #else
  276. return 0;
  277. #endif
  278. }
  279. /*
  280. * Per-runqueue clock, as finegrained as the platform can give us:
  281. */
  282. static unsigned long long __rq_clock(struct rq *rq)
  283. {
  284. u64 prev_raw = rq->prev_clock_raw;
  285. u64 now = sched_clock();
  286. s64 delta = now - prev_raw;
  287. u64 clock = rq->clock;
  288. /*
  289. * Protect against sched_clock() occasionally going backwards:
  290. */
  291. if (unlikely(delta < 0)) {
  292. clock++;
  293. rq->clock_warps++;
  294. } else {
  295. /*
  296. * Catch too large forward jumps too:
  297. */
  298. if (unlikely(delta > 2*TICK_NSEC)) {
  299. clock++;
  300. rq->clock_overflows++;
  301. } else {
  302. if (unlikely(delta > rq->clock_max_delta))
  303. rq->clock_max_delta = delta;
  304. clock += delta;
  305. }
  306. }
  307. rq->prev_clock_raw = now;
  308. rq->clock = clock;
  309. return clock;
  310. }
  311. static inline unsigned long long rq_clock(struct rq *rq)
  312. {
  313. int this_cpu = smp_processor_id();
  314. if (this_cpu == cpu_of(rq))
  315. return __rq_clock(rq);
  316. return rq->clock;
  317. }
  318. /*
  319. * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
  320. * See detach_destroy_domains: synchronize_sched for details.
  321. *
  322. * The domain tree of any CPU may only be accessed from within
  323. * preempt-disabled sections.
  324. */
  325. #define for_each_domain(cpu, __sd) \
  326. for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
  327. #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
  328. #define this_rq() (&__get_cpu_var(runqueues))
  329. #define task_rq(p) cpu_rq(task_cpu(p))
  330. #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
  331. /*
  332. * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
  333. * clock constructed from sched_clock():
  334. */
  335. unsigned long long cpu_clock(int cpu)
  336. {
  337. unsigned long long now;
  338. unsigned long flags;
  339. local_irq_save(flags);
  340. now = rq_clock(cpu_rq(cpu));
  341. local_irq_restore(flags);
  342. return now;
  343. }
  344. #ifdef CONFIG_FAIR_GROUP_SCHED
  345. /* Change a task's ->cfs_rq if it moves across CPUs */
  346. static inline void set_task_cfs_rq(struct task_struct *p)
  347. {
  348. p->se.cfs_rq = &task_rq(p)->cfs;
  349. }
  350. #else
  351. static inline void set_task_cfs_rq(struct task_struct *p)
  352. {
  353. }
  354. #endif
  355. #ifndef prepare_arch_switch
  356. # define prepare_arch_switch(next) do { } while (0)
  357. #endif
  358. #ifndef finish_arch_switch
  359. # define finish_arch_switch(prev) do { } while (0)
  360. #endif
  361. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  362. static inline int task_running(struct rq *rq, struct task_struct *p)
  363. {
  364. return rq->curr == p;
  365. }
  366. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  367. {
  368. }
  369. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  370. {
  371. #ifdef CONFIG_DEBUG_SPINLOCK
  372. /* this is a valid case when another task releases the spinlock */
  373. rq->lock.owner = current;
  374. #endif
  375. /*
  376. * If we are tracking spinlock dependencies then we have to
  377. * fix up the runqueue lock - which gets 'carried over' from
  378. * prev into current:
  379. */
  380. spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
  381. spin_unlock_irq(&rq->lock);
  382. }
  383. #else /* __ARCH_WANT_UNLOCKED_CTXSW */
  384. static inline int task_running(struct rq *rq, struct task_struct *p)
  385. {
  386. #ifdef CONFIG_SMP
  387. return p->oncpu;
  388. #else
  389. return rq->curr == p;
  390. #endif
  391. }
  392. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  393. {
  394. #ifdef CONFIG_SMP
  395. /*
  396. * We can optimise this out completely for !SMP, because the
  397. * SMP rebalancing from interrupt is the only thing that cares
  398. * here.
  399. */
  400. next->oncpu = 1;
  401. #endif
  402. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  403. spin_unlock_irq(&rq->lock);
  404. #else
  405. spin_unlock(&rq->lock);
  406. #endif
  407. }
  408. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  409. {
  410. #ifdef CONFIG_SMP
  411. /*
  412. * After ->oncpu is cleared, the task can be moved to a different CPU.
  413. * We must ensure this doesn't happen until the switch is completely
  414. * finished.
  415. */
  416. smp_wmb();
  417. prev->oncpu = 0;
  418. #endif
  419. #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  420. local_irq_enable();
  421. #endif
  422. }
  423. #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
  424. /*
  425. * __task_rq_lock - lock the runqueue a given task resides on.
  426. * Must be called interrupts disabled.
  427. */
  428. static inline struct rq *__task_rq_lock(struct task_struct *p)
  429. __acquires(rq->lock)
  430. {
  431. struct rq *rq;
  432. repeat_lock_task:
  433. rq = task_rq(p);
  434. spin_lock(&rq->lock);
  435. if (unlikely(rq != task_rq(p))) {
  436. spin_unlock(&rq->lock);
  437. goto repeat_lock_task;
  438. }
  439. return rq;
  440. }
  441. /*
  442. * task_rq_lock - lock the runqueue a given task resides on and disable
  443. * interrupts. Note the ordering: we can safely lookup the task_rq without
  444. * explicitly disabling preemption.
  445. */
  446. static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
  447. __acquires(rq->lock)
  448. {
  449. struct rq *rq;
  450. repeat_lock_task:
  451. local_irq_save(*flags);
  452. rq = task_rq(p);
  453. spin_lock(&rq->lock);
  454. if (unlikely(rq != task_rq(p))) {
  455. spin_unlock_irqrestore(&rq->lock, *flags);
  456. goto repeat_lock_task;
  457. }
  458. return rq;
  459. }
  460. static inline void __task_rq_unlock(struct rq *rq)
  461. __releases(rq->lock)
  462. {
  463. spin_unlock(&rq->lock);
  464. }
  465. static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
  466. __releases(rq->lock)
  467. {
  468. spin_unlock_irqrestore(&rq->lock, *flags);
  469. }
  470. /*
  471. * this_rq_lock - lock this runqueue and disable interrupts.
  472. */
  473. static inline struct rq *this_rq_lock(void)
  474. __acquires(rq->lock)
  475. {
  476. struct rq *rq;
  477. local_irq_disable();
  478. rq = this_rq();
  479. spin_lock(&rq->lock);
  480. return rq;
  481. }
  482. /*
  483. * CPU frequency is/was unstable - start new by setting prev_clock_raw:
  484. */
  485. void sched_clock_unstable_event(void)
  486. {
  487. unsigned long flags;
  488. struct rq *rq;
  489. rq = task_rq_lock(current, &flags);
  490. rq->prev_clock_raw = sched_clock();
  491. rq->clock_unstable_events++;
  492. task_rq_unlock(rq, &flags);
  493. }
  494. /*
  495. * resched_task - mark a task 'to be rescheduled now'.
  496. *
  497. * On UP this means the setting of the need_resched flag, on SMP it
  498. * might also involve a cross-CPU call to trigger the scheduler on
  499. * the target CPU.
  500. */
  501. #ifdef CONFIG_SMP
  502. #ifndef tsk_is_polling
  503. #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
  504. #endif
  505. static void resched_task(struct task_struct *p)
  506. {
  507. int cpu;
  508. assert_spin_locked(&task_rq(p)->lock);
  509. if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
  510. return;
  511. set_tsk_thread_flag(p, TIF_NEED_RESCHED);
  512. cpu = task_cpu(p);
  513. if (cpu == smp_processor_id())
  514. return;
  515. /* NEED_RESCHED must be visible before we test polling */
  516. smp_mb();
  517. if (!tsk_is_polling(p))
  518. smp_send_reschedule(cpu);
  519. }
  520. static void resched_cpu(int cpu)
  521. {
  522. struct rq *rq = cpu_rq(cpu);
  523. unsigned long flags;
  524. if (!spin_trylock_irqsave(&rq->lock, flags))
  525. return;
  526. resched_task(cpu_curr(cpu));
  527. spin_unlock_irqrestore(&rq->lock, flags);
  528. }
  529. #else
  530. static inline void resched_task(struct task_struct *p)
  531. {
  532. assert_spin_locked(&task_rq(p)->lock);
  533. set_tsk_need_resched(p);
  534. }
  535. #endif
  536. static u64 div64_likely32(u64 divident, unsigned long divisor)
  537. {
  538. #if BITS_PER_LONG == 32
  539. if (likely(divident <= 0xffffffffULL))
  540. return (u32)divident / divisor;
  541. do_div(divident, divisor);
  542. return divident;
  543. #else
  544. return divident / divisor;
  545. #endif
  546. }
  547. #if BITS_PER_LONG == 32
  548. # define WMULT_CONST (~0UL)
  549. #else
  550. # define WMULT_CONST (1UL << 32)
  551. #endif
  552. #define WMULT_SHIFT 32
  553. static inline unsigned long
  554. calc_delta_mine(unsigned long delta_exec, unsigned long weight,
  555. struct load_weight *lw)
  556. {
  557. u64 tmp;
  558. if (unlikely(!lw->inv_weight))
  559. lw->inv_weight = WMULT_CONST / lw->weight;
  560. tmp = (u64)delta_exec * weight;
  561. /*
  562. * Check whether we'd overflow the 64-bit multiplication:
  563. */
  564. if (unlikely(tmp > WMULT_CONST)) {
  565. tmp = ((tmp >> WMULT_SHIFT/2) * lw->inv_weight)
  566. >> (WMULT_SHIFT/2);
  567. } else {
  568. tmp = (tmp * lw->inv_weight) >> WMULT_SHIFT;
  569. }
  570. return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
  571. }
  572. static inline unsigned long
  573. calc_delta_fair(unsigned long delta_exec, struct load_weight *lw)
  574. {
  575. return calc_delta_mine(delta_exec, NICE_0_LOAD, lw);
  576. }
  577. static void update_load_add(struct load_weight *lw, unsigned long inc)
  578. {
  579. lw->weight += inc;
  580. lw->inv_weight = 0;
  581. }
  582. static void update_load_sub(struct load_weight *lw, unsigned long dec)
  583. {
  584. lw->weight -= dec;
  585. lw->inv_weight = 0;
  586. }
  587. static void __update_curr_load(struct rq *rq, struct load_stat *ls)
  588. {
  589. if (rq->curr != rq->idle && ls->load.weight) {
  590. ls->delta_exec += ls->delta_stat;
  591. ls->delta_fair += calc_delta_fair(ls->delta_stat, &ls->load);
  592. ls->delta_stat = 0;
  593. }
  594. }
  595. /*
  596. * Update delta_exec, delta_fair fields for rq.
  597. *
  598. * delta_fair clock advances at a rate inversely proportional to
  599. * total load (rq->ls.load.weight) on the runqueue, while
  600. * delta_exec advances at the same rate as wall-clock (provided
  601. * cpu is not idle).
  602. *
  603. * delta_exec / delta_fair is a measure of the (smoothened) load on this
  604. * runqueue over any given interval. This (smoothened) load is used
  605. * during load balance.
  606. *
  607. * This function is called /before/ updating rq->ls.load
  608. * and when switching tasks.
  609. */
  610. static void update_curr_load(struct rq *rq, u64 now)
  611. {
  612. struct load_stat *ls = &rq->ls;
  613. u64 start;
  614. start = ls->load_update_start;
  615. ls->load_update_start = now;
  616. ls->delta_stat += now - start;
  617. /*
  618. * Stagger updates to ls->delta_fair. Very frequent updates
  619. * can be expensive.
  620. */
  621. if (ls->delta_stat >= sysctl_sched_stat_granularity)
  622. __update_curr_load(rq, ls);
  623. }
  624. /*
  625. * To aid in avoiding the subversion of "niceness" due to uneven distribution
  626. * of tasks with abnormal "nice" values across CPUs the contribution that
  627. * each task makes to its run queue's load is weighted according to its
  628. * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
  629. * scaled version of the new time slice allocation that they receive on time
  630. * slice expiry etc.
  631. */
  632. #define WEIGHT_IDLEPRIO 2
  633. #define WMULT_IDLEPRIO (1 << 31)
  634. /*
  635. * Nice levels are multiplicative, with a gentle 10% change for every
  636. * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
  637. * nice 1, it will get ~10% less CPU time than another CPU-bound task
  638. * that remained on nice 0.
  639. *
  640. * The "10% effect" is relative and cumulative: from _any_ nice level,
  641. * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
  642. * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
  643. * If a task goes up by ~10% and another task goes down by ~10% then
  644. * the relative distance between them is ~25%.)
  645. */
  646. static const int prio_to_weight[40] = {
  647. /* -20 */ 88818, 71054, 56843, 45475, 36380, 29104, 23283, 18626, 14901, 11921,
  648. /* -10 */ 9537, 7629, 6103, 4883, 3906, 3125, 2500, 2000, 1600, 1280,
  649. /* 0 */ NICE_0_LOAD /* 1024 */,
  650. /* 1 */ 819, 655, 524, 419, 336, 268, 215, 172, 137,
  651. /* 10 */ 110, 87, 70, 56, 45, 36, 29, 23, 18, 15,
  652. };
  653. /*
  654. * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
  655. *
  656. * In cases where the weight does not change often, we can use the
  657. * precalculated inverse to speed up arithmetics by turning divisions
  658. * into multiplications:
  659. */
  660. static const u32 prio_to_wmult[40] = {
  661. /* -20 */ 48356, 60446, 75558, 94446, 118058,
  662. /* -15 */ 147573, 184467, 230589, 288233, 360285,
  663. /* -10 */ 450347, 562979, 703746, 879575, 1099582,
  664. /* -5 */ 1374389, 1717986, 2147483, 2684354, 3355443,
  665. /* 0 */ 4194304, 5244160, 6557201, 8196502, 10250518,
  666. /* 5 */ 12782640, 16025997, 19976592, 24970740, 31350126,
  667. /* 10 */ 39045157, 49367440, 61356675, 76695844, 95443717,
  668. /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
  669. };
  670. static inline void
  671. inc_load(struct rq *rq, const struct task_struct *p, u64 now)
  672. {
  673. update_curr_load(rq, now);
  674. update_load_add(&rq->ls.load, p->se.load.weight);
  675. }
  676. static inline void
  677. dec_load(struct rq *rq, const struct task_struct *p, u64 now)
  678. {
  679. update_curr_load(rq, now);
  680. update_load_sub(&rq->ls.load, p->se.load.weight);
  681. }
  682. static inline void inc_nr_running(struct task_struct *p, struct rq *rq, u64 now)
  683. {
  684. rq->nr_running++;
  685. inc_load(rq, p, now);
  686. }
  687. static inline void dec_nr_running(struct task_struct *p, struct rq *rq, u64 now)
  688. {
  689. rq->nr_running--;
  690. dec_load(rq, p, now);
  691. }
  692. static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
  693. /*
  694. * runqueue iterator, to support SMP load-balancing between different
  695. * scheduling classes, without having to expose their internal data
  696. * structures to the load-balancing proper:
  697. */
  698. struct rq_iterator {
  699. void *arg;
  700. struct task_struct *(*start)(void *);
  701. struct task_struct *(*next)(void *);
  702. };
  703. static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  704. unsigned long max_nr_move, unsigned long max_load_move,
  705. struct sched_domain *sd, enum cpu_idle_type idle,
  706. int *all_pinned, unsigned long *load_moved,
  707. int this_best_prio, int best_prio, int best_prio_seen,
  708. struct rq_iterator *iterator);
  709. #include "sched_stats.h"
  710. #include "sched_rt.c"
  711. #include "sched_fair.c"
  712. #include "sched_idletask.c"
  713. #ifdef CONFIG_SCHED_DEBUG
  714. # include "sched_debug.c"
  715. #endif
  716. #define sched_class_highest (&rt_sched_class)
  717. static void set_load_weight(struct task_struct *p)
  718. {
  719. task_rq(p)->cfs.wait_runtime -= p->se.wait_runtime;
  720. p->se.wait_runtime = 0;
  721. if (task_has_rt_policy(p)) {
  722. p->se.load.weight = prio_to_weight[0] * 2;
  723. p->se.load.inv_weight = prio_to_wmult[0] >> 1;
  724. return;
  725. }
  726. /*
  727. * SCHED_IDLE tasks get minimal weight:
  728. */
  729. if (p->policy == SCHED_IDLE) {
  730. p->se.load.weight = WEIGHT_IDLEPRIO;
  731. p->se.load.inv_weight = WMULT_IDLEPRIO;
  732. return;
  733. }
  734. p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
  735. p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
  736. }
  737. static void
  738. enqueue_task(struct rq *rq, struct task_struct *p, int wakeup, u64 now)
  739. {
  740. sched_info_queued(p);
  741. p->sched_class->enqueue_task(rq, p, wakeup, now);
  742. p->se.on_rq = 1;
  743. }
  744. static void
  745. dequeue_task(struct rq *rq, struct task_struct *p, int sleep, u64 now)
  746. {
  747. p->sched_class->dequeue_task(rq, p, sleep, now);
  748. p->se.on_rq = 0;
  749. }
  750. /*
  751. * __normal_prio - return the priority that is based on the static prio
  752. */
  753. static inline int __normal_prio(struct task_struct *p)
  754. {
  755. return p->static_prio;
  756. }
  757. /*
  758. * Calculate the expected normal priority: i.e. priority
  759. * without taking RT-inheritance into account. Might be
  760. * boosted by interactivity modifiers. Changes upon fork,
  761. * setprio syscalls, and whenever the interactivity
  762. * estimator recalculates.
  763. */
  764. static inline int normal_prio(struct task_struct *p)
  765. {
  766. int prio;
  767. if (task_has_rt_policy(p))
  768. prio = MAX_RT_PRIO-1 - p->rt_priority;
  769. else
  770. prio = __normal_prio(p);
  771. return prio;
  772. }
  773. /*
  774. * Calculate the current priority, i.e. the priority
  775. * taken into account by the scheduler. This value might
  776. * be boosted by RT tasks, or might be boosted by
  777. * interactivity modifiers. Will be RT if the task got
  778. * RT-boosted. If not then it returns p->normal_prio.
  779. */
  780. static int effective_prio(struct task_struct *p)
  781. {
  782. p->normal_prio = normal_prio(p);
  783. /*
  784. * If we are RT tasks or we were boosted to RT priority,
  785. * keep the priority unchanged. Otherwise, update priority
  786. * to the normal priority:
  787. */
  788. if (!rt_prio(p->prio))
  789. return p->normal_prio;
  790. return p->prio;
  791. }
  792. /*
  793. * activate_task - move a task to the runqueue.
  794. */
  795. static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
  796. {
  797. u64 now = rq_clock(rq);
  798. if (p->state == TASK_UNINTERRUPTIBLE)
  799. rq->nr_uninterruptible--;
  800. enqueue_task(rq, p, wakeup, now);
  801. inc_nr_running(p, rq, now);
  802. }
  803. /*
  804. * activate_idle_task - move idle task to the _front_ of runqueue.
  805. */
  806. static inline void activate_idle_task(struct task_struct *p, struct rq *rq)
  807. {
  808. u64 now = rq_clock(rq);
  809. if (p->state == TASK_UNINTERRUPTIBLE)
  810. rq->nr_uninterruptible--;
  811. enqueue_task(rq, p, 0, now);
  812. inc_nr_running(p, rq, now);
  813. }
  814. /*
  815. * deactivate_task - remove a task from the runqueue.
  816. */
  817. static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
  818. {
  819. u64 now = rq_clock(rq);
  820. if (p->state == TASK_UNINTERRUPTIBLE)
  821. rq->nr_uninterruptible++;
  822. dequeue_task(rq, p, sleep, now);
  823. dec_nr_running(p, rq, now);
  824. }
  825. /**
  826. * task_curr - is this task currently executing on a CPU?
  827. * @p: the task in question.
  828. */
  829. inline int task_curr(const struct task_struct *p)
  830. {
  831. return cpu_curr(task_cpu(p)) == p;
  832. }
  833. /* Used instead of source_load when we know the type == 0 */
  834. unsigned long weighted_cpuload(const int cpu)
  835. {
  836. return cpu_rq(cpu)->ls.load.weight;
  837. }
  838. static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
  839. {
  840. #ifdef CONFIG_SMP
  841. task_thread_info(p)->cpu = cpu;
  842. set_task_cfs_rq(p);
  843. #endif
  844. }
  845. #ifdef CONFIG_SMP
  846. void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
  847. {
  848. int old_cpu = task_cpu(p);
  849. struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
  850. u64 clock_offset, fair_clock_offset;
  851. clock_offset = old_rq->clock - new_rq->clock;
  852. fair_clock_offset = old_rq->cfs.fair_clock -
  853. new_rq->cfs.fair_clock;
  854. if (p->se.wait_start)
  855. p->se.wait_start -= clock_offset;
  856. if (p->se.wait_start_fair)
  857. p->se.wait_start_fair -= fair_clock_offset;
  858. if (p->se.sleep_start)
  859. p->se.sleep_start -= clock_offset;
  860. if (p->se.block_start)
  861. p->se.block_start -= clock_offset;
  862. if (p->se.sleep_start_fair)
  863. p->se.sleep_start_fair -= fair_clock_offset;
  864. __set_task_cpu(p, new_cpu);
  865. }
  866. struct migration_req {
  867. struct list_head list;
  868. struct task_struct *task;
  869. int dest_cpu;
  870. struct completion done;
  871. };
  872. /*
  873. * The task's runqueue lock must be held.
  874. * Returns true if you have to wait for migration thread.
  875. */
  876. static int
  877. migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
  878. {
  879. struct rq *rq = task_rq(p);
  880. /*
  881. * If the task is not on a runqueue (and not running), then
  882. * it is sufficient to simply update the task's cpu field.
  883. */
  884. if (!p->se.on_rq && !task_running(rq, p)) {
  885. set_task_cpu(p, dest_cpu);
  886. return 0;
  887. }
  888. init_completion(&req->done);
  889. req->task = p;
  890. req->dest_cpu = dest_cpu;
  891. list_add(&req->list, &rq->migration_queue);
  892. return 1;
  893. }
  894. /*
  895. * wait_task_inactive - wait for a thread to unschedule.
  896. *
  897. * The caller must ensure that the task *will* unschedule sometime soon,
  898. * else this function might spin for a *long* time. This function can't
  899. * be called with interrupts off, or it may introduce deadlock with
  900. * smp_call_function() if an IPI is sent by the same process we are
  901. * waiting to become inactive.
  902. */
  903. void wait_task_inactive(struct task_struct *p)
  904. {
  905. unsigned long flags;
  906. int running, on_rq;
  907. struct rq *rq;
  908. repeat:
  909. /*
  910. * We do the initial early heuristics without holding
  911. * any task-queue locks at all. We'll only try to get
  912. * the runqueue lock when things look like they will
  913. * work out!
  914. */
  915. rq = task_rq(p);
  916. /*
  917. * If the task is actively running on another CPU
  918. * still, just relax and busy-wait without holding
  919. * any locks.
  920. *
  921. * NOTE! Since we don't hold any locks, it's not
  922. * even sure that "rq" stays as the right runqueue!
  923. * But we don't care, since "task_running()" will
  924. * return false if the runqueue has changed and p
  925. * is actually now running somewhere else!
  926. */
  927. while (task_running(rq, p))
  928. cpu_relax();
  929. /*
  930. * Ok, time to look more closely! We need the rq
  931. * lock now, to be *sure*. If we're wrong, we'll
  932. * just go back and repeat.
  933. */
  934. rq = task_rq_lock(p, &flags);
  935. running = task_running(rq, p);
  936. on_rq = p->se.on_rq;
  937. task_rq_unlock(rq, &flags);
  938. /*
  939. * Was it really running after all now that we
  940. * checked with the proper locks actually held?
  941. *
  942. * Oops. Go back and try again..
  943. */
  944. if (unlikely(running)) {
  945. cpu_relax();
  946. goto repeat;
  947. }
  948. /*
  949. * It's not enough that it's not actively running,
  950. * it must be off the runqueue _entirely_, and not
  951. * preempted!
  952. *
  953. * So if it wa still runnable (but just not actively
  954. * running right now), it's preempted, and we should
  955. * yield - it could be a while.
  956. */
  957. if (unlikely(on_rq)) {
  958. yield();
  959. goto repeat;
  960. }
  961. /*
  962. * Ahh, all good. It wasn't running, and it wasn't
  963. * runnable, which means that it will never become
  964. * running in the future either. We're all done!
  965. */
  966. }
  967. /***
  968. * kick_process - kick a running thread to enter/exit the kernel
  969. * @p: the to-be-kicked thread
  970. *
  971. * Cause a process which is running on another CPU to enter
  972. * kernel-mode, without any delay. (to get signals handled.)
  973. *
  974. * NOTE: this function doesnt have to take the runqueue lock,
  975. * because all it wants to ensure is that the remote task enters
  976. * the kernel. If the IPI races and the task has been migrated
  977. * to another CPU then no harm is done and the purpose has been
  978. * achieved as well.
  979. */
  980. void kick_process(struct task_struct *p)
  981. {
  982. int cpu;
  983. preempt_disable();
  984. cpu = task_cpu(p);
  985. if ((cpu != smp_processor_id()) && task_curr(p))
  986. smp_send_reschedule(cpu);
  987. preempt_enable();
  988. }
  989. /*
  990. * Return a low guess at the load of a migration-source cpu weighted
  991. * according to the scheduling class and "nice" value.
  992. *
  993. * We want to under-estimate the load of migration sources, to
  994. * balance conservatively.
  995. */
  996. static inline unsigned long source_load(int cpu, int type)
  997. {
  998. struct rq *rq = cpu_rq(cpu);
  999. unsigned long total = weighted_cpuload(cpu);
  1000. if (type == 0)
  1001. return total;
  1002. return min(rq->cpu_load[type-1], total);
  1003. }
  1004. /*
  1005. * Return a high guess at the load of a migration-target cpu weighted
  1006. * according to the scheduling class and "nice" value.
  1007. */
  1008. static inline unsigned long target_load(int cpu, int type)
  1009. {
  1010. struct rq *rq = cpu_rq(cpu);
  1011. unsigned long total = weighted_cpuload(cpu);
  1012. if (type == 0)
  1013. return total;
  1014. return max(rq->cpu_load[type-1], total);
  1015. }
  1016. /*
  1017. * Return the average load per task on the cpu's run queue
  1018. */
  1019. static inline unsigned long cpu_avg_load_per_task(int cpu)
  1020. {
  1021. struct rq *rq = cpu_rq(cpu);
  1022. unsigned long total = weighted_cpuload(cpu);
  1023. unsigned long n = rq->nr_running;
  1024. return n ? total / n : SCHED_LOAD_SCALE;
  1025. }
  1026. /*
  1027. * find_idlest_group finds and returns the least busy CPU group within the
  1028. * domain.
  1029. */
  1030. static struct sched_group *
  1031. find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
  1032. {
  1033. struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
  1034. unsigned long min_load = ULONG_MAX, this_load = 0;
  1035. int load_idx = sd->forkexec_idx;
  1036. int imbalance = 100 + (sd->imbalance_pct-100)/2;
  1037. do {
  1038. unsigned long load, avg_load;
  1039. int local_group;
  1040. int i;
  1041. /* Skip over this group if it has no CPUs allowed */
  1042. if (!cpus_intersects(group->cpumask, p->cpus_allowed))
  1043. goto nextgroup;
  1044. local_group = cpu_isset(this_cpu, group->cpumask);
  1045. /* Tally up the load of all CPUs in the group */
  1046. avg_load = 0;
  1047. for_each_cpu_mask(i, group->cpumask) {
  1048. /* Bias balancing toward cpus of our domain */
  1049. if (local_group)
  1050. load = source_load(i, load_idx);
  1051. else
  1052. load = target_load(i, load_idx);
  1053. avg_load += load;
  1054. }
  1055. /* Adjust by relative CPU power of the group */
  1056. avg_load = sg_div_cpu_power(group,
  1057. avg_load * SCHED_LOAD_SCALE);
  1058. if (local_group) {
  1059. this_load = avg_load;
  1060. this = group;
  1061. } else if (avg_load < min_load) {
  1062. min_load = avg_load;
  1063. idlest = group;
  1064. }
  1065. nextgroup:
  1066. group = group->next;
  1067. } while (group != sd->groups);
  1068. if (!idlest || 100*this_load < imbalance*min_load)
  1069. return NULL;
  1070. return idlest;
  1071. }
  1072. /*
  1073. * find_idlest_cpu - find the idlest cpu among the cpus in group.
  1074. */
  1075. static int
  1076. find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
  1077. {
  1078. cpumask_t tmp;
  1079. unsigned long load, min_load = ULONG_MAX;
  1080. int idlest = -1;
  1081. int i;
  1082. /* Traverse only the allowed CPUs */
  1083. cpus_and(tmp, group->cpumask, p->cpus_allowed);
  1084. for_each_cpu_mask(i, tmp) {
  1085. load = weighted_cpuload(i);
  1086. if (load < min_load || (load == min_load && i == this_cpu)) {
  1087. min_load = load;
  1088. idlest = i;
  1089. }
  1090. }
  1091. return idlest;
  1092. }
  1093. /*
  1094. * sched_balance_self: balance the current task (running on cpu) in domains
  1095. * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
  1096. * SD_BALANCE_EXEC.
  1097. *
  1098. * Balance, ie. select the least loaded group.
  1099. *
  1100. * Returns the target CPU number, or the same CPU if no balancing is needed.
  1101. *
  1102. * preempt must be disabled.
  1103. */
  1104. static int sched_balance_self(int cpu, int flag)
  1105. {
  1106. struct task_struct *t = current;
  1107. struct sched_domain *tmp, *sd = NULL;
  1108. for_each_domain(cpu, tmp) {
  1109. /*
  1110. * If power savings logic is enabled for a domain, stop there.
  1111. */
  1112. if (tmp->flags & SD_POWERSAVINGS_BALANCE)
  1113. break;
  1114. if (tmp->flags & flag)
  1115. sd = tmp;
  1116. }
  1117. while (sd) {
  1118. cpumask_t span;
  1119. struct sched_group *group;
  1120. int new_cpu, weight;
  1121. if (!(sd->flags & flag)) {
  1122. sd = sd->child;
  1123. continue;
  1124. }
  1125. span = sd->span;
  1126. group = find_idlest_group(sd, t, cpu);
  1127. if (!group) {
  1128. sd = sd->child;
  1129. continue;
  1130. }
  1131. new_cpu = find_idlest_cpu(group, t, cpu);
  1132. if (new_cpu == -1 || new_cpu == cpu) {
  1133. /* Now try balancing at a lower domain level of cpu */
  1134. sd = sd->child;
  1135. continue;
  1136. }
  1137. /* Now try balancing at a lower domain level of new_cpu */
  1138. cpu = new_cpu;
  1139. sd = NULL;
  1140. weight = cpus_weight(span);
  1141. for_each_domain(cpu, tmp) {
  1142. if (weight <= cpus_weight(tmp->span))
  1143. break;
  1144. if (tmp->flags & flag)
  1145. sd = tmp;
  1146. }
  1147. /* while loop will break here if sd == NULL */
  1148. }
  1149. return cpu;
  1150. }
  1151. #endif /* CONFIG_SMP */
  1152. /*
  1153. * wake_idle() will wake a task on an idle cpu if task->cpu is
  1154. * not idle and an idle cpu is available. The span of cpus to
  1155. * search starts with cpus closest then further out as needed,
  1156. * so we always favor a closer, idle cpu.
  1157. *
  1158. * Returns the CPU we should wake onto.
  1159. */
  1160. #if defined(ARCH_HAS_SCHED_WAKE_IDLE)
  1161. static int wake_idle(int cpu, struct task_struct *p)
  1162. {
  1163. cpumask_t tmp;
  1164. struct sched_domain *sd;
  1165. int i;
  1166. /*
  1167. * If it is idle, then it is the best cpu to run this task.
  1168. *
  1169. * This cpu is also the best, if it has more than one task already.
  1170. * Siblings must be also busy(in most cases) as they didn't already
  1171. * pickup the extra load from this cpu and hence we need not check
  1172. * sibling runqueue info. This will avoid the checks and cache miss
  1173. * penalities associated with that.
  1174. */
  1175. if (idle_cpu(cpu) || cpu_rq(cpu)->nr_running > 1)
  1176. return cpu;
  1177. for_each_domain(cpu, sd) {
  1178. if (sd->flags & SD_WAKE_IDLE) {
  1179. cpus_and(tmp, sd->span, p->cpus_allowed);
  1180. for_each_cpu_mask(i, tmp) {
  1181. if (idle_cpu(i))
  1182. return i;
  1183. }
  1184. } else {
  1185. break;
  1186. }
  1187. }
  1188. return cpu;
  1189. }
  1190. #else
  1191. static inline int wake_idle(int cpu, struct task_struct *p)
  1192. {
  1193. return cpu;
  1194. }
  1195. #endif
  1196. /***
  1197. * try_to_wake_up - wake up a thread
  1198. * @p: the to-be-woken-up thread
  1199. * @state: the mask of task states that can be woken
  1200. * @sync: do a synchronous wakeup?
  1201. *
  1202. * Put it on the run-queue if it's not already there. The "current"
  1203. * thread is always on the run-queue (except when the actual
  1204. * re-schedule is in progress), and as such you're allowed to do
  1205. * the simpler "current->state = TASK_RUNNING" to mark yourself
  1206. * runnable without the overhead of this.
  1207. *
  1208. * returns failure only if the task is already active.
  1209. */
  1210. static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
  1211. {
  1212. int cpu, this_cpu, success = 0;
  1213. unsigned long flags;
  1214. long old_state;
  1215. struct rq *rq;
  1216. #ifdef CONFIG_SMP
  1217. struct sched_domain *sd, *this_sd = NULL;
  1218. unsigned long load, this_load;
  1219. int new_cpu;
  1220. #endif
  1221. rq = task_rq_lock(p, &flags);
  1222. old_state = p->state;
  1223. if (!(old_state & state))
  1224. goto out;
  1225. if (p->se.on_rq)
  1226. goto out_running;
  1227. cpu = task_cpu(p);
  1228. this_cpu = smp_processor_id();
  1229. #ifdef CONFIG_SMP
  1230. if (unlikely(task_running(rq, p)))
  1231. goto out_activate;
  1232. new_cpu = cpu;
  1233. schedstat_inc(rq, ttwu_cnt);
  1234. if (cpu == this_cpu) {
  1235. schedstat_inc(rq, ttwu_local);
  1236. goto out_set_cpu;
  1237. }
  1238. for_each_domain(this_cpu, sd) {
  1239. if (cpu_isset(cpu, sd->span)) {
  1240. schedstat_inc(sd, ttwu_wake_remote);
  1241. this_sd = sd;
  1242. break;
  1243. }
  1244. }
  1245. if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
  1246. goto out_set_cpu;
  1247. /*
  1248. * Check for affine wakeup and passive balancing possibilities.
  1249. */
  1250. if (this_sd) {
  1251. int idx = this_sd->wake_idx;
  1252. unsigned int imbalance;
  1253. imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
  1254. load = source_load(cpu, idx);
  1255. this_load = target_load(this_cpu, idx);
  1256. new_cpu = this_cpu; /* Wake to this CPU if we can */
  1257. if (this_sd->flags & SD_WAKE_AFFINE) {
  1258. unsigned long tl = this_load;
  1259. unsigned long tl_per_task;
  1260. tl_per_task = cpu_avg_load_per_task(this_cpu);
  1261. /*
  1262. * If sync wakeup then subtract the (maximum possible)
  1263. * effect of the currently running task from the load
  1264. * of the current CPU:
  1265. */
  1266. if (sync)
  1267. tl -= current->se.load.weight;
  1268. if ((tl <= load &&
  1269. tl + target_load(cpu, idx) <= tl_per_task) ||
  1270. 100*(tl + p->se.load.weight) <= imbalance*load) {
  1271. /*
  1272. * This domain has SD_WAKE_AFFINE and
  1273. * p is cache cold in this domain, and
  1274. * there is no bad imbalance.
  1275. */
  1276. schedstat_inc(this_sd, ttwu_move_affine);
  1277. goto out_set_cpu;
  1278. }
  1279. }
  1280. /*
  1281. * Start passive balancing when half the imbalance_pct
  1282. * limit is reached.
  1283. */
  1284. if (this_sd->flags & SD_WAKE_BALANCE) {
  1285. if (imbalance*this_load <= 100*load) {
  1286. schedstat_inc(this_sd, ttwu_move_balance);
  1287. goto out_set_cpu;
  1288. }
  1289. }
  1290. }
  1291. new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
  1292. out_set_cpu:
  1293. new_cpu = wake_idle(new_cpu, p);
  1294. if (new_cpu != cpu) {
  1295. set_task_cpu(p, new_cpu);
  1296. task_rq_unlock(rq, &flags);
  1297. /* might preempt at this point */
  1298. rq = task_rq_lock(p, &flags);
  1299. old_state = p->state;
  1300. if (!(old_state & state))
  1301. goto out;
  1302. if (p->se.on_rq)
  1303. goto out_running;
  1304. this_cpu = smp_processor_id();
  1305. cpu = task_cpu(p);
  1306. }
  1307. out_activate:
  1308. #endif /* CONFIG_SMP */
  1309. activate_task(rq, p, 1);
  1310. /*
  1311. * Sync wakeups (i.e. those types of wakeups where the waker
  1312. * has indicated that it will leave the CPU in short order)
  1313. * don't trigger a preemption, if the woken up task will run on
  1314. * this cpu. (in this case the 'I will reschedule' promise of
  1315. * the waker guarantees that the freshly woken up task is going
  1316. * to be considered on this CPU.)
  1317. */
  1318. if (!sync || cpu != this_cpu)
  1319. check_preempt_curr(rq, p);
  1320. success = 1;
  1321. out_running:
  1322. p->state = TASK_RUNNING;
  1323. out:
  1324. task_rq_unlock(rq, &flags);
  1325. return success;
  1326. }
  1327. int fastcall wake_up_process(struct task_struct *p)
  1328. {
  1329. return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
  1330. TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
  1331. }
  1332. EXPORT_SYMBOL(wake_up_process);
  1333. int fastcall wake_up_state(struct task_struct *p, unsigned int state)
  1334. {
  1335. return try_to_wake_up(p, state, 0);
  1336. }
  1337. /*
  1338. * Perform scheduler related setup for a newly forked process p.
  1339. * p is forked by current.
  1340. *
  1341. * __sched_fork() is basic setup used by init_idle() too:
  1342. */
  1343. static void __sched_fork(struct task_struct *p)
  1344. {
  1345. p->se.wait_start_fair = 0;
  1346. p->se.wait_start = 0;
  1347. p->se.exec_start = 0;
  1348. p->se.sum_exec_runtime = 0;
  1349. p->se.delta_exec = 0;
  1350. p->se.delta_fair_run = 0;
  1351. p->se.delta_fair_sleep = 0;
  1352. p->se.wait_runtime = 0;
  1353. p->se.sum_wait_runtime = 0;
  1354. p->se.sum_sleep_runtime = 0;
  1355. p->se.sleep_start = 0;
  1356. p->se.sleep_start_fair = 0;
  1357. p->se.block_start = 0;
  1358. p->se.sleep_max = 0;
  1359. p->se.block_max = 0;
  1360. p->se.exec_max = 0;
  1361. p->se.wait_max = 0;
  1362. p->se.wait_runtime_overruns = 0;
  1363. p->se.wait_runtime_underruns = 0;
  1364. INIT_LIST_HEAD(&p->run_list);
  1365. p->se.on_rq = 0;
  1366. #ifdef CONFIG_PREEMPT_NOTIFIERS
  1367. INIT_HLIST_HEAD(&p->preempt_notifiers);
  1368. #endif
  1369. /*
  1370. * We mark the process as running here, but have not actually
  1371. * inserted it onto the runqueue yet. This guarantees that
  1372. * nobody will actually run it, and a signal or other external
  1373. * event cannot wake it up and insert it on the runqueue either.
  1374. */
  1375. p->state = TASK_RUNNING;
  1376. }
  1377. /*
  1378. * fork()/clone()-time setup:
  1379. */
  1380. void sched_fork(struct task_struct *p, int clone_flags)
  1381. {
  1382. int cpu = get_cpu();
  1383. __sched_fork(p);
  1384. #ifdef CONFIG_SMP
  1385. cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
  1386. #endif
  1387. __set_task_cpu(p, cpu);
  1388. /*
  1389. * Make sure we do not leak PI boosting priority to the child:
  1390. */
  1391. p->prio = current->normal_prio;
  1392. #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
  1393. if (likely(sched_info_on()))
  1394. memset(&p->sched_info, 0, sizeof(p->sched_info));
  1395. #endif
  1396. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  1397. p->oncpu = 0;
  1398. #endif
  1399. #ifdef CONFIG_PREEMPT
  1400. /* Want to start with kernel preemption disabled. */
  1401. task_thread_info(p)->preempt_count = 1;
  1402. #endif
  1403. put_cpu();
  1404. }
  1405. /*
  1406. * After fork, child runs first. (default) If set to 0 then
  1407. * parent will (try to) run first.
  1408. */
  1409. unsigned int __read_mostly sysctl_sched_child_runs_first = 1;
  1410. /*
  1411. * wake_up_new_task - wake up a newly created task for the first time.
  1412. *
  1413. * This function will do some initial scheduler statistics housekeeping
  1414. * that must be done for every newly created context, then puts the task
  1415. * on the runqueue and wakes it.
  1416. */
  1417. void fastcall wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
  1418. {
  1419. unsigned long flags;
  1420. struct rq *rq;
  1421. int this_cpu;
  1422. rq = task_rq_lock(p, &flags);
  1423. BUG_ON(p->state != TASK_RUNNING);
  1424. this_cpu = smp_processor_id(); /* parent's CPU */
  1425. p->prio = effective_prio(p);
  1426. if (!sysctl_sched_child_runs_first || (clone_flags & CLONE_VM) ||
  1427. task_cpu(p) != this_cpu || !current->se.on_rq) {
  1428. activate_task(rq, p, 0);
  1429. } else {
  1430. /*
  1431. * Let the scheduling class do new task startup
  1432. * management (if any):
  1433. */
  1434. p->sched_class->task_new(rq, p);
  1435. }
  1436. check_preempt_curr(rq, p);
  1437. task_rq_unlock(rq, &flags);
  1438. }
  1439. #ifdef CONFIG_PREEMPT_NOTIFIERS
  1440. /**
  1441. * preempt_notifier_register - tell me when current is being being preempted & rescheduled
  1442. * @notifier: notifier struct to register
  1443. */
  1444. void preempt_notifier_register(struct preempt_notifier *notifier)
  1445. {
  1446. hlist_add_head(&notifier->link, &current->preempt_notifiers);
  1447. }
  1448. EXPORT_SYMBOL_GPL(preempt_notifier_register);
  1449. /**
  1450. * preempt_notifier_unregister - no longer interested in preemption notifications
  1451. * @notifier: notifier struct to unregister
  1452. *
  1453. * This is safe to call from within a preemption notifier.
  1454. */
  1455. void preempt_notifier_unregister(struct preempt_notifier *notifier)
  1456. {
  1457. hlist_del(&notifier->link);
  1458. }
  1459. EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
  1460. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  1461. {
  1462. struct preempt_notifier *notifier;
  1463. struct hlist_node *node;
  1464. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  1465. notifier->ops->sched_in(notifier, raw_smp_processor_id());
  1466. }
  1467. static void
  1468. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  1469. struct task_struct *next)
  1470. {
  1471. struct preempt_notifier *notifier;
  1472. struct hlist_node *node;
  1473. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  1474. notifier->ops->sched_out(notifier, next);
  1475. }
  1476. #else
  1477. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  1478. {
  1479. }
  1480. static void
  1481. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  1482. struct task_struct *next)
  1483. {
  1484. }
  1485. #endif
  1486. /**
  1487. * prepare_task_switch - prepare to switch tasks
  1488. * @rq: the runqueue preparing to switch
  1489. * @prev: the current task that is being switched out
  1490. * @next: the task we are going to switch to.
  1491. *
  1492. * This is called with the rq lock held and interrupts off. It must
  1493. * be paired with a subsequent finish_task_switch after the context
  1494. * switch.
  1495. *
  1496. * prepare_task_switch sets up locking and calls architecture specific
  1497. * hooks.
  1498. */
  1499. static inline void
  1500. prepare_task_switch(struct rq *rq, struct task_struct *prev,
  1501. struct task_struct *next)
  1502. {
  1503. fire_sched_out_preempt_notifiers(prev, next);
  1504. prepare_lock_switch(rq, next);
  1505. prepare_arch_switch(next);
  1506. }
  1507. /**
  1508. * finish_task_switch - clean up after a task-switch
  1509. * @rq: runqueue associated with task-switch
  1510. * @prev: the thread we just switched away from.
  1511. *
  1512. * finish_task_switch must be called after the context switch, paired
  1513. * with a prepare_task_switch call before the context switch.
  1514. * finish_task_switch will reconcile locking set up by prepare_task_switch,
  1515. * and do any other architecture-specific cleanup actions.
  1516. *
  1517. * Note that we may have delayed dropping an mm in context_switch(). If
  1518. * so, we finish that here outside of the runqueue lock. (Doing it
  1519. * with the lock held can cause deadlocks; see schedule() for
  1520. * details.)
  1521. */
  1522. static inline void finish_task_switch(struct rq *rq, struct task_struct *prev)
  1523. __releases(rq->lock)
  1524. {
  1525. struct mm_struct *mm = rq->prev_mm;
  1526. long prev_state;
  1527. rq->prev_mm = NULL;
  1528. /*
  1529. * A task struct has one reference for the use as "current".
  1530. * If a task dies, then it sets TASK_DEAD in tsk->state and calls
  1531. * schedule one last time. The schedule call will never return, and
  1532. * the scheduled task must drop that reference.
  1533. * The test for TASK_DEAD must occur while the runqueue locks are
  1534. * still held, otherwise prev could be scheduled on another cpu, die
  1535. * there before we look at prev->state, and then the reference would
  1536. * be dropped twice.
  1537. * Manfred Spraul <manfred@colorfullife.com>
  1538. */
  1539. prev_state = prev->state;
  1540. finish_arch_switch(prev);
  1541. finish_lock_switch(rq, prev);
  1542. fire_sched_in_preempt_notifiers(current);
  1543. if (mm)
  1544. mmdrop(mm);
  1545. if (unlikely(prev_state == TASK_DEAD)) {
  1546. /*
  1547. * Remove function-return probe instances associated with this
  1548. * task and put them back on the free list.
  1549. */
  1550. kprobe_flush_task(prev);
  1551. put_task_struct(prev);
  1552. }
  1553. }
  1554. /**
  1555. * schedule_tail - first thing a freshly forked thread must call.
  1556. * @prev: the thread we just switched away from.
  1557. */
  1558. asmlinkage void schedule_tail(struct task_struct *prev)
  1559. __releases(rq->lock)
  1560. {
  1561. struct rq *rq = this_rq();
  1562. finish_task_switch(rq, prev);
  1563. #ifdef __ARCH_WANT_UNLOCKED_CTXSW
  1564. /* In this case, finish_task_switch does not reenable preemption */
  1565. preempt_enable();
  1566. #endif
  1567. if (current->set_child_tid)
  1568. put_user(current->pid, current->set_child_tid);
  1569. }
  1570. /*
  1571. * context_switch - switch to the new MM and the new
  1572. * thread's register state.
  1573. */
  1574. static inline void
  1575. context_switch(struct rq *rq, struct task_struct *prev,
  1576. struct task_struct *next)
  1577. {
  1578. struct mm_struct *mm, *oldmm;
  1579. prepare_task_switch(rq, prev, next);
  1580. mm = next->mm;
  1581. oldmm = prev->active_mm;
  1582. /*
  1583. * For paravirt, this is coupled with an exit in switch_to to
  1584. * combine the page table reload and the switch backend into
  1585. * one hypercall.
  1586. */
  1587. arch_enter_lazy_cpu_mode();
  1588. if (unlikely(!mm)) {
  1589. next->active_mm = oldmm;
  1590. atomic_inc(&oldmm->mm_count);
  1591. enter_lazy_tlb(oldmm, next);
  1592. } else
  1593. switch_mm(oldmm, mm, next);
  1594. if (unlikely(!prev->mm)) {
  1595. prev->active_mm = NULL;
  1596. rq->prev_mm = oldmm;
  1597. }
  1598. /*
  1599. * Since the runqueue lock will be released by the next
  1600. * task (which is an invalid locking op but in the case
  1601. * of the scheduler it's an obvious special-case), so we
  1602. * do an early lockdep release here:
  1603. */
  1604. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  1605. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  1606. #endif
  1607. /* Here we just switch the register state and the stack. */
  1608. switch_to(prev, next, prev);
  1609. barrier();
  1610. /*
  1611. * this_rq must be evaluated again because prev may have moved
  1612. * CPUs since it called schedule(), thus the 'rq' on its stack
  1613. * frame will be invalid.
  1614. */
  1615. finish_task_switch(this_rq(), prev);
  1616. }
  1617. /*
  1618. * nr_running, nr_uninterruptible and nr_context_switches:
  1619. *
  1620. * externally visible scheduler statistics: current number of runnable
  1621. * threads, current number of uninterruptible-sleeping threads, total
  1622. * number of context switches performed since bootup.
  1623. */
  1624. unsigned long nr_running(void)
  1625. {
  1626. unsigned long i, sum = 0;
  1627. for_each_online_cpu(i)
  1628. sum += cpu_rq(i)->nr_running;
  1629. return sum;
  1630. }
  1631. unsigned long nr_uninterruptible(void)
  1632. {
  1633. unsigned long i, sum = 0;
  1634. for_each_possible_cpu(i)
  1635. sum += cpu_rq(i)->nr_uninterruptible;
  1636. /*
  1637. * Since we read the counters lockless, it might be slightly
  1638. * inaccurate. Do not allow it to go below zero though:
  1639. */
  1640. if (unlikely((long)sum < 0))
  1641. sum = 0;
  1642. return sum;
  1643. }
  1644. unsigned long long nr_context_switches(void)
  1645. {
  1646. int i;
  1647. unsigned long long sum = 0;
  1648. for_each_possible_cpu(i)
  1649. sum += cpu_rq(i)->nr_switches;
  1650. return sum;
  1651. }
  1652. unsigned long nr_iowait(void)
  1653. {
  1654. unsigned long i, sum = 0;
  1655. for_each_possible_cpu(i)
  1656. sum += atomic_read(&cpu_rq(i)->nr_iowait);
  1657. return sum;
  1658. }
  1659. unsigned long nr_active(void)
  1660. {
  1661. unsigned long i, running = 0, uninterruptible = 0;
  1662. for_each_online_cpu(i) {
  1663. running += cpu_rq(i)->nr_running;
  1664. uninterruptible += cpu_rq(i)->nr_uninterruptible;
  1665. }
  1666. if (unlikely((long)uninterruptible < 0))
  1667. uninterruptible = 0;
  1668. return running + uninterruptible;
  1669. }
  1670. /*
  1671. * Update rq->cpu_load[] statistics. This function is usually called every
  1672. * scheduler tick (TICK_NSEC).
  1673. */
  1674. static void update_cpu_load(struct rq *this_rq)
  1675. {
  1676. u64 fair_delta64, exec_delta64, idle_delta64, sample_interval64, tmp64;
  1677. unsigned long total_load = this_rq->ls.load.weight;
  1678. unsigned long this_load = total_load;
  1679. struct load_stat *ls = &this_rq->ls;
  1680. u64 now = __rq_clock(this_rq);
  1681. int i, scale;
  1682. this_rq->nr_load_updates++;
  1683. if (unlikely(!(sysctl_sched_features & SCHED_FEAT_PRECISE_CPU_LOAD)))
  1684. goto do_avg;
  1685. /* Update delta_fair/delta_exec fields first */
  1686. update_curr_load(this_rq, now);
  1687. fair_delta64 = ls->delta_fair + 1;
  1688. ls->delta_fair = 0;
  1689. exec_delta64 = ls->delta_exec + 1;
  1690. ls->delta_exec = 0;
  1691. sample_interval64 = now - ls->load_update_last;
  1692. ls->load_update_last = now;
  1693. if ((s64)sample_interval64 < (s64)TICK_NSEC)
  1694. sample_interval64 = TICK_NSEC;
  1695. if (exec_delta64 > sample_interval64)
  1696. exec_delta64 = sample_interval64;
  1697. idle_delta64 = sample_interval64 - exec_delta64;
  1698. tmp64 = div64_64(SCHED_LOAD_SCALE * exec_delta64, fair_delta64);
  1699. tmp64 = div64_64(tmp64 * exec_delta64, sample_interval64);
  1700. this_load = (unsigned long)tmp64;
  1701. do_avg:
  1702. /* Update our load: */
  1703. for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
  1704. unsigned long old_load, new_load;
  1705. /* scale is effectively 1 << i now, and >> i divides by scale */
  1706. old_load = this_rq->cpu_load[i];
  1707. new_load = this_load;
  1708. this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
  1709. }
  1710. }
  1711. #ifdef CONFIG_SMP
  1712. /*
  1713. * double_rq_lock - safely lock two runqueues
  1714. *
  1715. * Note this does not disable interrupts like task_rq_lock,
  1716. * you need to do so manually before calling.
  1717. */
  1718. static void double_rq_lock(struct rq *rq1, struct rq *rq2)
  1719. __acquires(rq1->lock)
  1720. __acquires(rq2->lock)
  1721. {
  1722. BUG_ON(!irqs_disabled());
  1723. if (rq1 == rq2) {
  1724. spin_lock(&rq1->lock);
  1725. __acquire(rq2->lock); /* Fake it out ;) */
  1726. } else {
  1727. if (rq1 < rq2) {
  1728. spin_lock(&rq1->lock);
  1729. spin_lock(&rq2->lock);
  1730. } else {
  1731. spin_lock(&rq2->lock);
  1732. spin_lock(&rq1->lock);
  1733. }
  1734. }
  1735. }
  1736. /*
  1737. * double_rq_unlock - safely unlock two runqueues
  1738. *
  1739. * Note this does not restore interrupts like task_rq_unlock,
  1740. * you need to do so manually after calling.
  1741. */
  1742. static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
  1743. __releases(rq1->lock)
  1744. __releases(rq2->lock)
  1745. {
  1746. spin_unlock(&rq1->lock);
  1747. if (rq1 != rq2)
  1748. spin_unlock(&rq2->lock);
  1749. else
  1750. __release(rq2->lock);
  1751. }
  1752. /*
  1753. * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
  1754. */
  1755. static void double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1756. __releases(this_rq->lock)
  1757. __acquires(busiest->lock)
  1758. __acquires(this_rq->lock)
  1759. {
  1760. if (unlikely(!irqs_disabled())) {
  1761. /* printk() doesn't work good under rq->lock */
  1762. spin_unlock(&this_rq->lock);
  1763. BUG_ON(1);
  1764. }
  1765. if (unlikely(!spin_trylock(&busiest->lock))) {
  1766. if (busiest < this_rq) {
  1767. spin_unlock(&this_rq->lock);
  1768. spin_lock(&busiest->lock);
  1769. spin_lock(&this_rq->lock);
  1770. } else
  1771. spin_lock(&busiest->lock);
  1772. }
  1773. }
  1774. /*
  1775. * If dest_cpu is allowed for this process, migrate the task to it.
  1776. * This is accomplished by forcing the cpu_allowed mask to only
  1777. * allow dest_cpu, which will force the cpu onto dest_cpu. Then
  1778. * the cpu_allowed mask is restored.
  1779. */
  1780. static void sched_migrate_task(struct task_struct *p, int dest_cpu)
  1781. {
  1782. struct migration_req req;
  1783. unsigned long flags;
  1784. struct rq *rq;
  1785. rq = task_rq_lock(p, &flags);
  1786. if (!cpu_isset(dest_cpu, p->cpus_allowed)
  1787. || unlikely(cpu_is_offline(dest_cpu)))
  1788. goto out;
  1789. /* force the process onto the specified CPU */
  1790. if (migrate_task(p, dest_cpu, &req)) {
  1791. /* Need to wait for migration thread (might exit: take ref). */
  1792. struct task_struct *mt = rq->migration_thread;
  1793. get_task_struct(mt);
  1794. task_rq_unlock(rq, &flags);
  1795. wake_up_process(mt);
  1796. put_task_struct(mt);
  1797. wait_for_completion(&req.done);
  1798. return;
  1799. }
  1800. out:
  1801. task_rq_unlock(rq, &flags);
  1802. }
  1803. /*
  1804. * sched_exec - execve() is a valuable balancing opportunity, because at
  1805. * this point the task has the smallest effective memory and cache footprint.
  1806. */
  1807. void sched_exec(void)
  1808. {
  1809. int new_cpu, this_cpu = get_cpu();
  1810. new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
  1811. put_cpu();
  1812. if (new_cpu != this_cpu)
  1813. sched_migrate_task(current, new_cpu);
  1814. }
  1815. /*
  1816. * pull_task - move a task from a remote runqueue to the local runqueue.
  1817. * Both runqueues must be locked.
  1818. */
  1819. static void pull_task(struct rq *src_rq, struct task_struct *p,
  1820. struct rq *this_rq, int this_cpu)
  1821. {
  1822. deactivate_task(src_rq, p, 0);
  1823. set_task_cpu(p, this_cpu);
  1824. activate_task(this_rq, p, 0);
  1825. /*
  1826. * Note that idle threads have a prio of MAX_PRIO, for this test
  1827. * to be always true for them.
  1828. */
  1829. check_preempt_curr(this_rq, p);
  1830. }
  1831. /*
  1832. * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
  1833. */
  1834. static
  1835. int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
  1836. struct sched_domain *sd, enum cpu_idle_type idle,
  1837. int *all_pinned)
  1838. {
  1839. /*
  1840. * We do not migrate tasks that are:
  1841. * 1) running (obviously), or
  1842. * 2) cannot be migrated to this CPU due to cpus_allowed, or
  1843. * 3) are cache-hot on their current CPU.
  1844. */
  1845. if (!cpu_isset(this_cpu, p->cpus_allowed))
  1846. return 0;
  1847. *all_pinned = 0;
  1848. if (task_running(rq, p))
  1849. return 0;
  1850. /*
  1851. * Aggressive migration if too many balance attempts have failed:
  1852. */
  1853. if (sd->nr_balance_failed > sd->cache_nice_tries)
  1854. return 1;
  1855. return 1;
  1856. }
  1857. static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1858. unsigned long max_nr_move, unsigned long max_load_move,
  1859. struct sched_domain *sd, enum cpu_idle_type idle,
  1860. int *all_pinned, unsigned long *load_moved,
  1861. int this_best_prio, int best_prio, int best_prio_seen,
  1862. struct rq_iterator *iterator)
  1863. {
  1864. int pulled = 0, pinned = 0, skip_for_load;
  1865. struct task_struct *p;
  1866. long rem_load_move = max_load_move;
  1867. if (max_nr_move == 0 || max_load_move == 0)
  1868. goto out;
  1869. pinned = 1;
  1870. /*
  1871. * Start the load-balancing iterator:
  1872. */
  1873. p = iterator->start(iterator->arg);
  1874. next:
  1875. if (!p)
  1876. goto out;
  1877. /*
  1878. * To help distribute high priority tasks accross CPUs we don't
  1879. * skip a task if it will be the highest priority task (i.e. smallest
  1880. * prio value) on its new queue regardless of its load weight
  1881. */
  1882. skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
  1883. SCHED_LOAD_SCALE_FUZZ;
  1884. if (skip_for_load && p->prio < this_best_prio)
  1885. skip_for_load = !best_prio_seen && p->prio == best_prio;
  1886. if (skip_for_load ||
  1887. !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
  1888. best_prio_seen |= p->prio == best_prio;
  1889. p = iterator->next(iterator->arg);
  1890. goto next;
  1891. }
  1892. pull_task(busiest, p, this_rq, this_cpu);
  1893. pulled++;
  1894. rem_load_move -= p->se.load.weight;
  1895. /*
  1896. * We only want to steal up to the prescribed number of tasks
  1897. * and the prescribed amount of weighted load.
  1898. */
  1899. if (pulled < max_nr_move && rem_load_move > 0) {
  1900. if (p->prio < this_best_prio)
  1901. this_best_prio = p->prio;
  1902. p = iterator->next(iterator->arg);
  1903. goto next;
  1904. }
  1905. out:
  1906. /*
  1907. * Right now, this is the only place pull_task() is called,
  1908. * so we can safely collect pull_task() stats here rather than
  1909. * inside pull_task().
  1910. */
  1911. schedstat_add(sd, lb_gained[idle], pulled);
  1912. if (all_pinned)
  1913. *all_pinned = pinned;
  1914. *load_moved = max_load_move - rem_load_move;
  1915. return pulled;
  1916. }
  1917. /*
  1918. * move_tasks tries to move up to max_nr_move tasks and max_load_move weighted
  1919. * load from busiest to this_rq, as part of a balancing operation within
  1920. * "domain". Returns the number of tasks moved.
  1921. *
  1922. * Called with both runqueues locked.
  1923. */
  1924. static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1925. unsigned long max_nr_move, unsigned long max_load_move,
  1926. struct sched_domain *sd, enum cpu_idle_type idle,
  1927. int *all_pinned)
  1928. {
  1929. struct sched_class *class = sched_class_highest;
  1930. unsigned long load_moved, total_nr_moved = 0, nr_moved;
  1931. long rem_load_move = max_load_move;
  1932. do {
  1933. nr_moved = class->load_balance(this_rq, this_cpu, busiest,
  1934. max_nr_move, (unsigned long)rem_load_move,
  1935. sd, idle, all_pinned, &load_moved);
  1936. total_nr_moved += nr_moved;
  1937. max_nr_move -= nr_moved;
  1938. rem_load_move -= load_moved;
  1939. class = class->next;
  1940. } while (class && max_nr_move && rem_load_move > 0);
  1941. return total_nr_moved;
  1942. }
  1943. /*
  1944. * find_busiest_group finds and returns the busiest CPU group within the
  1945. * domain. It calculates and returns the amount of weighted load which
  1946. * should be moved to restore balance via the imbalance parameter.
  1947. */
  1948. static struct sched_group *
  1949. find_busiest_group(struct sched_domain *sd, int this_cpu,
  1950. unsigned long *imbalance, enum cpu_idle_type idle,
  1951. int *sd_idle, cpumask_t *cpus, int *balance)
  1952. {
  1953. struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
  1954. unsigned long max_load, avg_load, total_load, this_load, total_pwr;
  1955. unsigned long max_pull;
  1956. unsigned long busiest_load_per_task, busiest_nr_running;
  1957. unsigned long this_load_per_task, this_nr_running;
  1958. int load_idx;
  1959. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  1960. int power_savings_balance = 1;
  1961. unsigned long leader_nr_running = 0, min_load_per_task = 0;
  1962. unsigned long min_nr_running = ULONG_MAX;
  1963. struct sched_group *group_min = NULL, *group_leader = NULL;
  1964. #endif
  1965. max_load = this_load = total_load = total_pwr = 0;
  1966. busiest_load_per_task = busiest_nr_running = 0;
  1967. this_load_per_task = this_nr_running = 0;
  1968. if (idle == CPU_NOT_IDLE)
  1969. load_idx = sd->busy_idx;
  1970. else if (idle == CPU_NEWLY_IDLE)
  1971. load_idx = sd->newidle_idx;
  1972. else
  1973. load_idx = sd->idle_idx;
  1974. do {
  1975. unsigned long load, group_capacity;
  1976. int local_group;
  1977. int i;
  1978. unsigned int balance_cpu = -1, first_idle_cpu = 0;
  1979. unsigned long sum_nr_running, sum_weighted_load;
  1980. local_group = cpu_isset(this_cpu, group->cpumask);
  1981. if (local_group)
  1982. balance_cpu = first_cpu(group->cpumask);
  1983. /* Tally up the load of all CPUs in the group */
  1984. sum_weighted_load = sum_nr_running = avg_load = 0;
  1985. for_each_cpu_mask(i, group->cpumask) {
  1986. struct rq *rq;
  1987. if (!cpu_isset(i, *cpus))
  1988. continue;
  1989. rq = cpu_rq(i);
  1990. if (*sd_idle && rq->nr_running)
  1991. *sd_idle = 0;
  1992. /* Bias balancing toward cpus of our domain */
  1993. if (local_group) {
  1994. if (idle_cpu(i) && !first_idle_cpu) {
  1995. first_idle_cpu = 1;
  1996. balance_cpu = i;
  1997. }
  1998. load = target_load(i, load_idx);
  1999. } else
  2000. load = source_load(i, load_idx);
  2001. avg_load += load;
  2002. sum_nr_running += rq->nr_running;
  2003. sum_weighted_load += weighted_cpuload(i);
  2004. }
  2005. /*
  2006. * First idle cpu or the first cpu(busiest) in this sched group
  2007. * is eligible for doing load balancing at this and above
  2008. * domains. In the newly idle case, we will allow all the cpu's
  2009. * to do the newly idle load balance.
  2010. */
  2011. if (idle != CPU_NEWLY_IDLE && local_group &&
  2012. balance_cpu != this_cpu && balance) {
  2013. *balance = 0;
  2014. goto ret;
  2015. }
  2016. total_load += avg_load;
  2017. total_pwr += group->__cpu_power;
  2018. /* Adjust by relative CPU power of the group */
  2019. avg_load = sg_div_cpu_power(group,
  2020. avg_load * SCHED_LOAD_SCALE);
  2021. group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
  2022. if (local_group) {
  2023. this_load = avg_load;
  2024. this = group;
  2025. this_nr_running = sum_nr_running;
  2026. this_load_per_task = sum_weighted_load;
  2027. } else if (avg_load > max_load &&
  2028. sum_nr_running > group_capacity) {
  2029. max_load = avg_load;
  2030. busiest = group;
  2031. busiest_nr_running = sum_nr_running;
  2032. busiest_load_per_task = sum_weighted_load;
  2033. }
  2034. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2035. /*
  2036. * Busy processors will not participate in power savings
  2037. * balance.
  2038. */
  2039. if (idle == CPU_NOT_IDLE ||
  2040. !(sd->flags & SD_POWERSAVINGS_BALANCE))
  2041. goto group_next;
  2042. /*
  2043. * If the local group is idle or completely loaded
  2044. * no need to do power savings balance at this domain
  2045. */
  2046. if (local_group && (this_nr_running >= group_capacity ||
  2047. !this_nr_running))
  2048. power_savings_balance = 0;
  2049. /*
  2050. * If a group is already running at full capacity or idle,
  2051. * don't include that group in power savings calculations
  2052. */
  2053. if (!power_savings_balance || sum_nr_running >= group_capacity
  2054. || !sum_nr_running)
  2055. goto group_next;
  2056. /*
  2057. * Calculate the group which has the least non-idle load.
  2058. * This is the group from where we need to pick up the load
  2059. * for saving power
  2060. */
  2061. if ((sum_nr_running < min_nr_running) ||
  2062. (sum_nr_running == min_nr_running &&
  2063. first_cpu(group->cpumask) <
  2064. first_cpu(group_min->cpumask))) {
  2065. group_min = group;
  2066. min_nr_running = sum_nr_running;
  2067. min_load_per_task = sum_weighted_load /
  2068. sum_nr_running;
  2069. }
  2070. /*
  2071. * Calculate the group which is almost near its
  2072. * capacity but still has some space to pick up some load
  2073. * from other group and save more power
  2074. */
  2075. if (sum_nr_running <= group_capacity - 1) {
  2076. if (sum_nr_running > leader_nr_running ||
  2077. (sum_nr_running == leader_nr_running &&
  2078. first_cpu(group->cpumask) >
  2079. first_cpu(group_leader->cpumask))) {
  2080. group_leader = group;
  2081. leader_nr_running = sum_nr_running;
  2082. }
  2083. }
  2084. group_next:
  2085. #endif
  2086. group = group->next;
  2087. } while (group != sd->groups);
  2088. if (!busiest || this_load >= max_load || busiest_nr_running == 0)
  2089. goto out_balanced;
  2090. avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
  2091. if (this_load >= avg_load ||
  2092. 100*max_load <= sd->imbalance_pct*this_load)
  2093. goto out_balanced;
  2094. busiest_load_per_task /= busiest_nr_running;
  2095. /*
  2096. * We're trying to get all the cpus to the average_load, so we don't
  2097. * want to push ourselves above the average load, nor do we wish to
  2098. * reduce the max loaded cpu below the average load, as either of these
  2099. * actions would just result in more rebalancing later, and ping-pong
  2100. * tasks around. Thus we look for the minimum possible imbalance.
  2101. * Negative imbalances (*we* are more loaded than anyone else) will
  2102. * be counted as no imbalance for these purposes -- we can't fix that
  2103. * by pulling tasks to us. Be careful of negative numbers as they'll
  2104. * appear as very large values with unsigned longs.
  2105. */
  2106. if (max_load <= busiest_load_per_task)
  2107. goto out_balanced;
  2108. /*
  2109. * In the presence of smp nice balancing, certain scenarios can have
  2110. * max load less than avg load(as we skip the groups at or below
  2111. * its cpu_power, while calculating max_load..)
  2112. */
  2113. if (max_load < avg_load) {
  2114. *imbalance = 0;
  2115. goto small_imbalance;
  2116. }
  2117. /* Don't want to pull so many tasks that a group would go idle */
  2118. max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
  2119. /* How much load to actually move to equalise the imbalance */
  2120. *imbalance = min(max_pull * busiest->__cpu_power,
  2121. (avg_load - this_load) * this->__cpu_power)
  2122. / SCHED_LOAD_SCALE;
  2123. /*
  2124. * if *imbalance is less than the average load per runnable task
  2125. * there is no gaurantee that any tasks will be moved so we'll have
  2126. * a think about bumping its value to force at least one task to be
  2127. * moved
  2128. */
  2129. if (*imbalance + SCHED_LOAD_SCALE_FUZZ < busiest_load_per_task/2) {
  2130. unsigned long tmp, pwr_now, pwr_move;
  2131. unsigned int imbn;
  2132. small_imbalance:
  2133. pwr_move = pwr_now = 0;
  2134. imbn = 2;
  2135. if (this_nr_running) {
  2136. this_load_per_task /= this_nr_running;
  2137. if (busiest_load_per_task > this_load_per_task)
  2138. imbn = 1;
  2139. } else
  2140. this_load_per_task = SCHED_LOAD_SCALE;
  2141. if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
  2142. busiest_load_per_task * imbn) {
  2143. *imbalance = busiest_load_per_task;
  2144. return busiest;
  2145. }
  2146. /*
  2147. * OK, we don't have enough imbalance to justify moving tasks,
  2148. * however we may be able to increase total CPU power used by
  2149. * moving them.
  2150. */
  2151. pwr_now += busiest->__cpu_power *
  2152. min(busiest_load_per_task, max_load);
  2153. pwr_now += this->__cpu_power *
  2154. min(this_load_per_task, this_load);
  2155. pwr_now /= SCHED_LOAD_SCALE;
  2156. /* Amount of load we'd subtract */
  2157. tmp = sg_div_cpu_power(busiest,
  2158. busiest_load_per_task * SCHED_LOAD_SCALE);
  2159. if (max_load > tmp)
  2160. pwr_move += busiest->__cpu_power *
  2161. min(busiest_load_per_task, max_load - tmp);
  2162. /* Amount of load we'd add */
  2163. if (max_load * busiest->__cpu_power <
  2164. busiest_load_per_task * SCHED_LOAD_SCALE)
  2165. tmp = sg_div_cpu_power(this,
  2166. max_load * busiest->__cpu_power);
  2167. else
  2168. tmp = sg_div_cpu_power(this,
  2169. busiest_load_per_task * SCHED_LOAD_SCALE);
  2170. pwr_move += this->__cpu_power *
  2171. min(this_load_per_task, this_load + tmp);
  2172. pwr_move /= SCHED_LOAD_SCALE;
  2173. /* Move if we gain throughput */
  2174. if (pwr_move <= pwr_now)
  2175. goto out_balanced;
  2176. *imbalance = busiest_load_per_task;
  2177. }
  2178. return busiest;
  2179. out_balanced:
  2180. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2181. if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
  2182. goto ret;
  2183. if (this == group_leader && group_leader != group_min) {
  2184. *imbalance = min_load_per_task;
  2185. return group_min;
  2186. }
  2187. #endif
  2188. ret:
  2189. *imbalance = 0;
  2190. return NULL;
  2191. }
  2192. /*
  2193. * find_busiest_queue - find the busiest runqueue among the cpus in group.
  2194. */
  2195. static struct rq *
  2196. find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
  2197. unsigned long imbalance, cpumask_t *cpus)
  2198. {
  2199. struct rq *busiest = NULL, *rq;
  2200. unsigned long max_load = 0;
  2201. int i;
  2202. for_each_cpu_mask(i, group->cpumask) {
  2203. unsigned long wl;
  2204. if (!cpu_isset(i, *cpus))
  2205. continue;
  2206. rq = cpu_rq(i);
  2207. wl = weighted_cpuload(i);
  2208. if (rq->nr_running == 1 && wl > imbalance)
  2209. continue;
  2210. if (wl > max_load) {
  2211. max_load = wl;
  2212. busiest = rq;
  2213. }
  2214. }
  2215. return busiest;
  2216. }
  2217. /*
  2218. * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
  2219. * so long as it is large enough.
  2220. */
  2221. #define MAX_PINNED_INTERVAL 512
  2222. static inline unsigned long minus_1_or_zero(unsigned long n)
  2223. {
  2224. return n > 0 ? n - 1 : 0;
  2225. }
  2226. /*
  2227. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  2228. * tasks if there is an imbalance.
  2229. */
  2230. static int load_balance(int this_cpu, struct rq *this_rq,
  2231. struct sched_domain *sd, enum cpu_idle_type idle,
  2232. int *balance)
  2233. {
  2234. int nr_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
  2235. struct sched_group *group;
  2236. unsigned long imbalance;
  2237. struct rq *busiest;
  2238. cpumask_t cpus = CPU_MASK_ALL;
  2239. unsigned long flags;
  2240. /*
  2241. * When power savings policy is enabled for the parent domain, idle
  2242. * sibling can pick up load irrespective of busy siblings. In this case,
  2243. * let the state of idle sibling percolate up as CPU_IDLE, instead of
  2244. * portraying it as CPU_NOT_IDLE.
  2245. */
  2246. if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
  2247. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2248. sd_idle = 1;
  2249. schedstat_inc(sd, lb_cnt[idle]);
  2250. redo:
  2251. group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
  2252. &cpus, balance);
  2253. if (*balance == 0)
  2254. goto out_balanced;
  2255. if (!group) {
  2256. schedstat_inc(sd, lb_nobusyg[idle]);
  2257. goto out_balanced;
  2258. }
  2259. busiest = find_busiest_queue(group, idle, imbalance, &cpus);
  2260. if (!busiest) {
  2261. schedstat_inc(sd, lb_nobusyq[idle]);
  2262. goto out_balanced;
  2263. }
  2264. BUG_ON(busiest == this_rq);
  2265. schedstat_add(sd, lb_imbalance[idle], imbalance);
  2266. nr_moved = 0;
  2267. if (busiest->nr_running > 1) {
  2268. /*
  2269. * Attempt to move tasks. If find_busiest_group has found
  2270. * an imbalance but busiest->nr_running <= 1, the group is
  2271. * still unbalanced. nr_moved simply stays zero, so it is
  2272. * correctly treated as an imbalance.
  2273. */
  2274. local_irq_save(flags);
  2275. double_rq_lock(this_rq, busiest);
  2276. nr_moved = move_tasks(this_rq, this_cpu, busiest,
  2277. minus_1_or_zero(busiest->nr_running),
  2278. imbalance, sd, idle, &all_pinned);
  2279. double_rq_unlock(this_rq, busiest);
  2280. local_irq_restore(flags);
  2281. /*
  2282. * some other cpu did the load balance for us.
  2283. */
  2284. if (nr_moved && this_cpu != smp_processor_id())
  2285. resched_cpu(this_cpu);
  2286. /* All tasks on this runqueue were pinned by CPU affinity */
  2287. if (unlikely(all_pinned)) {
  2288. cpu_clear(cpu_of(busiest), cpus);
  2289. if (!cpus_empty(cpus))
  2290. goto redo;
  2291. goto out_balanced;
  2292. }
  2293. }
  2294. if (!nr_moved) {
  2295. schedstat_inc(sd, lb_failed[idle]);
  2296. sd->nr_balance_failed++;
  2297. if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
  2298. spin_lock_irqsave(&busiest->lock, flags);
  2299. /* don't kick the migration_thread, if the curr
  2300. * task on busiest cpu can't be moved to this_cpu
  2301. */
  2302. if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
  2303. spin_unlock_irqrestore(&busiest->lock, flags);
  2304. all_pinned = 1;
  2305. goto out_one_pinned;
  2306. }
  2307. if (!busiest->active_balance) {
  2308. busiest->active_balance = 1;
  2309. busiest->push_cpu = this_cpu;
  2310. active_balance = 1;
  2311. }
  2312. spin_unlock_irqrestore(&busiest->lock, flags);
  2313. if (active_balance)
  2314. wake_up_process(busiest->migration_thread);
  2315. /*
  2316. * We've kicked active balancing, reset the failure
  2317. * counter.
  2318. */
  2319. sd->nr_balance_failed = sd->cache_nice_tries+1;
  2320. }
  2321. } else
  2322. sd->nr_balance_failed = 0;
  2323. if (likely(!active_balance)) {
  2324. /* We were unbalanced, so reset the balancing interval */
  2325. sd->balance_interval = sd->min_interval;
  2326. } else {
  2327. /*
  2328. * If we've begun active balancing, start to back off. This
  2329. * case may not be covered by the all_pinned logic if there
  2330. * is only 1 task on the busy runqueue (because we don't call
  2331. * move_tasks).
  2332. */
  2333. if (sd->balance_interval < sd->max_interval)
  2334. sd->balance_interval *= 2;
  2335. }
  2336. if (!nr_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2337. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2338. return -1;
  2339. return nr_moved;
  2340. out_balanced:
  2341. schedstat_inc(sd, lb_balanced[idle]);
  2342. sd->nr_balance_failed = 0;
  2343. out_one_pinned:
  2344. /* tune up the balancing interval */
  2345. if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
  2346. (sd->balance_interval < sd->max_interval))
  2347. sd->balance_interval *= 2;
  2348. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2349. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2350. return -1;
  2351. return 0;
  2352. }
  2353. /*
  2354. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  2355. * tasks if there is an imbalance.
  2356. *
  2357. * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
  2358. * this_rq is locked.
  2359. */
  2360. static int
  2361. load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
  2362. {
  2363. struct sched_group *group;
  2364. struct rq *busiest = NULL;
  2365. unsigned long imbalance;
  2366. int nr_moved = 0;
  2367. int sd_idle = 0;
  2368. int all_pinned = 0;
  2369. cpumask_t cpus = CPU_MASK_ALL;
  2370. /*
  2371. * When power savings policy is enabled for the parent domain, idle
  2372. * sibling can pick up load irrespective of busy siblings. In this case,
  2373. * let the state of idle sibling percolate up as IDLE, instead of
  2374. * portraying it as CPU_NOT_IDLE.
  2375. */
  2376. if (sd->flags & SD_SHARE_CPUPOWER &&
  2377. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2378. sd_idle = 1;
  2379. schedstat_inc(sd, lb_cnt[CPU_NEWLY_IDLE]);
  2380. redo:
  2381. group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
  2382. &sd_idle, &cpus, NULL);
  2383. if (!group) {
  2384. schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
  2385. goto out_balanced;
  2386. }
  2387. busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance,
  2388. &cpus);
  2389. if (!busiest) {
  2390. schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
  2391. goto out_balanced;
  2392. }
  2393. BUG_ON(busiest == this_rq);
  2394. schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
  2395. nr_moved = 0;
  2396. if (busiest->nr_running > 1) {
  2397. /* Attempt to move tasks */
  2398. double_lock_balance(this_rq, busiest);
  2399. nr_moved = move_tasks(this_rq, this_cpu, busiest,
  2400. minus_1_or_zero(busiest->nr_running),
  2401. imbalance, sd, CPU_NEWLY_IDLE,
  2402. &all_pinned);
  2403. spin_unlock(&busiest->lock);
  2404. if (unlikely(all_pinned)) {
  2405. cpu_clear(cpu_of(busiest), cpus);
  2406. if (!cpus_empty(cpus))
  2407. goto redo;
  2408. }
  2409. }
  2410. if (!nr_moved) {
  2411. schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
  2412. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2413. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2414. return -1;
  2415. } else
  2416. sd->nr_balance_failed = 0;
  2417. return nr_moved;
  2418. out_balanced:
  2419. schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
  2420. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2421. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2422. return -1;
  2423. sd->nr_balance_failed = 0;
  2424. return 0;
  2425. }
  2426. /*
  2427. * idle_balance is called by schedule() if this_cpu is about to become
  2428. * idle. Attempts to pull tasks from other CPUs.
  2429. */
  2430. static void idle_balance(int this_cpu, struct rq *this_rq)
  2431. {
  2432. struct sched_domain *sd;
  2433. int pulled_task = -1;
  2434. unsigned long next_balance = jiffies + HZ;
  2435. for_each_domain(this_cpu, sd) {
  2436. unsigned long interval;
  2437. if (!(sd->flags & SD_LOAD_BALANCE))
  2438. continue;
  2439. if (sd->flags & SD_BALANCE_NEWIDLE)
  2440. /* If we've pulled tasks over stop searching: */
  2441. pulled_task = load_balance_newidle(this_cpu,
  2442. this_rq, sd);
  2443. interval = msecs_to_jiffies(sd->balance_interval);
  2444. if (time_after(next_balance, sd->last_balance + interval))
  2445. next_balance = sd->last_balance + interval;
  2446. if (pulled_task)
  2447. break;
  2448. }
  2449. if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
  2450. /*
  2451. * We are going idle. next_balance may be set based on
  2452. * a busy processor. So reset next_balance.
  2453. */
  2454. this_rq->next_balance = next_balance;
  2455. }
  2456. }
  2457. /*
  2458. * active_load_balance is run by migration threads. It pushes running tasks
  2459. * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
  2460. * running on each physical CPU where possible, and avoids physical /
  2461. * logical imbalances.
  2462. *
  2463. * Called with busiest_rq locked.
  2464. */
  2465. static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
  2466. {
  2467. int target_cpu = busiest_rq->push_cpu;
  2468. struct sched_domain *sd;
  2469. struct rq *target_rq;
  2470. /* Is there any task to move? */
  2471. if (busiest_rq->nr_running <= 1)
  2472. return;
  2473. target_rq = cpu_rq(target_cpu);
  2474. /*
  2475. * This condition is "impossible", if it occurs
  2476. * we need to fix it. Originally reported by
  2477. * Bjorn Helgaas on a 128-cpu setup.
  2478. */
  2479. BUG_ON(busiest_rq == target_rq);
  2480. /* move a task from busiest_rq to target_rq */
  2481. double_lock_balance(busiest_rq, target_rq);
  2482. /* Search for an sd spanning us and the target CPU. */
  2483. for_each_domain(target_cpu, sd) {
  2484. if ((sd->flags & SD_LOAD_BALANCE) &&
  2485. cpu_isset(busiest_cpu, sd->span))
  2486. break;
  2487. }
  2488. if (likely(sd)) {
  2489. schedstat_inc(sd, alb_cnt);
  2490. if (move_tasks(target_rq, target_cpu, busiest_rq, 1,
  2491. ULONG_MAX, sd, CPU_IDLE, NULL))
  2492. schedstat_inc(sd, alb_pushed);
  2493. else
  2494. schedstat_inc(sd, alb_failed);
  2495. }
  2496. spin_unlock(&target_rq->lock);
  2497. }
  2498. #ifdef CONFIG_NO_HZ
  2499. static struct {
  2500. atomic_t load_balancer;
  2501. cpumask_t cpu_mask;
  2502. } nohz ____cacheline_aligned = {
  2503. .load_balancer = ATOMIC_INIT(-1),
  2504. .cpu_mask = CPU_MASK_NONE,
  2505. };
  2506. /*
  2507. * This routine will try to nominate the ilb (idle load balancing)
  2508. * owner among the cpus whose ticks are stopped. ilb owner will do the idle
  2509. * load balancing on behalf of all those cpus. If all the cpus in the system
  2510. * go into this tickless mode, then there will be no ilb owner (as there is
  2511. * no need for one) and all the cpus will sleep till the next wakeup event
  2512. * arrives...
  2513. *
  2514. * For the ilb owner, tick is not stopped. And this tick will be used
  2515. * for idle load balancing. ilb owner will still be part of
  2516. * nohz.cpu_mask..
  2517. *
  2518. * While stopping the tick, this cpu will become the ilb owner if there
  2519. * is no other owner. And will be the owner till that cpu becomes busy
  2520. * or if all cpus in the system stop their ticks at which point
  2521. * there is no need for ilb owner.
  2522. *
  2523. * When the ilb owner becomes busy, it nominates another owner, during the
  2524. * next busy scheduler_tick()
  2525. */
  2526. int select_nohz_load_balancer(int stop_tick)
  2527. {
  2528. int cpu = smp_processor_id();
  2529. if (stop_tick) {
  2530. cpu_set(cpu, nohz.cpu_mask);
  2531. cpu_rq(cpu)->in_nohz_recently = 1;
  2532. /*
  2533. * If we are going offline and still the leader, give up!
  2534. */
  2535. if (cpu_is_offline(cpu) &&
  2536. atomic_read(&nohz.load_balancer) == cpu) {
  2537. if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
  2538. BUG();
  2539. return 0;
  2540. }
  2541. /* time for ilb owner also to sleep */
  2542. if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
  2543. if (atomic_read(&nohz.load_balancer) == cpu)
  2544. atomic_set(&nohz.load_balancer, -1);
  2545. return 0;
  2546. }
  2547. if (atomic_read(&nohz.load_balancer) == -1) {
  2548. /* make me the ilb owner */
  2549. if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
  2550. return 1;
  2551. } else if (atomic_read(&nohz.load_balancer) == cpu)
  2552. return 1;
  2553. } else {
  2554. if (!cpu_isset(cpu, nohz.cpu_mask))
  2555. return 0;
  2556. cpu_clear(cpu, nohz.cpu_mask);
  2557. if (atomic_read(&nohz.load_balancer) == cpu)
  2558. if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
  2559. BUG();
  2560. }
  2561. return 0;
  2562. }
  2563. #endif
  2564. static DEFINE_SPINLOCK(balancing);
  2565. /*
  2566. * It checks each scheduling domain to see if it is due to be balanced,
  2567. * and initiates a balancing operation if so.
  2568. *
  2569. * Balancing parameters are set up in arch_init_sched_domains.
  2570. */
  2571. static inline void rebalance_domains(int cpu, enum cpu_idle_type idle)
  2572. {
  2573. int balance = 1;
  2574. struct rq *rq = cpu_rq(cpu);
  2575. unsigned long interval;
  2576. struct sched_domain *sd;
  2577. /* Earliest time when we have to do rebalance again */
  2578. unsigned long next_balance = jiffies + 60*HZ;
  2579. for_each_domain(cpu, sd) {
  2580. if (!(sd->flags & SD_LOAD_BALANCE))
  2581. continue;
  2582. interval = sd->balance_interval;
  2583. if (idle != CPU_IDLE)
  2584. interval *= sd->busy_factor;
  2585. /* scale ms to jiffies */
  2586. interval = msecs_to_jiffies(interval);
  2587. if (unlikely(!interval))
  2588. interval = 1;
  2589. if (interval > HZ*NR_CPUS/10)
  2590. interval = HZ*NR_CPUS/10;
  2591. if (sd->flags & SD_SERIALIZE) {
  2592. if (!spin_trylock(&balancing))
  2593. goto out;
  2594. }
  2595. if (time_after_eq(jiffies, sd->last_balance + interval)) {
  2596. if (load_balance(cpu, rq, sd, idle, &balance)) {
  2597. /*
  2598. * We've pulled tasks over so either we're no
  2599. * longer idle, or one of our SMT siblings is
  2600. * not idle.
  2601. */
  2602. idle = CPU_NOT_IDLE;
  2603. }
  2604. sd->last_balance = jiffies;
  2605. }
  2606. if (sd->flags & SD_SERIALIZE)
  2607. spin_unlock(&balancing);
  2608. out:
  2609. if (time_after(next_balance, sd->last_balance + interval))
  2610. next_balance = sd->last_balance + interval;
  2611. /*
  2612. * Stop the load balance at this level. There is another
  2613. * CPU in our sched group which is doing load balancing more
  2614. * actively.
  2615. */
  2616. if (!balance)
  2617. break;
  2618. }
  2619. rq->next_balance = next_balance;
  2620. }
  2621. /*
  2622. * run_rebalance_domains is triggered when needed from the scheduler tick.
  2623. * In CONFIG_NO_HZ case, the idle load balance owner will do the
  2624. * rebalancing for all the cpus for whom scheduler ticks are stopped.
  2625. */
  2626. static void run_rebalance_domains(struct softirq_action *h)
  2627. {
  2628. int this_cpu = smp_processor_id();
  2629. struct rq *this_rq = cpu_rq(this_cpu);
  2630. enum cpu_idle_type idle = this_rq->idle_at_tick ?
  2631. CPU_IDLE : CPU_NOT_IDLE;
  2632. rebalance_domains(this_cpu, idle);
  2633. #ifdef CONFIG_NO_HZ
  2634. /*
  2635. * If this cpu is the owner for idle load balancing, then do the
  2636. * balancing on behalf of the other idle cpus whose ticks are
  2637. * stopped.
  2638. */
  2639. if (this_rq->idle_at_tick &&
  2640. atomic_read(&nohz.load_balancer) == this_cpu) {
  2641. cpumask_t cpus = nohz.cpu_mask;
  2642. struct rq *rq;
  2643. int balance_cpu;
  2644. cpu_clear(this_cpu, cpus);
  2645. for_each_cpu_mask(balance_cpu, cpus) {
  2646. /*
  2647. * If this cpu gets work to do, stop the load balancing
  2648. * work being done for other cpus. Next load
  2649. * balancing owner will pick it up.
  2650. */
  2651. if (need_resched())
  2652. break;
  2653. rebalance_domains(balance_cpu, SCHED_IDLE);
  2654. rq = cpu_rq(balance_cpu);
  2655. if (time_after(this_rq->next_balance, rq->next_balance))
  2656. this_rq->next_balance = rq->next_balance;
  2657. }
  2658. }
  2659. #endif
  2660. }
  2661. /*
  2662. * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
  2663. *
  2664. * In case of CONFIG_NO_HZ, this is the place where we nominate a new
  2665. * idle load balancing owner or decide to stop the periodic load balancing,
  2666. * if the whole system is idle.
  2667. */
  2668. static inline void trigger_load_balance(struct rq *rq, int cpu)
  2669. {
  2670. #ifdef CONFIG_NO_HZ
  2671. /*
  2672. * If we were in the nohz mode recently and busy at the current
  2673. * scheduler tick, then check if we need to nominate new idle
  2674. * load balancer.
  2675. */
  2676. if (rq->in_nohz_recently && !rq->idle_at_tick) {
  2677. rq->in_nohz_recently = 0;
  2678. if (atomic_read(&nohz.load_balancer) == cpu) {
  2679. cpu_clear(cpu, nohz.cpu_mask);
  2680. atomic_set(&nohz.load_balancer, -1);
  2681. }
  2682. if (atomic_read(&nohz.load_balancer) == -1) {
  2683. /*
  2684. * simple selection for now: Nominate the
  2685. * first cpu in the nohz list to be the next
  2686. * ilb owner.
  2687. *
  2688. * TBD: Traverse the sched domains and nominate
  2689. * the nearest cpu in the nohz.cpu_mask.
  2690. */
  2691. int ilb = first_cpu(nohz.cpu_mask);
  2692. if (ilb != NR_CPUS)
  2693. resched_cpu(ilb);
  2694. }
  2695. }
  2696. /*
  2697. * If this cpu is idle and doing idle load balancing for all the
  2698. * cpus with ticks stopped, is it time for that to stop?
  2699. */
  2700. if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
  2701. cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
  2702. resched_cpu(cpu);
  2703. return;
  2704. }
  2705. /*
  2706. * If this cpu is idle and the idle load balancing is done by
  2707. * someone else, then no need raise the SCHED_SOFTIRQ
  2708. */
  2709. if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
  2710. cpu_isset(cpu, nohz.cpu_mask))
  2711. return;
  2712. #endif
  2713. if (time_after_eq(jiffies, rq->next_balance))
  2714. raise_softirq(SCHED_SOFTIRQ);
  2715. }
  2716. #else /* CONFIG_SMP */
  2717. /*
  2718. * on UP we do not need to balance between CPUs:
  2719. */
  2720. static inline void idle_balance(int cpu, struct rq *rq)
  2721. {
  2722. }
  2723. /* Avoid "used but not defined" warning on UP */
  2724. static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2725. unsigned long max_nr_move, unsigned long max_load_move,
  2726. struct sched_domain *sd, enum cpu_idle_type idle,
  2727. int *all_pinned, unsigned long *load_moved,
  2728. int this_best_prio, int best_prio, int best_prio_seen,
  2729. struct rq_iterator *iterator)
  2730. {
  2731. *load_moved = 0;
  2732. return 0;
  2733. }
  2734. #endif
  2735. DEFINE_PER_CPU(struct kernel_stat, kstat);
  2736. EXPORT_PER_CPU_SYMBOL(kstat);
  2737. /*
  2738. * Return p->sum_exec_runtime plus any more ns on the sched_clock
  2739. * that have not yet been banked in case the task is currently running.
  2740. */
  2741. unsigned long long task_sched_runtime(struct task_struct *p)
  2742. {
  2743. unsigned long flags;
  2744. u64 ns, delta_exec;
  2745. struct rq *rq;
  2746. rq = task_rq_lock(p, &flags);
  2747. ns = p->se.sum_exec_runtime;
  2748. if (rq->curr == p) {
  2749. delta_exec = rq_clock(rq) - p->se.exec_start;
  2750. if ((s64)delta_exec > 0)
  2751. ns += delta_exec;
  2752. }
  2753. task_rq_unlock(rq, &flags);
  2754. return ns;
  2755. }
  2756. /*
  2757. * Account user cpu time to a process.
  2758. * @p: the process that the cpu time gets accounted to
  2759. * @hardirq_offset: the offset to subtract from hardirq_count()
  2760. * @cputime: the cpu time spent in user space since the last update
  2761. */
  2762. void account_user_time(struct task_struct *p, cputime_t cputime)
  2763. {
  2764. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  2765. cputime64_t tmp;
  2766. p->utime = cputime_add(p->utime, cputime);
  2767. /* Add user time to cpustat. */
  2768. tmp = cputime_to_cputime64(cputime);
  2769. if (TASK_NICE(p) > 0)
  2770. cpustat->nice = cputime64_add(cpustat->nice, tmp);
  2771. else
  2772. cpustat->user = cputime64_add(cpustat->user, tmp);
  2773. }
  2774. /*
  2775. * Account system cpu time to a process.
  2776. * @p: the process that the cpu time gets accounted to
  2777. * @hardirq_offset: the offset to subtract from hardirq_count()
  2778. * @cputime: the cpu time spent in kernel space since the last update
  2779. */
  2780. void account_system_time(struct task_struct *p, int hardirq_offset,
  2781. cputime_t cputime)
  2782. {
  2783. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  2784. struct rq *rq = this_rq();
  2785. cputime64_t tmp;
  2786. p->stime = cputime_add(p->stime, cputime);
  2787. /* Add system time to cpustat. */
  2788. tmp = cputime_to_cputime64(cputime);
  2789. if (hardirq_count() - hardirq_offset)
  2790. cpustat->irq = cputime64_add(cpustat->irq, tmp);
  2791. else if (softirq_count())
  2792. cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
  2793. else if (p != rq->idle)
  2794. cpustat->system = cputime64_add(cpustat->system, tmp);
  2795. else if (atomic_read(&rq->nr_iowait) > 0)
  2796. cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
  2797. else
  2798. cpustat->idle = cputime64_add(cpustat->idle, tmp);
  2799. /* Account for system time used */
  2800. acct_update_integrals(p);
  2801. }
  2802. /*
  2803. * Account for involuntary wait time.
  2804. * @p: the process from which the cpu time has been stolen
  2805. * @steal: the cpu time spent in involuntary wait
  2806. */
  2807. void account_steal_time(struct task_struct *p, cputime_t steal)
  2808. {
  2809. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  2810. cputime64_t tmp = cputime_to_cputime64(steal);
  2811. struct rq *rq = this_rq();
  2812. if (p == rq->idle) {
  2813. p->stime = cputime_add(p->stime, steal);
  2814. if (atomic_read(&rq->nr_iowait) > 0)
  2815. cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
  2816. else
  2817. cpustat->idle = cputime64_add(cpustat->idle, tmp);
  2818. } else
  2819. cpustat->steal = cputime64_add(cpustat->steal, tmp);
  2820. }
  2821. /*
  2822. * This function gets called by the timer code, with HZ frequency.
  2823. * We call it with interrupts disabled.
  2824. *
  2825. * It also gets called by the fork code, when changing the parent's
  2826. * timeslices.
  2827. */
  2828. void scheduler_tick(void)
  2829. {
  2830. int cpu = smp_processor_id();
  2831. struct rq *rq = cpu_rq(cpu);
  2832. struct task_struct *curr = rq->curr;
  2833. spin_lock(&rq->lock);
  2834. if (curr != rq->idle) /* FIXME: needed? */
  2835. curr->sched_class->task_tick(rq, curr);
  2836. update_cpu_load(rq);
  2837. spin_unlock(&rq->lock);
  2838. #ifdef CONFIG_SMP
  2839. rq->idle_at_tick = idle_cpu(cpu);
  2840. trigger_load_balance(rq, cpu);
  2841. #endif
  2842. }
  2843. #if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
  2844. void fastcall add_preempt_count(int val)
  2845. {
  2846. /*
  2847. * Underflow?
  2848. */
  2849. if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
  2850. return;
  2851. preempt_count() += val;
  2852. /*
  2853. * Spinlock count overflowing soon?
  2854. */
  2855. DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
  2856. PREEMPT_MASK - 10);
  2857. }
  2858. EXPORT_SYMBOL(add_preempt_count);
  2859. void fastcall sub_preempt_count(int val)
  2860. {
  2861. /*
  2862. * Underflow?
  2863. */
  2864. if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
  2865. return;
  2866. /*
  2867. * Is the spinlock portion underflowing?
  2868. */
  2869. if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
  2870. !(preempt_count() & PREEMPT_MASK)))
  2871. return;
  2872. preempt_count() -= val;
  2873. }
  2874. EXPORT_SYMBOL(sub_preempt_count);
  2875. #endif
  2876. /*
  2877. * Print scheduling while atomic bug:
  2878. */
  2879. static noinline void __schedule_bug(struct task_struct *prev)
  2880. {
  2881. printk(KERN_ERR "BUG: scheduling while atomic: %s/0x%08x/%d\n",
  2882. prev->comm, preempt_count(), prev->pid);
  2883. debug_show_held_locks(prev);
  2884. if (irqs_disabled())
  2885. print_irqtrace_events(prev);
  2886. dump_stack();
  2887. }
  2888. /*
  2889. * Various schedule()-time debugging checks and statistics:
  2890. */
  2891. static inline void schedule_debug(struct task_struct *prev)
  2892. {
  2893. /*
  2894. * Test if we are atomic. Since do_exit() needs to call into
  2895. * schedule() atomically, we ignore that path for now.
  2896. * Otherwise, whine if we are scheduling when we should not be.
  2897. */
  2898. if (unlikely(in_atomic_preempt_off()) && unlikely(!prev->exit_state))
  2899. __schedule_bug(prev);
  2900. profile_hit(SCHED_PROFILING, __builtin_return_address(0));
  2901. schedstat_inc(this_rq(), sched_cnt);
  2902. }
  2903. /*
  2904. * Pick up the highest-prio task:
  2905. */
  2906. static inline struct task_struct *
  2907. pick_next_task(struct rq *rq, struct task_struct *prev, u64 now)
  2908. {
  2909. struct sched_class *class;
  2910. struct task_struct *p;
  2911. /*
  2912. * Optimization: we know that if all tasks are in
  2913. * the fair class we can call that function directly:
  2914. */
  2915. if (likely(rq->nr_running == rq->cfs.nr_running)) {
  2916. p = fair_sched_class.pick_next_task(rq, now);
  2917. if (likely(p))
  2918. return p;
  2919. }
  2920. class = sched_class_highest;
  2921. for ( ; ; ) {
  2922. p = class->pick_next_task(rq, now);
  2923. if (p)
  2924. return p;
  2925. /*
  2926. * Will never be NULL as the idle class always
  2927. * returns a non-NULL p:
  2928. */
  2929. class = class->next;
  2930. }
  2931. }
  2932. /*
  2933. * schedule() is the main scheduler function.
  2934. */
  2935. asmlinkage void __sched schedule(void)
  2936. {
  2937. struct task_struct *prev, *next;
  2938. long *switch_count;
  2939. struct rq *rq;
  2940. u64 now;
  2941. int cpu;
  2942. need_resched:
  2943. preempt_disable();
  2944. cpu = smp_processor_id();
  2945. rq = cpu_rq(cpu);
  2946. rcu_qsctr_inc(cpu);
  2947. prev = rq->curr;
  2948. switch_count = &prev->nivcsw;
  2949. release_kernel_lock(prev);
  2950. need_resched_nonpreemptible:
  2951. schedule_debug(prev);
  2952. spin_lock_irq(&rq->lock);
  2953. clear_tsk_need_resched(prev);
  2954. if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
  2955. if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
  2956. unlikely(signal_pending(prev)))) {
  2957. prev->state = TASK_RUNNING;
  2958. } else {
  2959. deactivate_task(rq, prev, 1);
  2960. }
  2961. switch_count = &prev->nvcsw;
  2962. }
  2963. if (unlikely(!rq->nr_running))
  2964. idle_balance(cpu, rq);
  2965. now = __rq_clock(rq);
  2966. prev->sched_class->put_prev_task(rq, prev, now);
  2967. next = pick_next_task(rq, prev, now);
  2968. sched_info_switch(prev, next);
  2969. if (likely(prev != next)) {
  2970. rq->nr_switches++;
  2971. rq->curr = next;
  2972. ++*switch_count;
  2973. context_switch(rq, prev, next); /* unlocks the rq */
  2974. } else
  2975. spin_unlock_irq(&rq->lock);
  2976. if (unlikely(reacquire_kernel_lock(current) < 0)) {
  2977. cpu = smp_processor_id();
  2978. rq = cpu_rq(cpu);
  2979. goto need_resched_nonpreemptible;
  2980. }
  2981. preempt_enable_no_resched();
  2982. if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
  2983. goto need_resched;
  2984. }
  2985. EXPORT_SYMBOL(schedule);
  2986. #ifdef CONFIG_PREEMPT
  2987. /*
  2988. * this is the entry point to schedule() from in-kernel preemption
  2989. * off of preempt_enable. Kernel preemptions off return from interrupt
  2990. * occur there and call schedule directly.
  2991. */
  2992. asmlinkage void __sched preempt_schedule(void)
  2993. {
  2994. struct thread_info *ti = current_thread_info();
  2995. #ifdef CONFIG_PREEMPT_BKL
  2996. struct task_struct *task = current;
  2997. int saved_lock_depth;
  2998. #endif
  2999. /*
  3000. * If there is a non-zero preempt_count or interrupts are disabled,
  3001. * we do not want to preempt the current task. Just return..
  3002. */
  3003. if (likely(ti->preempt_count || irqs_disabled()))
  3004. return;
  3005. need_resched:
  3006. add_preempt_count(PREEMPT_ACTIVE);
  3007. /*
  3008. * We keep the big kernel semaphore locked, but we
  3009. * clear ->lock_depth so that schedule() doesnt
  3010. * auto-release the semaphore:
  3011. */
  3012. #ifdef CONFIG_PREEMPT_BKL
  3013. saved_lock_depth = task->lock_depth;
  3014. task->lock_depth = -1;
  3015. #endif
  3016. schedule();
  3017. #ifdef CONFIG_PREEMPT_BKL
  3018. task->lock_depth = saved_lock_depth;
  3019. #endif
  3020. sub_preempt_count(PREEMPT_ACTIVE);
  3021. /* we could miss a preemption opportunity between schedule and now */
  3022. barrier();
  3023. if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
  3024. goto need_resched;
  3025. }
  3026. EXPORT_SYMBOL(preempt_schedule);
  3027. /*
  3028. * this is the entry point to schedule() from kernel preemption
  3029. * off of irq context.
  3030. * Note, that this is called and return with irqs disabled. This will
  3031. * protect us against recursive calling from irq.
  3032. */
  3033. asmlinkage void __sched preempt_schedule_irq(void)
  3034. {
  3035. struct thread_info *ti = current_thread_info();
  3036. #ifdef CONFIG_PREEMPT_BKL
  3037. struct task_struct *task = current;
  3038. int saved_lock_depth;
  3039. #endif
  3040. /* Catch callers which need to be fixed */
  3041. BUG_ON(ti->preempt_count || !irqs_disabled());
  3042. need_resched:
  3043. add_preempt_count(PREEMPT_ACTIVE);
  3044. /*
  3045. * We keep the big kernel semaphore locked, but we
  3046. * clear ->lock_depth so that schedule() doesnt
  3047. * auto-release the semaphore:
  3048. */
  3049. #ifdef CONFIG_PREEMPT_BKL
  3050. saved_lock_depth = task->lock_depth;
  3051. task->lock_depth = -1;
  3052. #endif
  3053. local_irq_enable();
  3054. schedule();
  3055. local_irq_disable();
  3056. #ifdef CONFIG_PREEMPT_BKL
  3057. task->lock_depth = saved_lock_depth;
  3058. #endif
  3059. sub_preempt_count(PREEMPT_ACTIVE);
  3060. /* we could miss a preemption opportunity between schedule and now */
  3061. barrier();
  3062. if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
  3063. goto need_resched;
  3064. }
  3065. #endif /* CONFIG_PREEMPT */
  3066. int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
  3067. void *key)
  3068. {
  3069. return try_to_wake_up(curr->private, mode, sync);
  3070. }
  3071. EXPORT_SYMBOL(default_wake_function);
  3072. /*
  3073. * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
  3074. * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
  3075. * number) then we wake all the non-exclusive tasks and one exclusive task.
  3076. *
  3077. * There are circumstances in which we can try to wake a task which has already
  3078. * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
  3079. * zero in this (rare) case, and we handle it by continuing to scan the queue.
  3080. */
  3081. static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
  3082. int nr_exclusive, int sync, void *key)
  3083. {
  3084. struct list_head *tmp, *next;
  3085. list_for_each_safe(tmp, next, &q->task_list) {
  3086. wait_queue_t *curr = list_entry(tmp, wait_queue_t, task_list);
  3087. unsigned flags = curr->flags;
  3088. if (curr->func(curr, mode, sync, key) &&
  3089. (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
  3090. break;
  3091. }
  3092. }
  3093. /**
  3094. * __wake_up - wake up threads blocked on a waitqueue.
  3095. * @q: the waitqueue
  3096. * @mode: which threads
  3097. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  3098. * @key: is directly passed to the wakeup function
  3099. */
  3100. void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
  3101. int nr_exclusive, void *key)
  3102. {
  3103. unsigned long flags;
  3104. spin_lock_irqsave(&q->lock, flags);
  3105. __wake_up_common(q, mode, nr_exclusive, 0, key);
  3106. spin_unlock_irqrestore(&q->lock, flags);
  3107. }
  3108. EXPORT_SYMBOL(__wake_up);
  3109. /*
  3110. * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
  3111. */
  3112. void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
  3113. {
  3114. __wake_up_common(q, mode, 1, 0, NULL);
  3115. }
  3116. /**
  3117. * __wake_up_sync - wake up threads blocked on a waitqueue.
  3118. * @q: the waitqueue
  3119. * @mode: which threads
  3120. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  3121. *
  3122. * The sync wakeup differs that the waker knows that it will schedule
  3123. * away soon, so while the target thread will be woken up, it will not
  3124. * be migrated to another CPU - ie. the two threads are 'synchronized'
  3125. * with each other. This can prevent needless bouncing between CPUs.
  3126. *
  3127. * On UP it can prevent extra preemption.
  3128. */
  3129. void fastcall
  3130. __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
  3131. {
  3132. unsigned long flags;
  3133. int sync = 1;
  3134. if (unlikely(!q))
  3135. return;
  3136. if (unlikely(!nr_exclusive))
  3137. sync = 0;
  3138. spin_lock_irqsave(&q->lock, flags);
  3139. __wake_up_common(q, mode, nr_exclusive, sync, NULL);
  3140. spin_unlock_irqrestore(&q->lock, flags);
  3141. }
  3142. EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
  3143. void fastcall complete(struct completion *x)
  3144. {
  3145. unsigned long flags;
  3146. spin_lock_irqsave(&x->wait.lock, flags);
  3147. x->done++;
  3148. __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
  3149. 1, 0, NULL);
  3150. spin_unlock_irqrestore(&x->wait.lock, flags);
  3151. }
  3152. EXPORT_SYMBOL(complete);
  3153. void fastcall complete_all(struct completion *x)
  3154. {
  3155. unsigned long flags;
  3156. spin_lock_irqsave(&x->wait.lock, flags);
  3157. x->done += UINT_MAX/2;
  3158. __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
  3159. 0, 0, NULL);
  3160. spin_unlock_irqrestore(&x->wait.lock, flags);
  3161. }
  3162. EXPORT_SYMBOL(complete_all);
  3163. void fastcall __sched wait_for_completion(struct completion *x)
  3164. {
  3165. might_sleep();
  3166. spin_lock_irq(&x->wait.lock);
  3167. if (!x->done) {
  3168. DECLARE_WAITQUEUE(wait, current);
  3169. wait.flags |= WQ_FLAG_EXCLUSIVE;
  3170. __add_wait_queue_tail(&x->wait, &wait);
  3171. do {
  3172. __set_current_state(TASK_UNINTERRUPTIBLE);
  3173. spin_unlock_irq(&x->wait.lock);
  3174. schedule();
  3175. spin_lock_irq(&x->wait.lock);
  3176. } while (!x->done);
  3177. __remove_wait_queue(&x->wait, &wait);
  3178. }
  3179. x->done--;
  3180. spin_unlock_irq(&x->wait.lock);
  3181. }
  3182. EXPORT_SYMBOL(wait_for_completion);
  3183. unsigned long fastcall __sched
  3184. wait_for_completion_timeout(struct completion *x, unsigned long timeout)
  3185. {
  3186. might_sleep();
  3187. spin_lock_irq(&x->wait.lock);
  3188. if (!x->done) {
  3189. DECLARE_WAITQUEUE(wait, current);
  3190. wait.flags |= WQ_FLAG_EXCLUSIVE;
  3191. __add_wait_queue_tail(&x->wait, &wait);
  3192. do {
  3193. __set_current_state(TASK_UNINTERRUPTIBLE);
  3194. spin_unlock_irq(&x->wait.lock);
  3195. timeout = schedule_timeout(timeout);
  3196. spin_lock_irq(&x->wait.lock);
  3197. if (!timeout) {
  3198. __remove_wait_queue(&x->wait, &wait);
  3199. goto out;
  3200. }
  3201. } while (!x->done);
  3202. __remove_wait_queue(&x->wait, &wait);
  3203. }
  3204. x->done--;
  3205. out:
  3206. spin_unlock_irq(&x->wait.lock);
  3207. return timeout;
  3208. }
  3209. EXPORT_SYMBOL(wait_for_completion_timeout);
  3210. int fastcall __sched wait_for_completion_interruptible(struct completion *x)
  3211. {
  3212. int ret = 0;
  3213. might_sleep();
  3214. spin_lock_irq(&x->wait.lock);
  3215. if (!x->done) {
  3216. DECLARE_WAITQUEUE(wait, current);
  3217. wait.flags |= WQ_FLAG_EXCLUSIVE;
  3218. __add_wait_queue_tail(&x->wait, &wait);
  3219. do {
  3220. if (signal_pending(current)) {
  3221. ret = -ERESTARTSYS;
  3222. __remove_wait_queue(&x->wait, &wait);
  3223. goto out;
  3224. }
  3225. __set_current_state(TASK_INTERRUPTIBLE);
  3226. spin_unlock_irq(&x->wait.lock);
  3227. schedule();
  3228. spin_lock_irq(&x->wait.lock);
  3229. } while (!x->done);
  3230. __remove_wait_queue(&x->wait, &wait);
  3231. }
  3232. x->done--;
  3233. out:
  3234. spin_unlock_irq(&x->wait.lock);
  3235. return ret;
  3236. }
  3237. EXPORT_SYMBOL(wait_for_completion_interruptible);
  3238. unsigned long fastcall __sched
  3239. wait_for_completion_interruptible_timeout(struct completion *x,
  3240. unsigned long timeout)
  3241. {
  3242. might_sleep();
  3243. spin_lock_irq(&x->wait.lock);
  3244. if (!x->done) {
  3245. DECLARE_WAITQUEUE(wait, current);
  3246. wait.flags |= WQ_FLAG_EXCLUSIVE;
  3247. __add_wait_queue_tail(&x->wait, &wait);
  3248. do {
  3249. if (signal_pending(current)) {
  3250. timeout = -ERESTARTSYS;
  3251. __remove_wait_queue(&x->wait, &wait);
  3252. goto out;
  3253. }
  3254. __set_current_state(TASK_INTERRUPTIBLE);
  3255. spin_unlock_irq(&x->wait.lock);
  3256. timeout = schedule_timeout(timeout);
  3257. spin_lock_irq(&x->wait.lock);
  3258. if (!timeout) {
  3259. __remove_wait_queue(&x->wait, &wait);
  3260. goto out;
  3261. }
  3262. } while (!x->done);
  3263. __remove_wait_queue(&x->wait, &wait);
  3264. }
  3265. x->done--;
  3266. out:
  3267. spin_unlock_irq(&x->wait.lock);
  3268. return timeout;
  3269. }
  3270. EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
  3271. static inline void
  3272. sleep_on_head(wait_queue_head_t *q, wait_queue_t *wait, unsigned long *flags)
  3273. {
  3274. spin_lock_irqsave(&q->lock, *flags);
  3275. __add_wait_queue(q, wait);
  3276. spin_unlock(&q->lock);
  3277. }
  3278. static inline void
  3279. sleep_on_tail(wait_queue_head_t *q, wait_queue_t *wait, unsigned long *flags)
  3280. {
  3281. spin_lock_irq(&q->lock);
  3282. __remove_wait_queue(q, wait);
  3283. spin_unlock_irqrestore(&q->lock, *flags);
  3284. }
  3285. void __sched interruptible_sleep_on(wait_queue_head_t *q)
  3286. {
  3287. unsigned long flags;
  3288. wait_queue_t wait;
  3289. init_waitqueue_entry(&wait, current);
  3290. current->state = TASK_INTERRUPTIBLE;
  3291. sleep_on_head(q, &wait, &flags);
  3292. schedule();
  3293. sleep_on_tail(q, &wait, &flags);
  3294. }
  3295. EXPORT_SYMBOL(interruptible_sleep_on);
  3296. long __sched
  3297. interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
  3298. {
  3299. unsigned long flags;
  3300. wait_queue_t wait;
  3301. init_waitqueue_entry(&wait, current);
  3302. current->state = TASK_INTERRUPTIBLE;
  3303. sleep_on_head(q, &wait, &flags);
  3304. timeout = schedule_timeout(timeout);
  3305. sleep_on_tail(q, &wait, &flags);
  3306. return timeout;
  3307. }
  3308. EXPORT_SYMBOL(interruptible_sleep_on_timeout);
  3309. void __sched sleep_on(wait_queue_head_t *q)
  3310. {
  3311. unsigned long flags;
  3312. wait_queue_t wait;
  3313. init_waitqueue_entry(&wait, current);
  3314. current->state = TASK_UNINTERRUPTIBLE;
  3315. sleep_on_head(q, &wait, &flags);
  3316. schedule();
  3317. sleep_on_tail(q, &wait, &flags);
  3318. }
  3319. EXPORT_SYMBOL(sleep_on);
  3320. long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
  3321. {
  3322. unsigned long flags;
  3323. wait_queue_t wait;
  3324. init_waitqueue_entry(&wait, current);
  3325. current->state = TASK_UNINTERRUPTIBLE;
  3326. sleep_on_head(q, &wait, &flags);
  3327. timeout = schedule_timeout(timeout);
  3328. sleep_on_tail(q, &wait, &flags);
  3329. return timeout;
  3330. }
  3331. EXPORT_SYMBOL(sleep_on_timeout);
  3332. #ifdef CONFIG_RT_MUTEXES
  3333. /*
  3334. * rt_mutex_setprio - set the current priority of a task
  3335. * @p: task
  3336. * @prio: prio value (kernel-internal form)
  3337. *
  3338. * This function changes the 'effective' priority of a task. It does
  3339. * not touch ->normal_prio like __setscheduler().
  3340. *
  3341. * Used by the rt_mutex code to implement priority inheritance logic.
  3342. */
  3343. void rt_mutex_setprio(struct task_struct *p, int prio)
  3344. {
  3345. unsigned long flags;
  3346. int oldprio, on_rq;
  3347. struct rq *rq;
  3348. u64 now;
  3349. BUG_ON(prio < 0 || prio > MAX_PRIO);
  3350. rq = task_rq_lock(p, &flags);
  3351. now = rq_clock(rq);
  3352. oldprio = p->prio;
  3353. on_rq = p->se.on_rq;
  3354. if (on_rq)
  3355. dequeue_task(rq, p, 0, now);
  3356. if (rt_prio(prio))
  3357. p->sched_class = &rt_sched_class;
  3358. else
  3359. p->sched_class = &fair_sched_class;
  3360. p->prio = prio;
  3361. if (on_rq) {
  3362. enqueue_task(rq, p, 0, now);
  3363. /*
  3364. * Reschedule if we are currently running on this runqueue and
  3365. * our priority decreased, or if we are not currently running on
  3366. * this runqueue and our priority is higher than the current's
  3367. */
  3368. if (task_running(rq, p)) {
  3369. if (p->prio > oldprio)
  3370. resched_task(rq->curr);
  3371. } else {
  3372. check_preempt_curr(rq, p);
  3373. }
  3374. }
  3375. task_rq_unlock(rq, &flags);
  3376. }
  3377. #endif
  3378. void set_user_nice(struct task_struct *p, long nice)
  3379. {
  3380. int old_prio, delta, on_rq;
  3381. unsigned long flags;
  3382. struct rq *rq;
  3383. u64 now;
  3384. if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
  3385. return;
  3386. /*
  3387. * We have to be careful, if called from sys_setpriority(),
  3388. * the task might be in the middle of scheduling on another CPU.
  3389. */
  3390. rq = task_rq_lock(p, &flags);
  3391. now = rq_clock(rq);
  3392. /*
  3393. * The RT priorities are set via sched_setscheduler(), but we still
  3394. * allow the 'normal' nice value to be set - but as expected
  3395. * it wont have any effect on scheduling until the task is
  3396. * SCHED_FIFO/SCHED_RR:
  3397. */
  3398. if (task_has_rt_policy(p)) {
  3399. p->static_prio = NICE_TO_PRIO(nice);
  3400. goto out_unlock;
  3401. }
  3402. on_rq = p->se.on_rq;
  3403. if (on_rq) {
  3404. dequeue_task(rq, p, 0, now);
  3405. dec_load(rq, p, now);
  3406. }
  3407. p->static_prio = NICE_TO_PRIO(nice);
  3408. set_load_weight(p);
  3409. old_prio = p->prio;
  3410. p->prio = effective_prio(p);
  3411. delta = p->prio - old_prio;
  3412. if (on_rq) {
  3413. enqueue_task(rq, p, 0, now);
  3414. inc_load(rq, p, now);
  3415. /*
  3416. * If the task increased its priority or is running and
  3417. * lowered its priority, then reschedule its CPU:
  3418. */
  3419. if (delta < 0 || (delta > 0 && task_running(rq, p)))
  3420. resched_task(rq->curr);
  3421. }
  3422. out_unlock:
  3423. task_rq_unlock(rq, &flags);
  3424. }
  3425. EXPORT_SYMBOL(set_user_nice);
  3426. /*
  3427. * can_nice - check if a task can reduce its nice value
  3428. * @p: task
  3429. * @nice: nice value
  3430. */
  3431. int can_nice(const struct task_struct *p, const int nice)
  3432. {
  3433. /* convert nice value [19,-20] to rlimit style value [1,40] */
  3434. int nice_rlim = 20 - nice;
  3435. return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
  3436. capable(CAP_SYS_NICE));
  3437. }
  3438. #ifdef __ARCH_WANT_SYS_NICE
  3439. /*
  3440. * sys_nice - change the priority of the current process.
  3441. * @increment: priority increment
  3442. *
  3443. * sys_setpriority is a more generic, but much slower function that
  3444. * does similar things.
  3445. */
  3446. asmlinkage long sys_nice(int increment)
  3447. {
  3448. long nice, retval;
  3449. /*
  3450. * Setpriority might change our priority at the same moment.
  3451. * We don't have to worry. Conceptually one call occurs first
  3452. * and we have a single winner.
  3453. */
  3454. if (increment < -40)
  3455. increment = -40;
  3456. if (increment > 40)
  3457. increment = 40;
  3458. nice = PRIO_TO_NICE(current->static_prio) + increment;
  3459. if (nice < -20)
  3460. nice = -20;
  3461. if (nice > 19)
  3462. nice = 19;
  3463. if (increment < 0 && !can_nice(current, nice))
  3464. return -EPERM;
  3465. retval = security_task_setnice(current, nice);
  3466. if (retval)
  3467. return retval;
  3468. set_user_nice(current, nice);
  3469. return 0;
  3470. }
  3471. #endif
  3472. /**
  3473. * task_prio - return the priority value of a given task.
  3474. * @p: the task in question.
  3475. *
  3476. * This is the priority value as seen by users in /proc.
  3477. * RT tasks are offset by -200. Normal tasks are centered
  3478. * around 0, value goes from -16 to +15.
  3479. */
  3480. int task_prio(const struct task_struct *p)
  3481. {
  3482. return p->prio - MAX_RT_PRIO;
  3483. }
  3484. /**
  3485. * task_nice - return the nice value of a given task.
  3486. * @p: the task in question.
  3487. */
  3488. int task_nice(const struct task_struct *p)
  3489. {
  3490. return TASK_NICE(p);
  3491. }
  3492. EXPORT_SYMBOL_GPL(task_nice);
  3493. /**
  3494. * idle_cpu - is a given cpu idle currently?
  3495. * @cpu: the processor in question.
  3496. */
  3497. int idle_cpu(int cpu)
  3498. {
  3499. return cpu_curr(cpu) == cpu_rq(cpu)->idle;
  3500. }
  3501. /**
  3502. * idle_task - return the idle task for a given cpu.
  3503. * @cpu: the processor in question.
  3504. */
  3505. struct task_struct *idle_task(int cpu)
  3506. {
  3507. return cpu_rq(cpu)->idle;
  3508. }
  3509. /**
  3510. * find_process_by_pid - find a process with a matching PID value.
  3511. * @pid: the pid in question.
  3512. */
  3513. static inline struct task_struct *find_process_by_pid(pid_t pid)
  3514. {
  3515. return pid ? find_task_by_pid(pid) : current;
  3516. }
  3517. /* Actually do priority change: must hold rq lock. */
  3518. static void
  3519. __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
  3520. {
  3521. BUG_ON(p->se.on_rq);
  3522. p->policy = policy;
  3523. switch (p->policy) {
  3524. case SCHED_NORMAL:
  3525. case SCHED_BATCH:
  3526. case SCHED_IDLE:
  3527. p->sched_class = &fair_sched_class;
  3528. break;
  3529. case SCHED_FIFO:
  3530. case SCHED_RR:
  3531. p->sched_class = &rt_sched_class;
  3532. break;
  3533. }
  3534. p->rt_priority = prio;
  3535. p->normal_prio = normal_prio(p);
  3536. /* we are holding p->pi_lock already */
  3537. p->prio = rt_mutex_getprio(p);
  3538. set_load_weight(p);
  3539. }
  3540. /**
  3541. * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
  3542. * @p: the task in question.
  3543. * @policy: new policy.
  3544. * @param: structure containing the new RT priority.
  3545. *
  3546. * NOTE that the task may be already dead.
  3547. */
  3548. int sched_setscheduler(struct task_struct *p, int policy,
  3549. struct sched_param *param)
  3550. {
  3551. int retval, oldprio, oldpolicy = -1, on_rq;
  3552. unsigned long flags;
  3553. struct rq *rq;
  3554. /* may grab non-irq protected spin_locks */
  3555. BUG_ON(in_interrupt());
  3556. recheck:
  3557. /* double check policy once rq lock held */
  3558. if (policy < 0)
  3559. policy = oldpolicy = p->policy;
  3560. else if (policy != SCHED_FIFO && policy != SCHED_RR &&
  3561. policy != SCHED_NORMAL && policy != SCHED_BATCH &&
  3562. policy != SCHED_IDLE)
  3563. return -EINVAL;
  3564. /*
  3565. * Valid priorities for SCHED_FIFO and SCHED_RR are
  3566. * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
  3567. * SCHED_BATCH and SCHED_IDLE is 0.
  3568. */
  3569. if (param->sched_priority < 0 ||
  3570. (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
  3571. (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
  3572. return -EINVAL;
  3573. if (rt_policy(policy) != (param->sched_priority != 0))
  3574. return -EINVAL;
  3575. /*
  3576. * Allow unprivileged RT tasks to decrease priority:
  3577. */
  3578. if (!capable(CAP_SYS_NICE)) {
  3579. if (rt_policy(policy)) {
  3580. unsigned long rlim_rtprio;
  3581. if (!lock_task_sighand(p, &flags))
  3582. return -ESRCH;
  3583. rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
  3584. unlock_task_sighand(p, &flags);
  3585. /* can't set/change the rt policy */
  3586. if (policy != p->policy && !rlim_rtprio)
  3587. return -EPERM;
  3588. /* can't increase priority */
  3589. if (param->sched_priority > p->rt_priority &&
  3590. param->sched_priority > rlim_rtprio)
  3591. return -EPERM;
  3592. }
  3593. /*
  3594. * Like positive nice levels, dont allow tasks to
  3595. * move out of SCHED_IDLE either:
  3596. */
  3597. if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
  3598. return -EPERM;
  3599. /* can't change other user's priorities */
  3600. if ((current->euid != p->euid) &&
  3601. (current->euid != p->uid))
  3602. return -EPERM;
  3603. }
  3604. retval = security_task_setscheduler(p, policy, param);
  3605. if (retval)
  3606. return retval;
  3607. /*
  3608. * make sure no PI-waiters arrive (or leave) while we are
  3609. * changing the priority of the task:
  3610. */
  3611. spin_lock_irqsave(&p->pi_lock, flags);
  3612. /*
  3613. * To be able to change p->policy safely, the apropriate
  3614. * runqueue lock must be held.
  3615. */
  3616. rq = __task_rq_lock(p);
  3617. /* recheck policy now with rq lock held */
  3618. if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
  3619. policy = oldpolicy = -1;
  3620. __task_rq_unlock(rq);
  3621. spin_unlock_irqrestore(&p->pi_lock, flags);
  3622. goto recheck;
  3623. }
  3624. on_rq = p->se.on_rq;
  3625. if (on_rq)
  3626. deactivate_task(rq, p, 0);
  3627. oldprio = p->prio;
  3628. __setscheduler(rq, p, policy, param->sched_priority);
  3629. if (on_rq) {
  3630. activate_task(rq, p, 0);
  3631. /*
  3632. * Reschedule if we are currently running on this runqueue and
  3633. * our priority decreased, or if we are not currently running on
  3634. * this runqueue and our priority is higher than the current's
  3635. */
  3636. if (task_running(rq, p)) {
  3637. if (p->prio > oldprio)
  3638. resched_task(rq->curr);
  3639. } else {
  3640. check_preempt_curr(rq, p);
  3641. }
  3642. }
  3643. __task_rq_unlock(rq);
  3644. spin_unlock_irqrestore(&p->pi_lock, flags);
  3645. rt_mutex_adjust_pi(p);
  3646. return 0;
  3647. }
  3648. EXPORT_SYMBOL_GPL(sched_setscheduler);
  3649. static int
  3650. do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  3651. {
  3652. struct sched_param lparam;
  3653. struct task_struct *p;
  3654. int retval;
  3655. if (!param || pid < 0)
  3656. return -EINVAL;
  3657. if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
  3658. return -EFAULT;
  3659. rcu_read_lock();
  3660. retval = -ESRCH;
  3661. p = find_process_by_pid(pid);
  3662. if (p != NULL)
  3663. retval = sched_setscheduler(p, policy, &lparam);
  3664. rcu_read_unlock();
  3665. return retval;
  3666. }
  3667. /**
  3668. * sys_sched_setscheduler - set/change the scheduler policy and RT priority
  3669. * @pid: the pid in question.
  3670. * @policy: new policy.
  3671. * @param: structure containing the new RT priority.
  3672. */
  3673. asmlinkage long sys_sched_setscheduler(pid_t pid, int policy,
  3674. struct sched_param __user *param)
  3675. {
  3676. /* negative values for policy are not valid */
  3677. if (policy < 0)
  3678. return -EINVAL;
  3679. return do_sched_setscheduler(pid, policy, param);
  3680. }
  3681. /**
  3682. * sys_sched_setparam - set/change the RT priority of a thread
  3683. * @pid: the pid in question.
  3684. * @param: structure containing the new RT priority.
  3685. */
  3686. asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
  3687. {
  3688. return do_sched_setscheduler(pid, -1, param);
  3689. }
  3690. /**
  3691. * sys_sched_getscheduler - get the policy (scheduling class) of a thread
  3692. * @pid: the pid in question.
  3693. */
  3694. asmlinkage long sys_sched_getscheduler(pid_t pid)
  3695. {
  3696. struct task_struct *p;
  3697. int retval = -EINVAL;
  3698. if (pid < 0)
  3699. goto out_nounlock;
  3700. retval = -ESRCH;
  3701. read_lock(&tasklist_lock);
  3702. p = find_process_by_pid(pid);
  3703. if (p) {
  3704. retval = security_task_getscheduler(p);
  3705. if (!retval)
  3706. retval = p->policy;
  3707. }
  3708. read_unlock(&tasklist_lock);
  3709. out_nounlock:
  3710. return retval;
  3711. }
  3712. /**
  3713. * sys_sched_getscheduler - get the RT priority of a thread
  3714. * @pid: the pid in question.
  3715. * @param: structure containing the RT priority.
  3716. */
  3717. asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
  3718. {
  3719. struct sched_param lp;
  3720. struct task_struct *p;
  3721. int retval = -EINVAL;
  3722. if (!param || pid < 0)
  3723. goto out_nounlock;
  3724. read_lock(&tasklist_lock);
  3725. p = find_process_by_pid(pid);
  3726. retval = -ESRCH;
  3727. if (!p)
  3728. goto out_unlock;
  3729. retval = security_task_getscheduler(p);
  3730. if (retval)
  3731. goto out_unlock;
  3732. lp.sched_priority = p->rt_priority;
  3733. read_unlock(&tasklist_lock);
  3734. /*
  3735. * This one might sleep, we cannot do it with a spinlock held ...
  3736. */
  3737. retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
  3738. out_nounlock:
  3739. return retval;
  3740. out_unlock:
  3741. read_unlock(&tasklist_lock);
  3742. return retval;
  3743. }
  3744. long sched_setaffinity(pid_t pid, cpumask_t new_mask)
  3745. {
  3746. cpumask_t cpus_allowed;
  3747. struct task_struct *p;
  3748. int retval;
  3749. mutex_lock(&sched_hotcpu_mutex);
  3750. read_lock(&tasklist_lock);
  3751. p = find_process_by_pid(pid);
  3752. if (!p) {
  3753. read_unlock(&tasklist_lock);
  3754. mutex_unlock(&sched_hotcpu_mutex);
  3755. return -ESRCH;
  3756. }
  3757. /*
  3758. * It is not safe to call set_cpus_allowed with the
  3759. * tasklist_lock held. We will bump the task_struct's
  3760. * usage count and then drop tasklist_lock.
  3761. */
  3762. get_task_struct(p);
  3763. read_unlock(&tasklist_lock);
  3764. retval = -EPERM;
  3765. if ((current->euid != p->euid) && (current->euid != p->uid) &&
  3766. !capable(CAP_SYS_NICE))
  3767. goto out_unlock;
  3768. retval = security_task_setscheduler(p, 0, NULL);
  3769. if (retval)
  3770. goto out_unlock;
  3771. cpus_allowed = cpuset_cpus_allowed(p);
  3772. cpus_and(new_mask, new_mask, cpus_allowed);
  3773. retval = set_cpus_allowed(p, new_mask);
  3774. out_unlock:
  3775. put_task_struct(p);
  3776. mutex_unlock(&sched_hotcpu_mutex);
  3777. return retval;
  3778. }
  3779. static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
  3780. cpumask_t *new_mask)
  3781. {
  3782. if (len < sizeof(cpumask_t)) {
  3783. memset(new_mask, 0, sizeof(cpumask_t));
  3784. } else if (len > sizeof(cpumask_t)) {
  3785. len = sizeof(cpumask_t);
  3786. }
  3787. return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
  3788. }
  3789. /**
  3790. * sys_sched_setaffinity - set the cpu affinity of a process
  3791. * @pid: pid of the process
  3792. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  3793. * @user_mask_ptr: user-space pointer to the new cpu mask
  3794. */
  3795. asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
  3796. unsigned long __user *user_mask_ptr)
  3797. {
  3798. cpumask_t new_mask;
  3799. int retval;
  3800. retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
  3801. if (retval)
  3802. return retval;
  3803. return sched_setaffinity(pid, new_mask);
  3804. }
  3805. /*
  3806. * Represents all cpu's present in the system
  3807. * In systems capable of hotplug, this map could dynamically grow
  3808. * as new cpu's are detected in the system via any platform specific
  3809. * method, such as ACPI for e.g.
  3810. */
  3811. cpumask_t cpu_present_map __read_mostly;
  3812. EXPORT_SYMBOL(cpu_present_map);
  3813. #ifndef CONFIG_SMP
  3814. cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
  3815. EXPORT_SYMBOL(cpu_online_map);
  3816. cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
  3817. EXPORT_SYMBOL(cpu_possible_map);
  3818. #endif
  3819. long sched_getaffinity(pid_t pid, cpumask_t *mask)
  3820. {
  3821. struct task_struct *p;
  3822. int retval;
  3823. mutex_lock(&sched_hotcpu_mutex);
  3824. read_lock(&tasklist_lock);
  3825. retval = -ESRCH;
  3826. p = find_process_by_pid(pid);
  3827. if (!p)
  3828. goto out_unlock;
  3829. retval = security_task_getscheduler(p);
  3830. if (retval)
  3831. goto out_unlock;
  3832. cpus_and(*mask, p->cpus_allowed, cpu_online_map);
  3833. out_unlock:
  3834. read_unlock(&tasklist_lock);
  3835. mutex_unlock(&sched_hotcpu_mutex);
  3836. if (retval)
  3837. return retval;
  3838. return 0;
  3839. }
  3840. /**
  3841. * sys_sched_getaffinity - get the cpu affinity of a process
  3842. * @pid: pid of the process
  3843. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  3844. * @user_mask_ptr: user-space pointer to hold the current cpu mask
  3845. */
  3846. asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
  3847. unsigned long __user *user_mask_ptr)
  3848. {
  3849. int ret;
  3850. cpumask_t mask;
  3851. if (len < sizeof(cpumask_t))
  3852. return -EINVAL;
  3853. ret = sched_getaffinity(pid, &mask);
  3854. if (ret < 0)
  3855. return ret;
  3856. if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
  3857. return -EFAULT;
  3858. return sizeof(cpumask_t);
  3859. }
  3860. /**
  3861. * sys_sched_yield - yield the current processor to other threads.
  3862. *
  3863. * This function yields the current CPU to other tasks. If there are no
  3864. * other threads running on this CPU then this function will return.
  3865. */
  3866. asmlinkage long sys_sched_yield(void)
  3867. {
  3868. struct rq *rq = this_rq_lock();
  3869. schedstat_inc(rq, yld_cnt);
  3870. if (unlikely(rq->nr_running == 1))
  3871. schedstat_inc(rq, yld_act_empty);
  3872. else
  3873. current->sched_class->yield_task(rq, current);
  3874. /*
  3875. * Since we are going to call schedule() anyway, there's
  3876. * no need to preempt or enable interrupts:
  3877. */
  3878. __release(rq->lock);
  3879. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  3880. _raw_spin_unlock(&rq->lock);
  3881. preempt_enable_no_resched();
  3882. schedule();
  3883. return 0;
  3884. }
  3885. static void __cond_resched(void)
  3886. {
  3887. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  3888. __might_sleep(__FILE__, __LINE__);
  3889. #endif
  3890. /*
  3891. * The BKS might be reacquired before we have dropped
  3892. * PREEMPT_ACTIVE, which could trigger a second
  3893. * cond_resched() call.
  3894. */
  3895. do {
  3896. add_preempt_count(PREEMPT_ACTIVE);
  3897. schedule();
  3898. sub_preempt_count(PREEMPT_ACTIVE);
  3899. } while (need_resched());
  3900. }
  3901. int __sched cond_resched(void)
  3902. {
  3903. if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
  3904. system_state == SYSTEM_RUNNING) {
  3905. __cond_resched();
  3906. return 1;
  3907. }
  3908. return 0;
  3909. }
  3910. EXPORT_SYMBOL(cond_resched);
  3911. /*
  3912. * cond_resched_lock() - if a reschedule is pending, drop the given lock,
  3913. * call schedule, and on return reacquire the lock.
  3914. *
  3915. * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
  3916. * operations here to prevent schedule() from being called twice (once via
  3917. * spin_unlock(), once by hand).
  3918. */
  3919. int cond_resched_lock(spinlock_t *lock)
  3920. {
  3921. int ret = 0;
  3922. if (need_lockbreak(lock)) {
  3923. spin_unlock(lock);
  3924. cpu_relax();
  3925. ret = 1;
  3926. spin_lock(lock);
  3927. }
  3928. if (need_resched() && system_state == SYSTEM_RUNNING) {
  3929. spin_release(&lock->dep_map, 1, _THIS_IP_);
  3930. _raw_spin_unlock(lock);
  3931. preempt_enable_no_resched();
  3932. __cond_resched();
  3933. ret = 1;
  3934. spin_lock(lock);
  3935. }
  3936. return ret;
  3937. }
  3938. EXPORT_SYMBOL(cond_resched_lock);
  3939. int __sched cond_resched_softirq(void)
  3940. {
  3941. BUG_ON(!in_softirq());
  3942. if (need_resched() && system_state == SYSTEM_RUNNING) {
  3943. local_bh_enable();
  3944. __cond_resched();
  3945. local_bh_disable();
  3946. return 1;
  3947. }
  3948. return 0;
  3949. }
  3950. EXPORT_SYMBOL(cond_resched_softirq);
  3951. /**
  3952. * yield - yield the current processor to other threads.
  3953. *
  3954. * This is a shortcut for kernel-space yielding - it marks the
  3955. * thread runnable and calls sys_sched_yield().
  3956. */
  3957. void __sched yield(void)
  3958. {
  3959. set_current_state(TASK_RUNNING);
  3960. sys_sched_yield();
  3961. }
  3962. EXPORT_SYMBOL(yield);
  3963. /*
  3964. * This task is about to go to sleep on IO. Increment rq->nr_iowait so
  3965. * that process accounting knows that this is a task in IO wait state.
  3966. *
  3967. * But don't do that if it is a deliberate, throttling IO wait (this task
  3968. * has set its backing_dev_info: the queue against which it should throttle)
  3969. */
  3970. void __sched io_schedule(void)
  3971. {
  3972. struct rq *rq = &__raw_get_cpu_var(runqueues);
  3973. delayacct_blkio_start();
  3974. atomic_inc(&rq->nr_iowait);
  3975. schedule();
  3976. atomic_dec(&rq->nr_iowait);
  3977. delayacct_blkio_end();
  3978. }
  3979. EXPORT_SYMBOL(io_schedule);
  3980. long __sched io_schedule_timeout(long timeout)
  3981. {
  3982. struct rq *rq = &__raw_get_cpu_var(runqueues);
  3983. long ret;
  3984. delayacct_blkio_start();
  3985. atomic_inc(&rq->nr_iowait);
  3986. ret = schedule_timeout(timeout);
  3987. atomic_dec(&rq->nr_iowait);
  3988. delayacct_blkio_end();
  3989. return ret;
  3990. }
  3991. /**
  3992. * sys_sched_get_priority_max - return maximum RT priority.
  3993. * @policy: scheduling class.
  3994. *
  3995. * this syscall returns the maximum rt_priority that can be used
  3996. * by a given scheduling class.
  3997. */
  3998. asmlinkage long sys_sched_get_priority_max(int policy)
  3999. {
  4000. int ret = -EINVAL;
  4001. switch (policy) {
  4002. case SCHED_FIFO:
  4003. case SCHED_RR:
  4004. ret = MAX_USER_RT_PRIO-1;
  4005. break;
  4006. case SCHED_NORMAL:
  4007. case SCHED_BATCH:
  4008. case SCHED_IDLE:
  4009. ret = 0;
  4010. break;
  4011. }
  4012. return ret;
  4013. }
  4014. /**
  4015. * sys_sched_get_priority_min - return minimum RT priority.
  4016. * @policy: scheduling class.
  4017. *
  4018. * this syscall returns the minimum rt_priority that can be used
  4019. * by a given scheduling class.
  4020. */
  4021. asmlinkage long sys_sched_get_priority_min(int policy)
  4022. {
  4023. int ret = -EINVAL;
  4024. switch (policy) {
  4025. case SCHED_FIFO:
  4026. case SCHED_RR:
  4027. ret = 1;
  4028. break;
  4029. case SCHED_NORMAL:
  4030. case SCHED_BATCH:
  4031. case SCHED_IDLE:
  4032. ret = 0;
  4033. }
  4034. return ret;
  4035. }
  4036. /**
  4037. * sys_sched_rr_get_interval - return the default timeslice of a process.
  4038. * @pid: pid of the process.
  4039. * @interval: userspace pointer to the timeslice value.
  4040. *
  4041. * this syscall writes the default timeslice value of a given process
  4042. * into the user-space timespec buffer. A value of '0' means infinity.
  4043. */
  4044. asmlinkage
  4045. long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
  4046. {
  4047. struct task_struct *p;
  4048. int retval = -EINVAL;
  4049. struct timespec t;
  4050. if (pid < 0)
  4051. goto out_nounlock;
  4052. retval = -ESRCH;
  4053. read_lock(&tasklist_lock);
  4054. p = find_process_by_pid(pid);
  4055. if (!p)
  4056. goto out_unlock;
  4057. retval = security_task_getscheduler(p);
  4058. if (retval)
  4059. goto out_unlock;
  4060. jiffies_to_timespec(p->policy == SCHED_FIFO ?
  4061. 0 : static_prio_timeslice(p->static_prio), &t);
  4062. read_unlock(&tasklist_lock);
  4063. retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
  4064. out_nounlock:
  4065. return retval;
  4066. out_unlock:
  4067. read_unlock(&tasklist_lock);
  4068. return retval;
  4069. }
  4070. static const char stat_nam[] = "RSDTtZX";
  4071. static void show_task(struct task_struct *p)
  4072. {
  4073. unsigned long free = 0;
  4074. unsigned state;
  4075. state = p->state ? __ffs(p->state) + 1 : 0;
  4076. printk("%-13.13s %c", p->comm,
  4077. state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
  4078. #if BITS_PER_LONG == 32
  4079. if (state == TASK_RUNNING)
  4080. printk(" running ");
  4081. else
  4082. printk(" %08lx ", thread_saved_pc(p));
  4083. #else
  4084. if (state == TASK_RUNNING)
  4085. printk(" running task ");
  4086. else
  4087. printk(" %016lx ", thread_saved_pc(p));
  4088. #endif
  4089. #ifdef CONFIG_DEBUG_STACK_USAGE
  4090. {
  4091. unsigned long *n = end_of_stack(p);
  4092. while (!*n)
  4093. n++;
  4094. free = (unsigned long)n - (unsigned long)end_of_stack(p);
  4095. }
  4096. #endif
  4097. printk("%5lu %5d %6d\n", free, p->pid, p->parent->pid);
  4098. if (state != TASK_RUNNING)
  4099. show_stack(p, NULL);
  4100. }
  4101. void show_state_filter(unsigned long state_filter)
  4102. {
  4103. struct task_struct *g, *p;
  4104. #if BITS_PER_LONG == 32
  4105. printk(KERN_INFO
  4106. " task PC stack pid father\n");
  4107. #else
  4108. printk(KERN_INFO
  4109. " task PC stack pid father\n");
  4110. #endif
  4111. read_lock(&tasklist_lock);
  4112. do_each_thread(g, p) {
  4113. /*
  4114. * reset the NMI-timeout, listing all files on a slow
  4115. * console might take alot of time:
  4116. */
  4117. touch_nmi_watchdog();
  4118. if (!state_filter || (p->state & state_filter))
  4119. show_task(p);
  4120. } while_each_thread(g, p);
  4121. touch_all_softlockup_watchdogs();
  4122. #ifdef CONFIG_SCHED_DEBUG
  4123. sysrq_sched_debug_show();
  4124. #endif
  4125. read_unlock(&tasklist_lock);
  4126. /*
  4127. * Only show locks if all tasks are dumped:
  4128. */
  4129. if (state_filter == -1)
  4130. debug_show_all_locks();
  4131. }
  4132. void __cpuinit init_idle_bootup_task(struct task_struct *idle)
  4133. {
  4134. idle->sched_class = &idle_sched_class;
  4135. }
  4136. /**
  4137. * init_idle - set up an idle thread for a given CPU
  4138. * @idle: task in question
  4139. * @cpu: cpu the idle task belongs to
  4140. *
  4141. * NOTE: this function does not set the idle thread's NEED_RESCHED
  4142. * flag, to make booting more robust.
  4143. */
  4144. void __cpuinit init_idle(struct task_struct *idle, int cpu)
  4145. {
  4146. struct rq *rq = cpu_rq(cpu);
  4147. unsigned long flags;
  4148. __sched_fork(idle);
  4149. idle->se.exec_start = sched_clock();
  4150. idle->prio = idle->normal_prio = MAX_PRIO;
  4151. idle->cpus_allowed = cpumask_of_cpu(cpu);
  4152. __set_task_cpu(idle, cpu);
  4153. spin_lock_irqsave(&rq->lock, flags);
  4154. rq->curr = rq->idle = idle;
  4155. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  4156. idle->oncpu = 1;
  4157. #endif
  4158. spin_unlock_irqrestore(&rq->lock, flags);
  4159. /* Set the preempt count _outside_ the spinlocks! */
  4160. #if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
  4161. task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
  4162. #else
  4163. task_thread_info(idle)->preempt_count = 0;
  4164. #endif
  4165. /*
  4166. * The idle tasks have their own, simple scheduling class:
  4167. */
  4168. idle->sched_class = &idle_sched_class;
  4169. }
  4170. /*
  4171. * In a system that switches off the HZ timer nohz_cpu_mask
  4172. * indicates which cpus entered this state. This is used
  4173. * in the rcu update to wait only for active cpus. For system
  4174. * which do not switch off the HZ timer nohz_cpu_mask should
  4175. * always be CPU_MASK_NONE.
  4176. */
  4177. cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
  4178. /*
  4179. * Increase the granularity value when there are more CPUs,
  4180. * because with more CPUs the 'effective latency' as visible
  4181. * to users decreases. But the relationship is not linear,
  4182. * so pick a second-best guess by going with the log2 of the
  4183. * number of CPUs.
  4184. *
  4185. * This idea comes from the SD scheduler of Con Kolivas:
  4186. */
  4187. static inline void sched_init_granularity(void)
  4188. {
  4189. unsigned int factor = 1 + ilog2(num_online_cpus());
  4190. const unsigned long gran_limit = 100000000;
  4191. sysctl_sched_granularity *= factor;
  4192. if (sysctl_sched_granularity > gran_limit)
  4193. sysctl_sched_granularity = gran_limit;
  4194. sysctl_sched_runtime_limit = sysctl_sched_granularity * 4;
  4195. sysctl_sched_wakeup_granularity = sysctl_sched_granularity / 2;
  4196. }
  4197. #ifdef CONFIG_SMP
  4198. /*
  4199. * This is how migration works:
  4200. *
  4201. * 1) we queue a struct migration_req structure in the source CPU's
  4202. * runqueue and wake up that CPU's migration thread.
  4203. * 2) we down() the locked semaphore => thread blocks.
  4204. * 3) migration thread wakes up (implicitly it forces the migrated
  4205. * thread off the CPU)
  4206. * 4) it gets the migration request and checks whether the migrated
  4207. * task is still in the wrong runqueue.
  4208. * 5) if it's in the wrong runqueue then the migration thread removes
  4209. * it and puts it into the right queue.
  4210. * 6) migration thread up()s the semaphore.
  4211. * 7) we wake up and the migration is done.
  4212. */
  4213. /*
  4214. * Change a given task's CPU affinity. Migrate the thread to a
  4215. * proper CPU and schedule it away if the CPU it's executing on
  4216. * is removed from the allowed bitmask.
  4217. *
  4218. * NOTE: the caller must have a valid reference to the task, the
  4219. * task must not exit() & deallocate itself prematurely. The
  4220. * call is not atomic; no spinlocks may be held.
  4221. */
  4222. int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
  4223. {
  4224. struct migration_req req;
  4225. unsigned long flags;
  4226. struct rq *rq;
  4227. int ret = 0;
  4228. rq = task_rq_lock(p, &flags);
  4229. if (!cpus_intersects(new_mask, cpu_online_map)) {
  4230. ret = -EINVAL;
  4231. goto out;
  4232. }
  4233. p->cpus_allowed = new_mask;
  4234. /* Can the task run on the task's current CPU? If so, we're done */
  4235. if (cpu_isset(task_cpu(p), new_mask))
  4236. goto out;
  4237. if (migrate_task(p, any_online_cpu(new_mask), &req)) {
  4238. /* Need help from migration thread: drop lock and wait. */
  4239. task_rq_unlock(rq, &flags);
  4240. wake_up_process(rq->migration_thread);
  4241. wait_for_completion(&req.done);
  4242. tlb_migrate_finish(p->mm);
  4243. return 0;
  4244. }
  4245. out:
  4246. task_rq_unlock(rq, &flags);
  4247. return ret;
  4248. }
  4249. EXPORT_SYMBOL_GPL(set_cpus_allowed);
  4250. /*
  4251. * Move (not current) task off this cpu, onto dest cpu. We're doing
  4252. * this because either it can't run here any more (set_cpus_allowed()
  4253. * away from this CPU, or CPU going down), or because we're
  4254. * attempting to rebalance this task on exec (sched_exec).
  4255. *
  4256. * So we race with normal scheduler movements, but that's OK, as long
  4257. * as the task is no longer on this CPU.
  4258. *
  4259. * Returns non-zero if task was successfully migrated.
  4260. */
  4261. static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
  4262. {
  4263. struct rq *rq_dest, *rq_src;
  4264. int ret = 0, on_rq;
  4265. if (unlikely(cpu_is_offline(dest_cpu)))
  4266. return ret;
  4267. rq_src = cpu_rq(src_cpu);
  4268. rq_dest = cpu_rq(dest_cpu);
  4269. double_rq_lock(rq_src, rq_dest);
  4270. /* Already moved. */
  4271. if (task_cpu(p) != src_cpu)
  4272. goto out;
  4273. /* Affinity changed (again). */
  4274. if (!cpu_isset(dest_cpu, p->cpus_allowed))
  4275. goto out;
  4276. on_rq = p->se.on_rq;
  4277. if (on_rq)
  4278. deactivate_task(rq_src, p, 0);
  4279. set_task_cpu(p, dest_cpu);
  4280. if (on_rq) {
  4281. activate_task(rq_dest, p, 0);
  4282. check_preempt_curr(rq_dest, p);
  4283. }
  4284. ret = 1;
  4285. out:
  4286. double_rq_unlock(rq_src, rq_dest);
  4287. return ret;
  4288. }
  4289. /*
  4290. * migration_thread - this is a highprio system thread that performs
  4291. * thread migration by bumping thread off CPU then 'pushing' onto
  4292. * another runqueue.
  4293. */
  4294. static int migration_thread(void *data)
  4295. {
  4296. int cpu = (long)data;
  4297. struct rq *rq;
  4298. rq = cpu_rq(cpu);
  4299. BUG_ON(rq->migration_thread != current);
  4300. set_current_state(TASK_INTERRUPTIBLE);
  4301. while (!kthread_should_stop()) {
  4302. struct migration_req *req;
  4303. struct list_head *head;
  4304. spin_lock_irq(&rq->lock);
  4305. if (cpu_is_offline(cpu)) {
  4306. spin_unlock_irq(&rq->lock);
  4307. goto wait_to_die;
  4308. }
  4309. if (rq->active_balance) {
  4310. active_load_balance(rq, cpu);
  4311. rq->active_balance = 0;
  4312. }
  4313. head = &rq->migration_queue;
  4314. if (list_empty(head)) {
  4315. spin_unlock_irq(&rq->lock);
  4316. schedule();
  4317. set_current_state(TASK_INTERRUPTIBLE);
  4318. continue;
  4319. }
  4320. req = list_entry(head->next, struct migration_req, list);
  4321. list_del_init(head->next);
  4322. spin_unlock(&rq->lock);
  4323. __migrate_task(req->task, cpu, req->dest_cpu);
  4324. local_irq_enable();
  4325. complete(&req->done);
  4326. }
  4327. __set_current_state(TASK_RUNNING);
  4328. return 0;
  4329. wait_to_die:
  4330. /* Wait for kthread_stop */
  4331. set_current_state(TASK_INTERRUPTIBLE);
  4332. while (!kthread_should_stop()) {
  4333. schedule();
  4334. set_current_state(TASK_INTERRUPTIBLE);
  4335. }
  4336. __set_current_state(TASK_RUNNING);
  4337. return 0;
  4338. }
  4339. #ifdef CONFIG_HOTPLUG_CPU
  4340. /*
  4341. * Figure out where task on dead CPU should go, use force if neccessary.
  4342. * NOTE: interrupts should be disabled by the caller
  4343. */
  4344. static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
  4345. {
  4346. unsigned long flags;
  4347. cpumask_t mask;
  4348. struct rq *rq;
  4349. int dest_cpu;
  4350. restart:
  4351. /* On same node? */
  4352. mask = node_to_cpumask(cpu_to_node(dead_cpu));
  4353. cpus_and(mask, mask, p->cpus_allowed);
  4354. dest_cpu = any_online_cpu(mask);
  4355. /* On any allowed CPU? */
  4356. if (dest_cpu == NR_CPUS)
  4357. dest_cpu = any_online_cpu(p->cpus_allowed);
  4358. /* No more Mr. Nice Guy. */
  4359. if (dest_cpu == NR_CPUS) {
  4360. rq = task_rq_lock(p, &flags);
  4361. cpus_setall(p->cpus_allowed);
  4362. dest_cpu = any_online_cpu(p->cpus_allowed);
  4363. task_rq_unlock(rq, &flags);
  4364. /*
  4365. * Don't tell them about moving exiting tasks or
  4366. * kernel threads (both mm NULL), since they never
  4367. * leave kernel.
  4368. */
  4369. if (p->mm && printk_ratelimit())
  4370. printk(KERN_INFO "process %d (%s) no "
  4371. "longer affine to cpu%d\n",
  4372. p->pid, p->comm, dead_cpu);
  4373. }
  4374. if (!__migrate_task(p, dead_cpu, dest_cpu))
  4375. goto restart;
  4376. }
  4377. /*
  4378. * While a dead CPU has no uninterruptible tasks queued at this point,
  4379. * it might still have a nonzero ->nr_uninterruptible counter, because
  4380. * for performance reasons the counter is not stricly tracking tasks to
  4381. * their home CPUs. So we just add the counter to another CPU's counter,
  4382. * to keep the global sum constant after CPU-down:
  4383. */
  4384. static void migrate_nr_uninterruptible(struct rq *rq_src)
  4385. {
  4386. struct rq *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
  4387. unsigned long flags;
  4388. local_irq_save(flags);
  4389. double_rq_lock(rq_src, rq_dest);
  4390. rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
  4391. rq_src->nr_uninterruptible = 0;
  4392. double_rq_unlock(rq_src, rq_dest);
  4393. local_irq_restore(flags);
  4394. }
  4395. /* Run through task list and migrate tasks from the dead cpu. */
  4396. static void migrate_live_tasks(int src_cpu)
  4397. {
  4398. struct task_struct *p, *t;
  4399. write_lock_irq(&tasklist_lock);
  4400. do_each_thread(t, p) {
  4401. if (p == current)
  4402. continue;
  4403. if (task_cpu(p) == src_cpu)
  4404. move_task_off_dead_cpu(src_cpu, p);
  4405. } while_each_thread(t, p);
  4406. write_unlock_irq(&tasklist_lock);
  4407. }
  4408. /*
  4409. * Schedules idle task to be the next runnable task on current CPU.
  4410. * It does so by boosting its priority to highest possible and adding it to
  4411. * the _front_ of the runqueue. Used by CPU offline code.
  4412. */
  4413. void sched_idle_next(void)
  4414. {
  4415. int this_cpu = smp_processor_id();
  4416. struct rq *rq = cpu_rq(this_cpu);
  4417. struct task_struct *p = rq->idle;
  4418. unsigned long flags;
  4419. /* cpu has to be offline */
  4420. BUG_ON(cpu_online(this_cpu));
  4421. /*
  4422. * Strictly not necessary since rest of the CPUs are stopped by now
  4423. * and interrupts disabled on the current cpu.
  4424. */
  4425. spin_lock_irqsave(&rq->lock, flags);
  4426. __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
  4427. /* Add idle task to the _front_ of its priority queue: */
  4428. activate_idle_task(p, rq);
  4429. spin_unlock_irqrestore(&rq->lock, flags);
  4430. }
  4431. /*
  4432. * Ensures that the idle task is using init_mm right before its cpu goes
  4433. * offline.
  4434. */
  4435. void idle_task_exit(void)
  4436. {
  4437. struct mm_struct *mm = current->active_mm;
  4438. BUG_ON(cpu_online(smp_processor_id()));
  4439. if (mm != &init_mm)
  4440. switch_mm(mm, &init_mm, current);
  4441. mmdrop(mm);
  4442. }
  4443. /* called under rq->lock with disabled interrupts */
  4444. static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
  4445. {
  4446. struct rq *rq = cpu_rq(dead_cpu);
  4447. /* Must be exiting, otherwise would be on tasklist. */
  4448. BUG_ON(p->exit_state != EXIT_ZOMBIE && p->exit_state != EXIT_DEAD);
  4449. /* Cannot have done final schedule yet: would have vanished. */
  4450. BUG_ON(p->state == TASK_DEAD);
  4451. get_task_struct(p);
  4452. /*
  4453. * Drop lock around migration; if someone else moves it,
  4454. * that's OK. No task can be added to this CPU, so iteration is
  4455. * fine.
  4456. * NOTE: interrupts should be left disabled --dev@
  4457. */
  4458. spin_unlock(&rq->lock);
  4459. move_task_off_dead_cpu(dead_cpu, p);
  4460. spin_lock(&rq->lock);
  4461. put_task_struct(p);
  4462. }
  4463. /* release_task() removes task from tasklist, so we won't find dead tasks. */
  4464. static void migrate_dead_tasks(unsigned int dead_cpu)
  4465. {
  4466. struct rq *rq = cpu_rq(dead_cpu);
  4467. struct task_struct *next;
  4468. for ( ; ; ) {
  4469. if (!rq->nr_running)
  4470. break;
  4471. next = pick_next_task(rq, rq->curr, rq_clock(rq));
  4472. if (!next)
  4473. break;
  4474. migrate_dead(dead_cpu, next);
  4475. }
  4476. }
  4477. #endif /* CONFIG_HOTPLUG_CPU */
  4478. #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
  4479. static struct ctl_table sd_ctl_dir[] = {
  4480. {CTL_UNNUMBERED, "sched_domain", NULL, 0, 0755, NULL, },
  4481. {0,},
  4482. };
  4483. static struct ctl_table sd_ctl_root[] = {
  4484. {CTL_UNNUMBERED, "kernel", NULL, 0, 0755, sd_ctl_dir, },
  4485. {0,},
  4486. };
  4487. static struct ctl_table *sd_alloc_ctl_entry(int n)
  4488. {
  4489. struct ctl_table *entry =
  4490. kmalloc(n * sizeof(struct ctl_table), GFP_KERNEL);
  4491. BUG_ON(!entry);
  4492. memset(entry, 0, n * sizeof(struct ctl_table));
  4493. return entry;
  4494. }
  4495. static void
  4496. set_table_entry(struct ctl_table *entry, int ctl_name,
  4497. const char *procname, void *data, int maxlen,
  4498. mode_t mode, proc_handler *proc_handler)
  4499. {
  4500. entry->ctl_name = ctl_name;
  4501. entry->procname = procname;
  4502. entry->data = data;
  4503. entry->maxlen = maxlen;
  4504. entry->mode = mode;
  4505. entry->proc_handler = proc_handler;
  4506. }
  4507. static struct ctl_table *
  4508. sd_alloc_ctl_domain_table(struct sched_domain *sd)
  4509. {
  4510. struct ctl_table *table = sd_alloc_ctl_entry(14);
  4511. set_table_entry(&table[0], 1, "min_interval", &sd->min_interval,
  4512. sizeof(long), 0644, proc_doulongvec_minmax);
  4513. set_table_entry(&table[1], 2, "max_interval", &sd->max_interval,
  4514. sizeof(long), 0644, proc_doulongvec_minmax);
  4515. set_table_entry(&table[2], 3, "busy_idx", &sd->busy_idx,
  4516. sizeof(int), 0644, proc_dointvec_minmax);
  4517. set_table_entry(&table[3], 4, "idle_idx", &sd->idle_idx,
  4518. sizeof(int), 0644, proc_dointvec_minmax);
  4519. set_table_entry(&table[4], 5, "newidle_idx", &sd->newidle_idx,
  4520. sizeof(int), 0644, proc_dointvec_minmax);
  4521. set_table_entry(&table[5], 6, "wake_idx", &sd->wake_idx,
  4522. sizeof(int), 0644, proc_dointvec_minmax);
  4523. set_table_entry(&table[6], 7, "forkexec_idx", &sd->forkexec_idx,
  4524. sizeof(int), 0644, proc_dointvec_minmax);
  4525. set_table_entry(&table[7], 8, "busy_factor", &sd->busy_factor,
  4526. sizeof(int), 0644, proc_dointvec_minmax);
  4527. set_table_entry(&table[8], 9, "imbalance_pct", &sd->imbalance_pct,
  4528. sizeof(int), 0644, proc_dointvec_minmax);
  4529. set_table_entry(&table[10], 11, "cache_nice_tries",
  4530. &sd->cache_nice_tries,
  4531. sizeof(int), 0644, proc_dointvec_minmax);
  4532. set_table_entry(&table[12], 13, "flags", &sd->flags,
  4533. sizeof(int), 0644, proc_dointvec_minmax);
  4534. return table;
  4535. }
  4536. static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
  4537. {
  4538. struct ctl_table *entry, *table;
  4539. struct sched_domain *sd;
  4540. int domain_num = 0, i;
  4541. char buf[32];
  4542. for_each_domain(cpu, sd)
  4543. domain_num++;
  4544. entry = table = sd_alloc_ctl_entry(domain_num + 1);
  4545. i = 0;
  4546. for_each_domain(cpu, sd) {
  4547. snprintf(buf, 32, "domain%d", i);
  4548. entry->ctl_name = i + 1;
  4549. entry->procname = kstrdup(buf, GFP_KERNEL);
  4550. entry->mode = 0755;
  4551. entry->child = sd_alloc_ctl_domain_table(sd);
  4552. entry++;
  4553. i++;
  4554. }
  4555. return table;
  4556. }
  4557. static struct ctl_table_header *sd_sysctl_header;
  4558. static void init_sched_domain_sysctl(void)
  4559. {
  4560. int i, cpu_num = num_online_cpus();
  4561. struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
  4562. char buf[32];
  4563. sd_ctl_dir[0].child = entry;
  4564. for (i = 0; i < cpu_num; i++, entry++) {
  4565. snprintf(buf, 32, "cpu%d", i);
  4566. entry->ctl_name = i + 1;
  4567. entry->procname = kstrdup(buf, GFP_KERNEL);
  4568. entry->mode = 0755;
  4569. entry->child = sd_alloc_ctl_cpu_table(i);
  4570. }
  4571. sd_sysctl_header = register_sysctl_table(sd_ctl_root);
  4572. }
  4573. #else
  4574. static void init_sched_domain_sysctl(void)
  4575. {
  4576. }
  4577. #endif
  4578. /*
  4579. * migration_call - callback that gets triggered when a CPU is added.
  4580. * Here we can start up the necessary migration thread for the new CPU.
  4581. */
  4582. static int __cpuinit
  4583. migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
  4584. {
  4585. struct task_struct *p;
  4586. int cpu = (long)hcpu;
  4587. unsigned long flags;
  4588. struct rq *rq;
  4589. switch (action) {
  4590. case CPU_LOCK_ACQUIRE:
  4591. mutex_lock(&sched_hotcpu_mutex);
  4592. break;
  4593. case CPU_UP_PREPARE:
  4594. case CPU_UP_PREPARE_FROZEN:
  4595. p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
  4596. if (IS_ERR(p))
  4597. return NOTIFY_BAD;
  4598. kthread_bind(p, cpu);
  4599. /* Must be high prio: stop_machine expects to yield to it. */
  4600. rq = task_rq_lock(p, &flags);
  4601. __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
  4602. task_rq_unlock(rq, &flags);
  4603. cpu_rq(cpu)->migration_thread = p;
  4604. break;
  4605. case CPU_ONLINE:
  4606. case CPU_ONLINE_FROZEN:
  4607. /* Strictly unneccessary, as first user will wake it. */
  4608. wake_up_process(cpu_rq(cpu)->migration_thread);
  4609. break;
  4610. #ifdef CONFIG_HOTPLUG_CPU
  4611. case CPU_UP_CANCELED:
  4612. case CPU_UP_CANCELED_FROZEN:
  4613. if (!cpu_rq(cpu)->migration_thread)
  4614. break;
  4615. /* Unbind it from offline cpu so it can run. Fall thru. */
  4616. kthread_bind(cpu_rq(cpu)->migration_thread,
  4617. any_online_cpu(cpu_online_map));
  4618. kthread_stop(cpu_rq(cpu)->migration_thread);
  4619. cpu_rq(cpu)->migration_thread = NULL;
  4620. break;
  4621. case CPU_DEAD:
  4622. case CPU_DEAD_FROZEN:
  4623. migrate_live_tasks(cpu);
  4624. rq = cpu_rq(cpu);
  4625. kthread_stop(rq->migration_thread);
  4626. rq->migration_thread = NULL;
  4627. /* Idle task back to normal (off runqueue, low prio) */
  4628. rq = task_rq_lock(rq->idle, &flags);
  4629. deactivate_task(rq, rq->idle, 0);
  4630. rq->idle->static_prio = MAX_PRIO;
  4631. __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
  4632. rq->idle->sched_class = &idle_sched_class;
  4633. migrate_dead_tasks(cpu);
  4634. task_rq_unlock(rq, &flags);
  4635. migrate_nr_uninterruptible(rq);
  4636. BUG_ON(rq->nr_running != 0);
  4637. /* No need to migrate the tasks: it was best-effort if
  4638. * they didn't take sched_hotcpu_mutex. Just wake up
  4639. * the requestors. */
  4640. spin_lock_irq(&rq->lock);
  4641. while (!list_empty(&rq->migration_queue)) {
  4642. struct migration_req *req;
  4643. req = list_entry(rq->migration_queue.next,
  4644. struct migration_req, list);
  4645. list_del_init(&req->list);
  4646. complete(&req->done);
  4647. }
  4648. spin_unlock_irq(&rq->lock);
  4649. break;
  4650. #endif
  4651. case CPU_LOCK_RELEASE:
  4652. mutex_unlock(&sched_hotcpu_mutex);
  4653. break;
  4654. }
  4655. return NOTIFY_OK;
  4656. }
  4657. /* Register at highest priority so that task migration (migrate_all_tasks)
  4658. * happens before everything else.
  4659. */
  4660. static struct notifier_block __cpuinitdata migration_notifier = {
  4661. .notifier_call = migration_call,
  4662. .priority = 10
  4663. };
  4664. int __init migration_init(void)
  4665. {
  4666. void *cpu = (void *)(long)smp_processor_id();
  4667. int err;
  4668. /* Start one for the boot CPU: */
  4669. err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
  4670. BUG_ON(err == NOTIFY_BAD);
  4671. migration_call(&migration_notifier, CPU_ONLINE, cpu);
  4672. register_cpu_notifier(&migration_notifier);
  4673. return 0;
  4674. }
  4675. #endif
  4676. #ifdef CONFIG_SMP
  4677. /* Number of possible processor ids */
  4678. int nr_cpu_ids __read_mostly = NR_CPUS;
  4679. EXPORT_SYMBOL(nr_cpu_ids);
  4680. #undef SCHED_DOMAIN_DEBUG
  4681. #ifdef SCHED_DOMAIN_DEBUG
  4682. static void sched_domain_debug(struct sched_domain *sd, int cpu)
  4683. {
  4684. int level = 0;
  4685. if (!sd) {
  4686. printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
  4687. return;
  4688. }
  4689. printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
  4690. do {
  4691. int i;
  4692. char str[NR_CPUS];
  4693. struct sched_group *group = sd->groups;
  4694. cpumask_t groupmask;
  4695. cpumask_scnprintf(str, NR_CPUS, sd->span);
  4696. cpus_clear(groupmask);
  4697. printk(KERN_DEBUG);
  4698. for (i = 0; i < level + 1; i++)
  4699. printk(" ");
  4700. printk("domain %d: ", level);
  4701. if (!(sd->flags & SD_LOAD_BALANCE)) {
  4702. printk("does not load-balance\n");
  4703. if (sd->parent)
  4704. printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
  4705. " has parent");
  4706. break;
  4707. }
  4708. printk("span %s\n", str);
  4709. if (!cpu_isset(cpu, sd->span))
  4710. printk(KERN_ERR "ERROR: domain->span does not contain "
  4711. "CPU%d\n", cpu);
  4712. if (!cpu_isset(cpu, group->cpumask))
  4713. printk(KERN_ERR "ERROR: domain->groups does not contain"
  4714. " CPU%d\n", cpu);
  4715. printk(KERN_DEBUG);
  4716. for (i = 0; i < level + 2; i++)
  4717. printk(" ");
  4718. printk("groups:");
  4719. do {
  4720. if (!group) {
  4721. printk("\n");
  4722. printk(KERN_ERR "ERROR: group is NULL\n");
  4723. break;
  4724. }
  4725. if (!group->__cpu_power) {
  4726. printk("\n");
  4727. printk(KERN_ERR "ERROR: domain->cpu_power not "
  4728. "set\n");
  4729. }
  4730. if (!cpus_weight(group->cpumask)) {
  4731. printk("\n");
  4732. printk(KERN_ERR "ERROR: empty group\n");
  4733. }
  4734. if (cpus_intersects(groupmask, group->cpumask)) {
  4735. printk("\n");
  4736. printk(KERN_ERR "ERROR: repeated CPUs\n");
  4737. }
  4738. cpus_or(groupmask, groupmask, group->cpumask);
  4739. cpumask_scnprintf(str, NR_CPUS, group->cpumask);
  4740. printk(" %s", str);
  4741. group = group->next;
  4742. } while (group != sd->groups);
  4743. printk("\n");
  4744. if (!cpus_equal(sd->span, groupmask))
  4745. printk(KERN_ERR "ERROR: groups don't span "
  4746. "domain->span\n");
  4747. level++;
  4748. sd = sd->parent;
  4749. if (!sd)
  4750. continue;
  4751. if (!cpus_subset(groupmask, sd->span))
  4752. printk(KERN_ERR "ERROR: parent span is not a superset "
  4753. "of domain->span\n");
  4754. } while (sd);
  4755. }
  4756. #else
  4757. # define sched_domain_debug(sd, cpu) do { } while (0)
  4758. #endif
  4759. static int sd_degenerate(struct sched_domain *sd)
  4760. {
  4761. if (cpus_weight(sd->span) == 1)
  4762. return 1;
  4763. /* Following flags need at least 2 groups */
  4764. if (sd->flags & (SD_LOAD_BALANCE |
  4765. SD_BALANCE_NEWIDLE |
  4766. SD_BALANCE_FORK |
  4767. SD_BALANCE_EXEC |
  4768. SD_SHARE_CPUPOWER |
  4769. SD_SHARE_PKG_RESOURCES)) {
  4770. if (sd->groups != sd->groups->next)
  4771. return 0;
  4772. }
  4773. /* Following flags don't use groups */
  4774. if (sd->flags & (SD_WAKE_IDLE |
  4775. SD_WAKE_AFFINE |
  4776. SD_WAKE_BALANCE))
  4777. return 0;
  4778. return 1;
  4779. }
  4780. static int
  4781. sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
  4782. {
  4783. unsigned long cflags = sd->flags, pflags = parent->flags;
  4784. if (sd_degenerate(parent))
  4785. return 1;
  4786. if (!cpus_equal(sd->span, parent->span))
  4787. return 0;
  4788. /* Does parent contain flags not in child? */
  4789. /* WAKE_BALANCE is a subset of WAKE_AFFINE */
  4790. if (cflags & SD_WAKE_AFFINE)
  4791. pflags &= ~SD_WAKE_BALANCE;
  4792. /* Flags needing groups don't count if only 1 group in parent */
  4793. if (parent->groups == parent->groups->next) {
  4794. pflags &= ~(SD_LOAD_BALANCE |
  4795. SD_BALANCE_NEWIDLE |
  4796. SD_BALANCE_FORK |
  4797. SD_BALANCE_EXEC |
  4798. SD_SHARE_CPUPOWER |
  4799. SD_SHARE_PKG_RESOURCES);
  4800. }
  4801. if (~cflags & pflags)
  4802. return 0;
  4803. return 1;
  4804. }
  4805. /*
  4806. * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
  4807. * hold the hotplug lock.
  4808. */
  4809. static void cpu_attach_domain(struct sched_domain *sd, int cpu)
  4810. {
  4811. struct rq *rq = cpu_rq(cpu);
  4812. struct sched_domain *tmp;
  4813. /* Remove the sched domains which do not contribute to scheduling. */
  4814. for (tmp = sd; tmp; tmp = tmp->parent) {
  4815. struct sched_domain *parent = tmp->parent;
  4816. if (!parent)
  4817. break;
  4818. if (sd_parent_degenerate(tmp, parent)) {
  4819. tmp->parent = parent->parent;
  4820. if (parent->parent)
  4821. parent->parent->child = tmp;
  4822. }
  4823. }
  4824. if (sd && sd_degenerate(sd)) {
  4825. sd = sd->parent;
  4826. if (sd)
  4827. sd->child = NULL;
  4828. }
  4829. sched_domain_debug(sd, cpu);
  4830. rcu_assign_pointer(rq->sd, sd);
  4831. }
  4832. /* cpus with isolated domains */
  4833. static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
  4834. /* Setup the mask of cpus configured for isolated domains */
  4835. static int __init isolated_cpu_setup(char *str)
  4836. {
  4837. int ints[NR_CPUS], i;
  4838. str = get_options(str, ARRAY_SIZE(ints), ints);
  4839. cpus_clear(cpu_isolated_map);
  4840. for (i = 1; i <= ints[0]; i++)
  4841. if (ints[i] < NR_CPUS)
  4842. cpu_set(ints[i], cpu_isolated_map);
  4843. return 1;
  4844. }
  4845. __setup ("isolcpus=", isolated_cpu_setup);
  4846. /*
  4847. * init_sched_build_groups takes the cpumask we wish to span, and a pointer
  4848. * to a function which identifies what group(along with sched group) a CPU
  4849. * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
  4850. * (due to the fact that we keep track of groups covered with a cpumask_t).
  4851. *
  4852. * init_sched_build_groups will build a circular linked list of the groups
  4853. * covered by the given span, and will set each group's ->cpumask correctly,
  4854. * and ->cpu_power to 0.
  4855. */
  4856. static void
  4857. init_sched_build_groups(cpumask_t span, const cpumask_t *cpu_map,
  4858. int (*group_fn)(int cpu, const cpumask_t *cpu_map,
  4859. struct sched_group **sg))
  4860. {
  4861. struct sched_group *first = NULL, *last = NULL;
  4862. cpumask_t covered = CPU_MASK_NONE;
  4863. int i;
  4864. for_each_cpu_mask(i, span) {
  4865. struct sched_group *sg;
  4866. int group = group_fn(i, cpu_map, &sg);
  4867. int j;
  4868. if (cpu_isset(i, covered))
  4869. continue;
  4870. sg->cpumask = CPU_MASK_NONE;
  4871. sg->__cpu_power = 0;
  4872. for_each_cpu_mask(j, span) {
  4873. if (group_fn(j, cpu_map, NULL) != group)
  4874. continue;
  4875. cpu_set(j, covered);
  4876. cpu_set(j, sg->cpumask);
  4877. }
  4878. if (!first)
  4879. first = sg;
  4880. if (last)
  4881. last->next = sg;
  4882. last = sg;
  4883. }
  4884. last->next = first;
  4885. }
  4886. #define SD_NODES_PER_DOMAIN 16
  4887. #ifdef CONFIG_NUMA
  4888. /**
  4889. * find_next_best_node - find the next node to include in a sched_domain
  4890. * @node: node whose sched_domain we're building
  4891. * @used_nodes: nodes already in the sched_domain
  4892. *
  4893. * Find the next node to include in a given scheduling domain. Simply
  4894. * finds the closest node not already in the @used_nodes map.
  4895. *
  4896. * Should use nodemask_t.
  4897. */
  4898. static int find_next_best_node(int node, unsigned long *used_nodes)
  4899. {
  4900. int i, n, val, min_val, best_node = 0;
  4901. min_val = INT_MAX;
  4902. for (i = 0; i < MAX_NUMNODES; i++) {
  4903. /* Start at @node */
  4904. n = (node + i) % MAX_NUMNODES;
  4905. if (!nr_cpus_node(n))
  4906. continue;
  4907. /* Skip already used nodes */
  4908. if (test_bit(n, used_nodes))
  4909. continue;
  4910. /* Simple min distance search */
  4911. val = node_distance(node, n);
  4912. if (val < min_val) {
  4913. min_val = val;
  4914. best_node = n;
  4915. }
  4916. }
  4917. set_bit(best_node, used_nodes);
  4918. return best_node;
  4919. }
  4920. /**
  4921. * sched_domain_node_span - get a cpumask for a node's sched_domain
  4922. * @node: node whose cpumask we're constructing
  4923. * @size: number of nodes to include in this span
  4924. *
  4925. * Given a node, construct a good cpumask for its sched_domain to span. It
  4926. * should be one that prevents unnecessary balancing, but also spreads tasks
  4927. * out optimally.
  4928. */
  4929. static cpumask_t sched_domain_node_span(int node)
  4930. {
  4931. DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
  4932. cpumask_t span, nodemask;
  4933. int i;
  4934. cpus_clear(span);
  4935. bitmap_zero(used_nodes, MAX_NUMNODES);
  4936. nodemask = node_to_cpumask(node);
  4937. cpus_or(span, span, nodemask);
  4938. set_bit(node, used_nodes);
  4939. for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
  4940. int next_node = find_next_best_node(node, used_nodes);
  4941. nodemask = node_to_cpumask(next_node);
  4942. cpus_or(span, span, nodemask);
  4943. }
  4944. return span;
  4945. }
  4946. #endif
  4947. int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
  4948. /*
  4949. * SMT sched-domains:
  4950. */
  4951. #ifdef CONFIG_SCHED_SMT
  4952. static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
  4953. static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
  4954. static int cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map,
  4955. struct sched_group **sg)
  4956. {
  4957. if (sg)
  4958. *sg = &per_cpu(sched_group_cpus, cpu);
  4959. return cpu;
  4960. }
  4961. #endif
  4962. /*
  4963. * multi-core sched-domains:
  4964. */
  4965. #ifdef CONFIG_SCHED_MC
  4966. static DEFINE_PER_CPU(struct sched_domain, core_domains);
  4967. static DEFINE_PER_CPU(struct sched_group, sched_group_core);
  4968. #endif
  4969. #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
  4970. static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
  4971. struct sched_group **sg)
  4972. {
  4973. int group;
  4974. cpumask_t mask = cpu_sibling_map[cpu];
  4975. cpus_and(mask, mask, *cpu_map);
  4976. group = first_cpu(mask);
  4977. if (sg)
  4978. *sg = &per_cpu(sched_group_core, group);
  4979. return group;
  4980. }
  4981. #elif defined(CONFIG_SCHED_MC)
  4982. static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
  4983. struct sched_group **sg)
  4984. {
  4985. if (sg)
  4986. *sg = &per_cpu(sched_group_core, cpu);
  4987. return cpu;
  4988. }
  4989. #endif
  4990. static DEFINE_PER_CPU(struct sched_domain, phys_domains);
  4991. static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
  4992. static int cpu_to_phys_group(int cpu, const cpumask_t *cpu_map,
  4993. struct sched_group **sg)
  4994. {
  4995. int group;
  4996. #ifdef CONFIG_SCHED_MC
  4997. cpumask_t mask = cpu_coregroup_map(cpu);
  4998. cpus_and(mask, mask, *cpu_map);
  4999. group = first_cpu(mask);
  5000. #elif defined(CONFIG_SCHED_SMT)
  5001. cpumask_t mask = cpu_sibling_map[cpu];
  5002. cpus_and(mask, mask, *cpu_map);
  5003. group = first_cpu(mask);
  5004. #else
  5005. group = cpu;
  5006. #endif
  5007. if (sg)
  5008. *sg = &per_cpu(sched_group_phys, group);
  5009. return group;
  5010. }
  5011. #ifdef CONFIG_NUMA
  5012. /*
  5013. * The init_sched_build_groups can't handle what we want to do with node
  5014. * groups, so roll our own. Now each node has its own list of groups which
  5015. * gets dynamically allocated.
  5016. */
  5017. static DEFINE_PER_CPU(struct sched_domain, node_domains);
  5018. static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
  5019. static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
  5020. static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
  5021. static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
  5022. struct sched_group **sg)
  5023. {
  5024. cpumask_t nodemask = node_to_cpumask(cpu_to_node(cpu));
  5025. int group;
  5026. cpus_and(nodemask, nodemask, *cpu_map);
  5027. group = first_cpu(nodemask);
  5028. if (sg)
  5029. *sg = &per_cpu(sched_group_allnodes, group);
  5030. return group;
  5031. }
  5032. static void init_numa_sched_groups_power(struct sched_group *group_head)
  5033. {
  5034. struct sched_group *sg = group_head;
  5035. int j;
  5036. if (!sg)
  5037. return;
  5038. next_sg:
  5039. for_each_cpu_mask(j, sg->cpumask) {
  5040. struct sched_domain *sd;
  5041. sd = &per_cpu(phys_domains, j);
  5042. if (j != first_cpu(sd->groups->cpumask)) {
  5043. /*
  5044. * Only add "power" once for each
  5045. * physical package.
  5046. */
  5047. continue;
  5048. }
  5049. sg_inc_cpu_power(sg, sd->groups->__cpu_power);
  5050. }
  5051. sg = sg->next;
  5052. if (sg != group_head)
  5053. goto next_sg;
  5054. }
  5055. #endif
  5056. #ifdef CONFIG_NUMA
  5057. /* Free memory allocated for various sched_group structures */
  5058. static void free_sched_groups(const cpumask_t *cpu_map)
  5059. {
  5060. int cpu, i;
  5061. for_each_cpu_mask(cpu, *cpu_map) {
  5062. struct sched_group **sched_group_nodes
  5063. = sched_group_nodes_bycpu[cpu];
  5064. if (!sched_group_nodes)
  5065. continue;
  5066. for (i = 0; i < MAX_NUMNODES; i++) {
  5067. cpumask_t nodemask = node_to_cpumask(i);
  5068. struct sched_group *oldsg, *sg = sched_group_nodes[i];
  5069. cpus_and(nodemask, nodemask, *cpu_map);
  5070. if (cpus_empty(nodemask))
  5071. continue;
  5072. if (sg == NULL)
  5073. continue;
  5074. sg = sg->next;
  5075. next_sg:
  5076. oldsg = sg;
  5077. sg = sg->next;
  5078. kfree(oldsg);
  5079. if (oldsg != sched_group_nodes[i])
  5080. goto next_sg;
  5081. }
  5082. kfree(sched_group_nodes);
  5083. sched_group_nodes_bycpu[cpu] = NULL;
  5084. }
  5085. }
  5086. #else
  5087. static void free_sched_groups(const cpumask_t *cpu_map)
  5088. {
  5089. }
  5090. #endif
  5091. /*
  5092. * Initialize sched groups cpu_power.
  5093. *
  5094. * cpu_power indicates the capacity of sched group, which is used while
  5095. * distributing the load between different sched groups in a sched domain.
  5096. * Typically cpu_power for all the groups in a sched domain will be same unless
  5097. * there are asymmetries in the topology. If there are asymmetries, group
  5098. * having more cpu_power will pickup more load compared to the group having
  5099. * less cpu_power.
  5100. *
  5101. * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
  5102. * the maximum number of tasks a group can handle in the presence of other idle
  5103. * or lightly loaded groups in the same sched domain.
  5104. */
  5105. static void init_sched_groups_power(int cpu, struct sched_domain *sd)
  5106. {
  5107. struct sched_domain *child;
  5108. struct sched_group *group;
  5109. WARN_ON(!sd || !sd->groups);
  5110. if (cpu != first_cpu(sd->groups->cpumask))
  5111. return;
  5112. child = sd->child;
  5113. sd->groups->__cpu_power = 0;
  5114. /*
  5115. * For perf policy, if the groups in child domain share resources
  5116. * (for example cores sharing some portions of the cache hierarchy
  5117. * or SMT), then set this domain groups cpu_power such that each group
  5118. * can handle only one task, when there are other idle groups in the
  5119. * same sched domain.
  5120. */
  5121. if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
  5122. (child->flags &
  5123. (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
  5124. sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
  5125. return;
  5126. }
  5127. /*
  5128. * add cpu_power of each child group to this groups cpu_power
  5129. */
  5130. group = child->groups;
  5131. do {
  5132. sg_inc_cpu_power(sd->groups, group->__cpu_power);
  5133. group = group->next;
  5134. } while (group != child->groups);
  5135. }
  5136. /*
  5137. * Build sched domains for a given set of cpus and attach the sched domains
  5138. * to the individual cpus
  5139. */
  5140. static int build_sched_domains(const cpumask_t *cpu_map)
  5141. {
  5142. int i;
  5143. #ifdef CONFIG_NUMA
  5144. struct sched_group **sched_group_nodes = NULL;
  5145. int sd_allnodes = 0;
  5146. /*
  5147. * Allocate the per-node list of sched groups
  5148. */
  5149. sched_group_nodes = kzalloc(sizeof(struct sched_group *)*MAX_NUMNODES,
  5150. GFP_KERNEL);
  5151. if (!sched_group_nodes) {
  5152. printk(KERN_WARNING "Can not alloc sched group node list\n");
  5153. return -ENOMEM;
  5154. }
  5155. sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
  5156. #endif
  5157. /*
  5158. * Set up domains for cpus specified by the cpu_map.
  5159. */
  5160. for_each_cpu_mask(i, *cpu_map) {
  5161. struct sched_domain *sd = NULL, *p;
  5162. cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
  5163. cpus_and(nodemask, nodemask, *cpu_map);
  5164. #ifdef CONFIG_NUMA
  5165. if (cpus_weight(*cpu_map) >
  5166. SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
  5167. sd = &per_cpu(allnodes_domains, i);
  5168. *sd = SD_ALLNODES_INIT;
  5169. sd->span = *cpu_map;
  5170. cpu_to_allnodes_group(i, cpu_map, &sd->groups);
  5171. p = sd;
  5172. sd_allnodes = 1;
  5173. } else
  5174. p = NULL;
  5175. sd = &per_cpu(node_domains, i);
  5176. *sd = SD_NODE_INIT;
  5177. sd->span = sched_domain_node_span(cpu_to_node(i));
  5178. sd->parent = p;
  5179. if (p)
  5180. p->child = sd;
  5181. cpus_and(sd->span, sd->span, *cpu_map);
  5182. #endif
  5183. p = sd;
  5184. sd = &per_cpu(phys_domains, i);
  5185. *sd = SD_CPU_INIT;
  5186. sd->span = nodemask;
  5187. sd->parent = p;
  5188. if (p)
  5189. p->child = sd;
  5190. cpu_to_phys_group(i, cpu_map, &sd->groups);
  5191. #ifdef CONFIG_SCHED_MC
  5192. p = sd;
  5193. sd = &per_cpu(core_domains, i);
  5194. *sd = SD_MC_INIT;
  5195. sd->span = cpu_coregroup_map(i);
  5196. cpus_and(sd->span, sd->span, *cpu_map);
  5197. sd->parent = p;
  5198. p->child = sd;
  5199. cpu_to_core_group(i, cpu_map, &sd->groups);
  5200. #endif
  5201. #ifdef CONFIG_SCHED_SMT
  5202. p = sd;
  5203. sd = &per_cpu(cpu_domains, i);
  5204. *sd = SD_SIBLING_INIT;
  5205. sd->span = cpu_sibling_map[i];
  5206. cpus_and(sd->span, sd->span, *cpu_map);
  5207. sd->parent = p;
  5208. p->child = sd;
  5209. cpu_to_cpu_group(i, cpu_map, &sd->groups);
  5210. #endif
  5211. }
  5212. #ifdef CONFIG_SCHED_SMT
  5213. /* Set up CPU (sibling) groups */
  5214. for_each_cpu_mask(i, *cpu_map) {
  5215. cpumask_t this_sibling_map = cpu_sibling_map[i];
  5216. cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
  5217. if (i != first_cpu(this_sibling_map))
  5218. continue;
  5219. init_sched_build_groups(this_sibling_map, cpu_map,
  5220. &cpu_to_cpu_group);
  5221. }
  5222. #endif
  5223. #ifdef CONFIG_SCHED_MC
  5224. /* Set up multi-core groups */
  5225. for_each_cpu_mask(i, *cpu_map) {
  5226. cpumask_t this_core_map = cpu_coregroup_map(i);
  5227. cpus_and(this_core_map, this_core_map, *cpu_map);
  5228. if (i != first_cpu(this_core_map))
  5229. continue;
  5230. init_sched_build_groups(this_core_map, cpu_map,
  5231. &cpu_to_core_group);
  5232. }
  5233. #endif
  5234. /* Set up physical groups */
  5235. for (i = 0; i < MAX_NUMNODES; i++) {
  5236. cpumask_t nodemask = node_to_cpumask(i);
  5237. cpus_and(nodemask, nodemask, *cpu_map);
  5238. if (cpus_empty(nodemask))
  5239. continue;
  5240. init_sched_build_groups(nodemask, cpu_map, &cpu_to_phys_group);
  5241. }
  5242. #ifdef CONFIG_NUMA
  5243. /* Set up node groups */
  5244. if (sd_allnodes)
  5245. init_sched_build_groups(*cpu_map, cpu_map,
  5246. &cpu_to_allnodes_group);
  5247. for (i = 0; i < MAX_NUMNODES; i++) {
  5248. /* Set up node groups */
  5249. struct sched_group *sg, *prev;
  5250. cpumask_t nodemask = node_to_cpumask(i);
  5251. cpumask_t domainspan;
  5252. cpumask_t covered = CPU_MASK_NONE;
  5253. int j;
  5254. cpus_and(nodemask, nodemask, *cpu_map);
  5255. if (cpus_empty(nodemask)) {
  5256. sched_group_nodes[i] = NULL;
  5257. continue;
  5258. }
  5259. domainspan = sched_domain_node_span(i);
  5260. cpus_and(domainspan, domainspan, *cpu_map);
  5261. sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
  5262. if (!sg) {
  5263. printk(KERN_WARNING "Can not alloc domain group for "
  5264. "node %d\n", i);
  5265. goto error;
  5266. }
  5267. sched_group_nodes[i] = sg;
  5268. for_each_cpu_mask(j, nodemask) {
  5269. struct sched_domain *sd;
  5270. sd = &per_cpu(node_domains, j);
  5271. sd->groups = sg;
  5272. }
  5273. sg->__cpu_power = 0;
  5274. sg->cpumask = nodemask;
  5275. sg->next = sg;
  5276. cpus_or(covered, covered, nodemask);
  5277. prev = sg;
  5278. for (j = 0; j < MAX_NUMNODES; j++) {
  5279. cpumask_t tmp, notcovered;
  5280. int n = (i + j) % MAX_NUMNODES;
  5281. cpus_complement(notcovered, covered);
  5282. cpus_and(tmp, notcovered, *cpu_map);
  5283. cpus_and(tmp, tmp, domainspan);
  5284. if (cpus_empty(tmp))
  5285. break;
  5286. nodemask = node_to_cpumask(n);
  5287. cpus_and(tmp, tmp, nodemask);
  5288. if (cpus_empty(tmp))
  5289. continue;
  5290. sg = kmalloc_node(sizeof(struct sched_group),
  5291. GFP_KERNEL, i);
  5292. if (!sg) {
  5293. printk(KERN_WARNING
  5294. "Can not alloc domain group for node %d\n", j);
  5295. goto error;
  5296. }
  5297. sg->__cpu_power = 0;
  5298. sg->cpumask = tmp;
  5299. sg->next = prev->next;
  5300. cpus_or(covered, covered, tmp);
  5301. prev->next = sg;
  5302. prev = sg;
  5303. }
  5304. }
  5305. #endif
  5306. /* Calculate CPU power for physical packages and nodes */
  5307. #ifdef CONFIG_SCHED_SMT
  5308. for_each_cpu_mask(i, *cpu_map) {
  5309. struct sched_domain *sd = &per_cpu(cpu_domains, i);
  5310. init_sched_groups_power(i, sd);
  5311. }
  5312. #endif
  5313. #ifdef CONFIG_SCHED_MC
  5314. for_each_cpu_mask(i, *cpu_map) {
  5315. struct sched_domain *sd = &per_cpu(core_domains, i);
  5316. init_sched_groups_power(i, sd);
  5317. }
  5318. #endif
  5319. for_each_cpu_mask(i, *cpu_map) {
  5320. struct sched_domain *sd = &per_cpu(phys_domains, i);
  5321. init_sched_groups_power(i, sd);
  5322. }
  5323. #ifdef CONFIG_NUMA
  5324. for (i = 0; i < MAX_NUMNODES; i++)
  5325. init_numa_sched_groups_power(sched_group_nodes[i]);
  5326. if (sd_allnodes) {
  5327. struct sched_group *sg;
  5328. cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg);
  5329. init_numa_sched_groups_power(sg);
  5330. }
  5331. #endif
  5332. /* Attach the domains */
  5333. for_each_cpu_mask(i, *cpu_map) {
  5334. struct sched_domain *sd;
  5335. #ifdef CONFIG_SCHED_SMT
  5336. sd = &per_cpu(cpu_domains, i);
  5337. #elif defined(CONFIG_SCHED_MC)
  5338. sd = &per_cpu(core_domains, i);
  5339. #else
  5340. sd = &per_cpu(phys_domains, i);
  5341. #endif
  5342. cpu_attach_domain(sd, i);
  5343. }
  5344. return 0;
  5345. #ifdef CONFIG_NUMA
  5346. error:
  5347. free_sched_groups(cpu_map);
  5348. return -ENOMEM;
  5349. #endif
  5350. }
  5351. /*
  5352. * Set up scheduler domains and groups. Callers must hold the hotplug lock.
  5353. */
  5354. static int arch_init_sched_domains(const cpumask_t *cpu_map)
  5355. {
  5356. cpumask_t cpu_default_map;
  5357. int err;
  5358. /*
  5359. * Setup mask for cpus without special case scheduling requirements.
  5360. * For now this just excludes isolated cpus, but could be used to
  5361. * exclude other special cases in the future.
  5362. */
  5363. cpus_andnot(cpu_default_map, *cpu_map, cpu_isolated_map);
  5364. err = build_sched_domains(&cpu_default_map);
  5365. return err;
  5366. }
  5367. static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
  5368. {
  5369. free_sched_groups(cpu_map);
  5370. }
  5371. /*
  5372. * Detach sched domains from a group of cpus specified in cpu_map
  5373. * These cpus will now be attached to the NULL domain
  5374. */
  5375. static void detach_destroy_domains(const cpumask_t *cpu_map)
  5376. {
  5377. int i;
  5378. for_each_cpu_mask(i, *cpu_map)
  5379. cpu_attach_domain(NULL, i);
  5380. synchronize_sched();
  5381. arch_destroy_sched_domains(cpu_map);
  5382. }
  5383. /*
  5384. * Partition sched domains as specified by the cpumasks below.
  5385. * This attaches all cpus from the cpumasks to the NULL domain,
  5386. * waits for a RCU quiescent period, recalculates sched
  5387. * domain information and then attaches them back to the
  5388. * correct sched domains
  5389. * Call with hotplug lock held
  5390. */
  5391. int partition_sched_domains(cpumask_t *partition1, cpumask_t *partition2)
  5392. {
  5393. cpumask_t change_map;
  5394. int err = 0;
  5395. cpus_and(*partition1, *partition1, cpu_online_map);
  5396. cpus_and(*partition2, *partition2, cpu_online_map);
  5397. cpus_or(change_map, *partition1, *partition2);
  5398. /* Detach sched domains from all of the affected cpus */
  5399. detach_destroy_domains(&change_map);
  5400. if (!cpus_empty(*partition1))
  5401. err = build_sched_domains(partition1);
  5402. if (!err && !cpus_empty(*partition2))
  5403. err = build_sched_domains(partition2);
  5404. return err;
  5405. }
  5406. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  5407. int arch_reinit_sched_domains(void)
  5408. {
  5409. int err;
  5410. mutex_lock(&sched_hotcpu_mutex);
  5411. detach_destroy_domains(&cpu_online_map);
  5412. err = arch_init_sched_domains(&cpu_online_map);
  5413. mutex_unlock(&sched_hotcpu_mutex);
  5414. return err;
  5415. }
  5416. static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
  5417. {
  5418. int ret;
  5419. if (buf[0] != '0' && buf[0] != '1')
  5420. return -EINVAL;
  5421. if (smt)
  5422. sched_smt_power_savings = (buf[0] == '1');
  5423. else
  5424. sched_mc_power_savings = (buf[0] == '1');
  5425. ret = arch_reinit_sched_domains();
  5426. return ret ? ret : count;
  5427. }
  5428. int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
  5429. {
  5430. int err = 0;
  5431. #ifdef CONFIG_SCHED_SMT
  5432. if (smt_capable())
  5433. err = sysfs_create_file(&cls->kset.kobj,
  5434. &attr_sched_smt_power_savings.attr);
  5435. #endif
  5436. #ifdef CONFIG_SCHED_MC
  5437. if (!err && mc_capable())
  5438. err = sysfs_create_file(&cls->kset.kobj,
  5439. &attr_sched_mc_power_savings.attr);
  5440. #endif
  5441. return err;
  5442. }
  5443. #endif
  5444. #ifdef CONFIG_SCHED_MC
  5445. static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
  5446. {
  5447. return sprintf(page, "%u\n", sched_mc_power_savings);
  5448. }
  5449. static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
  5450. const char *buf, size_t count)
  5451. {
  5452. return sched_power_savings_store(buf, count, 0);
  5453. }
  5454. SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
  5455. sched_mc_power_savings_store);
  5456. #endif
  5457. #ifdef CONFIG_SCHED_SMT
  5458. static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
  5459. {
  5460. return sprintf(page, "%u\n", sched_smt_power_savings);
  5461. }
  5462. static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
  5463. const char *buf, size_t count)
  5464. {
  5465. return sched_power_savings_store(buf, count, 1);
  5466. }
  5467. SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
  5468. sched_smt_power_savings_store);
  5469. #endif
  5470. /*
  5471. * Force a reinitialization of the sched domains hierarchy. The domains
  5472. * and groups cannot be updated in place without racing with the balancing
  5473. * code, so we temporarily attach all running cpus to the NULL domain
  5474. * which will prevent rebalancing while the sched domains are recalculated.
  5475. */
  5476. static int update_sched_domains(struct notifier_block *nfb,
  5477. unsigned long action, void *hcpu)
  5478. {
  5479. switch (action) {
  5480. case CPU_UP_PREPARE:
  5481. case CPU_UP_PREPARE_FROZEN:
  5482. case CPU_DOWN_PREPARE:
  5483. case CPU_DOWN_PREPARE_FROZEN:
  5484. detach_destroy_domains(&cpu_online_map);
  5485. return NOTIFY_OK;
  5486. case CPU_UP_CANCELED:
  5487. case CPU_UP_CANCELED_FROZEN:
  5488. case CPU_DOWN_FAILED:
  5489. case CPU_DOWN_FAILED_FROZEN:
  5490. case CPU_ONLINE:
  5491. case CPU_ONLINE_FROZEN:
  5492. case CPU_DEAD:
  5493. case CPU_DEAD_FROZEN:
  5494. /*
  5495. * Fall through and re-initialise the domains.
  5496. */
  5497. break;
  5498. default:
  5499. return NOTIFY_DONE;
  5500. }
  5501. /* The hotplug lock is already held by cpu_up/cpu_down */
  5502. arch_init_sched_domains(&cpu_online_map);
  5503. return NOTIFY_OK;
  5504. }
  5505. void __init sched_init_smp(void)
  5506. {
  5507. cpumask_t non_isolated_cpus;
  5508. mutex_lock(&sched_hotcpu_mutex);
  5509. arch_init_sched_domains(&cpu_online_map);
  5510. cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
  5511. if (cpus_empty(non_isolated_cpus))
  5512. cpu_set(smp_processor_id(), non_isolated_cpus);
  5513. mutex_unlock(&sched_hotcpu_mutex);
  5514. /* XXX: Theoretical race here - CPU may be hotplugged now */
  5515. hotcpu_notifier(update_sched_domains, 0);
  5516. init_sched_domain_sysctl();
  5517. /* Move init over to a non-isolated CPU */
  5518. if (set_cpus_allowed(current, non_isolated_cpus) < 0)
  5519. BUG();
  5520. sched_init_granularity();
  5521. }
  5522. #else
  5523. void __init sched_init_smp(void)
  5524. {
  5525. sched_init_granularity();
  5526. }
  5527. #endif /* CONFIG_SMP */
  5528. int in_sched_functions(unsigned long addr)
  5529. {
  5530. /* Linker adds these: start and end of __sched functions */
  5531. extern char __sched_text_start[], __sched_text_end[];
  5532. return in_lock_functions(addr) ||
  5533. (addr >= (unsigned long)__sched_text_start
  5534. && addr < (unsigned long)__sched_text_end);
  5535. }
  5536. static inline void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
  5537. {
  5538. cfs_rq->tasks_timeline = RB_ROOT;
  5539. cfs_rq->fair_clock = 1;
  5540. #ifdef CONFIG_FAIR_GROUP_SCHED
  5541. cfs_rq->rq = rq;
  5542. #endif
  5543. }
  5544. void __init sched_init(void)
  5545. {
  5546. u64 now = sched_clock();
  5547. int highest_cpu = 0;
  5548. int i, j;
  5549. /*
  5550. * Link up the scheduling class hierarchy:
  5551. */
  5552. rt_sched_class.next = &fair_sched_class;
  5553. fair_sched_class.next = &idle_sched_class;
  5554. idle_sched_class.next = NULL;
  5555. for_each_possible_cpu(i) {
  5556. struct rt_prio_array *array;
  5557. struct rq *rq;
  5558. rq = cpu_rq(i);
  5559. spin_lock_init(&rq->lock);
  5560. lockdep_set_class(&rq->lock, &rq->rq_lock_key);
  5561. rq->nr_running = 0;
  5562. rq->clock = 1;
  5563. init_cfs_rq(&rq->cfs, rq);
  5564. #ifdef CONFIG_FAIR_GROUP_SCHED
  5565. INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
  5566. list_add(&rq->cfs.leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
  5567. #endif
  5568. rq->ls.load_update_last = now;
  5569. rq->ls.load_update_start = now;
  5570. for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
  5571. rq->cpu_load[j] = 0;
  5572. #ifdef CONFIG_SMP
  5573. rq->sd = NULL;
  5574. rq->active_balance = 0;
  5575. rq->next_balance = jiffies;
  5576. rq->push_cpu = 0;
  5577. rq->cpu = i;
  5578. rq->migration_thread = NULL;
  5579. INIT_LIST_HEAD(&rq->migration_queue);
  5580. #endif
  5581. atomic_set(&rq->nr_iowait, 0);
  5582. array = &rq->rt.active;
  5583. for (j = 0; j < MAX_RT_PRIO; j++) {
  5584. INIT_LIST_HEAD(array->queue + j);
  5585. __clear_bit(j, array->bitmap);
  5586. }
  5587. highest_cpu = i;
  5588. /* delimiter for bitsearch: */
  5589. __set_bit(MAX_RT_PRIO, array->bitmap);
  5590. }
  5591. set_load_weight(&init_task);
  5592. #ifdef CONFIG_PREEMPT_NOTIFIERS
  5593. INIT_HLIST_HEAD(&init_task.preempt_notifiers);
  5594. #endif
  5595. #ifdef CONFIG_SMP
  5596. nr_cpu_ids = highest_cpu + 1;
  5597. open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
  5598. #endif
  5599. #ifdef CONFIG_RT_MUTEXES
  5600. plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
  5601. #endif
  5602. /*
  5603. * The boot idle thread does lazy MMU switching as well:
  5604. */
  5605. atomic_inc(&init_mm.mm_count);
  5606. enter_lazy_tlb(&init_mm, current);
  5607. /*
  5608. * Make us the idle thread. Technically, schedule() should not be
  5609. * called from this thread, however somewhere below it might be,
  5610. * but because we are the idle thread, we just pick up running again
  5611. * when this runqueue becomes "idle".
  5612. */
  5613. init_idle(current, smp_processor_id());
  5614. /*
  5615. * During early bootup we pretend to be a normal task:
  5616. */
  5617. current->sched_class = &fair_sched_class;
  5618. }
  5619. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  5620. void __might_sleep(char *file, int line)
  5621. {
  5622. #ifdef in_atomic
  5623. static unsigned long prev_jiffy; /* ratelimiting */
  5624. if ((in_atomic() || irqs_disabled()) &&
  5625. system_state == SYSTEM_RUNNING && !oops_in_progress) {
  5626. if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
  5627. return;
  5628. prev_jiffy = jiffies;
  5629. printk(KERN_ERR "BUG: sleeping function called from invalid"
  5630. " context at %s:%d\n", file, line);
  5631. printk("in_atomic():%d, irqs_disabled():%d\n",
  5632. in_atomic(), irqs_disabled());
  5633. debug_show_held_locks(current);
  5634. if (irqs_disabled())
  5635. print_irqtrace_events(current);
  5636. dump_stack();
  5637. }
  5638. #endif
  5639. }
  5640. EXPORT_SYMBOL(__might_sleep);
  5641. #endif
  5642. #ifdef CONFIG_MAGIC_SYSRQ
  5643. void normalize_rt_tasks(void)
  5644. {
  5645. struct task_struct *g, *p;
  5646. unsigned long flags;
  5647. struct rq *rq;
  5648. int on_rq;
  5649. read_lock_irq(&tasklist_lock);
  5650. do_each_thread(g, p) {
  5651. p->se.fair_key = 0;
  5652. p->se.wait_runtime = 0;
  5653. p->se.wait_start_fair = 0;
  5654. p->se.wait_start = 0;
  5655. p->se.exec_start = 0;
  5656. p->se.sleep_start = 0;
  5657. p->se.sleep_start_fair = 0;
  5658. p->se.block_start = 0;
  5659. task_rq(p)->cfs.fair_clock = 0;
  5660. task_rq(p)->clock = 0;
  5661. if (!rt_task(p)) {
  5662. /*
  5663. * Renice negative nice level userspace
  5664. * tasks back to 0:
  5665. */
  5666. if (TASK_NICE(p) < 0 && p->mm)
  5667. set_user_nice(p, 0);
  5668. continue;
  5669. }
  5670. spin_lock_irqsave(&p->pi_lock, flags);
  5671. rq = __task_rq_lock(p);
  5672. #ifdef CONFIG_SMP
  5673. /*
  5674. * Do not touch the migration thread:
  5675. */
  5676. if (p == rq->migration_thread)
  5677. goto out_unlock;
  5678. #endif
  5679. on_rq = p->se.on_rq;
  5680. if (on_rq)
  5681. deactivate_task(task_rq(p), p, 0);
  5682. __setscheduler(rq, p, SCHED_NORMAL, 0);
  5683. if (on_rq) {
  5684. activate_task(task_rq(p), p, 0);
  5685. resched_task(rq->curr);
  5686. }
  5687. #ifdef CONFIG_SMP
  5688. out_unlock:
  5689. #endif
  5690. __task_rq_unlock(rq);
  5691. spin_unlock_irqrestore(&p->pi_lock, flags);
  5692. } while_each_thread(g, p);
  5693. read_unlock_irq(&tasklist_lock);
  5694. }
  5695. #endif /* CONFIG_MAGIC_SYSRQ */
  5696. #ifdef CONFIG_IA64
  5697. /*
  5698. * These functions are only useful for the IA64 MCA handling.
  5699. *
  5700. * They can only be called when the whole system has been
  5701. * stopped - every CPU needs to be quiescent, and no scheduling
  5702. * activity can take place. Using them for anything else would
  5703. * be a serious bug, and as a result, they aren't even visible
  5704. * under any other configuration.
  5705. */
  5706. /**
  5707. * curr_task - return the current task for a given cpu.
  5708. * @cpu: the processor in question.
  5709. *
  5710. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  5711. */
  5712. struct task_struct *curr_task(int cpu)
  5713. {
  5714. return cpu_curr(cpu);
  5715. }
  5716. /**
  5717. * set_curr_task - set the current task for a given cpu.
  5718. * @cpu: the processor in question.
  5719. * @p: the task pointer to set.
  5720. *
  5721. * Description: This function must only be used when non-maskable interrupts
  5722. * are serviced on a separate stack. It allows the architecture to switch the
  5723. * notion of the current task on a cpu in a non-blocking manner. This function
  5724. * must be called with all CPU's synchronized, and interrupts disabled, the
  5725. * and caller must save the original value of the current task (see
  5726. * curr_task() above) and restore that value before reenabling interrupts and
  5727. * re-starting the system.
  5728. *
  5729. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  5730. */
  5731. void set_curr_task(int cpu, struct task_struct *p)
  5732. {
  5733. cpu_curr(cpu) = p;
  5734. }
  5735. #endif